-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
66 lines (54 loc) · 2.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
#Use Keras' Sequential API and provide the model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# the model so far outputs 3D feature maps (height, width, features)
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 16
# This is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# This is the augmentation configuration we will use for testing:
# Only rescaling
test_datagen = ImageDataGenerator(rescale=1./255)
# This is a generator that will read pictures from the training folder
# Batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'images', # Target Dir
target_size=(150, 150), # All images will be resized to 150x150
batch_size=batch_size, class_mode='binary')
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'validation',
target_size=(150, 150),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=100, #Run the training epoch 100 times. The more will increase accuracy up to a certain point and will be slower. The less will run faster but decrease accuracy
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('export.h5') #save your weights after training