Skip to content

Latest commit

 

History

History
61 lines (49 loc) · 1.11 KB

README.md

File metadata and controls

61 lines (49 loc) · 1.11 KB

SSD300

Single Shot MultiBox Detector implemented with TensorFlow

Dependencies

python3.6.1

  • numpy
  • skimage
  • TensorFlow
  • matplotlib
  • OpenCV

Usage

  1. Import required modules
import tensorflow as tf
import numpy as np

from util.util import *
from model.SSD300 import *
  1. Load test-image
img = load_image('./test.jpg')
img = img.reshape((300, 300, 3))
  1. Start Session
with tf.Session() as sess:
        ssd = SSD300(sess)
        sess.run(tf.global_variables_initializer())
        for ep in range(EPOCH):
            ...
  1. Training or Evaluating you must just call ssd.eval() !
...

_, _, batch_loc, batch_conf, batch_loss = ssd.eval(minibatch, actual_data, is_training=True)

...

Test Training

you have to extract data-set from zip files. decompress all zip files in datasets/ and move to voc2007/ dir.

$ ls voc2007/ | wc -l    #  => 4954
$ ./setup.sh
$ python train.py

Present Circumstances

I'm checking and testing SSD model, so this model may not be complete.

If I have overlooked something, please tell me.

Welcome PullRequest or E-mail