-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpairwise.py
169 lines (139 loc) · 5.72 KB
/
pairwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import absolute_import, division
import numpy as np
from collections import namedtuple
from torch.utils.data import Dataset
from torchvision.transforms import Compose, CenterCrop, RandomCrop, ToTensor
from PIL import Image, ImageStat, ImageOps
import cv2
import random
class RandomStretch(object):
def __init__(self, max_stretch=0.05, interpolation='bilinear'):
assert interpolation in ['bilinear', 'bicubic']
self.max_stretch = max_stretch
self.interpolation = interpolation
def __call__(self, img):
scale = 1.0 + np.random.uniform(
-self.max_stretch, self.max_stretch)
size = np.round(np.array(img.size, float) * scale).astype(int)
if self.interpolation == 'bilinear':
method = Image.BILINEAR
elif self.interpolation == 'bicubic':
method = Image.BICUBIC
return img.resize(tuple(size), method)
class Pairwise(Dataset):
def __init__(self, seq_dataset, **kargs):
super(Pairwise, self).__init__()
self.cfg = self.parse_args(**kargs)
self.seq_dataset = seq_dataset
self.indices = np.random.permutation(len(seq_dataset))
# augmentation for exemplar and instance images
self.transform_z = Compose([
RandomStretch(max_stretch=0.05),
CenterCrop(self.cfg.instance_sz - 8),
RandomCrop(self.cfg.instance_sz - 2 * 8),
CenterCrop(self.cfg.exemplar_sz),
ToTensor()])
self.transform_x = Compose([
RandomStretch(max_stretch=0.05),
CenterCrop(self.cfg.instance_sz - 8),
RandomCrop(self.cfg.instance_sz - 2 * 8),
ToTensor()])
def parse_args(self, **kargs):
# default parameters
cfg = {
'pairs_per_seq': 10,
'max_dist': 100,
'exemplar_sz': 127,
'instance_sz': 255,
'context': 0.5}
for key, val in kargs.items():
if key in cfg:
cfg.update({key: val})
return namedtuple('GenericDict', cfg.keys())(**cfg)
def __getitem__(self, index):
index = self.indices[index % len(self.seq_dataset)]
img_files, anno = self.seq_dataset[index]
# remove too small objects
valid = anno[:, 2:].prod(axis=1) >= 10
img_files = np.array(img_files)[valid]
anno = anno[valid, :]
rand_z, rand_x = self._sample_pair(len(img_files))
exemplar_image = Image.open(img_files[rand_z])
exemplar_img = self._crop_and_resize(exemplar_image, anno[rand_z])
exemplar_image = 255.0 * self.transform_z(exemplar_img)
exemplar_noise = self.sp_noise(exemplar_img, 0.05)
exemplar_noise = 255.0 * self.transform_z(exemplar_noise)
instance_image = Image.open(img_files[rand_x])
instance_img = self._crop_and_resize(instance_image, anno[rand_x])
instance_image = 255.0 * self.transform_x(instance_img)
instance_noise = self.sp_noise(instance_img, 0.05)
instance_noise = 255.0 * self.transform_x(instance_noise)
return exemplar_image, exemplar_noise, instance_image, instance_noise
def __len__(self):
return self.cfg.pairs_per_seq * len(self.seq_dataset)
def sp_noise(self, image, prob):
'''
Add salt and pepper noise to image
prob: Probability of the noise
'''
image = np.array(image)
output = np.zeros(image.shape,np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = image[i][j]
cv2.imwrite("cv.png", output)
output = Image.fromarray(output)
return output
def _sample_pair(self, n):
assert n > 0
if n == 1:
return 0, 0
elif n == 2:
return 0, 1
else:
max_dist = min(n - 1, self.cfg.max_dist)
rand_dist = np.random.choice(max_dist) + 1
rand_z = np.random.choice(n - rand_dist)
rand_x = rand_z + rand_dist
return rand_z, rand_x
def _crop_and_resize(self, image, box):
# convert box to 0-indexed and center based
box = np.array([
box[0] - 1 + (box[2] - 1) / 2,
box[1] - 1 + (box[3] - 1) / 2,
box[2], box[3]], dtype=np.float32)
center, target_sz = box[:2], box[2:]
# exemplar and search sizes
context = self.cfg.context * np.sum(target_sz)
z_sz = np.sqrt(np.prod(target_sz + context))
x_sz = z_sz * self.cfg.instance_sz / self.cfg.exemplar_sz
# convert box to corners (0-indexed)
size = round(x_sz)
corners = np.concatenate((
np.round(center - (size - 1) / 2),
np.round(center - (size - 1) / 2) + size))
corners = np.round(corners).astype(int)
# pad image if necessary
pads = np.concatenate((
-corners[:2], corners[2:] - image.size))
npad = max(0, int(pads.max()))
if npad > 0:
avg_color = ImageStat.Stat(image).mean
# PIL doesn't support float RGB image
avg_color = tuple(int(round(c)) for c in avg_color)
image = ImageOps.expand(image, border=npad, fill=avg_color)
# crop image patch
corners = tuple((corners + npad).astype(int))
patch = image.crop(corners)
# resize to instance_sz
out_size = (self.cfg.instance_sz, self.cfg.instance_sz)
patch = patch.resize(out_size, Image.BILINEAR)
#print("patch",patch)
return patch