-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
397 lines (314 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""
This will train a NN which will receive an input of photometric stereo + lights, and output a normal map
CUDA_VISIBLE_DEVICES=1,3 OMP_NUM_THREADS=4 python -m torch.distributed.run --nproc_per_node=2 train.py --use_clearml=True --base_dir=/home/akarnieli/fdata
"""
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from model import ViT_normals, ShadowDecoder, LightEst
import torchvision
import os, sys
import torch
import torch.distributed as dist
import argparse
from clearml import Task, Logger
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('pdf')
from torch import nn
import torch.utils.data
from datasets.blobby_dataset import Synth_Dataset
from datasets.blender_dataset import BlenderDataset
import logging
logging.getLogger('PIL').setLevel(logging.WARNING)
def eval_norm(model, args, loader, epoch, num_imgs=32, shadow_model=None, light_model=None, return_save=False):
local_rank = int(os.environ['LOCAL_RANK'])
model.eval()
if shadow_model is not None:
shadow_model.eval()
if light_model is not None:
light_model.eval()
with torch.no_grad():
cos_s = nn.CosineSimilarity(dim=1)
running_acc = 0.0
running_light_acc = 0.0
running_shadow_acc = 0.0
cnt = 0
for iteration, sample in enumerate(loader):
# idx = iteration
norm_gt, imgs, silhouette = sample['normal_gt'], sample['imgs'], sample['silhouette']
light = sample['light']
norm_gt, imgs, silhouette, light = norm_gt.to(local_rank), imgs.to(local_rank), silhouette.to(local_rank), light.to(local_rank)
if shadow_model is not None:
shadows_gt = sample['shadows'].to(local_rank)
# split to patches, feed to model, then combine back
normal_hat, merged_features = model(imgs)
normal_hat = torch.nn.functional.normalize(normal_hat, dim=1)
if light_model is not None:
light_hat = light_model(merged_features)
if shadow_model is not None:
shadows_hat = shadow_model(merged_features)
normals = (normal_hat * silhouette).clamp(-1, 1)
norm_gt *= silhouette
cos_theta = cos_s(normals, norm_gt)
ones = torch.ones_like(cos_theta)
cos_theta = torch.where(cos_theta == 0, ones, cos_theta) # cosine_sim returns 0 when compares 2 zero vectors
error_map = torch.acos(cos_theta.clamp(-1, 1)) # [0, 2*pi]
if shadow_model is not None:
shadow_err = torch.abs(shadows_hat - shadows_gt).mean()
running_shadow_acc += shadow_err
else:
light_err = torch.arccos(torch.dot(light_hat.flatten(), light.flatten())
/ (torch.linalg.norm(light_hat.view(-1, 3)) * torch.linalg.norm(light.view(-1, 3))))
running_light_acc += light_err
normals = (normals + 1) / 2
norm_gt = (norm_gt + 1) / 2
angular_map = (error_map * 180.0 / np.pi) * silhouette
mean_angle_err = angular_map.sum() / silhouette.sum()
running_acc += mean_angle_err
cnt += 1
# draw some samples...
# writer.add_image(f"eval normals_#{num_imgs}", normals[0], epoch)
# writer.add_image(f"GT normals_#{num_imgs}", norm_gt[0], epoch)
# writer.add_image(f"normal error map_#{num_imgs}", error_map[0].unsqueeze(0), epoch)
idx_smp = np.random.randint(0, max(norm_gt.shape[0], 0))
g = [norm_gt[idx_smp], normals[idx_smp], error_map[idx_smp].repeat(3, 1, 1)]
grid1 = torchvision.utils.make_grid(g)
writer.add_image(f"eval #_{num_imgs}: GT normal, pred_normal, err_map", grid1, epoch)
if shadow_model is not None:
bb, ss, _, _ = shadows_gt.shape
bb = torch.randint(0, bb, [1])[0]
ss = torch.randint(0, ss, [1])[0]
g = [shadows_gt[bb, ss].unsqueeze(0), shadows_hat[bb, ss].unsqueeze(0), torch.abs(shadows_gt[bb, ss] - shadows_hat[bb, ss]).unsqueeze(0)]
grid1 = torchvision.utils.make_grid(g)
writer.add_image(f"eval #_{num_imgs}: GT shadow, pred_shadow, diff", grid1, epoch)
running_shadow_acc /= cnt
writer.add_scalar(f"eval: mean shadow error #{num_imgs}", running_shadow_acc, epoch)
else: # on none-blender data, not drawing shadows, so testing light.
fig1 = plt.figure(1)
light_hat_draw = light_hat.reshape(-1, 3).cpu()
light_draw = light.reshape_as(light_hat_draw).cpu()
plt.scatter(light_hat_draw[:, 0], light_hat_draw[:, 1], c=light_hat_draw[:, 2])
plt.colorbar()
for i, t in enumerate(light_hat_draw[:, 2]):
plt.annotate(i, (light_hat_draw[:, 0][i], light_hat_draw[:, 1][i]))
if args.use_clearml and local_rank==0:
Logger.current_logger().report_matplotlib_figure(title="Images",
series="Light Pred projections", iteration=epoch, figure=plt, report_image=True)
fig1.clear()
fig2 = plt.figure(1)
plt.scatter(light_draw[:, 0], light_draw[:, 1], c=light_draw[:, 2])
plt.colorbar()
for i, t in enumerate(light_draw[:, 2]):
plt.annotate(i, (light_draw[:, 0][i], light_draw[:, 1][i]))
Logger.current_logger().report_matplotlib_figure(title="Images",
series="Light GT projections", iteration=epoch, figure=plt, report_image=True)
fig2.clear()
running_light_acc /= cnt
writer.add_scalar(f"eval: mean angle light error #{num_imgs}", running_light_acc, epoch)
running_acc /= cnt
writer.add_scalar(f"eval: mean angle error_#{num_imgs}", running_acc, epoch)
print(f'validation set - mean angle error_#{num_imgs} = {running_acc}')
if running_acc.item() < args.best_err and return_save:
args.best_err = running_acc.item()
return True
return False
def get_data(args, local_rank, world_size):
train_set = BlenderDataset(args, args.blender_data_dir, 'train', patch_size=128, num_val=5)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset=train_set, shuffle=False, rank=local_rank,num_replicas=world_size)
blender_train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, sampler=train_sampler,
pin_memory=False, shuffle=False)
val_set = BlenderDataset(args, args.blender_data_dir, 'test', num_val=5, patch_size=None)
blender_test_loader = torch.utils.data.DataLoader(val_set, batch_size=args.val_batch, num_workers=args.workers,
pin_memory=False, shuffle=False)
train_sets = []
val_sets = []
train_sets.append(Synth_Dataset(args, args.sculpture_data_dir, 'train', patch_size=64, subset=None))
val_sets.append(Synth_Dataset(args, args.sculpture_data_dir, 'val', patch_size=None, subset=4))
train_sets.append(Synth_Dataset(args, args.blobby_data_dir, 'train', patch_size=64, subset=None))
val_sets.append(Synth_Dataset(args, args.blobby_data_dir, 'val', patch_size=None, subset=4))
train_set_ = torch.utils.data.ConcatDataset(train_sets)
val_set_ = torch.utils.data.ConcatDataset(val_sets)
train_sampler_ = torch.utils.data.distributed.DistributedSampler(dataset=train_set_, shuffle=False, rank=local_rank,num_replicas=world_size)
blobby_sculpt_train_loader = torch.utils.data.DataLoader(train_set_, batch_size=int(args.batch) * 4, sampler=train_sampler_,
num_workers=args.workers, pin_memory=False, shuffle=False)
blobby_sculpt_test_loader = torch.utils.data.DataLoader(val_set_, batch_size=args.val_batch, num_workers=args.workers,
pin_memory=False, shuffle=False)
return blender_train_loader, blender_test_loader, blobby_sculpt_train_loader, blobby_sculpt_test_loader
def train_encoder_net(args):
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
if args.use_clearml and local_rank==0:
task = Task.init(project_name="shadow_light_extraction_model", task_name=task_name)
blender_train_loader, blender_test_loader, blobby_sculpt_train_loader, blobby_sculpt_test_loader = get_data(args, local_rank, world_size)
dim = 3 * args.patch_size ** 2
encoder_net = ViT_normals(
args=args,
image_size=128,
patch_size=args.patch_size,
dim=dim,
depth=5,
heads=16,
mlp_dim=1024,
dropout=0.1,
emb_dropout=0.1,
pool='cls'
)
encoder_net = encoder_net.to(local_rank)
encoder_net = nn.parallel.DistributedDataParallel(encoder_net, device_ids=[local_rank], find_unused_parameters=False)
shadow_net = ShadowDecoder(dim=dim, patch_size=args.patch_size, args=args).to(local_rank)
shadow_net = nn.parallel.DistributedDataParallel(shadow_net, device_ids=[local_rank], find_unused_parameters=False)
light_net = LightEst(dim=dim, args=args).to(local_rank)
light_net = nn.parallel.DistributedDataParallel(light_net, device_ids=[local_rank], find_unused_parameters=False)
# model_parameters = filter(lambda p: p.requires_grad, encoder_net.parameters())
# params = sum([np.prod(p.size()) for p in model_parameters])
# print(f"num of model parameters = {params}")
cosine_loss = nn.CosineEmbeddingLoss()
models_params = list(encoder_net.parameters()) + list(shadow_net.parameters()) + list(light_net.parameters())
normal_optimizer = torch.optim.Adam(models_params, args.learning_rate, weight_decay=1e-7)
normal_scheduler = torch.optim.lr_scheduler.StepLR(normal_optimizer, step_size=100, gamma=0.9, verbose=False)
if args.checkpoint:
print(f"Loading from checkpoint {args.checkpoint}")
checkpoint = torch.load(args.checkpoint)
encoder_net.load_state_dict(checkpoint['model_state_dict'])
# normal_optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if not args.restart_epochs:
args.start_epoch = checkpoint['epoch']
shadow_net.load_state_dict(checkpoint['shadow_model_state_dict'])
light_net.load_state_dict(checkpoint['light_model_state_dict'])
for epoch in range(args.start_epoch-1, args.epochs+1):
# blender_train_loader.sampler.set_epoch(epoch)
print("Starting epoch {}".format(epoch))
if epoch % 5 == 0 and local_rank == 0:
# blender_test_loader.sampler.set_epoch(epoch)
save_model = eval_norm(encoder_net, args, blender_test_loader, epoch, num_imgs=32, shadow_model=shadow_net,
return_save=True)
# eval_norm(encoder_net, args, blender_test_loader, epoch, num_imgs=24, shadow_model=shadow_net)
# eval_norm(encoder_net, args, blender_test_loader, epoch, num_imgs=16, shadow_model=shadow_net)
eval_norm(encoder_net, args, blobby_sculpt_test_loader, epoch, num_imgs=30, light_model=light_net)
if save_model:
print(f"saving model to {os.path.join(args.save_dir, args.task_name + '_snapshot.pth')}")
torch.save({
'epoch': epoch,
'model_state_dict': encoder_net.state_dict(),
'optimizer_state_dict': normal_optimizer.state_dict(),
'shadow_model_state_dict': shadow_net.state_dict(),
'light_model_state_dict': light_net.state_dict(),
},
os.path.join(args.save_dir, args.task_name + "_snapshot.pth"))
encoder_net.train() # Set model to training mode
shadow_net.train()
running_normal_loss = 0.0
for iteration, sample in enumerate(blender_train_loader):
# train_set.in_img_num = random.randint(24, 32) # FIXME!!!!
normal_gt, imgs, silhouette = sample['normal_gt'], sample['imgs'], sample['silhouette']
normal_gt, imgs, silhouette = normal_gt.to(local_rank), imgs.to(local_rank), silhouette.to(local_rank)
shadows_gt = sample['shadows'].to(local_rank)
"""" Train normal net """
encoder_net.zero_grad(set_to_none=True)
shadow_net.zero_grad(set_to_none=True)
light_net.zero_grad(set_to_none=True)
normal_hat, merged_features = encoder_net(imgs)
normal_hat_normed = torch.nn.functional.normalize(normal_hat, dim=1)
# cosine loss
encoder_net_loss = cosine_loss(normal_hat_normed.permute(0,2,3,1).contiguous().view(-1, 3),
normal_gt.permute(0,2,3,1).contiguous().view(-1, 3),
torch.ones(normal_hat.nelement()//3).to(local_rank))
# light_err = torch.arccos(torch.dot(light_hat.flatten(), light.flatten())
# / (torch.linalg.norm(light_hat.view(-1, 3)) * torch.linalg.norm(light.view(-1, 3))))
loss = encoder_net_loss
# if not torch.isnan(light_err):
# loss += 0.1 * light_err
shadows = shadow_net(merged_features)
loss += 5 * (torch.abs(shadows - shadows_gt).mean() + (torch.abs(shadows-shadows_gt)**2).mean())
loss.backward()
running_normal_loss += encoder_net_loss.item()
normal_optimizer.step()
if iteration == 50: # print every 2000 mini-batches
print('[%d, %5d] normals loss: %.5f' % (epoch, iteration + 1, running_normal_loss / iteration))
writer.add_scalar("train: loss", running_normal_loss / iteration, epoch)
running_normal_loss = 0.0
normal_scheduler.step()
writer.add_scalar("learning_rate", normal_scheduler.get_last_lr()[0], epoch)
if epoch % 5 == 0:
# blobby_sculpt_train_loader.sampler.set_epoch(epoch)
for iteration, sample in enumerate(blobby_sculpt_train_loader):
# train_set.in_img_num = random.randint(24, 32) ### FIXME!!!
normal_gt, imgs, silhouette = sample['normal_gt'], sample['imgs'], sample['silhouette']
normal_gt, imgs, silhouette = normal_gt.to(local_rank), imgs.to(local_rank), silhouette.to(local_rank)
light = sample['light'].to(local_rank)
"""" Train normal net """
encoder_net.zero_grad(set_to_none=True)
#if args.output_shadows:
shadow_net.zero_grad(set_to_none=True)
light_net.zero_grad(set_to_none=True)
normal_hat, merged_features = encoder_net(imgs)
light_hat = light_net(merged_features)
normal_hat_normed = torch.nn.functional.normalize(normal_hat, dim=1)
# cosine loss
loss = cosine_loss(normal_hat_normed.permute(0, 2, 3, 1).contiguous().view(-1, 3),
normal_gt.permute(0, 2, 3, 1).contiguous().view(-1, 3),
torch.ones(normal_hat.nelement() // 3).to(local_rank))
light_err = torch.arccos(torch.dot(light_hat.flatten(), light.flatten())
/ (torch.linalg.norm(light_hat.view(-1, 3)) * torch.linalg.norm(light.view(-1, 3)) + 1e-8)
)
if not torch.isnan(light_err):
loss += 0.1 * light_err
else:
print(f"light_hat={light_hat}")
print("!!! light err has nan")
quit()
loss.backward()
normal_optimizer.step()
if __name__ == '__main__':
def init_distributed(args):
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
env_dict = {
key: os.environ[key]
for key in ("MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE")
}
print(f"[{os.getpid()}] Initializing process group with: {env_dict}")
# # only works with torch.distributed.launch // torch.run
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
dist.init_process_group(
backend="nccl",
# init_method=dist_url,
world_size=world_size,
rank=rank
)
train_encoder_net(args)
# Tear down the process group
dist.destroy_process_group()
print("Start training")
print(f"Command ran: {str(sys.argv)}")
parser = argparse.ArgumentParser(description='Description of your program')
parser.add_argument('-lr', '--learning_rate', help='Description ', default=8e-5)
parser.add_argument('-d', '--dev', help='device: cuda', required=False, default='cuda')
parser.add_argument('--epochs', help='epochs', required=False, type=int, default=500)
parser.add_argument('--start_epoch', default=1, type=int)
parser.add_argument('--checkpoint', help='Checkpoint to continue training from', default=None)
parser.add_argument('--save_dir', help='dir to save models ', default='/tmp/deep_shadow/models/')
parser.add_argument('--use_clearml', help='Use clear-ml for logging ', default=False)
parser.add_argument("--base_dir", required=False, default='.')
# parser.add_argument("--local_world_size", type=int, default=1)
args = parser.parse_args()
args.seed = 123
args.best_err = 5000
args.epochs = 1000
args.batch = 10
args.val_batch = 2
args.workers = 8
args.patch_size = 8
args.rand_layer_skip = False
args.restart_epochs = True # when loading checkpoint, start from epoch 0
args.dim = 16
args.data_dir = f'{args.base_dir}/PS_Sculpture_Dataset/'
args.save_dir = f'{args.base_dir}/models/'
args.blender_data_dir = f'{args.base_dir}/blender_data/'
args.blobby_data_dir = f'{args.base_dir}/PS_Blobby_Dataset/'
args.sculpture_data_dir = f'{args.base_dir}/PS_Sculpture_Dataset/'
task_name = f"shadow_normals_lights_depth5_heads16_patch_size8_batch10_lr{args.learning_rate}_shadow_conv_head"
writer = SummaryWriter(task_name.replace(" ", "_"))
torch.manual_seed(args.seed)
args.task_name = task_name.replace(" ", "_")
init_distributed(args)