-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnd_init.c
705 lines (635 loc) · 19 KB
/
rnd_init.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/**
* @file rnd_init.c
* @author Arun Sethuraman
* @author Karin Dorman, kdorman@iastate.edu
* @date Tue Dec 4 22:28:19 CST 2012
*
* Functions to initialize the model. At conclusion, initial parameter values
* have been chosen and placed in _model::vpklm[0], _model::vetaik[0] or
* _model::vetak[0], and _model::cindex is set to 0. The only public function
* is initialize_model(). Initialization is done by randomly assigning
* individuals (or alleles under admixture) to initial clusters, estimating the
* parameters assuming the partition is correct
* (initialize_parameters_mixture() or initialize_parameters_admixture()), and
* then optionally doing further processing. Random assignment of individuals
* is done by a simple random partition (random_individual_partition() or
* random_allele_partition()) or by selecting random centers and clustering by
* distance (random_individual_center()) or identity (random_allele_center()).
* The additional processing involves the RandEM algorithm
* (randem_initialize_mixture() or randem_initialize_admixture()).
*
* TODO See Chen & Goodman "An empirical study of smoothing techniques for
* language modeling" CAp 2006, Conférence d'Apprentissage, Harvard University,
* Presses Universitaires de Grenoble, 1998 for more information about
* the kind of smoothing used in this file.
*/
#include <math.h>
#include "multiclust.h"
#define MAKE_1ARRAY MAKE_1ARRAY_RETURN
void test_initialization(data *dat, model *mod);
void random_initialize_mixture(options *opt, data *dat, model *mod);
int randem_initialize_mixture(options *opt, data *dat, model *mod);
void random_initialize_admixture(options *opt, data *dat, model *mod);
int randem_initialize_admixture(options *opt, data *dat, model *mod);
void random_individual_partition(data *dat, model *mod);
void random_individual_center(data *dat, model *mod);
void random_allele_partition(data *dat, model *mod);
void random_allele_center(data *dat, model *mod);
void initialize_parameters_mixture(data *dat, model *mod);
void initialize_parameters_admixture(options *opt, data *dat, model *mod);
/**
* Pick a random initialization. Set _options::initialization_procedure to
* RAND_EM to select Rand EM. Otherwise, the random initialization is
* unprocessed and sent back to the caller.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return error status
*/
int initialize_model(options *opt, data *dat, model *mod)
{
/* reset model state */
mod->n_iter = 0;
mod->logL = -INFINITY;
mod->converged = 0;
/* reset indices of parameter copies if using acceleration */
if (opt->accel_scheme) {
#ifndef OLDWAY
mod->pindex = 0;
mod->tindex = 0;
mod->findex = 0;
mod->uindex = 0; /* not necessary */
mod->vindex = 0; /* not necessary */
#endif
}
if (opt->admixture) {
if (opt->pfile && opt->qfile) {
read_qfile(opt, dat, mod);
read_pfile(opt, dat, mod);
} else if (opt->initialization_procedure == NOTHING)
random_initialize_admixture(opt, dat, mod);
else
return randem_initialize_admixture(opt, dat, mod);
} else {
if (opt->initialization_procedure == NOTHING)
random_initialize_mixture(opt, dat, mod);
else
return randem_initialize_mixture(opt, dat, mod);
}
return NO_ERROR;
} /* End of initialize_model(). */
/**
* Initialize mixture model by random partition of individuals. Setting
* _options::initialization_method to RANDOM_PARTITION selects a completely
* random partition. Otherwise RANDOM_CENTERS selects _model::K random centers
* and partitions based on proximity to the centers.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return void
*/
void random_initialize_mixture(options *opt, data *dat, model *mod)
{
if (opt->initialization_method == RANDOM_PARTITION)
random_individual_partition(dat, mod);
else
random_individual_center(dat, mod);
initialize_parameters_mixture(dat, mod);
} /* End of random_initialize_mixture(). */
/**
* Rand-EM initialization for mixture model. Run multiple initializations (by
* choosing random centers) through one step of EM and initialize with the
* initialization that gives the best log likelihood.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return void
*/
int randem_initialize_mixture(options *opt, data *dat, model *mod)
{
int i;
int n_init = mod->K > 1 ? opt->n_rand_em_init : 1;
int *I_K;
double logL;
double max_logL = -INFINITY;
MAKE_1ARRAY(I_K, dat->I);
for (i = 0; i < n_init; i++) {
/* pick random partition */
if (opt->initialization_method == RANDOM_PARTITION)
random_individual_partition(dat, mod);
else
random_individual_center(dat, mod);
/* use partition to initialize parameters */
initialize_parameters_mixture(dat, mod);
/* refine through one iteration of EM plus another E step
* since likelihood is computed one-step-late in E step */
logL = em_e_step(opt, dat, mod);
/* check for better log likelihood */
if (logL > max_logL) {
max_logL = logL;
COPY_1ARRAY(I_K, dat->I_K, dat->I);
}
}
COPY_1ARRAY(dat->I_K, I_K, dat->I);
/* estimate etak and pKLM */
initialize_parameters_mixture(dat, mod);
FREE_1ARRAY(I_K);
return NO_ERROR;
} /* End of randem_initialize_mixture(). */
/**
* Initialize the mixture model by a random partition of individuals. This is
* the simplest initialization method. It randomly assigns each observation
* (individual) to one of the K clusters.
*
* @param dat data object
* @param mod model object
* @return void
*/
void random_individual_partition(data *dat, model *mod)
{
int i;
for (i = 0; i < dat->I; i++)
dat->I_K[i] = (int) (rand() % mod->K);
} /* End of random_individual_partition(). */
/**
* Initialize the mixture model by picking random individuals. This method
* randomly picks K "center" individuals and then forms clusters by assigning
* all other individuals to the closest center individual. It populates
* mod->I_K with the assignments.
*
* @param dat data object
* @param mod model object
* @return void
*/
void random_individual_center(data *dat, model *mod)
{
int i, j, k, l, m, flag, m_start;
int center[mod->K];
double count_diff, min_count_diff;
if (mod->K == 1) {
for (i = 0; i < dat->I; i++)
dat->I_K[i] = 0;
return;
}
/* pick unique center individuals */
for (k = 0; k < mod->K; k++) {
center[k] = (int) (rand() % dat->I);
do {
flag = 0;
for (j = 0; j < k; j++) {
if (center[k] == center[j]) {
center[k] = (int) (rand() % dat->I);
flag = 1;
break;
}
}
} while (flag == 1);
}
/* assign individuals to closest center */
for (i = 0; i < dat->I; i++) {
dat->I_K[i] = 0;
if(i == center[0])
continue;
/* find closest center */
min_count_diff = INFINITY;
for (k = 0; k < mod->K; k++) {
/* this individual is a center */
if (i == center[k]) {
dat->I_K[i] = k;
break;
}
/* compute distance to kth center */
count_diff = 0;
for (l = 0; l < dat->L; l++) {
m_start = dat->L_alleles
&& dat->L_alleles[l][0] == MISSING
? 1 : 0;
for (m = m_start; m < dat->uniquealleles[l];
m++)
count_diff += abs(dat->ILM[i][l][m]
- dat->ILM[center[k]][l][m]);
/* under uniform prior model, the missing data
* has chance of matching */
if (m_start)
count_diff -= abs(dat->ILM[i][l][0]
- dat->ILM[center[0]][l][0])
/(dat->uniquealleles[l]-1.0);
}
/* record if this is closer center */
if (count_diff < min_count_diff) {
dat->I_K[i] = k;
min_count_diff = count_diff;
}
}
}
} /* End of random_individual_center(). */
/**
* Initialize model parameters based on initial partition of individuals.
*
* @param dat data object
* @param mod model object
* @return void
*/
void initialize_parameters_mixture(data *dat, model *mod)
{
int k, l, m, i, m_start;
double temp;
/* estimate estak */
for (k = 0; k < mod->K; k++)
#ifndef OLDWAY
mod->vetak[mod->tindex][k] = 1; /* avoid 0 */
#else
mod->etak[k] = 1; /* avoid 0 */
#endif
for (i = 0; i < dat->I; i++)
#ifndef OLDWAY
mod->vetak[mod->tindex][dat->I_K[i]]++;
#else
mod->etak[dat->I_K[i]]++;
#endif
for (k = 0; k < mod->K; k++)
#ifndef OLDWAY
mod->vetak[mod->tindex][k] /= dat->I + mod->K;
#else
mod->etak[k] /= dat->I + mod->K;
#endif
/* estimate pKLM */
for (k = 0; k < mod->K; k++)
for (l = 0; l < dat->L; l++) {
/* ignore possible missing data */
m_start = (dat->L_alleles
&& dat->L_alleles[l][0] == MISSING);
for (m = m_start; m < dat->uniquealleles[l]; m++) {
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] = 1.0; /* avoid 0 */
#else
mod->pKLM[k][l][m] = 1.0; /* avoid 0 */
#endif
for (i = 0; i < dat->I; i++) {
if (dat->ILM[i][l][m] == 0)
continue;
#ifndef OLDWAY
mod->vpklm[mod->tindex][dat->I_K[i]][l][m]
#else
mod->pKLM[dat->I_K[i]][l][m]
#endif
+= dat->ILM[i][l][m];
}
}
}
/* normalize pKLM */
for (k = 0; k < mod->K; k++)
for (l = 0; l < dat->L; l++) {
m_start = (dat->L_alleles
&& dat->L_alleles[l][0] == MISSING);
temp = 0.0;
for (m = m_start; m < dat->uniquealleles[l]; m++)
#ifndef OLDWAY
temp += mod->vpklm[mod->tindex][k][l][m];
#else
temp += mod->pKLM[k][l][m];
#endif
for(m = m_start; m < dat->uniquealleles[l]; m++)
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] /= temp;
#else
mod->pKLM[k][l][m] /= temp;
#endif
}
} /* End of initialize_parameters_mixture(). */
/**
* Initialize parameters by randomly assigning alleles to populations.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return void
*/
void random_initialize_admixture(options *opt, data *dat, model *mod)
{
if (opt->initialization_method == TESTING)
test_initialization(dat, mod);
else
random_allele_partition(dat, mod);
m_step_admixture(opt, dat, mod);
} /* End of random_initialize_admixture(). */
void test_initialization(data *dat, model *mod)
{
int debug = 0;
int i, l, m, k, a, s = 0;
for (i = 0; i < dat->I; i++) {
for (l = 0; l < dat->L; l++) {
int m_start = dat->L_alleles
&& dat->L_alleles[l][0] == MISSING;
for (m = m_start; m < dat->uniquealleles[l]; m++)
for (k = 0; k < mod->K; k++)
mod->diklm[i][k][l][m] = 0;
for (a = 0; a < dat->ploidy; a++) {
k = s++ % mod->K;
/* alleles are not array indices */
if (dat->L_alleles) {
for (m = m_start;
m < dat->uniquealleles[l]; m++)
if (dat->IL[2*i + a][l]
== dat->L_alleles[l][m]) {
mod->diklm[i][k][l][m] = 1;
if (debug)
fprintf(stdout,
"%d %d "
"%d: %d*\n",
i, l,
dat->L_alleles[l][m],
k);
}
/* alleles are array indices */
} else {
mod->diklm[i][k][l][dat->IL[2*i + a][l]]
= 1;
if (debug)
fprintf(stdout, "%d %d %d: %d\n",
i, l, dat->IL[2*i + a][l], k);
}
}
}
}
} /* test_initialization */
/**
* Randomly initialize algorithm using RandEM. For _options::n_init times, randomly initialize the parameters using
* random_allele_center(), run one round of EM, and record
* the initialization with highest log likelihood.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return error status
*/
int randem_initialize_admixture(options *opt, data *dat, model *mod)
{
int i;
int n_init = mod->K > 1 ? opt->n_rand_em_init : 1;
int n_haplotypes = dat->I * dat->ploidy;
int **IL_K_max;
double logL;
double max_logL = -INFINITY;
MAKE_2ARRAY(IL_K_max, n_haplotypes, dat->L);
for (i = 0; i < n_init; i++) {
/* randomly initialize */
random_allele_center(dat, mod);
initialize_parameters_admixture(opt, dat, mod);
/* one iteration of EM */
logL = em_e_step(opt, dat, mod);
if (logL > max_logL) {
max_logL = logL;
COPY_2ARRAY(IL_K_max, dat->IL_K, dat->L);
}
}
COPY_2ARRAY(dat->IL_K, IL_K_max, dat->L);
/* Update etak and KLM by the I_K which has the highest logL. */
initialize_parameters_admixture(opt, dat, mod);
FREE_2ARRAY(IL_K_max);
return NO_ERROR;
} /* End of randem_initialize_admixture(). */
/**
* Randomly initialize the admixture model with random partition. This is the
* simplest initialization method. It randomly assigns each observed allele to
* one of the K clusters.
*
* @param dat data object
* @param mod model object
* @return void
*/
void random_allele_partition(data *dat, model *mod)
{
int i, l, k, a, m, m_start;
for (i = 0; i < dat->I; i++)
for (l = 0; l < dat->L; l++) {
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
for (k = 0; k < mod->K; k++)
for (m = m_start; m < dat->uniquealleles[l]; m++)
mod->diklm[i][k][l][m] = 0;
for (a = 0; a < dat->ploidy; a++) {
k = (int) rand() % mod->K;
/* alleles are not array indices */
if (dat->L_alleles) {
for (m = m_start; m < dat->uniquealleles[l]; m++)
if (dat->IL[dat->ploidy*i + a][l] == dat->L_alleles[l][m]) {
mod->diklm[i][k][l][m] = 1;
//fprintf(stderr, "%d %d %d: %d\n", i, l, dat->IL[2*i + a][l], k);
}
/* alleles are array indices */
} else {
mod->diklm[i][k][l][dat->IL[dat->ploidy*i + a][l]] = 1;
}
// dat->IL_K[2*i+a][l] = (int) rand() % mod->K;
}
}
} /* End of random_allele_partition(). */
/**
* Randomly intialize the admixture model with random centers. This method
* picks a "center" allele from the uniquealleles and then randomly associates
* that allele to subpopulation k. Then, observed alleles are assigned to
* clusters based on identity with the centers.
*
* TODO There is nothing particular optimal about this approach.
*
* @param dat data object
* @param mod model object
* @return void
*/
void random_allele_center(data *dat, model *mod)
{
int i, j, l, k, z_start, z_end, i_l, flag;
int m_start;
int n_haplotypes = dat->I * dat->ploidy;
int center[mod->K];
/* one subpopulation: all alleles come from subpopulation 0 */
if (mod->K == 1) {
for (i=0; i < n_haplotypes; i++)
for (l = 0; l < dat->L; l++)
dat->IL_K[i][l] = 0;
return;
}
/* for each locus */
for (l = 0; l < dat->L; l++) {
/* check for missing data at this locus */
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING
? 1 : 0;
/* pick center allele for each cluster from uniquealleles */
/* fewer alleles than centers; use all alleles */
if (dat->uniquealleles[l] - m_start < mod->K) {
for (k = m_start; k < dat->uniquealleles[l]; k++)
center[k] = k;
for (k = dat->uniquealleles[l]; k < mod->K; k++)
center[k] = -1;
/* more alleles than centers; assign alleles randomly */
} else {
for (k = 0; k < mod->K; k++) {
/* choose center allele at random */
center[k] = m_start + (int) rand()
% (dat->uniquealleles[l] - m_start);
/* make sure it is unique */
do {
flag = 0;
for (j = 0; j < k; j++) {
if (center[k] == center[j]) {
center[k] = m_start
+ (int) rand()
% (dat->uniquealleles[l] - m_start);
flag = 1;
break;
}
}
} while (flag == 1);
}
}
/* assign alleles by identity with centers, or randomly */
z_end = 0;
for (i = 0; i < dat->I; i++) {
z_start = z_end;
z_end += dat->ploidy;
/* for each allele */
for (i_l = z_start; i_l < z_end; i_l++) {
flag = 0;
/* assign to cluster when it matches */
for (k = 0; k < mod->K; k++) {
if (center[k] == -1)
break;
/* allele matches a center */
if (dat->L_alleles && dat->IL[i_l][l]
== dat->L_alleles[l][center[k]]) {
dat->IL_K[i_l][l] = k;
flag = 1;
break;
} else if (!dat->L_alleles &&
dat->IL[i_l][l] == center[k]) {
dat->IL_K[i_l][l] = k;
flag = 1;
break;
}
}
/* no matching center allele: assign randomly */
if (flag == 0)
dat->IL_K[i_l][l] = (int) rand() % mod->K;
}
}
}
} /* End of random_allele_center(). */
/**
* Initialize parameters given initial assignment of alleles to populations.
*
* @param opt options object
* @param dat data object
* @param mod model object
* @return void
*/
void initialize_parameters_admixture(options *opt, data *dat, model *mod)
{
int k, l, m, i, i_l, m_start, z_start = 0, z_end = 0;
int n_haplotypes = dat->I * dat->ploidy;
double temp = 0.0;
/* estimate etaks or etaiks */
if (opt->eta_constrained) {
temp = dat->ploidy*dat->L*dat->I + mod->K; /* was BUG: normalized wrong */
for (k=0; k<mod->K; k++)
#ifndef OLDWAY
mod->vetak[mod->tindex][k] = 1;
#else
mod->etak[k] = 1;
#endif
for (i=0; i<n_haplotypes; i++)
for (l=0; l<dat->L; l++)
#ifndef OLDWAY
mod->vetak[mod->tindex][dat->IL_K[i][l]]++;
#else
mod->etak[dat->IL_K[i][l]]++;
#endif
for (k=0; k<mod->K; k++)
#ifndef OLDWAY
mod->vetak[mod->tindex][k] /= temp;
#else
mod->etak[k] /= temp;
#endif
} else {
temp = dat->ploidy*dat->L + mod->K; /* was BUG: normalized wrong */
for (i = 0; i < dat->I; i++) { /* individual */
z_start = z_end;
z_end += dat->ploidy;
for (k = 0; k < mod->K; k++)
#ifndef OLDWAY
mod->vetaik[mod->tindex][i][k] = 1; /* avoid 0 */
#else
mod->etaik[i][k] = 1; /* avoid 0 */
#endif
for (i_l = z_start; i_l < z_end; i_l++)
for (l = 0; l < dat->L; l++)
#ifndef OLDWAY
mod->vetaik[mod->tindex][i][dat->IL_K[i_l][l]]++;
#else
mod->etaik[i][dat->IL_K[i_l][l]]++;
#endif
/* normalize */
for (k = 0; k < mod->K; k++)
#ifndef OLDWAY
mod->vetaik[mod->tindex][i][k] /= temp;
#else
mod->etaik[i][k] /= temp;
#endif
}
}
/* estimate pKLM */
for (l = 0; l < dat->L; l++) { /* locus */
/* 0th allele may be missing */
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
for (m = m_start; m < dat->uniquealleles[l]; m++)/* allele */
for (k = 0; k < mod->K; k++) /* population */
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] = 1.0; /* avoid 0 */
#else
mod->pKLM[k][l][m] = 1.0; /* avoid 0 */
#endif
}
for (i = 0; i < n_haplotypes; i++) /* haplotype */
for (l = 0; l < dat->L; l++) { /* locus */
/* allele names are not indices */
if (dat->L_alleles) {
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
/* [TODO] Inefficient. Store indices in IL and map to
* allele name as it appears in data file only when
* interfacing with user. */
for (m = m_start; m < dat->uniquealleles[l]; m++)
if (dat->IL[i][l] == dat->L_alleles[l][m])
#ifndef OLDWAY
mod->vpklm[mod->tindex][dat->IL_K[i][l]][l][m]++;
#else
mod->pKLM[dat->IL_K[i][l]][l][m]++;
#endif
} else {
#ifndef OLDWAY
mod->vpklm[mod->tindex][dat->IL_K[i][l]][l][dat->IL[i][l]]++;
#else
mod->pKLM[dat->IL_K[i][l]][l][dat->IL[i][l]]++;
#endif
}
}
/* normalize */
for (k = 0; k < mod->K; k++) /* population */
for (l = 0; l < dat->L; l++) { /* locus */
m_start = dat->L_alleles && dat->L_alleles[l][0] == MISSING;
temp = 0;
for (m = m_start; m < dat->uniquealleles[l]; m++)
#ifndef OLDWAY
temp += mod->vpklm[mod->tindex][k][l][m];
#else
temp += mod->pKLM[k][l][m];
#endif
for (m = m_start; m < dat->uniquealleles[l]; m++)
#ifndef OLDWAY
mod->vpklm[mod->tindex][k][l][m] /= temp;
#else
mod->pKLM[k][l][m] /= temp;
#endif
}
} /* End of initialize_parameters_admixture(). */