-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
111 lines (71 loc) · 2.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import matplotlib.pyplot as plt
def main():
num_datasets = 30
target_fn = np.square
p1, p2 = get_experiment_data(num_datasets, target_fn)
m = get_slope(p1, p2)
b = get_y_intercept(p1, m)
bias = calculate_bias(get_x(num_datasets), m, b, target_fn)
var = calculate_var(get_x(num_datasets), m, b)
print_data('bias', bias)
print_data('var', var)
print_data('e_out', round(bias + var, 2))
plot_exp(m, b, target_fn)
def print_data(label, value, width=10):
print('{:{}}: {}'.format(label, width, value))
def get_experiment_data(num_datasets, target_fn):
num_samples = num_datasets * 2
s = np.random.uniform(-1, 1, num_samples)
s = s.reshape(num_datasets, 2)
x1, x2 = s[:, 0], s[:, 1]
y1, y2 = target_fn(x1), target_fn(x2)
p1 = np.column_stack((x1, y1))
p2 = np.column_stack((x2, y2))
return p1, p2
def get_slope(p1, p2):
# slope = (y2 - y1) / (x2 - x1)
return (p2[:, 1] - p1[:, 1]) / (p2[:, 0] - p1[:, 0])
def get_y_intercept(p, m):
# y - y1 = m(x - x1)
# y - y1 = mx - mx1
# y = mx - mx1 + y1
# let b = -mx1 + y1
return -m * p[:, 0] + p[:, 1]
def calculate_bias(x, m, b, target_fn):
g_avg = get_g_avg_vect(x, m, b)
f_x = target_fn(x)
return round(mean_sum_squared_error(g_avg, f_x), 2)
def calculate_var(x, m, b):
g = hypothesis_fn(m, x, b)
g_avg = get_g_avg_vect(x, m, b)
return round(mean_sum_squared_error(g, g_avg), 2)
def get_g_avg_vect(x, m, b):
g_avg = np.full_like(x, 1)
for i, this_x in enumerate(x):
g_avg[i] = calculate_g_avg(m, this_x, b)
return g_avg
def calculate_g_avg(m, x, b):
# this must take in a single x
x_vect = np.full_like(m, x)
return np.average(hypothesis_fn(m, x_vect, b))
def mean_sum_squared_error(x1, x2):
return np.average(np.square(x1 - x2))
def get_x(num_pts):
return np.linspace(-1, 1, num_pts)
def hypothesis_fn(m, x, b):
return m * x + b
def plot_exp(m, b, target_fn):
plt.style.use('seaborn-whitegrid')
fig, ax = plt.subplots()
ax.set(title='Problem 2.24, p. 75')
x = np.linspace(-1, 1, 30)
# plot each hypothesis fn
for this_m, this_b in zip(m, b):
ax.plot(x, hypothesis_fn(this_m, x, this_b), color='gray', alpha=0.2)
ax.plot(x, target_fn(x), label='f(x)')
ax.plot(x, get_g_avg_vect(x, m, b), color='r', label='avg g(x)')
ax.legend(facecolor='w', fancybox=True, frameon=True, edgecolor='black', borderpad=1)
plt.show()
if __name__ == '__main__':
main()