-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
42 lines (32 loc) · 1.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import torch
import config
import dataset
import models
import engine
import utils
def run():
utils.seed_everything(seed=config.SEED)
train_dataset = dataset.Lyft2ndLevelDataset(
config.PRED_PATHS + [config.MODE_16_PATH])
data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.BATCH_SIZE,
num_workers=4,
shuffle=True)
device = torch.device('cuda')
model = models.SetTransformer(**config.MODEL_PARAMS)
model = model.to(device)
optimizer = torch.optim.Adam(
model.parameters(), lr=config.LEARNING_RATE,
weight_decay=config.WEIGHT_DECAY)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer, pct_start=config.PCT_START,
div_factor=config.DIV_FACTOR, max_lr=config.LEARNING_RATE,
epochs=config.EPOCHS, steps_per_epoch=len(data_loader))
for epoch in range(config.EPOCHS):
engine.train_fn(data_loader, model, optimizer,
device, scheduler=scheduler)
torch.save(model.state_dict(), config.MODEL_PATH + 'transformer.bin')
if __name__ == '__main__':
run()