-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsummary of the key points.txt
91 lines (67 loc) · 3.17 KB
/
summary of the key points.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
Here’s a summary of the key points and some important code snippets from the earlier explanation about integrating a **Groq API** call within a **Streamlit** app:
### **Summary of Key Points**
python -m venv venv
venv\Scripts\activate
1. **Function to Call Groq API**:
- A function `get_groq_response(user_input)` was created to interact with the **Groq** API and return the model's response based on the user's input.
- The API call is streamed, and the response is constructed by combining the chunks of data returned from the server.
2. **Streamlit Layout**:
- **Title**: The app has a title and description displayed on the web interface.
- **Text Input**: The user is prompted to enter a message using `st.text_input()`.
- **Button**: When the user clicks the "Generate Response" button, it triggers the API call.
- **Loading Spinner**: A spinner (`st.spinner()`) is used to show that the app is processing the request while waiting for the API response.
- **Error Handling**: The app checks if the input is empty and returns an error message if no input is provided.
3. **.env File**:
- A `.env` file is used to securely store the **Groq API key**, which is loaded using the `python-dotenv` library.
4. **Virtual Environment**:
- Ensure that dependencies such as `streamlit`, `groq`, and `python-dotenv` are installed in your virtual environment using `pip`.
### **Important Code Snippets**
1. **Groq API Interaction Function**:
```python
def get_groq_response(user_input):
completion = client.chat.completions.create(
model="llama3-8b-8192", # Using Llama 3.2 model
messages=[
{
"role": "user",
"content": user_input
}
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
response_text = ""
for chunk in completion:
response_text += chunk.choices[0].delta.content or ""
return response_text
```
2. **Streamlit Layout**:
```python
import streamlit as st
st.title("Llama 3.2 Chatbot")
st.write("This app interacts with the Llama 3.2 model to generate responses.")
user_input = st.text_input("Enter your message:")
if st.button("Generate Response"):
if user_input:
with st.spinner('Generating response...'):
response = get_groq_response(user_input)
st.write(response)
else:
st.error("Please enter a message.")
```
3. **Environment Variables Setup** (`.env`):
```plaintext
GROQ_API_KEY=your_groq_api_key_here
```
This file should be located in your project root directory and contains sensitive data like the API key.
4. **Run Streamlit App**:
- Run the following command to start the Streamlit app:
```bash
streamlit run app.py
```
This will launch the app and open it in your browser at `http://localhost:8501`.
### **Conclusion**
With the above code, you can easily interact with the **Groq** API using a **Streamlit** app that dynamically takes user input and displays the responses in real-time. Just make sure to set up your environment correctly, manage your API key securely using the `.env` file, and use `pip` to install the necessary libraries.