-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathDSTP_RNN.py
432 lines (306 loc) · 15.3 KB
/
DSTP_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
"""
Reference https://github.com/Zhenye-Na/DA-RNN
"""
# -*- coding: utf-8 -*-
from ops import *
from torch.autograd import Variable
import torch
from torch import cuda
# torch.cuda.is_available()
import numpy as np
from torch import nn
from torch import optim
import torch.nn.functional as F
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def count_values(truth,pred):
count_avg = 0
assert len(truth)==len(pred)
for x in range(len(truth)):
count_avg+=abs(truth[x]-pred[x])
return count_avg/len(truth)
class Encoder(nn.Module):
def __init__(self, T ,
input_size,
encoder_num_hidden,
parallel=False):
super(Encoder, self).__init__()
self.encoder_num_hidden = encoder_num_hidden
self.input_size = input_size
self.parallel = parallel
self.T = T
# Fig 1. Temporal Attention Mechanism: Encoder is LSTM
self.encoder_lstm = nn.LSTM(
input_size=self.input_size, hidden_size=self.encoder_num_hidden)
self.encoder_lstm2 = nn.LSTM(
input_size=self.input_size, hidden_size=self.encoder_num_hidden)
# Construct Input Attention Mechanism via deterministic attention model
# Eq. 8: W_e[h_{t-1}; s_{t-1}] + U_e * x^k
self.encoder_attn = nn.Linear(
in_features=2 * self.encoder_num_hidden + self.T - 1, out_features=1, bias=True) #1033
# W_s[h_{t-1} ; s_{t-1}] + U_s[x^k ; y^k]
self.encoder_attn2 = nn.Linear(
in_features=2 * self.encoder_num_hidden + 2*self.T - 2, out_features=1, bias=True)
def forward(self, X ,y_prev):
"""forward.
Args:
X
"""
X_tilde = Variable(X.data.new(
X.size(0), self.T - 1, self.input_size).zero_())
X_encoded = Variable(X.data.new(
X.size(0), self.T - 1, self.encoder_num_hidden).zero_())
X_tilde2 = Variable(X.data.new(
X.size(0), self.T - 1, self.input_size).zero_())
X_encoded2 = Variable(X.data.new(
X.size(0), self.T - 1, self.encoder_num_hidden).zero_())
# hidden, cell: initial states with dimention hidden_size
h_n = self._init_states(X)
s_n = self._init_states(X)
hs_n = self._init_states(X)
ss_n = self._init_states(X)
# y_prev = y_prev.view()
y_prev = y_prev.view(len(X) , self.T-1 ,1)
# print(h_n.size()) # 1 233 512
# print(s_n.size())
for t in range(self.T - 1):
#Phase one attention
# batch_size * input_size * (2*hidden_size + T - 1)
x = torch.cat((h_n.repeat(self.input_size, 1, 1).permute(1, 0, 2), #233 363 1033
s_n.repeat(self.input_size, 1, 1).permute(1, 0, 2),
X.permute(0, 2, 1)), dim=2)
# test = x.view(-1, self.encoder_num_hidden * 2 + self.T - 1)
# print(test.size()) #84579 1033
x = self.encoder_attn( #84579 1
x.view(-1, self.encoder_num_hidden * 2 + self.T - 1))
# get weights by softmax
alpha = F.softmax(x.view(-1, self.input_size))# 233x363
# get new input for LSTM
x_tilde = torch.mul(alpha, X[:, t, :]) #233x363
# print(x_tilde.size())
# encoder LSTM
self.encoder_lstm.flatten_parameters()
_, final_state = self.encoder_lstm(
x_tilde.unsqueeze(0), (h_n, s_n))
h_n = final_state[0]
s_n = final_state[1]
#Phase two attention from DSTP-RNN Paper
x2 = torch.cat((hs_n.repeat(self.input_size, 1, 1).permute(1, 0, 2), #233 363 1042
ss_n.repeat(self.input_size, 1, 1).permute(1, 0, 2),
X.permute(0, 2, 1),
y_prev.repeat(1, 1, self.input_size).permute(0, 2, 1)), dim=2)
x2 = self.encoder_attn2(
x2.view(-1, self.encoder_num_hidden * 2 + 2*self.T - 2))
alpha2 = F.softmax(x2.view(-1, self.input_size))# 233x363
x_tilde2 = torch.mul(alpha2, x_tilde)
self.encoder_lstm2.flatten_parameters()
_, final_state2 = self.encoder_lstm2(
x_tilde2.unsqueeze(0), (hs_n, ss_n))
hs_n = final_state2[0]
ss_n = final_state2[1]
# print(x_tilde2.size())
X_tilde2[:, t, :] = x_tilde2
X_encoded2[:, t, :] = hs_n
return X_tilde2 , X_encoded2
def _init_states(self, X):
"""Initialize all 0 hidden states and cell states for encoder.
Args:
X
Returns:
initial_hidden_states
"""
# hidden state and cell state [num_layers*num_directions, batch_size, hidden_size]
# https://pytorch.org/docs/master/nn.html?#lstm
initial_states = Variable(X.data.new(
1, X.size(0), self.encoder_num_hidden).zero_())
return initial_states
class Decoder(nn.Module):
def __init__(self, T, decoder_num_hidden, encoder_num_hidden):
super(Decoder, self).__init__()
self.decoder_num_hidden = decoder_num_hidden
self.encoder_num_hidden = encoder_num_hidden
self.T = T
self.attn_layer = nn.Sequential(nn.Linear(2 * decoder_num_hidden + encoder_num_hidden, encoder_num_hidden),
nn.Tanh(),
nn.Linear(encoder_num_hidden, 1))
self.lstm_layer = nn.LSTM(
input_size=1, hidden_size=decoder_num_hidden)
self.fc = nn.Linear(encoder_num_hidden + 1, 1)
self.fc_final_price = nn.Linear(decoder_num_hidden + encoder_num_hidden, 1)
self.fc.weight.data.normal_()
def forward(self, X_encoed, y_prev):
"""forward."""
d_n = self._init_states(X_encoed)
c_n = self._init_states(X_encoed)
for t in range(self.T - 1):
x = torch.cat((d_n.repeat(self.T - 1, 1, 1).permute(1, 0, 2),
c_n.repeat(self.T - 1, 1, 1).permute(1, 0, 2),
X_encoed), dim=2)
beta = F.softmax(self.attn_layer(
x.view(-1, 2 * self.decoder_num_hidden + self.encoder_num_hidden)).view(-1, self.T - 1))
# Eqn. 14: compute context vector
# batch_size * encoder_hidden_size
context = torch.bmm(beta.unsqueeze(1), X_encoed)[:, 0, :]
if t < self.T - 1:
# Eqn. 15
# batch_size * 1
y_tilde = self.fc(
torch.cat((context, y_prev[:, t].unsqueeze(1)), dim=1))
# Eqn. 16: LSTM
self.lstm_layer.flatten_parameters()
_, final_states = self.lstm_layer(
y_tilde.unsqueeze(0), (d_n, c_n))
# 1 * batch_size * decoder_num_hidden
d_n = final_states[0]
# 1 * batch_size * decoder_num_hidden
c_n = final_states[1]
# Eqn. 22: final output
final_temp_y = torch.cat((d_n[0], context), dim=1)
y_pred_price = self.fc_final_price(final_temp_y)
return y_pred_price
def _init_states(self, X):
"""Initialize all 0 hidden states and cell states for encoder.
Args:
X
Returns:
initial_hidden_states
"""
# hidden state and cell state [num_layers*num_directions, batch_size, hidden_size]
# https://pytorch.org/docs/master/nn.html?#lstm
initial_states = X.data.new(
1, X.size(0), self.decoder_num_hidden).zero_()
return initial_states
class DSTP_rnn(nn.Module):
def __init__(self, X, y, T,
encoder_num_hidden,
decoder_num_hidden,
batch_size,
learning_rate,
epochs,
parallel=False):
super(DSTP_rnn, self).__init__()
self.encoder_num_hidden = encoder_num_hidden
self.decoder_num_hidden = decoder_num_hidden
self.learning_rate = learning_rate
self.batch_size = batch_size
self.parallel = parallel
self.shuffle = False
self.epochs = epochs
self.T = T
self.X = X
self.y = y
self.Encoder = Encoder(input_size=X.shape[1],
encoder_num_hidden=encoder_num_hidden,
T=T)
self.Decoder = Decoder(encoder_num_hidden=encoder_num_hidden,
decoder_num_hidden=decoder_num_hidden,
T=T)
self.Encoder = self.Encoder.cuda()
self.Decoder = self.Decoder.cuda()
# Loss function
self.criterion_price = nn.MSELoss()
if self.parallel:
self.encoder = nn.DataParallel(self.encoder)
self.decoder = nn.DataParallel(self.decoder)
self.encoder_optimizer = optim.Adam(params=filter(lambda p: p.requires_grad,
self.Encoder.parameters()),
lr=self.learning_rate)
self.decoder_optimizer = optim.Adam(params=filter(lambda p: p.requires_grad,
self.Decoder.parameters()),
lr=self.learning_rate)
# Training set
self.train_timesteps = int(self.X.shape[0] * 0.8)
self.input_size = self.X.shape[1]
def train(self):
"""training process."""
iter_per_epoch = int(np.ceil(self.train_timesteps * 1. / self.batch_size))
self.iter_losses = np.zeros(self.epochs * iter_per_epoch)
self.epoch_losses = np.zeros(self.epochs)
n_iter = 0
val_record = 0
for epoch in range(self.epochs):
if self.shuffle:
ref_idx = np.random.permutation(self.train_timesteps - self.T)
else:
ref_idx = np.array(range(self.train_timesteps - self.T))
idx = 0
while (idx < self.train_timesteps):
# get the indices of X_train
indices = ref_idx[idx:(idx + self.batch_size)]
# x = np.zeros((self.T - 1, len(indices), self.input_size))
x = np.zeros((len(indices), self.T - 1, self.input_size))
y_prev = np.zeros((len(indices), self.T - 1))
y_gt = self.y[indices + self.T]
# format x into 3D tensor
for bs in range(len(indices)):
x[bs, :, :] = self.X[indices[bs]:(indices[bs] + self.T - 1), :]
y_prev[bs, :] = self.y[indices[bs]:(indices[bs] + self.T - 1)]
loss = self.train_forward(x, y_prev, y_gt)
self.iter_losses[epoch * iter_per_epoch + idx // self.batch_size] = loss
idx += self.batch_size
n_iter += 1
if n_iter % 10000 == 0 and n_iter != 0:
for param_group in self.encoder_optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.9
for param_group in self.decoder_optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.9
self.epoch_losses[epoch] = np.mean(self.iter_losses[range(epoch * iter_per_epoch, (epoch + 1) * iter_per_epoch)])
if epoch % 10 == 0:
print ("Epochs: ", epoch, " Iterations: ", n_iter, " Loss: ", self.epoch_losses[epoch])
if epoch % 1000 == 0 and epoch!=0 :
torch.save(model.state_dict(), 'dstprnn_model_{}.pkl'.format(epoch))
def train_forward(self, X, y_prev, y_gt):
# zero gradients
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
input_weighted, input_encoded = self.Encoder(
Variable(torch.from_numpy(X).type(torch.FloatTensor).cuda()),Variable(torch.from_numpy(y_prev).type(torch.FloatTensor).cuda())) #cuda
y_pred_price = self.Decoder(input_encoded, Variable(
torch.from_numpy(y_prev).type(torch.FloatTensor)).cuda())#cuda
y_true_price = torch.from_numpy(
y_gt).type(torch.FloatTensor)
y_true_price =y_true_price.view(-1, 1).cuda() #cuda
loss = self.criterion_price(y_pred_price, y_true_price)
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
return loss.item()
def val(self):
"""validation."""
pass
def test(self, on_train=False):
"""test."""
if on_train:
y_pred_price = np.zeros(self.train_timesteps - self.T + 1)
else:
y_pred_price = np.zeros(self.X.shape[0] - self.train_timesteps)
i = 0
while i < len(y_pred_price):
batch_idx = np.array(range(len(y_pred_price)))[i: (i + self.batch_size)]
X = np.zeros((len(batch_idx), self.T - 1, self.X.shape[1]))
y_history = np.zeros((len(batch_idx), self.T - 1))
for j in range(len(batch_idx)):
if on_train:
X[j, :, :] = self.X[range(
batch_idx[j], batch_idx[j] + self.T - 1), :]
y_history[j, :] = self.y[range(
batch_idx[j], batch_idx[j] + self.T - 1)]
else:
X[j, :, :] = self.X[range(
batch_idx[j] + self.train_timesteps - self.T, batch_idx[j] + self.train_timesteps - 1), :]
y_history[j, :] = self.y[range(
batch_idx[j] + self.train_timesteps - self.T, batch_idx[j] + self.train_timesteps - 1)]
y_history = Variable(torch.from_numpy(y_history).type(torch.FloatTensor).cuda())
_, input_encoded = self.Encoder(Variable(torch.from_numpy(X).type(torch.FloatTensor).cuda()),Variable(y_history).cuda()) #cuda
y_pred_price_output = self.Decoder(input_encoded, y_history)
y_pred_price[i:(i + self.batch_size)] = y_pred_price_output.cpu().detach().numpy()[:, 0]
i += self.batch_size
return y_pred_price
X, y= read_data("2324.TW.csv", debug=False)
model = DSTP_rnn(X, y, 10 , 128, 128, 128, 0.001, 7000)
model.train()
torch.save(model.state_dict(), 'dstprnn_model.pkl')
pred = model.test()
print(pred)