-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdebussy_chordified.py
662 lines (440 loc) · 17.1 KB
/
debussy_chordified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# -*- coding: utf-8 -*-
"""DeBussy_Chordified.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/17eRXNGvoMLAXhlq1oVOJFfUjO4w_tseA
# DeBussy Chordified (ver. 1.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
Credit for GPT2-RGA code used in this colab goes out @ Sashmark97 https://github.com/Sashmark97/midigen and @ Damon Gwinn https://github.com/gwinndr/MusicTransformer-Pytorch
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2022
***
# (Setup Environment)
"""
#@title nvidia-smi gpu check
!nvidia-smi
#@title Install all dependencies (run only once per session)
!git clone https://github.com/asigalov61/DeBussy
!pip install torch
!pip install tqdm
!pip install matplotlib
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works
!pip install midi2audio
!pip install pretty_midi
#@title Import all needed modules
print('Loading needed modules. Please wait...')
import os
import random
import copy
from collections import OrderedDict
from tqdm import tqdm
import matplotlib.pyplot as plt
from torchsummary import summary
print('Loading TMIDIX module...')
os.chdir('/content/DeBussy')
import TMIDIX
from GPT2RGAX import *
from midi2audio import FluidSynth
import pretty_midi
import librosa.display
from IPython.display import Audio
os.chdir('/content/')
"""# (MODEL LOAD)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Unzip pre-trained DeBussy Model
# %cd /content/DeBussy/Model
print('=' * 70)
print('Unzipping pre-trained dataset-model...Please wait...')
print('=' * 70)
!cat /content/DeBussy/Model/DeBussy-Trained-Model.zip* > DeBussy-Trained-Model.zip
print('=' * 70)
!unzip -j DeBussy-Trained-Model.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
#@title Load/Reload the model
full_path_to_model_checkpoint = "/content/DeBussy/Model/DeBussy-Trained-Model.pth" #@param {type:"string"}
print('Loading the model...')
config = GPTConfig(640,
512,
dim_feedforward=512,
n_layer=16,
n_head=16,
n_embd=512,
enable_rpr=True,
er_len=512)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = GPT(config)
state_dict = torch.load(full_path_to_model_checkpoint, map_location=device)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] #remove 'module'
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.to(device)
model.eval()
print('Done!')
summary(model)
"""# (GENERATE)
# Load Custom MIDI / MIDI seed
"""
#@title Custom MIDI option
full_path_to_custom_MIDI = "/content/DeBussy/DeBussy-Seed-1.mid" #@param {type:"string"}
print('Loading custom MIDI file...')
score = TMIDIX.midi2ms_score(open(full_path_to_custom_MIDI, 'rb').read())
events_matrix1 = []
itrack = 1
while itrack < len(score):
for event in score[itrack]:
if event[0] == 'note' and event[3] != 9:
events_matrix1.append(event)
itrack += 1
# final processing...
events_matrix1.sort(key=lambda x: x[4], reverse=True) # Sort by pitch H -> L
events_matrix1.sort(key=lambda x: x[1]) # Then sort by start-times
if len(events_matrix1) > 0:
# recalculating timings
for e in events_matrix1:
e[1] = int(e[1] / 10) # Time-shift
e[2] = int(e[2] / 10) # Duration
melody_chords = []
pe = events_matrix1[0]
cho = []
for e in events_matrix1:
if e[1]-pe[1] == 0:
cho.append([e[1]-pe[1], e[2], e[4], e[5]])
else:
melody_chords.append(cho)
cho = []
cho.append([e[1]-pe[1], e[2], e[4], e[5]])
pe = e
melody_chords_f = []
for m in melody_chords:
if len(m) == 1:
noc = 638
else:
noc = 639
chord = [noc]
chord.extend([max(1, min(253, m[0][0]))])
chord.extend([max(1, min(253, m[0][1]))+256])
for mm in m:
if mm[2]+512 not in chord:
chord.append(mm[2]+512)
melody_chords_f.append(chord)
inputs = []
for m in melody_chords_f:
inputs.extend(m)
print('Done!')
"""# Continuations"""
#@title Single Continuation Block Generator
#@markdown NOTE: Play with the settings to get different results
number_of_prime_tokens = 128 #@param {type:"slider", min:32, max:384, step:8}
temperature = 0.8 #@param {type:"slider", min:0.1, max:1, step:0.1}
show_stats = True #@param {type:"boolean"}
#===================================================================
print('=' * 70)
print('DeBussy Music Model Continuation Generator')
print('=' * 70)
print('Generation settings:')
print('=' * 70)
print('Number of prime tokens:', number_of_prime_tokens)
print('Model temperature:', temperature)
print('=' * 70)
print('Generating...')
rand_seq = model.generate(torch.Tensor(inputs[:number_of_prime_tokens]),
target_seq_length=512,
temperature=temperature,
stop_token=640,
verbose=show_stats)
out1 = rand_seq[0].cpu().numpy().tolist()
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 0
pitch = 0
channel = 0
son = [song[0]]
for s in song[1:]:
if s < 638:
son.append(s)
else:
if len(son) > 2:
time += son[1] * 10
dur = (son[2] - 256) * 10
channel = 0 # Piano
if son[0] == 638:
vel = 80
else:
vel = 110
for ss in son[3:]:
pitch = ss - 512
song_f.append(['note', time, dur, channel, pitch, vel ])
son = []
son.append(s)
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = 'DeBussy',
output_file_name = '/content/DeBussy-Music-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
number_of_ticks_per_quarter=500)
print('Done!')
print('Displaying resulting composition...')
fname = '/content/DeBussy-Music-Composition'
pm = pretty_midi.PrettyMIDI(fname + '.mid')
# Retrieve piano roll of the MIDI file
piano_roll = pm.get_piano_roll()
plt.figure(figsize=(14, 5))
librosa.display.specshow(piano_roll, x_axis='time', y_axis='cqt_note', fmin=1, hop_length=160, sr=16000, cmap=plt.cm.hot)
plt.title(fname)
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
Audio(str(fname + '.wav'), rate=16000)
#@title Multiple Continuation Blocks Generator
#@markdown NOTE: Play with the settings to get different results
number_of_prime_tokens = 128 #@param {type:"slider", min:32, max:384, step:8}
number_of_continuation_blocks = 5 #@param {type:"slider", min:1, max:100, step:1}
temperature = 0.8 #@param {type:"slider", min:0.1, max:1, step:0.1}
show_stats = False #@param {type:"boolean"}
#===================================================================
print('=' * 70)
print('DeBussy Music Model Continuation Generator')
print('=' * 70)
print('Generation settings:')
print('=' * 70)
print('Number of prime tokens:', number_of_prime_tokens)
print('Number of continuation blocks:', number_of_continuation_blocks)
print('Model temperature:', temperature)
print('=' * 70)
print('Generating...')
out1 = []
out1 = inputs[:number_of_prime_tokens]
for i in tqdm(range(number_of_continuation_blocks)):
rand_seq = model.generate(torch.Tensor(out1[-number_of_prime_tokens:]),
target_seq_length=512,
temperature=temperature,
stop_token=640,
verbose=show_stats)
out = rand_seq[0].cpu().numpy().tolist()
out1.extend(out[-(512-number_of_prime_tokens):])
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 0
pitch = 0
channel = 0
son = [song[0]]
for s in song[1:]:
if s < 638:
son.append(s)
else:
if len(son) > 2:
time += son[1] * 10
dur = (son[2] - 256) * 10
channel = 0 # Piano
if son[0] == 638:
vel = 80
else:
vel = 110
for ss in son[3:]:
pitch = ss - 512
song_f.append(['note', time, dur, channel, pitch, vel ])
son = []
son.append(s)
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = 'DeBussy',
output_file_name = '/content/DeBussy-Music-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
number_of_ticks_per_quarter=500)
print('Done!')
print('Displaying resulting composition...')
fname = '/content/DeBussy-Music-Composition'
pm = pretty_midi.PrettyMIDI(fname + '.mid')
# Retrieve piano roll of the MIDI file
piano_roll = pm.get_piano_roll()
plt.figure(figsize=(14, 5))
librosa.display.specshow(piano_roll, x_axis='time', y_axis='cqt_note', fmin=1, hop_length=160, sr=16000, cmap=plt.cm.hot)
plt.title(fname)
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
Audio(str(fname + '.wav'), rate=16000)
"""# Inpainting / Controlled Generation"""
#@title Custom MIDI Inpaiting / Controlled Generator
#@markdown NOTE: Play with the settings to get different results
control_type = "Note-Chord" #@param ["Note-Chord", "Note-Chord-Time", "Note-Chord-Time-Duration", "Note-Chord-Time-Duration-Melody-Pitch"]
temperature = 0.8 #@param {type:"slider", min:0.1, max:1, step:0.1}
show_stats = False #@param {type:"boolean"}
#===================================================================
print('=' * 70)
print('DeBussy Music Model Inpainting / Controlled Generator')
print('=' * 70)
print('Generation settings:')
print('=' * 70)
print('Control type:', control_type)
print('Model temperature:', temperature)
print('=' * 70)
print('Generating...')
if control_type == 'Note-Chord':
ctrl = 1
if control_type == 'Note-Chord-Time':
ctrl = 2
if control_type == 'Note-Chord-Time-Duration':
ctrl = 3
if control_type == 'Note-Chord-Time-Duration-Melody-Pitch':
ctrl = 4
out1 = melody_chords_f[0][:ctrl]
for i in tqdm(range(1, len(melody_chords_f))):
rand_seq = model.generate(torch.Tensor(out1[-500:]),
target_seq_length=512,
temperature=temperature,
stop_token=638,
verbose=show_stats)
out = rand_seq[0].cpu().numpy().tolist()
out1.extend(out[len(out1[-500:]):])
out1.extend(melody_chords_f[i][:ctrl])
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 0
pitch = 0
channel = 0
son = [song[0]]
for s in song[1:]:
if s < 638:
son.append(s)
else:
if len(son) > 2:
time += son[1] * 10
dur = (son[2] - 256) * 10
channel = 0 # Piano
if son[0] == 638:
vel = 80
else:
vel = 110
for ss in son[3:]:
pitch = ss - 512
song_f.append(['note', time, dur, channel, pitch, vel ])
son = []
son.append(s)
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = 'DeBussy',
output_file_name = '/content/DeBussy-Music-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
number_of_ticks_per_quarter=500)
print('Done!')
print('Displaying resulting composition...')
fname = '/content/DeBussy-Music-Composition'
pm = pretty_midi.PrettyMIDI(fname + '.mid')
# Retrieve piano roll of the MIDI file
piano_roll = pm.get_piano_roll()
plt.figure(figsize=(14, 5))
librosa.display.specshow(piano_roll, x_axis='time', y_axis='cqt_note', fmin=1, hop_length=160, sr=16000, cmap=plt.cm.hot)
plt.title(fname)
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
Audio(str(fname + '.wav'), rate=16000)
"""# Notes / Chords Progressions"""
#@title Notes/Chords Progressions Generator
#@markdown NOTE: Play with the settings to get different results
progression_type = "Notes-Progression" #@param ["Notes-Progression", "Chords-Progression"]
control_type = "Note-Chord" #@param ["Note-Chord", "Note-Chord-Time", "Note-Chord-Time-Duration", "Note-Chord-Time-Duration-Melody-Pitch"]
desired_time = 25 #@param {type:"slider", min:1, max:255, step:1}
desired_duration = 25 #@param {type:"slider", min:1, max:255, step:1}
desired_melody_pitch = 75 #@param {type:"slider", min:1, max:125, step:1}
temperature = 0.8 #@param {type:"slider", min:0.1, max:1, step:0.1}
show_stats = False #@param {type:"boolean"}
#===================================================================
print('=' * 70)
print('DeBussy Music Model Notes/Chords Progressions Generator')
print('=' * 70)
print('Generation settings:')
print('=' * 70)
print('Progression Type:', progression_type)
print('Control Type:', control_type)
print('Model temperature:', temperature)
print('=' * 70)
print('Generating...')
ctrl = []
if progression_type == 'Notes-Progression':
ctrl = [638]
else:
ctrl = [639]
if control_type == 'Note-Chord':
pass
if control_type == 'Note-Chord-Time':
ctrl.extend([desired_time])
if control_type == 'Note-Chord-Time-Duration':
ctrl.extend([desired_time])
ctrl.extend([desired_duration+256])
if control_type == 'Note-Chord-Time-Duration-Melody-Pitch':
ctrl.extend([desired_time])
ctrl.extend([desired_duration+256])
ctrl.extend([desired_melody_pitch+512])
out1 = copy.deepcopy(ctrl)
for i in tqdm(range(128)):
try:
rand_seq = model.generate(torch.Tensor(out1),
target_seq_length=512,
temperature=temperature,
stop_token=638,
verbose=show_stats)
out = rand_seq[0].cpu().numpy().tolist()
out1.extend(out[len(out1):])
out1.extend(ctrl)
except:
break
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 0
pitch = 0
channel = 0
son = [song[0]]
for s in song[1:]:
if s < 638:
son.append(s)
else:
if len(son) > 2:
time += son[1] * 10
dur = (son[2] - 256) * 10
channel = 0 # Piano
if son[0] == 638:
vel = 80
else:
vel = 110
for ss in son[3:]:
pitch = ss - 512
song_f.append(['note', time, dur, channel, pitch, vel ])
son = []
son.append(s)
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
output_signature = 'DeBussy',
output_file_name = '/content/DeBussy-Music-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
number_of_ticks_per_quarter=500)
print('Done!')
print('Displaying resulting composition...')
fname = '/content/DeBussy-Music-Composition'
pm = pretty_midi.PrettyMIDI(fname + '.mid')
# Retrieve piano roll of the MIDI file
piano_roll = pm.get_piano_roll()
plt.figure(figsize=(14, 5))
librosa.display.specshow(piano_roll, x_axis='time', y_axis='cqt_note', fmin=1, hop_length=160, sr=16000, cmap=plt.cm.hot)
plt.title(fname)
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
Audio(str(fname + '.wav'), rate=16000)
"""# Congrats! You did it! :)"""