Skip to content

Latest commit

 

History

History
194 lines (158 loc) · 11 KB

README.md

File metadata and controls

194 lines (158 loc) · 11 KB

2023_Bat1Kimmunity

Customs scripts used for analyses of 2022-2023 Bat1K Immunity Project.
We did not develop new software for this study; thus, we provide example commands for analyses or provide links to other sources employed.

Content:

Analyses

- Genome assembly

- Contig assembly

## HiFiasm assemblies
hifiasm -l2 -o asm_mRhiAff.asm -t 38 *fasta.gz
awk '/^S/{print ">"$2"\n"$3}' asm_mRhiAff.asm.p_ctg.gfa | fold > asm_mRhiAff.asm.p_ctg.fasta
awk '/^S/{print ">"$2"\n"$3}' asm_mRhiAff.asm.a_ctg.gfa | fold > asm_mRhiAff.asm.a_ctg.fasta

## HiCanu assemblies
canu -p asm_mDorCyc -d hicanu genomeSize=2200m -pacbio-hifi *fasta.gz

## Canu ONT assemblies
canu -p asm_mMegSpa_canu2.1_ont -d canu genomeSize=2000m -nanopore *fastq.gz

## Medaka ONT polishing
medaka_consensus -i merge_ont.fastq.gz -d asm_mMegSpa_canu2.1_ont.contigs.fasta -o polished -t 24 -m r941_prom_hac_g507

## Purge-dups
purge_dups/src/split_fa consensus.fasta > split.genome.fasta
purge_dups/src/calcuts coverage/PB.stat > cutoffs
minimap2 -I 200G -t 1 -xasm5 -DP split.genome.fasta split.genome.fasta > split.genome.paf
purge_dups/src/purge_dups -2 -c coverage/PB.base.cov -T cutoffs split.genome.paf > dups.bed
purge_dups/src/get_seqs -e -p asm_mMegSpa.canu.medaka dups.bed consensus.fasta

- Scaffolding

## Scaff10X
longranger-2.2.2/longranger mkref contigs.fasta
longranger-2.2.2/longranger align --reference=refdata-contigs --fastqs=10x_dir --sample=mRhiAff
scaff10x -nodes 24 -bam possorted_bam.bam contigs.fasta scaff10x.fasta
longranger-2.2.2/longranger mkref scaff10x.fasta
longranger-2.2.2/longranger align --reference=refdata-scaff10x --fastqs=10x_dir --sample=mRhiAff
break10x -nodes 24 -bam possorted_bam.bam scaff10x.fasta break10x.fasta

## Salsa2
bwa index genome.fasta
samtools index genome.fasta
bwa mem -t24 -B8 genome.fasta hic_R1.fastq.gz | samtools view -@24 -Sb - > hic_R1.bam
samtools view -h hic_R1.bam | perl filter_five_end.pl | samtools view -@24 - > hic_R1.filtered.bam
bwa mem -t24 -B8 genome.fasta hic_R2.fastq.gz | samtools view -@24 -Sb - > hic_R2.bam
samtools view -h hic_R2.bam | perl filter_five_end.pl | samtools view -@24 - > hic_R2.filtered.bam
perl two_read_bam_combiner.pl hic_R1.filtered.bam hic_R2.filtered.bam | samtools view -@24 -Sb > hic.combined.bam
bash dedup.sh hic.combined.bam 24
bedtools bamtobed -i sort_dedup/combined.sort.dp.sort_n.bam > combined.sort.dp.sort_n.bed
python2.7 salsa2/SALSA-2.2/run_pipeline.py -a genome.fasta -l genome.fasta.fai -e enz.txt -b combined.sort.dp.sort_n.bed -o salsa2_out -m yes -i 50 -p yes

## Manual curation
bwa mem -t 24 -v 3 -SP5M contigs.fasta hic_reads_R1.fastq.gz hic_reads_R2.fastq.gz | samtools view -bhS - > hic_reads_bwa.bam 
samtools view -h .//hic_1/bams/mTadBra_L64736_Track-105193_bwa.bam | pairtools parse --nproc-in 24 --nproc-out 24 -c contigs.fasta.chrom.sizes -o hic_reads.parsed.pairsam.gz
pairtools sort --tmpdir .//hic_1/tmp --memory 8G --nproc 24 -o hic_reads.sorted.pairsam.gz hic_reads.parsed.pairsam.gz
pairtools dedup --nproc-in 24 --nproc-out 24 -o hic_reads.dedup.pairsam.gz hic_reads.sorted.pairsam.gz
pairtools select --nproc-in 24 --nproc-out 24 '(pair_type == "UU") or (pair_type == "UR") or (pair_type == "RU")' -o hic_reads.filtered.pairsam.gz hic_reads.dedup.pairsam.gz
pairtools split --nproc-in 24 --nproc-out 24 --output-pairs hic_reads.filtered.pairs.gz --output-sam hic_reads.filtered.bam hic_reads.filtered.pairsam.gz
pairix -f -p pairs hic_reads.filtered.pairs.gz
HDF5_USE_FILE_LOCKING=FALSE cooler cload pairix -p 24 contigs.fasta.chrom.sizes:5000 hic_reads.filtered.pairs.gz output.5000.cool
HDF5_USE_FILE_LOCKING=FALSE cooler balance output.5000.cool
HDF5_USE_FILE_LOCKING=FALSE cooler zoomify --resolutions 10000,20000,40000,60000,80000,100000,120000,150000,200000,300000,400000,500000 output.5000.cool
Script for editing genome available here: https://git.mpi-cbg.de/assembly/programs/manualcurationhic

- Polishing

## PacBio HiFi polishing
pbmm2 align mRhiAff.fasta bam.fofn asm_mRhiAff.mapped.bam --sort -j 16 -J 8 --preset CCS -N 1
singularity exec -B /projects --bind /usr/lib/locale/ deepvariant.sif /opt/deepvariant/bin/run_deepvariant --model_type=PACBIO --ref=mRhiAff.newScaff.fasta --reads=asm_mRhiAff.mapped.bam --output_vcf=mRhiAff.mapped.deepVariant.vcf.gz --num_shards=24
bcftools view --threads=12 -i 'FILTER=\"PASS\" && GT=\"1/1\"' -o mRhiAff.mapped.deepVariant.HomFiltered.vcf.gz mRhiAff.mapped.deepVariant.vcf.gz
bcftools index mRhiAff.mapped.deepVariant.HomFiltered.vcf.gz
bcftools consensus -f mRhiAff.newScaff.fasta -o asm_mRhiAff.deepVariant.fasta mRhiAff.mapped.deepVariant.HomFiltered.vcf.gz

## 10X polishing
longranger-2.2.2/longranger mkref genome.fasta
longranger-2.2.2/longranger align --reference=refdata-genome --fastqs=10x_dir --sample=mRhiAff
freebayes-1.3.2/freebayes/bin/freebayes -f genome.fasta -g 600 --bam possorted.bam | bcftools view --no-version -Ou > freebayes.bcf
bcftools view -i -Oz freebayes.bcf > freebayes.vcf
merfin/build/bin/merfin -polish -sequence genome.fasta -readmers 10x_database.meryl -peak 32 -vcf freebayes.vcf -output merfin.vcf
bcftools view -Oz merfin.vcf > merfin.vcf.gz && bcftools index merfin.vcf.gz
bcftools consensus -H 1 -f genome.fasta merfin.vcf.gz > polished_genome.fasta

- Annotation of Transposable Elements

Methods and code as described by Osmanski et al., 2023

- Repeat masking for pairwise genome alignemnts

## Build database for RepeatModeler
BuildDatabase -name $query ${genome_query.fa}

## run RepeatModeler
RepeatModeler -threads $cpu -database ${genome_query.fa}

## run RepeatMasker
RepeatMasker -pa $cpu -xsmall -lib consensi.fa.classified ${genome_query.fa}

- Pairwise genome alignments

Detailed modified UCSC pipeline here

- Genome annotation using TOGA

toga.py ${chains.ref.query} ${annotation_ref.bed} ${genome_ref.2bit} ${genome_query.2bit} -i ${isoforms.-reftxt} --cb 3,5 --cjn 500 --u12 ${U12sites_ref.tsv} --ms

- Exon-by-exon codon alignments and cleaning using extract_codon_alignment.py and HmmCleaner

## exon-by-exon alignment
extract_codon_alignments_from_toga.py ${f_listSP} ${annotation_ref.bed} ${trasncriptID} -o ${trasncriptID}_raw.fa -s

## cleaning
HmmCleaner.pl -costs ${c1} ${c2} ${c3} ${c4} ${transcriptID}_raw.fa

- Phylogenetic and Divergence Time Estimation

raxmlHPC-PTHREADS -T ${nThreads} -s ${transcriptID}.fa -m ${sustMod} -N ${reps} -p ${seedSearch} -w ${P_out} -f a -N ${bootstrapReps} --bootstop-perms=${bootstrapReps} -n ${transcriptID} -x ${seedSearch} 
  • Coalescent-based species trees with ASTRAL
## Concatenate all raxml gene trees
cat ${P_out_raxml}/RAxML_bestTree.${transcriptID}" >> ${all_raxml_inTrees}

##run ASTRAL
${astral_call} -i ${all_raxml_inTrees} -o ${astral_outTree}
  • Concatenation-based species trees with iq-tree
## concatenate all genes
## use https://github.com/ballesterus/Utensils/blob/master/geneStitcher.py
geneStitcher.py -in ${Path_aln_fasta}/*.fasta

## run iq-tree
iqtree -s SuperMatrix.fas -spp Partition.txt -bb 1000  -bnni  -m GTR+I+G -nt 16  -mem 50G
  • Divergence time estimation treePL
## use config file1 to optimize parameters
treePL config.1

## see output and generate config.2
treePL config.2 treefile=tree_rooted.dated.config2.tre

- Genome-wide Unbiased Selection Screen using HYPHY-aBSREL

For each transcript, the species tree should be trimmed to keep only branches represented in alignment. We used tree_doctor.

## Trimm input tree 
tree_doctor -a -n -P $(grep '>' ${P_out}/${transcriptID}.fa | sed 's/>//g'| cut -f1 | tr '\n' ',') ${tree} > ${P_out}/${trasncriptID}.prunnedTree.tre

## run absrel
hyphy absrel --alignment ${P_out}/${trasncriptID}.fa --tree ${P_out}/${trasncriptID}.prunnedTree.tre --output ${P_out}/${trasncriptID}.ABSREL.json | tee -a ${P_out}/${trasncriptID}.ABSREL.log

- Gene enrichment analyses using gprofiler2

## Load R and library
library(gprofiler2)

## Run enrichment per mammalian group
multi_sig_noBG_tmp_gostres = gost(listGenes_groups, organism = "hsapiens", significant = TRUE)

## Save enrichment summary as a tab file
write.table(sapply(multi_sig_noBG_tmp_gostres$result, FUN = paste), file=out_summaryErich, sep="\t", quote=FALSE, row.names=FALSE)

- Correlation between branch length and number of genes under selection

Negative binomial regression was performed using several R libraries see code here.