-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdij_algo.py
59 lines (52 loc) · 2.01 KB
/
dij_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sys
# Function to find out which of the unvisited node
# needs to be visited next
def to_be_visited():
global visited_and_distance
v = -10
# Choosing the vertex with the minimum distance
for index in range(number_of_vertices):
if visited_and_distance[index][0] == 0 \
and (v < 0 or visited_and_distance[index][1] <= \
visited_and_distance[v][1]):
v = index
return v
# Creating the graph as an adjacency matrix
vertices = [[0, 1, 1, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]]
edges = [[0, 3, 4, 0],
[0, 0, 0.5, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]]
number_of_vertices = len(vertices[0])
# The first element of the lists inside visited_and_distance
# denotes if the vertex has been visited.
# The second element of the lists inside the visited_and_distance
# denotes the distance from the source.
visited_and_distance = [[0, 0]]
for i in range(number_of_vertices-1):
visited_and_distance.append([0, sys.maxsize])
for vertex in range(number_of_vertices):
# Finding the next vertex to be visited.
to_visit = to_be_visited()
for neighbor_index in range(number_of_vertices):
# Calculating the new distance for all unvisited neighbours
# of the chosen vertex.
if vertices[to_visit][neighbor_index] == 1 and \
visited_and_distance[neighbor_index][0] == 0:
new_distance = visited_and_distance[to_visit][1] \
+ edges[to_visit][neighbor_index]
# Updating the distance of the neighbor if its current distance
# is greater than the distance that has just been calculated
if visited_and_distance[neighbor_index][1] > new_distance:
visited_and_distance[neighbor_index][1] = new_distance
# Visiting the vertex found earlier
visited_and_distance[to_visit][0] = 1
i = 0
# Printing out the shortest distance from the source to each vertex
for distance in visited_and_distance:
print("The shortest distance of ",chr(ord('a') + i),\
" from the source vertex a is:",distance[1])
i = i + 1