Skip to content

Latest commit

 

History

History
203 lines (130 loc) · 15 KB

README.md

File metadata and controls

203 lines (130 loc) · 15 KB

Голосовой ассистент Ирина

Ирина - русский голосовой ассистент для работы оффлайн. Требует Python 3.5+ (зависимость может быть меньше, но в любом случае Python 3)

Поддерживает плагины (скиллы)

Статья на Хабре | Вторая статья на Хабре | Группа в Телеграм

Установка / быстрый старт

  1. Для быстрой установки всех требуемых зависимостей можно воспользоваться командой: pip install -r requirements.txt (Для Linux и macOS - предварительно установите пакеты для audioplayer)

  2. Для запуска запустите файл runva_vosk.py из корневой папки. По умолчанию он запустит оффлайн-распознаватель vosk для распознавания речи с микрофона, и pyttsx движок для озвучивания ассистента Подробнее о pyttsx здесь.

  3. После запуска проверить можно простой командой - скажите "Ирина, привет!" в микрофон

Папка с настройками options появится после первого запуска Ирины, в ней можно поправить настройки.

Более пошаговая инфа про установку на Win (в особенности Win 7): docs/INSTALL_WIN.md

Решение некоторых проблем при установке под Linux: docs/INSTALL_LINUX.md

Решение некоторых проблем при установке под Mac: docs/INSTALL_MAC.md

Принципы отладки при проблемах при установке: docs/INSTALL_DEBUG.md

Если хотите ключевые компоненты запустить через Докер и не хотите разбираться с зависимостями: docs/INSTALL_DOCKER.md

Баги можно писать в ISSUES, обсуждать - в Телеграм

Общая логика

Запуск всех команд начинается с имени ассистента (настраивается в options/core.json, по умолчанию - Ирина). Так сделано, чтобы исключить неверные срабатывания при постоянном прослушивании микрофона. Далее будут описываться команды без префикса "Ирина".

В движок встроена поддержка локального управления через веб-интерфейс плейером MPC-HC, так что при прочих равных рекомендуется использовать его. Его можно настроить в options/core.json

Плагины

Поддержка плагинов сделана на собственном движке Jaa.py - минималистичный однофайловый движок поддержки плагинов и их настроек.

Плагины располагаются в папке plugins и должны начинаться с префикса "plugins_".

Настройки плагинов, если таковые есть, располагаются в папке "options" (создается после первого запуска).

Готовые плагины/скиллы (уже в папке plugins)

Для каждого плагина написано, требуется ли онлайн. Для отключения удалите из папки

Полная информация: docs/PLUGINS.md

Сторонние плагины

Если вы хотите узнать:

  • какие еще есть плагины от других разработчиков
  • запостить ссылку на свой сделанный плагин

Посетите: janvarev#1

Интеграция с Home Assistant

Есть хороший сторонний плагин, позволяющий запускать сценарии Home Assistant через Ирину: https://github.com/timhok/IreneVA-hassio-script-trigger-plugin

Настройки ядра (core.json)

Настройки конкретных плагинов лучше смотреть в плагинах

{
    "isOnline": true, # при установке в false будет выдавать заглушку на команды плагинов, требующих онлайн. Рекомендуется, если нужен только оффлайн.
    "linguaFrancaLang": "ru", # язык для конвертации чисел в lingua-franca. Смените, если будете работать с другим языком
    "logPolicy": "cmd", # all|cmd|none . Когда распознается речь с микрофона - выводить в консоль всегда | только, если является командой | никогда
    "mpcHcPath": "C:\\Program Files (x86)\\K-Lite Codec Pack\\MPC-HC64\\mpc-hc64_nvo.exe", # путь до MPC HC, если используете
    "mpcIsUse": true, # используется ли MPC HC?
    "mpcIsUseHttpRemote": true, # MPC HC - включено ли управление через веб-интерфейс?
    "playWavEngineId": "audioplayer", # плагин проигрыша WAV-файлов. Некоторые WAV требуют sounddevice.
    "replyNoCommandFound": "Извини, я не поняла", # ответ при непонимании
    "replyNoCommandFoundInContext": "Не поняла...", # ответ при непонимании в состоянии контекста
    "replyOnlineRequired": "Нужен онлайн", # ответ при вызове в оффлайн функции плагина, требующего онлайн 
    "tempDir": "temp", # папка для временных файлов
    "ttsEngineId": "pyttsx", # используемый TTS-движок
    "ttsEngineId2": "", # 2 используемый TTS-движок. Работает только на локальную озвучку - например, буфера обмена. Вызывается командой say2
    "useTTSCache": false, # при установке true в папке tts_cache будет кэшировать .wav файлы со сгенерированными TTS-движком ответами
    "v": "1.7", # версия плагина core. Обновляется автоматически, не трогайте
    "voiceAssNames": "ирина|ирины|ирину" # Если это появится в звуковом потоке, то дальше будет команда. (Различные имена помощника, рекомендуется несколько)
}

Отладка и разработка (для разработчиков)

Для отладки можно использовать запуск системы через файл runva_cmdline.py.

Она делает запуск ядра (VACore in vacore.py) через интерфейс командной строки, это удобнее, чем голосом диктовать.

  • Подключить собственный навык можно, создав плагин в plugins_. Смотрите примеры.
  • Подключить собственный TTS можно плагином. Как примеры, смотрите plugins_tts_console.py, plugins_tts_pyttsx.py.
  • Также, создав собственный runva_ файл, можно, при желании, подключить свойт Speech-To-Text движок.

Разработка плагинов

Документация по разработке

Удаленная работа (сервер-клиент, мультимикрофонные/машинные инсталляции)

Мультиинсталляция в режиме "клиент-сервер" несколько сложнее, но позволяет управлять Ириной:

  • с нескольких микрофонов
  • с разных машин
  • из Телеграма (с помощью телеграм-бота)

Подробнее про настройку клиент-серверного режима

Speech-to-Text через VOSK remote

Если у вас проблемы с установкой VOSK (например, на Mac), то вы можете воспользоваться работой через VOSK Auto Speech Recognition Server, который запускается через Докер.

  • Запустите docker run -d -p 2700:2700 alphacep/kaldi-ru:latest (детали: https://alphacephei.com/vosk/server )
    • или как вариант, вы можете запустить vosk_asr_server.py, переопределив внутри параметры
    args.interface = os.environ.get('VOSK_SERVER_INTERFACE', "0.0.0.0")
    args.port = int(os.environ.get('VOSK_SERVER_PORT', 2700)
  • Запустите runva_voskrem.py. Он будет читать данные с микрофона и отправлять на сервер для распознавания.

В случае, если надо запустить распознавание на другой машине - используйте параметр -u (--uri): runva_voskrem.py -u=ws://100.100.100.100:2700 для уточения адреса сервера.

Speech-to-Text через SpeechRecognition

SpeechRecognition - классический движок для запуска распознавания через Google и ряд других сервисов. Для запуска этого распознавания запустите систему через файл runva_speechrecognition.py.

Для работы потребуется:

pip install PyAudio

pip install SpeechRecognition

Если есть проблемы с установкой PyAudio, прочтите детали у EnjiRouz

Особенности: распознавание числительных. Одна и та же фраза распознается так:

  • VOSK: таймер десять секунд
  • SpeechRecognition (Google): таймер 10 секунд

Поддержка многоязычности

Проект в целом не предполагает поддержки многоязычности, т.к. использует кастомный парсинг слов в плагинах. Но, тем не менее, ядро (vacore.py) совершенно не привязано к языку, и вы можете собрать собственную инсталляцию на другом языке, просто переписав для них плагины.

Несколько языковых фраз, определяющих core-поведение языкового помощника (его имя, а также фразы типа "Я не поняла") настраиваются в файле конфигурации плагина core.

Contributing

Если вы хотите что-то добавить в проект, хорошо ознакомиться с Политикой CONTRIBUTING.md

Коротко:

  • Под плагины желательно делать отдельные Github-проекты (или размещать их где-то еще), которые вы готовы поддерживать. Ссылки можно кидать в janvarev#1, чтобы ваш плагин нашли другие. Кидать дополнительные плагины в этот проект не нужно - у меня нет времени и сил поддерживать то, в чём я не разбираюсь.
  • Делайте точечные изменения, улучшающие функциональность или фиксящие баги (например, нерабочесть в каких-то условиях). Такие Pull Request с высокой вероятностью будут приняты.
  • Массовые изменения кода (приведения стиля кода к единому, организация импортов) не будут рассматриваться и будут отклонены. Пожалуйста, не делайте их.

Благодарности

@EnjiRouz за проект голосового ассистента: https://github.com/EnjiRouz/Voice-Assistant-App, который стал основой (правда, был очень сильно переработан)

AlphaCephei за прекрасную библиотеку распознавания Vosk ( https://alphacephei.com/vosk/index.ru )

Поддержка проекта

Основная сложность в опенсорс - это не писать код. Писать код интересно.

Сложность в опенсорс - поддерживать код и пользователей в течение долгого времени.

Отвечать на вопросы. Фиксить баги. Писать статьи и документацию.

Если вы хотите поддержать мой интерес и сделать так, чтобы Ирина, как независимый от больших компаний голосовой помощник долго, поддерживалась, вы можете:

  • Написать новый плагин (меня всегда это радует!)
  • Закинуть денежку через подписку в https://boosty.to/irene-voice Чем больше у меня подписчиков, тем лучше я понимаю, что проект нужен.
  • Рассказать кому-то об Ирине, или помочь её настроить.
  • Просто сказать "спасибо" в этой ветке: janvarev#12