-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecoveries.py
255 lines (207 loc) · 8.02 KB
/
recoveries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import qutip as qt
import channels
import codes
"""
Misc functions
"""
def matrixf(rho, f, safe=False):
# Apply f(rho) to diagonalizable matrix rho
abstol = 1e-8
vals, vecs = rho.eigenstates()
out = qt.Qobj(np.zeros(rho.shape), dims=rho.dims)
for i, lam in enumerate(vals):
if lam > abstol or not safe:
out += f(lam)*vecs[i]*vecs[i].dag()
return out
def replace_empty_lists_with_ones(listin):
for i, li in enumerate(listin):
if li == []:
listin[i] = [1]
elif isinstance(li, list):
li = replace_empty_lists_with_ones(li)
return listin
class RecoveryException(Exception):
pass
"""
Measurements
"""
def phasestate(s, r, phi0=0., fockdim=None):
if fockdim is None:
fockdim = s
phim = phi0 + (2.0 * np.pi * r) / s
n = np.arange(s)
data = 1.0 / np.sqrt(s) * np.exp(1.0j * n * phim)
data = np.hstack((data, np.zeros(fockdim-s)))
return qt.Qobj(data)
class WedgeMeasurement(channels.POVM):
def __init__(self, N, s, fockdim=None, offset=0.):
if fockdim is None:
fockdim = s
self.s = s
self.fockdim = fockdim
povm_list = []
for m in range(N):
povm = self._povm(m*2*np.pi/N + offset, (m+1)*2*np.pi/N + offset)
povm_list.append(povm)
channels.POVM.__init__(self, povm_list)
def _povm(self, theta1, theta2):
def matrixelement(n, m, theta1, theta2):
return np.where(n == m,
theta2-theta1,
1j/(n-m)*(np.exp(1j*theta1*(n-m))
- np.exp(1j*theta2*(n-m))))
povm = 1/(2*np.pi)*np.fromfunction(lambda n, m: matrixelement(n, m,
theta1, theta2), (self.s, self.s))
return qt.Qobj(povm)
class PhaseMeasurement(channels.POVM):
def __init__(self, dim, offset=0.):
outcomes = []
povm_list = []
for r in range(dim):
outcomes.append((2*np.pi*r/dim + offset) % (2*np.pi))
phi = qt.phase_basis(dim, r, phi0=offset)
povm_list.append(phi*phi.dag())
channels.POVM.__init__(self, povm_list, kraus=povm_list,
outcomes=outcomes)
class PrettyGoodMeasurement(channels.POVM):
def __init__(self, code, noise):
sigma = noise(code.projector)
x = matrixf(sigma, lambda x: x**(-1/2), safe=True)
povm_list = [
x*noise.channel_matrix(code.plus)*x,
x*noise.channel_matrix(code.minus)*x,
]
povm_list.append(code.identity - sum(povm_list))
channels.POVM.__init__(self, povm_list)
"""
class PrettyGoodMeasurement(channels.POVM):
def __init__(self, code, noise, ancilla=None):
if ancilla is None:
ancilla = code
crot = qt.to_super(code.crot(ancilla))
noise2 = crot*qt.composite(noise.channel_matrix,
qt.to_super(ancilla.identity))*crot.dag()
sigma = noise2(qt.tensor(code.projector, ancilla.projector))
x = matrixf(sigma, lambda x: x**(-1/2), safe=True)
povm_list = [
x*noise2(qt.tensor(code.plus, ancilla.plus))*x,
x*noise2(qt.tensor(code.plus, ancilla.minus))*x,
x*noise2(qt.tensor(code.minus, ancilla.plus))*x,
x*noise2(qt.tensor(code.minus, ancilla.minus))*x,
]
povm_list.append(qt.tensor(code.identity, ancilla.identity)
- np.sum(povm_list))
channels.POVM.__init__(self, povm_list)
"""
class CafarovanLoockMeasurement(channels.POVM):
def __init__(self, code, noise, lmax=-1, ancilla=None):
if ancilla is None:
ancilla = code
crot = code.crot(ancilla)
kraus2 = [crot*qt.tensor(k, ancilla.identity)*crot.dag()
for k in noise.kraus[:lmax]]
logicals = [
qt.tensor(code.plus, ancilla.plus),
qt.tensor(code.plus, ancilla.minus),
qt.tensor(code.minus, ancilla.plus),
qt.tensor(code.minus, ancilla.minus),
]
def elem(psi, k):
x = qt.expect(k.dag()*k, psi)
if x > 0:
return k*psi*psi.dag()*k.dag()/x
else:
return None
povm_list = [np.sum((elem(psi, k) for k in kraus2))
for psi in logicals]
povm_list.append(qt.tensor(code.identity, ancilla.identity)
- np.sum(povm_list))
channels.POVM.__init__(self, povm_list)
"""
Code recovery channels
"""
class BarnumKnillRecovery(channels.Channel):
def __init__(self, code, noise, lmax=-1):
k_list = []
k_sum = qt.Qobj()
P = code.projector
EP = matrixf(noise.channel_matrix(P), lambda x: x**(-1/2), safe=True)
# EP = noise.channel_matrix(P)
for e in noise.kraus[:lmax]:
op = P*e.dag()*EP
k_list.append(op)
k_sum += op.dag()*op
k_list.append((code.identity-k_sum).sqrtm())
channels.Channel.__init__(self, k_list)
class CafarovanLoockRecovery(channels.Channel):
"""
Eq. (51) in https://arxiv.org/abs/1308.4582
"""
def __init__(self, code, noise, lmax=-1, warn=True):
if warn:
if lmax > code.N:
print("warning: CafarovanLoockRecovery does not work well with"
+ "lmax > code.N")
k_list = []
k_sum = qt.Qobj()
for e in noise.kraus[:lmax]:
d = qt.expect(e.dag()*e, code.zero)
op = qt.Qobj()
if d > 0:
op = code.zero*code.zero.dag()*e.dag()/np.sqrt(d)
d = qt.expect(e.dag()*e, code.one)
if d > 0:
op += code.one*code.one.dag()*e.dag()/np.sqrt(d)
k_list.append(op)
k_sum += op.dag()*op
k_list.append((code.identity-k_sum).sqrtm())
# k_list.append(code.identity-s)
channels.Channel.__init__(self, k_list)
self._k_sum = k_sum
class SDPRecovery(channels.Channel):
"""
Find optimal recovery by solving SDP
"""
def __init__(self, code, noise):
import matlab.engine
self._eng = matlab.engine.start_matlab()
self._code = code
self._noise = noise
channels.Channel.__init__(self)
def __del__(self):
self._eng.quit()
def find_recovery(self):
import matlab
S = self._code.encoder(kraus=True)
physdim = S.dims[0][0]
codedim = S.dims[1][0]
# C = qt.kraus_to_choi([(1./codedim)*S.dag()*k.dag()
# for k in self._noise.kraus])
C = (1./codedim**2)*(self._noise.channel_matrix *
self._code.encoder()).dag()
C = qt.super_to_choi(C)
C = matlab.double(C.data.toarray().tolist(), is_complex=True)
X = self._eng.cvxsdp(C, physdim, codedim)
X = np.array(X)
dims = [[[physdim], [codedim]], [[physdim], [codedim]]]
choi = qt.Qobj(X, dims=dims, superrep='choi')
channels.Channel.__init__(self, choi=choi)
def find_encoder(self, recovery, tol=1e-8):
import matlab
physdim = self._code.encoder().dims[0][0][0]
codedim = self._code.decoder().dims[0][0][0]
D = (1./codedim**2)*(recovery*self._noise.channel_matrix).dag()
D = qt.super_to_choi(D)
D = matlab.double(D.data.toarray().tolist(), is_complex=True)
X = self._eng.cvxsdp(D, codedim, physdim)
X = np.array(X)
dims = [[[codedim], [physdim]], [[codedim], [physdim]]]
choi = qt.Qobj(X, dims=dims, superrep='choi')
# remove all negligible eigenvectors from choi matrix
kraus = codes.choi_to_kraus(choi, tol=1e-8)
return kraus
def __Cmatrix_old(self, kraus, S, dim):
rho = (1/dim)*qt.identity(dim)
klist = [rho*S.dag()*k.dag() for k in kraus]
return qt.kraus_to_choi(klist)