-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgiant_music_transformer_ttm.py
500 lines (342 loc) · 13.5 KB
/
giant_music_transformer_ttm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# -*- coding: utf-8 -*-
"""Giant_Music_Transformer_TTM.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer_TTM.ipynb
# Giant Music Transformer TTM (ver. 4.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (GPU CHECK)
"""
#@title NVIDIA GPU check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Giant-Music-Transformer
!pip install -U torch
!pip install einops
!pip install -U sentence-transformers
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works
# Commented out IPython magic to ensure Python compatibility.
#@title Import modules
print('=' * 70)
print('Loading core Giant Music Transformer modules...')
import os
import copy
import pickle
import secrets
import statistics
from time import time
import tqdm
print('=' * 70)
print('Loading main Giant Music Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
# %cd /content/Giant-Music-Transformer
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
from sentence_transformers import SentenceTransformer
from sentence_transformers import util
import numpy as np
# %cd /content/
print('=' * 70)
print('Loading aux Giant Music Transformer modules...')
import matplotlib.pyplot as plt
from torchsummary import summary
from sklearn import metrics
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
"""# (LOAD MODEL)"""
#@title Load Giant Music Transformer Pre-Trained Model
#@markdown Choose model
select_model_to_load = "482M-8L-Ultra-Fast-Medium" # @param ["482M-8L-Ultra-Fast-Medium","585M-32L-Very-Fast-Large","786M-44L-Fast-Extra-Large"]
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
#@markdown float16 == Full precision/fast speed
plot_tokens_embeddings = "None" # @param ["None", "Start Times", "Durations Velocities", "Piano Pitches", "Drums Pitches", "Aux"]
print('=' * 70)
print('Loading Giant Music Transformer', select_model_to_load,'Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
full_path_to_models_dir = "/content/Giant-Music-Transformer/Models"
if select_model_to_load == '786M-44L-Fast-Extra-Large':
model_checkpoint_file_name = 'Giant_Music_Transformer_Extra_Large_Trained_Model_18001_steps_0.2657_loss_0.9272_acc.pth'
model_path = full_path_to_models_dir+'/Extra Large/'+model_checkpoint_file_name
mdim = 1024
num_layers = 44
mrpe = False
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Giant-Music-Transformer/Models/Extra Large',
)
elif select_model_to_load == '585M-32L-Very-Fast-Large':
model_checkpoint_file_name = 'Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth'
model_path = full_path_to_models_dir+'/Large/'+model_checkpoint_file_name
mdim = 1024
num_layers = 32
mrpe = False
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Giant-Music-Transformer/Models/Large',
)
elif select_model_to_load == '482M-8L-Ultra-Fast-Medium':
model_checkpoint_file_name = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth'
model_path = full_path_to_models_dir+'/Medium/'+model_checkpoint_file_name
mdim = 2048
num_layers = 8
mrpe = True
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Giant-Music-Transformer/Models/Medium',
)
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 19463
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = mdim,
depth = num_layers,
heads = 32,
rotary_pos_emb = mrpe,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(model_path))
print('=' * 70)
model.cuda()
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
# Plot Token Embeddings
if plot_tokens_embeddings != 'None':
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
if plot_tokens_embeddings == 'Start Times':
tok_range = [0, 256]
elif plot_tokens_embeddings == 'Durations Velocities':
tok_range = [256, 2304]
elif plot_tokens_embeddings == 'Piano Pitches':
tok_range = [2304, 2304+128]
elif plot_tokens_embeddings == 'Drums Pitches':
tok_range = [18945-128, 18945]
elif plot_tokens_embeddings == 'Aux':
tok_range = [18945, 19465]
if plot_tokens_embeddings != 'None':
tok_emb1 = []
for t in tok_emb[tok_range[0]:tok_range[1]]:
tok_emb1.append(t)
cos_sim = metrics.pairwise_distances(
tok_emb1, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Giant-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (LOAD AUX MODEL AND DATA)"""
#@title Load Giant Music Transformer Aux Model and Data
print('=' * 70)
print('Loading Giant Music Transformer Aux Model and Data...')
print('Please wait...')
print('=' * 70)
print('Loading aux model...')
print('=' * 70)
aux_model = SentenceTransformer('all-mpnet-base-v2', device='cuda')
print('Done!')
print('=' * 70)
print('Loading aux data...')
if os.path.isfile('/content/Giant-Music-Transformer/Aux-Data/Giant_Music_Transformer_Aux_Data.pickle'):
print('Aux Data already exists...')
else:
hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer',
filename='Giant_Music_Transformer_Aux_Data.pickle',
local_dir='/content/Giant-Music-Transformer/Aux-Data',
)
print('=' * 70)
AUX_DATA = TMIDIX.Tegridy_Any_Pickle_File_Reader('/content/Giant-Music-Transformer/Aux-Data/Giant_Music_Transformer_Aux_Data')
print('=' * 70)
if os.path.isfile('/content/Giant-Music-Transformer/Aux-Data/Giant_Music_Transformer_Aux_Data_Embeddings_all_mpnet_base_v2.npz'):
print('Aux Data already exists...')
else:
hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer',
filename='Giant_Music_Transformer_Aux_Data_Embeddings_all_mpnet_base_v2.npz',
local_dir='/content/Giant-Music-Transformer/Aux-Data',
)
print('=' * 70)
print('Loading aux data embeddings...')
aux_data_embeddings = np.load('/content/Giant-Music-Transformer/Aux-Data/Giant_Music_Transformer_Aux_Data_Embeddings_all_mpnet_base_v2.npz')['data']
print('Done!')
print('=' * 70)
"""# (GENERATE)"""
#@title Standard Continuation
#@markdown Text-To-Music Settings
#@markdown NOTE: You can enter any desired title or artist, or both
enter_desired_song_title = "Family Guy" #@param {type:"string"}
enter_desired_artist = "TV Themes" #@param {type:"string"}
#@markdown Generation settings
try_to_generate_outro = False #@param {type:"boolean"}
number_of_tokens_to_generate = 600 # @param {type:"slider", min:30, max:8190, step:3}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
model_sampling_top_p_value = 0.96 # @param {type:"slider", min:0.1, max:1, step:0.01}
#@markdown Other settings
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Giant Music Transformer TTM Model Generator')
print('=' * 70)
search_string = ''
if enter_desired_song_title != '' and enter_desired_artist != '':
search_string = '"' + enter_desired_song_title + '" by ' + enter_desired_artist
else:
search_string = enter_desired_song_title + enter_desired_artist
print('Searching titles...Please wait...')
query_embedding = aux_model.encode([search_string])
similarities = util.cos_sim(query_embedding, aux_data_embeddings)
closest_index = np.argmax(similarities)
print('Done!')
print('=' * 70)
print('Selected title:', AUX_DATA[closest_index][0])
print('=' * 70)
if allow_model_to_stop_generation_if_needed:
min_stop_token = 19462
else:
min_stop_token = None
outy = AUX_DATA[closest_index][1]
block_marker = sum([(y * 16) for y in outy if y < 256]) / 1000
if try_to_generate_outro:
outy.extend([18945])
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.inference_mode():
out = model.generate(inp,
number_of_tokens_to_generate,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p_value},
temperature=temperature,
return_prime=True,
eos_token=min_stop_token,
verbose=True)
out0 = out.tolist()
torch.cuda.empty_cache()
print('=' * 70)
print('Done!')
print('=' * 70)
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = out0[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Giant Music Transformer',
output_file_name = '/content/Giant-Music-Transformer-Music-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Giant-Music-Transformer-Music-Composition_'+str(i)
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f,
plot_title=fname,
block_lines_times_list=[block_marker])
"""# Congrats! You did it! :)"""