-
Notifications
You must be signed in to change notification settings - Fork 4
/
doubleSlit_HW_CN.py
231 lines (169 loc) · 8.07 KB
/
doubleSlit_HW_CN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Arturo Mena López
Script to simulate the passage of a Gaussian packet wave function through a
double slit with hard-walls (infinite potential barrier; the wave function
cancels inside the walls).
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.patches import Rectangle
def psi0(x, y, x0, y0, sigma=0.5, k=15*np.pi):
"""
Proposed wave function for the initial time t=0.
Initial position: (x0, y0)
Default parameters:
- sigma = 0.5 -> Gaussian dispersion.
- k = 15*np.pi -> Proportional to the momentum.
Note: if Dy=0.1 use np.exp(-1j*k*(x-x0)), if Dy=0.05 use
np.exp(1j*k*(x-x0)) so that the particle will move
to the right.
"""
return np.exp(-1/2*((x-x0)**2 + (y-y0)**2)/sigma**2)*np.exp(1j*k*(x-x0))
def doubleSlit_interaction(psi, j0, j1, i0, i1, i2, i3):
"""
Function responsible of the interaction of the psi wave function with the
double slit in the case of rigid walls.
The indices j0, j1, i0, i1, i2, i3 define the extent of the double slit.
slit.
Input parameters:
psi -> Numpy array with the values of the wave function at each point
in 2D space.
Indices that parameterize the double slit in the space of
points:
Horizontal axis.
j0 -> Left edge.
j1 -> Right edge.
Vertical axis.
i0 -> Lower edge of the lower slit.
i1 -> Upper edge of the lower slit.
i2 -> Lower edge of upper slit.
i3 -> Upper edge of upper slit.
Returns the array with the wave function values at each point in 2D space
updated with the interaction with the double slit of rigid walls.
"""
psi = np.asarray(psi) # Ensures that psi is a numpy array.
# We cancel the wave function inside the walls of the double slit.
psi[0:i3, j0:j1] = 0
psi[i2:i1,j0:j1] = 0
psi[i0:, j0:j1] = 0
return psi
# =============================================================================
# Parameters
# =============================================================================
L = 8 # Well of width L. Shafts from 0 to +L.
Dy = 0.05 # Spatial step size.
Dt = Dy**2/4 # Temporal step size.
Nx = int(L/Dy) + 1 # Number of points on the x axis.
Ny = int(L/Dy) + 1 # Number of points on the y axis.
Nt = 500 # Number of time steps.
rx = -Dt/(2j*Dy**2) # Constant to simplify expressions.
ry = -Dt/(2j*Dy**2) # Constant to simplify expressions.
# Initial position of the center of the Gaussian wave function.
x0 = L/5
y0 = L/2
# Parameters of the double slit.
w = 0.2 # Width of the walls of the double slit.
s = 0.8 # Separation between the edges of the slits.
a = 0.4 # Aperture of the slits.
# Indices that parameterize the double slit in the space of points.
# Horizontal axis.
j0 = int(1/(2*Dy)*(L-w)) # Left edge.
j1 = int(1/(2*Dy)*(L+w)) # Right edge.
# Eje vertical.
i0 = int(1/(2*Dy)*(L+s) + a/Dy) # Lower edge of the lower slit.
i1 = int(1/(2*Dy)*(L+s)) # Upper edge of the lower slit.
i2 = int(1/(2*Dy)*(L-s)) # Lower edge of the upper slit.
i3 = int(1/(2*Dy)*(L-s) - a/Dy) # Upper edge of the upper slit.
v = np.zeros((Ny,Ny), complex) # Potential.
Ni = (Nx-2)*(Ny-2) # Number of unknown factors v[i,j], i = 1,...,Nx-2, j = 1,...,Ny-2
# =============================================================================
# First step: Construct the matrices of the system of equations.
# =============================================================================
# Matrices for the Crank-Nicolson calculus. The problem A·x[n+1] = b = M·x[n] will be solved at each time step.
A = np.zeros((Ni,Ni), complex)
M = np.zeros((Ni,Ni), complex)
# We fill the A and M matrices.
for k in range(Ni):
# k = (i-1)*(Ny-2) + (j-1)
i = 1 + k//(Ny-2)
j = 1 + k%(Ny-2)
# Main central diagonal.
A[k,k] = 1 + 2*rx + 2*ry + 1j*Dt/2*v[i,j]
M[k,k] = 1 - 2*rx - 2*ry - 1j*Dt/2*v[i,j]
if i != 1: # Lower lone diagonal.
A[k,(i-2)*(Ny-2)+j-1] = -ry
M[k,(i-2)*(Ny-2)+j-1] = ry
if i != Nx-2: # Upper lone diagonal.
A[k,i*(Ny-2)+j-1] = -ry
M[k,i*(Ny-2)+j-1] = ry
if j != 1: # Lower main diagonal.
A[k,k-1] = -rx
M[k,k-1] = rx
if j != Ny-2: # Upper main diagonal.
A[k,k+1] = -rx
M[k,k+1] = rx
# =============================================================================
# Second step: Solve the A·x[n+1] = M·x[n] system for each time step.
# =============================================================================
from scipy.sparse import csc_matrix
from scipy.sparse.linalg import spsolve
Asp = csc_matrix(A)
x = np.linspace(0, L, Ny-2) # Array of spatial points.
y = np.linspace(0, L, Ny-2) # Array of spatial points.
x, y = np.meshgrid(x, y)
psis = [] # To store the wave function at each time step.
psi = psi0(x, y, x0, y0) # We initialise the wave function with the Gaussian.
psi[0,:] = psi[-1,:] = psi[:,0] = psi[:,-1] = 0 # The wave function equals 0 at the edges of the simulation box (infinite potential well).
psi = doubleSlit_interaction(psi, j0, j1, i0, i1, i2, i3) # Initial interaction with the double slit.
psis.append(np.copy(psi)) # We store the wave function of this time step.
# We solve the matrix system at each time step in order to obtain the wave function.
for i in range(1,Nt):
psi_vect = psi.reshape((Ni)) # We adjust the shape of the array to generate the matrix b of independent terms.
b = np.matmul(M,psi_vect) # We calculate the array of independent terms.
psi_vect = spsolve(Asp,b) # Resolvemos el sistema para este paso temporal.
psi = psi_vect.reshape((Nx-2,Ny-2)) # Recuperamos la forma del array de la función de onda.
psi = doubleSlit_interaction(psi, j0, j1, i0, i1, i2, i3) # We retrieve the shape of the wave function array.
psis.append(np.copy(psi)) # Save the result.
# We calculate the modulus of the wave function at each time step.
mod_psis = [] # For storing the modulus of the wave function at each time step.
for wavefunc in psis:
re = np.real(wavefunc) # Real part.
im = np.imag(wavefunc) # Imaginary part.
mod = np.sqrt(re**2 + im**2) # We calculate the modulus.
mod_psis.append(mod) # We save the calculated modulus.
## In case there is a need to save memory.
# del psis
# del M
# del psi_vect
#%%
# =============================================================================
# Third step: We make the animation.
# =============================================================================
fig = plt.figure() # We create the figure.
ax = fig.add_subplot(111, xlim=(0,L), ylim=(0,L)) # We add the subplot to the figure.
img = ax.imshow(mod_psis[0], extent=[0,L,0,L], cmap=plt.get_cmap("hot"), vmin=0, vmax=np.max(mod_psis), zorder=1, interpolation="none") # Here the modulus of the 2D wave function shall be represented.
# We paint the walls of the double slit with rectangles.
wall_bottom = Rectangle((j0*Dy,0), w, i3*Dy, color="w", zorder=50) # (x0, y0), width, height
wall_middle = Rectangle((j0*Dy,i2*Dy), w, (i1-i2)*Dy, color="w", zorder=50)
wall_top = Rectangle((j0*Dy,i0*Dy), w, i3*Dy, color="w", zorder=50)
# We add the rectangular patches to the plot.
ax.add_patch(wall_bottom)
ax.add_patch(wall_middle)
ax.add_patch(wall_top)
# We define the animation function for FuncAnimation.
def animate(i):
"""
Animation function. Paints each frame. Function for Matplotlib's
FuncAnimation.
"""
img.set_data(mod_psis[i]) # Fill img with the modulus data of the wave function.
img.set_zorder(1)
return img, # We return the result ready to use with blit=True.
anim = FuncAnimation(fig, animate, interval=1, frames=np.arange(0,Nt,2), repeat=False, blit=0) # We generate the animation.
cbar = fig.colorbar(img)
plt.show() # We show the animation finally.
## Save the animation (Ubuntu).
# anim.save('./animationsName.mp4', writer="ffmpeg", fps=60)