-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcalculate_roc_auc.py
executable file
·176 lines (150 loc) · 6.3 KB
/
calculate_roc_auc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
################################################################################
# Copyright (c) 2016 Artsiom Sanakoyeu
#
# Script for calculating ROC AUC for categories of Olympic Sports dataset
# given a similarity matrix.
################################################################################
from os.path import join
import numpy as np
import h5py
import scipy.interpolate
import scipy.io
import deepdish.io as dio
import sklearn.metrics as sklm
POS_LABEL = 1
# path to the directory with labels
HDF5_LABELS_DIR = 'data/labels_hdf5_19.02.16'
def covert_labels_to_dict(f):
"""
Compute dict containing all info about labels.
Pos label is 1, neg label is 0.
Args:
f: dictionary that was read from hdf5 file.
"""
d = dict()
assert f['anchors'].ndim == 1
n_anchors = f['anchors'].shape[0]
assert f['pos_ids'].shape[0] == f['neg_ids'].shape[0] == n_anchors
assert f['neg_flipvals'].shape[0] == f['pos_flipvals'].shape[0] == n_anchors
d['anchors'] = np.asarray(f['anchors'], dtype=np.int32)
d['ids'] = [None] * n_anchors
d['labels'] = [None] * n_anchors
d['flipvals'] = [None] * n_anchors
for i in xrange(n_anchors):
d['ids'][i] = np.hstack([np.asarray(f['pos_ids'][i], dtype=np.int32),
np.asarray(f['neg_ids'][i], dtype=np.int32)])
d['labels'][i] = np.hstack([np.ones(f['pos_ids'][i].shape, dtype=np.bool),
np.zeros(f['neg_ids'][i].shape, dtype=np.bool)])
assert np.sum(d['labels'][i]) == f['pos_ids'][i].shape[0]
d['flipvals'][i] = np.hstack([np.asarray(f['pos_flipvals'][i], dtype=np.bool),
np.asarray(f['neg_flipvals'][i], dtype=np.bool)])
assert np.sum(d['flipvals'][i]) == np.sum(f['pos_flipvals'][i]) + np.sum(
f['neg_flipvals'][i])
return d
def get_pr_auc(labels, scores, pos_class=1):
labels_gt = labels == pos_class
precision, recall, _ = \
sklm.precision_recall_curve(labels_gt,
scores,
pos_label=1)
average_precision = sklm.auc(recall, precision)
return average_precision
def get_roc_auc(labels, scores, pos_class=1):
labels_gt = labels == pos_class
fpr, tpr, thresholds = sklm.roc_curve(labels_gt, scores, pos_label=pos_class)
roc_auc = sklm.auc(fpr, tpr, reorder=True)
return roc_auc, fpr, tpr
def compute_interpolated_roc_auc(labels_dict, false_pos_rate_list, true_pos_rate_list):
"""
Average results: interpolation for all anchors at 101 grid points.
Get joined ROC Curve by averaging interpolated values at grid points.
Args:
labels_dict: dict of labels
false_pos_rate_list: i-th element is the list of false positive rates for the i-th anchor
true_pos_rate_list: i-th element is the list of true positive rates for the i-th anchor
Return: joined ROC AUC
"""
if len(false_pos_rate_list) != len(true_pos_rate_list):
raise ValueError('fpr and tpr lists must be of the same size')
grid_x = np.linspace(0, 1, num=101, endpoint=True)
assert len(grid_x) == 101
# grid_x = np.unique(np.hstack(false_pos_rate_list))
grid_y = np.zeros((len(labels_dict['anchors']), len(grid_x)))
for i in xrange(len(labels_dict['anchors'])):
func = scipy.interpolate.interp1d(false_pos_rate_list[i],
true_pos_rate_list[i],
kind='linear', bounds_error=True)
grid_y[i][...] = func(grid_x)
mean_y = np.mean(grid_y, axis=0)
interp_roc_auc = sklm.auc(grid_x, mean_y, reorder=True)
return interp_roc_auc
def compute_roc(d, sim):
stacked_sim_matrix = np.stack([sim['simMatrix'], sim['simMatrix_flip']], axis=2)
assert stacked_sim_matrix.ndim == 3 and stacked_sim_matrix.shape[2] == 2
assert stacked_sim_matrix[0, 0, 0] > stacked_sim_matrix[0, 0, 1]
roc_auc_list = list()
false_pos_rate_list = list()
true_pos_rate_list = list()
for i, anchor_id in enumerate(d['anchors']):
scores = [stacked_sim_matrix[anchor_id, frame_id, flipval] for frame_id, flipval in
zip(d['ids'][i], d['flipvals'][i].astype(int))]
assert len(scores) == len(d['ids'][i])
roc_auc, fpr, tpr = get_roc_auc(d['labels'][i], scores, pos_class=1)
roc_auc_list.append(roc_auc)
false_pos_rate_list.append(fpr)
true_pos_rate_list.append(tpr)
interp_roc_auc = compute_interpolated_roc_auc(d, false_pos_rate_list, true_pos_rate_list)
return interp_roc_auc, roc_auc_list
def compute_roc_auc_from_sim(category, path_sim_matrix, is_quiet=False):
"""
Args:
category: category name
path_sim_matrix: path to the similarity matrix
is_quiet: if False output extra information
Returns:
roc_auc: average ROC AUC for all labeled anchors.
"""
if not is_quiet:
print 'Sim matrix path:', path_sim_matrix
try:
sim = scipy.io.loadmat(path_sim_matrix)
except NotImplementedError:
# matlab v7.3 file
sim = dio.load(path_sim_matrix)
labels_path = join(HDF5_LABELS_DIR, 'labels_{}.hdf5'.format(category))
with h5py.File(labels_path, mode='r') as f:
d = covert_labels_to_dict(f)
roc_auc, roc_auc_list = compute_roc(d, sim)
print '{} n_acnhors: {} ROC_AUC: {:.3f}'.format(category, len(
d['anchors']), roc_auc)
return roc_auc
def run_all_cat():
categories = [
'bowling',
'long_jump',
'basketball_layup',
'clean_and_jerk',
'discus_throw',
'diving_platform_10m',
'diving_springboard_3m',
'hammer_throw',
'high_jump',
'javelin_throw',
'pole_vault',
'shot_put',
'snatch',
'tennis_serve',
'triple_jump',
'vault']
categories = sorted(categories)
for cat in categories:
try:
path_sim_matrix = 'similarities_hog_lda/simMatrix_' + cat + '.mat'
compute_roc_auc_from_sim(cat, path_sim_matrix=path_sim_matrix, is_quiet=True)
except IOError as e:
print e
print cat
if __name__ == '__main__':
run_all_cat()
# compute_roc_auc_from_sim('long_jump',
# path_sim_matrix='similarities_hog_lda/simMatrix_long_jump.mat')