-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaze.py
275 lines (222 loc) · 8.87 KB
/
maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from __future__ import absolute_import
from __future__ import print_function
import time
import sys
from displayer import *
from solver import *
from random import choice
from six.moves import range
from six.moves import input
ADJACENT_DELTA = [(-1, 0), (0, 1), (1, 0), (0, -1)]
def validate_answer(maze, path):
if maze.start not in path:
raise AssertionError('Start Not in Path')
if maze.goal not in path:
raise AssertionError('Goal Not in Path')
path_set = set(path)
for cell in path:
neighbor_set = set(maze.get_neighbors(cell))
if len(neighbor_set.intersection(path_set)) == 0:
raise AssertionError('Disjoint cell found!')
class Maze:
def __init__(self):
self.cells = [] # 2d array of characters. for each cell store if it has RIGHT or BOTTOM wall
self.nrows = None
self.ncols = None
self.start = () # starting cell
self.goal = () # target cell
# return maze as text
def __str__(self):
ret_val = ""
for i in range(self.nrows):
for j in range(self.ncols):
cell_value = 0
if self.get_cell_by_xy(j, i)[0] == 1:
cell_value += 1;
if self.get_cell_by_xy(j, i)[1] == 1:
cell_value += 2;
ret_val += str(cell_value)
ret_val += "\n"
return ret_val
def setup_maze(self):
print(" 1) load maze")
print(" 2) generate random maze")
print(" 3) exit")
command = input()
if "1" in command:
print("maze file name?")
file_name = input()
try:
self.read_from_file(file_name)
return
except IOError as e:
print("could not read file. generate random 20x20 maze..")
self.generate_maze(20, 20)
return
if "2" in command:
print("Maze size? [Recom.: 10, 25, 50, 100] [Max: 100]")
maze_size = int(input())
self.generate_maze(maze_size, maze_size)
return
if "3" in command:
sys.exit()
def get_cell_by_xy(self, x, y):
return self.cells[x][y]
def get_cell(self, cell):
return self.cells[cell[0]][cell[1]]
# check if wall exists between two cells
def check_wall(self, cell, ncell):
# print cell, self.get_cell(cell), ncell, self.get_cell(ncell)
if cell[0] - ncell[0] == 1: # cell is right of ncell
return self.get_cell(ncell)[0]
elif cell[0] - ncell[0] == -1: # cell is left of ncell
return self.get_cell(cell)[0]
elif cell[1] - ncell[1] == 1: # cell is under ncell
return self.get_cell(ncell)[1]
elif cell[1] - ncell[1] == -1: # cell is top of ncell
return self.get_cell(cell)[1]
else: # cell and ncell are not adjacent
return 1
# get neighbors of a given cell
def get_neighbors(self, cell):
around = [(cell[0] + dx, cell[1] + dy) for dx, dy in ADJACENT_DELTA]
return [x for x in around if self.cell_is_valid(x) and self.check_wall(cell, x) == 0]
# read maze from file funcitons
def read_from_file(self, filename):
maze_file = open(filename).readlines()
self.init_blank_maze(len(maze_file), len(maze_file[0].strip('\n')))
self.start = (0, self.nrows - 1)
self.goal = (self.ncols - 1, 0)
for j in range(len(maze_file)):
row = maze_file[j].strip('\n')
for i in range(len(row)):
if "0" in row[i]:
self.get_cell_by_xy(i, j)[0] = 0
self.get_cell_by_xy(i, j)[1] = 0
elif "1" in row[i]:
self.get_cell_by_xy(i, j)[0] = 1
self.get_cell_by_xy(i, j)[1] = 0
elif "2" in row[i]:
self.get_cell_by_xy(i, j)[0] = 0
self.get_cell_by_xy(i, j)[1] = 1
elif "3" in row[i]:
self.get_cell_by_xy(i, j)[0] = 1
self.get_cell_by_xy(i, j)[1] = 1
else:
raise IOError("invalid input")
# maze generation functions
# initialize maze with all walls
def init_blank_maze(self, width, height):
self.nrows = height
self.ncols = width
for row in range(self.nrows):
self.cells.append([])
for col in range(self.ncols):
self.cells[row].append([1, 1]) # first element is for right wall, second for south
def remove_wall(self, cell1, cell2):
if cell1[1] - cell2[1] == 1: # cell2 is top of cell1
self.get_cell(cell2)[1] = 0
elif cell1[1] - cell2[1] == -1: # cell1 is top of cell2
self.get_cell(cell1)[1] = 0
elif cell1[0] - cell2[0] == 1: # cell2 is left of cell1
self.get_cell(cell2)[0] = 0
elif cell1[0] - cell2[0] == -1: # cell1 is left of cell2
self.get_cell(cell1)[0] = 0
# generate maze with recursive backtracker method
def generate_maze(self, width, height):
self.init_blank_maze(width, height)
# bottom left corner is always start
self.start = (0, self.nrows - 1)
self.goal = (self.ncols - 1, 0)
num_of_cells = self.nrows * self.ncols
current_cell = self.start
backtrack_stack = []
visited_cells = [current_cell] # initial visited cells list
while len(visited_cells) < num_of_cells:
# get neighbors that are not visited
current_neighbors = [(current_cell[0] + dx, current_cell[1] + dy) for dx, dy in ADJACENT_DELTA]
unvisited_neighbors = [x for x in current_neighbors if x not in visited_cells and self.cell_is_valid(x)]
if len(unvisited_neighbors) > 0:
neighbor = choice(unvisited_neighbors)
backtrack_stack.append(current_cell)
self.remove_wall(current_cell, neighbor)
# choose one of the neighbors randomly
current_cell = neighbor
visited_cells.append(current_cell)
elif len(backtrack_stack) > 0:
current_cell = backtrack_stack.pop()
def cell_is_valid(self, cell):
if ((cell[0] < 0 or cell[0] >= self.nrows) \
or (cell[1] < 0 or cell[1] >= self.ncols)):
return False
return True
if __name__ == "__main__":
m = Maze()
m.setup_maze()
d = Displayer(m)
""" UNCOMMENT TO ENABLE IDFS
print(">> Testing Iterative DFS solver...")
idfs_path = iterative_dfs_solver(m)
try:
validate_answer(m, idfs_path) #m.goal in bfs_path:
print ("Iterative DFS solved maze. cost: ", len(idfs_path), "cells visited")
print ("Display Iterative DFS solution? [y/n]")
display_command =input()
if "y" in display_command:
d.draw_path(idfs_path)
except AssertionError as e:
print ("Iterative DFS answer is invalid: " + e.message)
UNCOMMENT TO ENABLE IDFS """
#""" UNCOMMENT TO ENABLE BFS
print(">> Testing BFS solver...")
bfs_path = bfs_solver(m)
try:
validate_answer(m, bfs_path) # m.goal in bfs_path:
print(("BFS solved maze. cost: ", len(bfs_path), "cells visited"))
print ("Display BFS solution? [y/n]")
display_command =input()
if "y" in display_command:
d.draw_path(bfs_path)
except AssertionError as e:
print(("BFS answer is invalid: " + e.message))
#UNCOMMENT TO ENABLE BFS """
""" UNCOMMENT TO ENABLE DFS
print(">> Testing DFS solver...")
dfs_path = dfs_solver(m)
try:
validate_answer(m, dfs_path)
print(("DFS solved maze. cost: ", len(dfs_path), "cells visited"))
print ("Display DFS solution? [y/n]")
display_command =input();
if "y" in display_command:
d.draw_path(dfs_path)
except AssertionError as e:
print(("DFS answer is invalid: " + e.message))
UNCOMMENT TO ENABLE DFS """
""" UNCOMMENT TO ENABLE A*
print(">> Testing A* solver...")
astar_path = astar_solver(m)
try:
validate_answer(m, astar_path)
print(("A* solved maze. cost: ", len(astar_path), "cells visited"))
print ("Display A* solution? [y/n]")
display_command =input()
if "y" in display_command:
d.draw_path(astar_path)
except AssertionError as e:
print(("A* answer is invalid: " + e.message))
UNCOMMENT TO ENABLE A* """
print(" 1) Save maze to file")
print(" 2) exit")
command = input()
if "1" in command:
file_name = input("Enter file name: ")
try:
f = open(file_name, "w")
f.write(str(m))
f.close()
except IOError as e:
print("save to file failed.")
sys.exit()
if "2" in command:
sys.exit()