-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetonix_selavy.py
245 lines (207 loc) · 9.07 KB
/
setonix_selavy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
### write selavy batch files for running ###
### the data is downloaded from casda ###
import argparse
from astropy.io.fits.hdu import image
import pandas as pd
import glob
import logging
from pathlib import Path
### logger
def _setlogger_(level=logging.INFO):
logger = logging.getLogger('makeparset')
logger.setLevel(level)
### set formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
### stream handler
sh = logging.StreamHandler()
# sh.setLevel(level)
sh.setFormatter(formatter)
### add handler
if not logger.handlers:
logger.addHandler(sh)
### function for writing selavy parset
def write_selavy_parset(image, weight_image, taylor1_image, sbid, invert, outdir="."):
outdir = Path(outdir)
no_fits_image = image.split("/")[-1].replace(".fits", "")
findspectral = 'false' if taylor1_image == '' else 'true'
if invert:
invertflag = 'n'
else:
invertflag = ''
resultsfile = str(outdir / f"selavy-{invertflag}{no_fits_image}.txt")
thresh_img_path = str(outdir / f"detThresh.{invertflag}{no_fits_image}")
noise_img_path = str(outdir / f"noiseMap.{invertflag}{no_fits_image}")
mean_img_path = str(outdir / f"meanMap.{invertflag}{no_fits_image}")
snr_img_path = str(outdir / f"snrMap.{invertflag}{no_fits_image}")
ann_path = str(outdir / "selavy-SubimageLocations.{invertflag}{no_fits_image}.ann")
selavy_template = f"""
Selavy.image = {image}
Selavy.sbid = {sbid}
Selavy.sourceIdBase = SB{sbid}
Selavy.imageHistory = ["Produced with ASKAPsoft 1.10.0.a on Setonix"]
Selavy.imagetype = fits
#
Selavy.spectralTerms.thresholdSNR = 50.
Selavy.spectralTermsFromTaylor = true
Selavy.findSpectralTerms = [{findspectral}, false]
Selavy.spectralTermImages = [{taylor1_image},]
Selavy.nsubx = 5
Selavy.nsuby = 4
Selavy.overlapx = 0
Selavy.overlapy = 0
Selavy.subimageAnnotationFile = ""
#
Selavy.resultsFile = {resultsfile}
#
# Detection threshold
Selavy.snrCut = 5
Selavy.flagGrowth = true
Selavy.growthThreshold = 3
#
Selavy.VariableThreshold = true
Selavy.VariableThreshold.reuse = false
Selavy.VariableThreshold.boxSize = 50
Selavy.VariableThreshold.ThresholdImageName = {thresh_img_path}
Selavy.VariableThreshold.NoiseImageName = {noise_img_path}
Selavy.VariableThreshold.AverageImageName = {mean_img_path}
Selavy.VariableThreshold.SNRimageName = {snr_img_path}
Selavy.Weights.weightsImage = {weight_image}
Selavy.Weights.weightsCutoff = 0.04
#
Selavy.Fitter.doFit = true
Selavy.Fitter.fitTypes = [full]
Selavy.Fitter.numGaussFromGuess = true
Selavy.Fitter.maxReducedChisq = 10.
Selavy.Fitter.imagetype = fits
Selavy.Fitter.writeComponentMap = false
#
Selavy.threshSpatial = 5
Selavy.flagAdjacent = true
Selavy.flagNegative = {invert}
#
Selavy.minPix = 3
Selavy.minVoxels = 3
Selavy.minChannels = 1
Selavy.sortingParam = -pflux
Selavy.precFlux = 6
Selavy.precSNR = 3
#
# Not performing RM Synthesis for this case
Selavy.RMSynthesis = false
# No spectral extraction being performed
Selavy.Components.extractSpectra = false
Selavy.Components.extractNoiseSpectra = false
"""
parset_name="selavy.{}{}.in".format(invertflag, no_fits_image)
with open(parset_name, "w") as f:
f.write(selavy_template)
### for files
def _makeparset(imagepath, invert, outdir="."):
'''
make selavy parset for one image
we will read message from image name directly
'''
logger = logging.getLogger('makeparset.run')
### extract file name
imagefname = imagepath.split('/')[-1]
imagedir = '/'.join(imagepath.split('/')[:-1])
fnamesplit = imagefname.split('.')
# extracting messages
# example: image.v.FRB190711_beam15.SB31377.cont.taylor.0.restored.conv.fits
pol = fnamesplit[1]
field = fnamesplit[2] if any([s in fnamesplit[2] for s in ['-', '+']]) else ''
sbid = fnamesplit[3][2:]
logger.info(f'writing selavy parset for SBID - {sbid}')
### create weight image name
# example: weights.v.NGC6744.SB31349.cont.taylor.0.fits
weightpattern = f'weights.{pol}.*{field}*.SB{sbid}.*.taylor.0.fits'
weightfiles = glob.glob(f'{imagedir}/{weightpattern}')
if len(weightfiles) == 0: raise ValueError(f'No weights image found with pattern {weightpattern}!')
if len(weightfiles) != 1: logger.warning('{} weights files found!'.format(len(weightfiles)))
weight_image = weightfiles[0]
### create taylor1 image name
if pol == 'i': raise NotImplemented
else: taylor1_image = ''
write_selavy_parset(imagepath, weight_image, taylor1_image, sbid, invert, outdir=outdir)
def makeparsets(pathpattern, invert, outdir="."):
'''write parsets for a list of images'''
logger = logging.getLogger('makeparset.run')
### get data
images = glob.glob(pathpattern)
logger.info('{} images found...'.format(len(images)))
for imagepath in images:
_makeparset(imagepath, invert, outdir=outdir)
logger.info('done!')
def _write_sbatch(job_name,
imagepath,
invert,
walltime,
ntasks,
ntasks_per_node,
memory
):
'''write sbatch files'''
logger = logging.getLogger('makeparset.sbatch')
if invert:
invertflag = 'n'
else:
invertflag = ''
no_fits_image = imagepath.split("/")[-1].replace(".fits", "")
parset_name="selavy.{}{}.in".format(invertflag, no_fits_image)
sbatch_name = 'selavy.{}{}.sbatch'.format(invertflag, no_fits_image)
logger.debug(f'writing sbatch file to {sbatch_name}')
with open(sbatch_name, 'w') as fp:
fp.write(f'''#!/bin/bash
#SBATCH --job-name {job_name}
#SBATCH --time={walltime}
#SBATCH --ntasks={ntasks}
#SBATCH --ntasks-per-node={ntasks_per_node}
#SBATCH --mem={memory}
module use /software/projects/ja3/modulefiles
module load singularity/3.8.6
module load askapsoft/1.10.0.a
srun selavy -c {parset_name}
''')
return sbatch_name
def writebatch(job_name,
pathpattern,
invert,
walltime = '01:30:00',
ntasks = '21',
ntasks_per_node = '21',
memory = '110G',
):
'''write the final .sh file for submission'''
logger = logging.getLogger('writebatch')
### get data
images = glob.glob(pathpattern)
logger.info('{} images found...'.format(len(images)))
sbatch_names = []
for imagepath in images:
sbatch_name = _write_sbatch(job_name,
imagepath,
invert,
walltime,
ntasks,
ntasks_per_node,
memory,
)
sbatch_names.append(sbatch_name)
logger.info(f"Written {sbatch_name}")
shfile = ''
for sbatch_name in sbatch_names:
shfile += 'sbatch {}\n'.format(sbatch_name)
with open('selavybatch.sh', 'w') as fp:
fp.write(shfile)
logger.info('please run `sh selavybatch.sh` to submit jobs')
if __name__ == "__main__":
_setlogger_()
parser = argparse.ArgumentParser(description='writing selavy configuration files')
parser.add_argument('-f', '--file', type=str, required=True, help='Pattern of your images')
parser.add_argument('-j', '--jobname', type=str, required=True, help='Name of job')
parser.add_argument('-n', '--invert', dest='invert', required=False, action='store_true', help='Flag to invert image')
parser.add_argument('--out-dir', required=False, default=".", help='Selavy output directory')
args = parser.parse_args()
invert = args.invert
makeparsets(pathpattern=args.file, invert=invert, outdir=args.out_dir)
writebatch(job_name=args.jobname, pathpattern=args.file, invert=invert)