-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBayesianNetwork.hpp
98 lines (74 loc) · 2.69 KB
/
BayesianNetwork.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/**
* @file BayesianNetwork.hpp
* @brief Declaration of the BayesianNetwork class.
* @author Ankit Srivastava <asrivast@gatech.edu>
*
* Copyright 2020 Georgia Institute of Technology
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BAYESIANNETWORK_HPP_
#define BAYESIANNETWORK_HPP_
#include "graph/Graph.hpp"
#include <boost/graph/filtered_graph.hpp>
/**
* @brief Class which provides functionality for a Bayesian network.
*
* @tparam Var Type of variable indices (expected to be an integer type).
*/
template <typename Var>
class BayesianNetwork : public Graph<BidirectionalAdjacencyList, VertexLabel, Var> {
private:
class AntiParallelEdgeFilter;
class EdgeCycleCounter;
public:
using Vertex = typename Graph<BidirectionalAdjacencyList, VertexLabel, Var>::Vertex;
using Edge = typename Graph<BidirectionalAdjacencyList, VertexLabel, Var>::Edge;
private:
using GraphImpl = typename Graph<BidirectionalAdjacencyList, VertexLabel, Var>::GraphImpl;
using FilteredGraph = Graph<GenericBoostGraph, boost::filtered_graph<GraphImpl, AntiParallelEdgeFilter>, Var>;
public:
BayesianNetwork(const std::vector<std::string>&);
using Graph<BidirectionalAdjacencyList, VertexLabel, Var>::addEdge;
void
addEdge(const Var, const Var, const bool);
void
applyVStructures(std::vector<std::tuple<double, Var, Var, Var>>&&);
bool
hasDirectedCycles() const;
void
breakDirectedCycles();
bool
applyMeekRules();
void
writeGraphviz(const std::string&) const;
~BayesianNetwork() { }
private:
Graph<GenericBoostGraph, boost::filtered_graph<GraphImpl, AntiParallelEdgeFilter>, Var>
filterAntiParallelEdges() const;
std::unordered_map<Edge, size_t, typename Edge::Hash>
countEdgeCycles() const;
bool
removeEdgeAcyclic(Edge&&);
bool
unshieldedColliderRule(const Vertex&, const Vertex&) const;
bool
acyclicityRule(const Vertex&, const Vertex&) const;
bool
hybridRule(const Vertex&, const Vertex&) const;
private:
// View of the network with only directed edges
Graph<GenericBoostGraph, boost::filtered_graph<GraphImpl, AntiParallelEdgeFilter>, Var> m_directed;
}; // class BayesianNetwork
#include "detail/BayesianNetwork.hpp"
#endif // BAYESIANNETWORK_HPP_