-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
149 lines (104 loc) · 4.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from types import FunctionType
from torch import nn
from model import NeuralNetwork
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
test_dir = "./data/test/"
train_dir = "./data/train/"
valid_dir = "./data/valid/"
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
MODEL = NeuralNetwork().to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(MODEL.parameters(), lr=1e-3)
print(f"Using device {device}")
transform = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor()])
test_dataset = datasets.ImageFolder(test_dir, transform=transform)
train_dataset = datasets.ImageFolder(train_dir, transform=transform)
valid_dataset = datasets.ImageFolder(valid_dir, transform=transform)
def load_and_shape(train: DataLoader, test: DataLoader, valid: DataLoader, batch_size: int = 10, shuffle: bool = False) -> DataLoader:
train_dataloader = DataLoader(
train, batch_size=batch_size, shuffle=shuffle)
test_dataloader = DataLoader(test, batch_size=batch_size, shuffle=shuffle)
valid_dataloader = DataLoader(
valid, batch_size=batch_size, shuffle=shuffle)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W] {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
return train_dataloader, test_dataloader, valid_dataloader
train_loader, test_loader, valid_loader = load_and_shape(
train=train_dataset, test=test_dataset, valid=valid_dataset)
def train(dataloader: DataLoader, model, loss_fn: FunctionType, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d} / {size:>5d}]")
def test(dataloader: DataLoader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
all_preds = []
all_labels = []
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
# Store predictions and actual labels for plotting
all_preds.extend(pred.argmax(1).cpu().numpy())
all_labels.extend(y.cpu().numpy())
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {
(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
return all_preds, all_labels
def validate(dataloader: DataLoader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
val_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
val_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
val_loss /= num_batches
correct /= size
print(f"Validation Error: \n Accuracy: {
(100 * correct):>0.1f}%, Avg loss: {val_loss:>8f} \n")
epochs = 30
for epoch in range(epochs):
print(f"Epoch {epoch + 1}\n-------------------------------")
train(train_loader, MODEL, loss_function, optimizer)
validate(valid_loader, MODEL, loss_function)
test(test_loader, MODEL, loss_function)
print("Done!")
all_preds, all_labels = test(test_loader, MODEL, loss_function)
# Plot Predicted vs Actual Labels
conf_matrix = confusion_matrix(all_labels, all_preds)
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix - Predicted vs Actual")
plt.show()