-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccel_em.c
618 lines (566 loc) · 18.4 KB
/
accel_em.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/**
* @file accel_em.c
* @author Arun Sethuraman
* @author Karin S. Dorman
* @date Sun Jan 4 22:33:34 CST 2015
*
* This file contains functions that will perform accelerated EM.
*/
#include "multiclust.h"
double step_size(options *opt, data *dat, model *mod);
double accelerated_update(options *opt, data *dat, model *mod, double s);
#ifndef OLDWAY
double qn_accelerated_update(options *opt, data *dat, model *mod);
#endif
#ifdef LAPACK
/* LU decomposition of A */
void dgetrf_(int *M, int *N, double *A, int *lda, int *IPIV, int *INFO);
/* inverse of A given LU decomposition */
void dgetri_(int *N, double *A, int *lda, int *IPIV, double *WORK,
int *lwork, int *INFO);
#endif
/**
* Accelerated update. TODO: add comments
*
* @param dat data object
* @param mod mod object
* @param opt options object
* @return converged status
*/
int accelerated_em_step(options *opt, data *dat, model *mod)
{
int n_adjust = 0;
double emll, ll=0, s = 0;
/* get another secant condition */
em_2_steps(mod, dat, opt);
/* converged during EM iterations; no need for acceleration */
if (mod->stopped)
return 1;
/* mod->findex contains latest EM iterate */
/* mod->tindex is ready to take aEM iterate */
/* mod->pindex contains last (attempted) aEM iterate */
/* mod->logL is penultimate EM log likelihood (one step late) */
#ifndef OLDWAY
emll = log_likelihood(opt, dat, mod, mod->findex);
#else
emll = log_likelihood(opt, dat, mod, 3);
#endif
/* calculate step size */
if (opt->accel_scheme <= QN) {
s = step_size(opt, dat, mod);
/* invalid step size: fall back on EM step */
if (isnan(s) || isinf(s))
goto EM_EXIT;
}
/* attempt acceleration step, possibly with backtracking */
do {
if (opt->accel_scheme <= QN)
ll = accelerated_update(opt, dat, mod, s);
#ifndef OLDWAY
else
/* note: you can test this function by running it for QN q=1 */
ll = qn_accelerated_update(opt, dat, mod);
#endif
if (opt->adjust_step && ll < emll) {
if (opt->verbosity > MINIMAL)
fprintf(stderr, "after attempt %d (of %d) of accel ll is %f, EM ll is %f, step is %f\n", n_adjust, opt->adjust_step, ll, emll, s);
s = (s - 1)/2;
}
} while (n_adjust++ < opt->adjust_step && ll < emll && s < -1);
if (opt->verbosity > TALKATIVE)
fprintf(stderr, "accelerated_em_step (%s): aEM %f %s EM %f (step size: %f)\n",
ll > emll ? opt->accel_abbreviation : "EM",
ll, ll > emll ? ">" : "<", emll, s);
/* accelerated step improved log likelihood */
if (ll > emll) {
/* aEM step: current iterate is what was just computed in tindex */
#ifndef OLDWAY
mod->pindex = mod->tindex;
#endif
mod->accel_step = 1;
return 0;
}
EM_EXIT:
/* fall back on EM iterate */
#ifdef OLDWAY
COPY_3JAGGED_ARRAY(mod->pKLM, mod->iter2_pKLM, dat->uniquealleles);
if (opt->admixture && !opt->eta_constrained)
COPY_2ARRAY(mod->etaik, mod->iter2_etaik, mod->K);
else
COPY_1ARRAY(mod->etak, mod->iter2_etak, mod->K);
#else
/* EM step: current iterate is what was just previously computed in findex */
mod->pindex = mod->findex;
#endif
return 0;
} /* accelerated_em_step */
/**
* Compute step size for SQUAREM and QN1 acceleration methods. All these
* methods compute a step size to use in the update equation that uses three
* regular iterates of EM, or more precisely the last two increments from these
* three iterates. These last two increments are stored in the _model::u_*
* and _model::v_* arrays. The next position to be written is stored in
* _model::tindex.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return computed step size
*/
double step_size(options *opt, data *dat, model *mod)
{
int debug = 0;
int i, l, k, m;
int m_start;
double utu = 0;
double utvu = 0;
double vutvu = 0;
double s;
#ifndef OLDWAY
if (opt->admixture && !opt->eta_constrained) {
for (i = 0; i < dat->I; i++)
for (k = 0; k < mod->K; k++) {
utu += mod->u_etaik[mod->delta_index][i][k]
* mod->u_etaik[mod->delta_index][i][k];
utvu += mod->u_etaik[mod->delta_index][i][k]
* (mod->v_etaik[mod->delta_index][i][k]
- mod->u_etaik[mod->delta_index][i][k]);
vutvu += (mod->v_etaik[mod->delta_index][i][k]
- mod->u_etaik[mod->delta_index][i][k])
* (mod->v_etaik[mod->delta_index][i][k]
- mod->u_etaik[mod->delta_index][i][k]);
if (debug>1) fprintf(stderr, "(%d,%d): %13e %13e : %13e %13e %13e\n", i, k, mod->u_etaik[mod->delta_index][i][k], mod->v_etaik[mod->delta_index][i][k], utu, utvu, vutvu);
}
} else {
for (k = 0; k < mod->K; k++) {
utu += mod->u_etak[mod->delta_index][k]
* mod->u_etak[mod->delta_index][k];
utvu += mod->u_etak[mod->delta_index][k]
* (mod->v_etak[mod->delta_index][k]
- mod->u_etak[mod->delta_index][k]);
vutvu += (mod->v_etak[mod->delta_index][k]
- mod->u_etak[mod->delta_index][k])
* (mod->v_etak[mod->delta_index][k]
- mod->u_etak[mod->delta_index][k]);
}
}
for (k = 0; k < mod->K; k++)
for (l = 0; l < dat->L; l++) {
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
for (m = m_start; m < dat->uniquealleles[l]; m++) {
utu += mod->u_pklm[mod->delta_index][k][l][m]
* mod->u_pklm[mod->delta_index][k][l][m];
utvu += mod->u_pklm[mod->delta_index][k][l][m]
* (mod->v_pklm[mod->delta_index][k][l][m]
- mod->u_pklm[mod->delta_index][k][l][m]);
vutvu += (mod->v_pklm[mod->delta_index][k][l][m]
- mod->u_pklm[mod->delta_index][k][l][m])
* (mod->v_pklm[mod->delta_index][k][l][m]
- mod->u_pklm[mod->delta_index][k][l][m]);
}
}
#else
if (opt->admixture && !opt->eta_constrained) {
for (i = 0; i < dat->I; i++) {
mod->current_i = i;
initialize_etaiks(mod);
for (k = 0; k < mod->K; k++) {
utu += mod->U[k] * mod->U[k];
utvu += mod->U[k] * (mod->V[k] - mod->U[k]);
vutvu += (mod->V[k] - mod->U[k]) * (mod->V[k] - mod->U[k]);
if (debug>1) fprintf(stderr, "(%d,%d): %13e %13e : %13e %13e %13e\n", i, k, mod->U[k], mod->V[k], utu, utvu, vutvu);
}
}
} else {
initialize_etaks(mod);
for (k = 0; k < mod->K; k++) {
utu += mod->U[k] * mod->U[k];
utvu += mod->U[k] * (mod->V[k] - mod->U[k]);
vutvu += (mod->V[k] - mod->U[k]) * (mod->V[k] - mod->U[k]);
}
}
for (k = 0; k < mod->K; k++) {
for (l = 0; l < dat->L; l++) {
mod->current_k = k;
mod->current_l = l;
initialize_pklas(mod, dat);
m_start = dat->L_alleles
&& dat->L_alleles[l][0] == MISSING;
for (m = m_start; m < dat->uniquealleles[l]; m++) {
utu += mod->U[m] * mod->U[m];
utvu += mod->U[m] * (mod->V[m] - mod->U[m]);
vutvu += (mod->V[m] - mod->U[m]) * (mod->V[m] - mod->U[m]);
}
}
}
#endif
if (opt->accel_scheme == SQS1) {
s = utu / utvu;
} else if (opt->accel_scheme == SQS2) {
s = utvu / vutvu;
} else if (opt->accel_scheme == SQS3) {
if (sqrt(utu) < 1e-8)
return NAN;
s = -sqrt( utu / vutvu );
} else if (opt->accel_scheme == QN) {
s = - utu / utvu;
} else {
s = -1;
}
if (opt->accel_scheme < QN && s > -1)
s = -1;
if (debug)
fprintf(stderr, "step_size: %f, %f, %f -> %f\n", utu, utvu, vutvu, s);
return s;
} /* step_size */
#ifndef OLDWAY
/**
* Quasi-Newton acceleration for q>1 as per Zhou2011. This code is currently
* not optimized in any sense. In particular, most of the entries in matrix A
* need not be recomputed each call; only the row and column corresponding to
* the newest secant condition needs to be updated. Also, this code only
* implements the cases q=2 and q=3 using explicit formulae for the matrix
* inverse.
*
* KSD TODO: I'm working on avoiding extra calculations, but it seems to be
* broken. See variable first_time, set now not to trigger anything special.
*
* @param dat data object
* @param mod mod object
* @param opt options object
* @return log likelihood after acceleration step
*/
double qn_accelerated_update(options *opt, data *dat, model *mod)
{
int debug = 0;
int q1, q2;
int i, j, k, l, m, n;
int vindex = mod->delta_index ? mod->delta_index - 1 : opt->q - 1;
int uindex = vindex ? vindex - 1 : opt->q - 1;
int first_time = 1;
double utu, utv, det, ll;
if (debug)
fprintf(stderr, "%s: %d\n", __func__, mod->delta_index);
/*
if (opt->q > 3) {
message(stderr, __FILE__, __func__, __LINE__, ERROR_MSG,
INTERNAL_ERROR, "QN for q>2 not implemented");
exit(0);
}
*/
/* invert matrix */
q1 = first_time ? mod->delta_index : vindex; // index of oldest U
j = first_time ? 0 : opt->q - 1;
do {
// index of oldest U
q2 = first_time ? mod->delta_index : vindex;
n = first_time ? 0 : opt->q - 1;
do {
utu = 0;
utv = 0;
for (k=0; k<mod->K; k++) {
if (opt->admixture && !opt->eta_constrained) {
for (i=0; i<dat->I; i++) {
utu += mod->u_etaik[q1][i][k] * mod->u_etaik[q2][i][k];
utv += mod->u_etaik[q1][i][k] * mod->v_etaik[q2][i][k];
}
} else {
utu += mod->u_etak[q1][k] * mod->u_etak[q2][k];
utv += mod->u_etak[q1][k] * mod->v_etak[q2][k];
}
for (l = 0; l < dat->L; l++) {
for (m = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
m < dat->uniquealleles[l]; m++) {
utu += mod->u_pklm[q1][k][l][m] * mod->u_pklm[q2][k][l][m];
utv += mod->u_pklm[q1][k][l][m] * mod->v_pklm[q2][k][l][m];
}
}
}
mod->cutu[n] = utu; /* yes: it overwrites repeatedly, but ends saving latest update */
if (opt->q > 3)
mod->Ainv[j*opt->q + n] = utu - utv;
else
mod->A[j*opt->q + n] = utu - utv;
n++;
if (debug)
fprintf(stderr, "A[%d][%d] (%d, %d): %e - %e\n", j, n-1, q1, q2, utu, utv);
q2 = (q2 + 1) % opt->q;
} while (q2 != mod->delta_index);
q1 = (q1 + 1) % opt->q;
j++;
} while (q1 != mod->delta_index);
/* compute inverse */
if (opt->q == 1) {
mod->Ainv[0] = 1/mod->A[0];
if (debug) fprintf(stderr, "step_size: %f, %f -> %f\n", mod->A[0], mod->cutu[0], -mod->Ainv[0]*mod->cutu[0]);
} else if (opt->q == 2) {
if (debug) fprintf(stderr, " A: %e %e %e %e\n", mod->A[0], mod->A[1], mod->A[2], mod->A[3]);
det = mod->A[0]*mod->A[3] - mod->A[1]*mod->A[2];
mod->Ainv[0] = mod->A[3]/det;
mod->Ainv[3] = mod->A[0]/det;
mod->Ainv[1] = -mod->A[1]/det;
mod->Ainv[2] = -mod->A[2]/det;
if (debug)
fprintf(stderr, "Ainv: %e %e %e %e (%e)\n",
mod->Ainv[0], mod->Ainv[1],
mod->Ainv[2], mod->Ainv[3], det);
} else if (opt->q == 3) {
det = mod->A[0]*(mod->A[4]*mod->A[8] - mod->A[5]*mod->A[7])
- mod->A[1]*(mod->A[8]*mod->A[3] - mod->A[5]*mod->A[6])
+ mod->A[2]*(mod->A[3]*mod->A[7] - mod->A[4]*mod->A[6]);
mod->Ainv[0] = (mod->A[4]*mod->A[8] - mod->A[5]*mod->A[7])/det;
mod->Ainv[1] = (mod->A[2]*mod->A[7] - mod->A[1]*mod->A[8])/det;
mod->Ainv[2] = (mod->A[1]*mod->A[5] - mod->A[2]*mod->A[4])/det;
mod->Ainv[3] = (mod->A[5]*mod->A[6] - mod->A[3]*mod->A[8])/det;
mod->Ainv[4] = (mod->A[0]*mod->A[8] - mod->A[2]*mod->A[6])/det;
mod->Ainv[5] = (mod->A[2]*mod->A[3] - mod->A[0]*mod->A[5])/det;
mod->Ainv[6] = (mod->A[3]*mod->A[7] - mod->A[4]*mod->A[6])/det;
mod->Ainv[7] = (mod->A[1]*mod->A[6] - mod->A[0]*mod->A[7])/det;
mod->Ainv[8] = (mod->A[0]*mod->A[4] - mod->A[1]*mod->A[3])/det;
#ifdef LAPACK
} else {
int lwork = opt->q * opt->q;
int info;
dgetrf_(&opt->q, &opt->q, mod->Ainv, &opt->q, mod->ipiv, &info);
dgetri_(&opt->q, mod->Ainv, &opt->q, mod->ipiv, mod->work, &lwork, &info);
#endif
}
for (k=0; k<mod->K; k++) {
if (opt->admixture && !opt->eta_constrained)
for (i=0; i<dat->I; i++)
mod->vetaik[mod->tindex][i][k] = mod->vetaik[mod->pindex][i][k] + mod->u_etaik[uindex][i][k];
else
mod->vetak[mod->tindex][k] = mod->vetak[mod->pindex][k] + mod->u_etak[uindex][k];
for (l = 0; l < dat->L; l++) {
for (m = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
m < dat->uniquealleles[l]; m++)
mod->vpklm[mod->tindex][k][l][m] = mod->vpklm[mod->pindex][k][l][m]
+ mod->u_pklm[uindex][k][l][m];
if (debug>1) fprintf(stderr, "pklm[%d][%d][0]: %f -> %f\n", k, l, mod->vpklm[mod->tindex][k][l][0], mod->vpklm[mod->pindex][k][l][0]);
}
}
q1 = mod->delta_index;
j = 0;
do {
n = 0;
q2 = mod->delta_index;
do {
for (k=0; k<mod->K; k++) {
if (opt->admixture && !opt->eta_constrained)
for (i=0; i<dat->I; i++)
mod->vetaik[mod->tindex][i][k] += mod->v_etaik[q1][i][k] * mod->Ainv[j*opt->q + n] * mod->cutu[n];
else
mod->vetak[mod->tindex][k] += mod->v_etak[q1][k] * mod->Ainv[j*opt->q + n] * mod->cutu[n];
for (l = 0; l < dat->L; l++) {
for (m = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
m < dat->uniquealleles[l]; m++)
mod->vpklm[mod->tindex][k][l][m] += mod->v_pklm[q1][k][l][m] * mod->Ainv[j*opt->q + n] * mod->cutu[n];
if (debug>1) fprintf(stderr, "pklm[%d][%d][0]: %f -> %f\n", k, l, mod->vpklm[mod->tindex][k][l][0], mod->vpklm[mod->pindex][k][l][0]);
}
}
q2 = (q2 + 1) % opt->q;
n++;
} while (q2 != mod->delta_index);
q1 = (q1 + 1) % opt->q;
j++;
} while (q1 != mod->delta_index);
if (opt->do_projection) {
if (opt->admixture && !opt->eta_constrained)
for (i = 0; i < dat->I; i++) {
simplex_project_eta(mod, opt, i);
if (debug>1) fprintf(stderr, "etaik[%d][0]: %f -> %f\n", i, mod->vetaik[mod->tindex][i][0], mod->vetaik[mod->pindex][i][0]);
}
else
simplex_project_eta(mod, opt, 0);
for (k = 0; k < mod->K; k++)
for (l = 0; l < dat->L; l++)
simplex_project_pklm(mod, dat, opt, k, l);
}
ll = log_likelihood(opt, dat, mod, mod->tindex);
return ll;
} /* qn_accelerated_update */
#endif
double accelerated_update(options *opt, data *dat, model *mod, double s)
{
int debug = 0;
double ll;
int i, l, k, m, m_start;
if (debug>1) {
#ifndef OLDWAY
print_param(opt, dat, mod, mod->pindex);
print_udiff(opt, dat, mod, mod->delta_index);
print_vdiff(opt, dat, mod, mod->delta_index);
#else
print_param(opt, dat, mod, 1);
print_param_diff(opt, dat, mod, 1, 0);
print_param_diff(opt, dat, mod, 2, 1);
#endif
}
#ifndef OLDWAY
mod->delta_index = mod->delta_index ? mod->delta_index - 1 : opt->q - 1;
#endif
/* update allele frequencies */
for (l = 0; l < dat->L; l++)
for (k = 0; k < mod->K; k++) {
m_start = dat->L_alleles
&& dat->L_alleles[l][0] == MISSING;
for (m=m_start; m < dat->uniquealleles[l]; m++) {
if (opt->accel_scheme == QN)
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] =
mod->vpklm[mod->pindex][k][l][m]
+ mod->u_pklm[mod->delta_index][k][l][m]
+ s * mod->v_pklm[mod->delta_index][k][l][m];
#else
mod->pKLM[k][l][m] =
(1-s) * mod->iter1_pKLM[k][l][m]
+ s * mod->iter2_pKLM[k][l][m];
#endif
else
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] =
mod->vpklm[mod->pindex][k][l][m]
- 2*s*mod->u_pklm[mod->delta_index][k][l][m]
+ s*s*(mod->v_pklm[mod->delta_index][k][l][m]
- mod->u_pklm[mod->delta_index][k][l][m]);
#else
mod->pKLM[k][l][m] =
mod->init_pKLM[k][l][m]
- 2*s*(mod->iter1_pKLM[k][l][m] - mod->init_pKLM[k][l][m])
+ s*s*(mod->iter2_pKLM[k][l][m] - 2*mod->iter1_pKLM[k][l][m] + mod->init_pKLM[k][l][m]);
#endif
}
if (opt->do_projection)
simplex_project_pklm(mod, dat, opt, k, l);
#ifndef OLDWAY
if (debug)
fprintf(stderr, "pklm[%d][%d][0]: %f -> %f\n", k, l, mod->vpklm[mod->tindex][k][l][0], mod->vpklm[mod->pindex][k][l][0]);
#endif
}
/* update mixing proportions */
if (opt->admixture && !opt->eta_constrained) {
for (i = 0; i < dat->I; i++) {
for (k = 0; k < mod->K; k++)
if (opt->accel_scheme == QN)
#ifndef OLDWAY
mod->vetaik[mod->tindex][i][k] =
mod->vetaik[mod->pindex][i][k]
+ mod->u_etaik[mod->delta_index][i][k]
+ s * mod->v_etaik[mod->delta_index][i][k];
#else
mod->etaik[i][k] =
(1-s) * mod->iter1_etaik[i][k]
+ s * mod->iter2_etaik[i][k];
#endif
else
#ifndef OLDWAY
mod->vetaik[mod->tindex][i][k] =
mod->vetaik[mod->pindex][i][k]
- 2 * s * mod->u_etaik[mod->delta_index][i][k]
+ s * s * (mod->v_etaik[mod->delta_index][i][k]
- mod->u_etaik[mod->delta_index][i][k]);
#else
mod->etaik[i][k] =
mod->init_etaik[i][k]
- 2 * s * (mod->iter1_etaik[i][k] - mod->init_etaik[i][k])
+ s * s * (mod->iter2_etaik[i][k] - 2*mod->iter1_etaik[i][k] + mod->init_etaik[i][k]);
#endif
if (opt->do_projection)
simplex_project_eta(mod, opt, i);
}
} else {
for (k = 0; k < mod->K; k++)
if (opt->accel_scheme == QN)
#ifndef OLDWAY
mod->vetak[mod->tindex][k] =
mod->vetak[mod->pindex][k]
+ mod->u_etak[mod->delta_index][k]
+ s * mod->v_etak[mod->delta_index][k];
#else
mod->etak[k] =
(1-s) * mod->iter1_etak[k]
+ s * mod->iter2_etak[k];
#endif
else
#ifndef OLDWAY
mod->vetak[mod->tindex][k] =
mod->vetak[mod->pindex][k]
- 2 * s * mod->u_etak[mod->delta_index][k]
+ s * s * (mod->v_etak[mod->delta_index][k]
- mod->u_etak[mod->delta_index][k]);
#else
mod->etak[k] =
mod->init_etak[k]
- 2 * s * (mod->iter1_etak[k] - mod->init_etak[k])
+ s * s * (mod->iter2_etak[k] - 2*mod->iter1_etak[k] + mod->init_etak[k]);
#endif
if (opt->do_projection)
simplex_project_eta(mod, opt, -1);
}
#ifndef OLDWAY
//print_param(opt, dat, mod, mod->tindex);
ll = log_likelihood(opt, dat, mod, mod->tindex);
mod->delta_index = (mod->delta_index + 1) % opt->q;
#else
//print_param(opt, dat, mod, 0);
ll = log_likelihood(opt, dat, mod, 0);
#endif
return ll;
} /* accelerated_udpate */
#ifdef OLDWAY
/**
* Compute last two finite differences in pkla block.
*
* @param mod model object
* @param dat data object
* @return none
*/
void initialize_pklas(model *mod, data *dat)
{
int k, l, m, m_start;
l = mod->current_l;
k = mod->current_k;
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
for (m = m_start; m < dat->uniquealleles[l] ; m++) {
/* init_ -> iter1_ -> iter2_ */
mod->U[m] = mod->iter1_pKLM[k][l][m]
- mod->init_pKLM[k][l][m];
mod->V[m] = mod->iter2_pKLM[k][l][m]
- mod->iter1_pKLM[k][l][m];
}
}/* End of initialize_pklas */
/**
* Compute last two finite differences in etaik block.
*
* @param mod model object
* @return none
*/
void initialize_etaiks(model *mod)
{
int k;
/* current individual */
int i = mod->current_i;
for (k = 0; k < mod->K ; k++) {
mod->U[k] = mod->iter1_etaik[i][k]
- mod->init_etaik[i][k];
mod->V[k] = mod->iter2_etaik[i][k]
- mod->iter1_etaik[i][k];
}
} /* End of initialize_etaiks function */
/**
* Compute last two finite differences in the etak block.
*
* @param mod model object
* @return none
*/
void initialize_etaks(model *mod)
{
int k;
for (k = 0; k < mod->K; k++) {
mod->U[k] = mod->iter1_etak[k]
- mod->init_etak[k];
mod->V[k] = mod->iter2_etak[k]
- mod->iter1_etak[k];
}
} /* End of initialize_etaks function */
#endif