-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathposteriorhyper.R
52 lines (42 loc) · 2.03 KB
/
posteriorhyper.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
posteriorhyper = function(c, Y, mu, S, epsilon, W, beta, ro ) {
numclust <- table(factor(c, levels = 1:K))
activeclust <- which(numclust!=0)
nactive <- length(activeclust)
InvCov <- solve(cov(Y) + diag(1,D))
meandata <- apply(Y, 2, mean )
meandata <- as.matrix(meandata)
# This was to be used incase the lo likelihood was needed
# logS <- c(rep(0, N))
# for ( i in 1:N ) {
# logS[i] <- ( (D/2) * ((ro + nj)/(ro + nj +1)) - ((D/2) * log(3.14)) + lgamma((beta+nj+1)/2) - lgamma((beta+nj+1-D)/2) + ((beta+ nj)/2 * log(abs(det(Wst))) - ((beta + nj +1)/2)* log( abs(det(Wst + ((ro + nj)/(ro + nj+ 1)) * (Y[i,1:D] - epsilonstar)%o% Y[i,1:D] - epsilonstar) )))
#
# }
# Update the Epsilon paramter
sum.precision <- matrix(0, nrow = D, ncol =D)
sum.mean.precision <- matrix(0, nrow = D, ncol =1)
for ( z in 1:nactive) {
sum.precision <- sum.precision + ro * S[activeclust[z],1:D, 1:D]
sum.mean.precision <- sum.mean.precision + ro* S[activeclust[z],1:D, 1:D] %*% as.matrix(mu[activeclust[z],1:D])
}
precision.epsilon <- InvCov + sum.precision
mean.epsilon <- solve(precision.epsilon) %*% ( InvCov %*% meandata + sum.mean.precision)
epsilon <- mvrnorm(n=1, mu = as.vector(mean.epsilon), Sigma = solve(precision.epsilon))
# Update the ro paramter
sum.ro <- 0
for ( z in 1:nactive) {
sum.ro <- sum.ro + t(as.matrix(mu[activeclust[z],1:D]- epsilon)) %*% S[activeclust[z],1:D, 1:D] %*% as.matrix(mu[activeclust[z],1:D]- epsilon)
}
ro <- rgamma(1, shape = (nactive/2 + 0.25 ), scale = (as.numeric(sum.ro) +0.5)^-1)
# Update W the Wishart parameter
sum.w <- sum.precision <- matrix(0, nrow = D, ncol =D)
for ( z in 1:nactive) {
sum.w <- sum.w + beta * S[activeclust[z],1:D, 1:D]
}
res <- try(rWishart(n = 1, df = beta * nactive + D, Sigma = solve(D * InvCov + sum.w )), silent=TRUE)
if (class(res) == "try-error"){
W = W
} else{
W = rWishart(n = 1, df = beta * nactive + D, Sigma = solve(D * InvCov + sum.w ))
}
list('epsilon' = epsilon,'W' = W , 'ro' = ro)
}