diff --git a/.codespellrc b/.codespellrc new file mode 100644 index 0000000..82a3067 --- /dev/null +++ b/.codespellrc @@ -0,0 +1,9 @@ +# Source: https://github.com/arduino/tooling-project-assets/blob/main/workflow-templates/assets/spell-check/.codespellrc +# See: https://github.com/codespell-project/codespell#using-a-config-file +[codespell] +# In the event of a false positive, add the problematic word, in all lowercase, to a comma-separated list here: +ignore-words-list = , +skip = ./.git,./.licenses,__pycache__,node_modules,./go.mod,./go.sum,./package-lock.json,./poetry.lock,./yarn.lock,./src/bsec +builtin = clear,informal,en-GB_to_en-US +check-filenames = +check-hidden = diff --git a/LICENSE.bsec b/LICENSE.bsec new file mode 100644 index 0000000..d5124ce --- /dev/null +++ b/LICENSE.bsec @@ -0,0 +1,36 @@ +The binaries and includes for the core BSEC library in this repository are licensed +under the Software license agreement described in the link +https://www.bosch-sensortec.com/media/boschsensortec/downloads/bsec/2017-07-17_clickthrough_license_terms_environmentalib_sw_clean.pdf + +The Arduino wrapper and BME680 Sensor API are licensed under the following license. + +Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + +BSD-3-Clause + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING +IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/library.properties b/library.properties index 1589ae6..3bd70c6 100644 --- a/library.properties +++ b/library.properties @@ -8,4 +8,7 @@ category=Sensors url=https://github.com/arduino-libraries/Arduino_MKRIoTCarrier architectures=samd precompiled=false -depends=Arduino_APDS9960,Arduino_BQ24195,Arduino_HTS221,Arduino_LPS22HB,Arduino_LSM6DS3,Arduino_LSM6DSOX,BSEC Software Library (=1.6.1480),Adafruit BusIO,Adafruit DotStar,Adafruit GFX Library,Adafruit ST7735 and ST7789 Library,Arduino_MCHPTouch,TFT_eSPI +depends=Arduino_APDS9960,Arduino_BQ24195,Arduino_HTS221,Arduino_LPS22HB,Arduino_LSM6DS3,Arduino_LSM6DSOX,Adafruit BusIO,Adafruit DotStar,Adafruit GFX Library,Adafruit ST7735 and ST7789 Library,Arduino_MCHPTouch,TFT_eSPI +dot_a_linkage=true +precompiled=true +ldflags=-lalgobsec diff --git a/src/MKRIoTCarrierDefines.h b/src/MKRIoTCarrierDefines.h index 592f909..aacbd4e 100644 --- a/src/MKRIoTCarrierDefines.h +++ b/src/MKRIoTCarrierDefines.h @@ -9,7 +9,7 @@ //Sensor libraries #include //Ambient light #include //Pressure sensor -#include "bsec.h" +#include "bsec/bsec.h" #include // env sensor #include #include diff --git a/src/bsec/bme680/LICENSE b/src/bsec/bme680/LICENSE new file mode 100644 index 0000000..df241f2 --- /dev/null +++ b/src/bsec/bme680/LICENSE @@ -0,0 +1,30 @@ +Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + +BSD-3-Clause + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING +IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/src/bsec/bme680/README.md b/src/bsec/bme680/README.md new file mode 100644 index 0000000..f297b65 --- /dev/null +++ b/src/bsec/bme680/README.md @@ -0,0 +1,282 @@ +# BME680 sensor API + +## Introduction + +This package contains the Bosch Sensortec's BME680 gas sensor API + +The sensor driver package includes bme680.h, bme680.c and bme680_defs.h files + +## Version + +File | Version | Date +--------------|---------|------------- +bme680.c | 3.5.10 | 23 Jan 2020 +bme680.h | 3.5.10 | 23 Jan 2020 +bme680_defs.h | 3.5.10 | 23 Jan 2020 + +## Integration details + +* Integrate bme680.h, bme680_defs.h and bme680.c file in to your project. +* Include the bme680.h file in your code like below. + +``` c +#include "bme680.h" +``` + +## File information + +* bme680_defs.h : This header file has the constants, macros and datatype declarations. +* bme680.h : This header file contains the declarations of the sensor driver APIs. +* bme680.c : This source file contains the definitions of the sensor driver APIs. + +## Supported sensor interfaces + +* SPI 4-wire +* I2C + +## Usage guide + +### Initializing the sensor + +To initialize the sensor, you will first need to create a device structure. You +can do this by creating an instance of the structure bme680_dev. Then go on to +fill in the various parameters as shown below + +#### Example for SPI 4-Wire + +``` c + struct bme680_dev gas_sensor; + + /* You may assign a chip select identifier to be handled later */ + gas_sensor.dev_id = 0; + gas_sensor.intf = BME680_SPI_INTF; + gas_sensor.read = user_spi_read; + gas_sensor.write = user_spi_write; + gas_sensor.delay_ms = user_delay_ms; + /* amb_temp can be set to 25 prior to configuring the gas sensor + * or by performing a few temperature readings without operating the gas sensor. + */ + gas_sensor.amb_temp = 25; + + int8_t rslt = BME680_OK; + rslt = bme680_init(&gas_sensor); +``` + +#### Example for I2C + +``` c + struct bme680_dev gas_sensor; + + gas_sensor.dev_id = BME680_I2C_ADDR_PRIMARY; + gas_sensor.intf = BME680_I2C_INTF; + gas_sensor.read = user_i2c_read; + gas_sensor.write = user_i2c_write; + gas_sensor.delay_ms = user_delay_ms; + /* amb_temp can be set to 25 prior to configuring the gas sensor + * or by performing a few temperature readings without operating the gas sensor. + */ + gas_sensor.amb_temp = 25; + + + int8_t rslt = BME680_OK; + rslt = bme680_init(&gas_sensor); +``` + +Regarding compensation functions for temperature, pressure, humidity and gas we have two implementations. + + - Integer version + - floating point version + +By default, Integer version is used in the API + +If the user needs the floating point version, the user has to un-comment BME680_FLOAT_POINT_COMPENSATION macro +in bme680_defs.h file or to add it in the compiler flags. + +### Configuring the sensor + +#### Example for configuring the sensor in forced mode + +``` c + uint8_t set_required_settings; + + /* Set the temperature, pressure and humidity settings */ + gas_sensor.tph_sett.os_hum = BME680_OS_2X; + gas_sensor.tph_sett.os_pres = BME680_OS_4X; + gas_sensor.tph_sett.os_temp = BME680_OS_8X; + gas_sensor.tph_sett.filter = BME680_FILTER_SIZE_3; + + /* Set the remaining gas sensor settings and link the heating profile */ + gas_sensor.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; + /* Create a ramp heat waveform in 3 steps */ + gas_sensor.gas_sett.heatr_temp = 320; /* degree Celsius */ + gas_sensor.gas_sett.heatr_dur = 150; /* milliseconds */ + + /* Select the power mode */ + /* Must be set before writing the sensor configuration */ + gas_sensor.power_mode = BME680_FORCED_MODE; + + /* Set the required sensor settings needed */ + set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL + | BME680_GAS_SENSOR_SEL; + + /* Set the desired sensor configuration */ + rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor); + + /* Set the power mode */ + rslt = bme680_set_sensor_mode(&gas_sensor); + + +``` + +### Reading sensor data + +#### Example for reading all sensor data + +``` c + /* Get the total measurement duration so as to sleep or wait till the + * measurement is complete */ + uint16_t meas_period; + bme680_get_profile_dur(&meas_period, &gas_sensor); + + struct bme680_field_data data; + + while(1) + { + user_delay_ms(meas_period); /* Delay till the measurement is ready */ + + rslt = bme680_get_sensor_data(&data, &gas_sensor); + + printf("T: %.2f degC, P: %.2f hPa, H %.2f %%rH ", data.temperature / 100.0f, + data.pressure / 100.0f, data.humidity / 1000.0f ); + /* Avoid using measurements from an unstable heating setup */ + if(data.status & BME680_GASM_VALID_MSK) + printf(", G: %d ohms", data.gas_resistance); + + printf("\r\n"); + + /* Trigger the next measurement if you would like to read data out continuously */ + if (gas_sensor.power_mode == BME680_FORCED_MODE) { + rslt = bme680_set_sensor_mode(&gas_sensor); + } + } +``` + +### Templates for function pointers + +``` c + +void user_delay_ms(uint32_t period) +{ + /* + * Return control or wait, + * for a period amount of milliseconds + */ +} + +int8_t user_spi_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) +{ + int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */ + + /* + * The parameter dev_id can be used as a variable to select which Chip Select pin has + * to be set low to activate the relevant device on the SPI bus + */ + + /* + * Data on the bus should be like + * |----------------+---------------------+-------------| + * | MOSI | MISO | Chip Select | + * |----------------+---------------------|-------------| + * | (don't care) | (don't care) | HIGH | + * | (reg_addr) | (don't care) | LOW | + * | (don't care) | (reg_data[0]) | LOW | + * | (....) | (....) | LOW | + * | (don't care) | (reg_data[len - 1]) | LOW | + * | (don't care) | (don't care) | HIGH | + * |----------------+---------------------|-------------| + */ + + return rslt; +} + +int8_t user_spi_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) +{ + int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */ + + /* + * The parameter dev_id can be used as a variable to select which Chip Select pin has + * to be set low to activate the relevant device on the SPI bus + */ + + /* + * Data on the bus should be like + * |---------------------+--------------+-------------| + * | MOSI | MISO | Chip Select | + * |---------------------+--------------|-------------| + * | (don't care) | (don't care) | HIGH | + * | (reg_addr) | (don't care) | LOW | + * | (reg_data[0]) | (don't care) | LOW | + * | (....) | (....) | LOW | + * | (reg_data[len - 1]) | (don't care) | LOW | + * | (don't care) | (don't care) | HIGH | + * |---------------------+--------------|-------------| + */ + + return rslt; +} + +int8_t user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) +{ + int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */ + + /* + * The parameter dev_id can be used as a variable to store the I2C address of the device + */ + + /* + * Data on the bus should be like + * |------------+---------------------| + * | I2C action | Data | + * |------------+---------------------| + * | Start | - | + * | Write | (reg_addr) | + * | Stop | - | + * | Start | - | + * | Read | (reg_data[0]) | + * | Read | (....) | + * | Read | (reg_data[len - 1]) | + * | Stop | - | + * |------------+---------------------| + */ + + return rslt; +} + +int8_t user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) +{ + int8_t rslt = 0; /* Return 0 for Success, non-zero for failure */ + + /* + * The parameter dev_id can be used as a variable to store the I2C address of the device + */ + + /* + * Data on the bus should be like + * |------------+---------------------| + * | I2C action | Data | + * |------------+---------------------| + * | Start | - | + * | Write | (reg_addr) | + * | Write | (reg_data[0]) | + * | Write | (....) | + * | Write | (reg_data[len - 1]) | + * | Stop | - | + * |------------+---------------------| + */ + + return rslt; +} + +``` + +## Copyright (C) 2020 Bosch Sensortec GmbH. All rights reserved. \ No newline at end of file diff --git a/src/bsec/bme680/bme680.c b/src/bsec/bme680/bme680.c new file mode 100644 index 0000000..5b138c0 --- /dev/null +++ b/src/bsec/bme680/bme680.c @@ -0,0 +1,1358 @@ +/**\mainpage + * Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + * + * BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * File bme680.c + * @date 23 Jan 2020 + * @version 3.5.10 + * + */ + +/*! @file bme680.c + @brief Sensor driver for BME680 sensor */ +#include "bme680.h" + +/*! + * @brief This internal API is used to read the calibrated data from the sensor. + * + * This function is used to retrieve the calibration + * data from the image registers of the sensor. + * + * @note Registers 89h to A1h for calibration data 1 to 24 + * from bit 0 to 7 + * @note Registers E1h to F0h for calibration data 25 to 40 + * from bit 0 to 7 + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status. + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t get_calib_data(struct bme680_dev *dev); + +/*! + * @brief This internal API is used to set the gas configuration of the sensor. + * + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status. + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t set_gas_config(struct bme680_dev *dev); + +/*! + * @brief This internal API is used to get the gas configuration of the sensor. + * @note heatr_temp and heatr_dur values are currently register data + * and not the actual values set + * + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status. + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t get_gas_config(struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the Heat duration value. + * + * @param[in] dur :Value of the duration to be shared. + * + * @return uint8_t threshold duration after calculation. + */ +static uint8_t calc_heater_dur(uint16_t dur); + +#ifndef BME680_FLOAT_POINT_COMPENSATION + +/*! + * @brief This internal API is used to calculate the temperature value. + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] temp_adc :Contains the temperature ADC value . + * + * @return uint32_t calculated temperature. + */ +static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the pressure value. + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] pres_adc :Contains the pressure ADC value . + * + * @return uint32_t calculated pressure. + */ +static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the humidity value. + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] hum_adc :Contains the humidity ADC value. + * + * @return uint32_t calculated humidity. + */ +static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the Gas Resistance value. + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] gas_res_adc :Contains the Gas Resistance ADC value. + * @param[in] gas_range :Contains the range of gas values. + * + * @return uint32_t calculated gas resistance. + */ +static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the Heat Resistance value. + * + * @param[in] dev : Structure instance of bme680_dev + * @param[in] temp : Contains the target temperature value. + * + * @return uint8_t calculated heater resistance. + */ +static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev); + +#else +/*! + * @brief This internal API is used to calculate the + * temperature value value in float format + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] temp_adc :Contains the temperature ADC value . + * + * @return Calculated temperature in float + */ +static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the + * pressure value value in float format + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] pres_adc :Contains the pressure ADC value . + * + * @return Calculated pressure in float. + */ +static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the + * humidity value value in float format + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] hum_adc :Contains the humidity ADC value. + * + * @return Calculated humidity in float. + */ +static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the + * gas resistance value value in float format + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] gas_res_adc :Contains the Gas Resistance ADC value. + * @param[in] gas_range :Contains the range of gas values. + * + * @return Calculated gas resistance in float. + */ +static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to calculate the + * heater resistance value in float format + * + * @param[in] temp : Contains the target temperature value. + * @param[in] dev : Structure instance of bme680_dev. + * + * @return Calculated heater resistance in float. + */ +static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev); + +#endif + +/*! + * @brief This internal API is used to calculate the field data of sensor. + * + * @param[out] data :Structure instance to hold the data + * @param[in] dev :Structure instance of bme680_dev. + * + * @return int8_t result of the field data from sensor. + */ +static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev); + +/*! + * @brief This internal API is used to set the memory page + * based on register address. + * + * The value of memory page + * value | Description + * --------|-------------- + * 0 | BME680_PAGE0_SPI + * 1 | BME680_PAGE1_SPI + * + * @param[in] dev :Structure instance of bme680_dev. + * @param[in] reg_addr :Contains the register address array. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev); + +/*! + * @brief This internal API is used to get the memory page based + * on register address. + * + * The value of memory page + * value | Description + * --------|-------------- + * 0 | BME680_PAGE0_SPI + * 1 | BME680_PAGE1_SPI + * + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t get_mem_page(struct bme680_dev *dev); + +/*! + * @brief This internal API is used to validate the device pointer for + * null conditions. + * + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t null_ptr_check(const struct bme680_dev *dev); + +/*! + * @brief This internal API is used to check the boundary + * conditions. + * + * @param[in] value :pointer to the value. + * @param[in] min :minimum value. + * @param[in] max :maximum value. + * @param[in] dev :Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev); + +/****************** Global Function Definitions *******************************/ +/*! + *@brief This API is the entry point. + *It reads the chip-id and calibration data from the sensor. + */ +int8_t bme680_init(struct bme680_dev *dev) +{ + int8_t rslt; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + /* Soft reset to restore it to default values*/ + rslt = bme680_soft_reset(dev); + if (rslt == BME680_OK) { + rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev); + if (rslt == BME680_OK) { + if (dev->chip_id == BME680_CHIP_ID) { + /* Get the Calibration data */ + rslt = get_calib_data(dev); + } else { + rslt = BME680_E_DEV_NOT_FOUND; + } + } + } + } + + return rslt; +} + +/*! + * @brief This API reads the data from the given register address of the sensor. + */ +int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev) +{ + int8_t rslt; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if (dev->intf == BME680_SPI_INTF) { + /* Set the memory page */ + rslt = set_mem_page(reg_addr, dev); + if (rslt == BME680_OK) + reg_addr = reg_addr | BME680_SPI_RD_MSK; + } + dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len); + if (dev->com_rslt != 0) + rslt = BME680_E_COM_FAIL; + } + + return rslt; +} + +/*! + * @brief This API writes the given data to the register address + * of the sensor. + */ +int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev) +{ + int8_t rslt; + /* Length of the temporary buffer is 2*(length of register)*/ + uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 }; + uint16_t index; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) { + /* Interleave the 2 arrays */ + for (index = 0; index < len; index++) { + if (dev->intf == BME680_SPI_INTF) { + /* Set the memory page */ + rslt = set_mem_page(reg_addr[index], dev); + tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK; + } else { + tmp_buff[(2 * index)] = reg_addr[index]; + } + tmp_buff[(2 * index) + 1] = reg_data[index]; + } + /* Write the interleaved array */ + if (rslt == BME680_OK) { + dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1); + if (dev->com_rslt != 0) + rslt = BME680_E_COM_FAIL; + } + } else { + rslt = BME680_E_INVALID_LENGTH; + } + } + + return rslt; +} + +/*! + * @brief This API performs the soft reset of the sensor. + */ +int8_t bme680_soft_reset(struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t reg_addr = BME680_SOFT_RESET_ADDR; + /* 0xb6 is the soft reset command */ + uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if (dev->intf == BME680_SPI_INTF) + rslt = get_mem_page(dev); + + /* Reset the device */ + if (rslt == BME680_OK) { + rslt = bme680_set_regs(®_addr, &soft_rst_cmd, 1, dev); + /* Wait for 5ms */ + dev->delay_ms(BME680_RESET_PERIOD); + + if (rslt == BME680_OK) { + /* After reset get the memory page */ + if (dev->intf == BME680_SPI_INTF) + rslt = get_mem_page(dev); + } + } + } + + return rslt; +} + +/*! + * @brief This API is used to set the oversampling, filter and T,P,H, gas selection + * settings in the sensor. + */ +int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t reg_addr; + uint8_t data = 0; + uint8_t count = 0; + uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 }; + uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; + uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */ + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if (desired_settings & BME680_GAS_MEAS_SEL) + rslt = set_gas_config(dev); + + dev->power_mode = BME680_SLEEP_MODE; + if (rslt == BME680_OK) + rslt = bme680_set_sensor_mode(dev); + + /* Selecting the filter */ + if (desired_settings & BME680_FILTER_SEL) { + rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev); + reg_addr = BME680_CONF_ODR_FILT_ADDR; + + if (rslt == BME680_OK) + rslt = bme680_get_regs(reg_addr, &data, 1, dev); + + if (desired_settings & BME680_FILTER_SEL) + data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter); + + reg_array[count] = reg_addr; /* Append configuration */ + data_array[count] = data; + count++; + } + + /* Selecting heater control for the sensor */ + if (desired_settings & BME680_HCNTRL_SEL) { + rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER, + BME680_DISABLE_HEATER, dev); + reg_addr = BME680_CONF_HEAT_CTRL_ADDR; + + if (rslt == BME680_OK) + rslt = bme680_get_regs(reg_addr, &data, 1, dev); + data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl); + + reg_array[count] = reg_addr; /* Append configuration */ + data_array[count] = data; + count++; + } + + /* Selecting heater T,P oversampling for the sensor */ + if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { + rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev); + reg_addr = BME680_CONF_T_P_MODE_ADDR; + + if (rslt == BME680_OK) + rslt = bme680_get_regs(reg_addr, &data, 1, dev); + + if (desired_settings & BME680_OST_SEL) + data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp); + + if (desired_settings & BME680_OSP_SEL) + data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres); + + reg_array[count] = reg_addr; + data_array[count] = data; + count++; + } + + /* Selecting humidity oversampling for the sensor */ + if (desired_settings & BME680_OSH_SEL) { + rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev); + reg_addr = BME680_CONF_OS_H_ADDR; + + if (rslt == BME680_OK) + rslt = bme680_get_regs(reg_addr, &data, 1, dev); + data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum); + + reg_array[count] = reg_addr; /* Append configuration */ + data_array[count] = data; + count++; + } + + /* Selecting the runGas and NB conversion settings for the sensor */ + if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { + rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE, + BME680_RUN_GAS_ENABLE, dev); + if (rslt == BME680_OK) { + /* Validate boundary conditions */ + rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN, + BME680_NBCONV_MAX, dev); + } + + reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR; + + if (rslt == BME680_OK) + rslt = bme680_get_regs(reg_addr, &data, 1, dev); + + if (desired_settings & BME680_RUN_GAS_SEL) + data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas); + + if (desired_settings & BME680_NBCONV_SEL) + data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv); + + reg_array[count] = reg_addr; /* Append configuration */ + data_array[count] = data; + count++; + } + + if (rslt == BME680_OK) + rslt = bme680_set_regs(reg_array, data_array, count, dev); + + /* Restore previous intended power mode */ + dev->power_mode = intended_power_mode; + } + + return rslt; +} + +/*! + * @brief This API is used to get the oversampling, filter and T,P,H, gas selection + * settings in the sensor. + */ +int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev) +{ + int8_t rslt; + /* starting address of the register array for burst read*/ + uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR; + uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev); + + if (rslt == BME680_OK) { + if (desired_settings & BME680_GAS_MEAS_SEL) + rslt = get_gas_config(dev); + + /* get the T,P,H ,Filter,ODR settings here */ + if (desired_settings & BME680_FILTER_SEL) + dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX], + BME680_FILTER); + + if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { + dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST); + dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP); + } + + if (desired_settings & BME680_OSH_SEL) + dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX], + BME680_OSH); + + /* get the gas related settings */ + if (desired_settings & BME680_HCNTRL_SEL) + dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX], + BME680_HCTRL); + + if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { + dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX], + BME680_NBCONV); + dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX], + BME680_RUN_GAS); + } + } + } else { + rslt = BME680_E_NULL_PTR; + } + + return rslt; +} + +/*! + * @brief This API is used to set the power mode of the sensor. + */ +int8_t bme680_set_sensor_mode(struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t tmp_pow_mode; + uint8_t pow_mode = 0; + uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + /* Call repeatedly until in sleep */ + do { + rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev); + if (rslt == BME680_OK) { + /* Put to sleep before changing mode */ + pow_mode = (tmp_pow_mode & BME680_MODE_MSK); + + if (pow_mode != BME680_SLEEP_MODE) { + tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */ + rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev); + dev->delay_ms(BME680_POLL_PERIOD_MS); + } + } + } while (pow_mode != BME680_SLEEP_MODE); + + /* Already in sleep */ + if (dev->power_mode != BME680_SLEEP_MODE) { + tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK); + if (rslt == BME680_OK) + rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev); + } + } + + return rslt; +} + +/*! + * @brief This API is used to get the power mode of the sensor. + */ +int8_t bme680_get_sensor_mode(struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t mode; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev); + /* Masking the other register bit info*/ + dev->power_mode = mode & BME680_MODE_MSK; + } + + return rslt; +} + +/*! + * @brief This API is used to set the profile duration of the sensor. + */ +void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev) +{ + uint32_t tph_dur; /* Calculate in us */ + uint32_t meas_cycles; + uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; + + meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp]; + meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres]; + meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum]; + + /* TPH measurement duration */ + tph_dur = meas_cycles * UINT32_C(1963); + tph_dur += UINT32_C(477 * 4); /* TPH switching duration */ + tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */ + tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/ + tph_dur /= UINT32_C(1000); /* Convert to ms */ + + tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ + /* The remaining time should be used for heating */ + dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur; +} + +/*! + * @brief This API is used to get the profile duration of the sensor. + */ +void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev) +{ + uint32_t tph_dur; /* Calculate in us */ + uint32_t meas_cycles; + uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; + + meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp]; + meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres]; + meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum]; + + /* TPH measurement duration */ + tph_dur = meas_cycles * UINT32_C(1963); + tph_dur += UINT32_C(477 * 4); /* TPH switching duration */ + tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */ + tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/ + tph_dur /= UINT32_C(1000); /* Convert to ms */ + + tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ + + *duration = (uint16_t) tph_dur; + + /* Get the gas duration only when the run gas is enabled */ + if (dev->gas_sett.run_gas) { + /* The remaining time should be used for heating */ + *duration += dev->gas_sett.heatr_dur; + } +} + +/*! + * @brief This API reads the pressure, temperature and humidity and gas data + * from the sensor, compensates the data and store it in the bme680_data + * structure instance passed by the user. + */ +int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev) +{ + int8_t rslt; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + /* Reading the sensor data in forced mode only */ + rslt = read_field_data(data, dev); + if (rslt == BME680_OK) { + if (data->status & BME680_NEW_DATA_MSK) + dev->new_fields = 1; + else + dev->new_fields = 0; + } + } + + return rslt; +} + +/*! + * @brief This internal API is used to read the calibrated data from the sensor. + */ +static int8_t get_calib_data(struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 }; + uint8_t temp_var = 0; /* Temporary variable */ + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev); + /* Append the second half in the same array */ + if (rslt == BME680_OK) + rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN] + , BME680_COEFF_ADDR2_LEN, dev); + + /* Temperature related coefficients */ + dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG], + coeff_array[BME680_T1_LSB_REG])); + dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG], + coeff_array[BME680_T2_LSB_REG])); + dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]); + + /* Pressure related coefficients */ + dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG], + coeff_array[BME680_P1_LSB_REG])); + dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG], + coeff_array[BME680_P2_LSB_REG])); + dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG]; + dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG], + coeff_array[BME680_P4_LSB_REG])); + dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG], + coeff_array[BME680_P5_LSB_REG])); + dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]); + dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]); + dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG], + coeff_array[BME680_P8_LSB_REG])); + dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG], + coeff_array[BME680_P9_LSB_REG])); + dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]); + + /* Humidity related coefficients */ + dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) + | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK)); + dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) + | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL)); + dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG]; + dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG]; + dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG]; + dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG]; + dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG]; + + /* Gas heater related coefficients */ + dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG]; + dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG], + coeff_array[BME680_GH2_LSB_REG])); + dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG]; + + /* Other coefficients */ + if (rslt == BME680_OK) { + rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev); + + dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16); + if (rslt == BME680_OK) { + rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev); + + dev->calib.res_heat_val = (int8_t) temp_var; + if (rslt == BME680_OK) + rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev); + } + } + dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16; + } + + return rslt; +} + +/*! + * @brief This internal API is used to set the gas configuration of the sensor. + */ +static int8_t set_gas_config(struct bme680_dev *dev) +{ + int8_t rslt; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + + uint8_t reg_addr[2] = {0}; + uint8_t reg_data[2] = {0}; + + if (dev->power_mode == BME680_FORCED_MODE) { + reg_addr[0] = BME680_RES_HEAT0_ADDR; + reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev); + reg_addr[1] = BME680_GAS_WAIT0_ADDR; + reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur); + dev->gas_sett.nb_conv = 0; + } else { + rslt = BME680_W_DEFINE_PWR_MODE; + } + if (rslt == BME680_OK) + rslt = bme680_set_regs(reg_addr, reg_data, 2, dev); + } + + return rslt; +} + +/*! + * @brief This internal API is used to get the gas configuration of the sensor. + * @note heatr_temp and heatr_dur values are currently register data + * and not the actual values set + */ +static int8_t get_gas_config(struct bme680_dev *dev) +{ + int8_t rslt; + /* starting address of the register array for burst read*/ + uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START; + uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START; + uint8_t reg_data = 0; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if (BME680_SPI_INTF == dev->intf) { + /* Memory page switch the SPI address*/ + rslt = set_mem_page(reg_addr1, dev); + } + + if (rslt == BME680_OK) { + rslt = bme680_get_regs(reg_addr1, ®_data, 1, dev); + if (rslt == BME680_OK) { + dev->gas_sett.heatr_temp = reg_data; + rslt = bme680_get_regs(reg_addr2, ®_data, 1, dev); + if (rslt == BME680_OK) { + /* Heating duration register value */ + dev->gas_sett.heatr_dur = reg_data; + } + } + } + } + + return rslt; +} + +#ifndef BME680_FLOAT_POINT_COMPENSATION + +/*! + * @brief This internal API is used to calculate the temperature value. + */ +static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) +{ + int64_t var1; + int64_t var2; + int64_t var3; + int16_t calc_temp; + + var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1); + var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11; + var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; + var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14; + dev->calib.t_fine = (int32_t) (var2 + var3); + calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8); + + return calc_temp; +} + +/*! + * @brief This internal API is used to calculate the pressure value. + */ +static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) +{ + int32_t var1; + int32_t var2; + int32_t var3; + int32_t pressure_comp; + + var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000; + var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * + (int32_t)dev->calib.par_p6) >> 2; + var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1); + var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16); + var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * + ((int32_t)dev->calib.par_p3 << 5)) >> 3) + + (((int32_t)dev->calib.par_p2 * var1) >> 1); + var1 = var1 >> 18; + var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15; + pressure_comp = 1048576 - pres_adc; + pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125)); + if (pressure_comp >= BME680_MAX_OVERFLOW_VAL) + pressure_comp = ((pressure_comp / var1) << 1); + else + pressure_comp = ((pressure_comp << 1) / var1); + var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) * + (pressure_comp >> 3)) >> 13)) >> 12; + var2 = ((int32_t)(pressure_comp >> 2) * + (int32_t)dev->calib.par_p8) >> 13; + var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * + (int32_t)(pressure_comp >> 8) * + (int32_t)dev->calib.par_p10) >> 17; + + pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 + + ((int32_t)dev->calib.par_p7 << 7)) >> 4); + + return (uint32_t)pressure_comp; + +} + +/*! + * @brief This internal API is used to calculate the humidity value. + */ +static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) +{ + int32_t var1; + int32_t var2; + int32_t var3; + int32_t var4; + int32_t var5; + int32_t var6; + int32_t temp_scaled; + int32_t calc_hum; + + temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8; + var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16))) + - (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1); + var2 = ((int32_t) dev->calib.par_h2 + * (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100)) + + (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6) + / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10; + var3 = var1 * var2; + var4 = (int32_t) dev->calib.par_h6 << 7; + var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4; + var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; + var6 = (var4 * var5) >> 1; + calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12; + + if (calc_hum > 100000) /* Cap at 100%rH */ + calc_hum = 100000; + else if (calc_hum < 0) + calc_hum = 0; + + return (uint32_t) calc_hum; +} + +/*! + * @brief This internal API is used to calculate the Gas Resistance value. + */ +static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev) +{ + int64_t var1; + uint64_t var2; + int64_t var3; + uint32_t calc_gas_res; + /**Look up table 1 for the possible gas range values */ + uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), + UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777), + UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228), + UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647) }; + /**Look up table 2 for the possible gas range values */ + uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000), + UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016), + UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000), + UINT32_C(250000), UINT32_C(125000) }; + + var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) * + ((int64_t) lookupTable1[gas_range])) >> 16; + var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1); + var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9); + calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2); + + return calc_gas_res; +} + +/*! + * @brief This internal API is used to calculate the Heat Resistance value. + */ +static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev) +{ + uint8_t heatr_res; + int32_t var1; + int32_t var2; + int32_t var3; + int32_t var4; + int32_t var5; + int32_t heatr_res_x100; + + if (temp > 400) /* Cap temperature */ + temp = 400; + + var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256; + var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); + var3 = var1 + (var2 / 2); + var4 = (var3 / (dev->calib.res_heat_range + 4)); + var5 = (131 * dev->calib.res_heat_val) + 65536; + heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34); + heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100); + + return heatr_res; +} + +#else + + +/*! + * @brief This internal API is used to calculate the + * temperature value in float format + */ +static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) +{ + float var1 = 0; + float var2 = 0; + float calc_temp = 0; + + /* calculate var1 data */ + var1 = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f)) + * ((float)dev->calib.par_t2)); + + /* calculate var2 data */ + var2 = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) * + (((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) * + ((float)dev->calib.par_t3 * 16.0f)); + + /* t_fine value*/ + dev->calib.t_fine = (var1 + var2); + + /* compensated temperature data*/ + calc_temp = ((dev->calib.t_fine) / 5120.0f); + + return calc_temp; +} + +/*! + * @brief This internal API is used to calculate the + * pressure value in float format + */ +static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) +{ + float var1 = 0; + float var2 = 0; + float var3 = 0; + float calc_pres = 0; + + var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f); + var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f)); + var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f); + var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f); + var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f) + + ((float)dev->calib.par_p2 * var1)) / 524288.0f); + var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1)); + calc_pres = (1048576.0f - ((float)pres_adc)); + + /* Avoid exception caused by division by zero */ + if ((int)var1 != 0) { + calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1); + var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f; + var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f); + var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f) + * (dev->calib.par_p10 / 131072.0f)); + calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f); + } else { + calc_pres = 0; + } + + return calc_pres; +} + +/*! + * @brief This internal API is used to calculate the + * humidity value in float format + */ +static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) +{ + float calc_hum = 0; + float var1 = 0; + float var2 = 0; + float var3 = 0; + float var4 = 0; + float temp_comp; + + /* compensated temperature data*/ + temp_comp = ((dev->calib.t_fine) / 5120.0f); + + var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f) + * temp_comp)); + + var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f) + * temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp)))); + + var3 = (float) dev->calib.par_h6 / 16384.0f; + + var4 = (float) dev->calib.par_h7 / 2097152.0f; + + calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2); + + if (calc_hum > 100.0f) + calc_hum = 100.0f; + else if (calc_hum < 0.0f) + calc_hum = 0.0f; + + return calc_hum; +} + +/*! + * @brief This internal API is used to calculate the + * gas resistance value in float format + */ +static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev) +{ + float calc_gas_res; + float var1 = 0; + float var2 = 0; + float var3 = 0; + + const float lookup_k1_range[16] = { + 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8, + 0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0}; + const float lookup_k2_range[16] = { + 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8, + -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; + + var1 = (1340.0f + (5.0f * dev->calib.range_sw_err)); + var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f); + var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f); + + calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc) + - 512.0f)/var2) + 1.0f)); + + return calc_gas_res; +} + +/*! + * @brief This internal API is used to calculate the + * heater resistance value in float format + */ +static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev) +{ + float var1 = 0; + float var2 = 0; + float var3 = 0; + float var4 = 0; + float var5 = 0; + float res_heat = 0; + + if (temp > 400) /* Cap temperature */ + temp = 400; + + var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f); + var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f); + var3 = ((float)dev->calib.par_gh3 / (1024.0f)); + var4 = (var1 * (1.0f + (var2 * (float)temp))); + var5 = (var4 + (var3 * (float)dev->amb_temp)); + res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) * + (1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25)); + + return res_heat; +} + +#endif + +/*! + * @brief This internal API is used to calculate the Heat duration value. + */ +static uint8_t calc_heater_dur(uint16_t dur) +{ + uint8_t factor = 0; + uint8_t durval; + + if (dur >= 0xfc0) { + durval = 0xff; /* Max duration*/ + } else { + while (dur > 0x3F) { + dur = dur / 4; + factor += 1; + } + durval = (uint8_t) (dur + (factor * 64)); + } + + return durval; +} + +/*! + * @brief This internal API is used to calculate the field data of sensor. + */ +static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t buff[BME680_FIELD_LENGTH] = { 0 }; + uint8_t gas_range; + uint32_t adc_temp; + uint32_t adc_pres; + uint16_t adc_hum; + uint16_t adc_gas_res; + uint8_t tries = 10; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + do { + if (rslt == BME680_OK) { + rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH, + dev); + + data->status = buff[0] & BME680_NEW_DATA_MSK; + data->gas_index = buff[0] & BME680_GAS_INDEX_MSK; + data->meas_index = buff[1]; + + /* read the raw data from the sensor */ + adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16) + | ((uint32_t) buff[4] / 16)); + adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16) + | ((uint32_t) buff[7] / 16)); + adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]); + adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64)); + gas_range = buff[14] & BME680_GAS_RANGE_MSK; + + data->status |= buff[14] & BME680_GASM_VALID_MSK; + data->status |= buff[14] & BME680_HEAT_STAB_MSK; + + if (data->status & BME680_NEW_DATA_MSK) { + data->temperature = calc_temperature(adc_temp, dev); + data->pressure = calc_pressure(adc_pres, dev); + data->humidity = calc_humidity(adc_hum, dev); + data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev); + break; + } + /* Delay to poll the data */ + dev->delay_ms(BME680_POLL_PERIOD_MS); + } + tries--; + } while (tries); + + if (!tries) + rslt = BME680_W_NO_NEW_DATA; + + return rslt; +} + +/*! + * @brief This internal API is used to set the memory page based on register address. + */ +static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t reg; + uint8_t mem_page; + + /* Check for null pointers in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + if (reg_addr > 0x7f) + mem_page = BME680_MEM_PAGE1; + else + mem_page = BME680_MEM_PAGE0; + + if (mem_page != dev->mem_page) { + dev->mem_page = mem_page; + + dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); + if (dev->com_rslt != 0) + rslt = BME680_E_COM_FAIL; + + if (rslt == BME680_OK) { + reg = reg & (~BME680_MEM_PAGE_MSK); + reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK); + + dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK, + ®, 1); + if (dev->com_rslt != 0) + rslt = BME680_E_COM_FAIL; + } + } + } + + return rslt; +} + +/*! + * @brief This internal API is used to get the memory page based on register address. + */ +static int8_t get_mem_page(struct bme680_dev *dev) +{ + int8_t rslt; + uint8_t reg; + + /* Check for null pointer in the device structure*/ + rslt = null_ptr_check(dev); + if (rslt == BME680_OK) { + dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); + if (dev->com_rslt != 0) + rslt = BME680_E_COM_FAIL; + else + dev->mem_page = reg & BME680_MEM_PAGE_MSK; + } + + return rslt; +} + +/*! + * @brief This internal API is used to validate the boundary + * conditions. + */ +static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev) +{ + int8_t rslt = BME680_OK; + + if (value != NULL) { + /* Check if value is below minimum value */ + if (*value < min) { + /* Auto correct the invalid value to minimum value */ + *value = min; + dev->info_msg |= BME680_I_MIN_CORRECTION; + } + /* Check if value is above maximum value */ + if (*value > max) { + /* Auto correct the invalid value to maximum value */ + *value = max; + dev->info_msg |= BME680_I_MAX_CORRECTION; + } + } else { + rslt = BME680_E_NULL_PTR; + } + + return rslt; +} + +/*! + * @brief This internal API is used to validate the device structure pointer for + * null conditions. + */ +static int8_t null_ptr_check(const struct bme680_dev *dev) +{ + int8_t rslt; + + if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) { + /* Device structure pointer is not valid */ + rslt = BME680_E_NULL_PTR; + } else { + /* Device structure is fine */ + rslt = BME680_OK; + } + + return rslt; +} diff --git a/src/bsec/bme680/bme680.h b/src/bsec/bme680/bme680.h new file mode 100644 index 0000000..f436215 --- /dev/null +++ b/src/bsec/bme680/bme680.h @@ -0,0 +1,216 @@ +/** + * Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + * + * BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * @file bme680.h + * @date 23 Jan 2020 + * @version 3.5.10 + * @brief + * + */ +/*! @file bme680.h + @brief Sensor driver for BME680 sensor */ +/*! + * @defgroup BME680 SENSOR API + * @{*/ +#ifndef BME680_H_ +#define BME680_H_ + +/*! CPP guard */ +#ifdef __cplusplus +extern "C" +{ +#endif + +/* Header includes */ +#include "bme680_defs.h" + +/* function prototype declarations */ +/*! + * @brief This API is the entry point. + * It reads the chip-id and calibration data from the sensor. + * + * @param[in,out] dev : Structure instance of bme680_dev + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_init(struct bme680_dev *dev); + +/*! + * @brief This API writes the given data to the register address + * of the sensor. + * + * @param[in] reg_addr : Register address from where the data to be written. + * @param[in] reg_data : Pointer to data buffer which is to be written + * in the sensor. + * @param[in] len : No of bytes of data to write.. + * @param[in] dev : Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev); + +/*! + * @brief This API reads the data from the given register address of the sensor. + * + * @param[in] reg_addr : Register address from where the data to be read + * @param[out] reg_data : Pointer to data buffer to store the read data. + * @param[in] len : No of bytes of data to be read. + * @param[in] dev : Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev); + +/*! + * @brief This API performs the soft reset of the sensor. + * + * @param[in] dev : Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error. + */ +int8_t bme680_soft_reset(struct bme680_dev *dev); + +/*! + * @brief This API is used to set the power mode of the sensor. + * + * @param[in] dev : Structure instance of bme680_dev + * @note : Pass the value to bme680_dev.power_mode structure variable. + * + * value | mode + * -------------|------------------ + * 0x00 | BME680_SLEEP_MODE + * 0x01 | BME680_FORCED_MODE + * + * * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_set_sensor_mode(struct bme680_dev *dev); + +/*! + * @brief This API is used to get the power mode of the sensor. + * + * @param[in] dev : Structure instance of bme680_dev + * @note : bme680_dev.power_mode structure variable hold the power mode. + * + * value | mode + * ---------|------------------ + * 0x00 | BME680_SLEEP_MODE + * 0x01 | BME680_FORCED_MODE + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_get_sensor_mode(struct bme680_dev *dev); + +/*! + * @brief This API is used to set the profile duration of the sensor. + * + * @param[in] dev : Structure instance of bme680_dev. + * @param[in] duration : Duration of the measurement in ms. + * + * @return Nothing + */ +void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev); + +/*! + * @brief This API is used to get the profile duration of the sensor. + * + * @param[in] dev : Structure instance of bme680_dev. + * @param[in] duration : Duration of the measurement in ms. + * + * @return Nothing + */ +void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev); + +/*! + * @brief This API reads the pressure, temperature and humidity and gas data + * from the sensor, compensates the data and store it in the bme680_data + * structure instance passed by the user. + * + * @param[out] data: Structure instance to hold the data. + * @param[in] dev : Structure instance of bme680_dev. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error + */ +int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev); + +/*! + * @brief This API is used to set the oversampling, filter and T,P,H, gas selection + * settings in the sensor. + * + * @param[in] dev : Structure instance of bme680_dev. + * @param[in] desired_settings : Variable used to select the settings which + * are to be set in the sensor. + * + * Macros | Functionality + *---------------------------------|---------------------------------------------- + * BME680_OST_SEL | To set temperature oversampling. + * BME680_OSP_SEL | To set pressure oversampling. + * BME680_OSH_SEL | To set humidity oversampling. + * BME680_GAS_MEAS_SEL | To set gas measurement setting. + * BME680_FILTER_SEL | To set filter setting. + * BME680_HCNTRL_SEL | To set humidity control setting. + * BME680_RUN_GAS_SEL | To set run gas setting. + * BME680_NBCONV_SEL | To set NB conversion setting. + * BME680_GAS_SENSOR_SEL | To set all gas sensor related settings + * + * @note : Below are the macros to be used by the user for selecting the + * desired settings. User can do OR operation of these macros for configuring + * multiple settings. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error. + */ +int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev); + +/*! + * @brief This API is used to get the oversampling, filter and T,P,H, gas selection + * settings in the sensor. + * + * @param[in] dev : Structure instance of bme680_dev. + * @param[in] desired_settings : Variable used to select the settings which + * are to be get from the sensor. + * + * @return Result of API execution status + * @retval zero -> Success / +ve value -> Warning / -ve value -> Error. + */ +int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev); +#ifdef __cplusplus +} +#endif /* End of CPP guard */ +#endif /* BME680_H_ */ +/** @}*/ diff --git a/src/bsec/bme680/bme680_defs.h b/src/bsec/bme680/bme680_defs.h new file mode 100644 index 0000000..429775d --- /dev/null +++ b/src/bsec/bme680/bme680_defs.h @@ -0,0 +1,536 @@ +/** + * Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + * + * BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * @file bme680_defs.h + * @date 23 Jan 2020 + * @version 3.5.10 + * @brief + * + */ + +/*! @file bme680_defs.h + @brief Sensor driver for BME680 sensor */ +/*! + * @defgroup BME680 SENSOR API + * @brief + * @{*/ +#ifndef BME680_DEFS_H_ +#define BME680_DEFS_H_ + +/********************************************************/ +/* header includes */ +#ifdef __KERNEL__ +#include +#include +#else +#include +#include +#endif + +/******************************************************************************/ +/*! @name Common macros */ +/******************************************************************************/ + +#if !defined(UINT8_C) && !defined(INT8_C) +#define INT8_C(x) S8_C(x) +#define UINT8_C(x) U8_C(x) +#endif + +#if !defined(UINT16_C) && !defined(INT16_C) +#define INT16_C(x) S16_C(x) +#define UINT16_C(x) U16_C(x) +#endif + +#if !defined(INT32_C) && !defined(UINT32_C) +#define INT32_C(x) S32_C(x) +#define UINT32_C(x) U32_C(x) +#endif + +#if !defined(INT64_C) && !defined(UINT64_C) +#define INT64_C(x) S64_C(x) +#define UINT64_C(x) U64_C(x) +#endif + +/**@}*/ + +/**\name C standard macros */ +#ifndef NULL +#ifdef __cplusplus +#define NULL 0 +#else +#define NULL ((void *) 0) +#endif +#endif + +/** BME680 configuration macros */ +/** Enable or un-comment the macro to provide floating point data output */ +#ifndef BME680_FLOAT_POINT_COMPENSATION +/* #define BME680_FLOAT_POINT_COMPENSATION */ +#endif + +/** BME680 General config */ +#define BME680_POLL_PERIOD_MS UINT8_C(10) + +/** BME680 I2C addresses */ +#define BME680_I2C_ADDR_PRIMARY UINT8_C(0x76) +#define BME680_I2C_ADDR_SECONDARY UINT8_C(0x77) + +/** BME680 unique chip identifier */ +#define BME680_CHIP_ID UINT8_C(0x61) + +/** BME680 coefficients related defines */ +#define BME680_COEFF_SIZE UINT8_C(41) +#define BME680_COEFF_ADDR1_LEN UINT8_C(25) +#define BME680_COEFF_ADDR2_LEN UINT8_C(16) + +/** BME680 field_x related defines */ +#define BME680_FIELD_LENGTH UINT8_C(15) +#define BME680_FIELD_ADDR_OFFSET UINT8_C(17) + +/** Soft reset command */ +#define BME680_SOFT_RESET_CMD UINT8_C(0xb6) + +/** Error code definitions */ +#define BME680_OK INT8_C(0) +/* Errors */ +#define BME680_E_NULL_PTR INT8_C(-1) +#define BME680_E_COM_FAIL INT8_C(-2) +#define BME680_E_DEV_NOT_FOUND INT8_C(-3) +#define BME680_E_INVALID_LENGTH INT8_C(-4) + +/* Warnings */ +#define BME680_W_DEFINE_PWR_MODE INT8_C(1) +#define BME680_W_NO_NEW_DATA INT8_C(2) + +/* Info's */ +#define BME680_I_MIN_CORRECTION UINT8_C(1) +#define BME680_I_MAX_CORRECTION UINT8_C(2) + +/** Register map */ +/** Other coefficient's address */ +#define BME680_ADDR_RES_HEAT_VAL_ADDR UINT8_C(0x00) +#define BME680_ADDR_RES_HEAT_RANGE_ADDR UINT8_C(0x02) +#define BME680_ADDR_RANGE_SW_ERR_ADDR UINT8_C(0x04) +#define BME680_ADDR_SENS_CONF_START UINT8_C(0x5A) +#define BME680_ADDR_GAS_CONF_START UINT8_C(0x64) + +/** Field settings */ +#define BME680_FIELD0_ADDR UINT8_C(0x1d) + +/** Heater settings */ +#define BME680_RES_HEAT0_ADDR UINT8_C(0x5a) +#define BME680_GAS_WAIT0_ADDR UINT8_C(0x64) + +/** Sensor configuration registers */ +#define BME680_CONF_HEAT_CTRL_ADDR UINT8_C(0x70) +#define BME680_CONF_ODR_RUN_GAS_NBC_ADDR UINT8_C(0x71) +#define BME680_CONF_OS_H_ADDR UINT8_C(0x72) +#define BME680_MEM_PAGE_ADDR UINT8_C(0xf3) +#define BME680_CONF_T_P_MODE_ADDR UINT8_C(0x74) +#define BME680_CONF_ODR_FILT_ADDR UINT8_C(0x75) + +/** Coefficient's address */ +#define BME680_COEFF_ADDR1 UINT8_C(0x89) +#define BME680_COEFF_ADDR2 UINT8_C(0xe1) + +/** Chip identifier */ +#define BME680_CHIP_ID_ADDR UINT8_C(0xd0) + +/** Soft reset register */ +#define BME680_SOFT_RESET_ADDR UINT8_C(0xe0) + +/** Heater control settings */ +#define BME680_ENABLE_HEATER UINT8_C(0x00) +#define BME680_DISABLE_HEATER UINT8_C(0x08) + +/** Gas measurement settings */ +#define BME680_DISABLE_GAS_MEAS UINT8_C(0x00) +#define BME680_ENABLE_GAS_MEAS UINT8_C(0x01) + +/** Over-sampling settings */ +#define BME680_OS_NONE UINT8_C(0) +#define BME680_OS_1X UINT8_C(1) +#define BME680_OS_2X UINT8_C(2) +#define BME680_OS_4X UINT8_C(3) +#define BME680_OS_8X UINT8_C(4) +#define BME680_OS_16X UINT8_C(5) + +/** IIR filter settings */ +#define BME680_FILTER_SIZE_0 UINT8_C(0) +#define BME680_FILTER_SIZE_1 UINT8_C(1) +#define BME680_FILTER_SIZE_3 UINT8_C(2) +#define BME680_FILTER_SIZE_7 UINT8_C(3) +#define BME680_FILTER_SIZE_15 UINT8_C(4) +#define BME680_FILTER_SIZE_31 UINT8_C(5) +#define BME680_FILTER_SIZE_63 UINT8_C(6) +#define BME680_FILTER_SIZE_127 UINT8_C(7) + +/** Power mode settings */ +#define BME680_SLEEP_MODE UINT8_C(0) +#define BME680_FORCED_MODE UINT8_C(1) + +/** Delay related macro declaration */ +#define BME680_RESET_PERIOD UINT32_C(10) + +/** SPI memory page settings */ +#define BME680_MEM_PAGE0 UINT8_C(0x10) +#define BME680_MEM_PAGE1 UINT8_C(0x00) + +/** Ambient humidity shift value for compensation */ +#define BME680_HUM_REG_SHIFT_VAL UINT8_C(4) + +/** Run gas enable and disable settings */ +#define BME680_RUN_GAS_DISABLE UINT8_C(0) +#define BME680_RUN_GAS_ENABLE UINT8_C(1) + +/** Buffer length macro declaration */ +#define BME680_TMP_BUFFER_LENGTH UINT8_C(40) +#define BME680_REG_BUFFER_LENGTH UINT8_C(6) +#define BME680_FIELD_DATA_LENGTH UINT8_C(3) +#define BME680_GAS_REG_BUF_LENGTH UINT8_C(20) + +/** Settings selector */ +#define BME680_OST_SEL UINT16_C(1) +#define BME680_OSP_SEL UINT16_C(2) +#define BME680_OSH_SEL UINT16_C(4) +#define BME680_GAS_MEAS_SEL UINT16_C(8) +#define BME680_FILTER_SEL UINT16_C(16) +#define BME680_HCNTRL_SEL UINT16_C(32) +#define BME680_RUN_GAS_SEL UINT16_C(64) +#define BME680_NBCONV_SEL UINT16_C(128) +#define BME680_GAS_SENSOR_SEL (BME680_GAS_MEAS_SEL | BME680_RUN_GAS_SEL | BME680_NBCONV_SEL) + +/** Number of conversion settings*/ +#define BME680_NBCONV_MIN UINT8_C(0) +#define BME680_NBCONV_MAX UINT8_C(10) + +/** Mask definitions */ +#define BME680_GAS_MEAS_MSK UINT8_C(0x30) +#define BME680_NBCONV_MSK UINT8_C(0X0F) +#define BME680_FILTER_MSK UINT8_C(0X1C) +#define BME680_OST_MSK UINT8_C(0XE0) +#define BME680_OSP_MSK UINT8_C(0X1C) +#define BME680_OSH_MSK UINT8_C(0X07) +#define BME680_HCTRL_MSK UINT8_C(0x08) +#define BME680_RUN_GAS_MSK UINT8_C(0x10) +#define BME680_MODE_MSK UINT8_C(0x03) +#define BME680_RHRANGE_MSK UINT8_C(0x30) +#define BME680_RSERROR_MSK UINT8_C(0xf0) +#define BME680_NEW_DATA_MSK UINT8_C(0x80) +#define BME680_GAS_INDEX_MSK UINT8_C(0x0f) +#define BME680_GAS_RANGE_MSK UINT8_C(0x0f) +#define BME680_GASM_VALID_MSK UINT8_C(0x20) +#define BME680_HEAT_STAB_MSK UINT8_C(0x10) +#define BME680_MEM_PAGE_MSK UINT8_C(0x10) +#define BME680_SPI_RD_MSK UINT8_C(0x80) +#define BME680_SPI_WR_MSK UINT8_C(0x7f) +#define BME680_BIT_H1_DATA_MSK UINT8_C(0x0F) + +/** Bit position definitions for sensor settings */ +#define BME680_GAS_MEAS_POS UINT8_C(4) +#define BME680_FILTER_POS UINT8_C(2) +#define BME680_OST_POS UINT8_C(5) +#define BME680_OSP_POS UINT8_C(2) +#define BME680_RUN_GAS_POS UINT8_C(4) + +/** Array Index to Field data mapping for Calibration Data*/ +#define BME680_T2_LSB_REG (1) +#define BME680_T2_MSB_REG (2) +#define BME680_T3_REG (3) +#define BME680_P1_LSB_REG (5) +#define BME680_P1_MSB_REG (6) +#define BME680_P2_LSB_REG (7) +#define BME680_P2_MSB_REG (8) +#define BME680_P3_REG (9) +#define BME680_P4_LSB_REG (11) +#define BME680_P4_MSB_REG (12) +#define BME680_P5_LSB_REG (13) +#define BME680_P5_MSB_REG (14) +#define BME680_P7_REG (15) +#define BME680_P6_REG (16) +#define BME680_P8_LSB_REG (19) +#define BME680_P8_MSB_REG (20) +#define BME680_P9_LSB_REG (21) +#define BME680_P9_MSB_REG (22) +#define BME680_P10_REG (23) +#define BME680_H2_MSB_REG (25) +#define BME680_H2_LSB_REG (26) +#define BME680_H1_LSB_REG (26) +#define BME680_H1_MSB_REG (27) +#define BME680_H3_REG (28) +#define BME680_H4_REG (29) +#define BME680_H5_REG (30) +#define BME680_H6_REG (31) +#define BME680_H7_REG (32) +#define BME680_T1_LSB_REG (33) +#define BME680_T1_MSB_REG (34) +#define BME680_GH2_LSB_REG (35) +#define BME680_GH2_MSB_REG (36) +#define BME680_GH1_REG (37) +#define BME680_GH3_REG (38) + +/** BME680 register buffer index settings*/ +#define BME680_REG_FILTER_INDEX UINT8_C(5) +#define BME680_REG_TEMP_INDEX UINT8_C(4) +#define BME680_REG_PRES_INDEX UINT8_C(4) +#define BME680_REG_HUM_INDEX UINT8_C(2) +#define BME680_REG_NBCONV_INDEX UINT8_C(1) +#define BME680_REG_RUN_GAS_INDEX UINT8_C(1) +#define BME680_REG_HCTRL_INDEX UINT8_C(0) + +/** BME680 pressure calculation macros */ +/*! This max value is used to provide precedence to multiplication or division + * in pressure compensation equation to achieve least loss of precision and + * avoiding overflows. + * i.e Comparing value, BME680_MAX_OVERFLOW_VAL = INT32_C(1 << 30) + */ +#define BME680_MAX_OVERFLOW_VAL INT32_C(0x40000000) + +/** Macro to combine two 8 bit data's to form a 16 bit data */ +#define BME680_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb) + +/** Macro to SET and GET BITS of a register */ +#define BME680_SET_BITS(reg_data, bitname, data) \ + ((reg_data & ~(bitname##_MSK)) | \ + ((data << bitname##_POS) & bitname##_MSK)) +#define BME680_GET_BITS(reg_data, bitname) ((reg_data & (bitname##_MSK)) >> \ + (bitname##_POS)) + +/** Macro variant to handle the bitname position if it is zero */ +#define BME680_SET_BITS_POS_0(reg_data, bitname, data) \ + ((reg_data & ~(bitname##_MSK)) | \ + (data & bitname##_MSK)) +#define BME680_GET_BITS_POS_0(reg_data, bitname) (reg_data & (bitname##_MSK)) + +/** Type definitions */ +/*! + * Generic communication function pointer + * @param[in] dev_id: Place holder to store the id of the device structure + * Can be used to store the index of the Chip select or + * I2C address of the device. + * @param[in] reg_addr: Used to select the register the where data needs to + * be read from or written to. + * @param[in/out] reg_data: Data array to read/write + * @param[in] len: Length of the data array + */ +typedef int8_t (*bme680_com_fptr_t)(uint8_t dev_id, uint8_t reg_addr, uint8_t *data, uint16_t len); + +/*! + * Delay function pointer + * @param[in] period: Time period in milliseconds + */ +typedef void (*bme680_delay_fptr_t)(uint32_t period); + +/*! + * @brief Interface selection Enumerations + */ +enum bme680_intf { + /*! SPI interface */ + BME680_SPI_INTF, + /*! I2C interface */ + BME680_I2C_INTF +}; + +/* structure definitions */ +/*! + * @brief Sensor field data structure + */ +struct bme680_field_data { + /*! Contains new_data, gasm_valid & heat_stab */ + uint8_t status; + /*! The index of the heater profile used */ + uint8_t gas_index; + /*! Measurement index to track order */ + uint8_t meas_index; + +#ifndef BME680_FLOAT_POINT_COMPENSATION + /*! Temperature in degree celsius x100 */ + int16_t temperature; + /*! Pressure in Pascal */ + uint32_t pressure; + /*! Humidity in % relative humidity x1000 */ + uint32_t humidity; + /*! Gas resistance in Ohms */ + uint32_t gas_resistance; +#else + /*! Temperature in degree celsius */ + float temperature; + /*! Pressure in Pascal */ + float pressure; + /*! Humidity in % relative humidity x1000 */ + float humidity; + /*! Gas resistance in Ohms */ + float gas_resistance; + +#endif + +}; + +/*! + * @brief Structure to hold the Calibration data + */ +struct bme680_calib_data { + /*! Variable to store calibrated humidity data */ + uint16_t par_h1; + /*! Variable to store calibrated humidity data */ + uint16_t par_h2; + /*! Variable to store calibrated humidity data */ + int8_t par_h3; + /*! Variable to store calibrated humidity data */ + int8_t par_h4; + /*! Variable to store calibrated humidity data */ + int8_t par_h5; + /*! Variable to store calibrated humidity data */ + uint8_t par_h6; + /*! Variable to store calibrated humidity data */ + int8_t par_h7; + /*! Variable to store calibrated gas data */ + int8_t par_gh1; + /*! Variable to store calibrated gas data */ + int16_t par_gh2; + /*! Variable to store calibrated gas data */ + int8_t par_gh3; + /*! Variable to store calibrated temperature data */ + uint16_t par_t1; + /*! Variable to store calibrated temperature data */ + int16_t par_t2; + /*! Variable to store calibrated temperature data */ + int8_t par_t3; + /*! Variable to store calibrated pressure data */ + uint16_t par_p1; + /*! Variable to store calibrated pressure data */ + int16_t par_p2; + /*! Variable to store calibrated pressure data */ + int8_t par_p3; + /*! Variable to store calibrated pressure data */ + int16_t par_p4; + /*! Variable to store calibrated pressure data */ + int16_t par_p5; + /*! Variable to store calibrated pressure data */ + int8_t par_p6; + /*! Variable to store calibrated pressure data */ + int8_t par_p7; + /*! Variable to store calibrated pressure data */ + int16_t par_p8; + /*! Variable to store calibrated pressure data */ + int16_t par_p9; + /*! Variable to store calibrated pressure data */ + uint8_t par_p10; + +#ifndef BME680_FLOAT_POINT_COMPENSATION + /*! Variable to store t_fine size */ + int32_t t_fine; +#else + /*! Variable to store t_fine size */ + float t_fine; +#endif + /*! Variable to store heater resistance range */ + uint8_t res_heat_range; + /*! Variable to store heater resistance value */ + int8_t res_heat_val; + /*! Variable to store error range */ + int8_t range_sw_err; +}; + +/*! + * @brief BME680 sensor settings structure which comprises of ODR, + * over-sampling and filter settings. + */ +struct bme680_tph_sett { + /*! Humidity oversampling */ + uint8_t os_hum; + /*! Temperature oversampling */ + uint8_t os_temp; + /*! Pressure oversampling */ + uint8_t os_pres; + /*! Filter coefficient */ + uint8_t filter; +}; + +/*! + * @brief BME680 gas sensor which comprises of gas settings + * and status parameters + */ +struct bme680_gas_sett { + /*! Variable to store nb conversion */ + uint8_t nb_conv; + /*! Variable to store heater control */ + uint8_t heatr_ctrl; + /*! Run gas enable value */ + uint8_t run_gas; + /*! Heater temperature value */ + uint16_t heatr_temp; + /*! Duration profile value */ + uint16_t heatr_dur; +}; + +/*! + * @brief BME680 device structure + */ +struct bme680_dev { + /*! Chip Id */ + uint8_t chip_id; + /*! Device Id */ + uint8_t dev_id; + /*! SPI/I2C interface */ + enum bme680_intf intf; + /*! Memory page used */ + uint8_t mem_page; + /*! Ambient temperature in Degree C */ + int8_t amb_temp; + /*! Sensor calibration data */ + struct bme680_calib_data calib; + /*! Sensor settings */ + struct bme680_tph_sett tph_sett; + /*! Gas Sensor settings */ + struct bme680_gas_sett gas_sett; + /*! Sensor power modes */ + uint8_t power_mode; + /*! New sensor fields */ + uint8_t new_fields; + /*! Store the info messages */ + uint8_t info_msg; + /*! Bus read function pointer */ + bme680_com_fptr_t read; + /*! Bus write function pointer */ + bme680_com_fptr_t write; + /*! delay function pointer */ + bme680_delay_fptr_t delay_ms; + /*! Communication function result */ + int8_t com_rslt; +}; + + + +#endif /* BME680_DEFS_H_ */ +/** @}*/ +/** @}*/ diff --git a/src/bsec/bsec.cpp b/src/bsec/bsec.cpp new file mode 100644 index 0000000..6e673c4 --- /dev/null +++ b/src/bsec/bsec.cpp @@ -0,0 +1,616 @@ +/** + * Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + * + * BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * @file bsec.cpp + * @date 18 Nov 2020 + * + */ + +#include "bsec.h" + +TwoWire* Bsec::wireObj = NULL; +SPIClass* Bsec::spiObj = NULL; + +/** + * @brief Constructor + */ +Bsec::Bsec() +{ + nextCall = 0; + version.major = 0; + version.minor = 0; + version.major_bugfix = 0; + version.minor_bugfix = 0; + millisOverflowCounter = 0; + lastTime = 0; + bme680Status = BME680_OK; + outputTimestamp = 0; + _tempOffset = 0.0f; + status = BSEC_OK; + bsecConfig = NULL; + nSensorSettings = BSEC_MAX_PHYSICAL_SENSOR; + zeroOutputs(); +} + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + */ +void Bsec::begin(uint8_t devId, + enum bme680_intf intf, + bme680_com_fptr_t read, + bme680_com_fptr_t write, + bme680_delay_fptr_t idleTask) +{ + _bme680.dev_id = devId; + _bme680.intf = intf; + _bme680.read = read; + _bme680.write = write; + _bme680.delay_ms = idleTask; + _bme680.amb_temp = 25; + _bme680.power_mode = BME680_FORCED_MODE; + + beginCommon(); +} + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + */ +void Bsec::begin(uint8_t i2cAddr, TwoWire &i2c, bme680_delay_fptr_t idleTask) +{ + _bme680.dev_id = i2cAddr; + _bme680.intf = BME680_I2C_INTF; + _bme680.read = Bsec::i2cRead; + _bme680.write = Bsec::i2cWrite; + _bme680.delay_ms = idleTask; + _bme680.amb_temp = 25; + _bme680.power_mode = BME680_FORCED_MODE; + + Bsec::wireObj = &i2c; + + beginCommon(); +} + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + */ +void Bsec::begin(uint8_t chipSelect, SPIClass &spi, bme680_delay_fptr_t idleTask) +{ + _bme680.dev_id = chipSelect; + _bme680.intf = BME680_SPI_INTF; + _bme680.read = Bsec::spiTransfer; + _bme680.write = Bsec::spiTransfer; + _bme680.delay_ms = idleTask; + _bme680.amb_temp = 25; + _bme680.power_mode = BME680_FORCED_MODE; + + pinMode(chipSelect, OUTPUT); + digitalWrite(chipSelect, HIGH); + Bsec::spiObj = &spi; + + beginCommon(); +} + +/** + * @brief Common code for the begin function + */ +void Bsec::beginCommon(void) +{ + virtualSensors[0].sensor_id = BSEC_OUTPUT_IAQ; + virtualSensors[1].sensor_id = BSEC_OUTPUT_STATIC_IAQ; + virtualSensors[2].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT; + virtualSensors[3].sensor_id = BSEC_OUTPUT_BREATH_VOC_EQUIVALENT; + virtualSensors[4].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE; + virtualSensors[5].sensor_id = BSEC_OUTPUT_RAW_PRESSURE; + virtualSensors[6].sensor_id = BSEC_OUTPUT_RAW_HUMIDITY; + virtualSensors[7].sensor_id = BSEC_OUTPUT_RAW_GAS; + virtualSensors[8].sensor_id = BSEC_OUTPUT_STABILIZATION_STATUS; + virtualSensors[9].sensor_id = BSEC_OUTPUT_RUN_IN_STATUS; + virtualSensors[10].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE; + virtualSensors[11].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY; + virtualSensors[12].sensor_id = BSEC_OUTPUT_COMPENSATED_GAS; + virtualSensors[13].sensor_id = BSEC_OUTPUT_GAS_PERCENTAGE; + + virtualSensors[0].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[1].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[3].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[4].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[5].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[6].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[7].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[8].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[9].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[10].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[11].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[12].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + virtualSensors[13].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + + status = bsec_init(); + + getVersion(); + + bme680Status = bme680_init(&_bme680); +} + +/** + * @brief Function that sets the desired sensors and the sample rates + */ +void Bsec::updateSubscription(bsec_virtual_sensor_t sensorList[], uint8_t nSensors, float sampleRate) +{ + for (uint8_t i = 0; i < nSensors; i++) + { + for (uint8_t j = 0; j < BSEC_NUMBER_OUTPUTS; j++) + { + if (virtualSensors[j].sensor_id == sensorList[i]) + { + virtualSensors[j].sample_rate = sampleRate; + } + } + } + + status = bsec_update_subscription(virtualSensors, BSEC_NUMBER_OUTPUTS, sensorSettings, &nSensorSettings); + + return; +} + +/** + * @brief Callback from the user to trigger reading of data from the BME680, process and store outputs + */ +bool Bsec::run(int64_t timeMilliseconds) +{ + bool newData = false; + + /* Check if the time has arrived to call do_steps() */ + int64_t callTimeMs = timeMilliseconds; + + if (callTimeMs < 0) /* Use millis */ + { + callTimeMs = getTimeMs(); + } + + if (callTimeMs >= nextCall) + { + bsec_init(); + + if (validBsecState) + { + setState(bsecState); + } + + nSensorSettings = BSEC_MAX_PHYSICAL_SENSOR; + status = bsec_update_subscription(virtualSensors, BSEC_NUMBER_OUTPUTS, sensorSettings, &nSensorSettings); + + bsec_bme_settings_t bme680Settings; + + int64_t callTimeNs = callTimeMs * INT64_C(1000000); + + status = bsec_sensor_control(callTimeNs, &bme680Settings); + if (status < BSEC_OK) + { + return false; + } + + nextCall = bme680Settings.next_call / INT64_C(1000000); /* Convert from ns to ms */ + + bme680Status = setBme680Config(bme680Settings); + if (bme680Status != BME680_OK) + { + return false; + } + + bme680Status = bme680_set_sensor_mode(&_bme680); + if (bme680Status != BME680_OK) + { + return false; + } + + /* Wait for measurement to complete */ + uint16_t meas_dur = 0; + + bme680_get_profile_dur(&meas_dur, &_bme680); + _bme680.delay_ms(meas_dur); + + newData = readProcessData(callTimeNs + (meas_dur * INT64_C(1000000)), bme680Settings); + + uint8_t workBuffer[BSEC_MAX_STATE_BLOB_SIZE]; + uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE; + status = bsec_get_state(0, + bsecState, + BSEC_MAX_STATE_BLOB_SIZE, + workBuffer, + BSEC_MAX_STATE_BLOB_SIZE, + &n_serialized_state); + validBsecState = true; + } + + return newData; +} + +/** + * @brief Function to get the state of the algorithm to save to non-volatile memory + */ +void Bsec::getState(uint8_t *state) +{ + uint8_t workBuffer[BSEC_MAX_STATE_BLOB_SIZE]; + uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE; + + if (!validBsecState) + { + status = bsec_get_state(0, + bsecState, + BSEC_MAX_STATE_BLOB_SIZE, + workBuffer, + BSEC_MAX_STATE_BLOB_SIZE, + &n_serialized_state); + validBsecState = true; + } + memcpy(state, bsecState, BSEC_MAX_STATE_BLOB_SIZE); +} + +/** + * @brief Function to set the state of the algorithm from non-volatile memory + */ +void Bsec::setState(uint8_t *state) +{ + uint8_t workBuffer[BSEC_MAX_WORKBUFFER_SIZE]; + + status = bsec_set_state(state, BSEC_MAX_STATE_BLOB_SIZE, workBuffer, sizeof(workBuffer)); + + if (status == BSEC_OK) + { + for (uint32_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++) + { + bsecState[i] = state[i]; + } + validBsecState = true; + } +} + +/** + * @brief Function to set the configuration of the algorithm from memory + */ +void Bsec::setConfig(const uint8_t *config) +{ + uint8_t workBuffer[BSEC_MAX_WORKBUFFER_SIZE]; + + bsecConfig = (uint8_t *)config; + + status = bsec_set_configuration(config, BSEC_MAX_PROPERTY_BLOB_SIZE, workBuffer, sizeof(workBuffer)); +} + +/* Private functions */ + +/** + * @brief Get the version of the BSEC library + */ +void Bsec::getVersion(void) +{ + bsec_get_version(&version); +} + +/** + * @brief Read data from the BME680 and process it + */ +bool Bsec::readProcessData(int64_t currTimeNs, bsec_bme_settings_t bme680Settings) +{ + bme680Status = bme680_get_sensor_data(&_data, &_bme680); + if (bme680Status != BME680_OK) + { + return false; + } + + bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR]; /* Temperature, Pressure, Humidity & Gas Resistance */ + uint8_t nInputs = 0, nOutputs = 0; + + if (_data.status & BME680_NEW_DATA_MSK) + { + if (bme680Settings.process_data & BSEC_PROCESS_TEMPERATURE) + { + inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE; +#ifdef BME680_FLOAT_POINT_COMPENSATION + inputs[nInputs].signal = _data.temperature; +#else + inputs[nInputs].signal = _data.temperature / 100.0f; +#endif + inputs[nInputs].time_stamp = currTimeNs; + nInputs++; + + /* Temperature offset from the real temperature due to external heat sources */ + inputs[nInputs].sensor_id = BSEC_INPUT_HEATSOURCE; + inputs[nInputs].signal = _tempOffset; + inputs[nInputs].time_stamp = currTimeNs; + nInputs++; + } + if (bme680Settings.process_data & BSEC_PROCESS_HUMIDITY) + { + inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY; +#ifdef BME680_FLOAT_POINT_COMPENSATION + inputs[nInputs].signal = _data.humidity; +#else + inputs[nInputs].signal = _data.humidity / 1000.0f; +#endif + inputs[nInputs].time_stamp = currTimeNs; + nInputs++; + } + if (bme680Settings.process_data & BSEC_PROCESS_PRESSURE) + { + inputs[nInputs].sensor_id = BSEC_INPUT_PRESSURE; + inputs[nInputs].signal = _data.pressure; + inputs[nInputs].time_stamp = currTimeNs; + nInputs++; + } + if (bme680Settings.process_data & BSEC_PROCESS_GAS) + { + inputs[nInputs].sensor_id = BSEC_INPUT_GASRESISTOR; + inputs[nInputs].signal = _data.gas_resistance; + inputs[nInputs].time_stamp = currTimeNs; + nInputs++; + } + } + + if (nInputs > 0) + { + nOutputs = BSEC_NUMBER_OUTPUTS; + bsec_output_t _outputs[BSEC_NUMBER_OUTPUTS]; + + status = bsec_do_steps(inputs, nInputs, _outputs, &nOutputs); + if (status != BSEC_OK) + { + return false; + } + + zeroOutputs(); + + if (nOutputs > 0) + { + outputTimestamp = _outputs[0].time_stamp / 1000000; /* Convert from ns to ms */ + + for (uint8_t i = 0; i < nOutputs; i++) + { + switch (_outputs[i].sensor_id) + { + case BSEC_OUTPUT_IAQ: + iaq = _outputs[i].signal; + iaqAccuracy = _outputs[i].accuracy; + break; + case BSEC_OUTPUT_STATIC_IAQ: + staticIaq = _outputs[i].signal; + staticIaqAccuracy = _outputs[i].accuracy; + break; + case BSEC_OUTPUT_CO2_EQUIVALENT: + co2Equivalent = _outputs[i].signal; + co2Accuracy = _outputs[i].accuracy; + break; + case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT: + breathVocEquivalent = _outputs[i].signal; + breathVocAccuracy = _outputs[i].accuracy; + break; + case BSEC_OUTPUT_RAW_TEMPERATURE: + rawTemperature = _outputs[i].signal; + break; + case BSEC_OUTPUT_RAW_PRESSURE: + pressure = _outputs[i].signal; + break; + case BSEC_OUTPUT_RAW_HUMIDITY: + rawHumidity = _outputs[i].signal; + break; + case BSEC_OUTPUT_RAW_GAS: + gasResistance = _outputs[i].signal; + break; + case BSEC_OUTPUT_STABILIZATION_STATUS: + stabStatus = _outputs[i].signal; + break; + case BSEC_OUTPUT_RUN_IN_STATUS: + runInStatus = _outputs[i].signal; + break; + case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE: + temperature = _outputs[i].signal; + break; + case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY: + humidity = _outputs[i].signal; + break; + case BSEC_OUTPUT_COMPENSATED_GAS: + compGasValue = _outputs[i].signal; + compGasAccuracy = _outputs[i].accuracy; + break; + case BSEC_OUTPUT_GAS_PERCENTAGE: + gasPercentage = _outputs[i].signal; + gasPercentageAcccuracy = _outputs[i].accuracy; + break; + default: + break; + } + } + + return true; + } + } + + return false; +} + +/** + * @brief Set the BME680 sensor's configuration + */ +int8_t Bsec::setBme680Config(bsec_bme_settings_t bme680Settings) +{ + _bme680.gas_sett.run_gas = bme680Settings.run_gas; + _bme680.tph_sett.os_hum = bme680Settings.humidity_oversampling; + _bme680.tph_sett.os_temp = bme680Settings.temperature_oversampling; + _bme680.tph_sett.os_pres = bme680Settings.pressure_oversampling; + _bme680.gas_sett.heatr_temp = bme680Settings.heater_temperature; + _bme680.gas_sett.heatr_dur = bme680Settings.heating_duration; + uint16_t desired_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | + BME680_GAS_SENSOR_SEL; + + return bme680_set_sensor_settings(desired_settings, &_bme680); +} + +/** + * @brief Function to zero the outputs + */ +void Bsec::zeroOutputs(void) +{ + temperature = 0.0f; + pressure = 0.0f; + humidity = 0.0f; + gasResistance = 0.0f; + rawTemperature = 0.0f; + rawHumidity = 0.0f; + stabStatus = 0.0f; + runInStatus = 0.0f; + iaq = 0.0f; + iaqAccuracy = 0; + staticIaq = 0.0f; + staticIaqAccuracy = 0; + co2Equivalent = 0.0f; + co2Accuracy = 0; + breathVocEquivalent = 0.0f; + breathVocAccuracy = 0; + compGasValue = 0.0f; + compGasAccuracy = 0; + gasPercentage = 0.0f; + gasPercentageAcccuracy = 0; + validBsecState = false; +} + +/** + * @brief Function to calculate an int64_t timestamp in milliseconds + */ +int64_t Bsec::getTimeMs(void) +{ + int64_t timeMs = millis(); + + if (lastTime > timeMs) /* An overflow occurred */ + { + millisOverflowCounter++; + } + + lastTime = timeMs; + + return timeMs + ((int64_t)millisOverflowCounter << 32); +} + +/** + * @brief Task that delays for a ms period of time + */ +void Bsec::delay_ms(uint32_t period) +{ + /* + * Wait for a period amount of ms + * The system may simply idle, sleep or even perform background tasks + */ + delay(period); +} + +/** + * @brief Callback function for reading registers over I2C + */ +int8_t Bsec::i2cRead(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length) +{ + uint16_t i; + int8_t rslt = 0; + + if (Bsec::wireObj) + { + Bsec::wireObj->beginTransmission(devId); + Bsec::wireObj->write(regAddr); + rslt = Bsec::wireObj->endTransmission(); + Bsec::wireObj->requestFrom((int) devId, (int) length); + for (i = 0; (i < length) && Bsec::wireObj->available(); i++) + { + regData[i] = Bsec::wireObj->read(); + } + } + else + { + rslt = -1; + } + + return rslt; +} + +/** + * @brief Callback function for writing registers over I2C + */ +int8_t Bsec::i2cWrite(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length) +{ + uint16_t i; + int8_t rslt = 0; + + if (Bsec::wireObj) + { + Bsec::wireObj->beginTransmission(devId); + Bsec::wireObj->write(regAddr); + for (i = 0; i < length; i++) + { + Bsec::wireObj->write(regData[i]); + } + rslt = Bsec::wireObj->endTransmission(); + } + else + { + rslt = -1; + } + + return rslt; +} + +/** + * @brief Callback function for reading and writing registers over SPI + */ +int8_t Bsec::spiTransfer(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length) +{ + int8_t rslt = 0; + + if (Bsec::spiObj) + { + Bsec::spiObj->beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE0)); /* Can be up to 10MHz */ + + digitalWrite(devId, LOW); + + Bsec::spiObj->transfer(regAddr); /* Write the register address, ignore the return */ + for (uint16_t i = 0; i < length; i++) + { + regData[i] = Bsec::spiObj->transfer(regData[i]); + } + + digitalWrite(devId, HIGH); + Bsec::spiObj->endTransaction(); + } + else + { + rslt = -1; + } + + return rslt; +} \ No newline at end of file diff --git a/src/bsec/bsec.h b/src/bsec/bsec.h new file mode 100644 index 0000000..ca42ea9 --- /dev/null +++ b/src/bsec/bsec.h @@ -0,0 +1,238 @@ +/** + * Copyright (c) 2020 Bosch Sensortec GmbH. All rights reserved. + * + * BSD-3-Clause + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + * @file bsec.h + * @date 18 Nov 2020 + * + */ + +#ifndef BSEC_CLASS_H +#define BSEC_CLASS_H + +/* Includes */ +#include "Arduino.h" +#include "Wire.h" +#include "SPI.h" +#include "inc/bsec_datatypes.h" +#include "inc/bsec_interface.h" +#include "bme680/bme680.h" + +/* BSEC class definition */ +class Bsec { +public: + +/* Public variables */ +bsec_version_t version; /* Stores the version of the BSEC algorithm */ +int64_t nextCall; /* Stores the time when the algorithm has to be called next in ms */ +int8_t bme680Status; /* Placeholder for the BME680 driver's error codes */ +bsec_library_return_t status; +float iaq, rawTemperature, pressure, rawHumidity, gasResistance, stabStatus, runInStatus, temperature, humidity, + staticIaq, co2Equivalent, breathVocEquivalent, compGasValue, gasPercentage; +uint8_t iaqAccuracy, staticIaqAccuracy, co2Accuracy, breathVocAccuracy, compGasAccuracy, gasPercentageAcccuracy; +int64_t outputTimestamp; /* Timestamp in ms of the output */ +static TwoWire *wireObj; +static SPIClass *spiObj; + +/* Public APIs */ + +/** + * @brief Constructor + */ +Bsec(); + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + * @param devId : Device identifier parameter for the read/write interface functions + * @param intf : Physical communication interface + * @param read : Pointer to the read function + * @param write : Pointer to the write function + * @param idleTask : Pointer to the idling task + */ +void begin(uint8_t devId, + enum bme680_intf intf, + bme680_com_fptr_t read, + bme680_com_fptr_t write, + bme680_delay_fptr_t idleTask); + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + * @param i2cAddr : I2C address + * @param i2c : Pointer to the TwoWire object + * @param idleTask : Task to be called when idling + */ +void begin(uint8_t i2cAddr, TwoWire &i2c, bme680_delay_fptr_t idleTask = delay_ms); + +/** + * @brief Function to initialize the BSEC library and the BME680 sensor + * @param chipSelect : SPI chip select + * @param spi : Pointer to the SPIClass object + * @param idleTask : Task to be called when idling + */ +void begin(uint8_t chipSelect, SPIClass &spi, bme680_delay_fptr_t idleTask = delay_ms); + +/** + * @brief Function that sets the desired sensors and the sample rates + * @param sensorList : The list of output sensors + * @param nSensors : Number of outputs requested + * @param sampleRate : The sample rate of requested sensors + */ +void updateSubscription(bsec_virtual_sensor_t sensorList[], uint8_t nSensors, float sampleRate = BSEC_SAMPLE_RATE_ULP); + +/** + * @brief Callback from the user to trigger reading of data from the BME680, process and store outputs + * @param timeMilliseconds : Time in milliseconds. Defaults to -1 which means it takes the time from millis() + * @return true if there are new outputs. false otherwise + */ +bool run(int64_t timeMilliseconds = -1); + +/** + * @brief Function to get the state of the algorithm to save to non-volatile memory + * @param state : Pointer to a memory location that contains the state + */ +void getState(uint8_t *state); + +/** + * @brief Function to set the state of the algorithm from non-volatile memory + * @param state : Pointer to a memory location that contains the state + */ +void setState(uint8_t *state); + +/** + * @brief Function to set the configuration of the algorithm from memory + * @param state : Pointer to a memory location that contains the configuration + */ +void setConfig(const uint8_t *config); + +/** + * @brief Function to set the temperature offset + * @param tempOffset : Temperature offset in degree Celsius + */ +void setTemperatureOffset(float tempOffset) +{ + _tempOffset = tempOffset; +} + +/** + * @brief Function to calculate an int64_t timestamp in milliseconds + */ +int64_t getTimeMs(void); + +/** + * @brief Task that delays for a ms period of time + * @param period : Period of time in ms + */ +static void delay_ms(uint32_t period); + +/** + * @brief Callback function for reading registers over I2C + * @param devId : Library agnostic parameter to identify the device to communicate with + * @param regAddr : Register address + * @param regData : Pointer to the array containing the data to be read + * @param length : Length of the array of data + * @return Zero for success, non-zero otherwise + */ +static int8_t i2cRead(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length); + +/** + * @brief Callback function for writing registers over I2C + * @param devId : Library agnostic parameter to identify the device to communicate with + * @param regAddr : Register address + * @param regData : Pointer to the array containing the data to be written + * @param length : Length of the array of data + * @return Zero for success, non-zero otherwise + */ +static int8_t i2cWrite(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length); + +/** + * @brief Callback function for reading and writing registers over SPI + * @param devId : Library agnostic parameter to identify the device to communicate with + * @param regAddr : Register address + * @param regData : Pointer to the array containing the data to be read or written + * @param length : Length of the array of data + * @return Zero for success, non-zero otherwise + */ +static int8_t spiTransfer(uint8_t devId, uint8_t regAddr, uint8_t *regData, uint16_t length); + +private: + +/* Private variables */ +struct bme680_dev _bme680; +struct bme680_field_data _data; +float _tempOffset; +/* + * Global variables to help create a millisecond timestamp that doesn't overflow every 51 days. + * If it overflows, it will have a negative value. Something that should never happen. + */ +uint32_t millisOverflowCounter; +uint32_t lastTime; + +uint8_t *bsecConfig; +bool validBsecState; +uint8_t bsecState[BSEC_MAX_STATE_BLOB_SIZE]; +bsec_sensor_configuration_t virtualSensors[BSEC_NUMBER_OUTPUTS], sensorSettings[BSEC_MAX_PHYSICAL_SENSOR]; +uint8_t nSensorSettings; + +/* Private APIs */ + +/** + * @brief Get the version of the BSEC library + */ +void getVersion(void); + +/** + * @brief Read data from the BME680 and process it + * @param currTimeNs: Current time in ns + * @param bme680Settings: BME680 sensor's settings + * @return true if there are new outputs. false otherwise + */ +bool readProcessData(int64_t currTimeNs, bsec_bme_settings_t bme680Settings); + +/** + * @brief Set the BME680 sensor's configuration + * @param bme680Settings: Settings to configure the BME680 + * @return BME680 return code. BME680_OK for success, failure otherwise + */ +int8_t setBme680Config(bsec_bme_settings_t bme680Settings); + +/** + * @brief Common code for the begin function + */ +void beginCommon(void); + +/** + * @brief Function to zero the outputs + */ +void zeroOutputs(void); + +}; + +#endif diff --git a/src/bsec/inc/bsec_datatypes.h b/src/bsec/inc/bsec_datatypes.h new file mode 100644 index 0000000..7cf1201 --- /dev/null +++ b/src/bsec/inc/bsec_datatypes.h @@ -0,0 +1,489 @@ +/** + * Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential. + * + * Disclaimer + * + * Common: + * Bosch Sensortec products are developed for the consumer goods industry. They may only be used + * within the parameters of the respective valid product data sheet. Bosch Sensortec products are + * provided with the express understanding that there is no warranty of fitness for a particular purpose. + * They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device + * that may lead to bodily harm or property damage if the system or device malfunctions. In addition, + * Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems. + * The resale and/or use of products are at the purchaser's own risk and his own responsibility. The + * examination of fitness for the intended use is the sole responsibility of the Purchaser. + * + * The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for + * incidental, or consequential damages, arising from any product use not covered by the parameters of + * the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch + * Sensortec for all costs in connection with such claims. + * + * The purchaser must monitor the market for the purchased products, particularly with regard to + * product safety and inform Bosch Sensortec without delay of all security relevant incidents. + * + * Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid + * technical specifications of the product series. They are therefore not intended or fit for resale to third + * parties or for use in end products. Their sole purpose is internal client testing. The testing of an + * engineering sample may in no way replace the testing of a product series. Bosch Sensortec + * assumes no liability for the use of engineering samples. By accepting the engineering samples, the + * Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering + * samples. + * + * Special: + * This software module (hereinafter called "Software") and any information on application-sheets + * (hereinafter called "Information") is provided free of charge for the sole purpose to support your + * application work. The Software and Information is subject to the following terms and conditions: + * + * The Software is specifically designed for the exclusive use for Bosch Sensortec products by + * personnel who have special experience and training. Do not use this Software if you do not have the + * proper experience or training. + * + * This Software package is provided `` as is `` and without any expressed or implied warranties, + * including without limitation, the implied warranties of merchantability and fitness for a particular + * purpose. + * + * Bosch Sensortec and their representatives and agents deny any liability for the functional impairment + * of this Software in terms of fitness, performance and safety. Bosch Sensortec and their + * representatives and agents shall not be liable for any direct or indirect damages or injury, except as + * otherwise stipulated in mandatory applicable law. + * + * The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no + * responsibility for the consequences of use of such Information nor for any infringement of patents or + * other rights of third parties which may result from its use. No license is granted by implication or + * otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are + * subject to change without notice. + * + * It is not allowed to deliver the source code of the Software to any third party without permission of + * Bosch Sensortec. + * + */ + + /** + * @file bsec_datatypes.h + * + * @brief + * Contains the data types used by BSEC + * + */ + +#ifndef __BSEC_DATATYPES_H__ +#define __BSEC_DATATYPES_H__ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/*! + * @addtogroup bsec_interface BSEC C Interface + * @{*/ + +#ifdef __KERNEL__ +#include +#endif +#include +#include + +#define BSEC_MAX_WORKBUFFER_SIZE (2048) /*!< Maximum size (in bytes) of the work buffer */ +#define BSEC_MAX_PHYSICAL_SENSOR (8) /*!< Number of physical sensors that need allocated space before calling bsec_update_subscription() */ +#define BSEC_MAX_PROPERTY_BLOB_SIZE (454) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_configuration() */ +#define BSEC_MAX_STATE_BLOB_SIZE (139) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_state()*/ +#define BSEC_SAMPLE_RATE_DISABLED (65535.0f) /*!< Sample rate of a disabled sensor */ +#define BSEC_SAMPLE_RATE_ULP (0.0033333f) /*!< Sample rate in case of Ultra Low Power Mode */ +#define BSEC_SAMPLE_RATE_CONTINUOUS (1.0f) /*!< Sample rate in case of Continuous Mode */ +#define BSEC_SAMPLE_RATE_LP (0.33333f) /*!< Sample rate in case of Low Power Mode */ +#define BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND (0.0f) /*!< Input value used to trigger an extra measurment (ULP plus) */ + +#define BSEC_PROCESS_PRESSURE (1 << (BSEC_INPUT_PRESSURE-1)) /*!< process_data bitfield constant for pressure @sa bsec_bme_settings_t */ +#define BSEC_PROCESS_TEMPERATURE (1 << (BSEC_INPUT_TEMPERATURE-1)) /*!< process_data bitfield constant for temperature @sa bsec_bme_settings_t */ +#define BSEC_PROCESS_HUMIDITY (1 << (BSEC_INPUT_HUMIDITY-1)) /*!< process_data bitfield constant for humidity @sa bsec_bme_settings_t */ +#define BSEC_PROCESS_GAS (1 << (BSEC_INPUT_GASRESISTOR-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */ +#define BSEC_NUMBER_OUTPUTS (14) /*!< Number of outputs, depending on solution */ +#define BSEC_OUTPUT_INCLUDED (1210863) /*!< bitfield that indicates which outputs are included in the solution */ + +/*! + * @brief Enumeration for input (physical) sensors. + * + * Used to populate bsec_input_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs + * returned in the parameter required_sensor_settings of bsec_update_subscription(). + * + * @sa bsec_sensor_configuration_t @sa bsec_input_t + */ +typedef enum +{ + /** + * @brief Pressure sensor output of BMExxx [Pa] + */ + BSEC_INPUT_PRESSURE = 1, + + /** + * @brief Humidity sensor output of BMExxx [%] + * + * @note Relative humidity strongly depends on the temperature (it is measured at). It may require a conversion to + * the temperature outside of the device. + * + * @sa bsec_virtual_sensor_t + */ + BSEC_INPUT_HUMIDITY = 2, + + /** + * @brief Temperature sensor output of BMExxx [degrees Celsius] + * + * @note The BME680 is factory trimmed, thus the temperature sensor of the BME680 is very accurate. + * The temperature value is a very local measurement value and can be influenced by external heat sources. + * + * @sa bsec_virtual_sensor_t + */ + BSEC_INPUT_TEMPERATURE = 3, + + /** + * @brief Gas sensor resistance output of BMExxx [Ohm] + * + * The resistance value changes due to varying VOC concentrations (the higher the concentration of reducing VOCs, + * the lower the resistance and vice versa). + */ + BSEC_INPUT_GASRESISTOR = 4, /*!< */ + + /** + * @brief Additional input for device heat compensation + * + * IAQ solution: The value is subtracted from ::BSEC_INPUT_TEMPERATURE to compute + * ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE. + * + * ALL solution: Generic heat source 1 + * + * @sa bsec_virtual_sensor_t + */ + BSEC_INPUT_HEATSOURCE = 14, + + /** + * @brief Additional input for device heat compensation 8 + * + * Generic heat source 8 + */ + + + /** + * @brief Additional input that disables baseline tracker + * + * 0 - Normal + * 1 - Event 1 + * 2 - Event 2 + */ + BSEC_INPUT_DISABLE_BASELINE_TRACKER = 23, + +} bsec_physical_sensor_t; + +/*! + * @brief Enumeration for output (virtual) sensors + * + * Used to populate bsec_output_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs + * passed in the parameter requested_virtual_sensors of bsec_update_subscription(). + * + * @sa bsec_sensor_configuration_t @sa bsec_output_t + */ +typedef enum +{ + /** + * @brief Indoor-air-quality estimate [0-500] + * + * Indoor-air-quality (IAQ) gives an indication of the relative change in ambient TVOCs detected by BME680. + * + * @note The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air). During operation, algorithms + * automatically calibrate and adapt themselves to the typical environments where the sensor is operated + * (e.g., home, workplace, inside a car, etc.).This automatic background calibration ensures that users experience + * consistent IAQ performance. The calibration process considers the recent measurement history (typ. up to four + * days) to ensure that IAQ=25 corresponds to typical good air and IAQ=250 indicates typical polluted air. + */ + BSEC_OUTPUT_IAQ = 1, + BSEC_OUTPUT_STATIC_IAQ = 2, /*!< Unscaled indoor-air-quality estimate */ + BSEC_OUTPUT_CO2_EQUIVALENT = 3, /*!< co2 equivalent estimate [ppm] */ + BSEC_OUTPUT_BREATH_VOC_EQUIVALENT = 4, /*!< breath VOC concentration estimate [ppm] */ + + /** + * @brief Temperature sensor signal [degrees Celsius] + * + * Temperature directly measured by BME680 in degree Celsius. + * + * @note This value is cross-influenced by the sensor heating and device specific heating. + */ + BSEC_OUTPUT_RAW_TEMPERATURE = 6, + + /** + * @brief Pressure sensor signal [Pa] + * + * Pressure directly measured by the BME680 in Pa. + */ + BSEC_OUTPUT_RAW_PRESSURE = 7, + + /** + * @brief Relative humidity sensor signal [%] + * + * Relative humidity directly measured by the BME680 in %. + * + * @note This value is cross-influenced by the sensor heating and device specific heating. + */ + BSEC_OUTPUT_RAW_HUMIDITY = 8, + + /** + * @brief Gas sensor signal [Ohm] + * + * Gas resistance measured directly by the BME680 in Ohm.The resistance value changes due to varying VOC + * concentrations (the higher the concentration of reducing VOCs, the lower the resistance and vice versa). + */ + BSEC_OUTPUT_RAW_GAS = 9, + + /** + * @brief Gas sensor stabilization status [boolean] + * + * Indicates initial stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization + * is finished (1). + */ + BSEC_OUTPUT_STABILIZATION_STATUS = 12, + + /** + * @brief Gas sensor run-in status [boolean] + * + * Indicates power-on stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization + * is finished (1). + */ + BSEC_OUTPUT_RUN_IN_STATUS = 13, + + /** + * @brief Sensor heat compensated temperature [degrees Celsius] + * + * Temperature measured by BME680 which is compensated for the influence of sensor (heater) in degree Celsius. + * The self heating introduced by the heater is depending on the sensor operation mode and the sensor supply voltage. + * + * + * @note IAQ solution: In addition, the temperature output can be compensated by an user defined value + * (::BSEC_INPUT_HEATSOURCE in degrees Celsius), which represents the device specific self-heating. + * + * Thus, the value is calculated as follows: + * * IAQ solution: ```BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage) - ::BSEC_INPUT_HEATSOURCE``` + * * other solutions: ```::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage)``` + * + * The self-heating in operation mode BSEC_SAMPLE_RATE_ULP is negligible. + * The self-heating in operation mode BSEC_SAMPLE_RATE_LP is supported for 1.8V by default (no config file required). If the BME680 sensor supply voltage is 3.3V, the IoT_LP_3_3V.config shall be used. + */ + BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = 14, + + /** + * @brief Sensor heat compensated humidity [%] + * + * Relative measured by BME680 which is compensated for the influence of sensor (heater) in %. + * + * It converts the ::BSEC_INPUT_HUMIDITY from temperature ::BSEC_INPUT_TEMPERATURE to temperature + * ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE. + * + * @note IAQ solution: If ::BSEC_INPUT_HEATSOURCE is used for device specific temperature compensation, it will be + * effective for ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY too. + */ + BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY = 15, + + BSEC_OUTPUT_COMPENSATED_GAS = 18, /*!< Reserved internal debug output */ + BSEC_OUTPUT_GAS_PERCENTAGE = 21 /*!< percentage of min and max filtered gas value [%] */ +} bsec_virtual_sensor_t; + +/*! + * @brief Enumeration for function return codes + */ +typedef enum +{ + BSEC_OK = 0, /*!< Function execution successful */ + BSEC_E_DOSTEPS_INVALIDINPUT = -1, /*!< Input (physical) sensor id passed to bsec_do_steps() is not in the valid range or not valid for requested virtual sensor */ + BSEC_E_DOSTEPS_VALUELIMITS = -2, /*!< Value of input (physical) sensor signal passed to bsec_do_steps() is not in the valid range */ + BSEC_E_DOSTEPS_DUPLICATEINPUT = -6, /*!< Duplicate input (physical) sensor ids passed as input to bsec_do_steps() */ + BSEC_I_DOSTEPS_NOOUTPUTSRETURNABLE = 2, /*!< No memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs == 0 */ + BSEC_W_DOSTEPS_EXCESSOUTPUTS = 3, /*!< Not enough memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs < maximum number of requested output (virtual) sensors */ + BSEC_W_DOSTEPS_TSINTRADIFFOUTOFRANGE = 4, /*!< Duplicate timestamps passed to bsec_do_steps() */ + BSEC_E_SU_WRONGDATARATE = -10, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is zero */ + BSEC_E_SU_SAMPLERATELIMITS = -12, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not match with the sampling rate allowed for that sensor */ + BSEC_E_SU_DUPLICATEGATE = -13, /*!< Duplicate output (virtual) sensor ids requested through bsec_update_subscription() */ + BSEC_E_SU_INVALIDSAMPLERATE = -14, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not fall within the global minimum and maximum sampling rates */ + BSEC_E_SU_GATECOUNTEXCEEDSARRAY = -15, /*!< Not enough memory allocated to hold returned input (physical) sensor data from bsec_update_subscription(), i.e., n_required_sensor_settings < #BSEC_MAX_PHYSICAL_SENSOR */ + BSEC_E_SU_SAMPLINTVLINTEGERMULT = -16, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is not correct */ + BSEC_E_SU_MULTGASSAMPLINTVL = -17, /*!< The sample_rate of the requested output (virtual), which requires the gas sensor, is not equal to the sample_rate that the gas sensor is being operated */ + BSEC_E_SU_HIGHHEATERONDURATION = -18, /*!< The duration of one measurement is longer than the requested sampling interval */ + BSEC_W_SU_UNKNOWNOUTPUTGATE = 10, /*!< Output (virtual) sensor id passed to bsec_update_subscription() is not in the valid range; e.g., n_requested_virtual_sensors > actual number of output (virtual) sensors requested */ + BSEC_W_SU_MODINNOULP = 11, /*!< ULP plus can not be requested in non-ulp mode */ /*MOD_ONLY*/ + BSEC_I_SU_SUBSCRIBEDOUTPUTGATES = 12, /*!< No output (virtual) sensor data were requested via bsec_update_subscription() */ + BSEC_E_PARSE_SECTIONEXCEEDSWORKBUFFER = -32, /*!< n_work_buffer_size passed to bsec_set_[configuration/state]() not sufficient */ + BSEC_E_CONFIG_FAIL = -33, /*!< Configuration failed */ + BSEC_E_CONFIG_VERSIONMISMATCH = -34, /*!< Version encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current version */ + BSEC_E_CONFIG_FEATUREMISMATCH = -35, /*!< Enabled features encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current library implementation */ + BSEC_E_CONFIG_CRCMISMATCH = -36, /*!< serialized_[settings/state] passed to bsec_set_[configuration/state]() is corrupted */ + BSEC_E_CONFIG_EMPTY = -37, /*!< n_serialized_[settings/state] passed to bsec_set_[configuration/state]() is to short to be valid */ + BSEC_E_CONFIG_INSUFFICIENTWORKBUFFER = -38, /*!< Provided work_buffer is not large enough to hold the desired string */ + BSEC_E_CONFIG_INVALIDSTRINGSIZE = -40, /*!< String size encoded in configuration/state strings passed to bsec_set_[configuration/state]() does not match with the actual string size n_serialized_[settings/state] passed to these functions */ + BSEC_E_CONFIG_INSUFFICIENTBUFFER = -41, /*!< String buffer insufficient to hold serialized data from BSEC library */ + BSEC_E_SET_INVALIDCHANNELIDENTIFIER = -100, /*!< Internal error code, size of work buffer in setConfig must be set to BSEC_MAX_WORKBUFFER_SIZE */ + BSEC_E_SET_INVALIDLENGTH = -104, /*!< Internal error code */ + BSEC_W_SC_CALL_TIMING_VIOLATION = 100, /*!< Difference between actual and defined sampling intervals of bsec_sensor_control() greater than allowed */ + BSEC_W_SC_MODEXCEEDULPTIMELIMIT = 101, /*!< ULP plus is not allowed because an ULP measurement just took or will take place */ /*MOD_ONLY*/ + BSEC_W_SC_MODINSUFFICIENTWAITTIME = 102 /*!< ULP plus is not allowed because not sufficient time passed since last ULP plus */ /*MOD_ONLY*/ +} bsec_library_return_t; + +/*! + * @brief Structure containing the version information + * + * Please note that configuration and state strings are coded to a specific version and will not be accepted by other + * versions of BSEC. + * + */ +typedef struct +{ + uint8_t major; /**< @brief Major version */ + uint8_t minor; /**< @brief Minor version */ + uint8_t major_bugfix; /**< @brief Major bug fix version */ + uint8_t minor_bugfix; /**< @brief Minor bug fix version */ +} bsec_version_t; + +/*! + * @brief Structure describing an input sample to the library + * + * Each input sample is provided to BSEC as an element in a struct array of this type. Timestamps must be provided + * in nanosecond resolution. Moreover, duplicate timestamps for subsequent samples are not allowed and will results in + * an error code being returned from bsec_do_steps(). + * + * The meaning unit of the signal field are determined by the bsec_input_t::sensor_id field content. Possible + * bsec_input_t::sensor_id values and and their meaning are described in ::bsec_physical_sensor_t. + * + * @sa bsec_physical_sensor_t + * + */ +typedef struct +{ + /** + * @brief Time stamp in nanosecond resolution [ns] + * + * Timestamps must be provided as non-repeating and increasing values. They can have their 0-points at system start or + * at a defined wall-clock time (e.g., 01-Jan-1970 00:00:00) + */ + int64_t time_stamp; + float signal; /*!< @brief Signal sample in the unit defined for the respective sensor_id @sa bsec_physical_sensor_t */ + uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */ + uint8_t sensor_id; /*!< @brief Identifier of physical sensor @sa bsec_physical_sensor_t */ +} bsec_input_t; + +/*! + * @brief Structure describing an output sample of the library + * + * Each output sample is returned from BSEC by populating the element of a struct array of this type. The contents of + * the signal field is defined by the supplied bsec_output_t::sensor_id. Possible output + * bsec_output_t::sensor_id values are defined in ::bsec_virtual_sensor_t. + * + * @sa bsec_virtual_sensor_t + */ +typedef struct +{ + int64_t time_stamp; /*!< @brief Time stamp in nanosecond resolution as provided as input [ns] */ + float signal; /*!< @brief Signal sample in the unit defined for the respective bsec_output_t::sensor_id @sa bsec_virtual_sensor_t */ + uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */ + uint8_t sensor_id; /*!< @brief Identifier of virtual sensor @sa bsec_virtual_sensor_t */ + + /** + * @brief Accuracy status 0-3 + * + * Some virtual sensors provide a value in the accuracy field. If this is the case, the meaning of the field is as + * follows: + * + * | Name | Value | Accuracy description | + * |----------------------------|-------|-------------------------------------------------------------------------------------------------------------| + * | UNRELIABLE | 0 | Sensor data is unreliable, the sensor must be calibrated | + * | LOW_ACCURACY | 1 | Low accuracy, sensor should be calibrated | + * | MEDIUM_ACCURACY | 2 | Medium accuracy, sensor calibration may improve performance | + * | HIGH_ACCURACY | 3 | High accuracy | + * + * For example: + * + * - Ambient temperature accuracy is derived from change in the temperature in 1 minute. + * + * | Virtual sensor | Value | Accuracy description | + * |--------------------- |-------|------------------------------------------------------------------------------| + * | Ambient temperature | 0 | The difference in ambient temperature is greater than 4 degree in one minute | + * | | 1 | The difference in ambient temperature is less than 4 degree in one minute | + * | | 2 | The difference in ambient temperature is less than 3 degree in one minute | + * | | 3 | The difference in ambient temperature is less than 2 degree in one minute | + * + * - IAQ accuracy indicator will notify the user when she/he should initiate a calibration process. Calibration is + * performed automatically in the background if the sensor is exposed to clean and polluted air for approximately + * 30 minutes each. + * + * | Virtual sensor | Value | Accuracy description | + * |----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------| + * | IAQ | 0 | Stabilization / run-in ongoing | + * | | 1 | Low accuracy,to reach high accuracy(3),please expose sensor once to good air (e.g. outdoor air) and bad air (e.g. box with exhaled breath) for auto-trimming | + * | | 2 | Medium accuracy: auto-trimming ongoing | + * | | 3 | High accuracy | + */ + uint8_t accuracy; +} bsec_output_t; + +/*! + * @brief Structure describing sample rate of physical/virtual sensors + * + * This structure is used together with bsec_update_subscription() to enable BSEC outputs and to retrieve information + * about the sample rates used for BSEC inputs. + */ +typedef struct +{ + /** + * @brief Sample rate of the virtual or physical sensor in Hertz [Hz] + * + * Only supported sample rates are allowed. + */ + float sample_rate; + + /** + * @brief Identifier of the virtual or physical sensor + * + * The meaning of this field changes depending on whether the structs are as the requested_virtual_sensors argument + * to bsec_update_subscription() or as the required_sensor_settings argument. + * + * | bsec_update_subscription() argument | sensor_id field interpretation | + * |-------------------------------------|--------------------------------| + * | requested_virtual_sensors | ::bsec_virtual_sensor_t | + * | required_sensor_settings | ::bsec_physical_sensor_t | + * + * @sa bsec_physical_sensor_t + * @sa bsec_virtual_sensor_t + */ + uint8_t sensor_id; +} bsec_sensor_configuration_t; + +/*! + * @brief Structure returned by bsec_sensor_control() to configure BMExxx sensor + * + * This structure contains settings that must be used to configure the BMExxx to perform a forced-mode measurement. + * A measurement should only be executed if bsec_bme_settings_t::trigger_measurement is 1. If so, the oversampling + * settings for temperature, humidity, and pressure should be set to the provided settings provided in + * bsec_bme_settings_t::temperature_oversampling, bsec_bme_settings_t::humidity_oversampling, and + * bsec_bme_settings_t::pressure_oversampling, respectively. + * + * In case of bsec_bme_settings_t::run_gas = 1, the gas sensor must be enabled with the provided + * bsec_bme_settings_t::heater_temperature and bsec_bme_settings_t::heating_duration settings. + */ +typedef struct +{ + int64_t next_call; /*!< @brief Time stamp of the next call of the sensor_control*/ + uint32_t process_data; /*!< @brief Bit field describing which data is to be passed to bsec_do_steps() @sa BSEC_PROCESS_* */ + uint16_t heater_temperature; /*!< @brief Heating temperature [degrees Celsius] */ + uint16_t heating_duration; /*!< @brief Heating duration [ms] */ + uint8_t run_gas; /*!< @brief Enable gas measurements [0/1] */ + uint8_t pressure_oversampling; /*!< @brief Pressure oversampling settings [0-5] */ + uint8_t temperature_oversampling; /*!< @brief Temperature oversampling settings [0-5] */ + uint8_t humidity_oversampling; /*!< @brief Humidity oversampling settings [0-5] */ + uint8_t trigger_measurement; /*!< @brief Trigger a forced measurement with these settings now [0/1] */ +} bsec_bme_settings_t; + +/* internal defines and backward compatibility */ +#define BSEC_STRUCT_NAME Bsec /*!< Internal struct name */ + +/*@}*/ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/src/bsec/inc/bsec_interface.h b/src/bsec/inc/bsec_interface.h new file mode 100644 index 0000000..a3c1da5 --- /dev/null +++ b/src/bsec/inc/bsec_interface.h @@ -0,0 +1,564 @@ +/** + * Copyright (C) Bosch Sensortec GmbH. All Rights Reserved. Confidential. + * + * Disclaimer + * + * Common: + * Bosch Sensortec products are developed for the consumer goods industry. They may only be used + * within the parameters of the respective valid product data sheet. Bosch Sensortec products are + * provided with the express understanding that there is no warranty of fitness for a particular purpose. + * They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device + * that may lead to bodily harm or property damage if the system or device malfunctions. In addition, + * Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems. + * The resale and/or use of products are at the purchaser's own risk and his own responsibility. The + * examination of fitness for the intended use is the sole responsibility of the Purchaser. + * + * The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for + * incidental, or consequential damages, arising from any product use not covered by the parameters of + * the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch + * Sensortec for all costs in connection with such claims. + * + * The purchaser must monitor the market for the purchased products, particularly with regard to + * product safety and inform Bosch Sensortec without delay of all security relevant incidents. + * + * Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid + * technical specifications of the product series. They are therefore not intended or fit for resale to third + * parties or for use in end products. Their sole purpose is internal client testing. The testing of an + * engineering sample may in no way replace the testing of a product series. Bosch Sensortec + * assumes no liability for the use of engineering samples. By accepting the engineering samples, the + * Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering + * samples. + * + * Special: + * This software module (hereinafter called "Software") and any information on application-sheets + * (hereinafter called "Information") is provided free of charge for the sole purpose to support your + * application work. The Software and Information is subject to the following terms and conditions: + * + * The Software is specifically designed for the exclusive use for Bosch Sensortec products by + * personnel who have special experience and training. Do not use this Software if you do not have the + * proper experience or training. + * + * This Software package is provided `` as is `` and without any expressed or implied warranties, + * including without limitation, the implied warranties of merchantability and fitness for a particular + * purpose. + * + * Bosch Sensortec and their representatives and agents deny any liability for the functional impairment + * of this Software in terms of fitness, performance and safety. Bosch Sensortec and their + * representatives and agents shall not be liable for any direct or indirect damages or injury, except as + * otherwise stipulated in mandatory applicable law. + * + * The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no + * responsibility for the consequences of use of such Information nor for any infringement of patents or + * other rights of third parties which may result from its use. No license is granted by implication or + * otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are + * subject to change without notice. + * + * It is not allowed to deliver the source code of the Software to any third party without permission of + * Bosch Sensortec. + * + */ + /*! + * + * @file bsec_interface.h + * + * @brief + * Contains the API for BSEC + * + */ + + +#ifndef __BSEC_INTERFACE_H__ +#define __BSEC_INTERFACE_H__ + +#include "bsec_datatypes.h" + +#ifdef __cplusplus + extern "C" { +#endif + + + /*! @addtogroup bsec_interface BSEC C Interface + * @brief Interfaces of BSEC signal processing library + * + * ### Interface usage + * + * The following provides a short overview on the typical operation sequence for BSEC. + * + * - Initialization of the library + * + * | Steps | Function | + * |---------------------------------------------------------------------|--------------------------| + * | Initialization of library | bsec_init() | + * | Update configuration settings (optional) | bsec_set_configuration() | + * | Restore the state of the library (optional) | bsec_set_state() | + * + * + * - The following function is called to enable output signals and define their sampling rate / operation mode. + * + * | Steps | Function | + * |---------------------------------------------|----------------------------| + * | Enable library outputs with specified mode | bsec_update_subscription() | + * + * + * - This table describes the main processing loop. + * + * | Steps | Function | + * |-------------------------------------------|----------------------------------| + * | Retrieve sensor settings to be used | bsec_sensor_control() | + * | Configure sensor and trigger measurement | See BME680 API and example codes | + * | Read results from sensor | See BME680 API and example codes | + * | Perform signal processing | bsec_do_steps() | + * + * + * - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during + * re-initialization to continue processing. + * + * | Steps | Function | + * |----------------------------------------|-------------------| + * | To retrieve the current library state | bsec_get_state() | + * + * + * + * ### Configuration and state + * + * Values of variables belonging to a BSEC instance are divided into two groups: + * - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be + * configured before use with a customer specific configuration string. + * - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC + * is necessary to maintain previously estimated sensor models and baseline information which is important for best + * performance of the gas sensor outputs. + * + * @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over + * the time. These will be lost if library is initialized due to system reset. In order to avoid this situation + * library state shall be stored in non volatile memory so that it can be loaded after system reset. + * + * + * @{ + */ + + +/*! + * @brief Return the version information of BSEC library + * + * @param [out] bsec_version_p pointer to struct which is to be populated with the version information + * + * @return Zero if successful, otherwise an error code + * + * See also: bsec_version_t + * + \code{.c} + // Example // + bsec_version_t version; + bsec_get_version(&version); + printf("BSEC version: %d.%d.%d.%d",version.major, version.minor, version.major_bugfix, version.minor_bugfix); + + \endcode +*/ + +bsec_library_return_t bsec_get_version(bsec_version_t * bsec_version_p); + + +/*! + * @brief Initialize the library + * + * Initialization and reset of BSEC is performed by calling bsec_init(). Calling this function sets up the relation + * among all internal modules, initializes run-time dependent library states and resets the configuration and state + * of all BSEC signal processing modules to defaults. + * + * Before any further use, the library must be initialized. This ensure that all memory and states are in defined + * conditions prior to processing any data. + * + * @return Zero if successful, otherwise an error code + * + \code{.c} + + // Initialize BSEC library before further use + bsec_init(); + + \endcode +*/ + +bsec_library_return_t bsec_init(void); + +/*! + * @brief Subscribe to library virtual sensors outputs + * + * Use bsec_update_subscription() to instruct BSEC which of the processed output signals are requested at which sample rates. + * See ::bsec_virtual_sensor_t for available library outputs. + * + * Based on the requested virtual sensors outputs, BSEC will provide information about the required physical sensor input signals + * (see ::bsec_physical_sensor_t) with corresponding sample rates. This information is purely informational as bsec_sensor_control() + * will ensure the sensor is operated in the required manner. To disable a virtual sensor, set the sample rate to BSEC_SAMPLE_RATE_DISABLED. + * + * The subscription update using bsec_update_subscription() is apart from the signal processing one of the the most + * important functions. It allows to enable the desired library outputs. The function determines which physical input + * sensor signals are required at which sample rate to produce the virtual output sensor signals requested by the user. + * When this function returns with success, the requested outputs are called subscribed. A very important feature is the + * retaining of already subscribed outputs. Further outputs can be requested or disabled both individually and + * group-wise in addition to already subscribed outputs without changing them unless a change of already subscribed + * outputs is requested. + * + * @note The state of the library concerning the subscribed outputs cannot be retained among reboots. + * + * The interface of bsec_update_subscription() requires the usage of arrays of sensor configuration structures. + * Such a structure has the fields sensor identifier and sample rate. These fields have the properties: + * - Output signals of virtual sensors must be requested using unique identifiers (Member of ::bsec_virtual_sensor_t) + * - Different sets of identifiers are available for inputs of physical sensors and outputs of virtual sensors + * - Identifiers are unique values defined by the library, not from external + * - Sample rates must be provided as value of + * - An allowed sample rate for continuously sampled signals + * - 65535.0f (BSEC_SAMPLE_RATE_DISABLED) to turn off outputs and identify disabled inputs + * + * @note The same sensor identifiers are also used within the functions bsec_do_steps(). + * + * The usage principles of bsec_update_subscription() are: + * - Differential updates (i.e., only asking for outputs that the user would like to change) is supported. + * - Invalid requests of outputs are ignored. Also if one of the requested outputs is unavailable, all the requests + * are ignored. At the same time, a warning is returned. + * - To disable BSEC, all outputs shall be turned off. Only enabled (subscribed) outputs have to be disabled while + * already disabled outputs do not have to be disabled explicitly. + * + * @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library + * @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors + * @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library + * @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned + * + * @return Zero when successful, otherwise an error code + * + * @sa bsec_sensor_configuration_t + * @sa bsec_physical_sensor_t + * @sa bsec_virtual_sensor_t + * + \code{.c} + // Example // + + // Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off) + bsec_sensor_configuration_t requested_virtual_sensors[3]; + uint8_t n_requested_virtual_sensors = 3; + + requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ; + requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP; + requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE; + requested_virtual_sensors[1].sample_rate = BSEC_SAMPLE_RATE_ULP; + requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE; + requested_virtual_sensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED; + + // Allocate a struct for the returned physical sensor settings + bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR]; + uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR; + + // Call bsec_update_subscription() to enable/disable the requested virtual sensors + bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings, &n_required_sensor_settings); + \endcode + * + */ +bsec_library_return_t bsec_update_subscription(const bsec_sensor_configuration_t * const requested_virtual_sensors, + const uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t * required_sensor_settings, + uint8_t * n_required_sensor_settings); + + +/*! + * @brief Main signal processing function of BSEC + * + * + * Processing of the input signals and returning of output samples is performed by bsec_do_steps(). + * - The samples of all library inputs must be passed with unique identifiers representing the input signals from + * physical sensors where the order of these inputs can be chosen arbitrary. However, all input have to be provided + * within the same time period as they are read. A sequential provision to the library might result in undefined + * behavior. + * - The samples of all library outputs are returned with unique identifiers corresponding to the output signals of + * virtual sensors where the order of the returned outputs may be arbitrary. + * - The samples of all input as well as output signals of physical as well as virtual sensors use the same + * representation in memory with the following fields: + * - Sensor identifier: + * - For inputs: required to identify the input signal from a physical sensor + * - For output: overwritten by bsec_do_steps() to identify the returned signal from a virtual sensor + * - Time stamp of the sample + * + * Calling bsec_do_steps() requires the samples of the input signals to be provided along with their time stamp when + * they are recorded and only when they are acquired. Repetition of samples with the same time stamp are ignored and + * result in a warning. Repetition of values of samples which are not acquired anew by a sensor result in deviations + * of the computed output signals. Concerning the returned output samples, an important feature is, that a value is + * returned for an output only when a new occurrence has been computed. A sample of an output signal is returned only + * once. + * + * + * @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor. + * @param[in] n_inputs Number of passed input data structs. + * @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor. + * @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned + * + * @return Zero when successful, otherwise an error code + * + + \code{.c} + // Example // + + // Allocate input and output memory + bsec_input_t input[3]; + uint8_t n_input = 3; + bsec_output_t output[2]; + uint8_t n_output=2; + + bsec_library_return_t status; + + // Populate the input structs, assuming the we have timestamp (ts), + // gas sensor resistance (R), temperature (T), and humidity (rH) available + // as input variables + input[0].sensor_id = BSEC_INPUT_GASRESISTOR; + input[0].signal = R; + input[0].time_stamp= ts; + input[1].sensor_id = BSEC_INPUT_TEMPERATURE; + input[1].signal = T; + input[1].time_stamp= ts; + input[2].sensor_id = BSEC_INPUT_HUMIDITY; + input[2].signal = rH; + input[2].time_stamp= ts; + + + // Invoke main processing BSEC function + status = bsec_do_steps( input, n_input, output, &n_output ); + + // Iterate through the BSEC output data, if the call succeeded + if(status == BSEC_OK) + { + for(int i = 0; i < n_output; i++) + { + switch(output[i].sensor_id) + { + case BSEC_OUTPUT_IAQ: + // Retrieve the IAQ results from output[i].signal + // and do something with the data + break; + case BSEC_OUTPUT_AMBIENT_TEMPERATURE: + // Retrieve the ambient temperature results from output[i].signal + // and do something with the data + break; + + } + } + } + + \endcode + */ + +bsec_library_return_t bsec_do_steps(const bsec_input_t * const inputs, const uint8_t n_inputs, bsec_output_t * outputs, uint8_t * n_outputs); + + +/*! + * @brief Reset a particular virtual sensor output + * + * This function allows specific virtual sensor outputs to be reset. The meaning of "reset" depends on the specific + * output. In case of the IAQ output, reset means zeroing the output to the current ambient conditions. + * + * @param[in] sensor_id Virtual sensor to be reset + * + * @return Zero when successful, otherwise an error code + * + * + \code{.c} + // Example // + bsec_reset_output(BSEC_OUTPUT_IAQ); + + \endcode + */ + +bsec_library_return_t bsec_reset_output(uint8_t sensor_id); + + +/*! + * @brief Update algorithm configuration parameters + * + * BSEC uses a default configuration for the modules and common settings. The initial configuration can be customized + * by bsec_set_configuration(). This is an optional step. + * + * @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose + * the serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting + * the required size. + * + * @param[in] serialized_settings Settings serialized to a binary blob + * @param[in] n_serialized_settings Size of the settings blob + * @param[in,out] work_buffer Work buffer used to parse the blob + * @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob + * + * @return Zero when successful, otherwise an error code + * + \code{.c} + // Example // + + // Allocate variables + uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE; + uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_work_buffer = BSEC_MAX_PROPERTY_BLOB_SIZE; + + // Here we will load a provided config string into serialized_settings + + // Apply the configuration + bsec_set_configuration(serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer); + + \endcode + */ + +bsec_library_return_t bsec_set_configuration(const uint8_t * const serialized_settings, + const uint32_t n_serialized_settings, uint8_t * work_buffer, + const uint32_t n_work_buffer_size); + + +/*! + * @brief Restore the internal state of the library + * + * BSEC uses a default state for all signal processing modules and the BSEC module. To ensure optimal performance, + * especially of the gas sensor functionality, it is recommended to retrieve the state using bsec_get_state() + * before unloading the library, storing it in some form of non-volatile memory, and setting it using bsec_set_state() + * before resuming further operation of the library. + * + * @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the + * serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the + * required size. + * + * @param[in] serialized_state States serialized to a binary blob + * @param[in] n_serialized_state Size of the state blob + * @param[in,out] work_buffer Work buffer used to parse the blob + * @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob + * + * @return Zero when successful, otherwise an error code + * + \code{.c} + // Example // + + // Allocate variables + uint8_t serialized_state[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_serialized_state = BSEC_MAX_PROPERTY_BLOB_SIZE; + uint8_t work_buffer_state[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_work_buffer_size = BSEC_MAX_PROPERTY_BLOB_SIZE; + + // Here we will load a state string from a previous use of BSEC + + // Apply the previous state to the current BSEC session + bsec_set_state(serialized_state, n_serialized_state, work_buffer_state, n_work_buffer_size); + + \endcode +*/ + +bsec_library_return_t bsec_set_state(const uint8_t * const serialized_state, const uint32_t n_serialized_state, + uint8_t * work_buffer, const uint32_t n_work_buffer_size); + + +/*! + * @brief Retrieve the current library configuration + * + * BSEC allows to retrieve the current configuration using bsec_get_configuration(). Returns a binary blob encoding + * the current configuration parameters of the library in a format compatible with bsec_set_configuration(). + * + * @note The function bsec_get_configuration() is required to be used for debugging purposes only. + * @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the + * serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the + * required size. + * + * + * @param[in] config_id Identifier for a specific set of configuration settings to be returned; + * shall be zero to retrieve all configuration settings. + * @param[out] serialized_settings Buffer to hold the serialized config blob + * @param[in] n_serialized_settings_max Maximum available size for the serialized settings + * @param[in,out] work_buffer Work buffer used to parse the binary blob + * @param[in] n_work_buffer Length of the work buffer available for parsing the blob + * @param[out] n_serialized_settings Actual size of the returned serialized configuration blob + * + * @return Zero when successful, otherwise an error code + * + \code{.c} + // Example // + + // Allocate variables + uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE; + uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE]; + uint32_t n_work_buffer = BSEC_MAX_PROPERTY_BLOB_SIZE; + uint32_t n_serialized_settings = 0; + + // Configuration of BSEC algorithm is stored in 'serialized_settings' + bsec_get_configuration(0, serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer, &n_serialized_settings); + + \endcode + */ + +bsec_library_return_t bsec_get_configuration(const uint8_t config_id, uint8_t * serialized_settings, const uint32_t n_serialized_settings_max, + uint8_t * work_buffer, const uint32_t n_work_buffer, uint32_t * n_serialized_settings); + + +/*! + *@brief Retrieve the current internal library state + * + * BSEC allows to retrieve the current states of all signal processing modules and the BSEC module using + * bsec_get_state(). This allows a restart of the processing after a reboot of the system by calling bsec_set_state(). + * + * @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the + * serialization and apply it to the library and its modules. Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the + * required size. + * + * + * @param[in] state_set_id Identifier for a specific set of states to be returned; shall be + * zero to retrieve all states. + * @param[out] serialized_state Buffer to hold the serialized config blob + * @param[in] n_serialized_state_max Maximum available size for the serialized states + * @param[in,out] work_buffer Work buffer used to parse the blob + * @param[in] n_work_buffer Length of the work buffer available for parsing the blob + * @param[out] n_serialized_state Actual size of the returned serialized blob + * + * @return Zero when successful, otherwise an error code + * + \code{.c} + // Example // + + // Allocate variables + uint8_t serialized_state[BSEC_MAX_STATE_BLOB_SIZE]; + uint32_t n_serialized_state_max = BSEC_MAX_STATE_BLOB_SIZE; + uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE; + uint8_t work_buffer_state[BSEC_MAX_STATE_BLOB_SIZE]; + uint32_t n_work_buffer_size = BSEC_MAX_STATE_BLOB_SIZE; + + // Algorithm state is stored in 'serialized_state' + bsec_get_state(0, serialized_state, n_serialized_state_max, work_buffer_state, n_work_buffer_size, &n_serialized_state); + + \endcode + */ + +bsec_library_return_t bsec_get_state(const uint8_t state_set_id, uint8_t * serialized_state, + const uint32_t n_serialized_state_max, uint8_t * work_buffer, const uint32_t n_work_buffer, + uint32_t * n_serialized_state); + +/*! + * @brief Retrieve BMExxx sensor instructions + * + * The bsec_sensor_control() interface is a key feature of BSEC, as it allows an easy way for the signal processing + * library to control the operation of the BME sensor. This is important since gas sensor behaviour is mainly + * determined by how the integrated heater is configured. To ensure an easy integration of BSEC into any system, + * bsec_sensor_control() will provide the caller with information about the current sensor configuration that is + * necessary to fulfill the input requirements derived from the current outputs requested via + * bsec_update_subscription(). + * + * In practice the use of this function shall be as follows: + * - Call bsec_sensor_control() which returns a bsec_bme_settings_t struct. + * - Based on the information contained in this struct, the sensor is configured and a forced-mode measurement is + * triggered if requested by bsec_sensor_control(). + * - Once this forced-mode measurement is complete, the signals specified in this struct shall be passed to + * bsec_do_steps() to perform the signal processing. + * - After processing, the process should sleep until the bsec_bme_settings_t::next_call timestamp is reached. + * + * + * @param [in] time_stamp Current timestamp in [ns] + * @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance + * + * @return Zero when successful, otherwise an error code + */ + +bsec_library_return_t bsec_sensor_control(const int64_t time_stamp, bsec_bme_settings_t *sensor_settings); + +/*@}*/ //BSEC Interface + +#ifdef __cplusplus + } +#endif + +#endif /* __BSEC_INTERFACE_H__ */ diff --git a/src/cortex-m0plus/libalgobsec.a b/src/cortex-m0plus/libalgobsec.a new file mode 100644 index 0000000..6bb9806 Binary files /dev/null and b/src/cortex-m0plus/libalgobsec.a differ