-
Notifications
You must be signed in to change notification settings - Fork 71
/
extract_patches_heatmap.py
151 lines (116 loc) · 5.17 KB
/
extract_patches_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.path.insert(0, '/home/arjun/MS/Thesis/CAMELYON-16/source')
import glob
import os.path
import threading
import cv2
import numpy as np
import tensorflow as tf
from PIL import Image
from camelyon16 import utils as utils
from camelyon16.ops.wsi_ops import WSIOps
class Queue(object):
def __init__(self):
self.patches = []
self.pos = []
def put(self, patch, pos):
self.patches.append(patch)
self.pos.append(pos)
assert self.patches.__len__() == self.pos.__len__(), 'Both queue lengths must be same.'
def get_next_batch(self):
assert self.patches.__len__() == self.pos.__len__(), 'Both queue lengths must be same.'
cnt = utils.BATCH_SIZE if self.patches.__len__() > utils.BATCH_SIZE else self.patches.__len__()
items = self.patches[:cnt]
del self.patches[:cnt]
del self.pos[:cnt]
return items
def clear(self):
self.patches = []
self.pos = []
def print(self):
print(self.pos)
def extract_patch_from_bb(thread_index, bounding_box, wsi_image, image_open, level_used, heat_map_dir):
"""
mapping from (x,y) -> (raw, col)
x -> col
y -> row
"""
# factor to map low res cords into high res
mag_factor = pow(2, level_used)
b_x_start = int(bounding_box[0])
b_y_start = int(bounding_box[1])
b_x_end = (int(bounding_box[0]) + int(bounding_box[2]))
b_y_end = (int(bounding_box[1]) + int(bounding_box[3]))
col_cords = np.arange(b_x_start, b_x_end)
row_cords = np.arange(b_y_start, b_y_end)
print('Apx. patch count for thread(%d): %d' % (thread_index, len(row_cords) * len(col_cords)))
for row in row_cords:
for col in col_cords:
if int(image_open[row, col]) is not utils.PIXEL_BLACK:
wsi_patch = wsi_image.read_region((col * mag_factor, row * mag_factor), 0,
(utils.PATCH_SIZE, utils.PATCH_SIZE))
file_name = str(row) + '_' + str(col) + '_' + str(level_used)
wsi_patch.save(os.path.join(heat_map_dir, file_name), 'PNG')
wsi_patch.close()
def extract_patches(wsi_image_path, wsi_image_name, wsi_mask_path=None):
print('extract_patches(): %s' % wsi_image_name)
heatmap_patch_dir = os.path.join(utils.HEAT_MAP_RAW_PATCHES_DIR, wsi_image_name)
if not os.path.exists(heatmap_patch_dir):
os.makedirs(heatmap_patch_dir)
else:
print('patch has already been extracted for: %s' % wsi_image_name)
return
if wsi_mask_path is None:
wsi_image, rgb_image, level_used = wsi_ops.read_wsi_normal(wsi_image_path)
assert wsi_image is not None, 'Failed to read Whole Slide Image %s.' % wsi_image_name
else:
wsi_image, rgb_image, _, _, level_used = wsi_ops.read_wsi_tumor(wsi_image_path, wsi_mask_path)
assert wsi_image is not None, 'Failed to read Whole Slide Image %s.' % wsi_image_name
bounding_boxes, rgb_contour, image_open = wsi_ops.find_roi_bbox(np.array(rgb_image))
Image.fromarray(rgb_image).save(os.path.join(utils.HEAT_MAP_WSIs_PATH, wsi_image_name), 'PNG')
Image.fromarray(rgb_contour).save(os.path.join(utils.HEAT_MAP_WSIs_PATH, wsi_image_name + '_contour'), 'PNG')
print('No. of ROIs to extract patches from: %d' % len(bounding_boxes))
coord = tf.train.Coordinator()
threads = []
for thread_index in range(len(bounding_boxes)):
args = (thread_index, bounding_boxes[thread_index], wsi_image, image_open, level_used, heatmap_patch_dir)
t = threading.Thread(target=extract_patch_from_bb, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
wsi_image.close()
sys.stdout.flush()
def extract_patches_tumor():
wsi_image_names = glob.glob(os.path.join(utils.TUMOR_WSI_PATH, '*.tif'))
wsi_image_names.sort()
wsi_mask_names = glob.glob(os.path.join(utils.TUMOR_MASK_PATH, '*.tif'))
wsi_mask_names.sort()
image_mask_pair = zip(wsi_image_names, wsi_mask_names)
image_mask_pair = list(image_mask_pair)
# image_mask_pair = image_mask_pair[1:2]
for image_path, mask_path in image_mask_pair:
extract_patches(image_path, utils.get_filename_from_path(image_path), mask_path)
def extract_patches_normal():
wsi_image_names = glob.glob(os.path.join(utils.NORMAL_WSI_PATH, '*.tif'))
wsi_image_names.sort()
# wsi_image_names = wsi_image_names[1:2]
for image_path in wsi_image_names:
extract_patches(image_path, utils.get_filename_from_path(image_path))
def extract_patches_test():
wsi_image_names = glob.glob(os.path.join(utils.TEST_WSI_PATH, '*.tif'))
wsi_image_names.sort()
print(wsi_image_names)
# wsi_image_names = wsi_image_names[1:2]
for image_path in wsi_image_names:
extract_patches(image_path, utils.get_filename_from_path(image_path))
if __name__ == '__main__':
# dataset = Dataset(DATA_SET_NAME, data_subset[1])
# evaluate(dataset)
wsi_ops = WSIOps()
# extract_patches_tumor()
# extract_patches_normal()
extract_patches_test()