diff --git a/.pdm-python b/.pdm-python
new file mode 100644
index 0000000..7fe2b9c
--- /dev/null
+++ b/.pdm-python
@@ -0,0 +1 @@
+/Users/assuncaolfi/Projects/site/.venv/bin/python
\ No newline at end of file
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
deleted file mode 100644
index 61c6ad5..0000000
--- a/.pre-commit-config.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-repos:
-# - repo: https://github.com/pre-commit/pre-commit-hooks
-# rev: v2.3.0
-# hooks:
-# - id: check-yaml
-# - id: end-of-file-fixer
-# - id: trailing-whitespace
-- repo: https://github.com/astral-sh/ruff-pre-commit
- # Ruff version.
- rev: v0.1.13
- hooks:
- # Run the linter.
- - id: ruff
- types_or: [ python, pyi, jupyter ]
- args: [ --fix ]
- # Run the formatter.
- - id: ruff-format
- types_or: [ python, pyi, jupyter ]
-# - repo: https://github.com/mwouts/jupytext
-# rev: v1.14.7
-# hooks:
-# - id: jupytext
-# args: [--from, ipynb, --to, qmd]
diff --git a/.python-version b/.python-version
deleted file mode 100644
index 12398d7..0000000
--- a/.python-version
+++ /dev/null
@@ -1 +0,0 @@
-cpython@3.11.3
diff --git a/_extensions/shafayetShafee/bsicons/_extension.yml b/_extensions/shafayetShafee/bsicons/_extension.yml
index abc9c6f..9391561 100644
--- a/_extensions/shafayetShafee/bsicons/_extension.yml
+++ b/_extensions/shafayetShafee/bsicons/_extension.yml
@@ -5,3 +5,4 @@ quarto-required: ">=1.2.0"
contributes:
shortcodes:
- bsicons.lua
+
diff --git a/_extensions/shafayetShafee/bsicons/bsicons.lua b/_extensions/shafayetShafee/bsicons/bsicons.lua
index 5db5a34..821c221 100644
--- a/_extensions/shafayetShafee/bsicons/bsicons.lua
+++ b/_extensions/shafayetShafee/bsicons/bsicons.lua
@@ -19,29 +19,29 @@ return {
local color = str(kwargs["color"])
local label = str(kwargs["label"])
local class = str(kwargs["class"])
-
+
if not isEmpty(size) then
size = "font-size: " .. size .. ";"
else
size = ''
end
-
+
if not isEmpty(color) then
color = "color: " .. color .. ";"
else
color = ''
end
-
+
local style = "style=\"" .. size .. color .. "\""
-
+
if not isEmpty(label) then
label = " aria-label=\"" .. label .. "\""
end
-
+
if isEmpty(class) then
class = ''
end
-
+
local role = "role=\"img\""
local aria_hidden = "aria-hidden=\"true\""
diff --git a/_freeze/blog/aging-curve/index/execute-results/html.json b/_freeze/blog/aging-curve/index/execute-results/html.json
new file mode 100644
index 0000000..6a5728b
--- /dev/null
+++ b/_freeze/blog/aging-curve/index/execute-results/html.json
@@ -0,0 +1,16 @@
+{
+ "hash": "98d7afe0f115e118baa265ed5b35e599",
+ "result": {
+ "engine": "jupyter",
+ "markdown": "---\ntitle: Additive aging curve (draft)\ndescription: At what age does working memory peak?\ndate: today\n---\n\n::: {.callout-warning}\nThis post is a work in progress.\n:::\n\n\nRecently, I was involved in designing an experiment where each participant\nreceived a treatment at a random time $t$, between 5 and 30 minutes. After the \ntreatment, each participant produced a binary response. Soon, we realized time \nhad more than one effect over the response rate: as $t$ increased, the rate of\npositive responses 1) increased; then 2) plateaued; and finally 3) decreased.\n\nThis kind of non-monotonic relationship is common in cognitive and sports research, \nparticularly in the relationship between age and performance, where it's \ncalled an aging curve. For an interesting review of aging curves, see [@Vaci2019],\nwhere the authors discuss modeling strategies and study the effect of aging over\nthe performance of NBA players.\n\nAndrew Gelman wrote about this topic a couple of times in his blog: see his posts\nfrom [2018](https://statmodeling.stat.columbia.edu/2018/09/07/bothered-non-monotonicity-heres-one-quick-trick-make-happy/)\nand [2023](https://statmodeling.stat.columbia.edu/2023/01/01/how-to-model-a-non-monotonic-relation/), \nwhere he suggests modeling these relationships using an additive function like\n\n$$g(t) = g_1(t) + g_2(t),$$\n\nwhere \n$g_1(t)$ is a monotonically increasing function with a right asymptote; and \n$g_2(t)$ is a monotonically decreasing function with a left asymptote.\n\nIn this post, I'll analyze an experimental dataset by fitting and comparing\ntwo different models: a non-parametric bootstrap and a decomposable curve \nlike $g(t)$.\n\n## The Digit Span test\n\nThe motivation for Gelman's post from 2018 was a study relating age to peak\ncognitive functioning [@Hartshorne2015]. According to the study, some of their\nexperiments were conducted through a large scale online experimentation platform:\n\n> Participants in Experiment 2 (N = 10,394; age range = 10–69 years old)\n> [...] were visitors to TestMyBrain.org, who took part in experiments in\n> order to contribute to scientific research and in exchange for performance-\n> related feedback. [...] We continued data collection for each experiment for\n> approximately 1 year, sufficient to obtain around 10,000 participants, which\n> allowed fine-grained age-of-peak-performance analysis.\n\nThe data produced by this experiment is available online [@Germine_Hartshorne_2016]. \nThis dataset contains results for multiple tests, but I'll focus on the Digit Span \ntest during this analysis. According to [Cambridge Cognition](https://cambridgecognition.com/digit-span-dgs/):\n\n> Digit Span (DGS) is a measure of verbal short term and working memory that can be used in two formats, Forward Digit Span and Reverse Digit Span. This is a verbal task, with stimuli presented auditorily, and responses spoken by the participant and scored automatically by the software. Participants are presented with a random series of digits, and are asked to repeat them in either the order presented (forward span) or in reverse order (backwards span). While superficially very similar tasks, forward and backwards span rely on somewhat separable cognitive capacities: the simpler forward span task requires verbal working memory and attention, while the backwards span task additionally tests cognitive control and executive function.\n\nParticipants are scored according to their longest correctly repeated list of digits.\n\n::: {#digit-span .cell execution_count=2}\n``` {.python .cell-code}\nimport polars as pl\n\ndigit_span = (\n pl.read_csv(\"data/experiment-2.csv\")\n .filter(pl.col(\"age\").is_between(10, 69))\n .with_columns(\n y=(pl.col(\"DigitSpan\") - pl.col(\"DigitSpan\").mean()) / pl.col(\"DigitSpan\").std()\n )\n)\n```\n:::\n\n\nThe relationship between age and Digit Span performance for each participant is plotted below:\n\n::: {#cell-digit-span-plot .cell execution_count=3}\n\n::: {.cell-output .cell-output-display execution_count=3}\n{#digit-span-plot width=599 height=445}\n:::\n:::\n\n\nVisually, it's still unclear if this relationship follows an aging curve, but\nwe'll get back to this matter in the next section.\n\n## Bootstrap estimates\n\nIn the original paper, the authors describe a bootstrap resampling procedure\nto estimate the distribution of ages of peak performance:\n\n> Estimates and standard errors for age of peak performance were calculated using\n> a bootstrap resampling procedure identical to the one used in Experiment 1\n> but applied to raw performance data. To dampen noise, we smoothed means for each\n> age using a moving 3-year window prior to identifying age of peak performance\n> in each sample. Other methods of dampening noise provide similar results.\n\nLet's decompose this method (as I understand it) into steps:\n\n1. Sample, with replacement, $n$ observations from the dataset;\n2. Calculate the mean performance for each age within the sample;\n3. Repeat steps 1 and 2 $m$ times;\n4. Sort each sample by age and smooth age means using a 3-year rolling average;\n5. Find the age of peak performance for each sample.\n\n::: {#bootstrap .cell execution_count=4}\n``` {.python .cell-code}\ndef sample_bootstrap(data: pl.DataFrame):\n samples = (\n data.sample(n * m, with_replacement=True, seed=seed)\n .with_columns(sample=pl.arange(1, n * m + 1) % m)\n .group_by(\"sample\", \"age\")\n .agg(mean=pl.col(\"y\").mean())\n .sort(\"sample\", \"age\")\n .with_columns(smoothed_mean=pl.col(\"mean\").rolling_mean(3).over(\"sample\"))\n )\n peak = samples.group_by(\"sample\").agg(\n age=pl.col(\"age\").get(pl.col(\"smoothed_mean\").arg_max())\n )\n return samples, peak\n\n\nn = digit_span.height\nm = 10000\nseed = 37\nsamples, peak = sample_bootstrap(digit_span)\n```\n:::\n\n\nThis algorithm yields the following bootstrap distribution of ages of peak performance:\n\n::: {#cell-bootstrap-distribution .cell execution_count=5}\n\n::: {.cell-output .cell-output-display execution_count=5}\n{#bootstrap-distribution width=599 height=445}\n:::\n:::\n\n\nThis distribution suggests two important things:\n\n1. The most probable age of peak performance is 33;\n2. Peak performance could happen anywhere between the early 20s and late 30s, except during the late 20s.\n\nSuggestion 2 is probably not true. In fact, this distribution seems like a mixture of two distributions, but I'll get back to this point in the next section. For now, I'll use our bootstrap estimates to replicate figure 3a from the original paper. Using the samples obtained in step 4, for each age mean, I calculated its median and 90% interquantile range, yielding a nonparametric curve:\n\n::: {#cell-bootstrap-curve .cell execution_count=6}\n\n::: {.cell-output .cell-output-display execution_count=6}\n{#bootstrap-curve width=599 height=445}\n:::\n:::\n\n\nSince this curve is empirical, there's not much more than meets the eye here. However, note that it follows the rising, plateauing and falling behavior of an aging curve. There's a steep increase during ages 10 to 20, followed by a plateau between 20 and 30, and a slow decline beginning at 40.\n\n### The language effect\n\n::: {#cell-performance-language .cell execution_count=7}\n\n::: {.cell-output .cell-output-display execution_count=7}\n{#performance-language width=727 height=445}\n:::\n:::\n\n\n::: {#cell-english-span .cell execution_count=8}\n\n::: {.cell-output .cell-output-display execution_count=8}\n{#english-span width=599 height=445}\n:::\n:::\n\n\n## Additive functions\n\n$$\n\\begin{align}\ng(t) &= g_1(t) + g_2(t) \\\\\ny &\\sim \\mathrm{Normal}(g(t), \\sigma) \\\\\n\\end{align}\n$$\n\n### Double exponential\n\n$$\n\\begin{align}\ng_1(t) &= \\alpha + \\beta_1 \\exp(-\\lambda_1 t) \\\\\ng_2(t) &= \\beta_2 \\exp(\\lambda_2 t) \\\\\n\\end{align}\n$$\n\n::: {#cell-double-exponential .cell execution_count=9}\n``` {.python .cell-code}\nimport numpy as np\nimport pymc as pm\n\n\ndef g(x):\n return g_1(x) + g_2(x)\n\n\ndef g_1(x):\n return α + β[0] * pm.math.exp(-λ[0] * x)\n\n\ndef g_2(x):\n return β[1] * pm.math.exp(λ[1] * x)\n\n\nage = english_span.get_column(\"age\")\ny = english_span.get_column(\"y\")\nage_range = np.arange(age.min(), age.max() + 1)\nwith pm.Model() as double_exponential:\n t = pm.Data(\"t\", age)\n α = pm.Normal(\"α\", 0, 1)\n β = pm.Normal(\"β\", 0, 1, size=2)\n λ = pm.HalfNormal(\"λ\", 0.004, size=2)\n μ = pm.Deterministic(\"μ\", g(t))\n σ = pm.HalfNormal(\"σ\", 1)\n pm.Normal(\"y\", mu=μ, sigma=σ, observed=y)\n curve = pm.Deterministic(\"curve\", g(age_range))\n samples = pm.sample(progressbar=False, target_accept=0.95, random_seed=seed)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWARNING:pytensor.tensor.blas:Using NumPy C-API based implementation for BLAS functions.\n```\n:::\n\n::: {#double-exponential .cell-output .cell-output-display}\n```{=html}\n
\n \n```\n:::\n:::\n\n\n::: {#cell-double-exponential-curve .cell execution_count=10}\n\n::: {.cell-output .cell-output-display execution_count=10}\n{#double-exponential-curve width=599 height=445}\n:::\n:::\n\n\n::: {#cell-double-exponential-peak .cell execution_count=11}\n\n::: {.cell-output .cell-output-display execution_count=11}\n{#double-exponential-peak width=599 height=445}\n:::\n:::\n\n\n### Double logistic\n\n[@Lipovetsky2010]\n\n$$\n\\begin{align}\ng_1(t) &= \\alpha_1 + \\frac{\\alpha_2 - \\alpha_1}{1 + \\exp(\\beta_1 - \\lambda_1 t)} \\\\\ng_2(t) &= \\frac{\\alpha_3 - \\alpha_2}{1 + \\exp(\\beta_2 + \\lambda_2 t)}\n\\end{align}\n$$\n\n::: {#cell-double-logistic .cell execution_count=12}\n``` {.python .cell-code}\ndef g_1(t):\n return α[0] + (α[1] - α[0]) / (1 + pm.math.exp(β[0] - λ[0] * t))\n\n\ndef g_2(t):\n return (α[2] - α[1]) / (1 + pm.math.exp(β[1] + λ[1] * t))\n\n\nwith pm.Model() as double_logistic:\n t = pm.Data(\"t\", age)\n α = pm.Normal(\"α\", 0, 1, size=3)\n β = pm.Normal(\"β\", 0, 1, size=2)\n λ = pm.HalfNormal(\"λ\", 1, size=2)\n μ = pm.Deterministic(\"μ\", g(t))\n σ = pm.HalfNormal(\"σ\", 1)\n pm.Normal(\"y\", mu=μ, sigma=σ, observed=y)\n curve = pm.Deterministic(\"curve\", g(age_range))\n samples = pm.sample(progressbar=False, target_accept=0.95, random_seed=seed)\n```\n\n::: {#double-logistic .cell-output .cell-output-display}\n```{=html}\n\n \n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nERROR:pymc.stats.convergence:There were 1 divergences after tuning. Increase `target_accept` or reparameterize.\nERROR:pymc.stats.convergence:The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n```\n:::\n:::\n\n\n::: {#bc531661 .cell execution_count=13}\n\n::: {.cell-output .cell-output-display execution_count=13}\n{width=599 height=445}\n:::\n:::\n\n\n::: {#21b54688 .cell execution_count=14}\n\n::: {.cell-output .cell-output-display execution_count=14}\n{width=599 height=445}\n:::\n:::\n\n\n",
+ "supporting": [
+ "index_files"
+ ],
+ "filters": [],
+ "includes": {
+ "include-in-header": [
+ "\n\n\n"
+ ]
+ }
+ }
+}
\ No newline at end of file
diff --git a/_freeze/blog/aging-curve/index/figure-html/additive-curve-facet-output-1.png b/_freeze/blog/aging-curve/index/figure-html/additive-curve-facet-output-1.png
new file mode 100644
index 0000000..f8599bb
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/additive-curve-facet-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/additive-curve-output-1.png b/_freeze/blog/aging-curve/index/figure-html/additive-curve-output-1.png
new file mode 100644
index 0000000..bfc65ee
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/additive-curve-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/additive-peak-output-1.png b/_freeze/blog/aging-curve/index/figure-html/additive-peak-output-1.png
new file mode 100644
index 0000000..6cfb21a
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/additive-peak-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/bootstrap-curve-output-1.png b/_freeze/blog/aging-curve/index/figure-html/bootstrap-curve-output-1.png
new file mode 100644
index 0000000..023728d
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/bootstrap-curve-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/bootstrap-distribution-output-1.png b/_freeze/blog/aging-curve/index/figure-html/bootstrap-distribution-output-1.png
new file mode 100644
index 0000000..507ff07
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/bootstrap-distribution-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/cell-14-output-1.png b/_freeze/blog/aging-curve/index/figure-html/cell-14-output-1.png
new file mode 100644
index 0000000..2e56c87
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/cell-14-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/cell-15-output-1.png b/_freeze/blog/aging-curve/index/figure-html/cell-15-output-1.png
new file mode 100644
index 0000000..e38b61a
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/cell-15-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/digit-span-plot-output-1.png b/_freeze/blog/aging-curve/index/figure-html/digit-span-plot-output-1.png
new file mode 100644
index 0000000..6d25c56
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/digit-span-plot-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/double-exponential-curve-output-1.png b/_freeze/blog/aging-curve/index/figure-html/double-exponential-curve-output-1.png
new file mode 100644
index 0000000..1e4aed0
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/double-exponential-curve-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/double-exponential-peak-output-1.png b/_freeze/blog/aging-curve/index/figure-html/double-exponential-peak-output-1.png
new file mode 100644
index 0000000..dad5f38
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/double-exponential-peak-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/english-span-output-1.png b/_freeze/blog/aging-curve/index/figure-html/english-span-output-1.png
new file mode 100644
index 0000000..df497a6
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/english-span-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/performance-language-output-1.png b/_freeze/blog/aging-curve/index/figure-html/performance-language-output-1.png
new file mode 100644
index 0000000..661a28c
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/performance-language-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/spline-curve-output-1.png b/_freeze/blog/aging-curve/index/figure-html/spline-curve-output-1.png
new file mode 100644
index 0000000..f7df71a
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/spline-curve-output-1.png differ
diff --git a/_freeze/blog/aging-curve/index/figure-html/spline-peak-output-1.png b/_freeze/blog/aging-curve/index/figure-html/spline-peak-output-1.png
new file mode 100644
index 0000000..6e7467e
Binary files /dev/null and b/_freeze/blog/aging-curve/index/figure-html/spline-peak-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/execute-results/html.json b/_freeze/blog/fantasy-football/index/execute-results/html.json
index dab826c..c7bd531 100644
--- a/_freeze/blog/fantasy-football/index/execute-results/html.json
+++ b/_freeze/blog/fantasy-football/index/execute-results/html.json
@@ -1,15 +1,16 @@
{
- "hash": "110aaa98da759f35b593fb2cb19513e5",
+ "hash": "e503cde0f9f00a3d64d037b55609d3d3",
"result": {
- "markdown": "---\ntitle: Picking a fantasy football team\ndate: 2023-09-21\ncategories: [football, optimization, prediction]\n---\n\n[Cartola](http://cartola.globo.com) is a fantasy football league following the\nBrazilian Championship A Series.\n\nCartola offers a public API to access data for the current round. A couple\nof years ago, I created a script to automate data retrieval to a \n[repository](https://github.com/assuncaolfi/tophat/tree/main), which now hosts\ncomprehensive historical data since 2022.\n\nIn this post, we will delve into the data for the 2022 season, formulate a mixed\ninteger linear program to pick the optimal team, and present initial concepts\nfor forecasting player scores using mixed effects linear models.\n\n## The game \n\nWe begin the season with a budget of C$ 100, the game’s paper currency.\n\nEach round is preceded by a market session, where players are assigned a value.\nWe are tasked with forming a team of 11 players plus a coach, all within our\nbudget and adhering to a valid formation. A captain must be chosen from among\nthe players, excluding the coach.\n\nThe market is available until the round starts. Players then earn scores based\non their real-life match performances. Our team's score is the aggregate of\nour players' scores, with our captain’s score doubled in the 2022 season.\n\nFollowing the conclusion of the round, player values are recalibrated based\non performance -— with increases for scores above their average and decreases for\nbelow-average performances. Our budget for the next round is our previous\nbudget, plus the sum of our players' value variations.\n\n## Data wrangling\n\nLet's talk about data structures: each round has a market, and each market is a\nlist of players. A player is a structure like this:\n\n::: {#cell-data-wrangling-players .cell execution_count=2}\n\n::: {#data-wrangling-players .cell-output .cell-output-display}\n```{=html}\nPlayer ( \n│ round =0 ,\n│ player =42234 ,\n│ team =264 ,\n│ position =1 ,\n│ games =0 ,\n│ average =0.0 ,\n│ value =10.0 ,\n│ score =0.0 ,\n│ appreciation =0.0 ,\n│ minimum =4.53 \n) \n \n```\n:::\n:::\n\n\nLet's get the list of markets for 2022 and flatten it into a single DataFrame:\n\n::: {#cell-data-wrangling-dataframe .cell execution_count=3}\n\n::: {#data-wrangling-dataframe .cell-output .cell-output-display}\n```{=html}\nshape: ( 30_063, 10 ) \n┌───────┬────────┬──────┬──────────┬───┬───────┬───────┬──────────────┬─────────┐\n│ round ┆ player ┆ team ┆ position ┆ … ┆ value ┆ score ┆ appreciation ┆ minimum │\n╞═══════╪════════╪══════╪══════════╪═══╪═══════╪═══════╪══════════════╪═════════╡\n│ 1 ┆ 37424 ┆ 1371 ┆ 6 ┆ … ┆ 3.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │\n│ 1 ┆ 37646 ┆ 314 ┆ 3 ┆ … ┆ 5.0 ┆ 0.0 ┆ 0.0 ┆ 2.3 │\n│ 1 ┆ 37656 ┆ 266 ┆ 1 ┆ … ┆ 9.0 ┆ 0.0 ┆ 0.0 ┆ 4.08 │\n│ 1 ┆ 37788 ┆ 356 ┆ 1 ┆ … ┆ 4.0 ┆ 0.0 ┆ 0.0 ┆ 1.85 │\n│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n│ 38 ┆ 121397 ┆ 286 ┆ 2 ┆ … ┆ 1.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │\n│ 38 ┆ 121398 ┆ 354 ┆ 4 ┆ … ┆ 1.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │\n│ 38 ┆ 121399 ┆ 354 ┆ 4 ┆ … ┆ 1.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │\n│ 38 ┆ 121400 ┆ 354 ┆ 5 ┆ … ┆ 1.0 ┆ 0.0 ┆ 0.0 ┆ 0.0 │\n└───────┴────────┴──────┴──────────┴───┴───────┴───────┴──────────────┴─────────┘\n \n```\n:::\n:::\n\n\nNow, let's focus on a specific `player` to illustrate our data while we wrangle\nit:\n\n::: {#cell-data-wrangling-example .cell execution_count=4}\n\n::: {#data-wrangling-example .cell-output .cell-output-display}\n```{=html}\nshape: ( 38 , 10 ) \n┌───────┬────────┬──────┬──────────┬───┬───────┬───────┬──────────────┬─────────┐\n│ round ┆ player ┆ team ┆ position ┆ … ┆ value ┆ score ┆ appreciation ┆ minimum │\n╞═══════╪════════╪══════╪══════════╪═══╪═══════╪═══════╪══════════════╪═════════╡\n│ 1 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 10.0 ┆ 0.0 ┆ 0.0 ┆ 4.53 │\n│ 2 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 7.93 ┆ 2.0 ┆ -2.07 ┆ 5.52 │\n│ 3 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 10.44 ┆ 11.0 ┆ 2.51 ┆ 4.75 │\n│ 4 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 10.44 ┆ 0.0 ┆ 0.0 ┆ 5.78 │\n│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n│ 35 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 11.48 ┆ 0.0 ┆ -0.71 ┆ 3.55 │\n│ 36 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 11.51 ┆ 0.0 ┆ 0.03 ┆ 3.63 │\n│ 37 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 12.68 ┆ 0.0 ┆ 1.17 ┆ 9.29 │\n│ 38 ┆ 42234 ┆ 264 ┆ 1 ┆ … ┆ 11.06 ┆ 0.0 ┆ -1.62 ┆ 1.37 │\n└───────┴────────┴──────┴──────────┴───┴───────┴───────┴──────────────┴─────────┘\n \n```\n:::\n:::\n\n\n### Filtering participation\n\nPlayers will show up in the market for many rounds that they do not participate\nin. However, for our analysis, we are only interested in players that actually\nplayed a game in the round.\n\nEach player has a `status` field intended to indicate their participation in the\nround. However, this field is often inaccurate, likely due to the API data being\nupdated before the round.\n\nOne solution is to keep only rows where there is an increase in the number of\n`games` the player has played:\n\n::: {#cell-data-wrangling-round-participation .cell execution_count=5}\n\n::: {#data-wrangling-round-participation .cell-output .cell-output-display}\n```{=html}\nshape: ( 31 , 3 ) \n┌───────┬────────┬───────┐\n│ round ┆ player ┆ games │\n╞═══════╪════════╪═══════╡\n│ 1 ┆ 42234 ┆ 0 │\n│ 2 ┆ 42234 ┆ 1 │\n│ 3 ┆ 42234 ┆ 2 │\n│ 5 ┆ 42234 ┆ 3 │\n│ … ┆ … ┆ … │\n│ 35 ┆ 42234 ┆ 27 │\n│ 36 ┆ 42234 ┆ 28 │\n│ 37 ┆ 42234 ┆ 29 │\n│ 38 ┆ 42234 ┆ 30 │\n└───────┴────────┴───────┘\n \n```\n:::\n:::\n\n\n### Imputing scores\n\nSimilarly, the player `score` field is often inaccurate, likely for the same\nreasons as the `status` field. Fortunately, the `average` field is reliable,\nallowing us to recover the `score`:\n\n$$\n\\begin{align*}\n\\mathrm{Average}(\\mathbf{s}_{1:t})\n= \\frac{\\mathrm{Average}(\\mathbf{s}_{1:(t-1)}) + s_t}{2} \\\\\ns_t \n= 2\\mathrm{Average}(\\mathbf{s}_{1:t}) - \\mathrm{Average}(\\mathbf{s}_{1:(t-1)}),\n\\end{align*}\n$$\n\nwhere $\\mathbf{s}$ is the vector of scores for a given player across all rounds.\n\n::: {#cell-data-wrangling-missing-scores .cell execution_count=6}\n\n::: {#data-wrangling-missing-scores .cell-output .cell-output-display}\n```{=html}\nshape: ( 31 , 4 ) \n┌───────┬────────┬───────┬─────────┐\n│ round ┆ player ┆ score ┆ average │\n╞═══════╪════════╪═══════╪═════════╡\n│ 1 ┆ 42234 ┆ 2.0 ┆ 2.0 │\n│ 2 ┆ 42234 ┆ 11.0 ┆ 6.5 │\n│ 3 ┆ 42234 ┆ 9.5 ┆ 8.0 │\n│ 5 ┆ 42234 ┆ 8.6 ┆ 8.3 │\n│ … ┆ … ┆ … ┆ … │\n│ 35 ┆ 42234 ┆ 4.73 ┆ 4.82 │\n│ 36 ┆ 42234 ┆ 5.1 ┆ 4.96 │\n│ 37 ┆ 42234 ┆ 4.62 ┆ 4.79 │\n│ 38 ┆ 42234 ┆ 4.79 ┆ 4.79 │\n└───────┴────────┴───────┴─────────┘\n \n```\n:::\n:::\n\n\n### Adding fixtures\n\nLet's fetch the list of fixtures to enrich our dataset. A fixture is an object\nlike:\n\n::: {#cell-data-wrangling-fixtures .cell execution_count=7}\n\n::: {#data-wrangling-fixtures .cell-output .cell-output-display}\n```{=html}\nFixture ( round =1 , home =282 , away =285 ) \n \n```\n:::\n:::\n\n\nLet's consolidate these fixtures into a single DataFrame and then pivot them\ninto a long format:\n\n::: {#cell-data-wrangling-fixtures-long .cell execution_count=8}\n\n::: {#data-wrangling-fixtures-long .cell-output .cell-output-display}\n```{=html}\nshape: ( 760 , 4 ) \n┌───────┬──────┬────────┬──────┐\n│ round ┆ team ┆ versus ┆ home │\n╞═══════╪══════╪════════╪══════╡\n│ 1 ┆ 282 ┆ 285 ┆ 1 │\n│ 1 ┆ 266 ┆ 277 ┆ 1 │\n│ 1 ┆ 276 ┆ 293 ┆ 1 │\n│ 1 ┆ 373 ┆ 262 ┆ 1 │\n│ … ┆ … ┆ … ┆ … │\n│ 38 ┆ 286 ┆ 354 ┆ 0 │\n│ 38 ┆ 276 ┆ 290 ┆ 0 │\n│ 38 ┆ 294 ┆ 1371 ┆ 0 │\n│ 38 ┆ 263 ┆ 293 ┆ 0 │\n└───────┴──────┴────────┴──────┘\n \n```\n:::\n:::\n\n\nFinally, let's join this data to our dataset:\n\n::: {#cell-data-wrangling-fixtures-join .cell execution_count=9}\n\n::: {#data-wrangling-fixtures-join .cell-output .cell-output-display}\n```{=html}\nshape: ( 31 , 5 ) \n┌───────┬────────┬──────┬────────┬──────┐\n│ round ┆ player ┆ team ┆ versus ┆ home │\n╞═══════╪════════╪══════╪════════╪══════╡\n│ 1 ┆ 42234 ┆ 264 ┆ 263 ┆ 0 │\n│ 2 ┆ 42234 ┆ 264 ┆ 314 ┆ 1 │\n│ 3 ┆ 42234 ┆ 264 ┆ 275 ┆ 0 │\n│ 5 ┆ 42234 ┆ 264 ┆ 280 ┆ 0 │\n│ … ┆ … ┆ … ┆ … ┆ … │\n│ 35 ┆ 42234 ┆ 264 ┆ 262 ┆ 0 │\n│ 36 ┆ 42234 ┆ 264 ┆ 354 ┆ 1 │\n│ 37 ┆ 42234 ┆ 264 ┆ 294 ┆ 0 │\n│ 38 ┆ 42234 ┆ 264 ┆ 282 ┆ 1 │\n└───────┴────────┴──────┴────────┴──────┘\n \n```\n:::\n:::\n\n\n### Aligning variables\n\nIn our subsequent analysis, the `average` field will exclude the `score` from\nthe given round. Additionally, the `appreciation` field will be calculated in\nrelation to the round's `score`.\n\n::: {#cell-data-wrangling-lookahead-variables .cell execution_count=10}\n\n::: {#data-wrangling-lookahead-variables .cell-output .cell-output-display}\n```{=html}\nshape: ( 31 , 6 ) \n┌───────┬────────┬─────────┬───────┬───────┬──────────────┐\n│ round ┆ player ┆ average ┆ value ┆ score ┆ appreciation │\n╞═══════╪════════╪═════════╪═══════╪═══════╪══════════════╡\n│ 1 ┆ 42234 ┆ 0.0 ┆ 10.0 ┆ 2.0 ┆ -2.07 │\n│ 2 ┆ 42234 ┆ 2.0 ┆ 7.93 ┆ 11.0 ┆ 2.51 │\n│ 3 ┆ 42234 ┆ 6.5 ┆ 10.44 ┆ 9.5 ┆ 1.25 │\n│ 5 ┆ 42234 ┆ 8.0 ┆ 11.69 ┆ 8.6 ┆ 0.73 │\n│ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n│ 35 ┆ 42234 ┆ 4.91 ┆ 11.48 ┆ 4.73 ┆ 0.03 │\n│ 36 ┆ 42234 ┆ 4.82 ┆ 11.51 ┆ 5.1 ┆ 1.17 │\n│ 37 ┆ 42234 ┆ 4.96 ┆ 12.68 ┆ 4.62 ┆ -1.62 │\n│ 38 ┆ 42234 ┆ 4.79 ┆ 11.06 ┆ 4.79 ┆ 0.0 │\n└───────┴────────┴─────────┴───────┴───────┴──────────────┘\n \n```\n:::\n:::\n\n\n## Team picking\n\nNow let's solve the problem of picking the best team a given market. Let $\n\\mathcal{F}$ be the set of valid formations, then for each formation $f \\in\n\\mathcal{F}$, solve:\n\n$$\n\\begin{equation*} \\begin{array}{ll@{}ll} \n\\text{maximize} & \\displaystyle \\hat{\\mathbf{s}}^T \\mathbf{x}, & \\mathbf{x} \\in \\{\\mathbf{0}, \\mathbf{1}\\} \\\\ \n\\text{subject to} \n& \\displaystyle \\mathbf{v}^T \\mathbf{x} \\leq b \\\\ \n& \\displaystyle \\mathbf{P}^T \\mathbf{x} = f, \\\\ \n\\end{array} \\end{equation*}\n$$\n\nwhere\n\n$\\mathbf{x}$ is a variable vector of player picks in the market; \n$\\hat{\\mathbf{s}}$ is the vector of predicted player scores in the market; \n$b$ is our available budget for that round; \n$\\mathbf{P}$ is the matrix of dummy-encoded player formations in the market.\n\nFinally, take the solution with the highest objective.\n\n\n\n::: {#team-picking-problem .cell execution_count=12}\n``` {.python .cell-code}\nclass Problem(BaseModel):\n scores: List[float]\n values: List[float]\n budget: float\n positions: List[List[int]]\n formations: List[Formation]\n\n def solve(self) -> List[pulp.LpSolution]:\n formations = [list(f.model_dump().values()) for f in self.formations]\n problems = [self.construct(f) for f in formations]\n [p.solve(pulp.COIN(msg=False)) for p in problems]\n objectives = [p.objective.value() for p in problems]\n best = np.argmax(np.array(objectives))\n solution = problems[best]\n variables = [v.value() for v in solution.variables()]\n picks = np.array(variables)\n return picks\n\n def construct(self, formation: List[int]) -> pulp.LpProblem:\n n = len(self.scores)\n m = len(formation)\n problem = pulp.LpProblem(\"team_picking\", pulp.LpMaximize)\n indexes = [\"pick_\" + str(i).zfill(len(str(n))) for i in range(n)]\n picks = [pulp.LpVariable(i, cat=pulp.const.LpBinary) for i in indexes]\n problem += pulp.lpDot(picks, self.scores)\n problem += pulp.lpDot(picks, self.values) <= self.budget\n for i in range(m):\n problem += pulp.lpDot(picks, self.positions[i]) == formation[i]\n return problem\n```\n:::\n\n\n### Backtesting\n\nBy solving the team picking problem for all rounds, we can backtest our\nperformance in the season. Before backtesting, let's get the set of valid\nformations $\\mathcal{F}$:\n\n::: {#cell-team-picking-formations .cell execution_count=13}\n\n::: {#team-picking-formations .cell-output .cell-output-display}\n```{=html}\n[ \n│ Formation ( goalkeeper =1 , defender =3 , winger =0 , midfielder =4 , forward =3 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =3 , winger =0 , midfielder =5 , forward =2 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =2 , winger =2 , midfielder =3 , forward =3 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =2 , winger =2 , midfielder =4 , forward =2 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =2 , winger =2 , midfielder =5 , forward =1 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =3 , winger =2 , midfielder =3 , forward =2 , coach =1 ) ,\n│ Formation ( goalkeeper =1 , defender =3 , winger =2 , midfielder =4 , forward =1 , coach =1 ) \n] \n \n```\n:::\n:::\n\n\nKnowing our formation constraints, we're ready to backtest. Starting with a\nbudget of C$ 100, for each round let's:\n\n1. Predict each player's score based on their performance on previous rounds;\n2. Pick the team with the best total score;\n3. Add the sum of the team player's appreciation to our budget.\n\n\n\n::: {#team-picking-backtest .cell execution_count=15}\n``` {.python .cell-code}\ndef backtest(\n players: pl.DataFrame, predict: Callable, initial_budget: float = 100.0\n) -> pl.DataFrame:\n rounds = players.get_column(\"round\").max()\n budget = [None] * rounds\n teams = [None] * rounds\n budget[0] = initial_budget\n for round in range(rounds):\n if round > 0:\n budget[round] = budget[round - 1] + appreciation\n data = players.filter(pl.col(\"round\") < round + 1)\n candidates = players.filter(pl.col(\"round\") == round + 1)\n candidates = predict(data, candidates)\n problem = Problem(\n scores=candidates.get_column(\"prediction\"),\n values=candidates.get_column(\"value\"),\n positions=candidates.get_column(\"position\").to_dummies(),\n budget=budget[round],\n formations=formations,\n )\n picks = problem.solve()\n team = candidates.filter(picks == 1)\n teams[round] = team\n appreciation = team.get_column(\"appreciation\").sum()\n teams = pl.concat(teams)\n return teams\n```\n:::\n\n\nBefore exploring predictions, we'll begin with a few hypothetical backtests\nusing actual observed scores for team selection. Backtesting this strategy, this\nis our team in the first round:\n\n::: {#cell-team-picking-backtest-first-team .cell execution_count=16}\n\n::: {#team-picking-backtest-first-team .cell-output .cell-output-display}\n```{=html}\nshape: ( 12 , 13 ) \n┌───────┬────────┬──────┬──────────┬───┬─────────┬────────┬──────┬────────────┐\n│ round ┆ player ┆ team ┆ position ┆ … ┆ minimum ┆ versus ┆ home ┆ prediction │\n╞═══════╪════════╪══════╪══════════╪═══╪═════════╪════════╪══════╪════════════╡\n│ 1 ┆ 71571 ┆ 356 ┆ 1 ┆ … ┆ 3.19 ┆ 1371 ┆ 1 ┆ 11.0 │\n│ 1 ┆ 42145 ┆ 294 ┆ 2 ┆ … ┆ 2.75 ┆ 290 ┆ 1 ┆ 15.8 │\n│ 1 ┆ 105584 ┆ 264 ┆ 2 ┆ … ┆ 2.75 ┆ 263 ┆ 0 ┆ 10.5 │\n│ 1 ┆ 107110 ┆ 280 ┆ 3 ┆ … ┆ 2.3 ┆ 286 ┆ 0 ┆ 14.9 │\n│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n│ 1 ┆ 39148 ┆ 282 ┆ 5 ┆ … ┆ 7.2 ┆ 285 ┆ 1 ┆ 18.9 │\n│ 1 ┆ 89840 ┆ 276 ┆ 5 ┆ … ┆ 5.42 ┆ 293 ┆ 1 ┆ 27.1 │\n│ 1 ┆ 104530 ┆ 294 ┆ 5 ┆ … ┆ 2.3 ┆ 290 ┆ 1 ┆ 11.0 │\n│ 1 ┆ 97341 ┆ 276 ┆ 6 ┆ … ┆ 0.0 ┆ 293 ┆ 1 ┆ 9.52 │\n└───────┴────────┴──────┴──────────┴───┴─────────┴────────┴──────┴────────────┘\n \n```\n:::\n:::\n\n\nAnd we can plot out cumulative performance during the season:\n\n::: {#cell-team-picking-backtest-score .cell execution_count=17}\n\n::: {.cell-output .cell-output-display execution_count=16}\n{#team-picking-backtest-score width=604 height=445}\n:::\n:::\n\n\nThis might seem like a perfect campaign at first, but it's possible that, early\nin the season, we didn't have enough budget to pick the best scoring teams. To\ntest this hypothesis, we backtest the same strategy with unlimited budget from\nthe start:\n\n::: {#cell-team-picking-backtest-score-unlimited-budget .cell execution_count=18}\n\n::: {.cell-output .cell-output-display execution_count=17}\n{#team-picking-backtest-score-unlimited-budget width=613 height=445}\n:::\n:::\n\n\nBoth runs are nearly identical, which is evidence that focusing on appreciation\nis not so important if we have accurate predictions for the scores. If we\npredict scores perfectly, we get a near perfect run.\n\nTo put our backtests into perspective, \n[the 2022 season champion had a total score of 3434.37](https://ge.globo.com/cartola/noticia/2022/12/03/cartola-2022-com-larga-vantagem-mosquito-bar-8-vence-liga-premiada-meliuz-e-fatura-r-20-mil.ghtml).\nThis is very impressive and not very far from the near perfect run.\n\n::: {#cell-team-picking-backtest-champion .cell execution_count=19}\n\n::: {.cell-output .cell-output-display execution_count=18}\n{#team-picking-backtest-champion width=605 height=445}\n:::\n:::\n\n\n## Score prediction\n\nFor each round, we must predict $\\hat{s}$, the vector of score predictions,\nusing data from previous rounds.\n\nHowever, during the first round, we don't have any previous data to train our\nmodel. In this case, we need to include prior information. One way to do that\nwould be to use data from previous seasons. However, we know a variable where\nthis information is already encoded: the player `value`. Each season starts with\nplayers valued according to their past performance. Knowing this, all our models\nstart with $\\hat{s} = v$ in the first round.\n\nLet's use Bambi [@Capretto2022] and its default priors to fit our models. We\nwon't delve into convergence diagnostics, since we are more interested in the\naverage of the predictive posteriors and the backtest itself is measure of the\nprediction quality.\n\nOne question that arises here is: why not use non-parametric models such\nas gradient boosted trees or neural nets? After some experimentation, I\nconcluded they are not a good fit for this problem: either because they\nassume independence between observations, or because they are too data hungry.\nAlso, tuning these models for backtests might lead us into a rabbit hole\n[@Bailey2013].\n\n### Player average\n\n$$\n\\begin{align*}\n\\mathbf{\\hat{s}} = \\mathbf{Z} \\mathbf{\\beta} \\\\\n\\mathbf{s} \\sim N(\\mathbf{\\hat{s}}, \\sigma),\n\\end{align*}\n$$\n\nwhere \n$\\mathbf{Z}$ is a dummy-encoded matrix of players; \n$\\mathbf{\\beta}$ is a vector of parameters for each player.\n\nIn this model, $\\mathbf{\\beta}$ is simply a vector of player averages. Let's\nalso consider that players that show up in the middle of the season have an\naverage of zero before their first round. This will be our baseline model.\n\n::: {#cell-score-prediction-player-average .cell execution_count=20}\n\n::: {.cell-output .cell-output-display execution_count=19}\n{#score-prediction-player-average width=608 height=445}\n:::\n:::\n\n\n### Player random effects\n\n$$\n\\begin{align*}\n\\mathbf{\\hat{s}} = \\alpha + \\mathbf{Z} \\mathbf{b} \\\\\n\\mathbf{b} \\sim N(0, \\sigma_b),\n\\end{align*}\n$$\n\nwhere \n$\\alpha$ is an intercept and \n$\\mathbf{b}$ is a vector of player random effects.\n\nThis model performs significantly better than the average model, possibly\nbecause of the partial pooling between the random effects, that pulls large\neffects towards the overall mean [@clark2019shrinkage]. In our dataset, it's\ncommon for players that played one or two games to have large averages by\nchance.\n\n::: {#cell-score-prediction-player-random-effects .cell execution_count=21}\n\n::: {.cell-output .cell-output-display execution_count=20}\n{#score-prediction-player-random-effects width=608 height=445}\n:::\n:::\n\n\n### Fixture mixed effects\n\n$$\n\\mathbf{\\hat{s}} = \\alpha + \\mathbf{X} \\mathbf{\\beta} + \\mathbf{Z} \\mathbf{b},\n$$\n\nwhere \n$\\mathbf{X}$ is a matrix of the dummy-encoded fixture variables: the player\n `team`, whether they are playing at `home`, and their `adversary` team\n variables;\n$\\mathbf{\\beta}$ is a vector of fixed effects.\n\nThis model brings more context to our predictions. It also provides a reasonable\nway to predict a new player, by setting their $b = 0$ (the mean of the random\neffects). However, it does not improve significantly over our random effects\nmodel.\n\n::: {#cell-score-prediction-fixture-mixed-effects .cell execution_count=22}\n\n::: {.cell-output .cell-output-display execution_count=21}\n{#score-prediction-fixture-mixed-effects width=608 height=445}\n:::\n:::\n\n\n## Conclusion\n\nWe developed a comprehensive framework for the fantasy football team picking\nproblem. There are more ideas we could explore to improve our chances of\nwinning:\n\n* enriching our data and models with player scouts;\n* including more information in our priors;\n* testing strategies that balance predicted score and appreciation;\n* further model diagnostics.\n\nHowever, I suppose expert human player predictions have a certain edge over\nthose of hobbyist statistical models in fantasy leagues, due to the fact that\nthere are all sorts of relevant data unavailable in public datasets.\n\nAt least, this seems to be the case for brazilian soccer, also known as \"a\nlittle box of surprises\".\n\n",
+ "engine": "jupyter",
+ "markdown": "---\ntitle: Picking a fantasy football team\ndescription: '{{< bi journal-text >}} What''s the optimal run in a season?'\ndate: '2023-09-21'\n---\n\n_This post is a work in progress._\n\n\n[Cartola](https://cartola.globo.com) is a fantasy football league following the Brazilian Série A, where players assume the role of team managers. For the past couple of seasons, I've been collecting [historical data](https://github.com/assuncaolfi/tophat/tree/main) to attempt to answer the question: what's the optimal run in a given season?\n\n## The problem\n\nBefore each round $t = 1, \\dots, 38$, managers are presented with $N_t$ candidate players. Candidates have costs $\\mathbf{c}_{t} \\in \\mathbb{R}_+^{N_t}$ and positions $\\mathbf{p}_{t} \\in \\{1, \\dots, 6\\}^{N_t}$. For convenience, positions can be encoded as dummies $P_t \\in \\{0, 1\\}^{N_t \\times 6}$. There are $i = 1, \\dots, 7$ valid formations $F \\in \\mathbb{N}^{7 \\times 6}$, where $F_{ij}$ indicates exactly how many players of position $j$ are allowed in formation $i$. All formations include $11$ players and $1$ coach, or $\\sum_{j=1}^6 F_{ij} = 12$ for all $i$. The manager begins each round with a budget $b_t \\in \\mathbb{R}_+$ and they must pick a team $\\mathbf{x}_{t} \\in \\{0, 1\\}^{N_t}$ following a formation $\\mathbf{y}_{t} \\in \\{0, 1\\}^{7}$. At the end of the round, players receive scores $\\mathbf{s}_t \\in \\mathbb{R}^{N_t}$ according to their in-game performance. The manager's goal is to maximize the team score $\\mathbf{s}_t^T \\mathbf{x}_t$.\n\nSince the manager doesn't know the scores when picking their team, they must estimate score predictions $\\hat{\\mathbf{s}}_t \\in \\mathbb{R}^{N_t}$. However, predictions aren't always accurate. Also, scores of players from the same team are correlated. To minimize the risk of picking many players from a single team and having that team perform badly, the manager might want to include the covariance between players $S_t \\in \\mathbb{R}_+^{N_t, N_t}$ in the problem. One way to do this is to set a risk aversion $\\gamma \\in \\mathbb{R}_+$ and maximize\n\n$$\\hat{\\mathbf{s}}_t^T \\mathbf{x}_t - \\gamma \\mathbf{x}_t^T \\Sigma_t \\mathbf{x}_t.$$\n\nFinally, the team is subject to the constraints:\n\n1) Cost less or equal to the budget $\\mapsto \\mathbf{c}_t^T \\mathbf{x}_t \\leq b_t$\n2) Follow a single formation $\\mapsto \\mathbf{1}^T \\mathbf{y}_t = 1$\n3) Follow a valid formation $\\mapsto P_t^T \\mathbf{x}_t = F^T \\mathbf{y}_t$.\n\nThis problem is similar to the problem of Modern Portfolio Theory [@e5a1bb8f-41b7-35c6-95cd-8b366d3e99bc].\n\n::: {#problem .cell execution_count=3}\n``` {.python .cell-code}\nimport cvxpy as cp\n\n\ndef problem(predictions, covariance, costs, positions, budget, risk_aversion):\n picks = cp.Variable(scores.size, \"picks\", boolean=True)\n formation = cp.Variable(7, \"formation\", boolean=True)\n objective = cp.Maximize(\n predictions.T @ picks - risk_aversion * cp.quad_form(picks, covariance)\n )\n constraints = [\n prices.T @ picks <= budget,\n cp.sum(formation) == 1,\n positions.T @ picks == formations.T @ formation,\n ]\n problem = cp.Problem(objective, constraints)\n return problem\n```\n:::\n\n\n## Backtesting\n\nSo far, I've simplified the manager's goal to maximize $\\mathbf{s}_t^T \\mathbf{x}_t$ for each round. The manager's true final goal is to maximize their total score at the end of the season $\\sum_t \\mathbf{s}_t^T \\mathbf{x}_t$. These two objectives aren't necessarily the same, because players increase or decrease in valuation according to scores. Since $\\mathbf{s}_t^T \\mathbf{x}_t$ depends on the budget $b_t$, which depends on the scores $\\mathbf{s}_{t - 1}^T \\mathbf{x}_{t - 1}$, one could argue that it might be a good idea to maximize a balance between scoring and valuation. In the next section, I'll show that maximizing the score for each round is sufficient for maximizing the total score, given good enough predictions.\n\nFor now, I'll define a function to simulate the manager's performance across an entire season. At the start of the season, the manager has a budget of $b_1 = 100$. Then, for each round $t$:\n\n1. Solve the team picking problem $\\mapsto \\mathbf{x}_t$\n3. Calculate the round score $\\mapsto r_t = \\mathbf{s}_t^T \\mathbf{x}_t$\n4. If $t < 38$, update the budget $\\mapsto b_{t + 1} = b_t + (\\mathbf{c}_{t + 1} - \\mathbf{c}_t)^T \\mathbf{x}_t$\n\n::: {#backtest .cell execution_count=4}\n``` {.python .cell-code}\nimport numpy as np\n\n\ndef backtest(\n initial_budget,\n scores,\n predictions,\n covariance,\n costs,\n appreciations,\n positions,\n risk_aversion,\n):\n budget = initial_budget\n rounds = len(predictions)\n run = np.empty(rounds)\n for t in range(rounds):\n prob = problem(\n predictions[t], covariance[t], costs[t], positions[t], budget, risk_aversion\n )\n prob.solve()\n picks = problem.var_dict[\"picks\"].value\n run[t] = scores[t].T @ picks[t]\n if t < 38:\n budget += appreciations[t].T @ picks\n return scores\n```\n:::\n\n\n\n\n\n## Scenarios\n\n1. Perfect predictions $\\mapsto \\hat{\\mathbf{s}}_t = \\mathbf{s}_t, \\gamma = 0$\n2. Perfect predictions and infinite budget $\\mapsto \\hat{\\mathbf{s}}_t = \\mathbf{s}_t, \\gamma = 0, \\mathbf{b}_1 \\gg 100$\n3. Simple predictions and varying levels of risk aversion $\\mapsto \\hat{\\mathbf{s}}_t = \\bar{\\mathbf{s}}_{1:(t - 1)}$[^1]$, \\gamma \\in \\{0, 0.5, 1\\}$\n4. Random predictions $\\mapsto \\hat{\\mathbf{s}}_t \\sim N(\\mathbf{0}, I_{N_t}), \\gamma = 0$\n\n[^1]: Explain that this is player-level...\n\nI'l plot... [^2]\n\n[^2]: Unfortunately, data for the 38th round is missing...\n\n\n## Other ideas\n\nConsider valuation, improve predictions, team leader...\n\nReadings:\n\n- https://peterellisjones.com/posts/fantasy-machine-learning/\n- https://www.alexmolas.com/2024/07/15/fantasy-knapsack.html\n\n",
"supporting": [
"index_files/figure-html"
],
"filters": [],
"includes": {
"include-in-header": [
- "\n\n\n"
+ "\n\n\n"
]
}
}
-}
+}
\ No newline at end of file
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.png
new file mode 100644
index 0000000..4e1a17b
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.svg b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.svg
new file mode 100644
index 0000000..0cdad87
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-1.svg
@@ -0,0 +1,817 @@
+
+
+
+
+
+
+
+ 2024-07-13T14:42:12.715906
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.png b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.png
new file mode 100644
index 0000000..c33bbc8
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.svg b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.svg
new file mode 100644
index 0000000..a7df73f
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/cell-7-output-2.svg
@@ -0,0 +1,849 @@
+
+
+
+
+
+
+
+ 2024-07-13T21:33:25.703570
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-8-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/cell-8-output-1.png
new file mode 100644
index 0000000..b4d96ae
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/cell-8-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.png
new file mode 100644
index 0000000..b4d96ae
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.svg b/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.svg
new file mode 100644
index 0000000..c97e406
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/cell-9-output-1.svg
@@ -0,0 +1,808 @@
+
+
+
+
+
+
+
+ 2024-07-12T19:45:30.670953
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_freeze/blog/fantasy-football/index/figure-html/fig-output-1.svg b/_freeze/blog/fantasy-football/index/figure-html/fig-output-1.svg
new file mode 100644
index 0000000..6f05206
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/fig-output-1.svg
@@ -0,0 +1,943 @@
+
+
+
+
+
+
+
+ 2024-07-14T00:16:37.031760
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_freeze/blog/fantasy-football/index/figure-html/figure-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/figure-output-1.png
new file mode 100644
index 0000000..4e1a17b
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/figure-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.png
new file mode 100644
index 0000000..4e1a17b
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.svg b/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.svg
new file mode 100644
index 0000000..32c1547
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/plot-output-1.svg
@@ -0,0 +1,943 @@
+
+
+
+
+
+
+
+ 2024-07-14T00:00:58.196132
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.png b/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.png
new file mode 100644
index 0000000..4e1a17b
Binary files /dev/null and b/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.png differ
diff --git a/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.svg b/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.svg
new file mode 100644
index 0000000..efa19f2
--- /dev/null
+++ b/_freeze/blog/fantasy-football/index/figure-html/scenarios-output-1.svg
@@ -0,0 +1,943 @@
+
+
+
+
+
+
+
+ 2024-07-22T20:08:30.103208
+ image/svg+xml
+
+
+ Matplotlib v3.9.1, https://matplotlib.org/
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/_quarto.yml b/_quarto.yml
index e002c91..6be3715 100644
--- a/_quarto.yml
+++ b/_quarto.yml
@@ -4,12 +4,13 @@ project:
website:
site-url: https://assuncaolfi.github.io/site
- navbar: true
+ navbar:
+ background: white
repo-url: https://github.com/assuncaolfi/site
# description: "My personal website"
# favicon: assets/favicon.png
search: false
- title: "Luís Assunção"
+ title: "<"
bibliography: references.bib
@@ -25,10 +26,15 @@ format:
code-copy: hover
code-tools:
source: repo
- highlight-style: assets/custom.theme.json
+ linkcolor: "#1f77b4"
+ link-external-icon: true
+ highlight-style: grayscale
+ html-math-method: webtex # webtex
html-table-processing: none
+ mainfont: Latin Modern Roman
+ monofont: Latin Modern Mono
reference-location: margin
theme:
- - sandstone
+ - default
- assets/custom.scss
- title-block-banner: true
+ title-block-banner: false
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Bold.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Bold.ttc
new file mode 100644
index 0000000..58aab61
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Bold.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-ExtraBold.ttc b/assets/IosevkaEtoile/IosevkaEtoile-ExtraBold.ttc
new file mode 100644
index 0000000..d19814d
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-ExtraBold.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-ExtraLight.ttc b/assets/IosevkaEtoile/IosevkaEtoile-ExtraLight.ttc
new file mode 100644
index 0000000..dd487a3
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-ExtraLight.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Heavy.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Heavy.ttc
new file mode 100644
index 0000000..dd6b5d4
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Heavy.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Light.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Light.ttc
new file mode 100644
index 0000000..4a6678c
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Light.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Medium.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Medium.ttc
new file mode 100644
index 0000000..14348b9
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Medium.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Regular.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Regular.ttc
new file mode 100644
index 0000000..8a8f5cd
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Regular.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-SemiBold.ttc b/assets/IosevkaEtoile/IosevkaEtoile-SemiBold.ttc
new file mode 100644
index 0000000..9fda57e
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-SemiBold.ttc differ
diff --git a/assets/IosevkaEtoile/IosevkaEtoile-Thin.ttc b/assets/IosevkaEtoile/IosevkaEtoile-Thin.ttc
new file mode 100644
index 0000000..a1bd132
Binary files /dev/null and b/assets/IosevkaEtoile/IosevkaEtoile-Thin.ttc differ
diff --git a/assets/cat.jpeg b/assets/cat.jpeg
new file mode 100644
index 0000000..a8506ec
Binary files /dev/null and b/assets/cat.jpeg differ
diff --git a/assets/custom.scss b/assets/custom.scss
index 0ed6210..4e2d53f 100644
--- a/assets/custom.scss
+++ b/assets/custom.scss
@@ -1,56 +1,22 @@
/*-- scss:defaults --*/
-$white: #fff !default;
-$gray-100: #f8f9fa !default;
-$gray-200: #f8f5f0 !default;
-$gray-300: #dfd7ca !default;
-$gray-400: #ced4da !default;
-$gray-500: #98978b !default;
-$gray-600: #8e8c84 !default;
-$gray-700: #495057 !default;
-$gray-800: #3e3f3a !default;
-$gray-900: #212529 !default;
-$black: #000 !default;
-
-$blue: #325d88 !default;
-$indigo: #6610f2 !default;
-$purple: #6f42c1 !default;
-$pink: #e83e8c !default;
-$red: #d9534f !default;
-$orange: #f47c3c !default;
-$yellow: #ffc107 !default;
-$green: #93c54b !default;
-$teal: #20c997 !default;
-$cyan: #29abe0 !default;
-
-$primary: $blue !default;
-$secondary: $gray-600 !default;
-$success: $green !default;
-$info: $cyan !default;
-$warning: $orange !default;
-$danger: $red !default;
-$light: $gray-200 !default;
-$dark: $gray-800 !default;
-
-$btn-code-copy-color: $primary;
-$btn-code-copy-color-active: $primary;
-$code-bg: $light;
-$code-color: $dark;
-$link-color: $primary;
-$link-hover-color: $primary;
-$navbar-bg: $light;
-$navbar-fg: $dark;
-
-@import "https://fonts.googleapis.com/css2?family=Fira+Code&family=Fira+Sans&display=swap";
-
-$font-family-sans-serif: "Fira Sans";
-$font-family-monospace: "Fira Code";
+@font-face {
+ font-family: "Iosevka Etoile";
+ src: url("assets/IosevkaEtoile/IosevkaEtoile-Regular.ttc");
+}
-// $body-bg: $white !default;
-// $body-color: $dark !default;
+@font-face {
+ font-family: "Latin Modern Roman";
+ src: url("assets/lmroman10-regular.otf");
+}
-/*-- scss:rules --*/
+@font-face {
+ font-family: "Latin Modern Mono";
+ src: url("assets/lmmono10-regular.otf");
+}
-h1, h2, h3, h4, h5, h6, header, navbar, #TOC, table, td, th, tr {
- font-family: "Fira Code";
+.MathJax {
+ font-family: "Latin Modern" !important;
}
+
+@import url('https://fonts.googleapis.com/css2?family=STIX+Two+Text:ital,wght@0,400..700;1,400..700&display=swap');
\ No newline at end of file
diff --git a/assets/favicon.png b/assets/favicon.png
deleted file mode 100644
index 18a946f..0000000
Binary files a/assets/favicon.png and /dev/null differ
diff --git a/assets/gallery.ejs b/assets/gallery.ejs
index 4aef9d7..224df6e 100644
--- a/assets/gallery.ejs
+++ b/assets/gallery.ejs
@@ -1,5 +1,7 @@
<% for (const item of items) { %>
-
+ <%= item.date %> <%= item.title %>
+ <%= item.description %>
<% } %>
+
diff --git a/assets/lmmono10-regular.otf b/assets/lmmono10-regular.otf
new file mode 100644
index 0000000..da20085
Binary files /dev/null and b/assets/lmmono10-regular.otf differ
diff --git a/assets/lmroman10-regular.otf b/assets/lmroman10-regular.otf
new file mode 100644
index 0000000..6a96b46
Binary files /dev/null and b/assets/lmroman10-regular.otf differ
diff --git a/blog/_metadata.yml b/blog/_metadata.yml
index bf93e13..9c7fe24 100644
--- a/blog/_metadata.yml
+++ b/blog/_metadata.yml
@@ -1,7 +1,9 @@
citation:
- author: Luís Assunção
+ author:
+ Luís Assunção
format:
html:
date-modified: today
- toc: true
- toc-title: Contents
+ # toc: false
+ # toc-location: left
+ # toc-title: " "
diff --git a/blog/aging-curve/.pdm-python b/blog/aging-curve/.pdm-python
new file mode 100644
index 0000000..94987e7
--- /dev/null
+++ b/blog/aging-curve/.pdm-python
@@ -0,0 +1 @@
+/Users/assuncaolfi/Projects/site/blog/aging-curve/.venv/bin/python
\ No newline at end of file
diff --git a/blog/aging-curve/.python-version b/blog/aging-curve/.python-version
deleted file mode 100644
index d4b278f..0000000
--- a/blog/aging-curve/.python-version
+++ /dev/null
@@ -1 +0,0 @@
-3.11.7
diff --git a/blog/aging-curve/index.ipynb b/blog/aging-curve/index.ipynb
deleted file mode 100644
index 345bffb..0000000
--- a/blog/aging-curve/index.ipynb
+++ /dev/null
@@ -1,716 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "raw",
- "id": "f1aac84b",
- "metadata": {},
- "source": [
- "---\n",
- "title: 'Additive aging curve'\n",
- "date: today\n",
- "---"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c40e21d3",
- "metadata": {},
- "source": [
- "::: {.callout-warning}\n",
- "This post is a draft.\n",
- ":::\n",
- "\n",
- "Recently, I helped design an experiment measuring a binary response against a\n",
- "continuous variable. If the user abandoned their cart at time zero, then we\n",
- "delayed for a variable number of minutes before reminding them to finish their\n",
- "purchase. The delay has a non-monotonic relationship to the response:\n",
- "as the delay increases, so does the purchase rate; then the rate peaks; and finally it decreases.\n",
- "\n",
- "Causally, we may decompose this process into two: as the delay increases,\n",
- "the user 1) becomes more available for and 2) loses interest in purchasing\n",
- "the product. This is a common phenomena in different time-based scenarios. In\n",
- "sports, the \"aging curve\" refers to how a player's performance increases with\n",
- "age, then decreases. As the player gets older, they get 1) better at the sport\n",
- "and 2) physically weaker.\n",
- "\n",
- "Andrew Gelman wrote about this a couple of times in his blog: see his posts\n",
- "from [2018](https://statmodeling.stat.columbia.edu/2018/09/07/bothered-non-monotonicity-heres-one-quick-trick-make-happy/)\n",
- "and [2023](https://statmodeling.stat.columbia.edu/2023/01/01/how-to-model-a-non-monotonic-relation/), \n",
- "where Gelman suggests modeling these processes using an additive function like:\n",
- "\n",
- "$$g(x) = g_1(x) + g_2(x),$$\n",
- "\n",
- "where \n",
- "$g_1(x)$ is a monotonically increasing function with a right asymptote; and \n",
- "$g_2(x)$ is a monotonically decreasing function with a left asymptote.\n",
- "\n",
- "In this post, we'll analyse an experimental dataset by fitting and comparing\n",
- "three different models: a non-parametric bootstrap, a semi-parametric spline\n",
- "and a fully parametric decomposable curve like $g(x)$.\n",
- "\n",
- "## The Digit Span test\n",
- "\n",
- "The motivation for Gelman's 2018 post was a study relating age to peak cognitive \n",
- "functioning [@Hartshorne2015]. According to the study, one of their experiments\n",
- "was a large scale online experimentation platform:\n",
- "\n",
- "> Participants in Experiment 2 (N = 10,394; age range = 10–69 years old) [...]\n",
- "> were visitors to TestMyBrain.org, who took part in experiments in order to\n",
- "> contribute to scientific research and in exchange for performance-related\n",
- "> feedback. [...] We continued data collection for each experiment for approximately\n",
- "> 1 year, sufficient to obtain around 10,000 participants, which allowed fine-grained\n",
- "> age-of-peak-performance analysis.\n",
- "\n",
- "The dataset for Experiment 2 is available online [@Germine_Hartshorne_2016] and \n",
- "includes results of the Digit Span verbal working memory test, part of the Wechsler \n",
- "Adult Intelligence Scale (WAIS) and Wechsler Memory Scale (WMS) supertests. In the \n",
- "Digit Span test, subjects must repeat lists of digits, either in the same or reversed \n",
- "order.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "digit-span",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | label: digit-span\n",
- "import polars as pl\n",
- "\n",
- "experiment = (\n",
- " pl.read_csv(\"data/experiment-2.csv\")\n",
- " .with_columns(digit_span=pl.col(\"DigitSpan\"))\n",
- " .select(\"age\", \"digit_span\")\n",
- " .filter(pl.col(\"age\").is_between(10, 70))\n",
- " .with_columns(\n",
- " y=(pl.col(\"digit_span\") - pl.col(\"digit_span\").mean())\n",
- " / pl.col(\"digit_span\").std()\n",
- " )\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2499183c",
- "metadata": {},
- "source": [
- "Let's plot the relationship between age and Digit Span performance:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "digit-span-plot",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzddXhTZ/sH8G+07t5CW6Qt7l7chtu232BjyHxj9k6Zy7t3bowJMAHGxmAwZNhwijtFihVrqRv1ptHfH2lOIydJoUCz7fu5rl5XmpM750lycnLOfZ7nfiQGg8EAIiIiIiIiIiIiFyNt6AYQERERERERERGJYeKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXREREdMP0ej2mT58OHx8f9OnTB7m5uQ3dJAt79uxBs2bNEBQUhO+++66hm0NERERE10liMBgMDd0IIiIi+nvauHEjhg0bJvw/c+ZMfPDBBw3YIks9e/bE/v37AQByuRzFxcXw8vJq4FYRERERUV2xxxURERHdMIlEYvG/VOpahxbm7ZNIJDbtJSIiIiLX5lpHl0RERHTT7NixQ0jWmP6kUin8/PzQpEkTjBgxAm+//TbOnj17w+sYMmQIpk2bBi8vLyQmJuLpp5++ia+g/j755BM0bdoUgYGBmDVrFjw9PW/oeXQ6HdLT07Fr1y6kp6ff5FbWz6ZNm/Dwww+jZcuWCAgIgJubGyIjI9GtWze8+OKL2Lt3b0M38R/pyy+/tPl+Xe/f448/3tAvo15KS0tx8uRJbN++vaGbQkRE/2AcKkhERPQPtWPHDgwYMKBOjx02bBi+++47xMbG3tpG/U0tWLAA06dPBwDMnz8f06ZNa9gGAcjKysK0adOwefNmp49NTEzEN998g/bt29+Glv07fPnll/jPf/5Tr+f4+OOP8eKLL96kFt1+sbGxSEtLQ0xMDK5cudLQzSEion8oeUM3gIiIiG69QYMG4dlnnwUAaLVaFBQU4NixY1i+fDny8vLw119/oW3btli5ciUGDx7csI0lp4qKijB48GCcOXMGABAYGIjJkyejTZs2CAoKQn5+Pg4ePIi1a9ciLy8Pe/bsQffu3ZGcnIwWLVo0cOv/GcaOHYvmzZuLLtu6dSu+/PJLAMCkSZNw7733ij6uQ4cOt6h1RERE/xxMXBEREf0LNGrUCKNGjbK5//PPP8fMmTPx5Zdfory8HBMmTMDhw4cRHx/fAK10rqKiAklJSRgxYkRDN6VBvffee0LS6q677sLPP/8MDw8Pi8c8+uijUKlU+Pbbb/Haa6/hpZdeYtLqJmrSpAmaNGkiuqygoEC4HR8fL/rdIyIiorph4oqIiOhfzM3NDV988QXUajW+/fZblJWV4emnn8Zff/3VoO3S6XRQq9UoLi5GZmYmTp06hW3btmHVqlWorKxETk4OgoODG7SNDWn+/PkAjJ/fDz/8YJO0MnF3d8dzzz2HO++8EzExMbeziUREREQ3BYuzExERET7++GMEBgYCADZu3Ijjx4+LPi4nJ8dhsekbrZG1adMm3H///YiLi4OXlxfkcjk8PT0RGRmJrl27Yvr06Vi0aBHKysqg0+mwdu1a0ed57LHHHLZvwYIFdWrPggULLOJM9a0AYPr06aLPXZdaUzdDQUEBiouLAQCNGzeGn5+f0xhnSau3334bEokE0dHRwn3r1q3DyJEjER4eDqVSiZiYGEybNg2nT592uj6DwYADBw7gzTffxJAhQxATEwMPDw8olUqEh4dj6NChmDNnDlQqldPnAmDz+Wm1WixatAjDhg1DREQE3NzcEBMTg4cfftjliufXR35+Pt544w107NgR3t7e8PT0RFxcHJ544onrnlQhNzcX7733Hnr37o3g4GAoFAr4+/sjPj4eU6ZMwbJly6DVah0+R2xsrMU2n5aWBgBIS0sT/U4kJibe8GsnIiIyYY8rIiIigpeXFx5++GF89NFHAIClS5felkLexcXFmD59OlatWmX3Md7e3mjdujUAYw+j2NhYxMXF3fK2Xa/b1SYfHx9IJBIYDAZkZWWhoqICXl5eN+W58/PzodFo8NBDD+Hnn3+2WJaeno6FCxdiyZIlWL9+PQYOHGj3eTZt2oRhw4aJLsvNzcXmzZuxefNmfPPNN9iwYQMaNWpUp/YVFRUhJSUFkydPRnJysk37fvjhB6xZswaHDx+u83O6qu3bt2PChAlCktLkwoULuHDhAn788Ud89dVXePTRR50+12+//YZHH30UZWVlFveXlJSgpKQEqampWLRoERo3boxPPvkE99xzz015Da74PSUior8fJq6IiIgIADBixAghcbVz507RxwQEBGDNmjU29z/44IPIy8u7rvVpNBqMHz8eO3bsAAA0bdoUDzzwABISElBWVoaTJ09i7ty5KC8vR3R0NH766Sd4e3s7fM4ZM2bY1BMyL5RdV4MHD7Z4nebP8eyzz2LQoEE2Mea9lW4lNzc3tG3bFidOnEBlZSWeeuopfP/995DJZPV+bpVKhcmTJ+P3339HdHQ0HnnkEcTHxyMrKwtz5szB2bNnUV1djfHjx+PUqVNo3Lix6PMMGjQIERERiIqKQt++fdGyZUsEBwejuLgYFy9exKJFi5CWloZTp05hwoQJOHDgACQSidP27d27Fx9++CHy8/PRrVs3TJ48GZGRkbh48SK+/PJLZGdnIzc3F2+88YYwnPLvaPPmzRg9ejSqq6uhUChw3333YcCAAfD09ERKSgrmzp2L7OxsPP744wgMDMTdd99t97l27dqFyZMnQ6/XQ6FQYPLkyejTpw8CAwNRUVGBjIwMbNmyBVu2bMHVq1exbt06u4mrn376CZWVlcL/pu99aGgofvzxR5vH2yteT0REdF0MRERE9I+0fft2AwADAMPUqVOdPr64uFh4vJ+f33WtKyYmxgDAEBMTU+eY77//Xlhfly5dDOXl5TaPuXDhgsHb29sAwDBkyJDrapPJ/PnzhfXMnz+/wZ7jZvr999+F9gAwdOjQwbBy5UqDRqO5oed76623LJ5v8uTJBpVKZfGYiooKQ7du3YTHPPfccw6f01Fb1Gq1Yfjw4cJzbdiwweFzmbdNoVAYPv74Y4Ner7d4THJysvCYgIAAm+W3k/n28tZbb11XbHl5uSE6OtoAwBAcHGw4cuSIzWOKiooMnTt3NgAwhISEGIqLi+0+37hx4+q07R47dswwefJkQ0FBQZ3beiPfeyIiouvFGldEREQEAPDz8xOGnJWUlFj0rLgVzHvEfPXVV6LD3Zo1a4annnoKgLEXyqZNm25pm/4u7r77brz//vtCL6Xk5GSMHz8ejRs3xmOPPYaNGzc6rVdkz/jx4/Hzzz/Dzc3N4n5PT0988803wv8LFiyAwWCw+zxyuf2O/QqFAi+//LLwf1JSUp3bN2/ePLz44os2PbTat28vzJp47do1FBYW1vk5XcmsWbOEOl3fffcdOnXqZPOYgIAALFq0CBKJBPn5+fj111/tPp95Lay77rrL7uM6dOiARYsWISgoqB6tJyIiuvmYuCIiIiKBr6+vcNu6Hs7NZjqhdnd3R/fu3e0+rkOHDsLt60lw/NO98sor2L59O9q0aSPcl5OTg7lz52LYsGEICwvD008/jUuXLl3X8z799NN2h+116dIFzZo1A2CsN5WamnrD7TcfZljXYaa9evXCtGnT7C43tQ0AKioqbrhtDWnp0qUAgLCwMEyYMMHu41q2bIkePXoAAFasWGH3ceaJqH379t2kVhIREd0+TFwRERGRwLyXjFqtvqXrMj2/u7s7pFL7hyTmPX/+rr1obpV+/frh5MmT2LRpEyZOnGhRA6yoqAizZ89GQkICXn311Zv2eZonGe3NPmmtsrISycnJ2LFjB9atW4e1a9cKtc0AQKfT1el5FAqFw+U+Pj7CbUe9wVxVRkYGTpw4AQDo1KmTw+8FAHTs2BEAcPjwYbuPGTNmjHB7woQJQo0wIiKivwsWZyciIiJBdXW1cNvd3f2Wrqt58+ZITk5GcXEx0tLSEBMTI/q4M2fOCLejoqJuaZv+roYMGYIhQ4ZApVLhr7/+wrJly7BixQqoVCpotVp88MEHSE1NxdKlS50mQ5wx/5wcJRJVKhXmzJmDX375BceOHYNer6/XeuvCenjj383ly5eF25WVlVi7dq3DxxcUFAAwDu0tLy8Xnbzg6aefxo4dO7BhwwaUl5fjlVdewRtvvIHExESMHDkS48aN4+x/RETk0pi4IiIiIgDGHirXrl0DAEgkEvj5+d3S9d1///1ITk4GALz55ptYuHChzWPKy8sxe/Zs4f8hQ4bc0jb93bm7u2PcuHEYN24c8vPz8fbbb+Pbb78FACxfvhwLFy7E9OnT67UO815NxcXFoo9JTU3FiBEjcOHChXqt698mNzdXuJ2UlHRdQ2NLSkpEE1fu7u5Yu3YtfvjhB3zyySe4cOECtFqt8PwvvfQSunTpgmeffRb33ntvnWZ3JCIiup04VJCIiIgAGIcpaTQaAEBoaCiUSuUtXd+MGTPQq1cvAMDPP/+M6dOn49ixY1CpVKiqqkJSUhKGDBmCrKwsAMDgwYOFmj7kXEhICL755hu8/vrrwn3mxdVvlPkQPJlMZrO8srISw4cPF5JWzZo1w9y5c3HmzBlUVFTAYDDAYDBY9C6i+nNUjF8qleKRRx5Bamoq9u/fjzfffBPdunUTet8dPnwYkydPxrBhw1BVVXW7mkxERFQnTFwRERERAODQoUPCbfOC6LeKm5sbNmzYgClTpgAwzlLXqVMneHh4wNPTE/3798f+/fsBAHFxcVi0aNEtb9M/0YsvvijULjMfdnmjzIv2i81At2jRIly8eBGAsYD4kSNH8Mgjj6BFixbw9PSs9/r/ycLCwoTbDz74oJDkq8ufvaG21rp374533nkHBw4cQHZ2Nj744ANhUoZNmzbhueeeuyWvjYiI6EYxcUVEREQAgN9//124PWjQoNuyTqVSiaKiIuG2NV9fXzz77LM4dOgQwsPDb0ub/ml8fX2FBFNlZWW9Z9u7cuWKcDsyMtJmuXnR9ZkzZ97yIaf/JNHR0cLtnJycW76+0NBQzJw5E0lJSULvq/nz57PXFRERuRTWuCIiIiKkp6djxYoVAIwzC06cOPG2rHfmzJlYu3YtQkJCkJycjPLycly5cgVSqRRhYWFo1aqV6HC028287s/fbbY6tVotFPH28/ODl5dXvZ5v3759AIzDBHv27Gmz3Lxge7Nmzeq1rn+bmJgYtGzZEmfOnMH+/fuh0WiczqR4M3To0AHt27fHsWPHUF1djfT0dCQkJDiNM30v/m7fCSIi+nthjysiIqJ/OZ1OhylTpgj1raZMmYLGjRvflnWbhv/1798fkZGRiI+Px9ChQzF48GC0bdvWJZJWABAQECDcvnr1agO2xOi7774TklHOLFy4EDqdDgBEE03W8vLy7C7bsWMH0tLSAABdu3YV7U1V1/fq6NGjwm0mPmrdddddAIwJwB9//LHez2c+U6gj5r2s6lqg3fRZZ2dnC9sYERHRzcbEFRER0b9YXl4eRo4cKcxeFhkZiQ8//PC2rV+v1wMAtm3bhqSkJJcdotS1a1fhZH7x4sWiyQBT4u9W+/jjj/HEE0+gU6dOWLJkicOkz4oVK/DMM88I/z///PNOn3/GjBlCbTFzBQUFePzxx4X/X3zxRdH43r17C7e//vpr4TM2t3r1akydOlX431SAn4yfUUREBADgP//5D1avXi36OI1Gg2+++QY///yz3ecqLy9Hr169MG3aNGRmZtp93Lx583D27FkAxuGDzZs3r1Nbu3fvLrTll19+EX2MWq2u03MRERHZw6GCRERE/wIZGRlYu3YtAOPsY9nZ2di7dy/++OMPIVkUFhaGdevWISQkxO7zFBYWCkPFzJmeo6qqSliPSVBQkN2ePvfffz9mz56NwsJC9O/f32a5l5cXoqKiMGTIEDz22GNo06aNw9e5b98+i6FqAHD8+HGL29bt69mzp2iRcXMRERGYNGkSFi9ejHPnzqFDhw54+OGHER0djWvXruH06dP47bffMGvWLNxzzz0On6s+9Ho9Dh48CMDYm2nSpEmYOXMmRo4cibZt2yI4OBharRYXLlzA2rVrceDAASF25syZGDx4sNN1FBQUoE+fPrjrrrswZMgQ+Pr6IiUlBXPmzBHqLg0YMADjx48XjZ8yZQreffddFBQUYM+ePejcuTOmTZuGqKgoZGdnY9WqVdi2bRv8/f3RoUMHJCcnY/v27Zg3bx4eeeSRm/Au/b35+fnhhx9+wPjx46FSqTBu3DgMGTIE48aNQ2RkJEpLS3H06FEsW7YMWVlZ8PT0RPfu3UWH9r344os4evQojh49it9++w3Dhw9H//79ERUVBY1Gg6tXr+KPP/6wmJjh/fffF+pdOfPUU0/hxx9/hEajwUMPPYS9e/eiR48e8PT0RHp6OjZt2oTc3FwcO3bMZXpPEhHR35CBiIiI/pG2b99uAOD0TyKRGO655x5DXl7eTXtO879+/frZfT6VSmWYPn26QSaTOX0euVxueP/99x22r1+/ftfdvu3bt9fp/SwuLjZ07drV4XO1bNnSoNfr6/R89fHDDz8YYmNj6/T6fH19DbNmzXL4fG+99Zbw+Ndff93g4+Nj9/m6du1qKCkpcfh827dvd/gcjRo1Muzbt8+we/dug0KhMAAwtG7d2u7z1WVbMhgMhqlTpwqPvXz5ssPH3krz588X2vHWW2/d0HNs27bNEBAQ4PCzlclkhkcffdRQWloq+hylpaWGhx9+2CCXy51uJ97e3oaFCxdedzsXLFggfIb2/pYsWXJD7wEREZHBYDCwxxUREdG/jIeHB4KCgtCyZUv06tUL999/f4MV0XZzc8NPP/2ETz/9FCkpKSgtLRWGvmm1WuTk5CApKQkrV65EdXU1Xn31VYSHh2P69Om3va1+fn7YtWsXvv/+eyxduhSnTp1CeXk5/Pz80KZNG9xxxx2YPn16nesD1ceDDz6IqVOnYu3atdiyZQv27t2LnJwcFBYWws3NDaGhoYiPj8fIkSNx9913IzQ0tM7PPWjQIDz22GP45JNPsH79ely9ehUymQwtW7bEpEmT8OSTT4rOAGmuf//+OH78OD7++GNs3LgRmZmZ8PLyQlxcHMaPH48ZM2bAx8cHALBp0ya89dZbGDhwYL3ek3+aAQMGIDU1FXPmzMG6detw5swZlJeXw9/fH/Hx8Rg0aBAefPBBxMTE2H0OHx8fzJs3Dy+//DJ+/fVXbN68GZcuXUJhYSGkUilCQkLQvn17DBo0CNOmTbuhGSCnTp2Kjh074ssvv8SOHTuQlZUFqVSKxo0bo0ePHpg4cSKGDx9en7eCiIj+5SQGA6thEhERkWs7efIkevbsiYqKCjRq1MglCqT/k7z99tt45513AADbt28XHbZJRERE1BBYnJ2IiIhuu8zMTKxduxZr165FZWWl08e3bdsWw4YNA2Cs11XXGfWIiIiI6O+NQwWJiIjotktOTsbo0aMBAHv37rVbvN2cedF1Ly+vW9Y2IiIiInId7HFFREREt12rVq2E27NmzYKzygW//PILkpKSAAC9e/eGh4fHLW0fEREREbkG9rgiIiKi265JkyYYOHAgtm3bhqVLlyIlJQXjxo1DfHy8ULS7pKQEFy5cwKZNm3Dw4EEAgFKpxGeffdaQTSciIiKi24iJKyIiImoQv/76K4YMGYJTp04Jf440a9YMCxcuRLdu3W5TC4mIiIiooTFxRURERA0iPDwcycnJWLx4MVatWoWTJ08iOzsblZWVkMvl8Pb2RmxsLDp06ICRI0dizJgxkMt56HIrtGrVCjNmzEBsbCxatGjR0M0hIiIiEkgMzopKEBERERERERERNQAWZyciIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpckb+gGUMPQqCpgMOgbuhnXRe7mCalUBr1eB211ZUM3h/5luP1RQ+L2Rw2F2x41JG5/1JC4/VFD+jtvfxKJFAp3r5v6nExc/UsZDPq/XeLK3N+57fT3x+2PGhK3P2oo3PaoIXH7o4bE7Y8aErc/DhUkIiIiIiIiIiIXxcQVERERERERERG5JCauiIiIiIiIiIjIJTFxRURERERERERELomJKyIiIiIiIiIicklMXBERERERERERkUti4oqIiIiIiIiIiFwSE1dEREREREREROSSmLgiIiIiIiIiIiKXxMQVERERERERERG5JCauiIiIiIiIiIjIJTFxRURERERERERELomJKyIiIiIiIiIicklMXBERERERERERkUti4oqIiIiIiIiIiFwSE1dEREREREREROSSmLgiIiIiIiIiIiKXxMQVERERERERERG5JCauiIiIiIiIiIjIJTFxRURERERERERELomJKyIiIiIiIiIicklMXBERERERERERkUuSN3QDiG61Y+ezMPfPg8gpLIdEAkSH+WPGhO6IbxxSp/jD5zLw/Z+HkVtUDqkEiAkPwJN39kCzqKC6xZ/JwPdrDiH3WjmkEgliIwLw5J090TQysD4vq87emb8Vmw6mwmAw/i+XSfHcxESM69O6TvGPf7IKxy/mCP9LADw6tgumDO9Sp/gPFu3A+n3noNMbG+DppsAb0wegX4emdYp/6vPVOHI+W/hfKpXgxUl9MLZPqzrFj3h+Poorqi3uu2dgGzzzf73rFN/rsTk298WG+2Lx2/fWbf0vzEdxueX6HxnTGdNGdK1T/ICnvke1Rmdx36Qh7fDUnb3qFN9vxjxodHqL+6YN74BHxvZwGqtSqTDlvT+QUVAm3CeTSPDeo4PRr0Mzp/ElJSUYOfM31Hz0gkfHdMbUOrz+6upqTHt/BdJyS4T7lHIpPntyODq3aOw0XqvV4u3527Dr+BVodXpIJRJEhfji0xnD0SjU32m8TqfDrOX7sOlAKlQaLeRSKRKig/HuQ4MQ5Oddp/W/8cMW7D2VLqy/cagfPntyOCKC/eq0/s+W7MHWIxeg1uggk8nQpmkE3pzWH4G+Hk7j9Xo9fttyAuv3nUN5lRpKhQw9W0fjsXHd4OmudBqvUmnxyry/cORcFnR6PaRSCZqEB+Lzp4Yj2N/561erdfhocRJ2Hb8CtVYHuUyKDs0j8PaDg+Dt4eY0vr50ej32p1zFruNXUFpRDW8PJRLbxiCxXQzkslt/3U6t1WL+2qPYfvQiqtRaeLjJMbBzM0wb0QlKufPDL61Ojz0n07D3ZBrKq9Tw9lCib/sm6NGmMWRS5+3X6vTYfeIK9p5MR4VKDR9PN/RtH4vuresWX19anQ47k69gX0o6KlUa+Hq5oX/HpujaohGkUonT+EqVGnNXH8TeU+mo1ujg7a7EiJ7xmDioPeRy17/uWq3RYtuRSzhyNgNVai38vd0xuEtzdIiLgETi/PUb4y/iyNlMVKm1CPDxwOAuzdG+eXjd4tVabDl8AUfPZ0Gl1iLQxwNDujZH22Z1i6+vS1mFeOnbv5BbVA69wQCFTIaBnZvh1fv7Ql6H7b9SpcHmQ6k4ebkA1Rodgv29MKRTDFo1Cbvlbb8ZKqrU+OvAeZy6nAuNRoeQAG8M7xGP+MbBt2X9FzIK8M78bcjML4XBYICXuxKT7+iAiYPb35b1l1aosH7fOZxNy4dOb0B4oDdG9ExAkzoe+5aUq7B+/zmcq4mPCPbBiJ4JiA0PuMUtvzmKSiuxbt85XMgohF5vQFSIL0b1aoFGoc5/+11BfnEF1u09i0tZ12CAATFh/hjZqwUignzqFJ93rRzr9p7D5WxjfGx4AEb2SkB4YN3iicRIDAaDwfnD6J9GXVUGg0Hv/IEuROHuDalUBr1eB42q3Onj84sr8PBHK5F3TfyxTSIC8P3L4+2ewOUWleGRj1chv7hCdHmzqEB8//J4uCsVosuzC0vx6MerUFBSKbo8rlEQ5r40zm58fa3bcxr/W7TT7nIJgDWfTkagt/gJ6Pd/HsT89UcdrmPFhxMR7u8vumzN7jP44Jcku7FymRR/fTIdnp7ir3/enwexwMn6//p4Onx9xU+An/xiNY6eyxZdZrLp08nwtvP6+z0xBxonX5Flb4xGVFSU6LLHP1mB4xfzHMZv/ux+eHl5iS67+/VfkFngeDv/6+N74evrK7pswiuLkHNNfNutS/xzX63D/tNX7cZKJMDWL6bB3d1ddPnw539CSYXa4fr3znnM7jJn61fIpEj65hG7y79beQCLNh6zuzwq2BfL3rOffFyy5ThmL98Hez+Q7ZuH47sXxtmN/3zJbizfccru8phwf/z29kS7yxesP4J5fx6yu7xby0b48plRdpev23cWH/2yE1qd7UYskQB3D2iLZ/8v0W78fxdsw4b95+0ubxEdjJ9evcvu8m/+2IdfNx+3u7xfh1h88Ngwu8vr69j5LPzv5+3IMku6moQGeOGle/uiV9uYW7b+RX8dxdw/D0FvnbWFMfn+2NhumHxHR7vx+1PS8dEvO5Er8vsVEeSDV6f0R+cE8X0PAOw5mYaPf90p+vsVGeyL16b2R8e4yDq9luv97QWApGOX8dmSXaK/f41D/fD6tAFo2zTcbvxXy/Zi6bYTEDtClcukeOnePhiV2LJObWkIG/afx+zle1FcrrJZ1iwqEG9OH4i4RvYTGGv3nsXXf+xDqdVFF8B47PDm9EFoFmU/AfDn7jP4ZsV+lFXaxsc3DsZb0wfWOYFwI8bNXIQ8O8dOAPDImC6YNkL84pfBYMCy7afw/Z+HUKGy/Q1p3SQUbz0wCI1CXDMBYDAYsGhjMhZuOIKqaq3N8g5xEXhr+iCEBTpP/t8ItVqHie8sQU6h7b4PAGRSCT57cji6tYq+JevX6w2Y9+dBLNl6Amqri24A0KN1Y7w+daDdiy86vR5zVx/E71tPQq21je/ZJhpvTBsAf2/nF29uhuvd/2l1Osxevg8rd54W/f3t37EJXrm/P3w8b/3Fmxuh1ujw+dLdWLf3rHDB2UQiAYZ0aY6X7usHT3fxY/dqtRafLdmNDfvP2cRLJRIM7RaHl+7rc8vOff5pbuT311VIJFIoPW5uopKJq3+pf3riqqi0Ene/sVg4aAjwdkfTqCDo9XqkZhaivNJ4MBTo44Hl/7sP7krLq3+FJcZ4lbom3scdzaKCoNPpkZpRiPIqY3ywnyeW/+9em6vn+cUV+L83Fgs9ZQJ9PNA0KhA6nR7nrxYKB2Mh/l744737bvrV400HU/H2T1st7pNKJTAYDDYnAju+egBKpWXy7tdNx/DNigN1Wte2L22TF5sPpeKtHy3Xr1TIoNfrodXVNkAiAXZ89SAUCssfsIXrD2Pun4frtP7ts6bDzc3yAOC52WuxPyWjTvFiyav+T86FWlu3XaNY8sW6l9j1xk96czHS8kpvOP7OV39BdlHdfuDE4l/4ej32nkq/4fi6JK2ud/0SwCaJJJVIsPu7R23irZNWMqkEXu5KqDU6qDS1JxJBfp5Y89EUm/glW47jq+X7hP+93BUI8PFApUqDorIq4f74xkFY8NrdNvGf/bYLfySl2Ky/WqO16D0XHuiNFe9Pton/ae1h/LC2dvv3clcg0M8TFVUaFJXWJgLaNg3D3JfG28Sv3XMG7y8yJo0lEmOiIDzQByXlKlzILBQOJkcntsAr9/e3iX/7J2MvTRO5TApPNwVUaq3FiUSTiAD8+tY9NvGzlu3B0q0nhf+9PZTw93ZHWZUaJWYn8j1aNcbnT4+0ia+vw2cz8PzX66HR6hHs74m+7Zsg1N8LhaWV2Hn8Sk3vWQnef3Qo+nZoctPX/+OaQ/hx3REAxm00NjIAIX5eyC+pwJWsa9DX7IQfGt0FD4y0PXnffeIKXpmzETq9AWEB3ujbIRZBfl7Iv1aOncevIL+4AnKZFJ/OGI5urWx7HiYdu4zX5m2C3mDs5dCnfSyCfD2Re60Cu45fRkFJJRRyKT57ciS6tLCf/DK53gPnzYcu4O2ftsBgACKDfdCnfSwCvD2QU1SOnccvo6i0CkqFDF89MwrtmkfYxH/0axJW7zoDwPjdaR4VBD9vd+ReK0d6brHwGzZzcj+M6e16yasVSSn49LddAIw9vBPbxsDPyw0Z+aXYdfwKSipU8HJX4tsXxogmr5ZvP4XPl+4GYExwJ7aNga+nG67ml1j0HvzuhbGiPb/N919NIgLQq000fDzdkJ5njC+rrIaPpxvmvDD2liSvhj0/3yLh5qGUQyGXoUKltjiRfXxcN9w/rJNN/E/rDuOHNcb9X/NGQejdvhm8Pd1xMSMfO49dRIVKjUBfD8x9cTyiQsQvvDSkr//Yh8U1SfsW0SHo1qoRPNwUuJhZiD0n01FVrUFYgDfmvTQOIQE3N3ml0+kw8sWfUVqTsJRIgGB/LyhlMuSXVFgkkr7+z2h0cpD8vhEGgwEf/pKENXvOAgDaNAlD15aNoJDLcP5qPvbV9J6MDvPDnBfH2SSfDAYD/rdwO9bvPw8JgDZNw9ClhTH+XHo+9qWkQ63RITY8AHNeHAdfr1uf/Lme/Z9Or8cb32/BjmOXIJEAHZpHoFN8FGQyCU5fycOB01eh0eqREB2Mr58bA6869Hy+nbQ6HV769i/sT7kKqUSCTgmR6NDc2EP05KUcHD6bCa1Oj3bNwjHrmVFwszp30mh1eOHr9Th0NhMyqQSdEqLQvqaH54mLOTh8NgM6vQEd4iLwxdMj4abgwC9nmLiyek4mrv6d/umJq4c/WomUy7mQSIDJQzugSYTlwdmJC9lYtdt4YDyoczP89+EhFssfeP8PnE3Ph1QiweRhHRAbZtk1OTk1C3/W/DDf0T0Ob00fZLF86nvLkJpRCKlEginDOiI6zN9i+dHzmVi79xwAYGSvBLw2ZUDd3oQ6Mh/eFhHghUirg7uUK3lQqY0HMH5ebtjw2XS78V5ucpuDq7ScYiGJ4KaQYfvshy2WJz42R1ge3ygIkcGWO67DZzNRrtIAAKJD/bDk3Ul21x/s64lgf0+L5eczCqCv2Xz9vd2x/tNpduOlADw9LBNj5VWa2uVSCXZ/a5n8EBse6Ih18sU8Xi4FvK2urJkPHXRTyrD9K8v3z3r9bgqZxf/myQ+ZVIJdTtrvKF4hkyDpG/vxgT7u8PWyTExeySkWbjeN8Mcvb1n2HLJev8IqMavR1u573BUybJtt//VHBfvCx9Py4O5seoFwu1vLKHz5zGjhf61Wi75P/iD8P6hTU5srmxsPpQpJbesr/zqdDn1nfA8DjNvG/w1oC2+P2vXrDXqs2nUGRaXGBNYb0wdgePcEu+sf0rUpvMwSqzqDHpsOXhA+g+fvScSdA9oKy9VqHfo//T0A42c7cXA7eCgVkCmUkEik0Oo0WLb1uJAA+viJYejdLrY2XqvFoKd/hE5vgJ+XOx4f1w1Ks4NDvcE4fPBiZhEA4KdX70SL6Nph06XlKgx7YQEAY7JwWLc4i4NTnUGPvw6kCp/hh4/fgb7ta5M/5VXVGPqf+QCMveLuHdIOCrnl+pduPYmKmu//3JfGOex5c72qNVpMePVXXCurwoCOTXHf0A4Ww9L0BgP+2HEKG/afh6e7Aqs+mHxThy0WlVZi1Es/AzAmJh8c3QUySe32rzPo8cOfh4WeVGs/noJA39r9W0WVGuNe+QUVKjWGdY/HXQPaQGo2rEuvN2Dx5mRsO3oJ/t7uWPn+ZIvPp6yyGuNf/QWVKg1G9EzAnf1aWwwL0+sN+GXTMew4dhmBvh5Y8b/JUFrtH6xdz2/vtbIqTHj1V1RrtBjXpxVGJ7awWL9Wp8fCDUex52QawgK8sey9ey2GbV7IKMSU95YBAJpGBuDeIe0hNXv/1Fot5qw6iOJyFWRSCbZ+9WCdhl3eLlkFpbjnzd+g0xtw75D2GNS5mcXr12h1mLv6II6ez0KTyAD88sb/WSzPyCvBxLeWQG8wYPLQDhjQqanFcrVGhzmrDyA5NRtxjYKw4LW7LJZfybmG+95ZCoMBmDq8E/pZJWarNVp8t/IATlzMQYuYEPw4c8JNHTb45e+78fs2Y09Tb3cFBndpbrG8uKIaO45dEv63/u08m5aPBz74AxIJ8PDorujROhpyNw9IJTLoDTqUlZZi9h/7cDYtH50SIvH1f8bctLbfDEfPZeLJL9ZAJpXg8fHd0SneMjFUXqXGrN/34GJWEXq3i8XHT9zcXqfv/LQVG2suOjSLCsSAjpYlGXKLyrFmr/HY1U0hx/bZD93U9Scdu4xX5m6EUi7D03f3QqvYUIvlJeUqfLZkFzLySzGiRzxenzbQYvnWwxfwxg9boFTI8OzdiWgRY1nS41pZFT5fshuZBaV2L7zcbNez/1uz5ww+WJQEDzcFnrunt02vyILiCnz62y7kFVfgnkHt8MzddSv5cLss3XoCs5bthbeHEi9M6mNz7pJTWIZPftuFa2VVeGBkZzw02rLkw+JNyfh6xX74ernhhYl9bIZFZheW4pPFu1BcrsLDY7pi+ojOt/ol/e0xcWXJ9YsEEF2nskoVTl/OBQAM6x5vk7QCgHbNI9C1ZSMAwM7jl6HX155IF5dX4Wx6PgBgVK8Em6QVAHSIi0SneOMwi+1HLlnEF5ZUIjWjEAAwtncLmx0/AHSKj0L7OOPJ2pZDFyzi62vbkQvCbT8vd5ukFQC0jg2F6VC1xGoows8bant6KBUy0SuCMeH+wm3r+kvr950VklaNQ3xsklYA0KVFlHAylp5XYrFs3p8Hhds+nkqbpBUAxJtdpbYeijHj01UW/1snrQDA2+w+66E8va8zaWVtes1JFwDIRJJWAODvXXtftdry/Rv14gKL/62TTtb3WXfFHvbcT9cVr9FZxj/wfm37A3zcbJJWABBr9vlfyi62WNbvyXkW/1snrazvU1ltP1Pf+124HSmStAKMw9RMDp7JtFj23sIdwm2xpBUA3NE1Ttj+F26wHE44y2x4oHXSCgCkEikm9G0tnGx/88d+i+WvzN0s3B7arZlF0goAZBIphnePF/7/dpVlz8aPFtcOr723JmllES+V4e7+bSCrScZ89ttui+U/bzgGnd4AqUSCx8dbJq1M7b9vSAfhdX39xz6L5S98s164PbxHnM0VVZlEipE9ahN17/+8w2L5O2Y9La2TVqb13zOoLUznyv8z+7xuhm1HLuFaWRUah/rhvjs62NRSkkokuKt/G8Q3DkalSoO/9qfaeaYbM7vm/VTKZXjIKmkFGN+/h8Z0Eb4D366w3H7+OnAeFSo1mjcKwt1WSSvAmEy9d2gHxIT7o7hcha1HLlos37D/PCpVGiREB9skrUzxk+/oiEahfigqrbJIItwMa/eeRbVGizZNw2ySVoCx9960EZ0QHuiN3Gvl2H3iisXyr5bvBQBjPZ6hHS2SVgCglMvx2LhukEok0OkNToeT324rd56GTm9Aj1aNMbhLc5vXr5DL8OjYbvDzdsflrGs4dj7LYvmKnSnQGwzo1SYaA62SXoDxN/mxsd3h6+mG1IxCnDCrPwkAK5NSYDAAfdrH2iStAGOy4vFx3eHtocTZtHycvuJ4OPv1WpF0GoCxp4910goA/L3c0K9DrPD/50ss91+m4dWDuzRHj9a2Q9k83BSYMb4H3BQyHD2XhUtZRTex9fW3fIexp+2Ingk2SSvA2Pv0yTt7Qi6TYs/JK8guqFvP6roy7Q98PZU2SSsACAv0xqAuxvqU1Rot9qXUrWd1XZk+vwn9WtskrQDAz9sdMyb0hATAlsMXUVxeZRVvfP/u7t/GJmkFAAE+HnhiQncAwMaDqaJDaRuKwWAQXv+9g9uLDuUN9vfCo+OM7V+39yyqqjU2j2koer3xog5gTHqLnbuEB/ngodHGC32rdp2GxqwHtk6vx4qdxs9v2vBOorW8IoJ8hV7GK5NSoNXZDgUlcoSJK/rH+X3rSRhgPEDunGC/hsegzk0hgbH3x87kK8L9v20+AcDYW6CDgxogpoMytVaHfadqa/GYuogr5TK0bWY7DMLkjq5xAIyJn8NnM+0+7np9+EttXavmUfaLWJoPMZi3uvbk+fs1R4TbkQ6KMAb61CY0vly2R7g922yIlaMC9i1japMPmw/Vnjz+8ldtIiEq2P4wgBC/2oTW6l2nhdvHLtQeyHuLJK1MzHd+P62rTdbdSArxxa/XCLfP1SQtATisYWC+/n0nLgu3i8pqE3FiSScxp1Jrh0WWVtYO0atrfEZm7cHz2fTa9vt52a8hYd5LQ6WqbbN5byqxpJUzqRm1JyK+IkkrE3c7r21HsvG9lEklDt9/U/LVOvG66YBxW/R0V9gkrcy1rikQbOp5ZXKgpi6XTCqBp9J+vOm7ZV0DJamm/d6eSrg5qAER39j43bKugfTXAWNdqtjIAIc9UbrXDDE7ecHyxPd0mjFpr5TLHMYH1dQnsT5xOHTOuC8L9PGwSVqZSCVSIfl5NbfY7jpuxNaaxP2ATk1tkj4mEokEAzsbT962HL4g+pgbtfek8USwTdMwm6SLiUwiRZua7Wf3iTSLZaYTz4GdbJMWJlKJBAM6GU9Krdu/teZ/p/EdxePra+th5+2XSaXob1r/Icv1n6jZHru1tD+ESSmXo2nNb9tfDuqwNQTh/e9sf/IKhVyGvu1jARhP3i3jLzqNVypk6GOKt3r/zLcfe9yUcvRuFyMaX1+mmj6O6ncFeHsIiet1+84K9xsMBmwT2m9/8hYvDyV6tjEmtbZavX8NqVqjxa7jlyGRQNi+xfh5u6NLQhQMBmDb0ZuXOL6SXSS8/44mv2kSHiAk9OesrFtJiLq4VlaFI+cyoZTLhO1LTFigN1o3DYNaq8Ou41eE+wtKKnD8QjbcFDKH9QcjgnzRKjYUao3OJvHdkK7mlSD1aiG8PZTo1qqR3cc1iQhA08hAlFepheMFV3D+agEy8ksR4OOBDnH2z11aRIcgMtgHRaVVFon3s2n5yCooQ5CfJ9o5OPdp3SQUYYHeKCipFPb3RHXFxBX945hO5Lw9lHZPHADjwa+pN0Gm2VWvvGJjvLPCie5KuXDynplf22sovybe2dh7d6UCSrkxPiO/xOFjr4epLpczfl61J9WnLuUKt8WKCYsx74lzIrX2x6uu6w/xry1KnmxWD0pXx9HLQWaJqxv58TfvibXjaP0Ofg+evv7Eo69Zr6t1N3DyZZ6U+sWsntCNxC/ecf29FsyTmsdS63fwse3w9fd6iQqtTWrml9Z+f00H7h5ujocPtYy2vZoLQKiBFejjuPBrS5GrwYDxqiMAp8PP4hqLJ3U1NYk088SsGHszU1XUDINt7KT2S/Oa9VsXjzV9//28Hbc/RuRqrPnzhQaKTzpg0iTCuP6bXavgWk0isbGTmZsa12w/18qqHD7uelXX7P9iIxzPfGVabr2/NLXHaftrClNbt9/0v7OZq0zPf7Nff53bb2f9mpor8M0aOZ611/T6K1Wu02MBqO0B7Kz2kr3XX9f3r5FIvMFgMPv8Ha+/kZ3tpz5yzeoqJkQ7/vxMdUXNe2yo1Fqo1Foo5FKEOZl57Fa0v77KKquh0xvg4+GGACe/H2KfX32lml00c1b43aPm/b+ZPZaKa15LoK+H01lrxbZ/0+1gfy94uDku3H0r3r/6MrUlLNAbCrnji4aNbtHvT32Y2hIZ7ONw1lmJRCL6/TPdjgr2dThrrL14orpg4or+cUwnjNY9KcSYDprMk1SmYonmRZzF6A164STNxyxJZfrBdpbAsYj3FJ+Z7UbI6zjNucbshDXILIkE+783lvFm70+IX+1BZl2nWVebxYcH1a5fUscGVKtrT1giQ65/DLXaLN7eSXhdBfs7PkkXU2V2wtW+2fXX+DHfvrvG1212MHvxPUQKPDtj3sW/ZeP61SjqHGc7pMDp+stqD7hDzGZGNB0vqZ1MCSk2WxtQ+/1xdkKcZ2fGRlMvE7WT/Ye92UpNB3zlTtZvb7ZSUy+3kgrb2czMFdXES6wOME09IZwNYSgqFz/gNPVyKq90XJz/Wrl4++vLdMJTKjKbmjnTCZu7kwTn9ZLVDCEtdnJAblouk1nuL01DQ0srHX9+ptdnPTOT6fWLzSZnGa8Sja8vU8LY6ftvar/VCapp+7HuyWjNNMT9Rnp13kqmhIzT99/O9ie8f04SCrXxte+fRCKp3X6cxdt5/+sjyLf2OKbIzv7JxHT8ITU7XlAqZJBIAK1W73T/W9t+16lvZvrsq9Qa0dn0zNV+f29e+4PMauWZHx+JMfWMdlbf7nqYtqXyKrXTC6DC9mu2/zFtu+WVamECC3vKKm7++1dfptdSVlENZ+Wjy0Ref0MzfZec7bvMH2O+/3Cv477HXjxRXbjWLz7RTTCsh3EIXlW1xqInlLXjF7Kh0xsgAdDfrBbEiJ7G+jOVKg2yi8SnEwaAo+ezoa+J79OuNn54D2N8eZVa6H0l5tCZTOgNBkgkQGLbmzct8YDOtW0pKLE/HfWZmiFBAPDU3d2F222a1CYRSirsnzxkFta+tlfu6y/c7tu+tot3sYMfsKNmvXTu7NtOuG1+pdY0e6OYtJzaz/bhkbUFHj2VZkPYHJx8m5eWevneRLuPq4s/3r9fuO1mtv5qB+uvNhtSd/eg9sJt8zSCpg7JVwC4c2B70fvrGt+3Y+2wEi+zEwGN1n7yxbzAvL+/eOLVfNigI35+tb0LzKdYdlT/oLBU/MQoOtQfgHEIr87BBBQnaurgWY9mSqipn1VUVgW9g/gDp41DwqwP/IUhgE4S1+dqCsxbX5lsWjPLV76dxJjJ0Zou+h5WB+7tmhuTiGeu5NvEmDMNsYiwGg5sKhRuPoGBmPSaAv1yq8SLqadJZoH9fScApFwy1ta52VOCd66ZJWuP1RA8a6Yhep1v8qxazWvqmhw5l+Xwcablza16FpmGt9e9/ZZJa9MsYdZDEK3tsRNfX7Xv/xWHjzNtf9bvv2n72XvScftNtZna3MTC/jeD8PqdtN/e9leXeIPBgD0nr4jGmz5/R++fMf7mb/9ys6HBhx1s/1qDHtqa34Y4szpAMqkUHeMiYQCw75T99uv1BuH13ezvb314e7ihRXQINFo9Dp2xP6uxVqfH/praUp3rMKtnXbVvXvtd2HHsit3HlVephdlhh3azrUN2o8ICvBEV4ovyKjWOX7Q/q3JVtQZHaoaUm39+EcE+CA/0RkmFymIUgLVKlRpHztfE38T3r76aRgYgwMcDecUVFr3frJVUqHDiYg6kEgk6xtsfUne7tYgOgZe7Eum5JUh3MIQ/v7gCZ9PyoZBL0c7somvL2BB4uClwJecaMvPt127LLSrD+asFUCpkaNs07Ga+BPoXYOKK/nHiG4cgNMDYA2bJ1pNQi5x8l1epsaFmeFZCdAh8vWtPvFvFhiG4ZpjOb1uOi8aXVqqEukytmoTB26wWT/vmEcIwo183HYdWZxtfYlZUt22zcKfdqq/HG9NqZzhMyy0VTR7kl1QI98ukEgR613Yrn/vSBOH2tbJq0eRFkVlvAgksExdvPjBYuJ2cmg2NSOH5nKIKoUeap5sCnp61yYofX7lLuJ2RXyqavMgvrhRqUcmkEriZFcBe9X7tDIVavWXPMJMKq5Nyb7PXv+yN0dYPvy5rP7hXuF2l0Yuuv7TcfkJv6Ru18XqIJ58c9Sb83SpejKP4Re/Uvv+ZBeKJ1+zC2qSE9RXP7/4zwu5zmzhKaC14rXb9FzKviT7GvKB/gLdl0uyzp0YKtzcdFK/fcupKnnDi1K2lZS2Kdx+q/f6s2nVGPP5SjjAr3sieCRbLPpkxXLi90ax2m7njF3OEovrWBZTfebD2+/PnHvH1HzufKdTGustsRkIAePou4yxF1Rod1tiJT07NQnZN4vkBs6QvALz3cO36t9gZQnvobCZMF9TH9WllseyNqcYZUg0GAzYeEH/9+1PShROn6Vbrr6/RvVtAJpXiWGqWTeFrkzNX8oQTxwl9W9/U9T8xoQcA48nJzuTLoo9JSr4s9Lh4+s6eFsvG9m0FicQ4/DnlsvjJW3JqNo6eN043Ptbq/R/f1/j/vlNpOJMmXnj76PlMJKdmQy6TYkzvlnV/cXUwvub93HXiClIzCkQfc/D0VaRczoNSIcOoXpbfH9P2kFNULiRnra3bd074/Xj2/1xrVq4J/Yyvf8vhC3ZP/rYfvYQrOdfg4+mGIVYFzE3xGw+mIiNP/MLbtiMXkZ5bAn9vdwzsbFnLyBT/14HzFiUQzG0+dAGZ+aUI9PVA/462Bdzro3WscQh1tUaHc1fFk+fm+4XPnhxpsczU/jV7zyLPTq/YtXvPoqCkEpHBPujR+vp7C99Kpvav2nUaRSIXVwwGA1YknUJpRTWaRgaiQ/Obl7iQyWRC7cOr+SXIEvn89QY9VtYU0JZIgAdHdbV5zI2SSiXC93/ZtpOiPXf0BgOWbj0BlVqL9s0jLAqYy6RSjKuJ/33bCZTbif9tywmoNTp0TohCbLjjIdm3k0Iuw+jEFgCM5w5ivZZ1ej1+3ZQMnd6AxHYxCHcyJPZ28nBTYHjNhftfNyWjWuTYVasztt8AYx0+8yGxXu5KDOseJ8SL9TrUaHX4ZVMyAGBI1+aik/8QOeI6fSyJbqKZk/vhudnrUaFS47Mlu9E5Pgo92jSGXm/AzuOXcfJirnHmLakEr03tbxP/8n398OK3G1BeqcbnS/agU0IkerWJgUarxc7jV3DqkjFeJpXgtSm28S/c2xevzt2I0spqfPrbHnRpEYUeraNrindewanLudCb4m/BdL5dEiKFK54nLuVCLpWiSUQAVBoNMvJKLerKvPfIEJv4xqG+uJpnPOgxJS+C/Tyh1upsugG/MqWfTXyPVo2xv6bu1J4T6fB0kyMhOgRV1VqkZhRYzIT35dMjbeLN138h8xqkUiAi0BfVai0KrA4GP5lhOZ20t7c3FHKpkByp1hpQrdVALgV0etuaOm9YtT8q6vqu4I3sYXni4OXlBYVMKgyFqKjWAdU6uMml0Or0sJrED18/a/n6G0VZ1ibRw3Giyfr9s453NmR23vOjLP4P9/eHu1IunBheySmGVGIchlCpUqPCqpj44nfvsvi/fYJl70Fnva5+enWsZftD/ODhJhcSM2fTC6CQSRAW6IPSimqbIUi/vTnJ4v+wQG/EhvvjSk4xqjU6rN59BlEhvkhoHIz80kqcvpwnDNGVSIBPrKYjD/LzRvvm4Th+IQdFpVVYsOEoWjcJQ8uYEORdq8CB0+lC0kopl+G5eyx768WEByAy2AdZBWWoqtZi9e4zaBTqh/jGQci7Vo7TV/KF7V8qkeCdByynA28U6ocW0cE4m16AvGsVWLjhKNo2C0PLppHILijDgVNXUKEy9kR0V8rxyJguFvGhAd4Y0Kkpth+9hGOp2UjLLUa/9rFoFhWM3Gtl2H7sEjJqvltRwb4Y3sMycdC+eSQCfTxQVFaF8ko1Vu85g5hwfzSLDER2YRnOpdd+f+UyCZ6b2NsivlWTMESH+SE9twRX80vw81/H0L55OJpFBSGroASHztYm3Xw8lZg4qB1upmA/L0wb0Qk/rj2Mb1bsR/+OTdC/Y1OEBnijsLQCSclXsO3IRej0BtwzqJ3TWlDXq33zCLRuEoqUy3nYkXwZZ9Ly0a9jE0SH+iM9rxhJxy4Lw1TbNA1Da6srzo1C/DBxUHv8tuU4Zi3bi4GdmqJvhyYI9vNCfnEFdhy7hB3HLsFgAKaO6GRRKxAAosP88X8D2+L3bSfxxdI9GNS5Gfp2iEWQrxfyrpXXxF+GAcD0EZ2FHnY3S/NGQRjbpyVW7zqDz37bjUFdmqFv+1gE+Hgip6gMO45dQtIxY0LvkdFdbU5c7ugWjx/XHkZGXinW7j2L5NQs9O/YFOGBPriYWYCdJ66gsMR44aRv+1intZButw5xERjYqSm2Hb2Ej35NwpAucUhsFwM/L3dk5Jdg25GL2HvKmDR96s6eNrN2dk6IQr8OTZCUfBkf/JKEoV2bI7FdDHw93XE1zxhvmgnuyTt7ws1q1tBuLRuhd7sY7D6Rhg8X7cCQrnFIbBsDb08lruYa402/zU/d2dNpLZ7r9cWzIzH02QUAgDNpBbiQWYQ2TUIR6OOJM2l5yDLrqd0iOtjioiEA9O3QBJ0TonDkXCb+9/MODO0Whz6d4uHj4YGLmXnYuC8FR85lQSIxJunrWprgdhnaLQ6rd59ByuVc/HfhdgzrHoceraLh7ibHxcwibDqYihMXcyCTSvDM3b3sTmBwoz58fBjufPVXGACs338egT4e6NU2Gl7uShw9n4kLmUUwjWK72+qix80wtk9LrN93DpeyivDfBdtwR/d4dG3ZCG5yGc6l52PjwVScScuHUiHDk3f2sIm/s19r/LX/PK7kXMO7C7dhePd4dGnRCEq5DGfS8rHpYCrOpufDTSEXZhd0JZMGt8eWwxeRllOMdxcY298pIQpymRQpl3Ox8UAqLmQWwstdiUfHdmvo5tq4/46OSDp2GakZhXhv4XYM6x6PjnERkEgkOHkxB38dSMWVnGvw83LHg6O62MRPHd4JO5Ov4Gx6Pt77eTuGd49H++YRkEiA4xdysPHgeaTlFMPf2x3TR9zci1b07yAxOBuIS/9I6qoyGBwMg3FFCndvSKUy6PU6aFT2h+CZbNh/Du8t3A57W7hcJsWnM4ajm536Pmv2nMGHi5LsFg+Wy6T48ulR6GRnqMWqnSn4ZPEuu/EKmRRfPTsK7R3MXFgf972zFJezxXusmEwb3hGPjBX/8R/x/AIUO6mTMzaxBV62k3ib9r/lOH9V/Iq7yQuTEjGhn/jB08iXFgqFlu15aGRnPDBa/Iph4mNznBZ+HtSpCf77yB2iy3o9NsdJNODvpcT6zx4QXdb78TlwVuf+7gGt8Z97+tzw+kf2jMdrUweKLqtL/Lg+LfCS2TBPc31nzIXWOstm5dUp/TCql3iPjbqs/74hbTHjTvFhmv2enOc06fX5U8PRo7X47EMTXv0FOUX29xMSCbD4rXsQY+eK7bT/LcP5q/a7+yvlMiz77ySEBIgXwR398s8odFDnRSqRYNl/JyIiWDxxcu/bS3Elx/73110px/L37kOgr3gR4Odmr8P+FPuTFkQG++Dn1+8W7e2p1Wox8qVFDmtdyGQSrPloCvy9bdev0+lw95tLkFNof7igl4cCq96/H14OZm68UQaDAXNXH8TPZjOUWruzX2s8e0/iLTnx1Wr1eOijFQ73fy2iQzDvpfGQi9Ro0usNmLVsD5ZtP2U3/r6hHfDE+O6iJ746vR5fLN2DFUkpduOnDOuIR8d2q9OJ8/X+9mp1enyyeCfW7Dlr9zEPj+6KaSM6ia5fpdbg/neX2e0xBADdWjXC50+OsKiR5CqqNVr8d/42uzPGSSUSPH13L/zfQPHfvmq1Fm//tFWYYdSaTCrBs/+XiDv7txFdrlJr8OYPW+3OuCaTSvD8pD42vSVvlrPp+Xjw/T8c/v5Gh/lhyTuTRJdVVKnx6rxNdofbKeRSvHp/f9zRPf4mtPbmK61Q4eXv/sJxOzOmuSnkePuBQeh3k3u7mRxLzcKTn/9p99gXAIZ0aY53Hhps/wH1UFBSgRe+3mB3/+flrsT/Hhli99g7/1o5Xvhmg93hdt4eSrz/6B3ocpuGCV7v/i+roBTPzV5vt8elv7c7PnpiGNq62DBnk7ScYjz/9Tpk2RnuH+zniU9mjBDKKli7nFWE579eb/f4K8TfC58+OdzhzKNU63q3P1cikUih9Li5F5eYuPqX+jckrgAg71o5Zi3biz0n04Ruqx5uCgzq3BRPTuhpc7XPWm5RGWYt24u9J2uHtni4KTCka3PMmNDdaVH17MJSzFq2F/tOXRUKwXu6KzC0WxweH9ftphZlF7Nuz2l8tHi3zcxhvp5umPfSWESHB9qJNPpx7SH8tPaIzQGoQi7F9y+ORXyM4/HpGw+cx0e/7LQpdB8R5IO5L41DsJ/jouYL1x/GvDWHbQ7AvNwVmP/aXcLMJPa89M167K6Znt6cBMD8l8chvonjA4eBT8+DSi3+PXl5Ug+M7dfBYfyL367DnhO2yQOpBPjlnTsRGyo+M53JtPd+x/mMItFlC14fh/hGjtt//ztLcDG7WHTZ72/ca9M7y9p/f9qCDSLD7bw9lfj9zXvt1rYymfDqIuQUiddqWvL6JEQ3cvz5vb9wG9bus51xMdTfC0vf+T+LIaKi69hyAvP+PGgxUYJEAvRoHY2PHhtqUZNFzIYD5/DNH/stCkUrFTKM7JmA5+5JhEzmuLfCrxuP4ce1Ryy2f6lEgsS20fjfI0Ocrv/P3acxZ9VBYaYywDiV/ejEFnjmrp5O17/nZBrmrT6Ii5lFxnp6MPZIu29oB4zv28rpSf/3qw/h183Jwr4PMA4HGdy5GV6f2t9p+5dtO4kf1x626CXnoZTjrgFt8fj4W3+1/EJGIVbuTEFS8mWUVVbDy0OJxLYxGN+3NVrFXv+EANdr48HzmL/uCK7mlcBgMG570aH+mD6yM4Z2i3MafzYtHyuSUrD75BVUVKnh7eGGvh1iMaFf6zod9J++kocVSSnYezINFSo1fDzd0K9DE4zv29qmtpYjN3rgfPJSDlYkpeBAylVUqNTw83JH/45NMb5vKzSJdPzbo9frsWrXafyyMRm5ReUwwPjdaRoViEfHdkNiW/GEtaswGAw4dj4LK5JScPhcJqqqNQjw8cCgzs0xvm8rpz39DAYDjp7Pwh87UnDkXCZUag0CfTwxuEszjO3byulvn8FgwJFzmfhjRwqOns8yxvt6YkjX5hjXpxUigx3v++tLpdLipTkbcORcpsXvt6ebAo+P72436Wai1xtw4PRVrEhKwfELOVBrtQj288LQbs0xtncrp7PmNTSdXo+9J9OxIikFpy7lQqPVISTACyN6JGB07xZOj33qq6JKjXfnb8XeU+kWPdyjQnzxyuR+Qi20W0Wr02Fn8hWs2JmCs2n50Or0iAjywcieCRiV2EL0goc5jVaHpOTLWJmUgnNXC6DV6REZ5ItRvRIwslcL+Dk5dr+ZbmT/V63RYtuRS1i1MwUXM4ug0xsQFeKL0YktMKJnwk2v7XizqdQabDl0Eat2ncblbGMvvcZhfhiT2BLDesQLk1jZU1WtweZDF7B612lcybkGgwGICffH2N6tMLRbnEUtU3KMiSur52Ti6t/p35K4IrpZuP1RQ+L2Rw2F2x41JG5/1JC4/VFD+jtvf7ciceV6fayJiIiIiIiIiIjAxBUREREREREREbkoJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IiIiIiIiIiMglMXFFREREREREREQuiYkrIiIiIiIiIiJySUxcERERERERERGRS2LiioiIiIiIiIiIXBITV0RERERERERE5JKYuCIiIiIiIiIiIpfExBUREREREREREbkkJq6IbhO93gCDwdBg8VqtHnq9/objVSottFrtDccXF6ugUqluOL6+7S8oqERlZeUNx2dllaGsrOyG409dzENeXt4Nx19Kv4Zr167dcHx925+XV4GKiooGiy8trb7hWMC4/dRHcfGNb7sAkJNTXq/4+r7+ykpNveLVal294vX6G993AfX//Or7+lWqG9/3AfV//+qrvu1v6M/v797+v3t8fd5/g8FQr/e/vvF6vb5er7++8Q39+usbX1//9ve/vhp6/fVlMNTv3KW+8fTPIm/oBhD9k10rq8KaPWexds8ZZBWUQSKRoHmjQIzr0wpDu8XBw03hML6otApr9pzB2r1nkVVQCqlEirjGQRjftxWGdG0Od6Xj+IuZhfhy2V4kn8+CruaHz10px6DOzfDUnT3h6+3uMH7zofP4ZPFulFepLe5vHOqLL58eiYhgP4fxHy9OwqqdZ2zul8kkmP3sKHSIi3IYf/ZKHr76Yx9OXMwRfrg93RQY2j0OT4zrAW9PpcP4F2avw96Uqzb3SwB89/xotHOy/invLsGFrGLRZZ8+cQd6tWviMH7AU/NQrRE/4Jp5XyLG9GnrMH748z+hpEItuuyDh4egX+dmDuP/7/VfkVEgnqz68cUxaNks0mH81Hd/R2pWkc39Ugnwyzt3IjY0xGH8fW8vweWc4huOf+nbDdh9Is3mfj8vN/z81p0I8fV1GL/nZBrmrjqAi1lFMB33+Hu7Y3zf1pg+ojPkcsfXbh79eAVOXrJNNnq7K/D72/fB39/x92f0SwtRWFplc79UCix/czLCw70dxs/4bBWOpebY3B/k54nl794DNzc3h/Fv/7gZmw9fhPUxX8uYEMx5YQwUCsf7j4UbjuKXTcdQUVWb9FHKZRjRMwHPT0yETCZzGH8uPR9/7EhBUvIllFWq4eEmR4/W0ZjQrzU6xUdCIpE4jN+w/xzmrz+CjLxS4b7QAC/cO7g97hrQBlKp48/vxa/XYe+pq7A+5O0YH4Evnxrh9PW/O38bNh9KFfadACCVSjCwU1O8+9AQh7EA8M0f+/BHUgpU6tqTfg+lHBP6t8GMCT2cxteHVqvFWz9tQ9Kxy9CbbQAyqQTDusfhtakDHcYbDAYkp2ZjRVIK9qWko1KlgY+nG/p2iMWEfq3RMibUYbxer8fSbSexZMsJ5BfXJqyjQ/0wfVRn3NEt3mn7X56zCftT0i22X7lMinF9WuG5ib2dtv/QmQysSErBwTMZUKm18PVyw4BOTXFnvzZo3ijIaft//isZy3ecRFHNd1gCIDYiAA+P7or+nZo6ab8eizYdwx/bT6GorDa+SWQAHhnTDX07OP7t0Gr1WLjhCFbsTMG1MpUQ3zQqEI+N7Y7EdjFO4+evP4KVO1NQXF4TLwGaRQXh0bHdkNjWcXy5SoXnv9qAU5dyLb4/SoUM04Z3xLQRXRzG6/R67D6RhhVJKTh+IRtqjQ6Bvh4Y0jUOE/q2QuMwf8ft1+mx+8QVrExKwfELOVBrdQjy88LQrs0xvl8rNApxfOyhUmvx/Z+HsHbvWZRVGpP+UokECdHBmDGhJzolOP7tU6k1mLf6ENbuO4vySrUQ3zI2BE9O6IH2cY7jtToddhy7jJVJKTh1ORcarR4h/l4Y3iMeY/u0QkSQj8N4jVaH7ccuYWXSaZy+YowPDfDC8B4JGNenFcICHf92qDU6bD96ESt3nsbpK3nQ6fUI9ffG8J7xGNenFUIDHMfXV1mlCt+sOIDNhy6gqtr4+yGVStC+eQSeuqsnWkQ7/u0vLVfh6xX7sPXIRVRVG/efMqkEHeIi8czdvZx+f6vVWmw+dAErd6bg/NVC6A16RAT5YlSvBIzp3RKBvp4O41VqDTYdvIBVu04jNaMQer0eUSH+GNkzHqMTWyLQ1+M63o3rV6nSYNPBVKzadRoXM4tgMBgQFeKL0YktMCqxBfy9b+3666u8qhob9p/H6l1nkJZzDQYDEBPujzG9W2JEzwT4eDo+dimvqsa6vefw554zSMsuBgDERPhjTGJLjOyVAG8Px/H0zyUxMI35r6SuKoPBUL8rcLebwt0bUqkMer0OGlX9ei/cDkfPZeKVORtRViWeeIgK8cXnT46wewB3+GwGXpmzCRUq8fjGoX74/KmRiAoRP3lfuOEo5q4+aLd9cpkUs58dZfcA7MnP/8TR81l24wHg5fv6YGyf1qLLhjzzAyqqHV+lHdkjHq9NEz+B+m7lASzaeMxurFIhw5wXx9k9AOr9xFynV6kGdm6C9x6+Q3RZr8fmOIwFgG4tovDls6NvOD480Asr3r//huM7xIXh2+fH33D88O7N8cb0wTccf/8d7fH4+J43HP/AyI54aHR30WV9nphrkTAQ8+5DgzC4S5zosplz/sLO5Ct2Y/283fHLG/+HID/xA9jEx+bYJDysffDYEPTrIJ48rMvrf+ne3hjXt43N/dXV1Rj47HybhJO1Oc+PQTuR769Go8GQ/yyAWuu4l89vb/0fYiICbe7X6XS48/XFyLtmv4ecm1KOVe/fBz+RA2iDwYA5qw46/P7e0T0Or97fHwq5bfJLr9fj4Y9W4kxavt34qGBfLHrzbtHkfWWlBne88JPD7UciAdZ+OAUBIp+/SqXFsBfmO3z/5DIp1n82Bd7utsnLKrUa42b+Kpwwi/H1dMPKD++Dh9Jx8v1GlJarMOrlhdDq7L9+N4UMGz6ZDnd32+uXWp0OHyxKwob95+3G3ze0A54Y3100+VipUuP+/y5DdqH9Hp5tm4bhuxfGiiYfc4vKcedrv1ok3Kx5uSuw4dOpkMtt21+t0eLd+duw/eglu/EPje6C6SM6i7a/tFyFyf/9HQUl9nvodm3ZCLOeGSW6rLi8CpPf+V1IWInp2boxPntqpOiyotJKTH73dyHhJKZ3uxh8/MRw0WX5xRWY8t9lKKmwH9+vQxN88Jj4b9/pK7l46MOVdmMBINTfC6s+FP/tKq+qxsw5G3H0nPjxg0wqwfMT+2Bc31aiy0srqjFzzl9ITs22G//SfX0xOrGl6PLM/BJM/d9yVKrs97IcndgCr9zfX3RZWu41PPD+CiHhImZc31Z46d6+osuKSqvw0rcbcPqKeA9rhVyK16cOxJCuze3EV+KFrzfgbLr4/k8pl+HN6QMx0M6Fq4KSCjz/9XqkXi0Uj1fI8M4Dg9Gvo+Pk6Y1KuZSLJz7/ExoH+88HRnbGQ6O7ii47fiEbT3+xBhqd/XOUh8d0xfQRnUWXZRWU4rnZ65GeWyy63NNdgfcfGYpurRqLLs/IL8FzX61DRn6p6HJvDyXef/QOdGnh+MLnjUrLKcZzs9fZ3X/6ernho8eHoX3ziFuy/vpKzSjA87PX291/Bvp64JMZw+1e/DiXXoAXvl6PwlLx+CBfT3z65AgkRAfftDa7sr/bua85iUQKpYfjJP11PycTV/9OTFzdWuevFuCxT1ZBpdaiRUwIhnePR8vYUOj0ehw9l4X1+84hs6AUYYHe+HHmnTZXb86m5ePxT1ejWqNFq9hQDOsej5axIdBq9ThyLhPr959DVkEZIoN98MPMCTZXX9buOYP3FyUBADzc5OjVJgbdW0VBpdFj+5GLOF7Tg0kmlWDJOxMRZXX18u2ftmLTwVTh/9AAL3RJiERltQ4Hz6Sj0mzYwHcvjEH75pYnz2Nf/hn5Zj9aEgCRQV6oUutQVGZ5MP3qlH4Y1cvyAHTJluP4avk+AICXuxK920Wjc0IjVFarse3IJZy6lAu9wQCFXIoV/5tsk3wY+NT3UGksD5r8PBVQa/Woshqy89qUfhhptf7Ex+fYJA3kUkCnh00yY+a9vTHGKvlQl6SFyb2D2+DJuyx7D1xP/IsTEzG+v2XPLbF4uRQQ620/+z+j0TnB8gBMLN7LTYZqjc7mORa9MgHNrA5Arid+8bu2Pa/6P/U91Gafn5tChkahvigtr7bYrgBg9cf32vS8+t/C7Vi37xwA40FS/45N0TI2BEUlldh8+AIuZBh7kfl7u+PPD6fY9Lzq8/hc6Mw2ALlMgrAAL5RWamySEdu+nAZ3q+SF2Ot3k0ug1hpstp9Nn06Gt7fl1W/rpKuHUoaoEH8UlVbanAxvnzXdpufVoGd+EK5SA0BYoA+aNwpATkEZLmVfs9i2k2Y/aNPz6J43f8PVvBJjuxUydGkRhfjoYGTllWLPqXShB6aHmxxbZz1k81rnrz+C7/88BKlEgkFdmqF/x6YIC/RGcVkVdh6/go0HzqNao8PIXgl4bcoAm/gnPlstnLRGBHljYMdmiI0KQFZ+GbYcuYCruca2xYT547d3JtrE950xD1qzk55GIT6IiQhARl4p0sx6AEolwO7vHrOJH/j0D0IvKZlUghbRwWgSFYi07Gs4fSVfSIgpFTLsmP2wTfyIFxYISQcPNwW6t4xCk6hAXM4swoEzmcIJcaCPB9Z+MtUmvr76PTkPmpovmkwqQasmYYgJ98PFjEKcTy8Utm1PNwW2zHrQJv6DRTuwZs9ZuClkGNotDgO6tkSwnw+yC4ux9cBpbD1yETq9AQ+O6oIHR9n2vLn7jcXIrDnpiwn3x+DOzRAe7INLmdew7chF5F4z/n53aRGFr0QS/+bbv1wmRbumYYgM9cX59EJcyCiA6avh7+2O9Z9Os4g1GAx488ct2Hr4Ijzc5BjWPR6928XCz9sd2YVl2H7kIrYfuwSDAXjqrp6YNLi9Rbxer8e4V39FQU0vsSaRARjcpTlCA7yQerUA249eFnqQiSV/9Ho9xs5cJPS0bBoViCGdmyM4wBPn0wuw/egl4YRucJdmNj33tFo9xr7ys9DLqnlUIAZ1bY5gP0+cvZKPHccuCc99R/c4vDV9kE386Jd/FpJWcY2CMLhLMwT6eeL05TwkHbss7EPEvn/lKhWGPrtA+F8pl6FjfCRCAjxx6mIu0nKKhX1YbLg/Fr9t+f3T6vR4dtZaHD2fBV8vN4zokYBebaLh6aFEWk4xthy+gH2n0gEAbz84CEO7xlnF6/DUF2tw/EIO/LzdMaJHPHp3SoCPhwcuZeXhr70p2F/Ti/q9h4fYJG8qVWqMfnkRqqo1kABoEROCgZ2bwc/LHScu5mDX8SvCezN5aAc8YdXzsbxSjTEzf4ZKrYVEArSICcXgzk3h4+mO4xeysev4FZTW/AZMG9EJj4zpZhFfrdHi8U9W42x6PoJ8PTGiZzy6t2oMd6UCF7MKsengBRw5lwmpRIJPZgxHzzbRFvEqtQaPfrIKqVcLEeTniRE9Emri5biQWYhNB1Nx9HwWZFIJPn1yBLpbJV+qqjV45OOVuJhZhGD/2ng3hRypGQXYeDAVyanZkEkl+OLpUTc9+ZJbVIa73/gNWp0eUokEbZuFYUCnpvB0k+PQ2UzsOZkuJBSfn9gbd/a3PHbKLizFPW8uMcZLJWjXLAwDOzWHu1KKA2cysfdkurD/nDm5H8b0tjx2K61Q4YEPViCroBQRQT4Y0TMBXRKiIJdLcTYtH3/tP4+UK3lQKmT49vmxaBVreexSXF6FBz9YgexC4/H1yJ4t0K1tMyjlCpy6lIm1u0/izJV8uCvl+O6FsUhw0nPsehWWVOKBD/5AfnEFGoX6YUSPBHSKj4RUKsHpy7nYcOA8zqUXwMNNgXkvjUOzKMc9z2637MIyPPjBHyguVyE2PAAjeiagffNwSCQSnLiYjQ37zuNiVhF8PN3w48wJaBRqee6RmV+Khz5cgZIKFZpEGOPbNQsHAJy4mIP1+87hcvY1+Hm544eZE+xeuP8n+Tud+1q7FYkr1rgiugXmrj4IlVqLnq2j8cLEPmjbLBxymRRuCjl6tonGa1MHoGlkIHKLyvH7thM28d+tOoBqjRaJbWPw3MTeaNM0DDKpFG5KOXq1jcFrUwYgJtwfWQVlWL79lE38V38Ykz5Bvh54bmJvJLaNgVwmh7e7EqMTW+KpCT0hl0mh0xvw4S87beJNSSuJBBidmIBeraOhlMvh7+WGoV3i0Ltt7cHWy99ttIk3Ty5EBXsjJtwfCoUCvl7uiA33h59X7Yn2Bz8n2cTP+/MQACA80Bv/uacXureKhlwmha+nO8b1aYXHx3WDTCqBRqvHJ4st219ZWWmRtPLzUiDYzwMKhRxeHkoE+3nAzSxR8T+r9ZeVlVkOTZEaT9AVCjnc3RTwcLO8wv/h4t0W/19vHavFWyw/v0vplnWsZFLbP3OfLNlj8f+FrFyL/z3c5EL7TbfNPfXFGov/L6ZZtt/f2w3+3m5QKOTw9jTeNu+jMOXDFRaPP3U597riJ7/1h8XjL2XkWyStWkQHo0lEABQyGYL8PNEiOhje7rWJlinvWMaXVaqwviZp1aZpGJ6c0BNtmoRBJpEixN8b9w7ugPtqTlaLy1VYtMmyV9C+k1csklax4f5oFOIHhVyOIF8PxIb7Q6mo7SU04bUlFvFLtx63+N/bQwFvD0XN9me8bW74S79a/L/lcKpF0qpFdDBiwgOgUMgQFuSHlrGhcDdb/5T/Wb7+fafShKSVm0KG/h1i0TI6CAqpFI1D/dCvfSxC/GsTvTPnbLKIP305V0haNQ71w/13dETLmFDIJFI0DvPHxEHt0DneeKW3qlqLn9Yetoi/VlaFBeuPQALgiQndMWlwe0QE+UAqkSDQ1xPj+rTCi/f2hVIuw7q955CaUWARfyGjUEha9Wkfi4dHd0OzRkHG9Yf6YfrwzhjZMwEAkJZbjJ3Jly3if99yQkhaebkr0L9DLJpHGV9/k3B/9O8QK+x/9Abg86WW39/Vu2qH9oX4e2F0rxaIaxQMuUSKZpFBGN2rBcJrhumoNTr8ujnZIn7TgVQhadUiJhj3DWmP5o2CIZNI0byR8X/TleKisipsO3wBN9P3qw8JSavIIB+M7tUCzSICIJdIkdA4BKMTWyCo5kJJZbUGfx2w7FV1MbMQa/achUIuxQuT+mB839YI9veCVCpBRLAvJg5ujxkTekACY6/eIquhsJsOpgpJq7G9W2LqsE6ICvGDTCJFXCPjMLVeNSfrh89mIi3Xcn/3/qLtwvYfG+6PUT0TEB3mD7lEilYxIRiT2BJ+XsZEcXG5yqZXz6nLudh6+CLclXK8fF8/jE5siQAfD0glEkQF+2LyHR2FZMMPaw6hvMoyEb0i6bSQtLp7QBvcP7QjIgJ9IJNI0SI6FI+P647ONcPMkpIvWwyDBIAlW08KiaX/G9gWk4d0QFigN2QSKVrGhOKJ8T3QPs54Irbl8EUUWfUq+HVzspC0mjS4He4d0gFh/sb41k3CMGNCT7StOZHbdCAVpVa9shZuOGKWmGmPSYPbI6Qmvm3TcDx5Z0+0rjlZX7/vnDAMzuS5WeuF261jQzCiRzwiAr0hl0jRoXkExvZuCbea/c+VnGIUFFueSO06fgVHz2fBz8sdr00ZgKHd4uDt6QapRIImNcMs7xlkvNDy9fJ90OosLyRtP3oZxy/kwN/bHa9PGYAhXePg4+kGqVSCplHBeGRMN9xVk+yY/cc+6KzqXn69Yr8xaSUx9uq5e0BbBPl6Qi6TolO8cZhZk4gAAMBvW47b1E76avkeIWn14KguuLt/GwT4GOM7J0Th2f9LREy4PwDgl43JNvF/7T+Ps+n5CPb3xOtTB2BAp2bwdFdCKpUgrlEwnhjfHaN6tYDeYMDs5ftsaves33ceqVcLEervhTemDjAmfdwVkEoliG8cjBkTemB4j3jo9AZ8/Ydt/Jo9Z3Exswhhgd54Y+pA9O/YFB5uxviE6BA8dWdP3NEtzm58fX38605odXrIpBLMmNAdY3u3gq+nO+QyOXq2jsFz9yQixN8LgLFXvbUPFiVBq9NDLpPiqQk9MSaxFbw9lJDL5EhsE4PnJyYiuOZC5dc1x7nmlm0/hayCUkSH+eP1qQOQ2DYGbko5ZFLj9+c/E3ujT/tYqDU6zFllu/6lW08iu7AMTSIC8NqUAejZJtoYL5OibfNIPD+xD3q1iYZKrXU4ouFGLd58HPnFFWjeKAivTemPHq0bQ6mQGRP4zSPw4qS+6NayEaqqNfi+5jjZlSzccBTF5Sq0jg3FK/f3Q5cWUVDIZTXfvyi8PLkf2jULR1llNeavP2ITv6Bm/9WmaRheub8/OicY4xVyGTonROGV+/ujTdMwlFSosHDD0QZ4hdTQmLi6RY4cOYK33noLw4cPR9euXdGuXTsMGjQIzz//PPbs2eP8CehvK6ugFPtT0iGXSTFxcDtIpbZDEdyVckwc1A4A8OeeMxYn6ldzi3HoTAaUchkmDmoHqchQBg83hRC/etcZi4O/PSfShIPRyUM7Qiax/Zr7ebsL3cSPnc+yqMHy9R97hdt928eKxgf7eQkHD6UV1Sg3K7o++Z0lZo/zhEJkKEeAT20PMQMsC1+v23dWaM/koR0hFVl/kJ8XerQ2Xmnceyrdomj7+Ndr1+/tLhddv4+XZQ8V86LtI2YuFm7LJIBCYRtvnfwxL3o+7s0V1g+/LpPfX+r0MdbJK3NT3q0d4mGvhJN1+81NNUtEebmJ1zDy8659/6yPex/9uHb9dYm3Hs318CerhdvNowJE482v0pVUWJ54frvyAAww1cIRH0rSrFEQmkYZh8hZJ35fMkvExtacoFiLNKtPUmw1HGfWstqDaeskldj91sPZ3v1pm3C7hZ2u8LERte/L1TzL4Qxv/LBFuN2ztfhQiNZmV5n3W9WAe2/hDgCARCLBHd3Eh2F2jI+Cu9L42f62xTJRt3bvWWi0erRrHo5O8eJX85tGBqJP+1gAwIqkFItlXy037n+8PZQY0FG8jlDnhChh/zPP6uD9m5X7hdtd7fQm6BhXO8TCev2zlxvjJQASrXpDmPRo1VhIvv74p2XibnbNyZRcJkXvtrGi8X3axUJe8yX+ctle0cfcqF+3JAMwXnTo1rKR3fWbfL7EMnFnej96t4u1ezW/Q1wk2sdFQKvTY80eyxqG89cZT0bCArztDmUZ3KU5PGuSz1/9bvn6N+wzJtJkEgk62IkfYDbE6c0fNou2f2DnZoi2Mwy/e6vGaBETgqpqrc1wSFMisnGon92hLCN7thCS17OXW7Z/yVbjhaiYcH+7w9jHJraCsmaI7Dd/7LdYtnz7SQDGnl5xjcS//+P7tIJCJoUBwNcrLE/eV+w0vv7mUYFoGin++Y3v1wpymRQGA/DdKsv1n7psvHDhppDZXf/QbrVD3J6bvcFy/TXv/8heCUKCwia+axzCA71RUFKJXcctaxia4kcntrA7jHtYj3iE+nsht6gce0+mWyzbeMB40a1t03CbnuQmkwa3h1QigU5vwMINlifPWw5fBAC0bx6OyCDx3hz3DWkHicTYu+y3mu+b0P6a9398n9bwE6khKpFIMKZ3S/h5u+NKzjWLcgwGg0F4/RP6tYavl3j8+L6t4evphouZRTh+IUc0/s5+bUTrCEkkEkzo1xreHkqcv1qAlMs3PmGMNa1Wj4NnMgAYh7IG+Nh+flKJFPcP6wjAmDjfeqQ2ca/WaoVEdL8OTUTfP6lEisl3dAAAlFepLS5caHV6rN51GgBwz6C2ojVkpRIJ7hnYFkqFDIfPZuJKTm3iXKPV4c/dZ2ri29mNnzioHRRyKfanXEVGzUWem6FarcXavWcBGLdRN5FjT6lUgkmD20MmlWD3iTTkFrlOD5zyqmrhove9Q9uLlgGQy6S4d0h7SABsPXwRxeW1Fz5KK1TYfMi4Pdw3pIPwG2kdf98Q44XHTYdSUepgODT9MzFxdZNVVVXhxRdfxL333oslS5bg0qVLKC0tRXV1NTIyMrB27Vo88MADeOWVV6DTOa4/Qn9PyanZMBiMBz6OChA2iwpEaIAXistUuJxd++OZfMHY26B9XAS8POzXP4lvHIwgP08UllYiLaf2x3PTIeMPh5+3u+gPv0nP1o0hkQB6gwFHzmUK95t+OCQAAhwUgOzRpvakePWus8LtyzWFFAHjyac9UUG1w6M++72219S2I8a6JMF+nsLJjZh+HWIBGA9WzqfX9tooM7uC7O6g+L2vR+1BwazltQfvOrO6MEql/QSPzCyf+OVy2yt31+M/X60Rvd9RgsrcgrXiV/7Ekm4m5k+990TtwZ95HsVRvNLsDcjLq+11YKhjvHlSzXy2QfMhbnIHxb9D7JzUHKs58G0WGSia9DQZWFNc+ZrV0DtndbVMHCX/6kNbx/V72flumIZhKJxsPKbivtZry8w37ksigrzhSJumxl4fFVZ1ZI7VnIj1auO4+HOvmuLQx6zq6Jm+y6bhAfaYhshczSu2uN9UF8XZ5+PnZdw3WdfBq6wZhmLvpNkkNMB4Uq7SWNbxKyozJsGbRtrWDjPXJNKYfBQr3l8fposgEYGOu+cH+Bh/G6wn3jh23vj74/Tzq1luXQcxs6C0Zrl40tSkTZMwALCpY2b6/pknZ8WYkr/Xyi3fv9rtTzzpaGJabr395dUMYzT9vthjGiJ04qJlD9NC0zBCJ/WD4mqKS5t+74X4mu1hoJ2krYmpOLXp8zIx9dYa1Fm8fhJgPPlvWrP9mf/2m88a3CnefvFxmUQKZc0O3LzHnF5vQHKq8/dfIpGgZ832cyy19v3X6fU4cTEbEgA9WtuPl0okwhA78+2vvFItDCMbbKd+FGA8+TUNMdp7qjbxVVxeJVw0G9xZPGlvjJcLSS3zyUPKq6qRerUQSrnM4RA8uUyKHjX7L/Ptr7SiGpeyiuCmkKFTguP4biLx18qqkJ5bDA83OTrE2a9/pJDL0LUmqe2sjun1SLmcI3x/E+0k7QHA212JwJqLl6bjTQBIPp8NvcFg/Pwd7D98Pd3hX3NsazreBYCMvBIUlFQi0NfDYfF3T3clOtbUhkw2+/6k5xbjWlkVgv08he+naPs93YSkvL06bDfiYmYhyiqrERHkI/QKFOPn7Y7WTcKgNxhw/OLNW399nU3Lh0qtRZOIAETYSfoCQGiAN+IaB0Ot1SHFbPKb01fyoNbo0LxRkMPJB8ICfdA8Kghqjc5uHTn652Li6iZSq9V46KGH8Oeff0IqlWLSpElYsmQJ9u3bh507d2Lu3LlISDAOcVixYgW++OKLBm4x3QqmAx9ns15IJBLhMWqzk5/aeMdFe43xxsdUm8WbDtzcHSQNAOPBq6ymMG6F2cmLaZiJWE8vc3KzpECx2cl/XTuemyc1Cs3iTa/f2YyLcplcaKP1yVddKM2KOmfm2y8ibD++tv3pufW76nZZZOY+Z8zzEkdv4ODJzezE/kYOXj3Nts8TVzIdPNLO+s2Gu527ev2v39es11ZpaW2vK1NBbWczTgY7mVXIGW/3+hXVljn+ejn9cfZ08v1QOJkx0U/kaj4AoSC2o6Q5AAT6iMcL+y8n77+Pad9lVXPONMzPXvtMTIkXexMwONv/ebo73j/bSwya2L0oUdMcXy/Hz+9ren9vUZlRZ+v3sDMjrUpt/P3wcfb51SxXWyXuTJ+Hv0hvC4v4mvZp7RRgNu+VKcZUlN/67avd/hzHm357q9WW7Tc9n3mvYDGm7dd6qJupOYHO4mvaZ6+AtbPEqVdN+zVm6zfveRzk5/j741Wz/9KYDXVTmSWugv0dr99UF9D8+6fV6aGrqZ3p7PfbtP2Yv/9qjQ4Gg/G5ncWbPl/z7a+sqrb3hbP9s+n7bT4Bg3kxe0cXzcyXV5v1ljdte+5KuWhvE7H2m79+82Mfsd4m5oT3T+TY0dNN6Txe5Nizvky1v6RSidP1u9ccf5jv/8uqauPFevpbxNccf6mqxY+dnc1YK3bsbH7sfiPx9WVav7MZ98wfo1a7TgeI62u//fffx8mxB1B7fGF9/ED/fExc3URKpRL33XcfQkND8cMPP+Dtt99Gx44dERgYiLCwMPTv3x9Lly5F48bGKwk///wzrl275uRZ6e8mqOaE2N6MJibVGi1yiowJkwCz4uym+KtOkiEqtVboJmxe3N00zXGx1ZVoa6WVKuGkIdps6JXphEfn5ISqoKS2l0xbs94RMpGhkWLMi0z3aFV7ddHUk8a69oe1/OIK4SQ7KvT6CzSa1wYZ0lV8dh5HzHsGje6VcN3x5u4ZYDuznDPm53v3D21r/4F2mLd/Qq921x1fXF6bLOrZ+voLvFZU1x5wdGrhuHeGmAyzIXK+vrUHSqbtN6vAcTLSdKXOWYLWHmfbpzMOJnwDADibOqOwTHz9plejUjs+oDb1rLJmOuHKczIEIbWmwL31u1fX/Vd6TU+pAKuJKUwnhOZDOMSYCuwr7SSoHM3oB8DujEWm15NnVbvImmnfbc00NNy6J5i1qzV1oKTOMpg3yNn2b9r/Wm/+poSJs2S86ffNejiQaQidde0ym/iaIvmedhIM5kX0xZiSDNa/N7Xbn+P4q8L2Z9l+0wm3vRndTDJqvj8+VheoTO05l+b49WcU1MRbneSZ9kfOehJk1cT7msVLpVIhPuWy4/abtl/zBKf5DJnOhpCZEgbmCRqlQgYfTyV0eoPT7c+0fwg0e//dlXJ4uimg0eodzkhpjC8GYJlgNE/2Xc52fDEkt2bGVH+z+LCA2l4e6bmO9z+m2mbmx17GWk5SlFVVO/19ENpv9vr9vN0gk0pQWlFt0xPYmun7af76/bzdIZVIUFxe5XBGScBs/+skwXo9omuG1uv1Brv7VxPT6zNPkMaEGXsZ6fQGlDiYUROAUEcwJKB2OKrps8i7VuFwRkgAQh1H898fU7I591qZTULbJl7k/a+vwJrtN6ug1OGMjAaDoXb/63vz1l9fpu9yRn6Jwxm99QZD7fsndu6TV+JwRlm93iAM0bSe2Ir++Zi4uslGjBiB7du3IzExUXS5h4cHJk+eDMA45fnBgze/uB81rO6tG8HHU4nL2ddwyUFPmv0pV1Gp0qBVbCgamdVi6NE6Gp7uClzILESag5O3vSfToFJr0a5ZOMLNhoVMqakfUO2kG+1f+41drL09lGhhVvPmlfv7CbdPOYg/eKa2l03f9rXDIh4eXTtFcZaDg89Ss9pEU4Z3MbvdCYBxCJKjg09TUeEAHw+LbslDzOpvXHMwDEdtljkYazYrYIvGtV3EzZM7jpjPKuimuP7d6qQ7at8z88LjDmaDttC1de2wklCzA8G6tj8ysnb7iQyuvV3u5OTfxMur9uAx2OxAwrrwcV20jKmtq+Lo4LVaI35gZyrcm11Y5rAn3s7jVwDAZkrlMLMDYUfx9hJP5j2dVE4OnsWEmtWFqay2v35T5wrrxINpCJHeUDvszZpWrxeG+Jn3fAOA3jVD+EoqqlGtFo/XG/RCYqmxVR0h0xCd7Ucv2e1NYzAYsLWmlsxQqyE9g7sY/z9/tQBanfj2qzfohSFG3VtZ1nEyvX9avcGiN4k5rV4vDKmzThyYTr6qqrV2p2PXGvQorzK+N+bfFwBoXTMELreoAjo7M/fqDHrk1Zw4t23qeEjk9TK9/tLKarvrV2u1QmKzmVUdJNP7v+3IRbuFm3V6PbYfNQ7pNq93BECYofTw2UzoHaz/YqZx3z68e7zFMlPh/MLSKrvtV6k1wmdrXUfLtP2Zti8xGq0OSTW1cay3vzZNjZ/fvlNXbeLM12868RpjVUfPNEvZnpNpNnEmFSq1kHif0K+1xbIWMcYhTta1n8yVq9RCYuiuAZYXLeJqfr92Hr9sE2dSWqlCdqExMX3PQMuLFqbaW+blC6wVllUJQ8pH9Wphscy0/ZjXLrJWUaXGvpR0i8cDxl7kg7oYLyJtO2L/8yuvrMb+08bPZ4jZrIRKuVwYAmg+BM1afnGFkDiZekdH4X53pQIRNfULNzmIzy0qFxInU4fVxisVMvTr2AQGA4Tvh5hrZVXCzIKDzGZFdFcq0Kd9E+gNBuw4Zj++sKQSx2pmFjSfVdHLXYlebWOg0xuQdMz+559fXIHjF7Ihl0kxoJPjIanXIyYsQEiEbjx43u7jUjMKhGOTaTXHe4Dxt8vUk8Z60ghzZ9PzhP2XeXxoTV09lVqLvQ6+f+m5xTh/1TgzX2Lb2iHREcG+aN0kDFXVWmH7FHM5+xouZhXB20NpMytkfcSE+SOucRDKq9Q4eDrD7uNSMwpxNa8E/t7uN31WyPpoER2CqBBfFJVWWQwBtnbqYg7yiisQFuhtURKgVZNQRAT5oKCkEieshlCbO34xGwUllYgM9kGrJuJ1COmfi4mrW0AuUgzaXJMmtSf5+fmOr4rR34+7UoHRicaD2TmrDogWTzyXno+lNUVcracD9nRXCAeD3608INTcMHcmLQ+/1xRxtY4PDfAW6qusSEoRvXK452SacEXZ+sCzffNI4arzhYxCXBJJnu0+mSZ0sW8da1lLwDwJpdboRNt/xexquvWQnKaRgYgKNh58Lt58HFmFlsWnAWDb0YvCgfXdVgfu7zwwWLitM4gnPwpKahNa7lYn7j+9drfF/2LJH/P7ZFY9JrbPfsTm8ddj05eW09OLnTub32fdX2PVh1Ms/rduv0ajtbjPuhbQ8vfuE25r9bbJK41Ga9HbKtjqitefH0+tjdcBFVWO461rKf34yl3C7eyicpvPT6vT4axZTbPe7Sxr8YzomSAMI/hu1X6UVlrG6w16/L7thHDi8fiE7hbLf3ur9vMvKKlEmVXySqPVWmy/A61q2az78N7atuptk1cajVZIegBA6xjLxNnSd/5PuJ2eW2qTPNNqLV//pCGWJ57fPTdOuH3wTCYqVFbt1+uxx6yg8XP39LZY/srU2sT14i0nUGWVvNIZ9Fi69aQwpOq1qf0tlie2jUF4oDdyr5Xjp7WHba4c6w0G/JGUgjNp+fBwk2NET8veio+M7SoUTv5u5UGboSxanR4/rjsiJC6fubuXxfKvnxsj3N5zKt2m55lGq8fuE7Wv/8PH77BY/vmTw4Xb6/efg1prFa/TY/3ec8L/Hz8xzGL52w8OEm7/uvE4NNbxWi1+3Vhb0P6dBwbhZnr/saHC7XV7z9kk36rVWmzYX1sX5vOnhlssH9EzAR5uCpxNz8ey7adsrnxrdXr8tPYIcorKERbgjd5mhd4B4Nn/M34eKrUWC9YftUk+qdRafLfyIPQG45Cy6aM6WSx/feoA4fb6feehtYqvqK7GXwdrkwqfPjHCYvmYxJZQymVIvpCNP3efsWm/WqPDvD8Poqi0CtFh/ujSwjLx+fSdPQEYk9aLNh2zSb5VqNTCBBAKuRT3DLT8/XnyLmN8aWU1Fm9OtokvV6nxXc1sZkqFDOP7trJYPmNCDwDGHmVLth63ja9SC7OxuSvlGGXV23fGeGP8tTIVlm0/aRNfWqnC3FXGC6YebgoM62GZODQVvjYYgL8Optp8ftfKq7CrJukPAM9NtNx/TOjXBhIJsOPYZew4dskm+VmpUuPrFfugUmvRKT4SzaIsa8GZjme2HbmIXcev2MRXVKkx+499UGt06NqykTDDn8mDI43HHzlF5Viz54zN6y8sqcCPNTOh+nu7o4vVBAbTRhi3x6yCMqzbdw7WCkoq8NN6Y3ygrwfax1nWAjNdONmw/zwOnrZNfpZWqPDV8r3Q6Q3o2yHWppbPXf2Nicz1+87h8Fnb5EVJhQqz/9gHvcGA/h2b2hTAv7um9/aaPWdw9LztEP7i8irM/mMfDAbjBAaB9Rwyb82UiL2QUYSkZNvkW2Z+CX7fZjx2jQ71symgP6638ftw7moBdokkX9Nzi7F8h7EAfZOIAIRZ1fIzvf5l208hxWqGY8CYtPu2ZgKPkT0ThCGz1vFLt57A2TTb87O8a+XChAYje7VwOqT1ekgkEmH7WbwlWbTXanZhGeb9afz+jundUrSAe0ORSmvbv3DDUVwRSX5fzSvBTzWzCY7v21ooVwIAMqkUd9ZsP/PXHxXtdZuWU4wF642zCU6wiqd/B4nhZs+FSk5t2LABzz77LADg008/xejRo297G9RVZTDYuZrpqhTu3pBKZdDrddCoXGcmDTFV1Ro89cUanL6SB5lUgs4JUWjdJAxanR5Hz2UipaYn09BucXhz2kCbmQcrVGo89fkanE3Ph0wqQdcWjdAyNhRanQ6Hz2XizBXjD+qIHvF4beoAm/H4edfKcc+bvwknd/7e7oiJ8IdGo8elrCLhZC46zA+L37oHUqud/6lLOXjk41XC/xIAHu5y6PWWQ5DkMim2zXrAJlm7dMtxzFpuO1WxmG1fToO7u2U9jqu5xbjv3d+FHhuBPh5oHO4HtVqHi1lFQm+J+MZBWGCVaAKAT35NwspdZ2zuF7N3zmM29z375RocPFu3uk1i8SNfnI9rZXXrbSQWf+drvwhXxG8kftp/l+J8Zt2GIYvFP/zhH0i5Urekulj8A/9bjrNXHQ+VcRT/+rxN2ObgirWJTCrBrm8ftbl/f0o6np+9Xqg3Ex7ojfAgb1RUaXApq0goIDuka3O88+Bgm/jHP1mF4xdzbO6v6/pHv7gAhWV1m+1G7PU/8elKJF+wPei25qaQYfvsh23uf2PeJmy1ev8UMil0er1F8f1Qfy+s+vB+m/gf1x7Cj2trZ9vycFPAz8sNFSq1xeQHiW2i8cmTI2ziUy7n4qkv1kCl1sLPyx2928cgPMAHRWVV2H3iCvKLKyCVSPC/R4aKFrFekXQKn/5mnO1OAuMsksF+nrhWXoX0nNphBFOHdcKj47rZxM/4fLVN0WqFTAqtXm9RE6lpZAB+efMem/iXvt1gUXRZJpXAXSlHtUZn0Yusa8tGmPXMKJv4DxbtwJo9tRNWeLkr4OPphrLKaoti9mN6t8TMyf1s4uvriU9XWxT9lsukcFPIoFJrLSYfGNi5Kd57eKhN/M7ky3ht3ibo9AYE+3uiX8c4BPl7I6egBElHL6CkQgU3hRxf/WeUaI+xr//Yh8Wbjck5qUSCmHB/+Hu7I7+4Apn5pcL38tX7+2FUou3Mn1PfW4bUjELhf4VcCqXctv3jerfESyLv36aDqXhn/lYYDMZJCHq3i4W/lzuyCkux6/gVlFep4eWuxDfPj0F8Y9uZ8z76NQmra34/pFIJmkQEwNfTDTnXypFtNgTu/UeGor9Ij5X/LdwuJD1kUgliTfFF5RZD4D56/A70aW+7/b8zf6swO55MKkGTyAD4eLghp6jM4nfhkxnDLXqMmLzx/WZsremxJJNK0DQyEF4eCuQUliOn5kKaBMBnT40QLYI++uWfUVhSO9RLKZdBIZegqlprsf+YcWcP3Dekg038b1uOY3bN7390mB96tomGl7sSaTnF2HsqDVXVWgT5emLuS+MQGWw7zH/RxmNCci46zB+9OzSDt4c7LmXmY/fxS1CptQjx98Lcl8ZZ9DY3efrLNThc8/stl0nRLDIQHu5yZOaXCUP8pBIJ5r08Dq1iw2ziZ3z+p1D0XCE3xru7yZGRV4qCmvdFKpXgh5kTRIuAz119EAs3GE+um0YGonurxvBwk+NiZhH2paRDrdEhMtgHc18cL1rL7NuV+/HLxmQAxklGurduDHelHBcyCrE/5SrUWh2iQnwx98XxokOlvlq+F0u2GC+MNm8UhO4tG0GplCP1aiEOnjbGR4f5Yc6L4+DvYAKeG6HX6zHlvWW4lGU8/nBTyNA0KghKhRTpOcXC5AEKuRSL35oo9JAzj7/v3d+FpIW7Uo6mkYFQKKRIyy4WLjgp5TIsfXeiTeLKYDDgg0VJwux8LWNC0KVFFORyGc5cycPhs5nQ6vSIbxyMb54fY5O4MhgMeG/hdmG20VaxoejWOhYKuRwnL2bh0Ok06PQGtIgJwdf/GeO0Ftr1v38GvPXjFuH726ZJGDolREImleLU5VwcPZcJnd6Atk3D8NWzo+HmYAKhhqDV6TFzzl/YezIdEhh7xLaPi4AEwPGLOUhOzYLBYJzx99MnR9jUgtPqdHjxm79w4PRVSCTGeNPssskXsnH8gnHyqx6tG+PjJ4Y5nMDnn+LvdO5rTSKRQunheKKY635OJq5uv48++gg//fQTAGDLli1CzavbSa//+xW0k0ikkEgkMBgMf4ukW0WVGh8s3IzNB87aXPV1U8pxz+BOeOKu3navGJRXVuP9BZuw9dB5m3h3pRyThnbGoxMS7cZn55fgofd/E+3xBAAd4qPw3Uv3CEVWrR09m47HPvrdbu1gb083bPj8cbi7i/9wzl+zH9/+sVt0mcmuOU/aJK1MLmcW4rGPltqtFdGjTSxmPTfBJulm8t+f1uPPnacdrj/p2yfg6Sl+xfGxD5fgiMgVT3PbZj8KHx/xnfLgJ2ajxMlQu3UfT0FoqHhX59HPzRFOMuw5tOAFu8vufWM+Uq8W2l3uLP7B937BiQuOkzeO4ie/tRDnRK5Y1jV+5jd/Yush+8MFlAoZ9nz/H7vL9528jJe//lO01oVEAkzo3x4zpw6xG//o+7+JXrE2Uchl2PuD/fUPe+YbFJY4rlPi6PU/+sESHD1nf/vz9lBi+3dP213++ty12LjvrN3lMeEBWP7hg3aX//TnPsxZscfuZAtDuiXg/SfsX3RJuZSN//60ERdFrhpHBPni5amDkdjO/jCV1TtP4qOft4jW+pBJJXh0QiKmj+phN37GJ7/joIPhHq2bhmPBm5PtLn/l2zXYctC2x4VJnw7N8Pmz4+0u/3jRFizbmmx3+T2DO+KFyTe3t5W5pz/7A/tO2h8uNKxnS/z30ZF2l+87eRkfLtyMrALbHq9No4Lw5oPD0Lqp/ZnLvl+1Fz/+uU90lk6lXIbXHhiKEb1ai0QaPfS/33A81f737+5BHfDS/bZJZ5MdR1Lxya/bkCdSiyw+OhRvPTQM8dH2h5nMWrIDizceEa214qaU47+PjsCAzvEikUafLd6G3zcfE413V8rxv8dHoW9H+zPffbxoC5ZvOy46XNPDTYEPZoxBYjv7Mxd+sGATViadEP399nRX4KMnx6JHm1i78RNe/sFhnbBnJvbD5GFd7S5fnXQSXy/faTFxi0nH+EZ46+FhiArxtxu/YsdxfLt8N0pEanV2SmiEtx8ejohgP5FIo9e+W4vNB86K7r98PN0w67k70ba5+MyJer0er3631u7vj6+XO2a/cBdaNREf5mswGPDbpqP4YfVe0Vp7PdrE4q2HhiHYX3zmNIPBgF//Oowf/9wvOty+V7smePPBYQjy8xKJNsYv2nAIP63ZbzHxjknv9k3xxoN3INBXPL6+9Ho9nvx0OQ6dFt//Bvt5Yd6rE9E4THzmPK1Wjxmf/G739y/E3wvfvzbJ7vaj1xswd+UeLN542KbHrUQCDOoSj1enDYWPnQlAdHo95qzYg982HbGpdSWVSDC4WwJemTbE6QRMN0qr0+PrZTuxfGuyTfF3mVSCO3q0xMtTBtutD9jQ1BotvvhtB1bvPGnz+y2TSTG6dxu8cN9Au0k3tUaLzxdvx+qdJ23KDchlUozt2xbP3TvAbn3Lf5q/27mvNan05iYXmbi6zdRqNQYOHIj8/Hx07NgRS5Ysaegm0S2WXVCKtbtPIiOvGDKpBHHRoRiZ2Aa+TmbNqo0vwZrdp5BZEx8fHYaRia3t/uhaO3I2HXNX7EZOYRlkUgkSYsLwzKQBDqerNffrX4cwd+VuqKo1kEgkCPbzxsdPj0Xrpvanyzb3zGfLsPt4be8PqUSCdx8djuG96lZQfP/Jy/h+9R7kX6uATCZB66YReHbiALsHfdYmvfYTzl+1TKC8/dAwjO7bvk7xdzw5GwVWybOn/68vpo7qWaf4LlM+sjl4HtO7Nd56xLanhpgeD3xiU6vn8Qm98NC4PnWKH/D4lxb1xADg9elDMX5ARzsRloY9/bVwldrk06fHYUCXuhWkH/LkVyiyqjX21XN3IrGD/ZM2c/e/tRCnL9cm0DzcFFj41v1o1sj+dNfm1u46iSVbjqCk3NhLpEfrWDxxd986H/SNf3GuxUQLSrkMi/87BU2inNdWKC8vx7D/zEFVteXB2w+vTULHBOe1Maqrq3HfWz9bzDrp7aHEkvceRESI8++vRqPBM1/8gcOn06HXGyCRSNAozB8/vDbZ6axlAKDT6TBryQ6s25uCarUWCrkM3VpF4+1HR8JD6fz9MxgMOHYuA1sPn0NpuQpeHkr0atcUie2b1qmLv16vx2+bjmDt7lMor6qGh1KBQd0SMH10DyidDMk3vf5HPliCU5eyYah5/c0bB+PHV++Hp6fzK+VarRbPzVqJQylp0On1kEml6JjQCJ8/c5fdhL05tVqHD37eiKQjqVBrdVDKZRjQJR4v3z8USuWtv1KsUmnxzBe/43hqFvR6PWQyKXq0icUnT41zWtIAMJ7A7Tt5GbuTL6KiSg1fb3cM7BKPTgmNnc66BRhrWf2wai92HElFlVoDbw83jOvXDncP6mj3goO54nIVnv1sGc6m5Qrt7985Dv99ZGSd2q/V6bHz2AXsP3UZVSoN/H08MLhbAto1j6pT+6tUasxduRu7T1xCtVoLX0933DWoA8b2bVen9lep1PhuxW7sPVkT7+WO/xvcCaN7t6lTfKVKjW+X78T+U1dQrdHCz9sd9wzujNF96vbbWalS4+tlSTiYkoZqjRb+3h6YNLQLRiTaTxiayykowTOfL8eVnCIY9AYo5DKM6t0Wr0yz7aUnRq3RYsuhczh27ipU1VoE+3theK/WDhOG5qrVWmw5dBbHzmVArdEi2N8bw3u2Qlwd40vKK/HV0iQkn8+ARqtDgK8npo7sgYFd7CccreNnLU1C8rkMaHU6BPp6YfroHujXKc55MIw97zftP4MTFzKh0eoQGuiDkb1ao0mUbS8/8Xg1Nu4/g5MXsqDR6hAe5IsRia0RGxHkPBjGz/+vfaeRcikbGq0e4UE+GJnYBjERgc6Db4L8a2X44rftOHMlBzqdAWGB3nh4XG90a23bS1BMdmEpZv22HefSc2viffDYnb3RuUXd6kqVVVZj/Z5TOJeWC63OgEahfhjVuy0iQ+wnPC3iK1RYtycF59NzodMbEBXqj9G92zhMmN5MxWVVWL/nFC5k5EOnNyA6PACjerdBWOD1T0bUEIpKK7B29ylcziyEAQbERgRhVO82dT52Lyypic8yXvxqEhmMUb3b2E3Y0r8DE1e32ddff43Zs2cDAObPn49evXo5ibg12OOK6Ppw+6OGxO2PGgq3PWpI3P6oIXH7o4b0d9/+bnaPq39HPzsXcfToUcyZMwcAcPfddzdY0goAtNWVf7svgMLdGxKJDAaD/m83zpf+/rj9UUPi9kcNhdseNSRuf9SQuP1RQ/o7b3+3osYVy/HfJhkZGZgxYwY0Gg3atGmD119/vaGbRERERERERETk0pi4ug1yc3Mxffp0FBUVoXHjxvjuu+/sFqQmIiIiIiIiIiIjJq5usYKCAkyfPh3p6emIiorCwoUL7c4iRkREREREREREtZi4uoVyc3MxefJkXLx4ETExMfj5558RFRXV0M0iIiIiIiIiIvpbYOLqFrl69SomTZqEy5cvo0WLFli8eDEaNWrU0M0iIiIiIiIiIvrbYOLqFjh//jwmTZqEzMxM9OrVC7/++iuCg4MbullERERERERERH8r8oZuwD/NsWPH8Oijj6KkpATDhw/He++9B4VCgerqatHHSyQSKJXK29xKIiIiIiIiIiLXx8TVTfb555+jpKQEALBhwwZs2LDB4eNjY2OxcePG29E0IiIiIiIiIqK/FQ4VbGBNmjRp6CYQEREREREREbkk9ri6yRYtWtTQTSAiIiIiIiIi+kdgjysiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuSQmroiIiIiIiIiIyCUxcUVERERERERERC6JiSsiIiIiIiIiInJJTFwREREREREREZFLYuKKiIiIiIiIiIhcEhNXRERERERERETkkpi4IiIiIiIiIiIil8TEFRERERERERERuST57VyZXq/HmTNnkJKSgoyMDOTn56OyshJarRbu7u7w8fFBeHg4mjdvjrZt2yIsLOx2No+IiIiIiIiIiFzIbUlcnTt3DgsWLMC2bdtQWlpa57i4uDjcdddduOuuu+Dp6XkLW0hkn06nw6+bT+DkhWxIpRL07dAEI3u1uK74XzYdx8mLOZBJJejfsSmG90yoc7xGo8HbP23D2fQCSKUSDO7cHI+O61bneJVKhekfrER2UTmkEgm6t2yEDx4fVuf4wsJCjH5tmfC/t7scm758qM7xBQUFGPP6cuF/Lzc5Ns+qe/yFCxcw5dMtFvftnfNYneMvX76M+z7aeMPx/8/eXcc3cf5xAP9cpO5CizsUdxk2hg6HIcMGjA0Z24CNDTYG/BjuQzaGu0Nxdy1OcYproUCBQr1Je78/0ubucnfJJSlNGd/368WL5C7f3pPkSXLP9x45ePk+hs22PT70+CVMXXHS5vhtZ25g/KIjNsefunwfP/PK7+3uhF1TeyqO37zvCiaFnjDeVwE4bsXxN+69jCkbw2yOP3vtHgbM2mu8XyJfABYObac4/tb9KHwzeQtS01gwABpWKYyR3zRUHL/jxDWMXX7MeL9QTm+s+F8nxfFrD5zHjPVnjfdz+btjw9ivFMdvPnwFk9Zwr3+F4rnwz08tFccv2nIaC3aFG++XyOePhUPbK47fFXYDo5dx9a/ZJ0XxR/f6iuP/3RSG5XsuG+9XDcmF6QOVl//a/Sj8NmcvEpJS4OKkwS+d6+CzCoUUx289ehUTVx8HywIMgG9bVMLXzaoojt935hbGLD8MvT4NGo0KgzvVRrMaJRTHbzpyFdPWnUBqKgu1msFvXepYFX/i0gOMW3kESck6uDpr8WfPeqgUkldx/KHwe5iy6iiSUvRwc3HC2G8boGzRXIrjtxy/jhnrwqDTp8LZSYPxfRqiSol8iuNDD1/BP6GnoEtNg7NWg/F9rYs/cvEepq8NQ1KKDt7uLhjftzEK5vJTHL9ybzgWbDsHfWoaXJw0mNG/KUoWyqk4funO81iy64LN8Ucu3sO8zWeQkKxHgI8bxvdtjABvd8XxO05cx4Jt55Gk08PXyw3TfmyKYD9PxfH7zt7G4h3nkZisRw5fd0zo0xi+3srPpzceuYplu8KRrNMjwMcdf33fFAF+Horjj166j5V7LiIxWY/cObzwR/dP4eHiojh+9OID2Hf2LlLZNLi5OGHhHy2RLyBAcfzB83ex9sBlJKXokTfIG799Vceq4y/bfR4bDl2DTp+KYD8PzBrQCh4eTorjJy4/jD1n7yA1LQ1+nq5YPKQ9fHyUH3/Y3D04duUh0tJYeLu7YNnvHeDn56o4fs6mk9hx8hb0qWnIE+iNf35uDicn5eXfcuwatp+IgC6VReHcfvi9ax1oNMqbjjPXn8C+s3eQmsYiXw4vzBxo3fHnbz1jjC+axw+jv20ArVarOH7N/svYf+429KksSuYPxM8da1pV/pX7LuLQhftIY1mULpgT/dtWsSr+yYu3uBP5CmlpLHIHeqNYXn8wDKM4/sz1xzhz4wnS0liUKJAD9SsVgkqlfLDUw6gY3Hv6GizLIl+QD4rk8VccmxkePHuD+8/egGVZFMjpi0JWfHcDwNzNp3H6+mMAQLWSedGndTWr4u9GvsbDqDdgGAYFc/qiQE5fq+LtdefJKzx6HgOGYVAolx/yB/tk6fH/ixiWZdn39cevXbuGadOmISzM0Gix9lAZH25PT0906dIFffv2hbOzc6aX82OUkhgLlk1zdDGsonXxgEqlRlpaKnRJcVlyzJ9n7sDp649hWnPVKgYtapbA4C51zMYPmL4N5yIiJeNb1SqBXzrLx+t0OnwxbDVevU2Q3F+hWE7883Mr2fikpCQ0HLQUqanSn7scPm7YPKGbbLxpwkqKuQSKacLK2niphJU18VIJp6yMn7PpJJbtuWRz/Iod5zF721nZ/Zbi95y+ij8XH7c5fumWU5i766LN8dNXH8G6Izdsjt8ZdgNjlh2R3e/hosXe6d/I7j8WfhdD5u6T3Z8/hzdWj5JPQJkmXEw5a1U4NKu37P7RC/di19l7svs1KuDobDOv39pjWHfomux+H3cn7DSTgBw+fw8OnL8vu9/S6/dP6Ams3HdFdn/h3L5YPvxL2f0Dp2/FmYinsvv9vV2wbWIP2f17Tt/En4sPye7/tlkl9Gwhn4CavPIINh2Tr3+1y+TDxO+byu6ft/k0luwOl93ftm4pDOpYW/74qw5j09EI2f3tPyuFn76Uj1+17yL+Dj0lu39IlzpoVbuk7P6lO89h7tZzsvv/9/VnaFxN/gKKpddvUMeaaFu3jOz+MUsPYOfJ27L7h3Stg1a15Mu/eOc5zJcpP8MAM/o3R+USeWTjh83dg4Ph8vX/z2/qoWGVYrL7f5u9E0cvP5LdP6Xf56hRtoDs/kXbz2Lh9vOi334AcNKosej3NiiUWz4BM2XVMWw8Kv35V6sYLBvW3mwCb/amU1i556Lk8Z21aiwf3gF5cnjLxo9bdgjbw27KHn/liPbIFyx//EU7zmHRjvNISxOXwMfDBatGfgkfD/kETOeRa/AgKkZ2/6o/2qFAXvnX799Np7Fy70WkSbQ7/DxdsWb0l2YTWINn78Rxmfdfq1Fh04TO8POQT+B1H7MWt5+8kdzHMMCO8T3MJrDaD1uByGj589zt47qbTWD9OG0Lzt96JrnPWavBtvHdzCbgxi0/hB0nbkrWn5z+nlj755dmEzi9J27E1fsvJPe5Omuwa3I3swmsgdO34UxEpOQ+X08XbB7XxWwCa9j8vTh0/p5k+fMFeWPF8PZmy//73D04IvP9UTCnL5b+0dZs/PmbkVi66wLOmTyHYnkD0LlROTSqUlQ2FgBW7r2IZbvDEZuQLNju4qRBy1olMLBDTbPxZ64/xrLd4bhwS/gbXCJ/ILo0Ko96lQqbjbdX2JWHWL4nHJfuRAm2ly4UhK6NyqNO+YJm4/tO3oTLd59L7itXOBj//trabPzRi/exfM9FXLsv/BvligTjq8YVUKNMfstPwg4Hz9/Fyr0XcePhS8H2isVyodvnFVC1pPKLT45o+2YWhlHByVX5hRZFf/N9JK7S0tIwe/ZszJkzB6mpqcaElYuLCypVqoSiRYuiQIEC8PX1haurK7RaLWJjYxEbG4uYmBhcv34dV65cwaNH3I8GwzAoWLAgJk6ciDJl5E+WiDKUuLKs5W/LEB3DJY1UKgZgITgRKls4GHMkvkBTU1PR6vcVeP0u0Wx8+aI5MXuQOPmk0+lQb8AipEqc9PEF+rhhi0TyKSkpCfUGLjEbCxhOwI78LW58K0laZZBKPihJWpmL3x1+B6Pmmk9amYtXknQyF7/94DWMW3dM4tHK4icu2Y8tp+7YHP/PqqNYefS6zfGbjlzC5NUnJR6tLH7s4r3YcVo+6WIp/re/t+Po1Sc2x6/edwGzQs9YjGUAnJCI33z0KiatMp+0AwAPVy32/iVO3vy5aB/2nLlrMR6QLn//aZtx7laUxKOVxVtqNGfQqBkc/aePaHvfSRtx+Z50o4FPxQDH/xUf31KjP4OPuzN2Tv1atL3rn6tx79lbi/FOGhUOS3z/rNgTjtmbTluMb/5JMQztXk+0fdDM7Th53XL9K5LLB8tGdBRt/9+i/dh3xvLnt0apvJjyYzPR9p//3o5TCup/9dJ5MO2H5qLtf605hvWH5ZOWGeSSd5NXHsamY/JJswx9WlZG96aVRdvNNRr5ujQqh++/+ES0/YepW3DhtnSjme+b5pXwTXNx+UcvOYBdp+STXhnG9GqAepWKiLb3HB+KCJMGg5SB7T9Bh/rlRNu7j1mH209eW4yXS76NWXIAOxWUf96vrVG6cLBo+08ztuP0Dcv1Z+6vrVCmsLj319A5u3H44gOL8SuGt5NMnin9/lj6R1sUzRso2j5q8UHsPn3LbCwDYOO4rgiS6L3V6KeFiEvUWTz+nEEtULZobtF2c0kH4/EZYMfk7pLJs04j1+ChmaRZhq3jukr2Pmvy82K8NUk4SNk4oSOCfXxE2+sNWICkZL3F+PXjOiC3nzh52Ob3FXj+xvI58t4pPSWTV+aSThk0agZ7p34DFxdx8qb54KWCc185h2f2lExetf1jJZ69ijUbq2KAQzO/kUxefTVqHe4+Nf/5ddKqsf+vryWTT0refxetBnv/6iEZvyMsAuOXH0Eay8JJq0aJ/IFQq1S49TgacYkpAICujcujX5vqkn979OKD2MX7/Li7aMEwjDEWAMoUDsZcmeTNpqPXMGX1MbCsIUldIn8OMCoGtx69RHyS4XPVs1klfGvmwo891h64jBnrDR1WXJw0CMkfCAZAxKNoJCYbjt+3dTV0+7yCZHzTX5cgJjbJ7DF8PV2xY3J3yX3L94Tj3/TzB1dnLULyBYAFEPHwJZJSDJ+rAe1r4Mv6ZW14dpYt2HYWi3acB2B474rlCwSbxuLGwxdI1qWCYYBfOtVGmzqlFP09SlyZ/M3MTlzFxMTgu+++w8WLF8GyLBiGQa1atdClSxfUqFHDqi6iUVFRWLduHUJDQ/H8uSFrqtFo8Pvvv6NLly6ZWeyPDiWuzPth2lbjlQo/T1c0qV4Urs6Guvv6XQJ2n76NhPQv4C4Ny+H7tsKT976TN+PyXUPD1d/LFZ9X4+JfvY3H7jO3kZh+YtLt8wroa9L9tcmgxXgbbzjx0agYVCyeC27Ohh/oFzHxuP6AOymvW74AxvUVDv2r9d0c8HNewb7ucEmPfx2biHfx3ElV4Vy+WD5C2HOiRt85otcko3OzqPcYAxwzafxKxctRq4Bjs22PB8SNf4pXHi81dNCaeK0KOGLH++esAQ79bTlend47PtXka6t6yTyY1l/Y+DeNd9Yw0GoNJ5imDaIeTcqjdyvhCaQ15a9RJi+mfC9MXlgVXyo3pvzYwmK83OevW6Oy6PtFDZuP/22TCujZSvj9IxWv1RjeAJ1e+AaM+bY+6lUWXj225vh/fFUbzWoKT+D48U5qNQrl5rr3P4x6g8SUVOP9LZM6I9DLy3g/NjYWjX9dKfh7rs5c4yLRpEG4YUQX5MrFnVglJCSgwc/LBI8J8OYat9FvhQ2yrWO6ISCAG3oVHx+PhoOWCx7j48H1FI+JEzZo9039Cu7u3NCxd++S8fngxcb7zlo1CvKGN9x7+gYpeu75H5rxtaAn+st379Bq8CrjfRetWjA84l7kG6Skysc/jnyNL0evM95XM0AOf08AKuh1OkS/TRDUQdPvnjuRr9Bt9HpePIMcfobnp9Pr8eptktn4+09fo8so7vg+Hi4onMtQfn1qGm49jha8/6bxZ288woAZO7njqxnk8OGOH/1W2CAyjQ+7/AC/zN5tc/zVu1HoPXmz8X6eQE8UyW0YnqNPS8PF288E30Gm8SevPcKgWVz5/T1djO+fPjUN1x++FHwGTePP3HiMgTN2GO/nD/JCwZx+xuOH33pmbLwyDHDC5Ld716mbGL2E6+kY4O2G/EGGnlm61DTcePASulT545+8+hCD/t5lvF+mcDAKZ5SfTUPYlUfGpIbUhbPxyw5iWxjXaNeoAB8vNwAq6HQ643mR3PH3nb2F/y08aLxfoWgw8gf5GssfdvUh3qQ3il2cNDg4UzhtwaJtZ7EgvdEJADl93ZEr0PD9otOn4fqDl9CnGZ6/1Ov358J92HOWu+jh4aJFQEb90ekQ+SrebPlNk8auTmr4eLoa46PfmX/+E5YfxtYTXNI6d4AXgtM/f0kpetx4+NJ4bqhWMTg2W3jhY9GOc1iw7Zzx+VUpkQe50oemJqfocezKA2P99fFwwc4pPQTxf8zbg0MXuKRh3hxexs+P6fG1ahWO/CN8/0ct2o/dvIsGJfIHIsjXEJ+YrMP5W0+hTx9FIHXhaerqYwg9Ykj6qxigeqm8yOFjSC4mpKTg2KWHxt+AID8PbBrXVRA/bvkhbD9x0/j6VC+ZB0EBvmAYFeISk3A0/I4xPneAF9aP6SyIv3rvOb6bshmpaSyaVC+GZp8Uh5uL4dxfp0/F0UsPsGb/JaSmsRjW/TM0NZk2ZOORq5iy2nDRLU8OL7StUxreHoaeeQlJOuw4GWHsxdOmTkn8ajJqI/zWU/zw11awLNCiZgg+r1YMrunn/im6VBwOv4d1B68gjWUx+tsGqF9ZnPi3x6lrj/HzrB1gALSuUwoNqxSBi5Ph9zc5RY+DF+5iw+GrYFlg4nefo3a5AoL4flO24OIdw0UPrUaFmmUKwMfd8PsUE5+ME1ceGL//KhTNiX9MLvwfu/QAQ/7dDYYB2tUtjXoVC8M5/fiJyTrsP3cXm9J7sk77sRmql1Le80mJ/efuYMSC/VAxDDrUK4O6FQrBSas2Hn/36VvYdiICDAP8/VNLVChmedg+Ja6EMnVVwaioKHTp0sWYtKpQoQI2bNiA+fPno27dulYlrQAgODgY/fv3x4EDB/DTTz/BxcUFer0eY8aMwYwZMzKz6IQYpaamGpNWAd5u+OLTUsakEwD4ebmhc8NycHEyfBmtP3RVFJ+RtMrh6442dYTx/t7u6NKwPJzTv8zWHhAOR0pI4E7OtGoVapXNb0xaAUAOH3fULV/AeN/0ympUTIwgaVUg2MeYtAIMibgCvHHWd58Ku7OfuCS8UsqAazTD5DYAmI5E3H3S/PAwU6aJiN/+3m5VvKlf/95qV3zvCcp6islpNMC6pJOpxgPn2RXfY8xaqx7/Nj5FcL/ej9aVX2fy/tWyMulmemG588jVgvtqFZe0yrjPd8qkZ02fiRsF9z1ctcakVcb99I8uAGCJyXDI+v3nKyt4urArjwX3rX3+YdeEPVvq/iB8/y19/pbtFX5/1LTy+Pz5rwCg/o/C56/VqIxJq4z7fMMWHBDctzbpyp8/DDD0dsng6+4sSFoBQP5gX2NDDAC+Gin8vDb/TVh/+EkrqfvtRwmTXC2HckkfZ41KkLQCDEksZ95r0P5PYXzTwdx9jUqYtAIM9/kvYdMhwvjOY9YYb+fwcRMkrQCgUC5fBHhxibJuY0MF+7uP4up/kK+7aE6PQrl94e/JPaee4zcL9ncdz72enq5a5OD1KNFo1Qj29xA8/y+GCpN0PceFmsRz75VWoxHFdxgufP7fTdlivF00t78xaQUAGrUKJQvkQKAP9/yHzhX2rP1pJpf08XZ3NjaaM46f098DWjX3Keo5Xvj6/frvbovxGl58vymbhfGzuaRNlZBcxqQVAGhUKlQunhu5A7gT+UXbhcPBh87hnk+J/AGC90+jVqFsoSD4eHBDzOZsEvasHTqXmw+wWoncxqRVxvGrhORGUPp7wrLA+kPC4cDjl3PDs0sVCDQmrQDD+UjZwkHwdOXOZ9bsEw6HH8Ub3tu0elFj0goANIwKdcoWMJ5/6PRpOHn1oSCen7TydtMakzYAoNWqRZ/HeZuFPTMnreS+T5p9UtyYtMoo/6flChpf/6QUPa7eE/aMXbiTS1qVLRxkTFoBhu++ckWC4Jr+A8KyhkQjHz9plTvAw5i0MpRfiwLBPoLv8CMXhT17+UmrAG8Xk+evRU5/YQ+vsMsPBPf5SatyhYME35UuThpUKJoT2vQf0dQ0FvdNeiYt3XUBgOF3pnmN4sakFQA4O2nQoFIR+Hoa6l9MXBKiY4QNaX7SqlzhIMHnJ+P4mvQ5mnSpaYh6LexZtYeXtKpbvoAxaQUYes/UKpPfmAiIS9ThbYJwKo3Nxww91RkGaFmzhDFpBQBuTk5oXKUoPFwN58PPX8chLkmYiN6ZXv8YBmhRIwSBvHh3F0O8W3ovs8jod0hKEp7ArNpnSEo1qFwE7T8rY0xaAYBWo0b9SoXRtbGhp9HyPeGiKXQWpydNc/p7omfTysakFQC4uWjR/rMyKFUgBwBge9hNpKUJT8BW7L0IlgWaflI8ve3Bnfs7adVoVLWosafRMonj22vFXsP5RMtaJdCiZogxaQUY6k+T6sXR9tPShsfuEQ/F5yetmlUvbkxaAYYe3s2qFzeeg4RL9Opdnv4329UtjSbVixuTVoCh/rSoGYJWtQxzTK7ce9GepyrCsqzx+B0blEWjqkWNdTXj+G3qlEKT6sXAsob504j1Mi1x9fTpU3Tq1Al3796FSqXCzz//jNWrV6NUKWVd4czRaDTo06cPtm3bhlKlSoFlWcyZMwdjx47NhJITIjRnMzdEqUk1+XHo9Soaxoin6FMF49hnbOBOJM3F100f452sS8XlO9wX8IBZ24y3q5qZw4M/yd/xSw+Mt7vxGi65A+TnYHDhfaFuOcYNS/n134NSDxcwbTyPXswN6xu1VH5eIjlTVnExSoeY8Q2Ytsl4+8RV+Xl15MwO5YaVXX0QbXX8yh1cnYmzPEJAJPQ4d/Ifm2R9T8gbN7hk4S2ZeTXMyejRCgBJlkdomGVvP84HUdwQM9MklaXtAHCFN8Qh4wTVlJOT/NwY/N4ctrD3+afwelPITeFqbmpXe09DE3Xc8zdNUlnanhn4Q7SC/KWv1PGH97xLECZe+b1BTJNUUttNX68EXkPE090ZUvjbk3XC+sI/voebdDx/u2kPNv4QGz9egoovgJe4efxCuOBNTBzXEPP1FA+DAoBAXmPwfpTw+4JfHrny+/Em9456LexBolfw/PnxT14KG67v0odYMQC83KUvdubjzc102GRIGP+ijZuL9Oecn0wwHVLIKogP5MVfNJnDxXjRSaOCu4t0+YvyJkheYpI4zqhPahUjuGDFx0/mrdxncuEr/QvcxUkjaLTylcjHDe+bvVE4j1rG+6dRqQSNTr5iebnyzzZJHL2NN9Q/fy9XOMnMAVS+CDe8cezSw5KPASC44MDHT17x56HT6/XG3mRBvu7GBI2pKiHcedXw+dw8iHFxKcb339VJLRtfMj1xAADD5nGJwqiYGONtNcNAK/P8+eduw+Zx506PI7nvPhUD2Xh+8mowL9H6KIqL93B1gka2/Nz7328qlyh+Fv3W+PkvnMcfakY6vlZZbn6gwbzeiVfucuexvp4usscvVZA7fp+J3Llb+O2nxu/jvIHyvTSqlOCGh34/hTtfvnTnqXF6jdIF5Vel/7Q8t7jHH7wpKc5FPDFO5VG+iHgIb4a6vPmZRizi6s/rd4k4duk+1CoGTarLz59Xs0x++Hi44GFUjGAOqDtPXuFV+vd/y9ryC3i0qGlYHEqnTxXMQ/fiTRxOXXsEjVqFxlXNtD0qFISHqxNuP36FiEeWh1Qr9eTlW1y4+RROWjUampnDq36lwnB11uDKvee4x0ucLtrBzWlYo7T8Ah78ffyYe09f4+q953B11hrbZ1IaVikCJ60a529G4slLy1MaKBXx6CVuP34FD1cnfGpmDq/PqxWDRq3CyauP8ELBkF4ilClnnzExMfj222/x7NkzuLm5Yd68eejdW37SWlvlzZsXq1atQuPGjcGyLFasWIE5c+zr3UCIqSv30oelqlVwNtPAzRXAXYnjXzW8nt5w1qpVsiceAJA3yMd4O+wqd9WOP7beXAOxIO/kZ9cp7scrnjcO3tzxg3mNws0yk8CaayDz9+07p2w+IDnbeFcJbXH2lvQkjkqt2HfV8oPM+HfbBbviTVcdtNaP/1qfLOSbscm+8o9dvNfyg8xYvMm+53/vkfXJuveYeyGZwFxyEoBso/6/wpl3YUEKv9eQFFcn8/EaC/FqC/stsfT3LeEn56T/vvkK4mznB9xNJumpVFELq3dlXInXm3Y5TlfAwupTqvSXlz8Ppk7HXXUoxUuuSMl4f1J4ide4OO7coXg+8+XPWBiNX/53vKRp9VLmV47MSIq9480FFXaFS0J6u1v/+b7D6z1etaT8RT/AMEE+ALzhlTnsOnceV8zMxO98/LmoNh/iLiAF+ytbOZL//i3ay/0OS839JYWfqN0exp1HFc8r//7xPzv8eZP48xqWNlN/1IwK6vQK+DSaSzxv5M3LWcjM6m384/Nf/5288hfOLV9+LW9VvahXXMP/wDluXs7CZhYu0KpVxvp7/xmXONl/juvtxe+pZ8pJozHG337yyrg9MvotUtNY5M3hI3vRADA8/1LpibVHz2OM2y+m9yBy0qgR5CP//jtpNcaeWPzJxx89fwuWBQrl8oOnzEUDwNDzKyP5+kjBXG5KZfytorn9ZZP+gKHnVfH05Dn/+Z/itYN8zSzcwN93+hrX4z2j7VQ8X4Cgp5UpNxcnFE2vX4+fZ17iKuP4JQvkgFYj//vr6eaMQrn8wLLA4xeZd/yPhd2n7qmpqejTpw/u3bsHHx8fLF26FDVrml/twB7Ozs6YMWMGOnbsCJZlMWPGDGzdat/QIELspeIvb5t+05qeDyp+uA3n+ypbgnisWZ5XMt6uaPuP72gqBxdfbcXyyFKcZa5sZxVvd2Un+XJ8M3cIPckGLH5/vrf1kD8O73FB6UxhsXjvufj2/nlL5WctHMHu49v5FyzWD0u7Lc2hmh7P/+nXqs0nWy3R8P6Y0mfP/+m2N9mqtrP8at6JhE5veXJ2U/aeB8r1sDKLd0h7z4NUdp7H2BLOL7LKhjNZ4TB+wz1rPnuMxLm/omjj54f7A8Z4Bd/tGY/IzHPvjL9lVfnBL78Nr79U20lBAbjnb/Uh5cui/PDG9+jDbvk4ht2JK7VajZYtW8LLywsLFy7MshX/Ro4ciXbt2iF//vyoWrVqlhyTfBzKFzV0Y9enpiExRX7c1KPn3NW9Gryu0+XSVwnSp6Yh2Uw8f4hGLd6y2oV4V4pSdPInL/ciuSs9TWtwEzx6u3Fj4nVm4p/yVm2RWlkJMP8FzN/X9BP5btFKtPtUfll0JeqUNn911ZKuDUvbFT+4vfyy9koM6ipemcsa0/vYd/y+ze1bXeWPrxvZFf9FI/uO7+srf3VUjt7eMX3kvUqz8P4kmPlu/S8wHYJoSmc6uaAJS0NeZTr6cPst/H1L9HbGv3qbYHa/cYJsmf3Jdn7ATSfxt9YdXk8MKbr0yQGdZK7MP3hmvhcpf4LtDPwV1q5ZWBUu4/3h90zgrzB367H5Vdky3l1+7xkv3nw8p3g9IaQkpZ+beLlzMVVKcr203sZb//kukNPHePv0NfNTDmQscMAfjlurDHd8pUOo3Hir6rWvw/2O8XsCmcNPlnVvwK2y9spkEQA+flKL//63/pQ7j4l4JD/lAb+XnBdv2PNnFbkhdJdN5v7iS2XTjD3F+MN229fljn87Ur7+84dTB/CGDbeoEcLFm/n88Icz5+EdvxFveNytJ/LPP0WvNyaWi/FWxWxcnYs3typhcgoXX4LXMy1PDi+oVSo8eh6D1+/kv7/0qWm4kv768uewy5ioW6dPxdNX7yRjASApRWcckluON6QxX5APVAyDe09fG/dLll+nx/X0nlqmcyDaI6OX6O0n0YKRH6YSk3XGz1d+3meWPwT1Vaz8qpTRb7nh6bV5baeM5xLx6KVx9UIpcYkpuJ1eP/LxRr7Yq0D6fILX778Q9GQ19TY+CfeevoaKYQQjb4gymTJYokuXLti3b1+mzGdljTFjxmD9+vUIDpYfi0yItXq1qGw8Gd51Un5J54xJ0Z21alQoyq0M0a8Nt0LXzlPy8cfS412cNCjJG48/cwC3QpnckuT6tDQ8Sp8bhAHwSWnuC3/VcG5590iZkyedXi/4Yv28Gpd4mv2zeHl3U6ZNkiFdPzPentCnrsV4Uz+0r2W83eFT+bH9cibwlpRvUDG/mUdK69eWO37N0pZX+TDVvB733RfgZd0iFADQthaXOPTztD6+RAnuNStfyPwQESlBQVz983S1r/eVnSNsUCwPl7iVa1yba3RXKcG9f3JLqieZOanxMtPFXQl7hyDy556Ta/qbSwnY2WkA7rznbzr/kqXtmaFEfm6IDn8YCh8/qZExUXAG/hAxueQDf7tpLwFPN+7zFyNz8hzLW9nMxWRInjPvfmyC9IR3/HjTIX38yYyjY6QbP895Fx0KBgsbHn5e3DAKueRPFC8+JJ9wSBT/9eMP/eLj/908JnPR8Ie3v5NpPEXHcA2PQryGCwD4pic/WBhWwJVyn5fUaWQyj6Sadwk9Tub1f8E7vulcNvz6EC8z4R8/vmpIbsG+jPLrUtMEw+D4bvCSIr1aVBLsc01PJKWxQGyCdOPv1mOuUd+zuTDeI33i9GRdKuKTpOOvPuCGF/3UQThCIuP906elGVdONsVPivzcURifMUTqdWwSkmSSy+ducuc1//u6nuRjACBFJp6/sud3rasYb2s0GuPn92VMPFJkei3xJ1Qf24e76OLk5GR8/5N1abLfcxnTSQDApH5NjLd9fLjvolRW/sLhA97wrGnfNzXezpub++1jId/rir+y5bQfueMH+3kaz13jk3SCBBHftftc/ft3UEvj7SA/D2Mi9d7TN0iV6TV3NPyB8fak77njhxTgziPexafIDoO9yhvetmBoa+Pt0oWDjT1gIqNjjclpU2ducEnJGT9xr1/JAkHGRN6NBy9ly8+fF2/0Nw2Nt8sVyWWM55dRFH+Ji/+zJ1d/fTxcUbdiQbCscNimqSPh9/AuPhmFcvkJ5uIqlMvPOP/e1mPyixxtSd/nrFUL5rIK9HFHjTL5kZrGYtfJm3LhOHj+LuKTdCiRP1DxkFglcgZ4oWrJPNDp07D7jHzbZ9/ZO0hK0aN80ZwowPv9+urzisbbYVceSoUCAE7ykuJdGnPJ3gLBvihXJCeSUvTYd/aOVCgAYM/pW9Dp01C1ZB7BlC/2Kp4vACH5AxGflIKDF+SnT9l58iZS01jULJtfMF8iUSbTZvnw9va2/KD3wNOTxoiQzKVWq1GtpGGJ1NexiVh36Api4rgTpajXsVi+J9yY+OnUoKwovnJxw8nsq3eJWH/4Kt7xGipPM+LTr/h1+7yCIF6r1RobH/pUFkcvPxQsAf00OhbHL3MnXg2rCCch9PFxEVyFexAVI7j6ER0Tj8hoLqFVMr/wh6t8MeHysCyEDWXTRrNp9/o6FUJgDdO5WgZ2+tSqeFOjejex/CAzJv/Q0vKDzNg6qadd8dsn2xc/e/AXVj0+h8lcMnv++lbmkdJM8zyH/u4r/UAZ7s7Cn6ElwzoI7qemCRNVpufCn1UoILg/Y4Dw/YtL1AkaEHGJOkFvq+/bCHvs7p4uXF7bksZVhZ+/o7Ote/5NqhQS3D84q5fgvqXP349fVBPcP/avdcf/sU0Vwf19Js9fpxc24Ewbc//yGg6AeHl2S2b2F35eF/7eznj7XUIybj+Jhj7V8F2pT03Fvcg3eMlLnKwe3kkQv3W88H5ist74/ut0elEya93wLoL7m8ZwiX99mqGRnNGA1On1iH6bKOjNs32CMH77eG559NQ0ICYuWXD8mLhkwUqsW3mPB4C1f3L1P/pdAu5GvhI8/zuRr/CG93uw6PfWgvhVw7jyv3ybgHuRrwXxt59EI4YfP7SdIH7FKO5+fLJe0HNEr0vFs1dxggUE1o0WPv8VvPcvPkkYr9Pr8exVnKC32Ir/dRTELxza1nj7/rMY3HzMJUl0qWm4fO85XsdyDff/fV1fED/3V+7zH5uow/PX4uPze5PN/qW1IP6v/lx9fhefbDF++sAWJvHchZ8Lt54Zl643xKfh9PUneJ4+oT0DoEvjioL4KT9wn4dbT14Jeq7o9Gm4dOc5Ynm/5183rSyIn9jvc+PtsxFPceORMP7U9SeIjjGcz6gYoEUt4YWiUd82MN6+8TAad3lJwhSdHpfuPBck9FrXFl6wHv0tlwjYfeaOoOdSil6PQxfu4clLQ28SZ60alUOEvaXb1uX+3rtEvXGy6ozj85NWAPDV58LE3R/duYtoO0/dFvS8SU7RY//5u3j+xvD6uzlrEcKbqB4AvmtT3Xj78r3neMh7/onJOoTffmas/yoGqFBMmLhsVZM7/4l8FSdYNS8xWSdIWgFA5ZLC8606ZbleX9FvkwRJ3qRkHZ6ZXIysUkI4lxj/9bt89zke8ebQiU9KwYXbz4wJIY1ahXzBwrmgerXg6tP2EzfxkDeyID45GXvO3sbb9ISsv7ebYKEMAGjC67V06e5zPH3J9RyKTUjBhVvPjL1pnbRq+HkI53JqyXv9jl9+JJgD6F1CMo5dfmhMyHm7O8PbTXj+8mV9w6gfFoZV9x7zJt9+F5+MXadvISH9NyBPoBdcXIRX2trUMbx+LAtsOXEDkbwkf0xsInaeumX8Dckf7AONyTyyXRqWh1rF4HD4fazce1HQ8ykxWYddp25i9X7DggrdmlQQDY/LeP1fxMRj3tYzeMl7/98lJGHFvovG78Q2dUqJhld+1dhw/L1n72DtgcuCiyeJyTpsOxGBDekroXf7XPjdkxm6NqoAhgF2hN1E6OGrgjnUEpJSsPnYdePKj181riCKr5Y+N11qGottYRF4yVu18mVMHLaFRRh7+1WTmMcuoz21+dh1bD56HQm85H1cYgpCD1/FjpM3wTCGsma27umv6fqDV7DtRISg51dsQjLWHriMfWfvQK1i0LVR+Uw//seAYbP7RAfkvUhJjLU8B0E2o3XxgEqlRlpaKnRJ738lhnbDVgqu+Bt+YFjB3BVVQnJjhsmJa4Y2Q1cITnql4quXzItp/aV7ONX5fp7sFasMuQI8sWFMF9H2pKQk1Bu4xGwsYOjtdXCmOFHx6tUrtPhjvcV4QLqhGh0djZbDNkg8Wln8nTt30G3KfolHK4u/f/8+ukzcI/FoZfEHL9/HsNm2x4cev6R4wnWp+BU7zmP2trMSj1YWv+f0Vfy5+LjEo5XFz1x7FGsOXZd4tLL46auPYN0R+SuGluJ3ht3AmGWWJ5zXqKQTRcfC72LI3H0SEUL+ni7YNrmHaPu/m8KwfM9lcYAJFQMcl0gU/TFnFw5dlL9iyCf1/CeuOIQtx+WvmGZw1qhw6G/xQihDZu/EMV5yW45WzeDIP31E2yetOITNCo4f5OuGTeO7ibZ/P3Uzwm/LDzXJ4O6swb4Z4u+fLceuY+LKoxbj29cthZ86iofJjliwF/t5E/XKKVckCP/+0ka0feqaYwg9LL1gBV/DqkXwZ88Gou3D5u3BQd6y8HIaVS6Ekd+Kh9nO23oGS3ZaXjDhh7bV0blhedH2vzeGYdVey/X3l0618AVveFGGof/uwuFLluvv919UQxeJk/9fZu1AmIWhYgAwsP0nksPUp605hg0KXv+pPzbFJxKTgP8wdQsuSCyVbmp497po8on4QkvfyZtw+a7lBT/G926ITyVWr5qy+hg2HrFc/hXD26FQbnGPhz/m7cEhBfVn6R9tUTRvoGj7mCUHsPPUbYvx60Z1Egy1yvDTjO04zevVImfNyA6ixAcATFl1VDBRtxSGAXZM7i5KfABAs1+X4A0vOSln1R/tUECix8ioxQex+7R8jw8AUKkY7J7WHR4uLqJ9X49dj5uPzQ/1BIDtU7qKEi8A0GLIUrx6Kz/UKcPOCT0EvbQyNPppoWxvYcHxx3WHn5/49es4YrUgYSXn8MyecHIS9/DuP32bYKVsKVqNCgem9xQlbgCgze8r8FzBamlyx+/0v9V4aGHSbLWKwcEZPQXDYzN8OyEU1x+YH+rp6qzBnqk9JMvfY+wG3HosP9QQMPRMNr3Ik2Hf2TsYtfgAUtNYqFUMiuYNgEalwp3IV0hKMSS9vm1RGT2bVZaMn7zqKDbxPj8uThowDCNIglQOyY2ZMm2PnSdvYvzyw0hNY6FRq1A0rz9UDIM7T14Zh6D3a1MNXSUSR5lh89HrmLz6KFjWUE+K5gkAA8Pw0YwL/gM71ESHetJTC7X+bbmgV6uUHD7u2DzhK8l96w5ewfR1JwAYkqNFc/uDhWEIo06fBoYBfu1UB63r2DdFiZwVe8Ixe5NhtVVnrRpF8vgjjWVx+/Er6FPToFYx+P2rumj6SXELf8kgq9u+mYlhVHByzdwORpS4+khR4kqZ4fP34lD4faSlCT8mWrUKHeqVwfdtzc9N9Puc3Th26aFxiV1jvEaFjvXL4bs21WQiDdoPX4VI3hUrvpql82LyD+aH9dX9cb7sWOv8Qd5Y/WcnyX2A5eQVA+CEmd4VSpJX5npnKElemYtXkrx6n/GXLl3Cd/+aT16Zi9925gbGLzKfvDEXf/nOc/Sdskl2v5ox3ztn874rmBR6wubjb9x7GVM2htkcf/baPQyYJb9aoZ+nM7ZP/lp2/8U7z9BvyhbZ/aXyB2D+7+1k96/bF47poadl93u5aM32zlq07SQW7Lgku9/FSY2DM3vJ7l+9NxyzNsofP6e/O0LHSp+4AcDfG45j1X751TIDvFyxdVJ32f1r9l7AzI1nZPdXLBqMvwe1lt0/YfkhbD0hn/zKl8MTa0aJk+4ZTl17iEF/75Kd5Fou6ZJh8Y6zmL/tvOz+Fp8Ux++83hmmVu0Lx99m3v9vm1dCz+ZVZPcv2HYai3aEy+7v3bISejSVj98RdgNjzSRvx/ZphM8qFJLdbyn5N/m7z1GzXAHZ/fO2nMKSXRdl9//5TT00rCI/t+E/G09i5V75+i+X9Mmw/uBlTF8XJjksVq1iMH9wa8HQJFOTVx7BJjPDbWYMaCrqrcI3ZukB7Dwpn/yZ/XMLlDfpbcO3/tAVzFh3AmkST8DFSYOVI9ojZ4D8SIV5W05jyS7p+qNRq7BudCcE+8k3CJbvPo+5W85KHt/NWYv1ozrB19tNvDPdzPUnsObAFcl9Wo0KoaM6I8DMynfrDl7G36EnJec6C/Rxw8qRHSSTRhl6jQ/FtYfyyYc1Y9ohX4D8MKfluy9g3tazglX7MgT7eWDViI6i3jZ8o5ccwC6Z5J+rkwZbxnUTzAlmqt/ULcZV4kypVQz2TesOFzPPv/uYdbj9RHqeJYYB9k/rDldX+ZXXfvt3F47KJJ/dXbTYMekryaRRhpnrT2Ddwauic1fAMJfRsmHtJJM+GcwlP73cnLF1Qhezx/9j7h4cCpdO3gb5emDT+K6ysQAwYcVhbDsRIfn7UTxvABb/If/bDwBjlx7EzlO3JONLFgjEgt/ainfwXLkXheW7LyLsivD8v1yRYHRqUA51yhc0G7/56DUs2HZONFza3dUJ7T8rjd4tzc/tfPH2M6zYG46TVx8JnkPFYrnQuWE51Chj/ZQa1jh/MxIr9lzE6evCCxhVQnKjS6PyqGrS09DUz7N2yM6T90npfJj6Q1PJfRlOX3+MlXsvihKw1UrmRdfG5VGpuPx3d2YIu/IQq/ZdwoVbT43bGMZQ9q8aV0C5IjkV/y1KXJn8TUpcfZwocWWdrcev48LNp1CrVahbviBqW/jRMbXl2HWE3zLEf1axkGAydiWmrD6Gi7efQq1SoXnNELT/zLpFEPpM2oh7T9+AUTFoXLUIBnWsY1V87X5zjEO0LDWYpdTqOwcZtS2Xnzs2jFMeb5rAUgE4bsVwJNMElLPGuuFspvEuWhUOzhL3cpEjlcCyZjjVjRs38M0MrgGrAXDUivjnz5+jzf+4BFb+IE+s/lM+YWDq7t27+Goy13vJw0WNvdPlEy6mTN8/a+PvPXqDr8atNTZgP6tQAGP7fG42hi8qKg5dx61GYkoqVCoGXzUuh96tqlsOTHf93kt8OynUeL9GmbyY8r3leeAyHL9wF4Pnca9f5WLBmPlza8XxF289Rr9pO4z3m9UIwR/d6iqO33/2GkYsPGa8X79SQYzu1Vhx/KWbj/D99J3GBnCflpXQ3UzCxdSOE9cwdjl3/A51S2KgFd8/T16+xaBZO/AuPhnurk7485v6KFVQ+byW529G4qeZ26FPZaFWMxjatTaafKL8Suvl25EY9M9uJKfo4eSkxvjejQSTSFty8vJ9/LFgP1J0qXDSqjGl3+eoGGL+pJ3v1qOXGDp/L+ITUuDp5owJfRqiUB5xLxs51+5H4X8LDyA+MQVe7s6Y+mMz5AlUPrVD2OUHGL30MJKSdXBzdcKMgc1RxMxS9aaOXLiL8SuPIClZD3dXJ8wZ2FIwl48lV+4+w4QVRxGfmAJ/L1dM7Pu52YSJqX1nb2HyqmNI0aXCw9UZc39vgdx+yo+/62QE/lp3Aim6VHi6uWDOb82tig+//RT/bjqNuIRk5PT3xIhvPhMNbzLn5LVHmLk+DIlJOgT7uWNKv+ZmEyamzt98gjmbzyA+MQV5cnhhZI+GcHNTPo/fkYv38O+mM0hO1iE4wAOT+zaz6viX7jzFst0XEZ+YjAI5ffFLx1pmEx6m5m0+jTUHLkOfxsLH0wVrRrSDmxWv37mIJ1i17xISk3QonNsPAzvUsOr4O05cx7LdF5GiS0X+YB9M6tfYbMLF1MLtZ7Hh4FXoU1MR7O+J+YNbmU1YmZq1/gS2HI9Aamoqgv09sOi3NmYTVqbWH7yMDYeuIkWfhqJ5/TDm2wZWlf/whXvYdOw6dLpUlCwYiL6tqlr1+q3cexGbj12HXp+GEgUCMa6P8t8eANh45Aq2Hr8JnT4VZQsHYUjXulbF7z59CztP3oRen4YKRXOhVyvlv10AsPvkTew+exepaSwqFc+DHk2kFzKS8+JNHO49fYO0tDTkDvRG/vQJzJW6du85zkZEIjU1FaUKBaG6RA9Tc6Jex+LBszdgWcPQyKyeDPxZ9Ds8fB4DljVMhJ470Lo5pdYdvIyj6fMB1ylfAB3qWbeQT+TLd3j0PAYMA+QP8kHOTJzTSonHz2Pw5OU7MIxh8nhzFxvkUOLK5G9S4urjRIkrQqxD9Y84EtU/4ihU94gjUf0jjkT1jzjSh1z/3kfiKtMmZyeEEEIIIYQQQgghJDNR4ooQQgghhBBCCCGEZEvKByq/J6mpqbh9+zaeP3+O2NhY6PV6tG7d2tHFIoQQQgghhBBCCCEO5rDEVXh4OJYtW4ZDhw4hOTlZsE8qcbV161ZUqFABefMqn9SUEEIIIYQQQgghhHy4sjxxxbIsxo4di1WrVoFlWZjODc8wjCjmr7/+wrx581C9enUsXrw4q4pKCCGEEEIIIYQQQhwoyxNXw4cPR2hoKFiWRa5cudCiRQuUKFEC9+/fx4wZMyRjKlWqBJZlcerUKVy+fBlly1q3HCYhhBBCCCGEEEII+fBkaeIqLCwMGzZsAMMw6NChA4YNGwYnJycAwOHDh2Xj6tSpgxIlSiAiIgJbt26lxBUhhBBCCCGEEELIRyBLVxVct24dAKBEiRIYNWqUMWmlRP369cGyLM6ePfu+ikcIIYQQQgghhBBCspEsTVxdvHgRDMOgTZs2VscWLFgQAPD06dPMLhYhhBBCCCGEEEIIyYayNHH16tUrAEDOnDmtjs3onZWYmJipZSKEEEIIIYQQQggh2VOWJq5cXV0BcAksa9y/fx8A4OPjk5lFIoQQQgghhBBCCCHZVJYmrooXLw4A2Ldvn1VxLMti69atYBgGJUuWfB9FI4QQQgghhBBCCCHZTJYmrpo2bQqWZXHixAls3rxZcdzMmTNx584dAECTJk3eU+kIIYQQQgghhBBCSHaSpYmrdu3aoUiRImBZFkOHDsWYMWNw9+5d2cffuHEDgwYNwpw5c8AwDIoVK4aWLVtmYYkJIYQQQgghhBBCiKMwLMuyWXnAqKgodOzYEVFRUWAYBgDg4uICZ2dnxMTEgGEY5MuXD69evUJ8fDwAw1DBoKAgrFu3DkFBQVlZ3P+slMRYsGyao4thFa2LB1QqNdLSUqFLinN0cchHhuofcSSqf8RRqO4RR6L6RxyJ6h9xpA+5/jGMCk6unpn6N7O0xxUABAcHY+3atWjYsCFYlgXLskhMTMTbt2+NiaxHjx4hLi7OuP/TTz/FmjVrKGlFCCGEEEIIIYQQ8hHROOKgQUFBmDVrFsLDw7Fz504cOXIET58+hV6vNxRKo0FQUBDq1KmDxo0bo3r16o4oJiGEEEIIIYQQQghxoCwfKmjOmzdvAAC+vr4OLsl/Hw0VJMQ6VP+II1H9I45CdY84EtU/4khU/4gjfcj1730MFXRIjys5lLAihBBCCCGEEEIIIRmyfI4rQgghhBBCCCGEEEKUoMQVIYQQQgghhBBCCMmWKHFFCCGEEEIIIYQQQrKlLJ3jqlu3bqJtDMNg2rRp8Pf3z8qiEEIIIYQQQgghhJBsLksTV2fOnAHDMOAvZMgwDJKTk7OyGIQQQgghhBBCCCHkA5CliSuGYQAARYsWhY+Pj3G7s7NzVhaDEEIIIYQQQgghhHwAsjRx5eXlhXfv3qF3795o0aJFVh6aEEIIIYQQQgghhHxgsnRy9pCQEACGIYOEEEIIIYQQQgghhJiTpYmr9u3bg2VZbNmyBbdv37Yq9vDhwyhRogRKliz5nkpHCCGEEEIIIYQQQrKTLE1cNW/eHG3atEFKSgp69eqFGzduWBXPsqxgYndCCCGEEEIIIYQQ8t+VpYkrABg/fjx69eqF6OhotG/fHhMmTMDz58+zuhiEEEIIIYQQQgghJJvL0snZAUCv16NDhw7IkSMHpk6diqVLl2LFihWoXr06ypcvLxv34MGDLCsjIYQQQgghhBBCCHG8LE1c1a5dG69evRIN99Pr9Thx4gROnDiRlcUhhBBCCCGEEEIIIdlYliauXr58KbuP5q4ihBBCCCGEEEIIIXxZPlSQYRj89NNPZocFSrl48SKmTZv2fgpFCCGEEEIIIYQQQrKdLE9cAUDx4sVRtWpVq2ISEhLeU2kIIYQQQgghhBBCSHaU5asK0pBAQgghhBBCCCGEEKJElva4ioiIsDm2bt26dsU70rNnzzBhwgTs3r0bALBs2TJUq1bNwaUihBBCCCGEEEIIyd4cMlTwY5GSkoLFixdjzpw5NNSREEIIIYQQQgghxEqUuHpPjh07hjFjxuDBgwcAgODgYERFRTm2UIQQQgghhBBCCCEfEEpcZTK9Xo+BAwdi3759AIDAwED88ssvCA4ORvfu3R1cOkIIIYQQQgghhJAPR5ZPzv5fp9Fo4OXlBa1Wi169emHPnj1o3bo1GIZxdNEIIYQQQgghhBBCPijU4+o9GDJkCPr27Yt8+fI5uiiEEEIIIYQQQgghHyyHJq4uXryIXbt24fLly3j8+DFiY2OhVqvh7++PnDlzombNmqhfvz6KFCniyGJazdvbG97e3o4uBiGEEEIIIYQQQsgHzSGJq9u3b2PEiBG4ePGiYDvLsgCAxMREPHnyBGfPnsX06dPRrFkz/PrrrwgKCnJAaQkhhBBCCCGEEEKII2R54urs2bPo27cvEhISjImqDFqtFizLQq/XC7bv2LED586dw8qVK5E7d+6sLO5/lsbZzdFFsBrDqIz/a108HFwa8rGh+kccieofcRSqe8SRqP4RR6L6RxyJ6p9QliauYmNjMXDgQMTHxwMAypcvj7Zt26JixYrImzcvnJycAAApKSl4/Pgxzp8/j9DQUFy6dAlRUVHo2bMntm7dCmdn56ws9n+SSqV2dBFsxjAMGObDLT/5sFH9I45E9Y84CtU94khU/4gjUf0jjkT1zyBLE1erVq3Cq1evwDAMfvrpJ/Tu3VvycU5OTihcuDAKFy6MDh06YM6cOZg+fToePXqEtWvXolu3bllZ7P+ktLRURxfBagyjAsMwYFkWLJvm6OKQjwzVP+JIVP+Io1DdI45E9Y84EtU/4kgfev3L7I4yWZq4OnToEBiGQY0aNWSTVlL69u2L06dP4+TJk9izZw8lrjKBPjnhg/sAaF08wDBqsGwadElxji4O+chQ/SOORPWPOArVPeJIVP+II1H9I470Idc/hlHBydUzU/+mKlP/mgUPHz4EADRu3Njq2M8//xyAYWJ3QgghhBBCCCGEEPLfl6WJq9jYWACAn5+f1bH+/v4AgISEhEwtEyGEEEIIIYQQQgjJnrJ0qKCXlxfevHmDyMhIq2OfPXsGAPDx8cnkUpHsbu/p25i9+RTexiUDDODv5Y5BX9bAJ2XyK4p/8vIttp+IwJMXb8EwDArl9kPzGiEI9HFXFL/r5E38u+U0YuOTATAI8HHDr51qoWrJfIriu49Zh9tPXgu2NalWFMO/rq8o/qvR63A3UhjfokYx/N6tnqL4Gn3niLa5u2iwb/q3NscDQNicvhTvoHg1gGMK4o8cOYLfV9+w+fgnT57EoKWXRNtVAI4riD9x4gR+XX5FtF0D4KiC+OvXr+PbmUdF23P5u2PD2K8sxt+6dQs9ph0UbS8U5I0Vf3ayGB8eHo7v554WbQ/yccamCV9bjI+MjET70dtE25tVL4Q/ejSyGC9X/gqFAvHP4LYW4w9evo9hs/eItjeomB+jejexGL/+aDj+WiV+/uUKBeDfwe1sPn6rmkUw5KsGFuPX7ArHzC3i47f+pBgGd7f8/bf76A2MWnVEtL1Hk7Lo3aqGxfiLtx6j37Qdou2Tv6uHmuWKWYy/evsJek/dLto+b1BzlC6ax2L8liMXMXH1KdH2cT3ro27Vohbjz9+MxI9/ievfshFtUCRXkMX4HSeuYezyY6LtM/s3QeWSln9/l+44jbnbwkXbZw9qjfJFgy3Gz9lwAsv2i78/lMYv3X4Wc7efF21fMLgtShYKtBg/f+spLN55UbR965h2CAgIeO/xf68/jlUHrtocP33tMaw7dE20fdvY9saLweYMn78HB87fF23fPOoL5MiRw2L8L7O2I+zaE9H2TX+2QVCQ5fo3be0xbDApv4oBdkzoBG9vb4vxY5fsx45Td0Tx28d3VNSW+GvNUaw/fF2wzUmjwuG/lU11MmD6VpyNeCrarvS3f/LKI9h0TPj77eaiwX6F524/z9yOU9eFr79GBRydrez4g2Ztw8lrwvaas0aFQwqff//pW3Au4pnN8VKvn5uLFvunf6Mofs6mk1i+5xL469eXL5oTswe1UhS/aNtZLNp5AWks9xdqlc2PSf0s/3YCwPT1J7DugPD7q3JILswc2FJR/NQ1RxFqUv+ql8yLaf2bKYr/c/F+7DktrP+Vi+fGzJ9aKIqft+U0lu+5iNQ0w/NnGKDtp6Xwc8faiuK3Hb+OWaGnkJCkAwC4OmvQt3U1tK1bWlH8lXtR+HfTaTyNfgcAyBXghe/aVEOZQpa/+wHg0u2nmLPlLJ5FvwMYIHegN/q1roZShSx/9wDAvrO38c/GU3gblwQA8Pdyw8Ava6JW2QKK4p+8fIsdYTfx+HmMTW3PJy/eYntYBJ6+iodKpUKRPAH4vGpBBHgri/+vYliWZS0/LHP07NkTYWFhKFmyJEJDQ8EwjKI4lmXRoUMHXL16FdWrV8fixYvfc0kz3+nTp41zcy1btgzVqlVzaHlSEmOz/RxXD5/HoMeYDUjW6SX3u7tqsWbkl/D3ll4eND4xBeOXH8bBC/dE+9QqFVrUDMHADjXhpJWeOO7Ok2h8O2ETUvTSE9l7uTlj7aiO8PZwldw/b/NpLNktPmnnWzS0LULySZ9Az1x/HGskTlr5Vv3RDgXySp/ANvppAeISpV+7DIPaV0Xb+hUl98klXPi6NiqLfl9INwCVxP/cpTra1S5vc3zPZiH4tkVdm+O7NiyEfm2lEwhK4v9sWxgNGza0OX5UuyJo0EC6Aa8kflavKqhUqZLN8eM7lcCnn35qc/zU7uXwySef2Bxv7gSe4in+vxzPADjhwOOrGOD4vx/u6/exx1u6eGApXq0CjplJYLzv+msu/u3bt2gyZLXZeD8PF2yf0kNyX0xMDJr+tsZsvK+HM3ZMkb748O7dO3w+eJXZ+NwBHlg/pqvkvujoaLQctsFsvKeLFntkEjCxsbFo/OtKs/Ehef2x6I/2kvvuPXqDruPWmo3PHeiJ9aO7SO578DgGnceaf/2K5PbFsuFfSu67/uApvp2w1Wy8ufJHPHqGnuO2mI2vWDQYfw9qLbnvaVQM2o00X/6+rSqjW5PKkvuevHyLDsPN179fOtXCF59KJ2AeRL1B55HmX/9BHWuibd0ykvtuPXyOHuM3mY0f0qU2WtUuJbnv4q1I9JsmvmCh9Pi3H79E97GhZuNnDmiOyiWkL748eRGDTiPXGhNeplQqBsuGtUOhXNLJ85i4RHw7YSOeRsdK7s8V4IkFv30BH5m21+t3Ceg1cROevZKOzx3ohYVDvoCXh4vk/ofPY9Bj7AYkp8i0PV20WPOn5bbnofB7MM2wqFUMmtcMwU8dasm2PeMSkzFu2WEcDhdfNFCrVGhZy9B21Wqy/wqDH/wcV02bNgUA3LhxA//73/+QkpJiMUav12PUqFG4csWQtW7UyPJVavLhi3odi84j1xqTVhq1CnkCvZE70BtqlaHaxifq0GboKsQlJoviE5N1GDBjOw5euAeNWoWaZfKjd8uq6NWiCioVzw2WZbH52HUMnbcH+lRxAu/Ji7foPmaDMWmlVauQO8ALOf09oFIZEq7vEpLR8rflSJSox6v2hVtMWgFAz3GheBQdLdq+aPtZi0krAOg8dgOio8XDZ1sNXmoxaQUAU9efQdj1x6LtSk66AWDF3su4ePGizfHTVp6yK37RjggcPnzY5vgV++5h7969Nsf/L/Su5Hal8SM23JHcrjT+x/ln7YqX642lNF6qN5Y18XKPo3iK/6/Hsw4+fhoL1Pruw339Pvb4NAC17IhPTQNq97Ov/tpzfHPxlpJWAPA6LgnNf1kiuc9S0goA3sQlo+Vg6XhLSSsAiIyOQ6cR0o+zlLQCgNgkHZr+vEi8XUHSCgAiHr9C78kbRdvfvLGctAKAyJex6DxS/DrHxFhOWgHAncg3+Ha8+HnGxMRYTFoBhvL3myJOzrx9+9Zi0goALtyOwm//7pQ4fpLFpBUAzNlyDqGHxb05371LlkxamXazmLL6OPacvil6XFRMjMWkFQBMXXMCu0/fEm1/GhVjMWkFABNXHsPBc+Lzx8eRry0mrTKOf+SC+Pw16nWsKGmlYmBs92ToP2M7Ih48F8VHx8Shw4g1gqSVh6sTPNycjK9hWhqLrqPW41n0W1F8XEIKOgxfbUxaebu7oHJIblQOyQ1vd0Oi6Wl0LDoMX424BHHbKzYhCV+OWGNMWnl7GOIrFc8NLzdnAEDky3doP2I1EpLE8S/fxKHLyLXGpJVGrUKuAC/k9PeEOv01iE9S1vZUq4Rtz8ohucGywJZjN2TbnglJOvT/azsOh9+HVqNCrbL50a9tLfT9ohYql8gLlmWx6eh1/DFvH1LTsnfnk/clSxNXbdq0QalSpcCyLNavX4/GjRvjr7/+wtGjR/HgwQNER0cjOjoaDx8+xPHjxzFjxgw0atQIa9YYvoTy58+P9u2lM/TZSWpqKpKTkwX/dDqdcb9Op5PdRwz6Tt6MjM6AdcoXQI8mFdGsVim0qF0G37aqjiohuQEA+tQ0fDdF/CO3ZOcFXH/wAgHebhjTqyG+aV4Z1UvlxSel8+H7L6pjeI968HB1QtiVR9hy7Loovu/kzcbuxfUqFkL3JhXRpHoxNPskBD2bVkLFYjkBADp9Gn6cJh4K8ncoN7xFrQICvF0F//g6SpzkLOANb9BYiG81bJko/uW7RNE2Ob/MFA+FsUa/OaccGj90TYRd8SM3invkWUNpI4Xisyb+1i3xyaA18eHhlhPO5uKtHQpf0yR+53n7yr/9oHhokDXxYxeJE7nWxM8OPW5VfL0fhfHDJRoj5tQ1aXz/Pkf8fWzOF78Jvz+nrxUPjWN4/0wNmy8cCjlvi/D7TAXAWas2/jM96Vq8Q5h87jbKcqOLb/hc4es1eaVwaKRGZRiikfFPwytAGgscOidc8Kbrn5aTBnzr9gk/Ly0HL7UqfsMhYXzjnxZaFR92Ufj9/blEMsCc6/deCo8/0LrjR9wXXniq9+N8q+KjTS5cffr9XMWxaQriGcjX39Q04NWrV4Jt1nwfSzWb7I2vY1J+rUaV/k8NrUb46XmdPoSHz/T7VKNmBP/4ot+J402TefzPrrNJD4mHL96J4q15/jESDe8mg4VJK/5n19VZOLvL1bsvRPHNfhcmTdQq4T++B1HixIFp0s/c63f9ofiiqzXxF++IEx+mSUvu/VeJ3v+jlx6J4lv9wX2fqxmgQLCP4J877zWcuuaEKL4lL95JrUJIvgCUKJADIQWCUaJADni7Oxv3/7n4kCi+/VDu9VczjOj4/Pdw1GLxNAAd/uTiNWpxvIsTVweHLdgviv9y9DrjbRUD5PT3EPzjvwe/z9snjucl7TxdnVCpWE5UKJoTFYoEo1KxnPD15HopfTtRnGDrNoZrzxTJ44/WtUqgQaXCaFCxMFrVKoGQfNwIkR4SvbqGLdiLuMQUMAA61i+LAe1roGn14mhavTgGtK+BjvXLggEQl5iCYQvE5ypD5+5DfFIKGAbo1KAcBrQzxDf7pDgGdqiJDvXKgAEQm5CM4RKvX+9Jm41DQ+uUy48eTSqiafViaPZJcXzdtBKqpvcy06emoe/kzaL4pbvk25792gjbnpuPituei3ecQ8Sjlwj0ccfYXo3Qs1llVC9TALXKFUb/Lz/FsO6fwd1Fi+OXH2DbcfvaPh+qLE1cqdVqzJ8/HwUKFADLsoiKisK8efPQp08fNGnSBLVr10bt2rXx+eefo1evXpgzZw6ePXsGlmURFBSEuXPnQqPJ0mm5bLJlyxaULVtW8O+bb7guwd98841g3/Dhwx1Y2uzn9btEvHgTDwAoWSAQxfKIh8KVK5ITeXMY5ji4G/kaKSnccL5knR5bjxt6kvRuWRU5fMXdOfMH+6Bro/IAgNDD18AfMRv1OhavYw2JnwrFcqJQLvFiAhWL5UZOf8PfvfHgBVJTueNvOSrsKeXrKe7Oapp84i86sIrXEGAA+FiIN+2M2+Y3cSLLGtktEUHxFG8NqTmhrCE1p5U1pOa0Msf08ztmvn3lH7dOnHixxo4z9iVyV+yz3FOUL8nkus0BicaIOSkmrd8jF8Vz6pgTFSPssWo6J5BpY9/0/kGTOYCW7LpovK0CoDVp7GpNklfztwnnYLrzNMZ8gU0cCBe+Xvw5cTQqQKsVnjNptcLk1R8LDgj233smbsyaMz1U+HmJtuKiCQBMWyuMj0207kLeL3OEjZd3EskAc76dJGw8xZpWSAt6ThReeErSSU8tIMe0d44u1brZO8zFSyVaTbe1+GO9Vcczldnf93pe+U0TFVLb6g9YILjPf/VMEyVS2xqYxPM7QZgmqqS2tR5i3/lWg/7CRCd/dJVpokpqW4/R8r17TBNVUtvaD5fv3aXk9es5Vr7+KImX6nWVQcn7P2yu8MKBjvcG5g3yEcUH+npAy3sRthwTft+n8D6/hXKLz/1z+nvChVcHDoVzv5dJSUmCnkZ5g8TzsAX5CpNHRy5yvZ6SkpIE82nlCRTHB/t5Qs2bZuccb8REYqLwuzfIT9z2CfRxF3wHXLzFXWiLi0sxvn4alQrF8oqH8hXK6QtnreH1S2OBR1Hc/LtxSUmISU8m+3m5onQB8Tx4IfkCjXM8xSamICaOK3NSih7nbhjK82n5gigmMQ1KsbwBqFO+oOG534hEil7Pi9ch/JZhTrR6FQujaB5x+UPyBaJWWcP8jGeuPxbEv41LxPM3cQDS2555xdO4lC0cjHzp7+u9p29k2569WlaRb3s2rgAACD1yVdD2TE7RY+sJQzKqT6uqCJCYC6tATl90yWi7msR/LLI0cQUYVhTcsGEDvv76a6jVarAsa/afSqVC69atsWnTJuTPr2wybvJhm72Ju2JdvVRe2cfVq1jQeHvV/ovG2+cjIvE2Pgn5grxRWOKHJ0PF4rnh5e6MB1FvcO8p9+U7c32Y8XalYrnlj1+pMADDidKWY1zmezLvKo5pgorPw4U7Afn+L67X0z8buRN5fzPx/CtH30/ZbLz9PMb6lTdrf+DJig89vtlA++L/XLDbrviF28UTWFvj5MmTdsUTkh3JzcKpbHZOcdLK0vbMZpq0srSdfByU1l9rPX8u7kFjjbdvlSVN+cmLxGSu4Xn9gXgidCn8xEECL/6MxLQJUvjJqxdvufOt+Vut7z2ewGv4rthzQVEMP3l1K/KN8fZIiR4oUvjJq8iX3DxAg2Ypu+jCf/0iHnM99vpMFA9dtBTP73X1lZkkHB///T/Imwdo9CKuB02At5tsfO5AL+PtaWu4HsKjF3NJ/Dy8x5gqkNPXeHvMEu5C02BeEj3IV34CbX5C6s9FXK+tATO53rPBZuL5CbHfeIm7r8dzr3+AlzPk+HtzvaZ+/ps75u/zdhlvlywgv3gFf17eX//hzj3/WsO1nWqUkV+8qnopbm6s8csOG2/vCItAGstCxTCoWU6+vV+rXH6oGAZpLCvodbT56HVDvIrBJ6Xl2461yxUEwwCpaSz2nOZ6HP+zUVnb87MKXNtzxV6uo8GFm08RE5eEvDm8USS3/OIXFYvlgreHCx5GxeBOJPf5ORvxBLEJycgf7CPZYSJD5ZA88HRzxt3I13jw7I3s4/6rHHL24uHhgSFDhqBXr144evQowsLC8OzZM7x58wapqanw8vJC3rx5Ua5cOTRu3FjR6iXZyRdffIEvvvjC0cX4YD1/bfgh1ahUUDHyuVWtRgOGAVgWePSCO+F5k95bKnegt9kFADRqFXL5e+Fd/EtjDAC8iDH09tJKXa7icXXSGm8/4F11SJOZkNCUi7MWcUmGk6bIaK7LudIEuquLFvHpJ132fnlZd42YZLY34hELVtlz7gH+p2yhIUkLt9/AN82lJ2lXYvjKS9gvM0m7El1HLsOKkd1sjl+2/Ry6NZeeaJUQQj4GpsP+rLX/rHXDjE1tPWFfb821h7neglK9bSxZueey8bZUbx9L1h3k4qV6W1my7YR4ziNr7D/DNaKleltZcvoG19vUwumrpCv3uKGHtrx+t3mrX9sS/+Q5dx5vy/t/4xE3dNHD1UlRDL+H300b4vk9tB5FxRhvuzprJR5tPv7JS64d4KIwPpkXH/2WO5HUauXjtbyRS/z4SN5k5uZefw2vcsXEc8eMfMm9fxozbTc1b1/U6zjj7Yx5qdxctILHSMW7uWgRl5gimIA942+5u2jNth01ahVcnbVISNIJ418Z4tUqRnHb87FE2zOPoranJ97GJeENr4cyP94cjVqFnP6eiE1IxpvYRBQ0++j/HodedvPz80Pr1q3RunVrRxaDZDPuLoYfjFQFqx5mJHkyJt0DuB+M2HjxxHnCWBZv0790XXhJKPf0eLkVMTKk8crnLbM6hTk6XhdVNxdlP1Jy8R7u8ldXyH9foJf19YevRD75q4tKdG9Zzq747xoWtiueklaEkI+dv7/8VX4lyuaX72WhRMuahbB4r/SCHUrUqZDfONRWp0+zOnlRvWReHAp/AMCQkLA2eVKxWE6EXTX0ukrWpVqdvCqWxx/Rb60bqsxXOI+/sQdVSooeTk7WNdGCfD3wNt6QPEpNsz555evpirj0obq2vH6erlokpU9qbUu8u4sTktOHmtny/vt4ugLpySOdXi9I0MhR8RIMvp4uwDPDbX1qKjRqy++/mjdpuYerE16kj3hQfHzeU/RwdcKb2IznrzSeO76zkxoJydYNdVbzCuCuMFnH58Rb2c7Tzfp2UEZ7DwA8XA3tmBQFw60zHpMRY7jtZFe8u6vhPDpNQe+BjId48tpeLumf13cJlq9Ev0tvn/ITnBnt0NgEK9quChOc/yVZPlSQEEs6NzQ0glkWgiF8psJ5Y7M71OOWpS1XJCfUKhWuPXiO1+/kh83df/YGz17FwsvdGUV5Y7k71i8LwPDl9eSlfNf1sze447epwx2/akgu421zybO38dwPzKie9Y23yxQMsjp+Yi/7Vtsc1e0zu+J/7lLdrvjZfe2LH9cxxK74kV8Usive3LLmWRG/ZZL0stpKLRza2a74rxrZ3tsKAGrWrGlXPCGEEGXkmmX2jm4ICgqy/CAzQvLlVPQ4nV76omaL2qUUxetl5hHr3KiisuPzGsb81MyUH5sripcz/OsGxtvmpjpLSeEuWvJHBvz1fUNFx+HP48VfLG7uz00VxfNfP35yasYPrayO5ycHp/RvrCie//57uHIN9xHfcL3GI6PjIIc/wqJKCW7Y2pCv6hpv3zcziuEVb3hooypFuOP34M6jM3rvWIpvWIm7aDeiRz1F8S/fcPua1ShuvP0Hr/xKj9+CF/9zB+487OZj+d6bD5/HGG9/06Ky5O2rEisOcn+bWxCjZ/NKxtuNqxleyxR9Km4/EU/8n+HW42jjiu9Nqhc1bm9SvRgAQ9LZXNvxxsMXxhX9GvLev04NuLbn3afyzz/8NjckuWP9Msbb5YvmhEatwvUHL8y3PZ++RmT0O3i6OQvm8SpfNCfUKgZX7z0X1FFTdyNf4/nrOPh4uJgdkvhfRYkrku2ULZLTmLk+HH4fiSniKwixCck4f8twacTHwwW5Ariulf7ebqhbsSBYFlix56LkkqOJyTqs2me4Mti8RgiceXN+fFImv/Eqwt6zd5Ci04viY+ISceWe4Ys5wMcNfl7cXFTTB7Y03k7Wp0muGmm6jGrZotxcWnOHtDGJFx/fNKFVgPflZ0sSpAHvx8uW+Ha1y9sVX768ffF169a1K75RIy7x92db+3r/jGpXxPKDzJjVq4pd8d80L2FXfKvaRS0/yIyapYPtim9ayb7XvwYvcWyLvIHyc2MoUbO0/Lx4SuTwkZ/XTolgH/vKby83Z/tOK+ydf8eGESYC/l7cVWO5tiN/O3+uQgDIE+hpvJ0sc+WXv71wTh9riyjgpBG+Yvy5Vfjz//Dxt1cNEdZXlZVvQL4cnpYfZEaBYPt6e4bkk58LRIkaZeTnMlGi2Sf2fV92rl/a8oPM6NdK/vdCyawDgzvad9Fg1De17Yqf1k8+WSGXoOJbM6yT7D6pBJXptlV/dJSNl/r86nSpgtUQd02y76LP1jHtZPdJfX51Or0gqbV9Avf8fX19BY+VOPUVbTv+L3e+5OPjI9in5PU7+k8f4+0Cea2PPzSrl/G2aeJS6v033bb3L+6iXbBJ+aUa/zqdHm9558/T+jcz3uYP0UpNk4vX4SUv8TO0O5dsKpafS9ymssDbeOn42ERuAYnhPblkZalC3LlTKgu8ixf33ElO0RmnCAGAwZ25ZF2NsgWMt1kA8RILTSQn65DCew1/7cLFV+DN6RuXmIJ38eKFLhKSdYh+yz2v1rxkcUi+QGMvuTtPXkv2HIpPTsaN9NUoNWoGlUO4xGFOfy/kT59Qf9PR60iQKH9Ckg6b01eCzx/sgyA/7vcnd6A38uQw/J6EHr6KJIm2Y3xSinEC9UK5fI0TxQOGtqdretvzSPgD+bbnTUPiyrTt6eflhroVCoFlgeV7wiXbnkkpemHbk9erMtDHHXXKF0Qay2LFXvm26+r9hvgWNUvAKYvmy8xOKHFFsqVfuxhOhtJYFiv3XsKuU7fw6l0CXryJw5ajV7D24BXjY0d9K77K1LtFFXi6OePinWcYt+wwzlx/jIQkHeISU3Ds0gOMWXoI956+RrCfBzo3LC+KH9ChhuH4aSyW7bmIPWduIyYu0XD8Ezew4TA3F8TY3uLeTnlzcCfjbxP0iH6biPjEFMTGJyP6bSKSeEthdW0kHmaV08+dF68TxSfzfnh6fF5B8jVUKk+AeOULa7jYOeDY282+ryF7v7ZNj96wobKrlhl8TEZpNmjQQPqBMnJ6C1uKlSpVknmktOolhYkaa+eqqhYiXLllSJf6Mo+UZpromvxDa6vi+7QuI7g/rJd1r/9vX9cR3J/CSxwrseTneoL7a0dbN9fWP32qCe5P/qGFVfHrhwsfv3lCd6viTcu/cYJ15TdN9Fqb+DV9/P4Zve2KP2Hn8Y/Oti9+26QegvusxD++vdOFk8utG91FcD9Zlyr6x7f8f8KGs7Wv/+G/+wjubxr/leB+YrIeicl6JKf/b9oYnj5QWP/4DVkl1owSPl9ry79qpLDhb238oqEd7Iqf8n0zwX1ziQQpf3QXfl9aG/9D+1p2xXdtIvy92Da2veC+pfrbuq7w+3fer9bNz9qgirCXk7lElJTqZYUztCwaKuy1o9Onpf9LNd7my5dHOB/M3wM+F9zXp7KCf6ZMky3T+wvrg+ln17Qp6eUlTLwOam9d7+OAAOHv7/Duwt8z08+v3qS3lKenMHHcu7mw11hqmvCfJT2bCs8nzb1+UjnuDp+VVBwvlSRvXau44D73/ovfe6mhhEO6cInUt/HJeBAVg9exiXgXn4QHUTGI5PVEKpzLVyKee/2fv4lHxKNovIqJx9vYBNx88AJ3eauuVigqvkjXtxXX6+hNrNTx4437yxQS93D8uin3/r2OTRLFP3vNxZcvKu6h2KY2d+HyXXwynr2Kw7u4JMQmJOHZqzi8juOSSWULi3tI9m3NJcJvR77ChdvP8PJtPF7HJiL8TpQx6QQAX9QR93D8nZcIO3DhHvafu4OXMXGIfhuP/efvYt9Zbh68Ae1qiOKHdq8LhjEkeKavP4HtYRGIiUtETFwitodFYPr6E0hK0YNhgGESI0X++KouGACJKXpMW3sCO07eRExcIt7EJmDbiRuYvu4EknWpUDGMZPyQ9PJntD13nrqF17GJeBkTh21hNwRtz5E964nie7WoDC93Z1y6EyXZ9hy95CDuPn2NID8PdJFo+/VqWQUerk4Iv/UU45cfxtkbT5CYlILYhCQcPn8bo5ccxP1nb5DT3xMdG5QVxX8MGPZjXEuRICUxFqyCOaQcaemuC5i75YzZx/zWtQ5a1iopuS/i4Uv8+s8uvJLpspk3hzem/tAUeXJIT4Q3b8tpLNkVLrkvw5/f1EfDKtJXXBv/vAixFpbmrlg0J/4eJN29utFPC43zDcipXiI3pg2QbigrWelOzQDHZBoqSlfKk2soUDzFv+/4QB8XbJnQw+b4Ern9sHB4B8l9SuLzBrrJJrqUxLevUxw/dZYepqskvmGF/PizTxOb47s2LI1+bWuJtoeHh+P7uaclIoRqlc6DST+Ih8fcv38fXSbukYgQ+r5FRXRpVlW0/ebNm/j6r0MSEUL9W1VDxybixP3Dhw/RafwuiQihEZ0/xed1xD0UX716hRZ/yC/znmHJb+1RrIC4q/6TyHfoMHqVxfh1wzsjT25xj6MzEZEYON3yCl/rh7dA7tziHn53nj5Ht1Hyy8xn2DO5i6jhCwDnrj9E/5mWX78to9siMFA8L9Kuk1cweukJiQihjSNbIzhY3PjbcCgc09Zarn9y3x3r9oVjeqjt8aEHLmHqessrpcrFz996Cot3XrQ5/u/1x7HqwFWb46evPYZ1hyxPtC4XP3z+Hhw4f19yn5L4X2ZtR9g1y3M9ycVPW3sMG+wo/8iFe7GX10C2Nn7s0oPYcfKWzfE9x61HxCPLE+XLxY9YsBf7z9le/m/GbRBMVG5t/LfjN+D6Q9vju41eizu81Q6tjf9q9FrctSN+7JKD2HHK/Pvn7+2KbROlLxJNXnkYm3grhUvJH+SN1X9K9/YbNnePYLVDKTn9PBE6rovkviH/7MaxKw/MxufN4YW1o6R7+/WbshkX70SZP76/B0LHdpXcN3rJAew6dVtyX4ZqJfLgrwHSQ2PnbzmLxbvOm43v3LAsfmgrTlwBwNGL9zF03l7Zha5UKgbjejdCnfLS05IfvnAPw+bvk52rSq1iMKHv56hZVnrlwmW7wzFns/nfD3Ntz5uPXuKXv21ve15/8AKDZ+/C63fSwwXzBflg6g9NBatjZlcMo4KTq329skV/M6sTVydPnsTp06fRv39/qFTKelqkpqZiypQpqFOnDj6xY+UqwvkQEleAYSz1n4sO4ObDl8YrhQzDoGzhIIz6pgECfc33FopPSsHuU7ew7UQEHr+IAcMwKJzLD63rlES9SoUFQwSlPHj2GiMXHcDtx6+Mx1cxDCoUy4mRPevB39v88ZfvPo9/N58VbWcATO/fFFVKyi8ZCwCLtp/Fgu3iHwCGAf79uYVgiKGUVoOX4qXMl1/H+iHo376u2Xhzjd86ZfJigsnV6qyMr1rcH9N/ai+731J8+YKemD1E+sRBSXz9Cjkxuo/5OR3MxTeomAujepvvHWQufkDHKviyrvneWebiv2lewmLvLHPx331RzuLcVubiJ39VxuLcVubiF/Svg5IlpU8clMQv+bkeihUrZnP8P32qoUIF870dzcXLJR2Uxttb/pVDGqNgQfPr0ZiLV9Kz5UOPr/XdHEidOzNQ1jOsXv/5SEoRDzdydVLjwMxeEhFC9pa//oAFksONvN2csGtaT5uPr2KU9cyyp/xRUVH4YuRmm+NfvnyJVsNDJfdpVJZ75kVHR6PlsA2S+5w0Khz+23zPwvcZr6T+mEu+erhoRD0FTb148QKtR2y0+fiX7zxH3ynSyVMXrQoHZ5l//o+evEXHMasl9+XP4YXVMo32DA8ex6Dz2DXS8cHeWD1SfoghANx6EoUeYzZL7itZIAALfjPfM+5CxCP8MH2n5L4cvq7YPN58z1pzyeeqIblFPSVNnb12DwNm7ZXcVyyPH5YMk75gk+HCjQf4YcZuyX3liwRh9i9tJPdlOH7xPgbPkb54UTkkJ2YONH/udPLKQwz6Rzp5XqdcPkz4zvx8XLcePkevyVtEvbQYAP3bfYIvG5hfUObWo5f4bsoWJKYIvz9VKga/d62DZjXMT8lw7V4U+k3dAp1pLzUGGNy5NlpZmI/t4u1I9J++XdzLjQF+/+pTNLdw/LM3HmHgzJ2iVcoZAIO71kErmaRLhogHz/Hj9G2ITxI+f2etBpP7fY7KvLnBpDyMeoNf/9klWCkRAHL6e2Ly95+jUC7zczO9fpeAf0JP4VD4PeOE/y5OGnxWoRC+b1sdfl7mp0R4/S4Bs0JP4kj4fWO8q7MG9SoWxvdtq8PHw/yUDE9evMX/Fu5HxKOXxtfQ2rbnntO3sfX4DTx58RZggEK5/NBGYdszPjEFu0/fwtYTN/DkxTuoVAyK5AlEq1rF8VnFQhbjs4sPPnGl1+vRqFEjPHv2DO3atcPo0aMVxY0aNQqrVq1Cvnz5sGfPHrPLTBJlPpTEFZ/WxQMqlRppaanQJclPPEjI+0D1jzgS1T/iKFT3iCNR/SOORPWPONKHXP/eR+IqS+e42rlzJ54+NUxq1rp1a8VxX375JRiGwePHj7Fv3773VDpCCCGEEEIIIYQQkp1kaeJq//79AIBy5cpZNQFx8eLFUaOGYSwsJa4IIYQQQgghhBBCPg5Zmri6cuUKGIbBZ59JT0ZrTq1atcCyLC5duvQeSkYIIYQQQgghhBBCspssTVy9emVYZaNAgQJWx+bKZVjy/eXLl5lZJEIIIYQQQgghhBCSTWVp4ipjFUGdTmd1bGqqYWWetLQPa0JxQgghhBBCCCGEEGKbLE1cBQcHA4BNw/2uXr0KAMiRI0emlokQQgghhBBCCCGEZE9ZmriqVKkSWJbFpk2brBryFxsbi02bNoFhGJQrV+49lpAQQgghhBBCCCGEZBdZmrhq164dACA+Ph69evXC8+fPLcbEx8dj4MCBePPmDQCgZcuW77WMhBBCCCGEEEIIISR7yNLEVYUKFdCuXTuwLIubN2+iWbNmmDx5Ms6fP4+4uDjj41JSUhAREYEFCxagRYsWCAsLA8Mw+PTTT1GnTp2sLDIhhBBCCCGEEEIIcRCGZVk2Kw+YmpqK3r1748SJE2AYRrBPrVZDpVKJJm9nWRbFixfHqlWr4O7unpXF/c9KSYwFy35YE91rXTygUqmRlpYKXVKc5QBCMhHVP+JIVP+Io1DdI45E9Y84EtU/4kgfcv1jGBWcXD0z9W9maY8rwJCcmj9/PgYNGgRnZ2ewLGv8p9frkZKSItgGAF26dMHq1aspaUUIIYQQQgghhBDyEdE44qAqlQq9evVC27ZtsW/fPhw8eBAPHz7Ey5cvkZaWBn9/f+TMmRO1a9dGkyZNkDdvXkcUkxBCCCGEEEIIIYQ4UJYPFSTZAw0VJMQ6VP+II1H9I45CdY84EtU/4khU/4gjfcj17z8xVJAQQgghhBBCCCGEECUocUUIIYQQQgghhBBCsiVKXBFCCCGEEEIIIYSQbIkSV4QQQgghhBBCCCEkW6LEFSGEEEIIIYQQQgjJljRZfcBXr17h7du3KFSokOxjnj17htDQUNy/fx8Mw6BixYr44osv4OLikoUlJYQQQgghhBBCCCGOlOWJqwkTJmDPnj0YPHgwunbtKtp/4MABDBo0CMnJycZtO3bswMqVK7Fy5Ur4+PhkYWkJIYQQQgghhBBCiKNk6VDBx48fY8eOHdDpdGBZVrT/2bNn+PXXX5GUlASWZQX/7t27h0GDBmVlcQkhhBBCCCGEEEKIA2Vp4mrLli1IS0tDYGAgvvzyS9H+efPmISEhAQzDoFGjRpg9ezamTZuG4sWLg2VZhIWF4cKFC1lZZEIIIYQQQgghhBDiIFk6VPDUqVNgGAYNGzaEk5OTYF9KSgq2bNkChmFQo0YNzJw507ivevXqaNiwIRISErBjxw5UrFgxK4tNCCGEEEIIIYQQQhwgS3tcPXz4EABQsmRJ0b7jx48jISEBANC7d2/BPj8/PzRv3hwsy+LixYvvvZyEEEIIIYQQQgghxPGyNHEVExMDAPD29hbtO3ToEADA19cX1apVE+3PSHY9ffr0/RWQEEIIIYQQQgghhGQbWZq40mgMIxNTU1NF+44cOQKGYVCzZk3JWH9/fwBAbGzs+ysgIYQQQgghhBBCCMk2sjRxlSNHDgDckMEMZ86cwYsXLwAAtWvXlozNSFi5u7u/xxISQgghhBBCCCGEkOwiSxNXZcqUAcuy2LZtG5KTkwEALMvin3/+AQBotVrUrVtXMvbWrVsADPNdEUIIIYQQQgghhJD/vixdVbBly5bYvn077ty5g3bt2qF27dq4cuUKzp49a1xt0MvLSzL24MGDYBgG5cuXz8oiE0IIIYQQQgghhBAHydLEVZ06dVCjRg2EhYXhzp07uHPnjnGfi4sLBg4cKBm3d+9ePHz4EAzDyPbIIoQQQgghhBBCCCH/LVk6VBAApk+fjho1aoBlWeM/Pz8/zJo1C3nz5hU9PiUlBWPHjgXDMMiXLx8aNWqU1UUmhBBCCCGEEEIIIQ6QpT2uAMDLywuLFi1CREQE7t27B19fX5QvXx6urq6Sj3dycsKgQYMwbNgwDB8+HAzDZHGJCSGEEEIIIYQQQogjMCzLso4uhBLPnj1Dzpw5HV2M/4yUxFiwbJqji2EVrYsHVCo10tJSoUuKc3RxyEeG6h9xJKp/xFGo7hFHovpHHInqH3GkD7n+MYwKTq6emfo3s3yooK0oaUUIIYQQQgghhBDycflgEleEEEIIIYQQQggh5ONCiStCCCGEEEIIIYQQki1R4ooQQgghhBBCCCGEZEuUuCKEEEIIIYQQQggh2VK2SFydOnUK9evXR4MGDRxdFEIIIYQQQgghhBCSTWgcXQAASEpKQmRkJBiGcXRRCCGEEEIIIYQQQkg2kS16XBFCCCGEEEIIIYQQYooSV4QQQgghhBBCCCEkW6LEFSGEEEIIIYQQQgjJlihxRQghhBBCCCGEEEKyJUpcEUIIIYQQQgghhJBsiRJXhBBCCCGEEEIIISRbosQVIYQQQgghhBBCCMmWKHFFCCGEEEIIIYQQQrIlSlwRQgghhBBCCCGEkGyJEleEEEIIIYQQQgghJFuixBX5YOj1aUhLS7M5PiFBB51OZ3P8g8cxiImJsTl+78W7uHv3rs3x289GICIiwub4sQvWYu3atTbH9xgyB2PGzLE5/ruRczB1qu3x3/4xBxMm2B7fe/gcTJpke3ytHlMwfPhEm+Nr9J2DIUNsP37X3+Zg3rx5Nsf3GDYHixYtsjn+6+FzsHjxYpvje4+ahxUrVtgc/9vfG7Bz506b40cu2I6DBw/aHP+/+dtw4MABm+OnrDmMM2fO2Bw/dontzx0Axi3ba1f8gi2n7Ypfsu2sXfGb912xK35/2E274jfuvWxX/Jpd4XbFb9hzyaHH33rwgl3xu4/esCt+3e6LDj3+0XN3bI598uQJDp66ZXP8ixcvcObqA5vjb926Zdfr9/z5c5y6fN/m+MePH9v1+bt79y427j1nc7y9r7+95Y+OjsaFiEc2x8fFxSEqKs7m+AcPHuDwlQc2x7969Qq3HryyOf7Nmze49+iNzfGRkZE4ExFpc/zbt2/x6Mlbm+Ojo6MRcSva5nh737+kpCTExCTZHG/v+xcfH48XL+Jtjo+LS0FcXIrN8e/eJePdu2Sb42Ni7Hv9kpL00Ov1Nsfb23ZNS2PBsqzN8f81DJsNXo2YmBjcumX4UalataqDS/NxSEmMBcva/kHKKo+fx2D6+jCcvfEE+lRDeZ00atQokw8DO9REDl8Ps/H7zt7G+GVHkKQTful4uDphYr/PUaFoLrPxfSZuxJX7LyT3dfisJAZ+WcdsfO2+c5Aqs69QkDdW/NnJbHyNvvKJjnyBnlgzuovN8QAQNqcvxX+g8SoAx+2ID9ACW2fZHh/oBGyZaXt86VwqzBvR2+b4OqUDMOGHdjbH92hSDL1b1bM5vvvnRdGndX2b439oXxGd65v/vTMXP6VbWdSoUcPm+EldS6NWrVo2x8/9vibKlCljc/z8H2ujVKlSNscv/7UhChcubHP82j+aIW/evDbHL/ulAYoUKWJzvKXP/u3bt9F9qnyi1FL8zZs38fVfh2yOv3//PrpM3GNz/MOHD9Fp/C6b42/duoUe0+QTze/7+OduPkX/v7baHH/qxhP8PGO7zfFX775A78kbbY5ft/sipm8+ZXP8qcv38fNs6fefAXDCQnzogQuYul4+UW/p+Eu3nMLcXRdtjl+y6zTmbZFP1lqKX7TjFBZss/34oQcuYer6k5L73JzU2D+zl9n4M9ceYuAs6fpbNI8flg7rYDZ+5ILd2Hvugex+S+VfvOMM5m+TTlb7eThj+5Svzcav3ncBs0Kl3/+c/h4IHdvVbPzwuTtxIFw62eeiVeHgLPPnDkt3nsXcrecl94Xk88eioe3Nxo9degA7Tt6W3JfLzx0bxn1lNn7lngv4Z5P08/+0XH6M/66J2fiD5+5gxML9SJNooX/dtCJ6tTR/7jBs/h4cPC+dbA7J749Fv5t//kt2nsU8mdev/Wel8NOXtc3GH7l4DyMW7IdOL2xnatQqDOv+GRpVLWo2fkfYDYxffhRpJikKFcPg96/qoFmNEmbj1+6/hJkbTsL05WMYYHDn2mhV2/y5x7mIJxixcD9iYoUJrwAfN0zo2xglCwSZjX/4/A1mrgvD2YhIQdu1Vrn8GNC+JgJ9tb37AAABAABJREFU3M3Gv4lNxLYTEdh24gaeRr8DAwaF8wSgVa0QfF6tGNxctGbjswuGUcHJ1TNz/2Z2SFyRrPchJK42H7uOySuPir54MqgYBmN6NUTdioUk9/f/ayvO3Xxq9hgtaobg96/qSu6zlHQAADdnDfbP+NbmeED+BILiKZ7i/9vxns7Anhni+LCwMPyyzHIPHy9nYLdE/PHjxzF4xVWL8X5uwPZp4vgrV66gzz8nLMaXzu+PeRInwNeuXUOvWccsxtcMyYXJA1uKtu+9eBcj5+yzGN/xs5LoL3HxIOz6Y/wyc4fF+EHtq6Jt/Yqi7bvD72DU3P0W43s1Loev23wi2r5mVzhmKuih1r9VNXRsUkG0fWFoGBbus/z+D+9dH00qihsAc9cex9JDlt//P779DM0qFxdtnx16HCv2WY5fOaQxChYsKNo+dfVBhB6x3MNl9e9NkD9/ftH2X6ZvRViE+d9uAFjycz0UK1ZMtP33Odtx5OITm48/cv5u7D3/wGL8hhEtkSuX+OLX91M3Ivy29AUvPrnvjiGzd+LYZcs9dOTimw9ejNcKeijIxfeasAHXHljuYSIX3+a3ZXgek2BzfIP+c5GQYrlpIhff7JfFeBNn+/NvOHAB4pMs97CQi+8wbAWeRFvuYSMX//Os7Th1zXL9lYuv2XeO7HmzkvjmvyzGaztev5aDlyD6neUeLu+r/C0HL0X0u0Sb4+v+MA8pesvtI7n4L4auQNRr8++/WsXg2Ow+kvu+m7wZl+5GmY3393bFtondJffV7jcHqQqad3LlbzVkKV6+Nf/6uTlrsX/GN5L7fpqxHadvmK+/5YoE4d9f2kju6zluAyIemf/+CckXgEVDpS9cfjliFR6/eGc2vnAuXywf8aXkvlGLD2L3afO/X50blsUPbaUvHG48chVTVh+XjVUxDMb1aYQ65cW/nQAQfvspfvt3D2ITpD+DwX4emPZjMxTI6Wu2jNnB+0hc0VBBki2duPIQk9KTVk5aNWqXK4A/ejbCH183widlCkCjViGNZfHH/L24du+5KH788sOCpJWbswbVS+ZBlZBccNaqjdu3nYjAuv3iBkLdH5QNyUpI1qPbaPHwO6WNXsDQK8ue+Jp2xks9luIpXqnP7IxvN8i++N/+3mBX/Lwt4l4d1sTP3SzuFaM0PjYZksMHlSStAOBdsiHJZUpJ0goAXicYklymlCStAODqQ+nhB0qSVgBwQiY5oSRpBQBrDl2X3K4kaQVAtkeIkqQVAMyXGb6nJGll7nFKklYAMHqedI8sJUkrABi7QLpHlpKkFQDZHllKklYAJHtE3bp1S1HSCoBkj6yHDx8qSlrJHf/p06eKklYA0G6UuEfWkydPFCWtAOnviat3XyhKWsnF7zx/S1HSSi7+1OX7ipJWcvGhBy4oSlrJxc9ce1RR0kou/p/QI4qSVnLxE5ftU5S0kov/e/1xRUkrufjNR6+KklZqBnDWMKLH1uonju86crWipI/c8YfN36MoaSUX/8fc3YqSVnLxbYcut6v8v/27U1HSCjAkeEx1HLFKUdJK7viD/9kpSlppVICzRvi41DQWjX8WT90wdc1RUdIqyNcNuf2FPXRevU1Ez3HrRfEtBi9RlLQCgDrfzxVt+37KJlHSykWrgpuTMF2QkKzDlyNWi+JnrDsuSFppVCqUyB+AkvkDoFFxf+PSnecYt0z8+/PnwgOCpJUKQIEgbxQI8hYkLCIeRePPheLfv4EztouSVsG+7gjyFb5+d5++wbC54t+vRTvOCZJWfp4uaFK1KBpVLQxvdxfj9lX7LmPbcfH5x7FL941JK2etGnXKF8BvXetgcOfaqF4yr7Ht+vvcPYh4IP6duBv5Cr/8vROxCckIyReIgR1qYvHwzlg0rCv6tauFvDm8EfU6DgNmbEf0W9uHb37IKHFFsqXJq44CADzcnPBLx5r4rEIhOGnUcHFywueflMDPX9aEi5MGLAuMX3FEFL/tRITxds3S+VC1RB64OGng7uKET0rlRaVi3FXSmRvF3blNf7g0akbwj+9OpO1j9wHIDiVU6r/WZdKeeawA2DWPFQAMH25fvD3zWAHA4Km2z2MFGOaysker/tbFm57iNvrOuvinJr+9DSVOJs05elXYyKprRdIJAJbsEjayrUlaAcDS3cLhBJ9aGT9wkXA4hrXHN01yWRtvmuSyNt708Y6Ol7oQkJXH/9ji63xnX3yDAcLvO3PDA6XU/1F4PHPDA6V88dsywX2pZJQ5vSYKG48dxsgPD5Ty/VThcEBzwwOlTFl5WHB/zHzrXr9fpgufr9zwQDkrdgnnrjM3PFDKoh2nBPflktFyTOe+W7nPurnMTOe+2hJm3TykYdcfC+6vOqAs6ZshOlr4+zVpFXchQQXAw1ULVxcttFoNPFy1ggRWWpph/iS+e1HWzeX04MEDwX3T4WWMyT9LDoUL/55aJfxnybPX9jXGj14SJn21GpXgH59UgueRhZ46lhy/wh1fozK8fy7OWmi1WtH7F5sgnvcp9DBX/wO93VAg2Aeuzk7QarUoEOyD3P7c9CgRj8QXjl6ZJA3NvX/6VHHrIfwO1xHARauCj4czXJy1cHLSwsfDGe7O3Gv4+IW4rq09yNX/EvkDUK5IENyctXB11qJckSCUKhBo3L9dYt64PWe586kCQd4oli8ALs6G17BYvgAUCPKWfGyGM7ykWU4/dxQI9oFL+vELBPsIElgHw8VDKRdt54ZHNq1eFHXKFYSzkwZuTk74rEJBNKzCjfCZskZ80W9yetLK080JgzrWRN3yheCk0cDFSYtGVYtiYPuacNaqwbLAOIm267ytZ5GYrEe1knnxS6faKFs4GGq1Ck5aNaqXLoCh3eqiaB5/vIyJx2qFF7j+ayhxRbKdO09e4cUbw4/Xl5+VgUatET3GxUmLFjVDAAD3nr7Gyxjux47fg6pIbj/RjxVg+FIJ8HEFYJj47tajl8Z9rYYsFTzWNFEltW3FLm7iUGtP3AFg6Gyuh4At8RMWc1cebInv9BsXY0t8o772xX83kovZ+sDqcEGya/M96+P5ya4DL808UAY/2XXM9jlAAQDHb9s3hNeOOUQBAC9tn0MTABBnZyY13s4RzHYW3262L/9AMoO9FwKIdfR2ft4Tku37wCfa+YGLUtg7SM61+7ZPegxAce8sORuPRVh+kBlKe7fJmb1Feh4cpczNI6XEpFBlvUPlDFti+4IdgPLenXJaDuN6DJsmodxcxfPYaLUaOHGDBtD8t1XG26ZJKCU6T9htvG06gbdUosp0G/98z3QCdqlElem2OrwLVYfPSM8pZQ7/+CevPBTskzr3N93W6KeFxtuhB6xfAIM/OuNYuDDp6eIs/f7xS9D1T27ExjleElSjZuDu6iQZ7+nmbLw/ehHXO3jiCmEPJiXvX6vfuPbOir3COeGky68VlH/YPC7RfeQid/Lt6+kCN4l4FycNArxdjfc3H7tmvL3xCJf08nDRSh7fxVkLD978TvyYhdu5JLqLkxrOTuJ4V2ctnHijbkIPc4nvg+fvGufUqlA0GE4acdvT3dkZRfL4AQB0+jRE8NqOEY9eIjq9Lfpl/bKSbVc3Fy2a1TC0Xe88eYXX77jfn+ev43Di8kOoVQw6NSgLlUr8DjprNejYoBwAYHtYBJJTbJ80/kNFiSuS7WR003R10iB3oLfs40rkzwFN+q/goXDuC3PNQS5xlSfQSza+NG9yvdmbuCEb/G6yUkkrqX1zttq+4g0AHL782PKDzNh62voffL6HMXaFw/b1UgwumR/Ob5EtyS4+W5JdfLYku/hsSfZlp/g/Ztq+2iAAu1YbJIQQYr/nz8XTLljDtPeRtexdOXTKCttXfQWAAdM32xlvXW89U9NDufNQfnLKlBOvQc4fHdB90m6phyv289/Kyi93VvzjzE2K4vnJK/7ghqGL7Hv/RixUNsSbn7yK42W+/5KZTN8c/us/etlh422poZ0Z+AnJe8+4ZN+k9JEmAJDHTNvH34tL/Ow/z528bjnO9WAy1zuOv+9lDNfeWbida8f4eDhDjhdv32Fer6V/eZPRFzIz/1L+IB/j7aU7uB7nC3dwSfA8OeSfP38fP2bNPi7xGOwnP69SLn9u38JtXPyqfRd5ZZQvP7/tuHQnF783vR3m6qxFLn8zbc+CQca262Fe2/XS3WdIY1mULhQEL96wRFMFc/oip78nYhOScTfSvgsnH6IPJnGVmkrXUT8WCcmGHxInrThbbSrjw5/A+/FJ0VmfgY5Psq+fhtTKH4R8LA5dt32pYgD497h9qc+Za3faFU8IIR+6jNW5bXX/uX29z46ds6/314bj1g2zM3Xyun29x248tK+78v1n9k0b8fApF+8k0VvEEp2dvZXjkrjzaCXDAk3FJ3PtNCXDAjNbip47vlRvK0vsXa4qRcc7voL2i6n4ZOu7j5quumcPvcK5vYTH524n2VD+ZN57ptNZ387nx6QondyLH6/n2ouJyda3HfmfmYx2JH8eZTnGtisvPqP3lIerfNIwg0d6b7xkG16zD12WfrWEhISgRIkS6N+/P2JiYqyKPXbsGCpUqIAvvvji/RSOZBsZ2fC4xGSkmVn5MEWvN37Qc/N6Vvl5c2OY9Wny8Qm8L9lCufwkHyM1Blxqn/sHsjQp+W/yseUsk6duCXGXdGv0qmb5h9YcS0urW9L/y6Z2xRNCyIdOaoVFa1QvK73KlVJDujW0K/7PblXtiv++ZTW74js2KG1XfIe69sU3S5/+AhD2BFIqb6B9q3eVLcz1JLElHVIsD3cebUMOAS5O9jVJ+SMsdDYkYdxNZ1C3UrAvN/+U0iQO/9QtfzDXyycxWf5iOj/Z4uLElZk/QMTc+ye3z9ONOw9MSZEvv47XOUDLy1DmDOCev7nXX8erHP4+btxtXk8ynV4+IcPfx4/xcnfmPUY+CaXTcc/Nz5s7fjCvJ1aqmbYnf3heAV7vsZzpvaxiEyy0XXV6JKX/DX7POj8vQ1kePY8BayYhqdOn4tmrWACAL+/5fyyyPCfOsiz27duH5s2b4+jRo5YDeBITE3HjhnUTL5IPT7vPSkPFMEhNY3HyqnzX8/3n7oGF4cpK/UrchHnjejcy3r50+5lsfDhv3y8daxpv/9ShutVlXj+yrfF2SB7pJJg5/GVp/b2sTwLILWtL8R9H/M5/7YsfN6CnXfFff/21XfGEEEI+boULF7Yrvl51+xJ3PZtZf+7H17VJJatjvHjDxlrXUZb44ie1KhbPaby9dnQXq4+v5bUCZ/7USlEMv0ldJDeXbJk3pK34wRL4Sa3qJfMYbx+c2VtRPF+BYC5ZtfJ/HRXF8JMq7T4rZby9b8a3Vh+/2SdFjbfXjO5svG0ub8Z//4Z1+9R4e9r3jY23n7+R7/0Y9YrroT69fzPj7c1j2lsusInBvLbP+j87GG8npMg/AX7Pun9+4erM5L5cWa4/kJ8/4wZv34yB3EXHmYO4+PtP5Xsv8vfxY+by6m+kmZU9I19xcyLP/ZnrDDO8x2fG26Yre/Idv8pNwD+g/SfG2x3qlQbDGFaMPG1m2PS+c3cAAFqNYdXBDJVDcsPHwwWPX7zF7SfyQwBPX3+MuMQUFMsbIBh2+bHI8sQVwzBgWRbR0dHo06cPRo4ciaQkZUunko+Di5MWFdJX/Tt4/i5uPBRPXnrhViTORRi+WD4tXxAq3jKreXJ4G68CxCbqcENi5Y3w28+MP17e7s7QarmTh/b1ygseK9XrynSbj4+P8faiYR1gj22T7EsCODqJQvEU/yHHj25f1PKDzJjes6Jd8VO6lbUrvncr+67692xSwa74L2uFWH4Qj+k17o6flbQq3sdD2FuwY33rjh+ST3ihoUqxIJlHSiuQw8vsfUuK5xLOpZHPyl4TtUrmFtz39bSu92T9cvkE973drYv/voWwvnu5Wdf7eETnTwX3rT0pHdarnuC+ubmBpEz4oYngvrPWuhJsGNFScN/a8q8b1lxw38nM3DhSNo+ybxSC6feltZ13Hf19/aHH7/7rG8F9ufmXMsSbbPtbYbJJzpHZ8uWX6vNhum3Z8C9l46V6XZlum9a/ufhBVlg1srPsPqleP6bbfv6ytl3H/6N7fdl9Uu+f6bYmNUoYb7u4uEDNm5D78fMYUfzTV7HgNz9KFQo23vb39xc8Vsn717puGeNtd3d3wb6YOPEUEKbbShfkfi89PJyM9VefloaIR+KhtzcfvzL2uNKoVPDz4HppBXp5QcUYnn8apIfe3n/2xjikU8UwCPTifm9zBfsIvr+evBSvlMRfCZFhAB8fbi4pHw9XY6+zlzHxuHpfPOff+ZtPEZtgeA1y+LhDw5vA3c3FCeWKGBLJ+8/eFUzcnuHczUicv2kY0vxZxUKCtquzVoOWtQz1Yd7WM3j2SrzC5a3H0ViVPpdXu89Kg2HsHG7xAXLIHFf169eHVqsFy7JYu3YtWrdujStX7JuUkfy3jO/TGB5uTmABrD90FdPWHkfowUtYt/8CJi7db1xGNcDbDcN4WfIMy4a1M95+/joWhy8+wPErD3H88kMcvvgAb+O5L9/Q0V1F8f1aVRbc16eygn98q/4QX+WxptfV8l/F3eut6XW1aGBdxY+VMuAz+UkIlWiax/JjzGlrX57A4SeeFP/fiq9fX/5EVEl81arWDXcxja9Ro4Zd8T2a1LIr/ttW1g23MY0f0LWuVfFHTeL7f1nHqvidU4S9Bfu3t+74i4YKLzTM+LmNVfGrRnU2e9+SxSOEDb81VvaamNS/heD+jsnW9Z4c/Z1wmO2uqdbFd2kmrO+7p30j80hpn9cpIbh/3MrPc9NKwl42h/+xLr5O6fyC+4dmWdfrI1euXIL71pY/Tx7hD+jhv/sojlUxQI4cOQTb7P0+tGbYttQ0Qtnt+9wce8svlSS1Jj6Xn7to25G/hfUvLlEn+Mc/+6xfUTy005rju7uIn4BpPGvyj698kWCY2jFe+H2Wmib8x1erTF5R/PrhLUTb5BTJ5SPatmtiJ8F9nT5N8I+P39sqw9Yx7UTb5PB7W2XYOFLYnjB9//gGdxb/Vm8b1914O5UFHkTFCP7x59GayettlWH2z8Jt5t6/H78Q/9avGiXsNRcTlyz4x/f3QPHxQ3m/f/FJOpy/9QwXbj3DhdvPcP7WM8QlckMgV4wQv9ZrRnHtqWRdKiIeRQv+8ed04j82w+Lfud9vfSorev1SeZNyrZfoobeM1/HgTuRrbD5+A3vO3saes7ex+fgNPE5PhjEMsGKkuIfbxO8aw8PV0HZdd/AKpq07jk3HriP0yDVMXn0MO08a2q6BPu4Y1k3cdv26aSWULRyM1+8SMXz+fszedAqHz9/G/jMRmLTsACasOIKkFD0aVC6CptWLi+I/Bg5JXHXo0AHr169H0aJFwbIsHj58iE6dOuHvv/9Gmpk5icjHw8PNCRtGdUa+9NUj4hJTcPnOU1y5+9Q4N1WxvP5YN7qT5JKl+XP6YcnQtuAno/WpLPS8Ly21isGOid3gJnGFuGuTyujSsIxou6kFv7VEgbw+ou2LhnVAHn8PcYCJwW1rSnaP3zbpa3i5Wr50PPSbuggJEfcwUHry0qyyL778UnzFTGl80zzAsGHixyqNb1sUGDTI9viWBaS3K41vXUh6u9L4+oH2xdeWWThFabzc4yie4ime4in+vxuvZoDjMkPEs+L4GhVwVKa3zofw+mkY+8qvUcknSZUkP3L4umLDuK8k9+2dIr6YaurTcvkxundjyX2rfvvcYryLlsG+6b0k920ba3nIWUh+f8z+pbVou6+vryh5JaV6yTyY9L048ZE7d25MH2g5eZU7wAPLRogTD97e3lgzrJNEhFCzT4pK9rYKCAjA3wMtz5lZp3x+yd5WwcEeWDHSci/I79tUlRwa6uPjgg0jxc/L1Pi+DVG5pDjxV75YXkz+rp5EhFCHz0qhUyNx7+oCOQIxb4jlizejetZDxRDx8QP8PLBmpPBiEAvAdMqmlSM6IF+w+AJ/nkBvLBlqecjpkqFtJVdeLJY/CLMHWa4/S35vg1zBPqLtQX4eWDeqo2DV+MRkvWDidmetGjsmd4eHi4so3tPNBetGd0LejLZrQgqu3I3CtfvPkZjedg3JF4i1ozpBI5E5d3bS4K/+zdC0ejEwDHAuIhKLtp3Gkh2ncfXeMzhrNejSqDxGfF0PKtXH19sKABjW3AxgmSwkJAQMw2DOnDn49NNPkZKSgqlTp2LZsmVgWRYMw6BMmTKYPHky8ucXXgU7fPgw+vbtC4ZhaJ6rTJCSGAvWzORx2cmdJ68we9MpPI2OBRgGBXP6oV/rKsircGzv+kNXMHvjKeOKI67OWgzv8Rk+LS+TtTDx5YhVePxC2GWzdpl8mPi9sgmha/SdI9rm6arBnr+UjaeXind3ZrBvhrIrs1LxgPKTQ4qn+MyOZ6D8yr5UvL8rsO0v2+OL5XbHkuHSjQYl8UVzuWHpiG42x39WIS/G9hGftJsKCwvDL8sui7bXKpMTk763PETk+PHjGLxCvFJX8xqFMLRbI4kIoStXrqDPPydE23s2qaCoZ9a1a9fQa9Yx0fbezSqhR4sqFuPv3r2LrybvE20f2bchGpW3PB/O48eP8eXYHaLtU/o3Qw2Jk35Td+7cQbcp4iXWR/RpgM8rFLEYf/PmTXz91yHR9sU/fYbixS1fLd114TZGzxMvEb90UH0ULWq5q+qOczcxdoHtxz94+T6Gzd4j2r5ySGMULGh5Iu/dR29g1Kojou2rf28iOseTsm73RUzffEq0fcnP9RRNRL52zznM2HROtF3p8bcdu4TxK0+Ktiv97tt0KByT1562OX7rsSuYsFL8+VMaP2X5IWw8cdPm+BW7zmL2lvOi7UrjJy7bhy1hd22OHzp7Bw5fFs8VozR+1KLd2H3mgc3xQ/7ZhmNXIm2O/3v9caw6IPz+1agZHP1H2bnb5qNXMWnVccG2PAGeWDdGWa/MnmPXIeLxa9F2peUfvXg/dp2+I9jmolXj4CzphJepMUsPYOfJ24Jt3u5Oint19hy/DhEPheW35txh0opD2HxcWP9z+3tg/VjLiUEAGDB9K85GCFeq9HLVioZ3ypmx7jjWHhS+/2UK5sDcIcqG967dfwkzQ08Kkj6t65TAYJPh1XJ6TwzF1fvC4WpBvm7YNF7ZucvkVYex6WiEYFud8gUwoa/lxCgAbDxyFdPXhUGfMTRQrUK/1tXQsWE5RfFLd57D/G3njSsnqhgGvVpUQvemlS1EGvy9IQyr91829jRjAPRsXgnfNLd87gEYpqqZsvoY4hINPc283Fww4uvPULVkPguRBrcev8S/m87gafQ7MAAK5PTFj+0+QW6JhJuUl2/isOv0LUS+SoBapULhPAFoWDG/YBL67I5hVHBytW/RCNHfdGTiKsPJkyfx+++/IyoqCgzDwMXFBb/++is6d+a6HFLiKnN9SImrDFoXD6hUaqSlpUKXJD/xHiHvA9U/4khU/4ijUN0jjkT1jzgS1T/iSB9y/XsfiSuHDBU09cknn2Dr1q1o0qQJWJZFYmIiRo8ejV69euHlS/mVCQghhBBCCCGEEELIf1e2SFwBgJeXF/766y9MmjQJnp6eYFkWx48fR4sWLbBnj7irOiGEEEIIIYQQQgj5b8s2iasMLVu2xJYtW1ClShWwLIuYmBgMHDgQ06dPd3TRCCGEEEIIIYQQQkgWynaJK8CwvPCyZcvwyy+/QKvVgmVZ3LwpnmCSEEIIIYQQQgghhPx3ZcvEFQAwDINvv/0W69evR9GiRZGFc8gTQgghhBBCCCGEkGxAk5UHO3DAsKxzQECA4piQkBCEhoZi6tSp2LdPvCw2IYQQQgghhBBCCPlvYljqyvRRSkmMBcumOboYVvmQlwQlHz6qf8SRqP4RR6G6RxyJ6h9xJKp/xJE+5PrHMCo4uXpm6t/MtkMFCSGEEEIIIYQQQsjHjRJXhBBCCCGEEEIIISRbosQVIYQQQgghhBBCCMmWKHFFCCGEEEIIIYQQQrIlSlwRQgghhBBCCCGEkGyJEleEEEIIIYQQQgghJFuixBUhhBBCCCGEEEIIyZYyLXHFsmxm/akP4riEEEIIIYQQQggh5P3KlMTViRMn0LJlS7x48SIz/pxiS5YsQc+ePZGYmJilxyWEEEIIIYQQQggh75/diavU1FSMGjUKt2/fRo8ePfDy5cvMKJdFK1euxIQJE3Dq1CmEhoZmyTEJIYQQQgghhBBCSNaxO3GlVqsxe/ZseHt74/79++jcuTMeP36cGWWTNXv2bIwdOxYMw6BZs2bo2rXrez0eIYQQQgghhBBCCMl6mTJUsHDhwpgzZw5cXFzw5MkTtG/fHkePHs2MPy2QkpKCX3/9FbNmzUJaWhpq1qyJiRMnZvpxCCGEEEIIIYQQQojjZdrk7BUqVMDChQvh5eWFmJgY9O3bF6NGjcLbt28z5e8fPXoUzZo1w/bt28GyLBo0aIDZs2dDrVZnyt/PbHFxcfjnn3/QunVrVKpUCRUqVEDz5s3x119/4fXr144uHiGEEEIIIYQQQki2x7CZvCzfrVu38M033+Dly5dgGAZeXl7o2LEjOnbsiJw5c1r1t1JTU3HgwAGsWbMGJ0+eNK4g2LZtW4wePRoqVabl3TLV3bt30atXL0RGRkruDwgIwL///ouyZctmcck4KYmxYNk0hx3fFloXD6hUaqSlpUKXFOfo4pCPDNU/4khU/4ijUN0jjkT1jzgS1T/iSB9y/WMYFZxcPTP3b2Z24goAXr9+jeHDh+PAgQOGgzAMGIZB8eLF8cknn6Bo0aIoUKAAfH194erqCo1Gg7i4OMTGxuLNmze4ceMGrly5ggsXLhh7J7EsC3d3d/z+++9o165dZhc508TFxaFVq1Z48uQJtFotBg4ciObNm8PFxQXnzp3DxIkT8ejRIwQEBGDz5s0IDAx0SDkpcUWIdaj+EUei+kccheoecSSqf8SRqP4RR/qQ69/7SFxpMvWvpfPz88M///yDzZs3Y/r06YiKigLLsoiIiEBERIRVf4tlWTAMg7p162L48OHInTv3+yhyplm4cCGePHkCAJg0aRKaNm1q3NegQQPExcVhyJAhiI6OxuzZs/G///3PUUUlhBBCCCGEEEIIydbeS48rvtTUVGzfvh3Lli3DtWvXrIp1cXFBkyZN8M0336BIkSLvqYSZJzU1FTVr1sSbN29QoUIFrFmzRrS/efPmuHfvHgDD8zt16hRcXV2zvKzU44oQ61D9I45E9Y84CtU94khU/4gjUf0jjvQh178PpscVn1qtRqtWrdCqVStERkbi1KlTuHHjBh49eoTo6GgkJCQgNTUVTk5O8PLyQnBwMAoXLoyyZcuiWrVqcHZ2ft9FzDQXLlzAmzdvAABNmjQR7Q8NDcW9e/fQtm1bhIaGIikpCcePH0fDhg2zuqiEEEIIIYQQQggh2d57T1zx5c6dG23bts3KQ2apq1evGm9XqFBBsC8xMRGzZs1CuXLlMGDAAISGhhpjKHFFCCGEEEIIIYQQIpaliav/uowhgACQJ08ewb6lS5fixYsXmDJlCoKCgqDRaKDX6wUxWUnj7OaQ49qDYVTG/7UuHg4uDfnYUP0jjkT1jzgK1T3iSFT/iCNR/SOORPVPiBJXmShjBUQA8PX1Nd5+8+YNFixYgDp16qBatWoAAC8vL7x+/do4tDCrqVRqhxw3MxhWqfxwy08+bFT/iCNR/SOOQnWPOBLVP+JIVP+II1H9M6DEVSZKTEwEADg5OYFhGOP2OXPmIC4uDoMGDTJuc3JyAgAkJCRkbSHTpaWlOuS49mAYFRiGAcuyH9zE8uTDR/WPOBLVP+IoVPeII1H9I45E9Y840ode/zK7owwlrt4DlUplvB0ZGYlVq1ahefPmCAkJMW5PS3Ns5dMnJ3xwHwCtiwcYRg2WTfvgVlYgHz6qf8SRqP4RR6G6RxyJ6h9xJKp/xJE+5Pr3PlYVVFl+CFHKzc0wb5ROpzNumz59OliWxYABAwSPTU5OFsQQQgghhBBCCCGEECHqcZWJ/Pz8AACpqamIjY1FZGQktm/fji5duiBv3rzGx+l0OsTGxgpiCCGEEEIIIYQQQogQ9bjKRIUKFTLejoyMxJQpU+Dq6op+/foJHvfs2TPjUMGCBQtmaRkJIYQQQgghhBBCPhSUuMpEpUuXNt5eunQpjh07hp49e4p6VV24cMF4u0yZMllWPkIIIYQQQgghhJAPCSWuMlGFChXg6+sLANi4cSP8/f3x9ddfix63e/duAICLiwtq1qyZpWUkhBBCCCGEEEII+VBQ4ioTqdVqdOrUyXi/R48ecHd3FzwmLCwMhw8fBgC0bdsWrq6uWVlEQgghhBBCCCGEkA8GJa4y2TfffIM8efIAAFauXImdO3fi9evXiI6OxurVq/H999+DZVkEBATgu+++c3BpCSGEEEIIIYQQQrIvWlUwk3l4eGDevHno1asXIiMj8dNPP4keExAQgH///ReBgYEOKCEhhBBCCCGEEELIh4ESV+9B4cKFsXXrVixduhR79+7F48ePwbIscuXKhfr166NHjx6iCdsJIYQQQgghhBBCiBDDsizr6EKQrJeSGAuWTXN0MayidfGASqVGWloqdElxji4O+chQ/SOORPWPOArVPeJIVP+II1H9I470Idc/hlHBydUzU/8mzXFFCCGEEEIIIYQQQrIlSlwRQgghhBBCCCGEkGyJEleEEEIIIYQQQgghJFuixBUhhBBCCCGEEEIIyZYocUUIIYQQQgghhBBCsiVKXBFCCCGEEEIIIYSQbIkSV4QQQgghhBBCCCEkW6LEFSGEEEIIIYQQQgjJlihxRQghhBBCCCGEEEKyJUpcEUIIIYQQQgghhJBsSePoAhCixPR1x3H5zgtAxaBm2YL4pml5xbFJSUnoNWkLHr98BwZAiQI5MHtQK8Xx7969Q6s/1iJZlwoA8PN0wfbJPRTHR0REoOf0w4JtYXP6Ko4/f/48fpx/1ub4vXv3YuTGezbHjx8/B9seCrdZEz9o0BycjLc9furUOQi9bcfxJ83BSeHTtyr+xzFzcP6J7fFjF6zFjnNvbI4fuWA79p4TFsCa+F9nrMWJG7Yff9iczTh4Mcrm+L7jl+PyQ2EFsCb+p+kbcDoi2ub4X2ZtQ9i1SJvjf52+FScintocP+ivLTh585nN8X0nbMDlB9zzZwCcsCJ+8MxtOH6de/5uTgz2z+yjOH7YvB04eOGx8X6glyu2TOquOH7KysPYeCzCeL9soRyYM/gLxfFD/92Ow5e4+l8o2BsrRnZSHP/DtE24cOu58X7BnN5Y+T/l8d9P3Yjw2y+M90sV8Mf839orjh8yeyeOXX5kvF+/UkGM7tVYcXz/v7bgHK/+1C2fH+P6NlEc323UGtx5GmO8X7N0bkz+oYXi+I7DVuJRdKzxfo1SuTDlx5aK45v+sggxcSnG+9VCgvHXwNaK43tPDMXV+y+N979qXBbftalhRfxGXL3PvX/9WlVB1yaVFMf/9u9OHL3EvX9jvq2PepWLKo4fsWAv9p8z/ACpGGDSd41Ro2xBxfEtBy9B9Lsk4/0B7avgy/rKy99w4ALEJ+mN979tUR49m1VXHN9jzDrcevLaeH/Gj41QpVQhxfENBixAQjJ3/CGdqqPVp+UVxzf+aSFiE3XG+1P6NkKN8sqP33zwErzmvX5/D2yKiiH5FMebln9av8aobsX7V+/HeUjSpRnvzx7UGuWLBis/fv/5SEhJNd6f9+sXKF04h+L4hgMWIJ5X/gWD26JkoUDF8e2HrUBkdBwAQK1isGNCJ3h5eSmObzVkGV6+TTDEM8D2CZ3g7e2tOL7RwIWIS+Le/+3jOsDPz09xfIP+C5CQwj1/a+Ob/LwIbxMM319qFbBtXEf4+Pgoju8/fSuu3H2ONJZF7gAvLPqtNVxcXBTHfzF0BaL+z95dx0dt/nEA/+Sk7i0VtHiR4e7uDHeGM+THhm/AhruOsY0xGC4b7jLcGS7DtbRAvdTlKvf74+glucjl2nEF9n2/Xry4S+7bPJfkkjzfPM+TaMP6d7LXYtfMbnByclIc32vGVrwMjQEAeLnaY8vkznBwcFAcv3DzWVy+Hww9gM+KeGPawKaKYwFg0m9/4faTEOgBlC3ijQXDW1kU33v6nwgKjwMAFPR2waap3S2Kn7XuBG4+CQUDoGqpfPi2dwOL4k9ef4a7zw3XD5VL5kPtcoUUx2ZkZGDzsTu48zQEDIBa5QqhQ70yiuP1ej0eB0chNOY11Go1Cuf1QD53G4vK/yli9Hq9PrcWnpmZiVu3buHu3bsIDQ1FQkICMjIyMHv27Nwq0n+GLjkeen2m+Q/msv6zd+BRcKTovEol8uLnMfIX0PVHrERauvj3dHawxV9L+svG1xq6QnKeuQqkWMLKlFwFVixhZUm8WMLKknixhJUl8WIJK0vixRJWFi1fJGFlSbxYwsqS+P/NXYubL1OzHf/14q249uSt5Hxz8QNnrMGDNzrJ+ebie09di+dh2S9/u7ErEJGD7d/9+zUIisx++b+YsQXP3sRlO77/zD/x6HVMtuO7Td6E4IiEbMd3mLgeYW+Tsx3fceIGhL5NynZ8r+l/4EVIrOR8FYDzcr+fxXtw/Umo5Hw3R1scWix9/O0+ZTOCwuMl59tqGZz6SToB13b8OkTFp0jOt9MyOCkT//n4dYiUiXdx0OLIkoGS87t8vxGvI6V/AIV8nPHH9F6S89tP2IDwGOntZy7etMJtKp+XE7bP6i05v/7/ViAtQ3I28no4YsecLyTny507AcDLxQ77FvSTnN9i1GrEcSqsphpW9MfsIS2k40evRlyydHzrmsXxXd/GkvM7TtqI0Gjp7Tfk88ro26qq5Pxuk7cgOEL6+DOhZx18Xq+s5PzaQ1dA7uK8Q50SGN+7keR8c+u/Xa2i+LaPdCXU3P7zfZ/6aFWrVLaXP6xDJXzRvFq248d0q47ODStKzq8zdAXkrnDnDWmAehUDsr18cwksc/HmEnDm4s0lsMzFm0tg1Rv+G9IzpffAIwt6yiaw6gxbAZlwHJ4vn8AyV35zCaj3HX9onnwCq9W4dYhJED9/aNUMzvwif/Oo7vDfkCGzAs3d/Kr/1UqkpYn/AhgGuPCrfPwXM7fh2eto0Xl5vZyxY5b0uQcAOkzYiLAY8eOnp4s99pu5+dVgxEroJOpuNhoVTv/8pWx818lb8Eri+FvY1w2bp8knwH7acQm7z95Dio5/DHS006JH0/IY0LqKbPzYnw7i7/vBMM2wqFQMmlcrjsn9pI/dAHD06hNsOXobj03qv5VK5EXflpVQtVR+2fgPBcOoYGPv/O/+zdxIXGVkZGD16tXYtGkTIiLYO2l6vR4Mw+DBgwe8zycnJ2P27Nlo3bo1atasae3ifpI+hsRVs9FrkJAsX3HN4+aAvfP6iM4zd+IBDHdAz0scwJXEA+InECVJK7l4JUkruXglSSu5eCVJK7n4dkNXIELks0rjh01bgdvSdV6z8T3Gr8BL6Tqv2fhOI1cgRD5nI7/8CSvwMib78f1mbsTj12ayPjLxrb5egRj5n45sfMuvVyA2B/ENhq6AwnDR+MbDVyBZ4eFJLL712FV4myhT6zYT//m3axEZq2wHEItvNuo3JKQoO7WKxTf5agWSpOvcZuObjlyJxFRlK1B0/xm7BjGJyrag6P4/dTNehpn/AWpUwNnlIt9/5CokpWZ/+zUc8RtS07O//pXGqwGcE93+/FYCUpzstDi6VJj8Mm2lIcXV0QaHFw8QTDdXac/iYKvB8R8HCaYrPfc52qlxbOngbMfbaYGTPwnXX93hK5Ch4AuUKuiF1ZM6Zzu+akBe/DhKePOr8derkKwzv/+1r1MS3/RuKJjebNTvSEiRTvpkGdy2Mvq3Fia/lK6/WmXyYdFXwtZzSuOrBvjiR5HWb+aSZlm+6lQNPZpWyvbyu9QridE9hetPafyQthXRt3X1bMdP6VsfLWoKk29K48f3qIkO9ctnO35y39poWfOzbMcvHdEC1cr6ZzteKnmlNH7b5J7In0+YvFIaL5W8UhovlXyyVrxU8spc0inLyaX9RFtf5aTu8W/ENx29GokySX8AsNGocfpn4bEfAOr9byXSzRyA1SoG55aLJ+9yWv6GX60y9pCRYm+rwQmRcx8AjPhhH248YlvZO9kbWjlx66MNKhbGnCHiLac7TNyEsLfsTUuVigH0QCYn3RJQ0AtrRM5dAPDr7svY+NdN47ID/H2QkanH/eehSE1LB8MA43vWQ/u6pWW/44fgfSSurD7GVXR0NLp06YIffvgB4eHh0Ov1xn9S5syZgx07dmDatGmynyOfjn6zdxgPErZaNRpXLoKODcqhU8MKaFi5ODRqw64bEZOE8b8cFsTX/99K3vs8rg7w93WDv68bPJzZE0WmHmj77XpBvOmBk3lXDlutWvDZusOFB1mlSSuxZQFQnLSSileatJKKV5q0kopXmrSSileatJKKV5q0kopXmrSSXH5MzuKVJq2k4pUmraTilSatpOItCBeNV5q0kopXmrQCDJU0U0qTVgDQfPRKwTSlSSsAaPvNGsE0pUkrwNCyy5TSpBUAfLVol2Ca0qQVAPyw9ZRgmpKkFQCkZwL7zv0jmK40aQUAu0/d5L0PCgpSnLQCgPP3gnjvX716pTg+A8DfD/jNMsPDwxUlrQAgISUN4eHhvGl3noYpSloBQGyiDmFhYbxpp688UZS0AoCk1HS8fs3vRrv92HWF0UBiinA7Ldt6VnG82Gpaf+CqoqQTADwIErbGXrXvb8XxV026AAPA+kNXBUkrrUYFrUZ4ubzn/CPBtLUHrwqSVva2GtjbamD6J1btF67rQXO2KSk6AAi6QANA1++FxwMpVx8KT7Rf/7BXkLRSqwz/TP2084pgWquxwuOZlO1nheuv1Zi1iuN/239TMO1zkes5KTPWnxFMa/L1KsXxC/+4JJhW/3/KKt0AMHP9BcG0BiN+Uxw/6ucjgmn1RK5HpQxasFMwreVY4frPuvY13QW6ztwi+Gzjkb8Lpkn9flp++4dgmtj1tIox/DPVZpLwt1Jn2L8fr1EzxjoHV6sJfwqmdZy0iZe0cne2NdY9fNwdeZ9tOka4rzYYwb+eUDOGLoJO9lqYVj/Ern0amey/9jZqeLnaw8vVHo62/NGBaot814FzdxqTVgwDlC/mgwYV/NGggj8ql8hrSMIA0KVnoPN3mwXxnb7fzEtaFcvnicol/FC5hB9K5Pc0Ts/I1OPzbzcI4huafH9XR1v4eTrBz9MJro62/M9+Jfytdp/yhzFppWIYVCrhZyx/heJ+xv0gOTUdfWZtF8Qv237RmLQqWcAL47rXxZhudTCmWx2M6loL/r5uAIDTN19g89FbgvjRPx4wJq08nO3RvXE5DGhVGQNaV0bnBmXgaKcFADwMisSiLcJz5ZHLj7Hxr5tQqxj0alYBi0e0wtfd6mNsz8b4cWxHtKkVAL0eWLTlHG4/DRHE/xdYNXGVmZmJL7/8Evfv34der0fr1q2xevVqXLx4ET///LNkXL9+/cAwDIKCgnDs2DErlpjkhvT0dGPzSFutGi2rl4CzPXvAcne2R5uaJaF+dwS6+A8/y5KSkoI0zoHT39cNjvZsv2AXRzvjwQcAomL53XHi4vjNS221athwzhimCSzTi+SHDx8q+ZqStp5WXnEQ8/2KPTmKV3q3g+Ip/lOIN62kWRofb5JlszQ+Ko6fJLI03rQ7oqXx15/yEyeWxm8/xa98Who/bzO/8mZp/MKtl3nvu885ZFH8Nz/xP9911gGL4sf8yP98+ynCRKAc088PXbTbovgOU/mfn7TmhEXxXWbu573/YafymyaAcHv9eep+juJ/O2DZ+c808bz20C2L4k0r+r/t4y+fW+EWq4C3GbeO956bjFIzhqSVMV6r4b0HgB5T+ZX/+0Hi3XOkNDBJlLyKlO+ebMr0+18zGY+PW18XS2D1mbGV996SpDcgTHTFJFlw1whAz2n89RcZK9+92tTIpft475MUtLTj+vqHvbz3Zhp6CHz7y0Hee50FSXfAMIYgl0TvKknrD/B/77GJ7PpXAbxrXa3IzduzN5/x3iebdC819/u5ZHL9zr2eNk04iSWg7jzl3zjgNnTKabwhYcVIvgeAwOAY3vus8agAQ93D1dHe+N7eVsure2Rk6pGSwu9OyO0e52Svhf27RAcA2NoYElhcCQn833sKZ//1crXn1X3s7bTwcmXLo9cDSUn87ugPXrK3neuX94e7E/t5Zwcb1CtXyJi8ehMlvEEVwhkPsXIJP7g62vDiK5fwM76PjBV2hU/lfH8/Tyc4cL6/g50Wfp7s+F5iraqCwg3DG6gYoF75QnBxYOuObo62qFfeH8y7Tfj0VZQgfs85w/mrZAEvdGtcjrd8Fwc79GlRCQW8Da0EN/11ixebkZGBK+9uZHk426Nj/TLG1loA4OZkjx5NysPe1vA391/g1xX1er3xb/ZqVgGNKxeFVsP+3hzsbNCxfhm0qF4cmXo9/jh2W1D+/wKrJq527tyJu3fvgmEYzJ8/H4sXL0bt2rXh4eEBjUZ6nPiiRYuiTp06AECJq/+AH7ezd7HqVZAeCK/auz6+egA7T981Tu87h60ImN7h4HLhZO/nbzxtfN16AnsXSOkPZMgCdpmWtLbKwr14//FPyyoOpvGmA2lbGp8d//X4hjmMn/37VvMfknHy5Mkcxe/fv9/8hwgh5AOT0zb4chV9sVYiptOjJcaxAQAbG/HrWm7y6mWY/Dh85liYZxGQ+/5iraxMpz99Iz8OozmWJrpMBYay6y8yUnw8VDncVnd3nobJfFIcN9F38Zbylu5Zzv3DPvji+NV7FsdzH3yx7ZiwBZo53ETx/vN3efO0Ij0MAP518YTf2DrZ+kP8a1ep3w/XWE6PiWlrLK/fDV3E3jgYs8zy6xhu/NifLI/vOZttdbViN1t3MW3dxOXnwdZLuk1lW32N/JFNooo0EDOy4WyWthPZ+sq4n9gkqK3MuneyY8vWbRq7/DWcJGYZf+nxzyoWY5NPU1ax22z+ZrYFY2E/N8n44vnYlleTfvvL+HrAXLYFoLNJgo6LO2/QPLbuNXfjaePr8pwymipb2Mf4evnuv42vj119ahzTqm1t6fH7Pq9jmBebmMJr9bTu8A3j+ahlzRKS8U0qFwUApGVk4vydQOP0ey/C8fxNNFwcbVGnnL9kfPPqJaBWMTh/5yWiRJJ/nzqrJq4OHDgAhmHQuHFjtGun/KluAFC7dm3o9Xrcvv3fzDD+l9x6wh4IHG1tJT/n485m3i9w7tqEcO4CZGW2xXg4s3cSzt9l47nNfKVO3AD/TtT9wHDJz5FPn2X3iIVMnzpoqe+3Pc5R/NyDwi4nlmj5dc4Sd0PnbsxR/OoDwi4fhBDyXxIcHGz+QzKeB+XsPLT3zK0cxS/ZcjpH8Yt2WH7Tj2vhFmG3Z0vM2ZSz89CiPy6b/5CMVRa2VjS1ev8N42uxYTGySF0XbznOdvuWS1pJzTt5jW29Jda1z9y8Kw9em/2M0njTllVcUvOOXmXLn8dd+sl/tjZsvSQ6nm0heJvzMBNHmcSNDSee2+roxmM2CevsKF13suPUi7hP3Dx7m60H5XGTvunv7MC2IvrnOZvsvXyPPf5w61emXDitsO48Y7/zs9dsCygnB+nyc+c9fcUmq68/YrefabdCLk8XtmyX7rJDBfzzrizODja8llbCeAfYvbspcYeTuMqqu6pVDOxtpON9PJyMiUnu8l+GGo6/pf29RbumZnF1tIO/rzsy9Xq8ipB+gM6nyqqJqydPDI8Ia9hQOBijOX5+huwpdzB38mmSu9MgGcNkJ+rflNvLJyT32ElfIyji4Sp9kaREsX937EdCCCFW5iBT2VPCViOdbFFCLZftUEClylmVSpXD69icXoWqcvr9c1qAXP7+Oa1HMLldD8jh4rOz/XirLDvxOQs3KYvlf4Ebk/VSyVDaWeNt8+It+AZZi+B9f2MBzMdnDfT+X6x5WjVxlTV2kNwjVKVkZBiyypmZH/aT8EjOVSvDPuYzLlG6LcubaLZlVcNK7GOFC3qzTylJlHkqYSTnUa2NqxQzvtZy7qboZAYs4N7pqFIyr+TnlND+F48+nxC/HCZuWldxz1H8rK7SzZKVmNg6X47idy8Uf7qLUnOGd8xRfP369XMUTwghH7sCBQrkKL5IwZydh9rVr5Cj+KGda+co/qv2wiccWmL+4AY5ip8xWPwpY0qN6V4tR/Eju+bsqevD2rPLl3sqW5rEvL7NK7CfkemDKjWvXZ0A42u5h/JJzatfwT9H8XXLsUOTpGdI/wHuPO6le7u6JY2vw99KjzWXkso+lYLbsqlmGfb3myDzVL9UHTvPkdPtrzonXq7ulMx5KkYedwfj68aV2XpUaLT0A4K446BV5tR96pf3N76OiJWOf8vpXl2lFFvfK+3vbXwdnyTdBTsukZ3Hjalemv3+bxOkx7oLe8uWrQFnn6lYwnAdnJCsQ0KKdN0xIibR+PuoxPn+Wd8lI1PPewKhqTeRbPfmepzlF85rOP7efRGGtHTp39/b+GS8DI2BWqVCfm83yc99qqyauHJ3N2yUoKAgM58UunfP0Pc7Tx7pfrfk0zCiUy3j63P/BEp+7tq7Zr0MgDa12BPepqndja8jZPr/cp/8NKoLe8G0f24P42ul42f8MJJ9JPWaUQ0URrHO/MpW/H8aLHw8tjncx8L2blpE5pPm44UPJ7YsPjs+9vidP+Ys/rtB3XIU36hRoxzFt20rfKQ6IYR86GR6VChiI9OlSaqCzZ3uw6n4mUo1Gag6C3cA64ACnqKfUcrOJmetjOxtpL+/1NMZudPLFs7ZNTl3vJ/sCCjoYXzt5eVlcTx3HFUfHx+ZT4prXrWo8XWF4r4Wx7epzt40bVK1jMXxg1pWNL5uXdvy+FGdqhtfN61ekjdPKkHF3S1Wjm1jfN29GT9xKJe8yrJmEjtszNge/BtQcsmnLBsmdjW+njWkRY7iZ5vEyyWvshycx9Y3+rSsYnydJPHbB4BQTuJky5TOxtdzh7U0uzyA/wCA3bPY5c/llF8ns+4TOWXbM7eP8XWv5uz2exgk3buJO67Td33Za8+RXesYXwfJjN33nDMu3tT+jY2vl49rb3ydkCy9/hI5T23lxozrUdf4+s4z6fHquAPQD2jD1rcaVCxsHF5m91np8eayBnB3d7ZHaX/2mNGnRUVjq63DfwufmJrlxHVDl1KtRo1qpQsapwcUzIMSBbyQkKzDqRvS4+UduPgQmXo96lfwh4eLdJfMT5VVE1cVKlSAXq/H7t27LWo5lZCQgF27doFhGFSsWNF8APnolStqOBikpWfiwKVHiORk799ExmH/hYfGppINKwsTNXacQVEDQ2MQm8hm36PjkhEYGmN87+fB72dk2iIwNS2Dd/fJ9L3W5Mo5ICAAOVG5cuUcxQ/v1CxH8Yc/8iQSxVO8JexNxlC1NN7Xg19xtTS+QB7+WBiWxpfz51fWLI1vXtk/R/GjO/ET7ZbGLx3BryxYGr9kZBvee0vjF3zVivd+2/dtJD4pzvTze2ZY1nrQ9PO7p3ewKN7080tHWZaENl1f03o3yFH8kJYVchT/3Rd1JT4p7txyfvzYLpa1Ojn985e895P78CvP3Mp3WnqmoDK+m1PxA4AJPdnKWyb4Saq0tHTBU9fWfNeF975WGctav55cNpj3vmg+N4viTyzjf/+GFf1577lJqoxMYTJr5bedeO8tTUTtnPMFP97Tsvg1k7ry3hf0tqxHx7yh/GQB9yloSkwd2JT33tJE4qT+TXjvHSyMH9CuOu+9ndayal3Xpvw6lbcrez7LBGSvfQGgbPH8vPem68/c7yegIH8QbdPxr7jJp0y9MBlVrJAH771pHtrSeK3J+FXc5FV6hl6QzHJzc+O95z41MDA0hjd4dlxiCq/uodWoYGdnx4vnbv+E5DQkclpeJaekCVpiOTnxrx+4409FxiYjntM6KiE5lffUTbGusRU5T/07fSuQ1/IqMjYJZ24HGtdhYc53zeLvx7bavP44BOEx3PhEXH/MJr38vIRjPDhyxpYKiUpAHKd1VlxCCkKiEkQ/m6VYfsONAL3eUP4IzvLD3ibi9K1A4/uyRYSJ6u6NywEAXrx5i/VHbiCG03IrMjYRqw5cNY6j3L+VsK5W712rs9jEVPx54g5vDLOw6ARsOnrT+Bvq2ugzXizDMOjTwvB73HryDg5cfIhkTuu82IRkbDl2C6duPIdaxaBn0/KC5f8XWDVx1amT4QT37NkzTJ8+3dhHVE5qairGjBmDt28NGdqOHXPWpYR8HFaM72Ac3C89IxPn/wnCrtN3sPPULfx9NxAZ7/adAt4umDVYmKg5uWwQrwnv2/hUBIbGIDA0BnGcxy1r1Ax2zukliBer/IidtAHgzC9fCqZZUnkS+2xO46d1VN7qSiy+rfTDHBXF17Tg2lMsvlPxnMV/YcHxXCy+cn6RD1oQb0nXP7H4ZlWUF0AsvnapnC2/QmHlg0aJxfvnUT5WiVh8QS/llQex+KJ5lVdeTvwsjC9pQeVv15w+gmmmySg5W2f2FkzzcVd+F23FhM6Cab4yrUBMTR3cQjCtsJ/ydpddmgov3soV8Rb5pJCDjRrVyvoLpiut/GpUQI1Swt+Km8LKp1YF1ClTkDctf/78cHFQtv/a26iRPz9/+d7e3vB2U7b9fD0c4e3NX1c+Pj7wcLKTiODLn8dJ0EqkWkA+xZVXsfXcrE6A4gvDvCLxfdvVUBgNeLkIv2fr2mUUl7/WZ8KucZ0al4edzMDSvGXVFJ5oWtYqJVj/YhVuABjyuXDf/7xeWXi58n9/yamGhJXpn5jct54gftFXyhOPvRoJW9hsnNxd5JPiujcW3mSbPaSFoPIvlrACgLmDmwqmmSai5AzrIOzat3O28vjJfYVdC/+c0VNx/M+jWgmmHV48QHH8inHCJLNpIlHO8rHtBdOOWxAvliQ/+ZPwelTK3pmdBNP2zBeez6SufY8sEK5rsfUn9fs5PL+HYNqZn4XlF0s4AcCBOV0F084uF57PpeLFrh3O/DJEMM2QsBKWXyx+y7TuvORbfLLOWPeIjud3fxP7rqbbXw9DAishOQ2mDcDElv/XEv76T03PRGRsMiJjk5Gi43+Hc8uF3/WXMe3g7swe/x4GReD0rUCcvhWIuy/CjeM/OdhqsXma8FizZWo32HMaDgSHx+H64xBcfxzCe4KqjVaFnbOEda9jSwfy6m6JqekIiUpASFQCr6UY8+6zpjZ83wVOnIHt7wWy5ee2tHJ1tMXKb4S/38GfVzV2GX0ZGoNlOy5hwZazWLDlLJbvvoyQSEPSqnWtkujcsKwgfu7QFij0LqGXkKzDrjP3sPrgNaw+eA37Lz5EyrvHwFYqkRf/6yg8VzaqXBRD21eDXg/sOnMPY346iAUbTmD22r8w6ofdOH7tGdQqBpP7NULpwpa3EP0UMHol2aN/0ahRo3DkyBEwDIOAgAB06dIFn332GR48eIApU6aAYRicOXMGERERuHr1KrZs2WJ8UkqrVq2wePFiaxb3k6VLjode/+GPF/b10v249lD4xDMGQINKRTD7S/nWRc1Gr5bsK+7j7ojdc+UvkmoNlX5amlrFiB74lcYD5hNUH3P82LErcEm6m7vZ+MWLV2Dnk+zH//rrCmw08xBSufgff1yBrQ+yH79161b8eEr+KU1y8Sv3nsS6w/JPC5SL/2HLfmw/K/+0QLn45TuPYtMx+cd7y8VPWr4Lp+/IP21TLn700h24/FD+8eZy8TNX/4XDV19kO37GyqM4ItNc21z82B/24hLnUemWxg+dtwN3ArP//b9atAvXn0qvfwbABZn4cT/tw8V7byTnO9qpcWypdCVr1roTOPS39A+4kI8z/pguvHDN8r/Fu3DziXT5vZztsG9hP8n5/WZtxeNX0r+/PC722Lugr+T8vrO34kmwdHxBb2f8OUO6/F8t3oPrnKdEmapc3Bc/iVRcswyetwP3ZLZ/lZJ+WDZa+unMnSZtRIjMOCVVSvpg2Wjp1l2txq5BTKL0OB2VSvjg5zHS8Y2+WoEU6WFaUL5wHvz6rbDinKXL95vwOlJ6nJgvmpfDsA61JOd3/X4TXsnED29XFb1bSrduHjBnOx4GRUnOnzWoMRpVkb7DMmzRbtx+Kt1dZdHw5qhVrrDk/IZfrURqmvQ12sguVdGtsXT56wxdAbkrvLFdqqFTY+kxoT7/Zh0i41Ik56/8pi3KFpFuHVZ76ArZoRbmDGiMBtWk11/dYSsEFXWu5WPby3bNazBipWx3qTXfdkZAYemuhebW3+7pHWS7Fpq7dto1rT18faXLb2797ZnRUZD0tiR+78xOskOvNB35Oy9RYOrIgp6y4xU3HLESqTLr//D8HnB1lb5BUmfYCtmufuauXXM7vvN3m/GG84RzLgdbDY7/OEg2vuFXqyTHGWMY4MKv8suXq/totSqcMZPg/N+Svbj5WPz6pUQBL6z7TnjDjKvX9K14ESJ+/izo7Yo/ZwiTllxNR61GosQJxNFOK5q04ho4dycvUcVVvpgvfuV0MRSz/vANbDl2G/FJ/LHC3J3t0L9VFdGkFdf0NSdw/NpT3lPqAUMPnc4Ny+KrztLnLgC48M9L/HHsNu9JkSqGQe1yhdC7eQV8VsTybsm5gWFUsLH/d5+eZPXElU6nw9ChQ3Hx4kXFTwDQ6/WoXr06fv/9d2i1OXvqCDH4WBJXWf48fgd/338FhmHQtGpJtKph2ThO434+hDvPQ8GAQb1yhfBdP8vGBGr37QZExCaBAVA8vwfWfS+80yPH9CLG0u4sFJ/9eLEEliXxYgksS+LFEliWxJ88eRLfb+MnsCyJ379/P+Ye5CewLIk/evQopu3iJ3AsiT9y5Ahm7AnMdvyZM2cw8Q/+BrAkftuZG1j6xxXjexsVcFrkrqyUvX/fw/x154zv3Rw1OLRY/qKTa8+lu1iw/rzxvaeLDfYvUH5Xf82+K/j9EPuYci9XO+yb309x/I6/bmPJ7kvG98V83bBB5E6plO3HruOHnexj5muVyYtFX32uOP741XuYsppdfx3rBmBcrwaK43efuomFW9nHxLeo5o8pA4StxKT8vv8S1hxkDwBtahTBpH7Ku1OvO3wZK/feNL7v1bQU/tdJ+cMA/vjrOn7aza6/rzpURY/myruDr9p1CWuPsuUf36MmOtRX3qT0hy2nsP0sO97GsA6V8EVz5YNAf7/yIE7eYB9zPrpTVdFWdlKGzd+J2y/YCsSQlhUsapW19M+z2Hb6vvH9sq9bokpp5U2CF205g11n2ePHz6NaoVJAQZkIvpV7/8b6I7eg1xvG01o1oZ2ge5OctQevYs2hG8jI0MNWq8bmid2RN6/yC/mhC3fizjN2/f08ph0qlVC+/C9m/olnr2OM7xd93Rq1SgtbqkmZ9vtRHL1mOP6rVcC+2d2M49Uq0XPaFgSGsi0ttk9ui3z5lHeH/GLGH3j2hn3ku7mEj6kv5+/C3RdsAnzfrM4WjYXVY+pmvAxjExDmElamOn23ESFRbALZ0vKbLt9cwspU9ymbERRuiDd3s0LM6B/348qD19ADcLLX4ugP8gkDU8MW7MLt54b1ryThYKrn1D8QGGbY/jYalaBrrzldJ2/GqwjD97fVqnHqJ+Ut2gCg1/Q/8SIkBkD2vv/8jadx+uYLZECP0oW8sXSkZV3R/7doD+48D4MeeuT3dMGfM5W3KASAMT/ux42nodBDjxJ5PbFqovTNAjEbj1zHiesvoNfrUatsIQxpr/zcAQDLtl/AuTsv38UXxJjulnUFH7vsAG4+M9wAqljUF4u/tmz9rdp3BefvvATDMKhfwR/9W1cxH8Rx49Eb3HkWCoYxDMRuacLo8OVHuPbgtWH55f1Rt4L0zQoxr8JjERKjg0ajhr+fO9ztP64neX0SiSvAkIjatGkTli1bhvh49oCclcjiFsne3h4jRoxAv379oFbnbBBKwvrYElcAoLVzgkqlRmZmBtJSpO+kEvI+0P5HchPtfyS30L5HchPtfyQ30f5HctPHvP+9j8SVxvxH/n0Mw+CLL75Aly5dcP78eZw+fRqvXr1CVJShWbanpyf8/PxQr1491KtXD46OOXvqCCGEEEIIIYQQQgj5+ORK4iqLnZ0dmjRpgiZNmpj/MCGEEEIIIYQQQgj5T7HqUwUJIYQQQgghhBBCCFGKEleEEEIIIYQQQggh5INEiStCCCGEEEIIIYQQ8kGixBUhhBBCCCGEEEII+SBZPXEVHByMCxcuWBx36tQpBAcHv4cSEUIIIYQQQgghhJAPkdUTV5MmTcLgwYOxcuVKxTErV67E8OHDMXny5PdYMkIIIYQQQgghhBDyIbFq4ury5cu4evUq9Ho9vL29FccVLVoUer0ely9fxq1bt95fAQkhhBBCCCGEEELIB8Oqiat9+/YBAPLly4f27dsrjmvcuDFKlCgBADhw4MD7KBohhBBCCCGEEEII+cBYNXF148YNMAyD5s2bWxzbtGlT6PV6XLly5T2UjBBCCCGEEEIIIYR8aKyauAoLCwMAlCpVyuLYIkWKAADevHnzr5aJEEIIIYQQQgghhHyYrJq4SktLAwBotVqLY7NiUlJS/tUyEUIIIYQQQgghhJAPk1UTV56engCAp0+fWhwbGBgIAHB3d/83i0QIIYQQQgghhBBCPlBWTVyVKVMGer0eu3fvhk6nUxyXmZmJffv2gWGYbHUzJIQQQgghhBBCCCEfH6smrlq3bg0AeP36Nb7//nvo9XpFcUuXLjW20mratOl7Kx8hhBBCCCGEEEII+XBYNXHVsmVLlCtXDnq9Hvv370e3bt1w5swZZGRkiH7+zp07GDFiBFatWgWGYVCoUCG0b9/emkUmhBBCCCGEEEIIIbmE0Stt9vQviYqKQteuXfH69WswDAMAsLGxQdGiReHm5gaVSoWEhAS8ePECcXFxAAC9Xg9XV1ds3boV/v7+1izuJ0uXHA+9PjO3i2ERrZ0TVCo1MjMzkJaSkNvFIf8xtP+R3ET7H8kttO+R3ET7H8lNtP+R3PQx738Mo4KNvfO/+jc1/+pfU8DT0xObN2/GlClTcPbsWQBAamoqHjx4wPscN59WqlQpzJ07l5JWhBBCCCGEEEIIIf8hVk9cAYCvry9WrlyJM2fOYN++fTh9+jQSExP5BdNoUKNGDbRq1Qrt2rWDWq3OjaISQgghhBBCCCGEkFySK4mrLPXr10f9+vWRmZmJqKgoREREICMjA15eXvDy8oJWq83N4hFCCCGEEEIIIYSQXJSriassKpUKefLkQZ48eXK7KIQQQgghhBBCCCHkA2HVpwoSQgghhBBCCCGEEKIUJa4IIYQQQgghhBBCyAeJEleEEEIIIYQQQggh5INEiStCCCGEEEIIIYQQ8kHKtcHZHz58iKCgICQlJVkc2759+3+/QIQQQgghhBBCCCHkg2L1xNW5c+cwc+ZMBAcHZyueYRhKXBFCCCGEEEIIIYT8B1g1cXXjxg0MGzYMGRkZ0Ov11lw0IYQQQgghhBBCCPnIWDVxtXLlSqSnpwMAfH190aBBAxQsWBCOjo6wsbGxZlEIIYQQQgghhBBCyAfOqomr27dvg2EYlClTBhs3boS9vb01F08IIYQQQgghhBBCPiJWfapgQkICAKBbt26UtCKEEEIIIYQQQgghsqyauPL29gYAuLq6WnOxhBBCCCGEEEIIIeQjZNXEVaVKlQAAz549s+ZiCSGEEEIIIYQQQshHyKqJq86dO0Ov12PHjh1ITEy05qIJIYQQQgghhBBCyEfGqomr6tWro3nz5nj9+jVmzpxpzUUTQgghhBBCCCGEkI+MVZ8qCACzZ89GWFgY9u7dC7VajRkzZkCtVlu7GIQQQgghhBBCCCHkA2fVxNXEiRMRGxsLnU4HvV6PXbt2YdeuXRb9DYZhcP/+/fdUQkIIIYQQQgghhBDyobBq4mr37t1gGMb4Xq/XW3PxhBBCCCGEEEIIIeQjYtXEVdWqVa25OEIIIYQQQgghhBDyEbNq4mrjxo3WXBwhhBBCCCGEEEII+YhZ9amChBBCCCGEEEIIIYQoRYkrQgghhBBCCCGEEPJBosQVIYQQQgghhBBCCPkgUeKKEEIIIYQQQgghhHyQPprEVXJyMqKjo3O7GIQQQgghhBBCCCHESj6KxFVGRgbmz5+PunXrYsiQIbldHEIIIYQQQgghhBBiBZrcWGhERAQ2btyIK1euIDo6GhkZGZKf1ev1ePv2LVJSUgAATk5O1iomIYQQQgghhBBCCMlFVk9cXb58GSNGjEBCQgIAQ2JKDsMwxs/4+PhgzJgx772MhBBCCCGEEEIIIST3WTVxFRkZia+//hrx8fEAAFtbW3h4eECn0yEqKgoMw8DPz48XExMTg+TkZFSrVg0//fQTXFxcrFlkQgghhBBCCCGEEJJLrJq42rJlC2JjY8EwDEaOHIkBAwbAxsYGp0+fxtChQwEAJ0+e5MW8efMGAwcOxNWrV3H06FF07tzZmkUmH4D5m89g3/kHyGqcp1Yx+KJ5BXzZrrqi+HbfbkBEbBJvWon8Hlj3fVdF8bWGrhBM06qBM78MzXY8AFxcQfEUL+/s2bOYsOV+tuOvXLmCUWtuZDv+4sWLGLfhTrbj7969iy9/Pi+Y7uqgxuElg7Md7+lig/0LBpiNf/HiBXrN/0swvay/F1ZOMH8uefjwIQYsPS2YXjCPM/6c2cts/KNHj9D/h1OC6SXzumPtlG5m4/ddvo95a88KppfK747V35uPP3v3JSb8fFgwvX6F/Jg7tI3Z+DtPwzB00W7B9P7NymNwx5pm4288DMKIpYcE08d2qYlOjcubjb946znGrTgqmD6kbUX0bW3++H/n6SsMXXRAMH3WwMZoVLW42fi//3mKMb8cz3b82ZsPMeG304Lp84Y0QL2KAWbjL/3zEmN/EW6/X0e3QvmSBc3G7z5zGwv/uCSYvmR4c9QoV9hs/M4Tt7F4uzD+51GtUCnA/PLX7L2M3w/fFExfOqIFqpX1Nxu//cRt/CCy/A0Tu6JYIQ/z8Sdv4Ydtfwumb/muO/wLuJmN/+PYDfy084pg+qZJ3VCkoLvZ+E2Hr2H53muC6YfmdYebm/nlbzl6Az/v4i+fAXB4QU9FN3EnrTiM07deCqbvnt4BPj4+ZuNnrj2Ow5efCqbvn90Fnp6e7z1+worDOCtS/n2zOsPLy8ts/LTfj+LoteeC6QfndoO7u/ntt2Dzaew595A3TatW4cwvX5qNBYBuUzYjODxeMF3ptcPAOTvwICgy2/Fjf9qPS/de86Zp1AzO/qJsrOABc7fj4cso3jQVgPMKlz9t9TEcvfqMN83dyRYHF/VXFN9jyha8DI/jTVOrgHPLFX7/ZQdw6f4r3jQ3JzscWtRPUfzcTaex/zx/+wcUyoM1Ezspit9w5DpW7buGjExD5YVhgGbVimNq/8aK4tceuoY1B67z4lvXLIlJfRoqit92/A6W77kMXbphOB6NWoXuTcpheIcaiuIXbzmDXefYuhcANK9aHFMHKiv/xiPX8fv+60jLyDQu/4vmFTD482qK4sW2X60yBbDoq9aK4redvIOV+64iOTUNDBjY22owolMNtKtbRlH80ctP8MvuvxGbmAIGgIeLA0Z3q4065fwVxR++9Agr9l4xxnu6OGCUBfHBYTE4cPER3kQlQqVSoWh+T7SsVgR53BwVxX+qGL25vnr/om7duuH27dsoX748tm7dapyelbhiGAYPHjwQxD19+hQdO3aEWq3Gvn37UKBAAWsV+ZOlS46HXp+Z28WQdf7OC3yzXFjp5Fr/XScUL5BHdJ7YRYep6f0bomn1kqLzOk3aiJDoRNn4Xk1L4X+d6ovOa/i/FUiVHr4NANCxdkmM+0L8JCSV8OCq91kBzPuf+EFcSXy5Qo5YMfGLbMe7ATgkcRGjJF4D4GwO4huUssGckeIJDCXx3RoUwMju2V9//SurMXiweAJGSfyQmvbo27dvtuPn9SyNevXqZTt+6YBKqFZN/CJCSfyiPuVQq1atbMfLXYBTPMVTPMW/r3gVA5z/NffizSUQzMXb26hxYpl08v99rz+58kdFRaHtd9tl47VqBmck4iMjI/H59zuyHf/27Vu0nrhVdF4WJzstji4dKDovLi4OLb7ZIhvv5+GEnXN6i8578+YNOs/YJxuvZoBzEvvP/ecRGLRgp2y8k60GR38cJDovMDgGPWf/KRtfwNsFW2f0FJ33ODAK/ebJbz8fdwfsnttHdN7z0HD0nrZLNr5GmfxY8pX4zZMLtx9j/K8nRedlKeTtgj8kyv/g2RsMXCi//htU8MecoS1E5z19HYU+M+W//8A2lTGwTVXReUGh0eg+bZts/LQBjdGsmvjNDyXxswY3QaPKxUTnvQqPRbepf0Cudv/T6DaoXDK/6Lx7L0IxeP4e2eXPHtIMDSsWEZ33OCgC/efshFxyYeX49ihb1Fd03rGrjzF1tfz2nz6wEZpWLSE672lwJPrN3YnMTPESqFUM/pjWDfm93UTnvwyLQb9Z25GaJl6Bc7DTYuv0bvB0FR9zOzAkGv3m7IROIt7RXout03vCw8VedH58Uipmrz+Fs7cDRcvetnYpjO5WG1qNWjT+Q8IwKtjYO/+rf9OqTxUMDAwEwzBo3rw5vxAq+WIUK1YMzZo1Q3JyMrZskT+ZkE/DP89CBEkrtYqBSsXwpvWdvROh0cI7WmsPXjWbtAKAqWtP4e6TV4LpfWdvNZu0AoDNxx7g5N+PBdObj15lNmkFALsuPMK2I7cE05VcdALA2X+CseNc9uPvvEzEz9uPZDs+BsC8ecLPKo1PB/D999mPP/1AhzVr1mQ7fuvpYBw8eDDb8WuvZ2DVqlXZjv/tUrLodKXxUq2xlMZLtcZSGi/VGktpvNTnKJ7iKZ7i32d8ph6ok9P4YdmPT8/Qo97/fst2fLIuA42/Fp57lMbLfS6n5TeXtAKAtAw96o9YKTrPXNIqK76BRLy5pBUAJKSkoeVY4bUDALNJKwAIiU5A18mbReeZS1oBQIYeqD9cuJ4jIswnrQAgITUdLcYIyx8TYz5pBQDB4XHoM1O4nqKizCetACDsbRK6fS/8/gkJCWaTVgDw971XmLxSeGM6KirKbNIKAF6Gx2HAXGE537yJN5u0AoDTtwIxd72wNfTr6GizSSsAWH3gOraduC2YHp2QIEg6qRhD/YVr2poTOH/nhSA+MlpZ/PerjuPaA2HdJTI2EV2n8JNWWo0KNlp+kuOrHw7gfmCYIP5VRKzZpBUAfPfbUVx/GCyMD49FP5OklVYrXP6XC/fg+Wtha8Jbj1+bTVoBwNTVJ3Hr8WvB9FfhMegze4cxacUAcHawhZODDbLWYEamHl2n/InImARBfGh0PHpO22pMWmnUKuTzckFeL2fjNkhKSUP7SZuRkJwqiH8TGYteM7YZk1ZZ8X6ebHxichraT9woGp+YosPXS/fj7O1A2GjUqFPOH8M718HQjnVQtXRB6PXAnnP3Mem3o0jP+LAbn7wvVk1cZQ3I7uvLz7I6ODgIPmOqRg1D08azZ4XdJsinZ+iivcbXns52qFzCDxVL5EOlkgVQJSA/XBxsjPO7Tf5DEL9q/3Xee1utmveP68vFwq4kT4LfKi7r9+uEB9n4ZAVZq3eW7vlb8WfFLNmcs/gtJwJzFL8vZ+E4KTx3WeT3K7ocxc/eLzz5WmLtdeXbWozSSsZ/Jf7u3bs5in/xQngxaEn8w4fmE95y8Y8ePcpR/L7L4slIpfFHzgpbLcupbRL/12XL1n+bcev4y79k2fK7T+FXElfsuGBRfNfJm3jvNx4Rds1SMew/U98u53dl/Flk+XLx09Yc472f+ruwa6Oc2etP8N4v2CSsTGk1KuM/U38e5Sef+80yX2nn+nEr/5qqr4XxO00qb+0nrLcoft+5f3jvO3+3SfAZufV/5ym/8tZFJF6jZoz/uDIB3A98w5vWZvxaQbxaxf7jxeuB50H8a4XW4/jx3GWbLj89Q4+YmBjetLbf8Nef6bUL9y8k6zIQF8fvSmXp8TgsjF95rWuSjGNM/pmW35Tp8UQuPi1dWPGypPw6BfHcbWe6/WIThdcOdU2SSXLXjq8ihDdNLSl/mki9s91k80mrLHFJwvK3msBPWsntf09fC69zTZOOctsvOFL4/ZuP4//+nOy1vH/cTXDihvBcbcnyTbsxAkDnGfxkmr2thvePa/8l4bm663ds0ogB4OfpBD8vZ/h5ucLPyxm2nGPwUpFuzF2+Y9e/o53WUHcp7ocKxXxRuYQffNzZ+q5Yj5IuU9l4J3thfB43Nn7kj8K6S49pbLy3mwMaVPBH7bIFUatMATSo4I+CedjWL0MX7hHEd5/CxtvbqBFQ0Iv3z8lOa5z/1VLhTd8+s9jt5+PhbFh+GXb5+bzY5Q+YKxyGYPiS/cbXajVjWP+cf2rOPsz9LPs32aRpQEEvtKtTCo0rFUGTSkXRrk4pFMvPdjHuM0uYIB+6cI/xgXD1KvijX8tKaFmjBFrVKIn+rSqjRmlDK7WMDD2GLtgjEr/XmDRswIlvXdMQXzUgHwAgPSMTwxfvFcSvPXgdj4Ii4e3miFlfNsWA1pVRo6w/6pQviq+61sPkfg3haG+DC/+8xP4Lll1rfSqsmriytbUFAGi1Wt50Dw92rIKgoCDRWEdHQ5/OkJCQ91Q68qF48Sba+MO3t1HD3084FkHx/J7QvGupl5aRiYQE9gS+8yT/Qtr0YkNsGvfi73+Lzd8tMvXqFXvxbOmFOwA8fsy22mogcRdXqQ8tEUHxFG8JsTGtLCE2ppUlxMa0soTYmFaWEBvTyhIztpyx6POmVc/pay1b/9EJKfzlr7ds+UEmY5hsOP6PxCfFvYrg3+z6dQ8/cWWa7DB9f+4O/5pji8nyzcUfvcIfw+WYyJg6cg5eesJ7v+c8vzJlmqwyfb/MZAykx6+U33QBgK2n+InSJxbGm46BFR4j3opUyrzN/EThmyh2e4olq0zfm45h9poTL1ZZN30/aB6/dUZ0PHsXXCzZYfq+9xx+ou9tAhtvuiyxaaaJhqg4dv2JXbvYmCSvWk/IWS+EDlP5lUduLkokTyiYZnq85x5PlMSbJrosJdVqDhBuK7FpDb/it1rjNmJQcu3Y7tsN5gspQ678SjQd+bvkPCX7X49pwhu/WZRsv07fbeS9525/J3t+XQ8AHEymibW6smT5X86XTvSZJqrEpi3czD9fcVsq+XoKu4J5uDrwjkF7z7PHT51Oh+TUdACG41RAQeE4bPnzuPLWy01OqyGdTofUtHfxKgYlCwjjC3q7wtHWEK8H8JDTaiotLQ2JyWkAADutBqX9vQXxRfJ5wtXRUBdPz9DjZUi0cV5cXCoy360AFYBCvsK6V35vV94+9PxVhPF1bFISUnSG8jvYalCqoHAcu+L5PY3JL116BiJj2Z4twa+jeZ/1FhnLyXQaNyYmIRkJyYa6oLe7IwIKCoeRKeufx9hFLyYhBQkp7PVLdFwywt8aylPaPw9K5Beu/7JFfFHIxw0A8DzkLXQ69sZ1VGwCIt+Np/xZER9ekixL+WJ+KODtCgB4+ioaGRlsfIouDfsvGG6cDmlXDV6uwu9fyNcdvZpWAADsPH0PVhzt6YNh1cSVt7fhRxQeHs6bXqhQIdjYGFrQnD59WjQ26y76f3Ej/deMX84ORltC5MCdpVQh9qA4aRXb3W3xNvZCWm4H587rNJm9y3LzSbjww2Z0ncVePFt64Q4A/ZawrbZ02djFczvZQPG5Gz/mR+V3acVsOSEcgNgSFy9ezFE8Ie+DWAsduen/dnxOibWwkpv+X5HT9S9WobeEWELEmsvndrvJjd4iUqWPihK2gDEXz73ciYy0vPk19+vffS7sOiSGu/2449hcua+s9TU3ecV98M+8DcIHOZjDLf90k9abSiS+S5QAwOx1ypbP3f9ehsYaX8slgbi42y8kik08cJNQcrs4N3HDbXXVTuFNX+6fvvuCTZz0mcEmgeV+otzk1e5zbKuVr39gW/BkJXfE+HiwCa1FW84ZX8/dzL4uKZK0Ms7j1Gsm/85us2lr2ZteAQWkH14QUIiNn8B5eMnMdaeNryuVEB8/CgA+K8o+mOF7zvJH/sQm8QvnlX54gb+vm/H16J/Y+tr039nyVyyZVzK+Qgk/4+vvfmPL/+UStgWSl6udZDx33pAf2Jg5G04bX1cvLT5+FwDULMM+WGTJH+y16/LdbO+VGmWkx9JuUIkd22vTUfbhIz/tYOOrlsonGd+oEvtglD9OsMNtXH3wGvFJqfD3dUfhvNIPH6kSkA8uDrZ4/iYagSGW3Wj6FFj16qd4ccNAdKZdMdRqNapXrw69Xo81a9bgyRP+HcioqChs2bIFDMPA39/fWsUluSQukXvHUnoXtdGyJ5/XUcImywCgFbljJjYviXPyJ+Rj8/eDCPMfkvHzdvGxrpSavFl8rCulxnIuPrJjzyXLurcRQsiHLDupLdNuf5a69Thn3eaPXmdbL2an/L8dFI4ZZIkNh28ZX2cnubjtJHseE2ttZc6xa5Z1Uzd14bbwCYqWuHSPbfmfneTo42A28Zid7Xf7Gbv/2dsJW1uZE8W56Zud5XNbW9qKtLYyh5sEcFBY/gzOAOAv3rCtfxxslcVntZACgJehMcbX9grj4znjJL2KYJOQ3PqRKQ1nXOm38ew6D49hk5ByA39r1Ow87vK54w1rZcau5i4/grPMpFR2XWg10uXnzktMYWPCotntr2akl6/lHBzeRLLrLPxdvFrFQGUmnnm3gwaHc+LffReNWiUfr9EY44M42zwmwbAt8uWRf2KsRq2Cr6ehyyV3+/1XWDVxVblyZej1ely5Iry736VLFwBAYmIiunTpgu+++w6//fYbpk2bhlatWhnvxDRr1syaRSa5IDsXDM72NuY/ZCKNc6fNdOBDQj4mbtI3pxSpVNL8o9Hl9P28XI7i+zctmqP49jXL5iieEEI+JNnpW+Djk7PjeAFPB/MfktGsMtuSITvlb1ld/ClrSjXgPOUsOy3RanJaaUg9UUxOQW/5Cqc5fl45e/qWL6clkNj4Y+Y4c8aOzc72c3dmL0TS0tJkPimO25IwO8vnJnvS0iy/Ge3iyH7/tHRl8Qyn6uDmyH5/pQNnc1vPcpevNN6Gk2BycZBuJSbFzoZNAmUn2chNcDlmox7GTRCqs5Ft5ibRHO0sX74LZ5s5vmsJmKmgZ1fWR1ydOPHv9r+MTPPbjo1nnyxoZ2OIj0tMEQvhxOoR++4z2dlmHzurJq4aN24MGxsblCxZEpkmG7ZZs2aoV68e9Ho9UlNTsWvXLixduhRbt241jj9UuHBhyUfHk09H/9aVja9fhsVKfu5RMNusfGz3OsbXFYuxTWTlLj64e+D4nrWNr7PTC6NjnZxdcHWsXTJH8W2r56zi36CcsC+8JUpLt2pWpJF0q2pFBlWz/ITF9V1b6WbBSsg9Vtwa8YeW5iz+59EdchTfp3mtHMWXLUuJJ0LIf0N2kgpcadlIqijh6ansRC5V+pzGVwooKDFHmVa1Sin6nFROoFOj8oriueufe8tz7ffdFMVLWT85Z/GLhjVR9Dnu/sdtmbXu27aK4rnbj3u5PH9QK+NruU4MyZxWMp4ubMV9xdiOFi+fm/hZOqqF8bXIuP3s8jmF8+Mk++YOYhtGRMZKJw9iOeM61ijFJjvHdGfrEY+Dpbu9hnJahnWsx+6z3/Ssz4mX7nb7JoIdF7JHU/am4dddahpf//NcuvXlC04rn74tKhlfj+PUo17IdEF7zWll1LclGz+8Yw3j6wdB0r0Anrxiv9vQdtXZ159XNb7OGmtKDHfekM+rGF8PasvGPwqWXv7dF+y6GdCGje/ZrAIAQ1Lp2Rvp9c8dl6xrI/batUfT8sb4F6HS6+86N74hG1+xhB/UKgb3XoTLtqR69joaYdEJcHO2Q9G8Oax8fYSsmrgqUKAALl68iGXLlkEl0ozwxx9/RKtWraDX6wX/atWqhfXr1/OeQEg+TR3rsz/kyNgkXvPRLLGJOiS8a2LLAPisKNtn+pdx7Xmf1Ylc5JkmtNrWYZd5drnlSYBxvRsbX2cnCTHui4Y5ip/Yv2mO4ucMZy8YshP/+2w2Jjvxs2blLH7AgAE5im/durXxdf/Klrf44xpS0978h2TM61k6R/EjulQy/yEZn9cplqP4LjlMwjarWNj8h2S0q52z8n8mMqCoJUrKjA2hRJ4cNp8r5JOzu/4l8ues/AEWrj/Tm6zebjn7/fj7uBpfZ0rUkLnTHWz4XRJ8PRxFPycV7+LAv+PpbOEdUDcHftI9jyt7jSP21DXT6cXz88fCsLSHkJcLf3+z9MZN8RzuLyVMys9t/Kxk/Teq6M+bx92fpBJE3OldG0ofb6USHNzpfZrzkx3c1a8kQTW6aw3ee2681I033rhI/RuKfkap8T1qSs5Tkl5bOKxRjuKXj2lt/kMy1nzbWXKe2PYznbZpknSySGz9p6Vl8Nb/4QU9zRVR1o4pn+cofu/MTsbXbm5uvHli+5/ptLO/DDG+Nk08im0/02nnOddbvr78wcyTkoXX7mlp6bwHAOxfwDZGKOFv+fLP/Pyl8XWxvPwWh8ki2TPTllg75/Q2vi6Qj38siksQJq/S0tJ4Q4ss/rqN8XVBXw9jC6xkXQai4pJMw5GiS+cNbTK0A/v7K5yXG5+OtyLLT05NQwgncdOnBXujv0g+L2Pvkai4ZLxNECY/klLTeF0S29ZhE2c1yhQyvk5NyxB9amVyahriOYnHnu8GCgeAisXzGo/fYdGJiEtKhanEFB1ev3saJcMAdcr7G+d1bcweSzMy9UhKEe4/SSlpvO6Z3JhKJfMaE7EPXkYiMVW4/LjEVDx9N6C7VqPiDeD+WRFf4/hnp28GIlknXH5cYiquPzY8JM7NyQ55vdjrjUol8xlbsJ26/hypIvExCcm4+S7ew9keedzZ34yXqyPqVyiMTL0em/66KdrqLjk1DVuOGbpUt61VitdK8b/C6iN8OjkJn9KQxd7eHkuWLMHhw4cxffp0jB49GlOnTsW+ffuwZs0a5MkjfEIA+TR1rFfG+PrBy0jcfBqCyLhEhEfH4fqjV3j6ms2Gc7P8WbgX/3oYDsLcf1xVOAMFZoe7k+XNc7ls/3vHnQ+K6eofPHhwjv5eTluF1qtXz6LPly7kynvfs3E1i+IbVuS3NpvQW9ld2yymia7RX1hWkfqmbx3e+2lDmuco/tsvLCv/5m/5y/ttUheL4teMasB7v3aKZXfN147mr6+98/pZFP/71/z95Y/pllWkTBO96yxsNWAav8bC9XfO5EbBnnmW/X5Ml79leg/e+0y98B/X8WWDeO93zfnCovgjSwby3v+1lP/enENLBvDe753fh/c+LT1T8I9r/fddee/P/WpZ4n7fgn6895beuFlvsr9YeuNgnUn5z5uU39z6nzWkBe+96f6UnqEX/OMa1Y3/+zk4l/99MjKF/7i4FU8AODivu0XL79KoAu+9aSLE9NrF9PqlaXX+jYLd0y1rPduhPj/xtm4C//erF/nHVbt8iRzFVyjBP//8PKoVLBFQmN9c+8ev+MOJyG07AChSkJ94Xfo1P5Fmuu65f4IB4OLCv1HQv+VnFpU/b17+INZD2lSW+KQ403rR8HZVeO/l9j2xHHfXhmV47+W2nZj/dWCvPzIBJCQbnnSXnJKGhOQ0pKazf8VBZByqRpX5N67klq+k/Mmp6UhOTUfKu/+5h08nO+Hyh3Ba/SSmpiMkKgGx8cmIT0xGSGQ8IuPYZEgRPzdB/Pd92fN5YGgsbjwOQdjbRETFJeH20zDcC2RbAjWuLOwpMb5nXePr52/e4saTEITHGOJvPQ3F/ZdsS67mIl1rJ37Bttq6/TQM5/95idDoRETEJOLivWBcecC29unVVNjCsF8r9sbnm8g4PAyKRFRsEqLjkvAwKJLXC0asa+/XndjW9zceh+D8Py8R9jYR4TGJuHA3CFcfvjHOH9SmiiC+QXk2eRabmIqQqATEJaQgLiHFsC04YyBzP5tlZBe21duxq89x/PpThMckIOxtAo5de4KTN9mn/k78ooEg/tt3rd70ej02H72Ng5ceISo2EWHRCdh34QG2nWKfOjxjUFNB/Pgehu2Xqddj49HbOPT3Y2P83gsPsOP0PeNnZ34pjB/8eTU429vg5pMQzN14GlfuByMxWYe4xBScuvYEM9adRGDoW+T1cua1tvsv+SAfTVO4cGF069YNQ4YMQY8ePVCiRAnzQeSTMq5nXVTnNMHNzAQC37xFUFgM73G1bWqVRK93zTu59s7vo2isLG9XBywb004w3ZKL74OL+uco/tQvws9aEi/2WYpXHn/uIy//7xN7CKZZEj97iPCOtyXxYokupfGeLjai41Mpjfdxt89RfOXiPihcWNjCS2n8ZwU9ERAQkO34GiX8ULKksIWa0vi6pfKhdGlhixGl8f1ail/4KI2f2r+O6PR9s6RbQXDNG9JAdPquae0VxS8aKj7m5YE5XUWnm9owUfxzOY2XawXCJbWe/vxe+JsWc3i++OdWjFOWvJBKcihNHkiVf8bAuqLTTe2ZId41aNbAxqLTTUntpwuGKkt+i8W7u7vj+z71RT6tLN7NzQ0Teyn7/mLxLi4umNhb/HelJN7Hxwftaim7ZhaLL+HvKaj8WxrfsrqyVq9i8ZUCCqJeBWGFVGl81TJF0KxKEZFPK4uvVroAWtdUtv4uiMQPblcb+bykb9CbW37fNlVRxM9V5NPK4nu3rIIKxZSNdSZW/lHd6qKQwrG6xJbfq3kl1CjDf6KbHoBp4y+1isHxH/k3DQBg1uDmyKOw1a1U+cv4Cxs5mCa9NGoGR5cKl9+3VWXUK8fvspqUmo6EZH7rI3dnO2yayk9SA0DLGiXRvTGbvNQDeBURh8DQWKRzhsgpW9gbMwcLExft65ZB5wbs70+vB4LDDfHclkYVi/tian/hcbJVzQBeQio9Q4+HQRG4FxjB633SsGJh/K+TsLXll59XQz2ThFBEbBLCY/itx8oV9cZkkeV3bVIOHeuz5U/P0OPBywjcD4zg3XRpVaM4+rcWJq7mDGspaEWcmJrOe3omYGhpPGdYS0F8pwZl0ZOT0ElITsPFu8G4dC8YiSns3xjQujJaVBf+zptVL47hHdnuiyFR8dh97gH2X3zI66I4oXc9VAkQPjmwZc2S+JKT/HwTGWeMj+DET+7bEBWLC5+8WMjXDT+MbAMPF3u8CHmLFXuvYNj8bRi+YCvWHriMsOgEFPJ1w7JRbeHmlLPW6R8rRq9XMAoZ+eTokuOh1+fCc5QtdO3BK3z76xEk6/gHLUc7LZaP/RzFC8i3wlu592+s4zxphmti7zq8LoJi+s7eiifB4n2VO9YpzusiKKbV2NWISRQfpLJpxUKYPkR44OWqO3QFpEazqFg0D34Z30lirkGtoSsk5/nn0WLLTPnWAXLxgPkK7vuM99IC+37KfnzdMp6Y/5V86xC5+KLuwMa52V9+KR9g9fTsxw9qWxoDWsu3zpKLH9GlktnWWXLxQzuUMzu2lVz8yhF1zI5t9T7jN3/bXDRppTR+zagGokkrpfFrRzcUTVopjf/963qiSSul8UqSU3WGroDUWUJJfL3hKyTHGlESn9Py1x+xUrS7nYoRtuwRI1V+NaOsZVPtoStEWymowO9iI6XBiJXQiRTA3kaNE8vMtwzN6fqTiteolLXMkopXuv6l4u21apz4Sf77x8TEoPWEP0XXv6uDDQ6btHQz9fbtW7SeuFV0npOdFkfNtKyTW76Hsx0OLOwnGx8XF4fWE7aIthLK5+WE7bN6C2dwhIWFocPU3aLzbLUqnPrpS9F5WaKiotD2u+2i89wcbXBosfz6k4v3cLLFAZEbflwPX0RiwPwd4vEudjhg0lLQ1POgt+g9R3z7FfB2wdYZ8i1TX72OQ9eZW0TnfVbEG799Iz8e09lrTzHh9+Oi81zstTjyg/z+c+3+S3y97LDoPD8PB+yc00d0Xpb7gW8waN4+0XkVivlguZnk9oXbjzH+15Oi8wIKeWLNRPlrp8cvQtF//h7R/b9dnZL4trd8y+xjlx9h6tpTovMqFPPFcpMhQUxdf/QaX/2wX3Reh7qlML6XfHL6/vMQDFm0j5csyjKqS01eFzUxL95EY9iivYLucjZaNWYNboI65eSvPaTibbVqzBnaHDXLyI8H9zIkGl8tPYDIWH7CycXBFov+1xJli/pKRBrcexGK/y3ZLxhqRatWYf7w5rxuhWKev47E10sPIDqe393RzckOi0a0RGl/+eTqmRvPMGnVMZhmKBgGmDO4KepXkh/X9/mbKHy7/C+8jozjTS/g7YLFI1ohv7ebbPyr8FhMW3sCDwLDjWVQMQzKF/PFjEGN4ekqn5x+FR6LqauP42FQBC++Ygk/TBvQyGx8YooOf11+gv0XHuBVeBxUKgbF8udBuzol0aBikY+miyDDqGBjn7OHTgj+JiWu/ps+lsQVl9bOCSqVGpmZGUhLSTAfQMi/iPY/kpto/yO5hfY9kpto/yO5ifY/kps+5v3vfSSuhB18reDevXu4f/8+3r59C51OOPibOSNGjHgPpSKEEEIIIYQQQgghHxKrJq5CQkIwYsQI3L9/P0d/52NJXIWEhGDevHk4cuQIAGDDhg2oXr26mShCCCGEEEIIIYQQAlg5cTV9+nTcu3fP/Ac/cjqdDmvXrsWKFSuQlCR8HCohhBBCCCGEEEIIMc+qiavLly+DYRg0b94c48aNg7e3N2xsbKxZhPfu3LlzmDVrFgIDAwEAvr6+CA0Nzd1CEUIIIYQQQgghhHyErJq4cnR0REpKCpo1a4b8+fObD/iIpKenY9SoUTh27BgAIE+ePBg3bhx8fX3Rt2/fXC4dIYQQQgghhBBCyMdHZc2FNWzYEHq9HpcuXbLmYq1Co9HAxcUFWq0WgwcPxl9//YX27duDYZjcLhohhBBCCCGEEELIR8mqiatx48ahePHi2LlzJw4dOmTNRVvFt99+i0OHDmHcuHFwdHTM7eIQQgghhBBCCCGEfNSs2lXQ1dUVa9euRZcuXTBu3DgcOXLE4gQPwzCYM2fOeyphzri6usLV1TW3i0EIIYQQQgghhBDySbBq4urp06fo168foqKiAMA4HpSlPtTE1cdEY+uQ20WwGMOojP9r7ZxyuTTkv4b2P5KbaP8juYX2PZKbaP8juYn2P5KbaP/js2riavbs2YiMjLTmIokElUqd20XINoZhwDAfb/nJx432P5KbaP8juYX2PZKbaP8juYn2P5KbaP8zsGri6tatW2AYBs2bN8e4cePg7e0NGxsbaxZBUnR0NN6+favosy4uLsiTJ897LtH7lZmZkdtFsBjDqMAwDPR6PfT6zNwuDvmPof2P5Cba/0huoX2P5Cba/0huov2P5KaPff/7txvKWH2Mq5SUFDRr1gz58+e35qLN2rx5M37++WdFn+3cuTNmz579nkv0fqWnJn10PwCtnRMYRg29PhNpKQm5XRzyH0P7H8lNtP+R3EL7HslNtP+R3ET7H8lNH/P+xzAq2Ng7/6t/06pPFWzTpg30ej0uX75szcUSQgghhBBCCCGEkI+QVVtcff3117h79y527NiBGjVqoGXLltZcvKyvvvoKX331VW4XgxBCCCGEEEIIIYS8Y9XE1ZUrV9C+fXsEBgZi7NixOHz4MBwdHS36GwzD0FMFCSGEEEIIIYQQQv4DrJq4GjRoEBiGAQDo9XocO3bMoni9Xk+JK0IIIYQQQgghhJD/CKsmrvLmzWvNxRFCCCGEEEIIIYSQj5hVE1cnT5605uIIIYQQQgghhBBCyEfMqomrT11GRgbS09N509LS0nivU1NTje9VKhW0Wq3VykcIIYQQQgghhBDyMaHE1b9o7969mDhxouT8gQMH8t536NAB8+bNe9/FIoQQQgghhBBCCPkoqXK7AIQQQgghhBBCCCGEiLFqi6tSpUoJpjEMg+PHj38SA7d37NgRHTt2zO1iEEIIIYQQQgghhHwSrJq40uv11lwcIYQQQgghhBBCCPmIWTVxpVarkZmZiVatWqFw4cLG6S4uLtYsBiGEEEIIIYQQQgj5CFg1ceXh4YHIyEjUqFEDXbp0seaiCSGEEEIIIYQQQshHxqqDs1eqVAkAcPz4cYtjY2NjcfXqVVy9evXfLhYhhBBCCCGEEEII+QBZNXE1YMAAMAyDs2fP4vDhwxbF3rx5E1988QX69u37nkpHCCGEEEIIIYQQQj4kVk1clS9fHtOnTwfDMPjmm2+wefNmi/8GDfBOCCGEEEIIIYQQ8t9g1cQVAHTp0gUrVqyAt7c3Zs2ahY4dO+Lw4cNIS0uzdlEIIYQQQgghhBBCyAfMqoOzBwYGIiQkBBEREWjRogU2b96MBw8eYMyYMXByckJAQAAYhhGNjYmJsWZRCSGEEEIIIYQQQkgus2riqkWLFpKJqYSEBFy7ds2axSGEEEIIIYQQQgghHzCrJq6y0DhVhBBCCCGEEEIIIcScXElc/fbbb6hfv75FMadOncKwYcPeU4kIIYQQQgghhBBCyIfG6oOzZ5dUF0NCCCGEEEIIIYQQ8mmyaourqlWrAgDc3NwsjnVzczPGE0IIIYQQQgghhJBPH6OnAaf+k3TJ8dDrM3O7GBbR2jlBpVIjMzMDaSkJuV0c8h9D+x/JTbT/kdxC+x7JTbT/kdxE+x/JTR/z/scwKtjYO/+rf/Oj6SpICCGEEEIIIYQQQv5bKHFFCCGEEEIIIYQQQj5IlLgihBBCCCGEEEIIIR8kSlwRQgghhBBCCCGEkA+SVZ8qKEWn0+H169eIj4+HWq2Gp6cnPD09odVqc7tohBBCCCGEEEIIISSX5FriKjo6Gjt27MDhw4fx5MkTZGRk8OZrtVpUrVoVTZo0QadOnWBjY5NLJSWEEEIIIYQQQgghuYHR6/V6ay909+7dmDt3LuLj4wEAUkVgGAYAUKBAAUybNg21atWyWhk/dbrkeOj1mbldDIt8zI8EJR8/2v9IbqL9j+QW2vdIbqL9j+Qm2v9IbvqY9z+GUcHG3vlf/ZtWb3G1YcMGzJ07FwCbsPL09ESBAgXg6OgIAEhMTERQUBCio6MBAEFBQRgyZAiWL1+OunXrWrvIhBBCCCGEEEIIISQXWDVxFRgYiIULF0Kv18PGxgZ9+/ZFly5dULBgQdHPv3z5Etu2bcPGjRuh0+kwcuRIHD58GD4+PtYsNiGEEEIIIYQQQgjJBVZ9quAff/yBtLQ0aDQa/P777xg7dqxk0goAChUqhPHjx2PlypVQq9VITk7Gpk2brFhiQgghhBBCCCGEEJJbrJq4unDhAhiGQbt27VCtWjXFcTVq1MDnn38OvV6PM2fOvMcSEkIIIYQQQgghhJAPhVUTV2FhYQCA6tWrWxxbo0YNAEBwcPC/WiZCCCGEEEIIIYQQ8mGyauIqJSUFAGBra2txrJ2dHQAgM/PjehIeIYQQQgghhBBCCMkeqyau8uTJAwB48uSJxbFPnz4FYHgCISGEEEIIIYQQQgj59Fk1cVW+fHno9Xps374dCQkJiuMSEhKwfft2MAyD8uXLv8cSkg9ZbFISkpLSsh0fEReHuLjUbMe/jo5GdHRytuMv3nqOW09Csx1/5+krPH0Zne34Pcf+wdFbz7Idv2DLSfz999/Zjp+59nCOxqhbuP4E7ty5k+34Vdsv4PHjx9mOP3b5LsLDw7Md/9flu8bu0tlx/Oq9XF3+/nO38ebNm2zH7zxxI0ddvW88CERMTEy24w9f+gehodn//Z29+RCRkZHZjn/8ItSi856pR89yFh/8OhrJydk/ft198gpxcXHZjn/w7A3i4+OzHf8mNMbYajs34oNfZ//YCwDPXmb/twsY1l92JScn56j8CQkJePg0+7+dnC4/PT0dcQnZ33ZJSUkIDM7+bzen8WlpaXgbm5Tt+ISEBDx+kf31n5KSgjehMdmOz+n2S0xMzNH+n5SUhOdB2V//8fHxOfr9pKamIiwi+8e+nK6/nG6/nO6/Of3+Op0O0Tk4dyUk5G68TpeBZJ0u2/FJSWmITcr+7z+3lx8Xl4qIHJz7U1LSkZCDc69OlwGdLiPb8RmZmcjM1Gc7PjohAQkJ2V//OV1+sk6Xo+//qWH0en3216aFLl68iAEDBoBhGJQuXRrz589HsWLFZGOePXuGCRMm4J9//gHDMFi+fDkaNmxopRJ/unTJ8dDrP/xul6euP8XM9aeRokvnTXew02LOkGaoVqqAbPyWY7fwy66/YbqXq1UMpg5ohCZVisvG//DnWWw/fV8wnQHwTe96aFentGx8qzFrEZMkniyrHpAXP4z6XDa+6+TNeBUhXtnrVL8UxvaoLxtfa+gKyXkB+T2w5vuu2Y53swcO/TA02/H2KuDE8uzHF/Z1xuZpvbIdXysgLxaZWf8NRvwGXbr4IfKrDlXRo3ll2fj6/1uBNInzzfB2ldG7ZVXZ+HrDVyBd4mc6oVdtfF73M9n4usNWIEPiCD++R010qC9/I0Bu/U3sVRNt62Y/fmyXaujUuJJsfOOvf0eyyW8/y+8TPkdp/7zZXv6ioc1Qq0IR2fg6Q1dA6ii55tvOCCjsJRvfauxaxCQKf/8MA+yc2hu+vk6y8c3HrEF8kvCCScUAOxTEd/l+E15HCi/Y7Ww1ODivF+zt7WXjG361CqkiOzAD4PCCnnBxcclWvIoBDi/oBWdnZ9n4zt9txpso4fHPzckOu2Z1Nw4hIKXjpE0IjRZ+f3dnO+ycaT6+1bi1iEkQbj8XRxvsntVDdv0lJiai7cQtSBG54LS3UePEssGyy46Pj0erCVuQIfID1qpVOPPLl7LxycnJaDdpCxKShTd7PF0csH9BH9n4hIQEtPxmMzJELrgdbNQ4bqb8ycnJ+HziFiSmCJfv7e6IPXO/kI1PT0/H2F+O4NrDV7zzt0bNoE3NAHzTW/7cl5SUhJbfbkJamvAXnMfNHnvn9ZWNj4xMQqepm5CWIYz3dXfArrny6y8pKQ2DF+7Ci5C3vOkMAzSvWgxTBjSRjQ8NTUCnaZsgdvj2dLbD/oX95ONjYtBzyg7BtRMAfFbEG79901E2/nV0NHpO2YE0kRNQQKE8WDOxk2z8s5fh6DNvl+DaCwAKeLti64wesvGBwZHoPXenaIWvZAFPrP2ui2z89Uev8dUP+0Xn+Xk4Yeec3rLxryJi0XfWdiSnCtdf86rFMXVgY9n4+89DMGThPmSIrIBqAfmwdFRb2fh7z0MxbPFepIv8/htXKoKZXzaTjb96Pwgjlx0SnVctIC+Wmrn2ufciFP9bvA86ke3fqV4pjO0p//t7GBiGEUv3IymFv/5UDNCnRUV82U5+rON/noVg1LKDgvWvYoCBbaugf6sq5uN/PCi4flCrGAz+vAr6tJC/dnsTGYvJq47j4csI3m8wr6czJvVpgEol88nG330WirG/HBKcv220aoztVgdt65SSjX8ZFoNpvx/H4+BI3vLze7vg+z4NUa6Yn2z89UevMHHFX4Ljv51Wg4l96qNpVfm6z1+XH2Hm+tOC35+KYTCySw10aSR/7Xf76Rt8v/IYouL4N8vcne0xfWBjVAnILxv/KCgSM9aeEBw/C/u5Y0r/xihZUP7aKy4xBQcuPsK+8w8QHB4DACjk4452dUuhVc2ScHaQH7Lo4IX7mL/lPNJNjv9ajQozBjVBfTPXjjEJydh/4SH2n3+AVxFxYBigsJ8H2tctjZY1SsDR3kY2/s7TEMzacAqvwtmEIQOgRAEvTBvUBIV83GTjPxQMo4KNvfx1nsV/05qJKwCYNGkSdu3aBYZhjC2oKleujIIFC8LJyXARnpiYiODgYFy/fh23bt1CZmYm9Ho9GjRogBUrpCsiRLmPIXE1aul+XHn4WvYzLapJXwB2m7IFweHydwkql/DDT2Paic5rNnq16EU/V8kCXlj7XWfReXKVZq6LK8STN0riHWw0OL5sUK4t/78e7+5si4ML+2c73sPJDgcW9ct2vK+HI3bNEa8AKonPn8cJ22aKX8ArWr5MBU5JvI+bA3bPy358s6pFMG2g+AW8kviKxX3wy9gO2Y5vWqUIpg8SLj8hIQHNxm0yGz+yS010ayy8AFQaP7lPfbSsJbwATk5ORuPR683G/ziyFaqWKiiYHhcXhxbfbDEbP71/QzStXlIwPT4+Hs3HbzYbv2h4c9QqV1gwPSYmBa0mrDMbv2VaN/j7umc7fse07sjr6yaY/jo6Gl0mbTMbv3VyVxTI5yGYHhgegZ5TdpqN3zKjE/y98wimP3j2BgMX7jMbv2NKL+TNK7wofPo6Cn1mbjcbf2BOX3h4CJNvV+69xKifDpuNP7qot/G6jev+8xAMWrDXbPyJH/qKJv9CImPRefIfokmPLA62WhxZ3BcajUYw78yNZ5i48pjZ5R9f0gcODg6C6ceuPMbUNSezHX8/MAyD5u2WjbXVqnHqJ/Hk3+a/buCX3VfMLl/q3HXg4gPM2SDfupkBcEEiftuJ21i6/VK2l//r7kvY+NftbMcv33UJm45mP37SiiM4fSsw2/Gb/rqJ5bsvy8baaNU4LbH9Fm4+g93nHsjGqxjg/K/iy1/851nsFLlhyqXVqHDmZ/Hk9YTlh3H2zkv55asYnF8+RHz5W85g51n58jvZ2+DoDwNE5y3bfgF/nvhHNj6PqwP2zhc/9y/58xx2nL4nG+/j7oTdc8WvXeZvPoO9Zta/n5czds4Sv/F58OJDzN5wWja+Ta2SmNRHvBHFkq3nsePUXdn4MoW9sepb8eTxjlP/YMnWC7LxnRuUwZjudUXnzV5/EgcvyfcuqFQyL34eLZ68HLpwF+48k28hWcjXDX9M6y46b/Ef57DzjPz2a12zBL7r20h03uoDV7H6wHXZ+IFtKmNgG/Ebv/dfhGHcL4cRI9FK19PFAYtGtJJMfg2cuxMPXkbILr922QJYOKK16LzbT0PwzfIjiJdotODt7ojFI1qjqMi1A6Bs/x/TrTY6N5S/cf0heB+JK6t2FQSAWbNmoXXr1tDr9cjMzMStW7ewevVqTJ06FWPHjsXYsWMxZcoUrFq1Cjdu3EBGRgb0ej1q166NpUuXWru4JJcs3HyWl7RysNWgdrnCqFm2EOxs2AvVI1eeYvNfNwTxI5fu5yWtVCqgqJ8r/H1ceTv99cch+Gm78ATRfcpmQdLKy8UO7k78LP2j4EjMWn9CEK80aQIYWmVlNz5Jl46+M4UVLEuW3+Tr33IUL/ZZa8Y3+Tpn8V2/FyYIlMa/jU/FrHXZ3/7RCSmYv0FYQVIaHxqdiDV7hRfYSuNfRSRg0+Gr2V/+2yRsOZb9+LCYJOw8Ifz9Ko0/evU57gcKu4Aojb/5JEy0+67S+GPXnuPhC2EXDLGkk62GEZxwf9x+SbT7n3i8ShA/c8MZ0XjTpJVazcDL1Q72tvxK/sgfD4l2HxRLWoldLExde0pkKkSTVhqRPzBu+V+i8aZJJzutGvm8nOBoUv6e07Yqi7cxxDuYxHee9qdovGnSSvtu/dmYfIluIsdeAIKkFQPA0VYNxsznsoglrcTWX+cZ4slB06SVrUYFL1c7aNX8ErSZJJ7cFEta2YoUQCq5apq0stOq4eVqB43J8sWSq+np6egy5U9j0kqrUaFqyXxoW7skAgp6QfXuTySlpqHNtxsF8UlJSYKklY1GBVdHLRiTDdBkzAbReNOklW1WvMlnxeLT0tJ4SSsVwyCgYB7UKVcQPh7sBXxqWgaajV4jiA8NTRAkrVQwHD9MiR2nYmJSBEkrF0db5PNy4m1/PYC6w4Xn/tfR0YKklaOtBl6udsZ1n6X2MOHyn70MFyStNCrD/q+k/A+DIgRJK1sbNdwchS0kxJZ/8c4LQdKKgfjvR2z5j4MiBEkrPw8nFMvnDhsN+x10aRloPka4/S7eCRQkrZzttfBytePtP5l6Q4tUU5f+CRQkrTxdHZDPywncn09aeiaaiSx/79m7gqSVo60Gro5a3rTMTD0aiSz/1M3ngqRVPi8XFM3nztt/EpJ16DBJ+Ps/c+s5L2mlYoAS+T1RrqgP7GzY9RcRm4QvZgmPn0evPOFV2rnxtlp2I4a9TcDAOTsE8Qcv3OclrYzxRfjxIZHx+HL+LkH8nachvKRVXi8X9G5RBQM/r4lS/t7GY8iBi4+w5sA1Qfz+8w94SStbrRrVSuVD7bIF4WjHboN7L8IxeeVRQfyV+0G8pFUBb1f0alYefVtWQvH8Hsbl7zh9D1uO3hLEbzl2i5e0stNqUL1UPtQqk593/rvx6A3mbjwtiF+4+TQvaaUC4O/jiqJ+rrzf/8vQGIz7Wdiib9vJO7yklbuzHVpWK45WNYrDw4W9SXHw0mOsOyRcf4cvP+IlrQr7uaFP8wro07wCCvu5GaevPnAdhy8/EsQHh8Vg9LKDiElIQbH8nvi6cy2s+rYDVn7TASM61UCRvB6IikvC6GUH8CZS2LBh6urjvKSVVq3CZ4XzoHQhL2hU7P5z4W4wlu+6KIh//iYaY38+hPikVJQs6IVRXWsblz+8Qw0U8nVD+NtEjPrxAMLfCq/dthy9Zdz/GQYont8DA9pWR99W1VCQc5NtydYLuHI/SBD/X2D1xJVKpcLixYvx66+/IiAgAHq9XvZf0aJFMWfOHKxevdpss37y6dh9jj1x1yqTH9VK5YeNVg17O1vU/MwfVQPYLkK/7hHembzKSXoVzeuOEvm9oNVqYWerRYmCXsifh+3i8ofInaGgcLZ7ipeLHfw8naDVamBnq4WfpxNcORdRhy5Z/rABLqmuhFwqhv+P60kOx15J0lm10aVZlo5jZdqTytJxrF6ZdKWydBypQ3/zt7+l40jtvcgv710zd7pM/X74Ju/933deWBS/fC//ztb+c+bvdHP9vJMfv+agZeOgLd7O//3uP8e/06RRM4J/XIPm8Sv5c9Yet2j5wxfv4b1ftMWycdgGzOdfPJsm0p3stXCy10Kr1cDh3Wuult/wkw8r9/LXHz/eFk4mTczbTOAnmTYf5e8Pfp5O8HZzhFajgZuT4VjGPYZ0ncpPckxYwU9a2GrVsNWqoX33v62WXwFtMGIl7/3YZQd47+1tNbC31UCr1RhfczUZ9Tvv/VKTGwn+vm7w9XSGVqNBHncn+Pu6Qc3JQAyay1//s9edFMZ7GOK9jfHs/OGL+UmWcT8d5L3383SC17v15+nqAD9PJ14FdPiiPbzP953Br4y5OdnC1ckWWq0Grk62cDO5+WFa/vYT+MkQc+uv30x+8q7/bPbvMe/K7+HqAK1GAy83R/h58ltITTf5vbQay7+RYtj/bKDVGv433X+/+YVfeen0HVuZVTGG5bu72Bu2n8jyf9nFT5LM33zW2D2lsJ87WtcoiXx5XKBmVAgomAef1y4FNyfDtWBcYipuPOInrjt8zyYjGQBervZwcbQ1bD8Xe3i58lt4bTzCP359PmmLIN45K95VGL/tFP98NWwx2z0tr5cz6pUvBF8PR2hUKpQq6IkGFfyhVRsuvROSdbgfyD9fdJ7BTwY42Wvh8O737yRy/Dh8kZ9k6DKNPZ7YatXw93WDh7Nh/efL4wp/TuUnI1OPe8/5ifueU9j9R6tm4OfpBBcnO2g1Gvh4OPG2n15vaF3H1WcemwxgYNj/nRwM+7+byP5/9wX/+w+cwyZzNap369/BFhqtFl5uDrz1r9cDQSbjDpomw+1tNbCT+f08fcNf/pcL2KSjh5MdAgp6wdXJDhq1GkXyuiOA00ojPkknGDd1/PIjvGX7eToZvr9GA19P/vpLTcsQ3Djgxrs42sLf1w3O9jbQajQo4OOGfF5sfEKSTjBu3/wt542vDQlre9jbaQ2/f1d7XgIrJS0DSSZjH03mJH293RwQUNALzg420KrVKJrPE8XysS1cw0S6YU9eyR5P/H1dUbG437t4Fcr4e6N8UR/j/GevhNeuMznH7yJ53XnxZQv78OIfiIx7NnfTWeProtx4jTD+7gvhtdbk39nyd234GVq969al1ahRr2Ix9GtVyfj7XXdYeNNtwRZ2+ZVK+KFmmQJwsNUaEvAB+VC7HNvC+cSN54L46WsN358B0L1xOTSvVhz2Nlpo1SrUr1AEfVpUMiZQftsnrPss38UmXasG5EWNMvlhb6uFjVaDaqXyo3ZZdvn7LzwUxO8+x04r5OOKEgW9YGerhVarRYkCXijq52qcf/GuMHHy8072eN6iWjHUL18YtjYa2Gg0qFfOHy2rsV0UxVpVLX63/6oYBn2aV0DjysVgo9XARqtB48rF8EWz8lC9O/8v/uO8IH7NoeuIT9ahQnE/fNOzHioU94NapYJGrUKlEvkwoXd9lC3sg5iEFGw4clMQf+zqU+PrzwrnQbmiPrDRamBvq0X5Yj4oVYj9/W86Kqyr/L7/GpJS0lAlIB/G96iHckV9jcuvEpAPk75ogICCeRAVl4TNIonHrG2qUanQp0Ul1K9QBFqNGvZ2NmhZszS6Ny5nvP6YIXHj8FNn9cRVloYNG2LPnj04efIkZs2ahREjRqBnz57o1q0bBg8ejJkzZ2Lv3r04ePAgOnaU74tPPi27zrCJpKJ+7rDRCrsCONrZwMfDEYDhztXNJ+zFK7cFlYeTHbQa4Z0+J3sbXgXs73vsHSpuxcXh3QWPKQc7/t3Xi3cCja/ritwFNGfFDrbMpnfBTBNVYtNOXmWTJ5a0NsqynlNZzk78gi3sxUZ24lcfYJMFQ5cL72KYw0129VtivouHKW6yq/0U4V04c7jJrg5T5buImPPlQsuXzzVGohWLUnM3m+8iIuf3/bdyuPxzZj9jmrziOnD5qeQ8JXaZ6SJhDre1hGklU2y66RhC6w7fsijedAySXzgXrqZJgiw+Huz0qDh+xeXsLfZYaJqkEptuuvxL918ZX5tWEsWmm46Bso1zI8FfpBsfABTwYS+e77/kV14O/s3+lqXj2em3nvAr3hfvsQ8QkFp/vpzpt0wGLX/yhq2MmVbSxaablj88ht0eStbf49f8MUAecQZh9pUoP/d7/WXye+GOyaZk/zv/D7/yEhLFVma5+5nU8jebtK45ctlwLlOrGJQv6isa36AC2710yu/81lXcMWU8XcXHIOMmP37dw28xyt0flcQv3co/X90PNJwLmHctPcTU/oytPI79iZ/4y+T8nJSs/5kmrau4Y4r5eYp30eAmP4aZJG65Y1p5uTmKxnu5sjeRhyzi3zjgdu90ldj/ua2vhizgny+5R0M3Z/H1z02+9JLpkiv1++G2vuozg7987vHMW2L/LZqXTd70ms1PHPPK7yR+s93TmV0vn09kE6UpKSngng48RL6/VqOBrzu7XbpMZZdvmoRyFmmlptVo4GTHrhduojcuLhWZ7zagCoCHi7AbrEat5t347ctpNZWQoEP6ux1Yq1bBUzReheL52N/F6B/ZGx2R0QnG86GNRgV3kfWnUat463/Cr+yNltDoeOP6s9WqRNe/Rq3itdyZvIo9fsQmJCMiJhEAULawD1xE1p+aUaFVzRIAgPSMTBy+xLb6eRkSbSy/h5M9XETGUdKqDAn4LKs4yaeItwl4G29IRFYq4Se4SQUY1muzGobkT1p6Js7cYpNf9wPDjNvP280RjnYi8Rr++tt+ij3fnrrJ/i17G0OyRhCv1fJu3K/klP/20zfGMdkCCnrBzkYYb2ujwWdFvAEYrn0ucOpOD1+GIynVcPyqW76QaN3P1kaLOuULAQCSUtLwkPPQh7fxyTh5/RkYAD2blIdGLUxxaNQq9GhqGJ7h6JUnvO583ESSr7uD6PIdbLW8/eLSPfb8F/E2Aeduv4BaxaBn0/JQiVTetBo1ujcpBwA4dOkxklPZ4/WZW8+Nx98WNYobE6RcTvY2qFTCML5ZdHwyIkRabX3qci1xlSVv3rzo3LkzRowYgSlTpmD69OkYO3YsunTpgpIlhWNnkE/fH8fZAym3gmKqFOfgzz147jnPVjylLjwAw93cLD9ymsZfvs9WXFwlLjwAfqVgwR9sZVtqMGw5GzjfOYUzmLFY0krMtLXC7mqW+I1TWc6OPWez/7Q+AFh9IGfJguwku7iyk+ziGvNrztb/1z+YHw9GzqLNp3MUL9Zd0BJnr+UsWST1tEG5BBXJGbVpv6mPTE53jU9918rtr6f03GUqg9PaSk5Wpe5tgviTMnO6e2e3/FkKektfuwCA5t0CYkUe3vBvkBt8WMsZF4w7+De39Y9pt1ypeG7iPTw8kf2MeM7bMI9TIeQmuritp+xtpP+A1PJPXWNv4MlVbsRuRgL8G5jc5Ixw+WzZojhPi9x2gk3Cmg4rwWXDqdBzE43bOF3M/DzEk4YAYMdJKETFstts8Vb2OtbVQXr7ceO5id7Vh9jr6MJ5pX9/3ITKM07inBtfyl84dl8WF0c2/gbnpvPKA+x1SKlC0vHchNTfnBslv+xkb8Byk0OmuAnBC5xulYc5Nz2qlZYefD2PmxPU736/ezn1jZX72PKXLiK9fF/OtuXG7z7LtjavWEJ6+Xk9nI2tjnafYXunrOB0cS0ts/4LcI5Nfx5nb/r+wmktVUjipg/AT4hzu0VuOHLL+Fpu/RfNyyYuN/3FxnD3/+L5pQdfL8GZx425/yIcaemZKFkwj2TSPav8hf3ckaJLx6Mgtlvgn8fZ32++PNLH7+KcsamW72L3uX+ehyEjU4/S/t5wc5J+cEtBHzfk93ZFYooOTzg3mrK2pYph4OshPS4Ud9/g7jP/FbmeuCLEVKrEU8TkJHHGo8oQeQqQOdysd3aeWpqikx/E/X3gXlhLPXmOWEf42+w/ahgAAk2enGKpW09DzH9IxsV/xBNHSp28mbPE1e6/n+UoPjA4JkfxuSGniZOcnrxtZCqGHwJz60ct0pLWoni1fLy5zfOhJ75UZgr4vosvdrfbEmKtHbiyxrqUGsDdJofLF7vbbQk3Z/mhLTRm9j+5xI8UbrcxF3vpxIWUaE7iyt7O8vhnoWzrBxszv08x/zxmK5Hmnrol5hqn26itTOJNyvM37HlYrLWLOY9fsZVQO5HWKua8DIkxvrYVaa1izpsIdswerdby+DBO6w2xngpi9Jw2ZuEx3MSlst8P96l1UbFsvNLjBzc+Jp69DlMan8Fp4sgdzFvFyMer33XX4177x3Ja73DHQ5KTzrl4j3uXxFZybM5qzcN9amhCsvAJxOakprHx3HqQUtz6VmKy5Ul47lMfE9+tP7GWSqayEndJnO+ctS2UHDuyft+pnKf+6tIlHgEuI4mzzrK2hZO9/LmLt3xOQ4Ws9a/k+2fJzjb/2FHiinxw8nAy5emZ0hkZ7gGb2/TXkXOnMT1D+kDEPUhzu5RoOe3I09Klk2gpnPiCOXw0aXYqQdwEm9zdvf8CbQ5rYd5u0ndHlGhWtWiO4rs2LJOj+H6tyuUofmjH2jmK/7J1zpb/dZcGOYr3L+CWo/jckJ2WmVw5zVWLPeb9Q2Ju/ejS5C8yzcabuUg1t3lyuv3etwwzBXzfxTftQmqpwNAY2fmxiYZKplriIj81h8vPafyLN/I3I1LeVRil6ihmdm9R3HFgQ6Mtv5mSz4NtSRAdJ/5ELjk1OU8ITUy1/As0rFDI+JrbkkipDg0DjK+zc3yrx+mC+lpk4GYxKk7TvjY12eVHx1q+/ptULWZ8rbQLELdlYUPOdUicxBPV5NQt7298HaWw/NwETa0yBYyvIzhJKDncAdsrlcxvfB0dr2z7cx/WVLE4O/at1BPlTDlwBkwvUYA7fpl8Eibr/OHtxva84PYCiTcdfFUCt/VY0Xddi/UAklOl4zP1mUh/lzDy5fQqKcJpJSeXhOLWq7xc2fpWXk5LqlSZm/HcehW3Oyp38HCdTN0pnfNE+3yclo1Z9ajMTD3SZBogpGVkGrtEcrv9e7gauqYGh8UY54vJyMzEq3dJXnfOgPHuzmzX1nSZ5XPrngU5LbOyutYGhcVAL7P89IxMY5KZ2x03q5VVekYmMvXSy+fuG0XziXdH/5T964mrhIQE3LghHLCOEKXmD29hfH3zsXRLkhucsUm+69PA+Pqnr1sZX7+QacnyMiyWXeZQ9pH2C//HLj8qVvrk9zaBPbH9+FVL4+smlYSPdzfnHOexyJ3qs4+3V9r66+Ci/sbXXi6WP8RA6rHQH0v8GYnHSiu1Z15f42snO8vvVI7r1cD4mvvkGqV6t2Qf62v65C8lmlRlE1/ZOaiXK+Zj/kMy8ubNa/5DCnG7B6Z/6NkBEdwnz6Vk4w4mtyIud/EohTsuhdTy5RLyXFLJoTSFteo0idazaWnSy+eOnyX1/bnlN+0SxrvxkGY+XmXyB7iJBKlyyi2f9zmpeJnvn9N4bnGktjN3vci1TJBcPme7yB2tpJafytkvTZ/UmFWRi45LRobExXuSTmccC6RCCeljj9Tyub8Lu2w0bUrmdO+yM2m5mLU+42QqrnGcSnElmfJLUVL+DJmKU1wie10jNQ6c3LUHN76gt+WPOk/gfH9utykHB7YSJ3fkj+d0r+Q+Ur5YXmXnMW5SKy+n4p+fUwmVSzyEcwYlb/1uvCMAqMDpwiOX+OQmtRpVZK8Xa37mb3ydKJN447aMaleXvV7s2pC9gaSTOXdGx7FJoba12PK3rsX+rQiZxFVwOHvtPKR9NTa+dmnj66Aw6cTfM05Sd3zP+sbXvZpVML5+wWl9ZurJqyjj6+/6NjC+HtCWvY56JpM45o4DOGVAY+PrRpWLGs8HJ65JtwK//ph9+NOYHnWMr//Xqabx9e1n0nUX7riIc4Y0Nb7+vHaA8Xh6TGb5f3PGYfy6C3vT8dte9YyvbzyRXv5tzry5nOX/PLqN8fWL0FhIec6pV/02pp3x9ZgudY2vL8i04r/EGRdxYh+2zAPaVja+PssZb8sUd97gNuw2L1fUFz4eTgiPScQ/z4RPi85y8/EbvI1PRgFvV16XxqUjWxtf3+c8WdAU96EA84exdcfKJfPCw8UeryPj8FAm/uqDV4hLSkXRfB68ZOPIruy2vMLpAmsqa99gALSp9d8bUulfT1ydPHkSvXr1Qu/evf/tP03+I7xcHY3NzBNT0niPJs1y62mosVLl7GDLaxZdJD97IMrINDy21dSz1+yJT6tRwdaWvWtQtRQ7cKoeQPhb4Z0j7gC0DAPY27NZ+xlfNpf7emaN7VGf917sAlLuonLfgn45Wn5uJ6FyO/7o0oE5ij/105c5ij/zy5AcxZ//yNf/WZPvb5q8Ss/Q86aZDmBs6fJN84T7ZnW2KN50LJgD83oaX6dnCpNHaWnpSOB0bf6ssDdv/uEFvdjPZpiPr1qKX/HdPpVd/tuEVCSlmMSnpyOSk5Dv0qA0b/6679sbX+shTF6lpWXwWnvV47SSAIDV4z83vk7XAzqT5FVaWjqva3PbmvwLr7Xfses/JDpRcOc4LS0drzlPAp34Bf94uWo8eyH9OipRZP2l8eJnDGzMm/8D58ZHZFwKdDphPHf9zRnclDd/xoBGxteJqRmCeJ0ujdcaZe6QJrz5wzuwFcH0TGHySKfjr7/Zg/jl/6Y3WxGIjE0RJO9SU9MQyXkS2ppJnXjzuzUqy342XS9YfqouDdzGNGu/bc+bP7ANW/kwLJ8fn5KahmjOTZ/NM/i/t8n9GhpfH7r0mHd3HgDik1Nx9ApbqVs4tCVvfsvq7FOrYhPTBMmr5JQ0JHAGYN82tRdvfv2K/pzyJ4vGc5MKB+bx44d8XsX4+uztQEGr8ZjEVNzg3JBbPIJffu5T2xKS0wTrLzkljbf9983twZtfi/PUsMDQGEH54xJTEB3P7r9bpnXnzS/tzx6PQqISROMTOevvzxn8788deD8mIVVQ/oSkVF75d835gjff151NXomt//jEVF5SaOPkrrz53AHZk1PThevPJCG0Yw6/rlKMU5F8GBQpaLUfGZOEaE5rnol9GvLmu3O6iHKvE7PExCfzyj9rCP96kftAALFWh5Exibzv8E1P/vGPm8iMFGm1FhOfzLt+nNinEW++B6cFymORp/aFRMXzxuXq2bQCb76PO7v9bz8VPmE5KDyW1xqqGecpcwDgyVn+nWfC+JdhMbykcP0KRXjzuQO633kujA8Mecs7f9YsU5A3v2qAIfkYGZeEc5yBw7M8Do4w3lD3cLYXjEXk+a7VT3qGHtcfvRbEP3kVZfz+GjWDIvnYVl5qtRqfvXsgRfjbRPzNGfg7y/3AcNwPNNSJ8rg58rYXd+D0tPRM3BRJXj0IikD8u+9vo1HDz4tN1tra2hrH3gOA5yJPLA8MeWt8gATDAD6cFlN2dhrj949NTOGNX5bl9rNQRL1LnLo62sGJ00rU3sYG/r6G39+L0BjcfCxcfzcfv8aLd7+Lwn7uvCEP1CoVOtY33MRde/C6aN3vxZtorH/3NMFODcryuuX5ejgbbxympWficXCUIP7Bywhj91RbrRo2Nmy3RK1GjfZ1DddTq/ZfxasIYfLvyatIbHo3CHznBmXBcO58ebjYG3sc3X0RbnzQB9ff94KMddLPivqaHfLgU2R5J3Azjh8/Dr1eDxcX8YEN09PToVKpoFLY/5f8N22a0hVdp/wBAAh7m4iwt4nGA2q6SdZm26xugvhV37bH4Pl7ABj6UD8UOQFn2T+nr2DaouEtMO7dY4kzMvWiFyDG+NnC+CaVCuP4jReSMVy7prUXTGtbqwT2X2QHipRLVB2Y01UwzcfdAWEKx13aOL6p+Q/JWNKvQo7i5/YoZf5DMsQSFWoASjsqiMX7ejgiNFpZU3exeA8nO97FraXxbo62vKd7WRrvYKtBksKuEmLxGpXycdPeR6LL3cmW16JRruXV0R+EiUYGyrtCnTNprefl5QWNmlHc2uvYj4N4752cnODl6oDId3es0zPBu1A29du3/KfmOjk58b6/ufgfR37Oe+/hYY+C3s4ICo8HYBj8WWoAaLWKweju9XjTSuT3ha1WbRx7QQ/+OAym5pkkDkoVzcuLz9DLd9uZ2Jdf8fP3dYevhxNC37VqCBO5cZDF0U6LNrX4x48ShXzg7eZgfDpfqEy8k4MNGlUpxptWtVRBuDjaIC7RUDmKik8FIL7+HO20qF+J3024SbUSmLn+tLGrQ5IuE0k68XitRoX6FfnL7928ElbsuWI85qdnAukS60+jZtCwCr/i165Oafy47QJS3o3dYUhSiS/f3dkOxUy6GozsWgfbTt41/n5S0/VITRdvfWKnVaNEYf6T/wa2qYoNR24aW0RFynQ58/Vw5HVPA4CaZQuhZAEvPAqOREamHgcuPIJGrYKNRoXUtAzeYNyd6peBnclYTJP7N8aRK0+MY1/FJqYBEP/9+Hk4wsuL/+SzuUNaoPbQFcbvLxef38uZ10oIAHo1r4Q/TvyD6DhDguD8nSCoGMO4JabHlA51SwvGItowuRvvybyG9S++/LyeTnBy4j+AZtGIVqgz7DdjVxluktZUjdIFBNN+n9CRt/xImVbn1QKEA0jvnN2bF5+YmgFIdBssIzKA9K65fXjxcuuf2zUty4kfB/Hi5X4/ZYt6C6ZtmNINtYetMO4/T02e2sn1RYvygmkHF/bjLV/u2tH0pgEA7J/flxcv12W2f6tKgmknfxpssv2ku9x1b1xWMO3AAnb5mYDstTO3hU+WrdO7osHXawAYuqRdf5fkYRjheHSzBjcxDcfOWT2M8WkZ8vELhgtvEu+e05ONTzfEMwAgEr9sZBtB/KIRLdF8zDokpabhUVAkHgdHwsPFASpGhei4JOOYWAwDrDRJ2gPArlk90OCr1dADiE9Ow+lbgVCrGDCM8Drmd5Nzv6FMbdFi3Fqk6NJx90U47gWGw93ZHmoVg6i4ZGPSRMUwWDOxgyB+58zeaDJmNQDDud+4fAjrTpumCOsOO+f1QLtvDE+61GVkym7/jd91EkzbPLkrWo5bBz2AoLBYBIXFwt5GAzDC64A/pgvrbiu/bY9W49Yj/d22v/kk1JicMxxTDd9Bo1Zh5TfC79+jSTncePQGl+8HY8a6Eyhf1O9dMlCPW09CcPd5GPQA6pQrZExy8co/pQu6TzM8KTM+WcfuPxBeU+40uWkAAH1aVMKtJyG48fgNpq0+gfLF/fBZER9kZupx88kb3HthSEY1qlQEbWsL6z6/f9sBHSZtRqZej4t3g/D3/WB4ujhCr9cjKi7J2AXRzkaDZSPbCuL/C/717NHdu3fBMAwqV64sOv/8+fMoV64cmjQRHrAIyZLf2xWbJnfmdcNIz9TzDrxqFYN987+Aq8mFIwCUKeyLn0a1Fkw3tXtmT7i4CMeHqlXOH9MHNhKJ4Ns+pys8PITjI834sjmqB5jvArBoaDP4+gof+T2xTyM04tz5lbJhYld4mFz4A8DuuX3g5mR+gMJpQ5uiaFHh+ExKkxFL+lVAjRo1sh0/t0cp1K9fXzBdafyK4bVEp59bMVTRwW3dGPFtvGvOF/ByEW5XU3tmCC88AODAon5wdTS//qW+56HF/eHikP344z8OgoOCwbel4s8uHwqNghUoFa90+0l97uCi/orGbZOKv6Bw+0t+/1+GKOqyKRW/b34f5HETHpe4GJn4g4v68+48Wxr/54xe8PeVf6qZrUaFc8vFW/ed+mmwoAuUGKnln/ppsOSj6LMwjHT8rjm9UcBb+qleAODmaIdjEq0j98zrwxuvQ4y7sx2OLhkgOu/I4gG8lhNiXBxtJJd/5pcvza4/exs1zvws3jrz/K9DoTaz/2nVKkHrxCwnlw2Go5kuz96uDji4sJ/ovAsrhkqOHZXF0U6Dkz8NFp135ucvYWdm++fzchK0tsmy9rvOqFDMz/g+PSMTSanpvKRV10ZlMbZHXbFwXPh1KK/lgJi8nk7YKbF8Jd+/oI8rts3qJTrvwIK+yOvF7n+ZemGltWP9MhgvUvEHlB0/83s5Y8ds8Z4N538dYnZw7FplC2LJ1+LXSBdXDDX7VMVqAfmwdJR4xUlJ+cv458GqCcKKr9L4GqXyYdFX0uVXsvyV48XP30r2ny9alMew9jVF5534QXgz01TbOgGCmwZZTi7tZ3aA7j7Ny2Pw59VE5x1f0sfs8js1KIOvu9QRnXfqx/6CLtSmRnetiXZ1hYk3GxsbnF42QPD7MU0aTRvQGI0q85P2WfFHF5mPnzW4CepwxlSTi9eLxC8Y3hxVSuWHKbVajUML+xlbjun1hvG+ImISjEkrexsNtkzrjrxewnOsVqvFoSV9eF2wMzL5rcQZACvHt0cJkSfv2diocXBRH3i9a7mk1xsSNhExScaklYOtFttmdoenq/Cp6Q4OWhyc34f3/TNM6k4MA2ya3Bn5RZ58msfFBdtmChMyplZ9257XuyWLi5Md9s7rDRtOy79kXTovaaXVqLB7Tm/RJ+852dtiz9wv4PJurOJMvR6RsUmIjE0yJq1cHGyxf/4XooOwa9RqzB/WAh3qlYZGrcKtpyHY+NdNbPzrFv55HgatRo0uDcti9pfNRLvJF/T1wJoJ/ISYHvykFQNg15xe8HASrn8brRqLR7RC29oBYBgGNx+/wYYjN7Hp6C3cexEOW60GPZuWx7SBTUQHYc/j7oRtM7vD4d2QD5mZekTEJCAyNtGYtPJydcDBRX0++AfsvC+MXm4EsWwoX748dDodFixYgLZthSe106dPY+jQoWAYBg8ePBD5C8QadMnx0MsM/vYh2X/+AX7YdsH49AsHWxt836+BoImwlJX7rmDD4ZvGg55axWBcj7qiJ10x09cex1+X+U9N+1/H6ujVrKKi+EZfrzLe/c4SUNADayYJ73aIaffNOkSY3LVuVNEfs4a0kIjg4959y+Lj7oDdc81f3EjFq2FIDmU3HlCe3BCLd3fS4OCiQSKfVhZfxMcVm6abPzkDQN1hKwQDMXesG8Ab10pOnaErBANpd2tYGiO7iV+0Konv2aQsRnQWv+g0Jfb9+zcrj8EdxS+6FcW3/AyD2ykb0F0svnvjAMUDsjcYsVIw0POCoc1Rp4LwolXp8sd0q47ODZX9fsXi5w1pgHoVA0Q+LdRs9GpeiykGhu5Vpi1VpDQZ+Tuv9RwDYOO0jijiK2wtYCo5ORk9pm1HOGe8EluNCptmdBa0dBETFxeH1hP+4CUMAGDb5J7In08+sQQA8fHxaDPhD95AqwyA7VN6IW9e82PjpKSkoPu0bcbWU4Cha/jWKT3g5mZ+LL+UlBR0mbqVN9Czm6Mdtkzurig+OTkZHb7/w9j6CjC0sto3tyeve7iUxMREtPp2s7H1EWC4aD80vxccHaUf150lPj4eLb/ZzGtxq1YzODSvJ5ydza+/6OhkdJ2+hffkI1dHW+ya1V1R+UNDE9B5xiZwe7vZaFQ4MK+noKWP1PI7T9vEO/95ONtj+4yuipafkJKCb37+C/cDw5GRmQmtWo2GlYtgYu960GjMdxgIioxE7yk7eZU2d0dbHFzcXyaKH99ryk7e/u/ubCeZ8DP1NjYJQxftwevIOOj1hlZXdcsVwpyhys7dj1+Eov/8PbxKk5O9VrSVqZjA0LfoP3sHr8Vk8fzuWP+9sKWDmKevozBgzk7eQMWFfFzwx/SeMlGsGw+DMWLpQd40HzcH7J6n7Nrj6v0gjFp2iPf9C/q44k+F5+5T157gu99P8KZZsv3uvQjFiCX7eeuvTrlCWDC8pUwU6+KdQIz/9QgvaVKuqA9WjBe2FBFz7X4wRv9yiPeghRqlC0gmHE0du/IYU9ec5E0rUygPVk0UTxia+vveS3z761/G4xfDAC2qFcfk/o3NRL4r/4NX+HbFEWPSQq1i0LlBGYzsquza5dK9IHz/21Hjk+fUKgY9mnyG4R3Fb1iKxU9acdRYd1CrGPRqWg5DOyi79gkMicaMtSfxKjIeer0e7s4OGN2lJmp+Vsh8MIArD4Lx/cpjSEwxnD9sNGoM71gDXRp+pij+6atIzFx3CiFRhuV7uDhgbPfaqFa6oPlgAOdvB2L6uhPG4QJstRqM7FJLcd1n15m7WLL1Aq+V14BWlXhjicm5cj8IM9edetfiWw9nBztM+qI+apfzVxR/52kI5m8+i/AYQ6tFbzcnTPiiPj4rouzaKTouGUcuP8bL0LdgGAaF/dzRonoJuDqZP/cDwJ/HbmP5nsvG459Wo8KE3vXRsoaycaWiYpNw+O9HCA6PBcMwKJLXAy2qlzD7xNwsV+4HYfGfFxAdnwyGYZDXywXf96mPYvm9zAd/IBhGBRt7y8dBlP2b7ytxtWTJErRsKTy4U+Lqw/AxJa6yaO2coFKpkZmZgbQUZU9cIeTfQvsfyU20/5HcQvseyU20/5HcRPsfyU0f8/73PhJX/3pXQS8vQybw1SvpEfEJIYQQQgghhBBCCDHnX09cVahQAXq9Hrt370Zm5sfVoocQQgghhBBCCCGEfDj+9acKtmvXDgcPHsSLFy/Qu3dvdOvWDXnzsoNUP37MPint2rVryE5PxapVlfWvJYQQQgghhBBCCCEfr399jCsAGDZsGE6dOgVG4qkUWYuUmi+HYRjcv38/R+UjNMYVIZai/Y/kJtr/SG6hfY/kJtr/SG6i/Y/kpo95//soxrgCgKVLl6Jly5bQ6/Wi/7JIzTf3jxBCCCGEEEIIIYR8+v71roIAYGtrix9++AHDhw/HzZs3ER4ebpz34sULHDx4EAzD4H//+9/7WDwhhBBCCCGEEEII+QS8l8RVluLFi6N48eK8aadPn8bBgwcBACNGjHifiyeEEEIIIYQQQgghH7H30lWQEEIIIYQQQgghhJCcosQVIYQQQgghhBBCCPkgvdeugmJ8fX3RoUMHay+WEEIIIYQQQgghhHxkrJ64CggIwNy5c629WEIIIYQQQgghhBDykaGugoQQQgghhBBCCCHkg0SJK0IIIYQQQgghhBDyQaLEFSGEEEIIIYQQQgj5IFHiihBCCCGEEEIIIYR8kKw6OHufPn0E0xiGwZIlS+Dp6WnNohBCCCGEEEIIIYSQD5xVE1dXrlwBwzDQ6/XGaQzDIDU11ZrFIIQQQgghhBBCCCEfAasmrhiGAQAUL14cbm5uxum2trbWLAYhhBBCCCGEEEII+QhYNXHl4uKCuLg4fPnll2jbtq01F00IIYQQQgghhBBCPjJWHZw9ICAAgKHLICGEEEIIIYQQQgghcqyauOrSpQv0ej327t2LJ0+eWBR7+vRplCpVCqVLl35PpSOEEEIIIYQQQgghHxKrJq7atGmDDh06QKfTYfDgwXjw4IFF8Xq9njewOyGEEEIIIYQQQgj5dFk1cQUAc+fOxeDBgxEZGYkuXbpg3rx5CAsLs3YxCCGEEEIIIYQQQsgHzqqDswNAeno6unbtCm9vbyxevBjr16/Hpk2bUKNGDVSoUEEyLjAw0GplJIQQQgghhBBCCCG5z6qJq7p16yIqKkrQ3S89PR0XLlzAhQsXrFkcQgghhBBCCCGEEPIBs2riKiIiQnIejV1FCCGEEEIIIYQQQris3lWQYRiMHj1atlugmFu3bmHJkiXvp1CEEEIIIYQQQggh5INj9cQVAJQsWRLVqlWzKCYpKek9lYYQQgghhBBCCCGEfIis/lRB6hJICCGEEEIIIYQQQpSwaourhw8fZju2QYMGOYonhBBCCCGEEEIIIR8Xq7e4IoQQQgghhBBCCCFECUpcEUIIIYQQQgghhJAPEiWuCCGEEEIIIYQQQsgHiRJXhBBCCCGEEEIIIeSDRIkrQgghhBBCCCGEEPJBsupTBU09e/YMx44dw927dxEaGor4+HhkZmbi2LFjgs/qdDrY2NjkQikJIYQQQgghhBBCSG7IlcRVcHAwpk+fjgsXLhin6fV6AADDMILPP378GGPHjkX37t3Rq1cvq5WTEEIIIYQQQgghhOQeq3cVvHPnDjp16oQLFy5Ar9dDrVajaNGiKFq0qGTMzp078eTJEyxduhSJiYlWLC0hhBBCCCGEEEIIyS1WTVzFx8dj2LBhiIuLg4uLC6ZPn46rV6/iwIEDGD9+vGTcsGHDYG9vj4SEBOzdu9eKJSaEEEIIIYQQQgghucWqiav169cjKioKdnZ22LBhA7p16wZ7e3uzcW5ubmjWrBn0ej3Onj1rhZISQgghhBBCCCGEkNxm1cTVyZMnwTAMOnbsiJIlS1oUW6lSJQDAgwcP3kfRCCGEEEIIIYQQQsgHxqqJq+DgYABAlSpVLI719PQEAERHR/+rZSKEEEIIIYQQQgghHyarJq5SU1MNC1VZvtiEhAQAgEaTKw9CJIQQQgghhBBCCCFWZtXEla+vLwDg/v37FsdevnwZAJA/f/5/tUyEEEIIIYQQQggh5MNk1cRVjRo1oNfrsX37dsTGxiqOe/bsGQ4cOACGYVCzZs33WEJCCCGEEEIIIYQQ8qGwauKqd+/eUKvViImJwZAhQxAeHm425tmzZxg2bBjS0tKgVqvRvXt3K5SUEEIIIYQQQgghhOQ2qw4YVaJECYwZMwYLFy7E7du30bRpUzRs2BCfffYZQkJCjJ/bv38/IiMjcfXqVZw9exYZGRlgGAbjxo1DkSJFrFlkQgghhBBCCCGEEJJLGL1er7f2Qn/55RcsX77cmJCSo9froVKpMGTIEIwcOdJKJcy+69evY9++fbhy5QoiIyORmpqKPHnyoEKFCujYsSNq166d20UEAOiS46HXZ+Z2MSyitXOCSqVGZmYG0lIScrs45D+G9j+Sm2j/I7mF9j2Sm2j/I7mJ9j+Smz7m/Y9hVLCxd/53/2ZuJK4A4MGDB1i4cCEuX76MjIwM0c8wDIPKlStj/PjxKF++vJVLaJnk5GRMmTIF+/btk/1cx44dMWvWLKjVaiuVTBwlrgixDO1/JDfR/kdyC+17JDfR/kdyE+1/JDd9zPvf+0hcWbWrIFepUqWwZs0avH37FufOncOrV68QFRUFAPD09ETevHlRp04deHl55VYRFdPpdBg0aBCuXbsGlUqFbt26oV27dihUqBDS0tLw4MEDLFmyBI8ePcKuXbvg6emJcePG5XaxCSGEEEIIIYQQQj5oudbi6lNz6NAhzJ07F/PmzRPtDpicnIy2bdsiODgYtra2OHPmDNzd3XOhpAbU4ko5vV6PR0GReBURCxXDoEg+D/j7Kt926enpWPTnedx/Hg6VWoUGFf3Rr1UVi5b/4GUEXkfEQa1iUDy/Jwr4uCmOT0lJQe+ZOxERmwgVw6Bi8bxY8nVrxfGpqakYMHcPQt/GQ8UwqPOZP6YObKw4XqfTYdji/XgTGQcVw6BxlaIY072uBfEZWLX/Cp68ioKNRo0W1YujUZViFsX/tu8ynr2ONsTXKIFGlYsqjs/M1OOf56GISkiHjVaLUv7e8HRU/lwLXXo69p17iJdhb2Gr1aBR5SIo7e+jOD5Zp8Ovu68gKDQGtlo12tctjZqfFVIcn1MpunTsOXsPryLi4GCrRZOqRVGiQB7F8ekZmbj9NARRsUmw1WpQtogPPF0dLFh+GnaduY83kXFwsNOiebXiKJrP04LlZ+DWkxBExyXD1kaDz4r4wsPFXnF8bEIylu++jNCoeDja26B743IoV8xPcXxaegZuPn6DmIQU2NloUL6YH1yd7BTHZ/mY77rlRExCMnaduYfouGS4Otrh8zoB8PFQfgcvNDoev+25gqjYJLg52WFAm8rw9/NQHB8dl4TdZ+7hbUIK3Jzs0K5uaeRxc1Qcn5SShptP3iAxWQcnextUKJ4XDnZaxfEvw2KwZv81xCQkw93ZHl+2q4q8Xq6K4/8NOdn34pNScftpCJJS0uDiaIuKxfPC1kb5PdO4xKx4HVyd7FGxhB9stcrjrz18hVX7riIxWQdPN0dM6FUXfhasv+CwGBy69BjxyanwcXdEh3pl4eRgozj+ZdhbHLr4GIkpOvi4O6JTg7JwsFMe/zY+Gf88C0WKLh3uzvaoUNwPWo3yFvvRccn453koUnXp8HAxxGssaPH/7HUU/rryBEkpacjr5YKO9UvDzkb5/nvt4WvsOPUPklPTkN/bFcM71ICjvfLvHxmbiIev4qBLy4SXqz1KF3SDRm2950o9DAzH8evPkKJLR0FfN7SvWwo2Guvd8z9z6zkOXngEXXoGCud1x7B2NWBjo3z7hUTF4+HLCKRlZMDX3Qlli/hCpZIfooUXHxmHh0GRSM/IhK+HE8oU9rEo/nVEHB4FRSAjUw9fTyeULexjdoiYf9Or8Fg8Do5ERqYe+bycUcrf2+Ll5+a5NzD0LZ6/jkamXo/8eVxRsqCXReUPDHmLZ6+joAdQwNsNJQp4WhT//E00XryJhh5AQR83lCjw4Tcm+dR8zNd+n1RXwU9Reno6NDIntHXr1mHu3LkAgGXLlqF58+bWKpoAJa6U+evyY2w5dhtPXkXxplcs7oe+LSuhWukCkrHp6en4YtYOvAyNEZ1fs2xBLB7RSjJer9fj0KVH+OP4HTx/E82bVyUgH/q1rIRKJfNJxqekpKDpmPXIyBT/iXu62mP//L6S8ampqWg2Zj3SMsT3kwLeLtg6o6dkvE6nQ/OxG5Cali46v1ShPFg9sZNMfAaGLNyNR8GRgnkatQo9m5bH0PbVZeMHL9gl2HYAoFWr0LtFBQxuW00yPiMzEztO3cX2U3fxJjLOOF3FMKj1WSEMaF0ZAYWkEzi69HRMXnkMF+8GCbaBp4s9vupcC82qFZeMT0zWYdD8XaL7j41GjUGfV0HvZhUl43MqRZeGiSuO4uqDV8g0OU14uzliTPc6qFehsGR8WnoGthy7jV1n7iEiJtE4Xa1SoUGlwhjYugr8/aQTwAlJOkxc+RduPnojWL6vhxPG96yHmmULSsanpqVj01+3sPfcfUTGJhmna9QqNKpUBAPbVJFNAEe8TcCXC/cgLFp4rLG30WBcr7poWb2kZHyKLg0bj9zCnnP38TY+2TjdRqNG4ypFMbBNFeT1cpGMN/UxX7xkR0hUHCb9dhSPgoS/f39fd8wY1ATF8ksnMB8FRWL0sgOISUgRzHN2sMXcIc1kj5/BYTH4btUxPBU5fhTJ64FZg5vK7r8xCclYc+A6Dv39CEkpacbpjnY2aFmzBAa0rgw3J+kE6s0nbzDx178Ql5QqmOfmZIclX7VCQCFvyfh/U3b2vYi3CVh98DqOXnmCFB17DnBxtEXbWgHo16qybAIjLDoBaw5ew9ErT3nnEFdHO7StE4C+LSvBUSYBtPfcPSz68zwyMoTnP3tbDX4b1x7FZCpht5+8waz1p/Gac+wHAIYByhbxxdwhzeDhIp2Av/HoDeZsPIU3kfGC+HJF/TB3aDPZ7f8qPBa/H7iGUzeeIS2dPQd7ujigXd1S+KJFRdkEXnBYDFYfuIaTN54jnXMO93J1QPt6pdGrWQXZ+Et3g7Bgy1nB8U/FMKhYMi/mftlcNoG36/Q9/LTzIlLThEOB5Mvjgt+/7QBXme///E00Vh+4hrO3XvDOnz7uTujYoAx6NClnUQLOUieuP8WP2y7yzh0AoFYxqFGmIGYObgo7CxKwllp94Co2HL4pev1VNJ8HVn/bSTaBdf9FGNYcuo5Ld4PAPX3mz+OCro3KoWP9MrIJqLvPw7D24DX8fT+YF1/QxxVdG5VD+7qlZeP/eRaKNQev4/L9YN70Qr5u6NaoHNrVLfVeE1g3H7/BukPXcfXha970wnnd0aNxebSuVVLx8nPj3Hv5fjDWH76BW09CeNOLF/BEr6YVZK8dAeDve0FYf/gmbj/lx5cs6IVezSqgiZmbvxf+eYmNR27izrNQ3vSAQnnQu1kFi27+kpz5mK/9KHH1kTtz5gy+/PJLAMDkyZPRu3fvXCsLJa7k6fV6LN99GZuP3gIAONnbIKBQHmRkZOLBywik6NLBMMA3PeuhXd3Sgvj09HQ0Hb1W9KKNK38eF2ybKUz+6PV6/LDtAnacugvAcLFfooAX0jMycT8wHLq0DKgYBt/1bYCWNYSV55SUFDQatc7s99SqVTjzy5eC6ampqWg4cq3ZeHtbDU78OEgwPSFBh2bj1piNd3e2w8GF/QTTdboMtBy/DsmpbIVPrWKg14OXxKhfwR9zh7YQxCfrdGg9bgOvwiQW37hyEcwc3EwQn5GZiWmrT+DE9WcAAE9XBxTNnwepunTcfR6CjIxM2GjVmDukuWjyJEWXjq5T/kDku4SNimHgZG+DtIxM3nca0q4a+rasJIhPSE5F6/HreRUWtYpBpt6wb2RpX7c0vulVTxCfUwlJOnSZsgWx7yr9xvKnZyCZs07HdKuDzg3LCuJT09LxzfIjuPrgFQDAx8MJhXzckJCsw4OX4dDrDRX4JV+3wmdFfAXxcQkp6DLlD8S/q7SrVAyc7GygS8/gbdOJX9RH29qlBPHJqWkY+/Mh40Wfn6czCni7Ij4pFQ9fRkAPQ/Lix5FtRJOPr8Jj0X3qn7x9xbD+9byLeKntl5iiw6gfD+LeizAAQD4vF+TL44K4xFQ8CjIs383JDstGtZVNvnB9zBcvlnr+Jhr95+ww7v8atQoOtlqk6NKhSzccU1UqBstGtsX/2Tvr6LiNro0/WjYzMzt2wGFmpobbpG3KbzFl7lemt2+ZmZs2adImaZiZySE7ZmbmXS/p+0O72tWSncSpnfb+zvE565XuzkgaSTPP3HtnQEKwlf3JjFI89OEGwXdiEWMlIL/+n8k2O+BZxdW46621/IBfKhHBSS6Fsl0LjaF8sYjBl0/MRXK0tfdkVX0LHnh/PUqrOdEjKsgLfp4uqG5oRX55PQAgzN8Dnz46G35erlb2+87k4dkvt3dY/w8fmoEhSfbF267iUttecWUDln2wgRes40J94OXmhIq6FhRVNgAAYkN88Mmjs216HxZWNODBD9bzokF8mC88XRUor21GcVUj/93Hj8yGu4vcyv6rdcfw09bUDuv5xRPXoV+sdfvZm5qP//t6G3+vy6ViyKUStKrU/DVQyCRY+cpi+Nu4frtO5eDFb3bCeLUUMglkErHA3kkuxapXl9j0Ps0sqsbDH21EU2s7GAAJEX5wd5ajuKoR5bWcENYvNhDvPzgTTnJr76f0gio8+tFGNCvVYBggMdwPbhb2/eOC8N6DM2x6T60/eBFvLd/H/2+sf4tKDb2h/m7Ocqx+dQncbVy/z/48gl93nOX/ZxjuHWLefsUiBuv+exN8PKzPX2p2GZ74dAuU7RqIGAZJ0YFwdZIjv6wWlXVc/Ycnh+Gt+6ZdkvdZZ1m+LRWfrz3G/+8kl0IqFqFFqebfCT7uzlj9+pJL8j7rLC9/txPbT+Tw/4sYBgwDwfmTSyXY/N4tcJJZi4cHzhbg+W+2Q6PVQyIWISnSH3KZBLmltahr4iZRpgyJw4u3TbApPu1LzccL3+6AVie0zymp5SdhZgyLx3O3jLdpv/tULl76bid0ehZSCWcvlYiRU1LLTyTMGpGIZ24ee0neW51l27EsvP7THuj0LGQSMZIi/SGRiJBVXIOmVq5PsWBsMh5bPKpT4tXf/e5dtz8d76zYD5bl7r1eEX4Qi0XIKKxGi1INALh5agrunzfMpv2fey/gvZUHARjsI/0hYhhkFpnsb5sxAHdfZ3vidtXu8/hw1SEAXB+/VwTnpZZRWI1WFWd/56xBuHNW5yNHiMvnWu77XfPCVXV1NaqqqqDT6eDj44OQEPuznf9EtmzZgkceeQQA8O6772L27NndVhcSrhyz+UgmXv9pD8QiBjdO7odRfSP5DpKyXYMtR7Ow8XAGRAyDzx6/Dv0sQocWPf8bP1PrJJdgdL8IOBs6GLXNShw+X8h3QqYNjceLt08Q2K/dn4Z3fjsAiViEm6ekYESfCN49vk2lxqYjmdhyNAtiEYOvnpqHpEjhzPvI+74UDLCDvF0gN3Sw6puVaGw1zeJHB3li+UuLBfaj7vtKMGiPCvTg7eua2lDVYJqFTIkNwOdPzBPYj3nga37QJ2KA5Eg/yAyzu1UNrSiuMs1ijx8QhTfuFnofXv/ibygx7BPs647Jg6IhNXgzVta1YNvxbH4A+/RN1uLhwv/7FWWGDnqonzsmDoqF1HD+LO1fuHU8pg8Xin/frD+BHzafgpNcittnDMCA+BDInJwhYsRoaG7Fyu0ncfBcARQyCZa/eL2V58zdb6/FhTxOtBjeOwzj+8fw16+yrgWr9pxDfTPXgfvqqblW4s2sp37iO5hRgZ4YNzAaYoazL6luxM6Tufz5fe+B6V0eOrj0tVXILeW8/MamRGJUv0i+/LKaJqzafZ73BFn+4vWIDhaGXr39636sO5AOdxc57pw5CL2jTeEBdU1tWLHzLE5llsHDRYEVr9xg5Xmw+MUVKKpqBANg/IBojOgTDpGh/OKqRqzecx4tSjUYAKteW4IQP2Hoz2s/7saWo1nwcnPCnbMGoVeEH19+TUMrft1xBmdzKuDt7oSVryyGq5Nw8DvhoW95gSwxwhcjepvKzy2rxb7UAv7+WPHKYkRYeG698M0O7DqVCx93Z9w1exDiw0zu/VX1LVi+7Qwu5FfC38sFK15ebHPwacm13Hm5FPR6PaY9/iNalGqIRQxmjUgUPF8ziqqxbn861FodpBIRtr1/h8DzQafTYeyyb/nrMzA+CP3jTX2NC/kVOJrGCaoMgJ0f3yEY/On1ekx+9Aco2zWQiEWYPTJRcH+mF1Rh3YF0aHV6yKVi7PjgTkgkIjN7Fne9tQYZRdUID/DEHTMHItysfRRVNuD7TSdRVNmIXhF++PaZ+YLBk1qtw/iHvuFFj2FJoehtVn5qdhlOZZYB4Aa0+z6966ov9nIpbU+r0+HmV1ehqLIRcaE+uG3GAAT5mJ6PuaV1+G7jCVTUtWBIUig+fGiWwF6t0eGmV39HaXUTEsJ9ceu0AQj04Tq+LMsit7QO3248gar6Vptey+U1jVjw/Ar+/6RIP8SHcp5VOlaPUxll/LuBYYBDX9wrsG9oUWLWUz9Dr2ehkEmwaHxvRBlCS/UG+23Hs6FnWfh6umD9W0sF9rWNbZjzzC/Qsyyc5FIsHJcssD9xsQTbT+SAZTlBf+2bwgnMVqUaS15eiZrGNvSNCcTNU1LgawhNZVkWGYXV+HbjSdQ3KzF1aBxeul0Ytt/c1o7FL61EfbMSKbFBuHFKP/h6mOzTC6rw3caTaGhRYcbwBDx/63iBfWl1I65/YQVYcBN2N0zowz9f9aweh88XYc/pPLAAIgI8seIVYd/hfF4F7nl7HQBOnJo4MBrhAV78+d9/poB/t7g5y7Ht/dsF9nVNbVjy0ko0K9UY3CsUiyf2hZ+vN0SMGFqdFqkX8/HdxpNoUaqxaHxvPHrDKHQl6QWVuOuttQC4yYUbJvRFgLcrX/+9p/Nw6HwRACAp0h/fPjO/S8vffiwbL/+wCwAnmE8dEodAQ2i0RqfH7lO5vHhrq/0UVzZg6eurodboMDYlCvPGJsPdmXu/6fR6nMwoxU9bTkOl1uLu6wbjthkDBfYFFfW47fU/oNbqML5/NOaOSYKbmf2JiyX4actptGt0uG/eUCydKvT6Np90mDgwBnNG9YKrwV6rM9hvPQ21RodlC4bjxsldu/BWZlE17nprDXR6FlOHxGH2yEQ+NFer0+PIhSIs354KjVaPxxePwoJx1hNvlvyd794z2eV44P2/wLLA7JGJmDY0nu8faLQ6HDhbgBU7z0KnZ/HCbRMwfVi8wP5UJjdpw7LAnFG9MGVInMB+35l8/L7rHHR6Fi/fORFTBgs9t05cLMHDH20EAMwbk4TJg+P496tao8Pe1Dys2n0eepa1O/FDdC3Xct/vaghXVz1QnGVZ/Prrr5g+fTrGjBmDhQsX4oYbbsCkSZMwatQofPDBB2htbe34h/4BnDt3jv+ckpLSfRUhHMKyLJZvOwMAuHlqf4wfECOY1XOSSzF/bDKmDY2DnmWxwmxmEQBUKi0vWjkrJJg6OI4XrQDAx80Js0ckwjjRtO14lsBer2fx63buN2+fMRBjUqIEOR2cFTIsGt8HEwZEQ6dn8fuucwL7ioYGgWgVGejJi04A4OXmhMhAT/7/vPIGgX1ldRM/6BMBSAz3Fdh7uzsjMdwUYnEmp1JgX1RRx4sqEpEI/eOCeNEK4MLM+sWYvBT2nM4X2Nc1KXnRKjrYCzOGxfOiFcB11m6e2g8SEXdOvjCbGQW4EBXjwCQuzAfThsbzopW5vdhwAT7584jAXtmuweo95wEAy+YPw6DEUMGsoLurwiBmBUOl1uLPvWkC+9rGNl60mjokDpMHxQmuX4C3Kx6YP4wPc/l49WGBfV6ZaVa0T3QAJg6K5UUjAAj188DSaSkQGQa7//ttP7qS4soGfmAxb3QvjE2JFpQf7OuOZQuG852ZjyzqX9ekxMbDGWAYziOrT0ygYGDu7e6Me+cORXyYLxpbVdh4KENgn1VcjSJDx3zRhN4Y1TeSF40AzlNl2YJhkEnFYG2UX1Xfgm3HsiEWMXh88SgkWeS08PV0wQPzhyM62Bt1TUpsOSq8/3afzOFFq9F9IjCqj7D8mGAf3DS5L///K9/tFNiXVDdi9+lcSMQiPLFkNBLC/QTl+3u54sGFwxEe4Imq+lZsP54NwsTmI5n8rPBdswZbTQokhvvh/vlDIWIYaLR6/LDplGD752uP8c+vWSMSBKIVAPSOCsT8MZzQzQL43y/C++ePPRegbNeAAXD3dYOtROWkSH/cN3cIGAZo1+jw644zgu2nMkuRUVQNT1cFnlgyWiBaAVyekCcWj4aHiwIXC6txOqtMsP2t3/bxotW80b0EohUA9I8LxuwRiQA479FP/jyKnsT+MwUoqmxEgJcrHr1hlEC0ArgwpydvHAMnuRTH00usQkH3puahtLoJQT5ueOT6kbxoBXArTceG+uCpG8dAIZPgyIUi/lll5NFPNvOfJw6M5kUrABAzIgzpFYo+Mdw5ZVngm79OCOw/+/Mo9HoWErEIDy0czotOACBiRBjcKxQ3TeEG2zUNrThuEQr1yR+HoWc5+wcXWNsPTQrHTZNTAHCTGKkW13/rsSzUNLYhKsgLyxYM50Ur4/H3ivTHE0tGQyxisON4DirqhKGIm49kor5ZiZgQb9w/fxgvWhntk6MC8LjBftuxLEEYNwB88PshsABkUjEeWjhMMCkgYkQY1TeS97ItrGywCqV9/cc9XFkAbp7SjxetjOd/fP9oDErk7snmtnacswhl+uvARTQr1egV6Yd7rhsCLzfTpIZIxKBfbBAvVv118CKaWq1Dga+Ej1Zx7xNnhRQPLBjGi1bG+k8cGMuLBekFVVbn70r5cDXn6SIWMVg6NYUXrQDOQ37qkDgkGPpflXUtVtd/9Z4LUGt0GNIrFLdM68+LVtxvijA0KQz3GVIsrNp93iqVw+rd56HW6jAsOQw3T03hRSuj/bDkcNwzh7NfufMc74Fq5Pdd56DR6jGyTwRunNyPF60AznN2eO9w3H3dYIP9WWjtrCp/uazYyYky4/pH4YaJfQX55CRiEUb3i8Tthhyzv+04C52+Z03g/7bjLFiWm9CeNyZZMKkllYgxYWAMbpqSAgBYvj0Vlr4nv20/A5YFZo5IwJzRSVb2kwbFYvEk7vn16/YzVvbLDVEm143shdkjewkmhWRSMaYMicMNE/sI9iWIv5OrmmFQq9Vi2bJl2LePczm2vEFqamrw9ddf48CBA/j+++/h6el5NavTrajVamzYwIUu9O/fH2Fh9nMj/R1I5J1PjtxTYAyDR4YRQaqwdi/vKs5ml6Kgoh6erk4YOyjRbiLQGaP6YsfJXBw8V4hGFcN3MJ/7eh2/z4SBCRDZcWUfkBCKkxklYFng2MVKjOrPzVwcTy9EWU0TfD1cMLJ/HEQi2+XPGtMPe1Lzsed0Hp6+Vczni7j1VVOIX4ivOzetbAOFTAyVmus0bDyai3njuJfZ7W/9yO8TE+oDxk75rs4ytLRxA8yDF8owfhDXmXvgg5/5fXrHBIARWR+/VCSGp5sCDQavo4vFjegbx3Vm3/rcFCIzYXA8xDbsxQAGJ4fjyPkCNLW1o1EF+HpybeLN5VtM9oNs5yASAxiYGIbj6UVoaFGhTWs6f9tPpaFFqUZMqC/6JJg8mRiDzs9ABKnCGdeN7YfTWWXYdCQTDy2ZyLeTr5cfAMCFl4xIsZ1HQAxgwuA4bDiQhvSCKjASZ95r47/L13HlMMCIfrZns8QAkqIDcSG3HFX1rRBJnbrM6+KLvzghxlkhRUqvSLvlj+wbhV0ns3E6s1RwP27fcxFanR79E0IRHW47ibkEwOzRffDeb3uw4XAmbp9jStb/5V9bAXCz8cmxtp+TTjI5hiRH4OCZPBxLKxaUv/UENxs4JCkC4SG2k+BLAMwc1RufrNqPDYcyceP04fy2Tw1CqEQsQlKsba9gZ6kMYQEeKK5sRGZxjaD8LcdSwbLAsN6RCAmynQNNIgemj0jCV2sPY+ORLCycbD/XmpG/6/nX3fy6gxPiQ/w8EBxoO4zSSyZHXLgfMgursNFw/xn56+BFAICLQoqQANv2fj4yeLgq0Niiwt7UfMH5/N0Qnh0e6IUAP9tJ3H195IgO9kFuaS3W7k/HXfNM4bobj3BC5ITB8fD0tJ0E3FPuhAmD47F27zlsPJKNYf1Mz6ndhvBkdxcF/H1t59AKDvCGi0KGVpUaGw5l4Mlbrm6+zEtpexsOc0Lw1OG94Opme6bVT+6E0Skx2H4sA5uO5qB3fCS/beMRk72Lq217fz8njOwXjV0nsrDpaA4ev8nksVxUyYneLgopPNxs1zUuzB8X8irAssCKXWdx/w0mr6Pdp/MAAP3iQuDiats+NiII3u5ZqGtqwzcbT2PkAFO48v6zBQCA/gmhcHG1ncQ/LjIIXm6cwPT1hlP49v9MXhPrD2UC4J5PCmfb9mHBThicFIGjFwqw9Xg+/jN3BL9tw+GO7SNCnDAgMQwn0ouw7UQ+bp9tCjk6bgjvHt47EnIn2/a948Kw5Vg2Wtra8eX6k/joMVOuSqM3UGyoLxROtvuZA3tF4LQhd+Hbvx3E72+avK42HOYmMmaP7guZwd783SuROyEu0gl9YoJwPrccO08X4YbJ1uHal4NWq8cFQ3j3hIHxkMlt5+Aa1jcGu0/loV2jxVcbTuGV/9jPVXoptLQq+VC6AQkhkMpsL+IxbmA8L/i++csBfPH09QA4jxrjRMx1Y/tBqrB9/lN6RSIiMB2FFfU4nF6BKUM5IVyl1mDrMe75NceB/cDkKITtT0dxVQOOXqzEhMFc+1W2q/kQx+vG9rVrP7h3DIL3XURZTSOOZ1VjbP/OL7bjiOZWFfaczgPDcMcvsXP9RqTEYe3+dJTXNuNMXh2G9Y50+Lt/17u3pqEFh88XQiwWYdbovpDI7Vz/QYn468BF5JfVI7O0GX0M4c4VtU04ml4MqUSEGaP6QiK3DqMGgAlDemH9wYvILq5FTkUrkqI4Ib+suhEnLpZAJhFj+qjedu0nDk3C+kMZyCisRl5lGxL+plyL/1b+LX2/znJVPa4+/vhj7N27FwAnWrm5uSExMRG9e/eGr68v//3FixfxwAMPXM2qdEhdXR1yc3M79VddXX3Jv//111/zdg899FBXV/+SEYnE19yf0WuBYZirWk6RIRl275ggyCRSiBixzT9vd1dEBflAz7LcinkG+8yiakM9AblMCoYR2fyLCDLNBO86lWVVfp/YEEjE9sv393JHWIAntDo9KupaePsWpSkMUCqVgrvNrf8CfTz5/dbsOcvbmycDlkjs24f5mwZ1a/ed4+0bzZIhSyRSgBHZ/IsNNb3s/tp/gbfPL+dmcJ0VUkjE9s9fv7hQ3j41q5S3L6zgcsi4KGR2bRlGhAGJptwwF3LLrc5/Slyo4HwL2h8jRmyoP9xdFGhqVaGptd1Uf0Mi/VB/L7vXTsSIMSiRE8VYllv5x2hvTATv7qJwWP8RvU2J0QsrG7uu/Rty0EQG+Tis/6gUzsVcp2fRptKYnb96m+fP8q9fXCgYhvPw0rOme7q0mis/JsTXof24/lz5Gp0eej3T4fWz/Osfz4lihRX1guNvMOTwCPB2c3j+R/aN5a+f8PwZjj++o/LDbZbf3c+/7v6raeQ8GPrEBDs8f4N7cfdPc6tKYK9s5zwIokP8HF6/5ChOVFVrdQL7+qY2w/ULc1j+QMPzo6FFafH+MLZ/x/Ypdtqf2pAXsVdUgMP6x4VzoqhKrb3q1+RS2l5hJ4+/fzz3/C6yOP7O2hvPX1Gl0N5IclSQw/Pn6coNqts1wvNnzEE4sm+0w/J7RXCieGVds8De6K05ql+MQ/v4cM6+vLZJYN/59hNq1X4YRmR2/sI7ad/A2+v1DO8tPaZ/nEP7mGCu/1JSabJvazd5z4wZEOfw/HsbcntVN5j6Lhoti4raZojFIvSODrH77hVe/4YO22Rn/6obWnlv9cFJEQ6PP8zgSVZQVtdl5aflV/Hnb2CvSIfnz7iwQbFZ+69rUqFVpea86oPsvz/FIgl//c3PX22jEsp2DXw9XRAW4OPQvp8N++qGNrSrtfD3dkOIn7dje8NEZXFF112/iroWaLQ6hPh5wt/Lw275ErGEnygt6kT5f9e7t9QQ7RAd7ANPNxe79ZdJZegdE2x1/kuqm8CyQEyIHzxcnO3ay6UyJEcHWdnzonOYH9yc7dsrZHL+/Vnchfcf/XVv+7taf13NVfO4qqmpwY8//giGYeDi4oIXX3wRM2fOFHgFnDlzBm+88QbOnz+P06dPY+fOnZg0adLVqpJDfv31V3z66aed2nfhwoV44403Ov3bp0+fxpdffgkAWLRoEUaMGNGBxdVHr+9a99y/A+6FzYBl2auan4sF99t6vR561vF50hvcjFlWz59TcwenztZTxJhfE67npGc7U76hl2VWvsUenSqfYZgrshfbs+/k8TNmx8+AO4Es2/nzB5a1cf4dtxOdWX1ZWJ9/nV4nOP8MzNof9GBZlnczN7/+Rr9SPcs6vH56Qd3M2o/pkBzXX1A3tsvuaWP5HdWfFbjYW5dvef4s0er1/CCBZXWmttzJ8oUhBub2tq+ftT03wGRg+3nY0XNGozMl2RfYG6rR8fE7Lt+Sv+v5192Y2p/j55/x+gHC88fAcD+z+g7uf9M24fln+O862/4E9ozx9x3b6+y0P2P9WX0H9dfZq3/Xcyltz3j9Om7/Ot7A8vg7Y6+zc/353+/g+ptvs3X+tboO6m+wt/fs1XVgb+w7WN3/fPvRQs/an1s2f3/x7x6WNTt/WthZUJivH4ep/nqLe0LP2k9czb+/zK6f+XFw7deBvVnlTPU32LMs9KwWYE2eVubvXu74zPbtqvZv3iZYHcDaP4H22s+VYfpNrU5j09vcppXF+evo3QmYPf/Mzp/xmPT6ztgb+zvW9myn7PVW9lcKX34njt/U1u31nU38bWOPSzr/xnqYnT+jfafGDtbXH5dw/kzXr+PzR1wZ13rfr6vFq6smXG3cuBFqtRoMw+DLL7/EoEHWqw+kpKTgp59+wnXXXYfS0lKsWrWq24Srq0VJSQkeeOABaDQa9O7dG88//3x3VwkAoG1vu+ZuAKnCFQwjBsvqr2qCugg/zj3+XE4ZlK0tdletqWtqQ355LcQiEYI8ZXydekf5o6y6ESwLtLW12V11JrfMlJtj0sAo3t5Y/tmsEqjaWu2GKlbVt6CkqgEyqRj+7hLe3sNFwbuba9QaSO0seW3MAwUAi8Yn8/Ze7k6oNazmpFZr7B5/ocGzBQBumJDE2/u4O6Oynvus1mgE+aXMySo25caYPzqet48N9UJJdQOU7Rpo1CqY5xcyJzXLtMxx/xgf3j4myAvlNU1oVTm2N18muXe4p+n8+3OuuKczijB7eBw/2yGRO4GBGCz00LYrkV1Sg1YlN7vpIjUlTYwL9UJaXjlKquqhU1svZW/kaBqX4JVhAF8XMW8f6ueOuqY2NLWqoNOo7dofMISkAECQh6TL7omoIA/kltagoKzWYf33nOZCmiRiEaRQQ2NYbSYygAvvOX2xCOP62V/x7FQmd/4jA72gV7fxXfaIAA8UVzYgp6TacfknuZAGmUQMnboNOt7eWH4hRibbXwDkpOH8RwV7Cc6dt7szymqaUFnX7PD8HzrDhRQxDAT2kYFcTp9T6YUYHG+9YqKpfC63W1SQV6eu3d/1/Otu/L1c0KJU42xWKYb1sn/9jqcVAOASKJufD2eFFC1KNfJKajA8KdSONZCWx+XWkUvFAntfTyeUVGlwOqMY/WNth5oCwMmLhQAAbzcngX1UoCcyC6twKr2Af5bb4lQ6V//IQA+BvUwmQbtai/T8SvS1sWKhkZwSzrPXWd519749LqXtRQV7ory2CSfT8zB1SLzd/fjjD3AXnr8gL1TVt+BkWj4mD7YfQnTKcP4t7Y1czKtAuK/9pLBGz2CFTHj+nJ1kaFWqceBMDubZWDHYSIYhpCzI101gz60+qcG+1CzMGWnfPrPQsOKon9A+OsgLFwurcTIt3+aKtUZO88dvYR/sjaziGpxMy8PQJPspKU5fLLJpL5WIodHqsOtEhlXiZnNyS7hQtQh/0/mXm+lUe05mYuIg+9evvpnrYwR4u/D2DIAQP3eUVjch9WIBn9/O8t1rXv+IANcua//eLgxEDLd67KEzORjR2/6iJ0bP5Jhgzy4rv1e4KbT4+PlCDLHz/NKzerQa8gBGBZrK91CwcHOWo7FFhez8UkRZLJpihGVZnM4wnD9/0/n3cuJWD65rakNuYTkizHKhWttzud0i/Ez2Ps4iOCukqG5oQUFxBUL9bYdK61kWZzKt7a8Uf3cJ5FIJSqsbUVpehQBv2/e/Tq/HmSwuJDa8E+X/Xe/eIE85xCIR8stqUV1TJ8jvZo5Gq8OFXC43XrivM1+nEG85RAyD3JIa1NbW21yxFeC8TC8Y3n/hfqb3V6iPAgwDZBdXo66+QZAfzRyVWov0/HKr8omrw7Xc97umkrMfP34cADBixAibopURZ2dn3H777WBZFqdOnRLM+PydPPjgg8jMzOzUX2e9rSorK3H77bejrq4OYWFh+OKLL6BQ2H6QED2HXhF+iAvzQYtSjT2GfBe22Hg4AywLjBsQJXjBPH/LWP7z3tQCm7Y61pRLQSRiMCjR1EHpFxuIiEBPNLSocPCcbXuWZbHBkNR60qBYwapovz1vWuWntNb2Q06j1fIhKQCXCNLI9/83l/+cW1Zv016r00GpNs14D0w0dZC/edJkbzxGa3s9mpUmUSAuzJQL6LlbxvGfdxzPtWmvY/VIzakAwA1cPcxWpfu/W032u07avn46Vo/zuZy9j7sz73YPAGNSIuHpqkBRZSPOWiSONaLXs9hw0JCLY2QixGZ5wO41LDGs0eqx70y+TXutTs/nQukXGyRYlezF2035VvabiVPmaLRaZBsGDsG+bl26qtgD87l8Jyq1FicM+U4sUWu0OJbObbMcHE0bGgeZVIwL+ZVWiXuNaLQ6bD7C5WKZM7qXYNsDC7jy21QanMkus7Ll6qbhha9R/YSDixnDEiARi3Amp5wPm7GuvykXiOWKlI8v4RL/6vSs3evf3NaOijru3rJaEXJEIkQMg1OZpSipbrRTfy22GXOJWBz/v51bp3OrXFXWt/Bhl5bUNLYiv5zbNm9ssmCbMXGsUq21a19R18wngJ86VCiu3DyFWyWrtKaJD9u1pLKuhc+ltHhiX8G260Zx13PfmXw0tCht2tc3K/lnw1yL9jfDkPi5RalGmUXiZSNFlfV8SOSi8R2vivV3MmcUdzw7T+Tyg2tLqupbcORCkWF/Yfs3nr+dJ3PQprJtX1nXjGNpxYL9jcSGcHnNlGot6u2c/4tF1bxn7B0WS7pPMYhlafmVaGqznfg7o6gajYak4MZE10YmDowGAFzIrUSLnfpfLKziQ/Lvnye0Nz6PthzNtEqcbaSosgGpWeUQi0SYOUKYx9H4PNlyNEvwjjenoLweZ3PLIZWIMH2Y0H5kH04sO5lRCpVaY8scp7PK0GYIqVy2YLhgW3QQF0KXX9EApR37Y+nFvDPT/90iXFHZ2B42Hc7kwxYtySyqRkZRNZzkEofi2qUiEomQEs+JZQfPFQq8Os05eK6AT0p+n8X1uxKcZDL4GkIoz+dXQmPn+PecMvVrnr/NdP4kYjFmGRZu2HAoQ7AytDmnMktRVtMMH3dnjOpren/KpGLMMKywvP7QRbv2xy+WoLKuBX6eLgJxVS6TYLrhebr+0EWrvMZGjqUVo6qhFQHernbFucvBRSHjxe71hzLsln/wXCHqm5UID/BA/7jgLiv/SvF2d8LYlEjoWRYbD2fY3W/36Vy0KNVICPflE/UDgK+HC0b1jYBOz2KToX9li10nc9Gm0iA5yh9xZotX+Hu5YkTvCGh1emxxYL/jRA6U7Vr0jQm0WlGaIK42V024ys7OBsMwGDlyZIf7DhtmGKi0taG4uLiDva8NampqcPvtt6OoqAghISH46aef4O9PCeyuBRiGwa3TuGSfv+8+h42HM9CmMnXAGltU+HX7GexNzYdELLJazlcikSDW8DBXabTYdDRT0IEurm7ExsOZfMfNclaXYRjcYih/+bYz2Hosi8+7AXCDnp+3puLQ+ULIJGIsmSQcOHl6KvgV8wCgoKJBIBJV1begtMYkaPWJFrZLP3d3gZdURlENmttM9uW1zcgpNQ0IzTs+AODr7Qq5lBNS9HrgdFa5wL6oqhFnc02C1nUjEwX2rk5yxIRw56+4uhFr96fxg0yAW275ly1n+FCDR28QPmM8XJ0QZeg8F1Y2YN3BdIF9blktft6SynfKnrhRuJy2XCrBEsM1/XLdcew7ky9YOaeyrhlfrDuGC/mVcHWSYb7FwNndVcGvmrTvTD7WHUwXDADyyurw8R+H+Vwoj1wvDB0O9vXgVzLKKq7BhsMXBQOAzMJq/LLtrKnjb7Gc+ZUS4O2G5CiuTWw5loVNRzKhNhtAZRXX4KM/jkCt1YFhrOvv7qLgz8mHqw/hWHqxYABSWtOEj1cfRn55PXw9nPmOspGIAC/EhnKDz/WHMrD1WBbUWlP5GUVV+PiPI9Dq9BAxDB5aKCzfx8MZs0cmgmWB91YexMmMEkFYWHFVIz5YdRDFVY0I8Ha1GvgMTw6Hq0HIPJFRiu0nsqExK/9sTjlW7T7P///yncLl6AO8XTF9eDx0ehbv/nYAqVllgrCYwooGvP/7QZTXNiPEzx0TBtBy0uZMHhwLLzdugufnrWdw6HwhdGYhECczS/H1+hNgWc5bZukU4XLsd84aDLGYe/5tP5GLA+cK+LAmPavH0bQibDQksGYY4Mklwvt/1ogEfiWt7zedwpG0QoH9sfRifLuRW4nOWSHlV1gz0i82EP1ig9Dc1o63f92PzKJqfgDFsiwyi6rx9m/70aJUo39cEHpbeFU9dsNIGFcM3Xw4E0fTigTlHzxfgO0nOEFfLGJw5yz7E4PdwYg+4YgL9UFtUxveWbEfuaV1/PHrWRYX8irwzm8H0K7RYUy/SCuvkNH9IhAV7IXqhla8s+IAnzPQaH8utwJv/3YAaq0OEwZEW63a+P6D0/nP+84UINVM/Nbo9Nh/roBPbC0SMfwKf0bumzsMErEIej2Lz9ccw/lck3it1emx+3QuVhvu/2BfN6tVL5fNHw6xiIFOz+LTP48IJm+0Oj12ncrBasMCAGH+HkiKFF7/yYNjEeTjhpLqJnzw+yHeswfgPEVOZpTi3RUHoGdZzBqZIFg1EACmDolHgJcriiob8OHqQyiparSwL8H7vx8Ey3Irh3m7C706Hrmea39anR4f/3EEGUWmnK5qrRZbj2Xxg+q4UB+EWZx/8+fhbzvO4oJZ3ia1RovNR7Nw3rDqrrebk2DgDQCzR/aCl5sTckpr8ckfh1FeaxKPtVodjlwowsd/cCv/LRzXRzDp1BU8ej3Xn1Cptfho9VHklZkmX1RqLdYfSucT+A9ICIanq22vmMvlySXcQiXc6tapyCkxrbqpbFfjr4MXkW/wdg8P8LC6fgvHJcNZIcWZnHJ8/ddxwaqHao0Oe07n4ev13PPrpin9ILGY9Fo0vg+c5FKkZpXh2/Un+JyDAOeps+tULr7beBIAcPPUFKuIgOsn9IFCJsHJjFJ8u/Ek770PAO1qLXaezMEPm7mVYJdO7S+Y9OsKFk/qC5lUjCMXivDjltOobzb1vVVqLbYdz8Lybal8+eYrRvcEbpySArGIwZ7Tefh1+xleIAe4ybwNhzL4/sct0wbAfMViALhpKme/82QOVuw8K1h1s02lxvqDF/HnXu75s3Sq8N0JcNdULGKw7Xg2ft91TpDztlWpxroD6Vi7n1tJe+k0a3uCuNowrD1J+goZNGgQWltb8d5772HGDMcrbrS1tWHAAO4GXLlyJfr16+dw/55OZWUlbr31VuTn5yMiIgLff/89QkO7blahK1Arm6/JUEGRSAy9Xve3uEv+vPU0vlzHeQ7KpWJEh3hDp2ORW1oLnZ6FWMTgxdsn2g1nmPro9wLByBYJYb744f8W2tz27YYT+N6w1LtCJkFUsBe0Wj1yS+ugZ1lIJSK8eudkjO0fZdN+xL1fdniMTjIJdn18l9X37e3tGP/wDzYshHi6KrD53dusvler1Rj/0Pfo6OES7OuGP16/yep7nU6HWU/9jMZW00uTYaxTTswemYhnl46zaT/jyZ8Egpkt+3ljkvDkjWNgCcuy+N+v+7HesEKZq5MMkUE+UKm1yC2tBstyg9Z3Hphuc8ZOq9XjxldXoqTK1Ol2kkmg1bMCEeyJJaMwf6y1x4RarcP0J3/gvSrs1X/p1P5dOuNrRKXWYvFLK1BVz3VaGXBtUKvT87PADIAXbpuAacOsw4G0Oh1e/HYn9qZyXiUeLgqE+rmjRaXmQ0w9XRX48OFZiA/ztbJXqTVY9PxvqG1SCsrX6PS8CMYwwBv/mYJxA6Kt7DVaHZ79ahsOny/iywrxdUezUs0PBH09nPHRw7NshlPUNSkx99lfBIKbrfP/5I2jMW9MMixpV2vx1BdbeY81b3cnBPm4obG1nR9I+nu54ONHZlsNvO3xdz//upPy2ibc9MoqXtwVMQzkMi5xuc4gAkrEInz95FwkRlpPCGUW1eCO//4huF62rt/Hj8zmRWZziisbcMvrq9Fu8Fgxlt+uMeVSk0rE+OG5BTZnnOublXjoww3ILeVElwBvV/h6OKOmoY0Po44L9cGHD8+yGQ5yOrMUyz7YIPjOsv4MgG+enoekKPvhhF3Fpba9yroWPPjBepRUc8+/YF83eLk5obK+BTUN3EC2d3QAPnhwpk3hoby2GQ9+sIH3eAvxc4enqwKVdS2oMQyE+8UG4r1lM+GssA7FX7X7HD5cdbjDei5/cRGig61Xnjx5sQSPfLKJv9YSsQhSiQgqtZa/Bm7Ocvz+6mKbwsXRtCI88ekWfnLElr27ixyrX1sCN2drL/yC8no89OEG/ljDAzzg5ixHWU0zPxAfnhyG/947DTKptbdtXlkdHv5wI2qbjPaecHOSobSmiU8jMLJPBN68Z4rNVAC7T+XihW938HWViEWQig31N+zj4+6M1a8vsZkK4eetqfhy3THBd5btVyYVY9Pbt9q8/hmF1Xj04038oD0q2BsuTnIUV9Tz300cFIOXbp9oN5XClbDuQDre/nU//79UIoJEJBJ4mYf4umPFy4sF3tJdxfsrD+CPvWmC7yzPn6uTDFvevdWmt/XJjFI8/cUWKNu1YABEh3hDLpWgsKIerYZJ2Pljk/H44lFWwgcAHE8vxjNfboNKrQXDADHBPpBJxSioqOcncReN741Hrh9p0/5oWhGe/XI72jVC+/zyen4SdvGkvnhwwXCb9lfKgbMFeOGbHdzCGwyDmBBvSCVi5JXV8e+UW6cPwD1zOl7NF/j7373bT2TjtR928+OMmBAfiMUMckvreC/Ke+cOxS12hKMtR7Pw5s97ePvYUB8uhLDMZL9swXCrSXcjmw5n4L+/7IOeZSERixAT4s3Zl9ZBbei/PrxoBG6w8DYmrg7Xct/vaoQKXjXhqlcvzt33yy+/xNixYzvYG0hMTATDMPj6668xevToDvfvqRQXF+PWW29FaWkpEhMT8d133/ErKPYkSLjqHIfOF2LFzrM4nWmatRUxDEb1jcDSaf2R3MGg4d531uJcrnW4HMMAM0ck4Lmljr1l9p/Jx4qd5wQhS2IRgzEpUVg6tT8SI/wcWAMTHvqWf1FbEh3kieUvLba5zcjkR77jOzqW9I3xx5dPzrdrq1arMefZXwXikzmj+obj7fvti9o6nQ6Pf7oFJzJKrAacCpkE980dikUT+ji0f+TjTTidVWZl7yTn7BeOt2/Psiy2HsvC77vOI6vYNOspk4gxaVAMbp7WH5GBtperB7jkl28t34cdJ3L4AbCRUH93PHbDKAxLtp/DRK3W4cEP1+NCXqWVAOiikOKxG0ZhuoW3Ulei1erx+k+7sSc1Dxqt8FkREeiJp24cg/7x9t3sdXo9/jpwEX/suYACs5A9J7kE04bG4+ap/RHkY/+FptZq8cr3u3HgbIFVyEh0sBeevXkckh3kANLq9FizLw1r9l3gw7oATnCcMSwBN09Ngb+X/aWFW5TtuPeddcizES7r4SLHi3dMxHAH10+j1eGPvRewZl8aSqtNAqarkwwzhidg6dT+8PGwvVy4La7lzsvl0NCixAvf7kRqZpkgZIVhgKTIALx8x0SE+LnbtS+racSDH2xEea11uJ2fpwveWzYdsaH2383VDa146budOJdTYVV+n5hAvHrnJIftp1Wpxm87zmL9wYu8gABwA/45o3thyeR+cFHY9xbJK6vFox9vFnhMGAn0ccPHD8+ym0Omq7mcttfYosLybanYeDhT4DUQ4O2KuaOTsHhiX8hl9tOsNrQo8cvWM9h0JANNZu+QQG9XzBubjOsn9IHcTv5GANh/Nh8vfbvT6tkLcEL2D88t5D1bbZFbWovXftwtyMUIcO/fYcnheOXOiXB2cP2yiqvx+k97rcKlJWIRhieH4ZW7JtnNfwkA1fUt+GX7GWw5koVWs5DDMH8PzB+bjAXjkq28Zcypqm/BL1tTseVYlsBjPDzAEwvGJWPemGSHos/5vAq89cs+PiTXvP5jUiLx4u0TIJPYP/+7T+XireX7BN7ORhLDffHZE9fBSWb//JXVNOHnranYfjxb0IeJDvbGwvG9cd3IXlfVW+Z4ejHeW3mQX2nNiEwqxuRBsXh26ViIuthbyJy1+9Pw6Z9HBd72APf86R8XjI8enukwRUB+WR1+3paK3adyBe/vXhF+uH5CH0wZEudQNMotrcMv21Kx57TQPinSH9dP7IPJg2Id2ueU1Brs8wTv7+SoACye2Mdh/rOuILOoGr9sTcW+MwUCj+t+sYFYPLGf3QlfW3THu/dCXiWWb0vFwXOFgvfPgIRg3DipH0b0sZ9/DQDO51bgl21ncPi80H5QYghunNzPYd8T4DzLl287g8MXCgX958G9QnHT5H4Y4iB/HtG1XMt9v2tKuDIKUZcqXHV2/55IVlYW7rjjDlRXV2PEiBH45JNP4Opqv2PUnZBwdWmUVDeitLoJYhGDiEAv+HnaT7pri1+3peJ4RikkYhGmDY3F5MH2k9baoriyAWW1zRCLGEQFeV/SgBcAHvpwPTKKaiBhRJgxPB7LLMKrOuKpz7cgvaAKErEI80b3wq0zLi085aXvdiItvxJSiRiLxve26WXkiDV705BWUAm5VILpw+Ot8gp1xB97ziO9sBpOMglmDk+4JC8FlmWRX16P2hYd5DIpYkN94Czp/Coqer0e+88WIr+8DgqZBGP6RTkccFui0+mwes8FZJXUwlkmwdwxSQ4H3F2NXq/HntQ8FFU2wkkmwYSBMQ4H7JawLIvsklrUNrZBIZMgPsz3ksI79Ho9dp7MRWlNE1zkUowfGHNJ9x/LssgqrkFdkxIKuQQJYX42vTTsoVbrsHx7KoqrGuHmIsfiiX0Q7Nt5wUCvZ5FZXI2GZhWc5FIkhPvCSd758o1cy52XK0Gl1mLHiWxUN7TC01WBKYPj4erc+fbTqlTj562pqKpvga+HM26emiLIiddx+RpsPZaNuqY2eLs5YcqQOIeChSVanQ4XC6vR0qaGq7MMvSL8HAoOljS2KLF82xnUNLbB19MFt07vL8hp+HdwJW2vXaNFZmE1WlUaeLjIkRDhd0nhQe1qLTKKqtF2mfYlVQ34Yt1xNLaoEOznhocWDYfrJeQabWhRYueJXDS1qRDk44bJg+IuycumrqkNu0/loalNhWAfd0waFHtJ9m0qDTKLq6Fq18Lb3Qlxob6XJNgI7Z0RH+ZzSV4u1Q2t2HMqF63tGoT4umPSoJhLEmwKyuuwZl8amtvUiAr2xk2T+15STsYWZTvyKlqh0bHwdndCpJ/TVfHSsUd5bRP2puZDpdYiKtALY1Iir6pgZUlGYRU2HMqAUq1FUoSfw8k2WzS2qJBTWguNVo8ALxe7Cdvt0dCiRE5JHbQ6PQK9XREZZH+yzhb1zUrklnL2QT5udhO+Xy3qmtqQV1YHrY5FiK+bVWhrZ+jOd291QysKK+qh07MI9fO4pL4jwAngBRUNYFkWof4eCPa9NPuq+hYUGuzD/D0QdIn2xJVzLff9SLjqwaSmpuKee+5BY2Mjpk+fjtdffx1Sqf3BCcMwkDmYbbrakHBFEJcGtT+iO6H2R3QX1PaI7oTaH9GdUPsjupNruf1dk8LV8OHDERDQsXfD2rVrO7U/wzB48803u7KqXcLSpUv5lRQ7Q2RkJLZt23YVa+QYEq4I4tKg9kd0J9T+iO6C2h7RnVD7I7oTan9Ed3Itt7+rIVzZD1DvIo4cOdKp/Yyuv53ZvycKV5dKVFTn46sJgiAIgiAIgiAIgiD+jVxV4epqOHP9nbHtl8Ivv/zS3VUgCIIgCIIgCIIgCIL4R3HVhKuff/75av00QRAEQRAEQRAEQRAE8S/gqglXQ4YMuVo/TRAEQRAEQRAEQRAEQfwL+PvWdCUIgiAIgiAIgiAIgiCIS4CEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRISLgiCIIgCIIgCIIgCIIgeiQkXBEEQRAEQRAEQRAEQRA9EhKuCIIgCIIgCIIgCIIgiB4JCVcEQRAEQRAEQRAEQRBEj4SEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRISLgiCIIgCIIgCIIgCIIgeiQkXBEEQRAEQRAEQRAEQRA9EhKuCIIgCIIgCIIgCIIgiB4JCVcEQRAEQRAEQRAEQRBEj4SEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRISLgiCIIgCIIgCIIgCIIgeiQkXBEEQRAEQRAEQRAEQRA9EhKuCIIgCIIgCIIgCIIgiB4JCVcEQRAEQRAEQRAEQRBEj4SEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRISLgiCIIgCIIgCIIgCIIgeiQkXBEEQRAEQRAEQRAEQRA9EhKuCIIgCIIgCIIgCIIgiB4JCVcEQRAEQRAEQRAEQRBEj4SEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRISLgiCIIgCIIgCIIgCIIgeiQkXBEEQRAEQRAEQRAEQRA9EhKuCIIgCIIgCIIgCIIgiB4JCVcEQRAEQRAEQRAEQRBEj4SEK4IgCIIgCIIgCIIgCKJHQsIVQRAEQRAEQRAEQRAE0SMh4YogCIIgCIIgCIIgCILokZBwRRAEQRAEQRAEQRAEQfRIJN1dAYK42hRVNmDj4QyUVDUCYBAT4o3ZIxPh7+XaKfu/DqTj2w0n0dzWDjCAr7szHl88CsP7RHTKvqCiHpsOZaCkugkiEYPYUB/MHpkIXw+XTtnnl9Vh05FMlBrs48N8MWtEInw8nDtl/9maI/hjzwWotTowYODmLMPTN43FuAHRnbK/483VyCiq5f9nACyd2g/3zhveKfv5z/6Mivo2wXfzRvfCkzeN7ZT9oueXo7SmRfDdTVP64YH5nSt/wf8tR3mt0P7OWQNx56zBnbK//Y3VyCw2Hb9IxODJJaMxZ3RSh7ZKpRJLXl6Nqkbh8T8wfyhumtK/Q3u1Wo0H3t+ItIIq/juZVIQXb5uACQNjO1X+whd/R32zSvD9I4uG4/qJ/Tq0b29vxy1v/Iniqib+O4mIwYt3TMCkQXGdsl/6+p8oqTa3F+GV/0zC+P4dt7+2tjZc99xvaFNpBd8/feMozBnTu0N7jUaDBz7YiLT8SrAs952HqxzvLZuBpMiADu1ZlsWpzFLsPJmL+mYlnGQSDEwMweTBsVDIpB3aq1RaPPfNNpzMKIFOz4JhGAT7uOGdB6YjItCrU/ZPf7UVqVml0OlZiBgGIX6eePeBqQj19/uaHeMAAI/dSURBVOzQXq9ncfxiMfaczkNDiwpOcimGJoVhwsBoyKUdv/6VajX+98t+HDpfCLVWB4lIhKQof7xy52R4uzt1yv6/P+3D4bQiaAz2vaMD8NIdkzpt//qPe3EsrRganQ4SsQh9owPx8p0T4eHasX13o9XpcOBsIQ6eK0CLUg03JxlG9YvEqL6RkIiv/rxhm0qNr/46jkPnC9Gu1kIhl2LCgBjcPnMgFLKOr3+bSo0v1h3D0bQSqNRaOCukmDgwGrfNGACZpGP7ljY1vvzrGI5cKIJao4WTQoopg+Nwy/T+nbK/Uto1Wuw+lYtj6SVQtmvg6arA+AHRGNIrDCIR06F9U4sKn645glOZZVBrtHBxkmH6sATcNDkFEknH10+l1mDniVyczCiBUq2Fp6sCkwbFYlBiCBim4/KvlLKaRrz43S7kldZBp9dDLpVgyuBYPHrDSIjF4g7tS6oa8dJ3O5FfXs/bTxsah4cXjeiUfXVDKz754zDO51VCq9XB3UWBeWOSMX9sEkSijs9fVX0LPvnjCNIKqqDR6uHhqsD8Mb0wd3Tn7PPKavHK97tRVNUIvZ6Fk0yC2aN64d45gztV/+a2dmw9loVzuRVQa3Tw93TBtGHxSIr0/1uuX2l1Iz5efRiZxTXQ6Vh4uSlw4+QUTBsW3yn7xhYVNh3JxMWCKmi0OgR4u2LG8AQkhPt1yr6hRYnNhzNxsbAaWp2et48P872Sw+o0+8/m478/70NzWztYsJBJxFgwLhnLFozolH1dUxs2Hs5AVlENdHoWwb7umDkiAdHB3p2yr2lsxabDmcgpbYCeBUL83DF9SDSiOmlf3dCKjYczkFNSC72eRaifO2aOTERkJ979AJBRUIXP1h5DUWUDWJaFv5cr7po9CMOSwztlv/FwBj5efRitKjUAQCGT4LbpA7B02oBO2Z/Pq8AXa49x/TeWRaCPG+6eMxiDEkI7Zd/dlFY3YcOhiyiqbADAICrIC7NGJiLIx61T9iXVjdh4KIO3jw7m7AO9O2d/pRRWcGPXstpWiEQixIb6YsaQKPh1cuz6T4VhWWN3nvg3oVY2g2X13V2NS0KqcIVIJIZer4NG1dLh/i3Kdrzx017sO5NvtU0sYjBjeAIeXzwaMqntDkxmUQ3ufnsNNFrb58nVSYbVry2xO4BqalXhtR/34ND5QhvlizBndC88vGgEpBLb5Te0KPHaD7txJK3Ypv28sUl4aOFwSOx0wPafzcezX2yDvRtcLhXjr/8uhburwub2T/84jN92nrNjzbHmrcUI9PS0ue35b7Zh9ynrc2/OytcXItzXdifo5W93YPvJXIf2G9+8Fd7ets//819tw+5Ux+U7sn/n171YeyDDof3Wt2+Hu7vc5rZHPtyA4xmlDu13fXArnJxsl//ubwewZn+aXVuxiMGuD2+HTCazuf3ed9biXG7lZZf/1OdbcPCcdds1ImIY7PrwNsjlto//sY834Wi6ddvl7UUMdn1g3/76539FSU2zg9oDh7+81+62V7/fia3Hc+xud3OWY9v7t9vdnllUg1d/2IX88nobtjLcP2+YQ/Hy7eX7sO7gRbvbQ/3cseq1G+1uf/OXPdh4KNPu9vAAD6x8ZYnd7RfyKvHqD7sEoqERDxcFHr1hJKYMsS8+fvLHYaxwcP8PSwrD+w/NtLv9/d8P4o89F+xuH9k7HO8sm2F3+7u/7cea/el2t4/pF4m37ptmd3t3c+RCEd5avg/VDa1W2/w8XfDs0rGdHoBcDl+sPYbl21Nhq4cnEjG4f94w3DjZvnj96Z9HsGLnWZv2YhGDBxcMx/UT+9q1/3j1Yfy++5xd+0euH4kF4zoWny+Xrcey8NGqw2hsVVltC/P3wIu3T0BylH3x+r+/7MXGQxk2358SsQjPLh2L6cMS7NpvPJSBT/48wk14WRAR6ImX75jYaQHhcrjjzT+QUVRjd/tDC4dj8ST71//W11cju6TW5jYGwCPXj8SiCX1sbtfr9Xjuq+3Yf7bA5na5VIzX756CkXYm//R6PZ7+YpvNvpPR/r/3TrV7/+h0Otz4yioUVzXarj8DPH/LeEwfbvv6sSyLn7em4qctp6FSa622J0f54+U7JiHEz92m/ZWi1erx0EcbcCa73OZ2Z4UUHzw0E32iA21u1+tZfLPhBFbsOAu1Vme1PSUuCC/fMdHu5K1Or8fXf53A77vO2bQfEB+Ml+6YCD/Pzk2+XipNLSrMefYXtGusyzby5t1T7E6+anV6fPrnEazZlwatzrr/Piw5DC/cNgFebrb7PlqdDh+vPoK1+9Oh01vbD+8djhdvmwAPO31njVaHD1cdwvqDF6HTWz9BRvWNwPO3joe7i237ljY1/vP2GhRWNNjc7uPuhK+fnocgH9vtr7ymETe8tBJane3eP8MAXz05F73ttJ+mFhXu/N8alNroOwCAv6cLvnlm/lW7/ldKm0qDt5bvw65TOVbvHxHDYMqQODx102i7k4+tKjX++/Ne7D6dZ7VNxDCYNiweTy4ZDXknJn8uh+a2drz+0x4csPH8FIsYzBqZiEevH2V37NqTYBgRZE5dK/SRcPUv5Z8uXLWpNFj2wXpkFFZDJhFjaHIYkqMCoNezSM0uw+lMzoNheHIY/nf/NCvxp7CyATe+tJLvtEolIgR6u0Gn16OyroV/GUnFImx+9za4OAnFgxZlO+5/dz1ySmshk4oxPDkcSZH+0On1OJVZhtSsMuhZFmP6ReKNe6ZAbDF72NTajvveW4f8snrIpWIM7x2OXhH+0Or0OJVZitTsMrAsMH5ANF69a5KV/cmMEjz04Ub+f4YB3J0V0Ol1aFFq+O9FIgY7378TCoXwAfzdxhP4buMph+fYyO4Pb4NCIXwB//fn3dhwOKtT9jvfvwXOzkLvsf8u34sNBx2LRkZsiS+v/LAT247ZFy06sv9g5QGs3isUjUQAbN0xez663Up8eebzzdh/rqhT5dsSX95feQB/WJQvEYmgY/WCFzED4JAN+2Xv/YXTdjq9nSn/mS+2YP9Z4aDB3vHbsn/i0804fEF4/LbsGQY49IW1/eKXVqCo0vagozPlv/7jLmw+mi34TiGTQKvVQWvWkXSSS7Dro7us7LOKa3D/e3+hTaWBl5sTxvSLRKi/B5pa23HofCHyyuoAAA8vGoEbbAzeLUUriVgEVycZ2tVaKM0GQn6ezvjrrVus7N/4aTc2HcmyttdooWw32Qd6u2LNmzdb2Z/Pq8BDH2xEu0YLHw9njOkXhWBfNzS0qHDgbIFhBhF4dulYzB7Zy8r+o9WH8Puu8/z/7s4yeLo5oaVNjbpmJf99SlwQPn98jpW9Zft1d5HD01VhZT8oIQQfPzrbyv6t5fuw3uz8ebjI4WHDfmivUHzw8Cwr++7m4LkCPPvlNuj0LIJ83DC6XyT8PF1Q3dCK/WfyUVHXArGIwX/vnYpRfSO7vPyPVx/Gyl2c6CgWMYgN8YG3hxOq61uRV1YPveEhcs+cIbh1uvXs+/srD+KPvRd4+7hwf/i4u6Cyrgl5pbW8/bIFw22KX2//th/rDKKjRCxCXKgPPN0UqKxvRYFZ+Y8sGuFQ/Lpc1h+8iLeW7wPAiUSj+kbC01WBsppm7D+Tj9qmNsilEnzy6Gz0jrYWr176bid2nODeH1KxCHFhvvBwlaO8phmFlQ38M/j/bh2HmcMTrexX7zmPD34/BACICvLCqL4RcHdRoLS6CfvO5HPem3IpPn/8uqsiXi1+aSV/jwOAr6cznOVS1Da2oVVlev/bE6+uf/E3lJh52fp5OsPJhv1jN4zEwvHW4tWDH2zAqUxu0kYuFSMh3A8uTlIUVzUKfve9ZTMwvLe1+HTfu3/hbA73/lLIJEiM8IeLkwKFFXUoqeKOiwHw0cOzMKiXtffHdc/8jJoGzsuZYTihWCGToLqhDcp2U/1fvn0ipgy1Fu8//fMIfttxFgDQK9IPw5LC4SSXIq+sjvee9HF3xtdPzUWQb9eKV3q9Hre+8QdyS7l3jJNcioRwHyhkUhSU16Oijuv7ihgGXz8918pzmGVZvPPbAaw7kA4GQO/oAAzpFQa5TILskhocPFcIZbsGgd6u+PrpeVae/yzL4q3l+7DhUAYYAH1iAjG4VyjkUgmyimtw6DxnH+zrhq+fmgdv9855/ncWlUqLSY99B73Ze9rVSQqxSIymNpWg//PhQzMwJEnYfvR6Fi99vxO7TuaCYYCUuGAMSgiBVCLCxYJqHEkrgkqtRWSgF758co6VeKTT6/HCNzuxNzUPIoZB//ggDE6OglQiwYXcMhw+l4d2jQ7Rwd744ok5cHOWW9k/99V2HDhbABHDYEBCMAbEB0MsEiG9oApH0oqg1ugQF+qDzx+fYzV2UKm1WPB/v6Le8J5zc5YjIdwXEpEI2SU1qG3ivpdLxVj12o1W4lFDixIzn/hJILi7OcshAtDU1i74fvmLixAd7COwb1OpMf//fkVTKye4e7goEB/uCxHDIKu4hq+Xk1yCP9+4CZ49zPO5Xa3Fwx9txLncCkjEIgzpFYq+MYFgAZzNKcfJjFJodXoMSAjG+8tmWok/KrUGD36wAWn5VZBKRBjSKwx9YgLBsizOZJfz3vODe4Xi3Qem23U8uFxaVWo88N56ZBXXQCYRY1hyGPrGh0GvB05eLMSpjGLo9CxG9AnHW/dO+1s8t68EEq6ILuOfLlx9tuYoft1+Bn6eLnhyyWj4Wjzciyob8O6KA2hRqvHYDaOwcLxw5nfGEz+ioYWbqZ04KAZRFq69qVmlOJXFdax6Rfjhu2cXCLYbvQ0CvV3xxJLRVi/3/PJ6vLfyANpUGpuDx3d+24+1+9MR7OuGxxePtpoZyi2tw/u/H4CyXYvnbx2PGRYzh2Me+IqfbRmYEIwwPw/B9hMZJSg1eLNEB3lh+Us3CLaPuPdL/rObsxw+FmE9xZUNME7mSCUi7Pv0brv2cokIbi7Cl3tNo2nwKRYxOPD5PXbtneUSq5kt89A/mUSEvQ7Kd5FLrLzKzO0VMjF2f/wfu/b+ns7wdncGIxLBKL9kFlbB2K/y93TBureW2rV3dZLAzdl++a5OUmz/4E679tHBXvCyqP/ZnEpoDTOB8WE++PH/Ftm1d3OSwtWic2Vevo+7Mza8LRRPzO1DfN3h5izsXGUW1fAdoMRwX3z/3EK79qF+7nC16JyZewL0jvLH10/P5/9va2vDpMd+5v93kUvgpBDOjJm3n1BfN6x6/Sb+f41Gg7EPfsf/PzgxGC4KYfkHzxfy98f8scl4YslofhvLslj62mrkldVhYEII7r5usFXnZG9qHn7emgoRw2DFyzcgLMCT36ZSaTHhkW/5/6cNsQ4r3HY8mxewHrl+BK6f0NemPQNg2pA4yGUSiCRSMIwILKvHpkNp/Gz00zeNxpzRyby9Tq/HDS+uQFlNM0b0DsdtMwYKOjcsy2L7iWz8vus8JGIR/nz9RoHreatSjcmPfg+AG7TfOLkvpGZhXXpWjz/3pqHR0LH9+JHZGJQYwm9vbFFi+hM/AQBkEjGWTO4HqVn5elaP1XsuoLmNC1/48ok56BsbxG+va1Ji1lOO7VftvoAWJWf//bPzkRjhj55Cm0qDuc/+ghalGtOHxWPhuN6CsCI9y+KPPeex9Vg23JxkWPfWUjjJOw477Syl1U1Y9MJvAICwAA/cOq0/RIzp/OlYPb5ZfxJV9S1gGGDre7cJnk+FlfVY8tLvAIDIQE/cPDUFUrkTRIwYelaHdqUSX68/jprGNjAMsOODO+Bsdn/lldXh5ldXAeCeXTdO7icoX6vT46v1x1DbqISIYbDzozs6FXbbWarqW7Dw+d+g1emxeGJfTB4cKzj/Wp0eP2w+hSMXihDs647fX10smPg5m1OO+979CwD3bl9kIcyoNVp8se44GltVkIhF2P3RXYKwwZLqRix+cSX0LIulU/tjvIVXiEarw7cbT+LExRJEBnrh15eu79KwszV70/DuygMAgABvF8weIexbKNvVWLHrPPR6FgyA/Z/9RxA299v2M/h0zVEAQJCPq5Uw16JUY9Xu89CzrM2Jh+3Hs/Hy97sAAIMSQzHDIqytVaXG52uPQdmugbNcip0fCd99Gw9dxJu/cKLjsKQwTBkSB7FMzre/xsZmfLH2KJRqLVydZNj+wR0Ce2PfD+C8UqcMFgpTDS1K/LkvDSxru+9xJrsc97/3F8QGr8T+8cEW50+Dj/84jMyiGgxNCsMHDrxOL4eftpzGV38dBwCMS4nCmJQowfb65jZ89dcJqLU6m+/uQ+cL8eRnWyCViPDQwhFWXoUtbe34YNUh5JfXY8KAaLx+9xTB9v1n8vHMl9sgk4jx8KIR6BUpfLY2t7Xj/d8PorCiAZMHx+KVOyd11aEDAG55dRVyDBNDwT5uGGIhTJZWN+GEQRSViBns/0x4/bYey8KrP+yGQibBYzeMQmyoUJhpaFHivRUHUVrThDmje+Fpi5QVGw9n4M2f98JJLsXji0chOtgbErPnX3VNHd5dcQDltc1YMDYZj5v1HQAutcj/ft0PF4UUjy0ejagg4dihrqkN76w4gMq6Flw/oQ8euX6kYPuL3+7ATkOkwbwxSVZedUWVDfh5ayr0LIvEcD98/5xw7DH76Z9Ra0hNERPsjT4WwnxuWS3O53GpJ2xN3Jl72l8/oTcSw4XXP7+8Dsu3nwHLAn1jA/HlE3PRk/hu40l8t/EkvN2d8OSS0QiwCOsrrWnCuysOoLFFhfvnDcXNU4UpO7766zh+2nIaPh7OeHLJaCuvxJLqRrz72wE0tbV36LV6OXzyB+fp7O/lgieWjIavh4ug/eUWluPdlQfQqlTjiSWjMX9scsc/2o1cDeGqZ0t1BHEZtKu12HCIm63/z+zBVqIVAIQHeGKp4YH1574LMNdvy2oaedFqQHyQlWgFAP3jQxDsy92MFwurodOZXJpbVWpsPsKF+Nw7d6jNGamoIC8sMTzw/tgrLL9FyeVVAID75g6z6c4cE+LNe3r8uVcYjnM6s4wflCeE+1qJVgAwODEUTnJuMJpnEQr13cYT/GeZVGwlWgEQDNQtQylf+2EX/1nMwEq0AgBfD9NvWrpSv/LDTlP5EpFNd+wgH9PLRG1R/vNfbeM/yyUim6GQ5vYqtdAd/c2fdvOffdycbF4/8xwPVRahQMve+4v/7Cy3Fq0syzf3gAO42X4jYf7uVqIVAPSLNXVGsoqF4Ry3vLaK/+yikFiJVpbl1zYJ82/d+84a037erlaiFcC1KyOW4Si3v7Ga/xzsay1aAZzYZeRCfpVg24LnfzfV34ZoBQjbj2U44aOfbuE/D4y3Fq0AYJRZiMq6A8JwtNSsMuSV1cHDRWFTtAKAcf2jMbJPBPQsi7UW9s99Y2p/tkQrAJg6JA7GoapxkGLkic83m9nH2XRHnz7UNBj85I+jgm1HLhShrKYZfp4uuH3mQKsZOYZhMHVIPAYmBEOr0+Mvi3DG1340tf8bp6QIRCsAEDEiLBrfByLDYNvo2WLk1R9M9paik9H+hgl9efs3ft4r2P7K96b2f9NU2/bXT+gN41j/tR/3oCex/Xg2WpRqxIb4WIlWAOcpsWh8H8QEe6NZqcb249l2funy+OSPwwA4TxVL0QoAxIwI/7luECRiEVgW+GKdsP19vPoIAG5Qc/PUFCt7iViEe+YOgVjEgGWBLy3tDeU7K6S4eYp1+RKxCPdcNxRiEQM9y+Lrv06gK/nrwEVodXoMTAjBlCFxVudfIhbh9hkD4evpjLKaJhy1CMX/zCDauDvLrUQrAJBJJbhv3hAwDCeCLTeIJEbW7U+HnmUxPDncSrQCAKlEjLtmDYKnqwIFFfU4lVl2hUcs5OsNxw3liKxEKwBwkstwveG4WABfWpz/H7ecBsCJxra8yVydZFhkmOhjWeCbDcLr//3GkwAAfy9XK9EKAFwUMtwzh8sv2dauwbbjQs/sn7akAuDeUbZCmV2dZLj7uiEAOBFtr0U4j7E/5CSXWIlWAODp6oS5o7jzotOzWGPh2Wy0nz4swUq04n5XigfmDYNMIsax9GIUm3m2dQWrd3OerpFBnlaiFQB4uTnj1hmcl2RtUxvvmWZZ/zmjkmyGwro6y/HA/GEQixjsO5OP6voWm/ZzxyRZiVYAN5H5wPxhYBhg96k8XiTpKoyilUImsRKtAC7PlLH/oNWxOJ4u9Ow21v/6CX2sRCuAu/73zRsKANh6NFsQysuyLG+/eFJfm7mwvNyccN9czn7z0Sy0GiZQTPZce1oyqZ+VaAUA3u7OuHcOZ7/pcCbazDwY9Xo9n9pkUGKozVDQ8ABPzB7J3ZcZRdVoaDFN4qlUWv56eLgorEQrAIgJ9kGIYeyibNeivMbk2a7V6nHE4Ck/sk+4lWgFAFFB3vx9dT63Ai1taqt9ugutTsd7+t4xc5CVaAVwE7G3GbyM1+xLE4SCqjU6/HWQs79r1iCbobShfh64Zbpx7Jgm8Ay8UlRqDTYe5vpj91w3xGYe5IhAT9w8JcVQvnDs+G+BhCviH8fJzFI0tbYjPMATMSH2kyj2jw+Gh4sChRUNvFs2wCneRgbEh9gyBQBMNOuUrjXLxXIsrRhtKg1iQ3wQbibwWDKkVyhcnWTILq4V5GI4cqEYynYtEsJ9HeZQGJYUDmeFFBcLq1FWY3K/f2fFfv5zLwdhCMPNXKw3HDTV/8fNp/nPwQ6SGHq7mQSVD1cf4j9vOWYaiHk5SMCskJkeP+/8ahr8bjcL8XOUgN5FbhpQ/7TZFNZontfK24G9s5n9X2bHbx5i5udlP4bfx0zQOpVhGvyYh+jZy4EAcKKakTNZplxYu0+Z8nr5O8ghEOBlKr+iziTe5Ji1ZXs5FABAKjYN6OrqTJ2fc7kmIclR/V3NBKX2dlPnzzyRvbsN0cuIsw1BCgAazTqStkQrI/Z8FMzzgtgS3Yz4enJt07Ljsctw/kf3i3ToBj7BcP/vssjDdjLDOBsscuhJEmzWeTTHOBCRSkQOcygEenOdqrZ2ofBprP+4/lFWIcTmjB8QI9jfyLGLJQAAL1eFlWhkTkwI1ykvN3v2AMCpLG4g7u3m5NA+MsgTAAyLZpg4Yzh+X3dniBnb9iJGhAjDs7WgwjoHWXdiPJ/jB0Tb9aRhGIYXNSzP/5VywtD+UuKCrEQjI2JGhF4R3Lthn0UewFTD9RuYEOLQ3hjitsdCODhruP8GJ9p/d3Lhg9zgs6uP3/h7EwbaX/xBIhZhXIrt+/eiYSEMe/mXAEAmkSAi0BMAsOWoMA9dZ8qXSsS8KLHrVOdC2juLMcQnxcyL0RJXJxk/cbXpsDAk3+jJOCDBWrQx4uYs55P7/7XfJHzr9XoUGe7niQNj7Nq7Oyv4QeEfe0zCkV6vR6nheTJpkP3FRzxcFXyI1Mrdpjx8SrWaz0k1PNn+9fPxcIHU8P5dvuMM/71Wp8O+M/lgwD0/7eHqLMdgg6hiKw/O5VLX1MaHQptPTlgS5O0Gd8OE1K9mwmmrUo2jacUQixiM6Rdp197b3RkpccHQ6VnsNcsB29SqwomMUkjEIox2EMLs6+GClNgg6MyElq7AOGELwGH+v0Szfu17Kw/ynyvqmpGWXwUnucRmCKqRYF93JEb4oV2jFeRRK6tpRmZRDVwUUgxLCrNrH+rvgfgwXyjbNTiSZhLOiiobkVNaC1cnGd8+bBERyI1NWlVqHDPLA3rwXCE/ETzJwfOjX2wQ/279facppP/zdaZJrJF97Nff/N5+/ae9/OcdJ7MNi8gAY1Pslz+4Vwg/cfHnPvt5LP9uzuZUoLapDUE+bvz7zRZ9YgLh6+GMiroWXCyo5r9PzS5DQ7MKIX7uDhcgSIkNhre7E0qrm5BZXG13v0vlxMVSNLepERXk5XABgIEJIXB3liO/rN5mDtZ/OiRcEf84Ggwv/hA/d4cu+BKxiF9dwnzWotowY+Fo0AUAcrNBqXk+CaO3VkeJO6USMQIMnbcGs7wtxroEd5A7QSYV8503c/tmQ8e1o0WT3M08oTLNvGY6O4NgLoqcy770WWNXJ1P5qWZiQ2fnD8w9qcw7D53FXJTZb9b51HdyBsPP0yQc7T9TcMnlm4tqxnwqgLUHmj1CzTzpTl20nwTdHuaeiDtTO5ePTFC+v6l8S6+pzhBs5vWVV3LpL393F7P7r8a6/Uo7WPUrNth6NhYw3b+hHdy/IYbzb/7sAMDP4Nny9BKUb2M2GDDV382Gp5o50cG2VyZqMKwgGdLB88P4fGqwWHFSa0jG6+tAtAWA6CCuY2XZWo3JcP29HdtHBtq21xm8RQN9rGc7zQk3CAc9bcLR2B46ev7z7cfi/F8pGsP1iwpyvPKV0WtWpRYKn2re3vHKV2GG+19pYW8ceFnmTrEk1J87P0oL4fVKMZ1/a09jc/j2b3X/cg0qNtTx+TPeX+YeFwC3khvQ8fs71M79dyWYe34nRTrOneVpeP+ZJx9Xqk3H0pG9sf9gnrPPfPXXODvPNyMBhudLs1nyfOOzF+i4/Rr7Pk0tpomOUrP8Wfaej0bcDP2PNrPr16JUQ6vTw1kh7TB3k+n5qXS436VQbvAeZgD4eTp+/nkbvI7NVww2LkTg6epk09PaHFvPf+P593Zzssq9ZG1v+/13JWQUmvoRnjY89c0xeuw2m3n8GI/Fz9Olw1Vzjfevrb63n6drh7mLTPbm54+zD/DuhL2N549xAlouFUPWQf2N17e6weQxV2zI/wbA4aqtYkbET/yZe9yX13LtTyGTOMydJGJEfPuosvDY606M1zLY1/HYT8Qw/PPZ/PzzY8eO7EWMaezYhc/vzo79JGIRAvnyu+7+u1Yg4Yr4x2HMF9LU4viBwrIs/6I3zzHiahhwdiQg6M1yhJknKDT+lq3VjOyWb+ZZwte/1Xo1ImH5LL+Pef2NXhod6R9as/r7mokwnU23odGYOqkBXpcew6zRmAYsgR0Mkm3RbjbgMQ6CLgWVmX20WSe7s8ffYtbhjQ+3PztjD3MXcfMEwZ0t37yTH38ZCX6b20z2AxIvfXnjOrMOT1zwpecYajQbcFzO6kzmgyTzlSmN509nZ0UdI/Y6XJ29f209OwBTh7pdo7WyMaeyznb5xg6T0sZqVuZUNdjusJjq7/j5YRxgO8ktQgENineLjdXQzKlptF4tDzAdf1Or4xACyxBVI0Ynn47qX2eYYLj6i9JfGqbnd2fbT9euTCQ2XL+6JtvXx0h9M3f+LBcmMdobkwDbw/j8kVrYG9tPrZ32YWXfgcB8qXT2/d/R/Vvd4DgEqsHw/LJM7qswXM+O3t+m+6/r8nuZ56qqqHU8oDS+f8wHqDJz+3rH18/4/jSf4HM2W+Slo+tvDNEy9yp1NfOQ7UgQaVZy9goze/NE1R3ZGwU78+vnZJiMVKm1NlcTNKfJRt/tSvE0pIVgYS0oW9JqSDFg/vwwevi2qtQ2V9Mzp8nG88fYFls6YW/v/rkSzHMtajoo3xgiJTe/fmZ9544mIG3V3/i5ua29wxAsW89v8/I7sjcKrublGydTNVq9YHxhC2P7NBcY7a1wbgtj7ZzNynd3NpXfEWpDjk3zCejuprN9N/N9bF3/jp7dnL319btSOtt3YFnW9P7owufPtQIJV8Q/jpS4IEjEIqQXVjmMv88rq0d5bTM8XBQC74cbJnG5o/QsK5jBsOR4egn/ecE4U4K8AfHBEDEMzudW8A8XW2QW1aCmsQ0+7s6C2e2B8cFgGC5kyNZS2kYuFlShvlkJfy8XQc6p+WOS+M9VDfY7r0fOm7yUFk4wJac3T5TsqPNXatYxfnrJOP5zqK9JxLKcjTansc3UMXz9PxNN9n4me3Nxx5I6M+Hj8etH8J8DzTw9HNnXm9nfMT2F/2we3tnWbr/+JWZLBc80yyXiYTZT2O7Am8B8YD7dLJeIefmOOs95ZSYX4bgwk3Bl/iI1FwctaVGafjs2xNT+zXNqaWwshW2kymxg5+5uOmbz8DyNzr59tdm9ab4qo8jMVVCjtX/8GjvClDG8Us+yfAJ7W+TbWWramGj80PlCh53Pg+cKAHD54swxhgB2NPAxLjUvsnCNDDCEAFqGEFqSX8bZiy3szevvCON2y5AGYwhUhR1hzch5g5edZTim0ROnvNb2UtpGjCFZ7hYz68aZbHtLcRvJLOa87ByFs3YHxvNvTHBrD779OAgpuRyMnirHL5Y63O9cTiUAIMkij02EIafjsXTHXqzncisAAMlRQvvwAO76H0lz7AV6IY8r31YelyuBP/8dtH/j9bG8f42efvvPOg6ByjK0vwEWeZAGJXC/5+j+Y1kWB4zl97IfUnk5GD09DjvwQtazev790zfGdP7FYjEvRB20sRS7ER2rR5PB0yUlztRfEIlE8DB4Ym838yK2ZW9cNXZkX1NIn0wi4Vdp237cvr1Wp+dDjEenRPLfe7g68c9TyxBWczRaLR9ibR5SJpdJ0Cc6ADo9KwjhslX+kQvcdsv2cyWE+LnzQszOk/ZDaNtUGlQbcmtOHmwKqfRyUyA62BsqtZZf1dEW7Wotjhn6r+bPH18PZ0QGeqFNpcEZB170KrUWJwwh5YMchARfKgtGm/qhRx203+qGFl54mT3K1PcK9XdHgLcrGlpUSM+vtGvf0tbOpxQYaFb/8ABP+Hm6oLapDRmF9r3Am1pVOJtTDoYBBiSY7KOCvODt7oTqhlb++WCLhhYlzudVQCxiBM+P0X2jwDBc3+V0lv1VoUurG3lP1ZkjTAsz3TVrIP/5tIPrl1tmSidx20yTzaTBXHivVqfH+Vz75eeX1/H9mxkj7Ie0/t30jg6EXCpBTkktKmqb7e5XXNWIwooGOCukSDQLKewbGwiZRIzMomqHnmQF5fUoqWqEq5MMiRGXPmltj5S4IIhFIqTlV/GrN9oit7QOlfUt8HRTIKYDz+Z/IiRcEf84vN2dMa5/NFgW+GVbqs2ZI2W7Br8ZchvMGpEgcCsenhzOz8LtOJmLdhszX3XNSj48ytfTWTDTEeDtipF9I6DTs1i+3Xb5bSo1Vuzkllu+blQvwax3kK87hiWH84lfdTYG3y1KNb/c+ZxRSYJZ05vMVsk4cqHY5sxVRV0LP6Pu7iKHq8I0+DNf3r6hpV3gWWV+/EYYAJ6eJnvzFd6Uap1N8cFyRsPZ2eTxteo1k31ja7tN+3oLbwAnJ9P5X/OmaYU/e/Z1ZqIJY2H/47Pz+M9FlU3Q2hBfys1eipYeA2teX2wqp8V2+eaCqqWH1U/PmVbYSyuottl+Cisb+I6bu0VIwOqXbuQ/1zTZLr/aLKG8pfDx44um8nPL6m0ev3lONsvk6z8/a1phMLfUdvy9cdACCIU+APj2GVP5ja22hbdas1UFLc//549fx38+fN724CO9oJoPMbPMhTB+QDQ8XRUoqmzEzpO2B09FlQ18eOc8M6EY4JZ4N7LVTuLtMznlvEfnBIsEzu88MI3/vO2EbftTWWW8vWUC46lD4+CskCKruMbu4DunpJbPbTRvjHBVmpfv4ERkluVWWLLFUcOS3gBw67QBgm0v3Daet990JNPKFgAOXyjkQ9LumjVIsO3/buXs9SwryHlizsFzBfys8L1zh9jcp7uYMyoJIobByYxSq8TJRs5kl+FUZinEIgbXmQ28uoL7DYmH65uVdsWT7cez0arihIcHFw4XbLtnDnc+axuVOHzBtv2WY1n8wOnhRSME2+6azdlXN7TaFb82HcngBz4PLhxhc5/LxbjK0t7TecgtrbW5z/4z+cgpqYWzQmp1/9xiaM9lNc12r9+f+9J4UX+Zxfkzlr/zZA4K7eRf230qF0WVDXB3kWOCg1xQl8PUIZyQ0dymxoW8Cpv7/LnPlNPx5TsnCrYZc681tbbbDQH/c48pr80Lt00QbJs7mnseZpfUIrvE9uD9121noGdZiEQMbpshfH7MGmFKPJ1XZn399Kwev2xL5VcFXDpFuCrYEIOQVNuktFk+t6qpKa/W4zcIV4UzXr91B9IF70kjLMtizb40NLaqEBXkJRDuuoIJhtyDqdllKK1utNquZ/X4eSuXh1QuFWOm2YrSDMPw9f9z7wWbg189y+L33eegbNcgKdKfz1VntJ83lrt+q/dcsDnxqmdZrNx5Fiq1Fn2iA/hcdV2BQiHhQ1hrm5QotzF5otHpcfiC6b1+x0zT+0MsEvHtb+Wucza9hnV6PX7dcRZanR5Dk8IEKRckYhH/PF6x86zNiVed3tgvZzGidwQfMgZworG5fZvK2l6r02P5Ns5+ZJ8IQQJwV2cZkiI57/vtx7Ntnn+1RouVu7i8Vv6eLog3m7QM9feEwjCWKapsRL2Niec2tRrnDZMGIhGDMf1Mudw8XZ34EN9NR7IEUQVGVGoN/jAkoA/2dUNEgOOQ3L8Tdxc5L+T+sj2V76OY067W8nnhpg2NF6R08HR1woSBMWABLN92xubErUqtxa+GseOM4QlduiKur4cLxqZEQs+ydseubSoNX/7sEb2sPH7/DTDsvzElPQG1shlsB66oPQ2pwhUikRh6vQ4alWNvgJKqRtz1vzVoam1HRKAnpg6JQ++oAMNMRhm2Hc9GZV0Lgnzc8O0z861W7jMuaWsk2NcdgxODodGzOJ5WjBoz4eHbp+chyWL1loLyetz99lq0KLlEe1OHxCEpKgA6nR6nMkux/Xg2qhpaEebvgW+enm/ldZBbWod73lmLNpUGMcHemDIkDr0i/aHV6XAqoxTbTmSjpqENEYGe+PqpefwspZEPVx3Eqt2mzqWHiwK9o/yg0uiQllcFlZkY9e0z8/iXpZEbX16JAguPFA8XObRaHVotPEFev2sSJlgkUp355I+C3AsAl4xcp9fD0gv5/24ZK/BYAoDZT/1sFUrkIpdAq9Oj3eIH3r1/GkZYJBKd8cQPfChHR/YfPTwDg3sJE3kufOFXlFWbxCkRw7mxq9q1Vm7IPz63wCpUb8qj31mtFuiikECj1VutgvjzC4sEHk8AcMMLv6HYzONEKhEhxNcNrSqNVQjL+jdvhq+3MB/GhIe+sVot0UUhgVqjs/JU+v2F6xFmsYjB9Md/EHiEiUSAn4cL2to1gpwSAPDX2zfCz10Y6jf10e/RbNbpEYu4l3KbUo1mCy+4rW/fLvDYAoBR939llWtNLhUZXOgFX2P967fA11eYj2Tes7+g0izUxd1ZhvAATzS0KFFSLZyJ2/fJnZBKhZ0P45LaALeIwoSBMQj180BzmwoHzxdi18lcqNRaTBwUg1fvnGSVD+GGF39DsSHfCgMgyMcNMaE+qK5vQXZJLS86iUQM9n58JyQW+SgWPv8ryszynQT7uiE2zB+V9S3ILqri7W0t5w4Aa/en4Z3fDgAARvTmVjcL8nFHQ4sSB88VYvepXKi1OswemYhnl46zsr/l9VXIKeFmZSViEZKjAhAT4s0N5rPL+DBGN2c5tr1/u5X9za/8zq9WKhWL0DsmAFFB3iiracKZ7DK+bXq4yLHlPWv7xS+t4MVNqUSEPtEBiAzyRllNI1KzytFu6JB6uiqw+d3brOy7m6/XH8ePm09zSZJTojA2JQq+Hi6oaWzFvjP52JeaDz3L4o6ZA3HX7MFdXv6d//0TFw0eAwFerhiTEolgH3cUVtTj4PlC/v01NCkMHzw008r+1tdX8x6Bgd6uGDcwDiF+XsgrrcG+1GzUGSYORvaJwDsPTLeyv/nVVcgzzOoHertiTEoUgrzdUFBRjwNnC/iJjzEpkXjr3mlW9lfKmz/vxcbDGZBJxZgwIAaj+0XAw8UJZTVN2JOax6+c9dRNY/iBrhG9Xo8bXlzJJwkP8XXHmJQo+Hu6ILu0FofOF/IDyhnD4vG8hXDDsixe/n4XdpzIgUImwcSBMRjZJwLuLgqUVDdiz+k83pvnhdvGY/qwBHQlOp0OEx/+nheGXRRSDEwMga+7MzKKqpFZVMM/P4YlheF9i+uvVusw+dHv+AkvF4UUgxJD4OPujIuFVcgsruWfzaP7RuB/9wuvv1arx3XP/MyHgkYEemJMv0h4uTkhvaAKR9OK+QHx0qn9+RXe+PK1Wlz39C/85FZkoCfGD0qAl5sLzuWW4Mi5Al50tXX/tCrVmPb4D/wxujnLMDgxFJ6uClzIr0JOSS0fRjZtWDxetLh+Wp0OD324EWeyy+HmzA2EhyWHwVkuRV5ZHXacyMH5vEqIRQzef3Bml3tMtrSpMefZX6Bs14ABt4L02JQouDjJcCanHMfTS3jR97EbRmHh+N4C+3aNFve/+xcuFlbD01WBKUPiMKRXKORSCbJLarHjRDYuFlZDJhHjk0dno0+M0ONRpdbgvnf/QmZRDbzcnDBlSCyG9AqDTCJGVkkNdhzPQUZRNWRSMT577DqbKxdeCRlF1bjjzT/5/+VSMZKj/OEkkyCtoFqQImHB2GQ8vkQoPLYq1bj77bXIL6+Hr4czpgyJw6DEEEjFYlwsrML24znIKa2Fk1yKr56ca5VrsrmtHf/531oUVTbAz9MFU4bEYWifGMgkUlzIK8WWQ2nILauDi0KGr56aa7XyYFOrCv/531oUVzXC39MFU4fGYUB8CMRiEdLzK7HteDbyy+vh6iTD10/PQ6TFquWFlfW4+ZVV0OlZiBgGSVH+GNk3AhKRCMfSS3Amu4wXNN5/cIZVEvv9Z/PxzBemlY2d5BL0iQmEmGFwPq9SIEY9sGAYbpqcIrDPKanFbW/8AT3LQixikBwVgJF9wiFiGBxJK8a53ApodXowAD597DqbK292JxV1zbjrrTWoa1Ii1N8DU4fEoW9MIFhwC4dsO57Fr7r87TPzBeHFAJdn7K631qChRYXwAA9MGczZ61kWZ7LLse14NsprmxHg7YrvnpnfYS68S6WosgH/+d9aNLe1IzLQC1OGxCElMQIsy+DExQJsOZSOyvoWBPu649tn5gnS1PREGEYEmdOlp5Jx+JskXP07+acLVwAXivfkZ5sFIpM54QGeeG/ZDLv5db7beALfbTxlc5sRW6KNkfT8Sjz5+Va7Lp/Rwd54d9l0BNpYshUAzudV4OnPtwpe1ObEhvjg3WXTbS7ZCgDPf7Mdu085XvHmxdsnYJqd1WtmP/2TwLPFFtdP7INHFo20uW3Cg99AZWPGQ1DGiHg8e8sEm9smPfyd1YppliyZ2AcP2iv/4W+h6iDc6rbpKbh7zjCb22Y88aPdc2/kiSWjMH9sb5vbxi372kqksuSB+UNxk8WMsZHZT/3UYZ6Z/947xe7qL2Me+LrDPBVP3zwGc0Yl2dw28eFvOwxXe+e+aRhpZ/UiW+KZJe8/OB3D7Kz+NOLeLx3aAsArd0zA5CG2229nrt+Kl65HhJ0kwOsOpOO9FQfs5rqbOCgGz9863m4S2LnP/IIqGzP2RkQiBn++fhMfGmjJ7Kd/dhjqLBYxWPvmTfC1k8R3xc6z+OzPo3ZzfcwakYinbhptlePIiLl4ZAtXJxnWvnmzzSS+Op0Oi1/+3WG4n5uzHOveuglOMtv2N7y4EmUO3P3dXeRY+1/b9t0Ny7L4fO0xwYpfliyd2h/3zh3iMAns5aLV6nHnW3/y4pMtUuKC8OmjsyGysfKkWqvFHW+u4cUnWwxMDMFHD820aa9Sa3Hnf/90uOLR0KQwvLdsuk37K0Wr0+F/v+7HpsO2Pf5EDINlC4Zh8aR+Nre3qdS45fXVvHhsi3H9o/DmPVNtblNrdHjz5z12w+XEIgaP3jCK947paqrrW7DoxRU2PQ6M9I0JxJdPzrW5raKuGTe8uNJhqHj/uCB8ZuadbU5dUxtueW21wDPbknljkvDkjWNsbqttbMPS11Y5fH4vGt8bj94wyua2gvI6LH19tcM8hyN7h+MdM+9Yc1qU7Xjuq+38CrGWKGQSvHT7RIx1sPLglVBa3Yjb3viTF+hscefMgbjTjujd0KLE059v5T1rLHFWSPH6f6ZgWLLtlefqm5V46vOtSLMTbueikOHNe6Z0uWhnZMeJLLz03W6H+4ztH4X/2rn/qutb8MTnW5BdbPv55+GiwP/umypIi2FOZV0Lnvhss2C1cXM8XRV4+/7pgtyk5pTXNuOJzzYjv8z288/LzQnv3D/NasLbyNnsMjz04Ua7eb4YBnjh1gmYNsx23+fXHWfw2Z9HbW4zsnBcbzy22Pb9czy9GE98tsVu/1HEMHj1rkld7i3aVeSV1eHxTzfbzSMa7OuO95bN4NMiWJJTUosnPtuMKjt5/kL9OPswB6vGXwkZhdV48rMtdvOARgZ64b1l0xHUQRL3ngAJV0SX8W8QrgDOrXL78WysP3QRJVWNYBgG0cHemDu6F8YPiOnQzbKwsgGvfL8LmUWm0CKRiMGghBC8ePtEeLs7VrtblWpsPZaFjYczUFrdBJGIQWyID+aOScLYlKgOVx5pUbZj69FsbDh8EeU1zRCJGMSF+mLemCSMSYm0O+g0cjanDM9/s9NqAJwQ5osPHp7ZoVr/+86z+PiPI1YrfylkEix/biGC7Tz4jXy+5giWbz9r9b1YxOCXZxcg0sGSswDw9V9H8eOWM1bfyyQi/PrqQoR4O1556LM1R/CrjfLlEhGWd8J++bZUfLnuuNXg38tVgR9fnG/laWTJByv3Y/XedKvvFTIx/nj5Znh7Oz7/v24/gy/XHbMST4J93fDjM4vg6up40P76T7uw+Yh1uJmzXIpVL93YYfmfrjmMFTvOWa3c5u/pgt9fuV6Qm8oWn6w+hBW7zlt9H+DtipUvLerQ/olPNuGwjVw5zgoJ1r95oyDE1Ba/bD2FbzacsuqA9YsLxMcPzbTytLKkvLYZfx1Ix86TuWhoVkIhl2BAfAgWjEtG35jADkWHP/ecx+frjgkEQJGIwYQB0XjxtvFWnlaWrNx5Dl+vPy7IlyUWMZg4KBbP3zK2Q/uS6kas25+OPafz0NiigpNciiFJoZg/NrlTM+WbDmfg87VHBd6TznIpbpjUB/+Z3XGI3l8H0vHVX8cFA1BnhRRLJvXFnbM69jRauz8N36w/IbB3cZLipskpuG3GQAeWPYPc0lqs2ZeGQ+cL0dKmhquzDKP6RmLemGTEhDh+9nQFO07k4PuNJ1Fc1ciFZjEMooO9cM+coYLcQvbYdjwLP2w6hZKqJj60KybYG3fPGYKRfTq233I0Ez9sPoWy6mbePjbEB/fOHeJwufuu4kJeJdbsS8OJiyVQtmvg4arA+AHRmDsmSRAiZAu9Xo/1hzLwy9ZUVNQ186FpCeF+uH/eMMGS8rZgWRbncyuwZl8aTmWWQdmugaebAhMHxmLu6F5XfdCh0+nw0R9HsOHgRd5DEQD8vVzw+A2jMDrFseii0+nwwe+HsOlIpsA+wMsVjy8ZhVEWXs6W6PV6rNx1Hit3nUNtYytYlvPe7B0dgIcWDEeiRW41S7RaPVbuOotVu8+jtqmNt+8bG4hlC4YjsYMFSdRqHd5duR/bjucIBLhgXzc8c/O4DnMz6fUsjl8swZp9abiQVwG1Vgc/TxdMGxqP2SMTu9zTwqr+Wi1+3pKKtfvT0NCsAgvO+3RgQggeWjgCkR2s+qnT63HkQhHW7kvDxcJqaLR6+Hu7YMawBMwckdBh30+r0+Pw+UKs3Z+OjEIuZUGAtytmDE/AzOEJVz23YEOLEo9/spn3HDXi4+GM1/8zCf1iHd9/Wp0O+88UYN2BdGQV10CnYxHs54ZZIxIxfVh8h0nFNVod9p/Jx9oD6cgtqYOOZRHi54GZw+IxfVh8h6suarQ67E3Nx7r9nIeWXs8ixM8ds0YkciFqHdi3tKnx1fpj2HosG21KNVhw/e7R/SKxbMFwK08hSyrrWvDYJ5usJg+CfNzwv3unIraDvndzmwqfrz2GHSdy+FyxCpkEY/tH4cEFw696+79SVGoNdp7IxV8H0w2rvjOIDPTEnNFJmDgwRrAohC2U7RrsOJGD9QcvGnIdM4gK8sKc0UmYMDC6w1Urr5RWlRrbj2djw8EMlFQ3QSxiEB3qizmjEjAuJfqaCREk4YroMv4twhVBdBXU/ojuhNof0V1Q2yO6E2p/RHdC7Y/oTq7l9nc1hCtKzk4QBEEQBEEQBEEQBEH0SEi4IgiCIAiCIAiCIAiCIHokJFwRBEEQBEEQBEEQBEEQPRISrgiCIAiCIAiCIAiCIIgeCQlXBEEQBEEQBEEQBEEQRI+EhCuCIAiCIAiCIAiCIAiiR0LCFUEQBEEQBEEQBEEQBNEjIeGKIAiCIAiCIAiCIAiC6JGQcEUQBEEQBEEQBEEQBEH0SEi4IgiCIAiCIAiCIAiCIHokJFwRBEEQBEEQBEEQBEEQPRISrgiCIAiCIAiCIAiCIIgeCQlXBEEQBEEQBEEQBEEQRI+EhCuCIAiCIAiCIAiCIAiiR0LCFUEQBEEQBEEQBEEQBNEjIeGKIAiCIAiCIAiCIAiC6JGQcEUQBEEQBEEQBEEQBEH0SEi4IgiCIAiCIAiCIAiCIHokJFwRBEEQBEEQBEEQBEEQPRISrgiCIAiCIAiCIAiCIIgeCQlXBEEQBEEQBEEQBEEQRI+EhCuCIAiCIAiCIAiCIAiiR0LCFUEQBEEQBEEQBEEQBNEjIeGKIAiCIAiCIAiCIAiC6JGQcEUQBEEQBEEQBEEQBEH0SEi4IgiCIAiCIAiCIAiCIHokJFwRBEEQBEEQBEEQBEEQPRISrgiCIAiCIAiCIAiCIIgeCQlXBEEQBEEQBEEQBEEQRI+EhCuCIAiCIAiCIAiCIAiiRyLp7gr80zh//jzWrFmDY8eOoby8HCzLwsfHBykpKZg9ezbGjRvX3VUkCIIgCIIgCIIgCIK4JiDhqotoamrCCy+8gK1bt1ptKykpQUlJCTZu3IgxY8bgo48+grOzczfUkiAIgiAIgiAIgiAI4tqBQgW7iO+//x5bt26Fp6cnli1bhjVr1uD48ePYv38/vv/+e97Tav/+/Xjqqae6t7IEQRAEQRAEQRAEQRDXAORx1UU8/PDD8Pf3x7Rp0+Dt7c1/7+HhgYCAAIwcORIvv/wyVqxYgR07diArKwvx8fHdWGOCIAiCIAiCIAiCIIieDXlcdREMw+DGG28UiFaWLF68mP+cm5v7d1SLIAiCIAiCIAiCIAjimoWEq78RtVrNf/b39+/GmhAEQRAEQRAEQRAEQfR8SLj6G/npp58AAHFxcRgwYEA314YgCIIgCIIgCIIgCKJnw7Asy3Z3Jf6J6PV6aDQatLa2Ij09HT/++CMOHDiA4OBgfPvtt4iJienm+um6tfzLgWFEYBgGLMuCZfXdXR3iXwa1P6I7ofZHdBfU9ojuhNof0Z1Q+yO6k2u9/YlE4i79PRKurhLr1q3D008/zf/v4+ODG2+8Ebfccgvc3d27sWYEQRAEQRAEQRAEQRDXBrSqoIG6ujrU19d3al93d3f4+fk53Cc/P1/wf21tLX755Re0trbiwQcfhLOz82XXtSsgjyuCuDSo/RHdCbU/orugtkd0J9T+iO6E2h/RnVzr7Y88rq4Sn3zyCT799NNO7btw4UK88cYbndq3tbUVJSUl2LhxI5YvX462tjbEx8djxYoVcHV1vZIqXxFqZfM1dwNIFa4QicTQ63XQqFq6uzrEvwxqf0R3Qu2P6C6o7RHdCbU/ojuh9kd0J9dy+2MYEWRObl36m5Sc/Srj4uKChIQEPP744/j+++8hEomQlZWFDz/8sLurRhAEQRAEQRAEQRAE0aMhj6u/mZtvvhknTpyAq6srTp061W31II8rgrg0qP0R3Qm1P6K7oLZHdCfU/ojuhNof0Z1cy+2PPK7+AURGRgIAWlpaUFdX172VIQiCIAiCIAiCIAiC6MGQcPU3o1KpAAAMw8DFxaWba0MQBEEQBEEQBEEQBNFzIeHqb0Sn0/HhgREREZDL5d1cI4IgCIIgCIIgCIIgiJ4LCVddxDfffIOlS5eioaHB7j5ffPEFysrKAAA33XTT31QzgiAIgiAIgiAIgiCIaxNJd1fgn0BGRgY+/fRTqFQqTJ06FUuXLsX48eMRFhYGnU6HzMxM/Pbbb9i2bRsAYNiwYViyZEk315ogCIIgCIIgCIIgCKJnQ6sKdhGnTp3Cc889h4KCAof7zZo1C6+88gpcXV3/norZgVYVJIhLg9of0Z1Q+yO6C2p7RHdC7Y/oTqj9Ed3Jtdz+rsaqguRx1UUMHDgQmzdvxubNm7F7926cO3cONTU1kEgkCAgIwMCBAzFnzhwMGjSou6tKEARBEARBEARBEARxTUAeV/9S/o0eV1qdHgwDiEXdk9qtVamGSAw4yWSXZd/UooJIArgqFJdlr1JrIBGJIZFc3vFrdTqIGBFEIuaaLL9F2Q6ZWAKZTHxZ9jrIIJPJIRKxl9X+rrT8K6WxRQlXJxnE4ssrv6iiDoHerpBdZvvtbjRaHSRiERjm8trPldKmUkMhk0B0uc8fiRNkUilYVn9Z7e+Ky+9GWJaFVqfv1ut3LaPX66FSay/7+otlzlBrWcgkDHTqtqtQQ+JqYrx/pJLuefdcKd3tcaDXs9Czekgu893Z3eVf6/Xvbrq7/RFXRneP/a6Ua7n9kccVQVwi9c1KrD94ERsOXURZTTMAICrIC3NGJ2HG8Hi4Ol3dlR1PZpTirV/2oqy2mf+OARAf5ouX75qEiABPh/Y7TmThnd8OokWpFnwf4O2Kd+6bhtgwX4f2GQVV+PjPIziXUwG9QaOWS8UYmxKFhxaNgLe7s0P7qvoWrDuQjk2HM1Hd0AqG4eo+d3QSpg6Ng0ImdWiflleJj/84jLT8Kr58hUyCCQOi8dDCEXB3dSzCVdQ1Y93+dGw+komaxjYwDJAY7od5Y5MxeVAs5DLHj7DdJ3Pw4erDqGk0DbYYBugXG4TX7poIHw/HIbupWWX49M8jyCiqhlHid1ZIMXlwLB6YNxyuzo5FnC3HMvHZH0dR16zkvxMxDPrHB+H1/0yGh6uTQ/srZf3BdHy57jgaWlSC8gcnhuC1uyd32P5f+WEXth3Ltvrew0WOH/5vIQK9u/aF1NXkltZizb407DyZg+Y2NcQiEQbEB2H+2N4Y1S/iqndkdp3KwbfrT6KwsoH/zsNVgXljknDHjEEdiriZRTVYs+8Cdp3KRZtKA4lYhKHJEZg7OhHDk8M7FHG3Hs3C95tPoqSqif/Oy80JC8Yl47bpA3q8iHU+rwJr9qVh/5l8KNu1kEnEGN47HPPHJmNQYgiJWA7Q6/VYues8Vu48K3j+BXq74pZp/TF3THKH9r/tOItVu88L7IN83HDr9AG4blSvq1Z34srR6fU4eLYQa/ZdwOmscuj0erg5yzBpUCzmj+2NmBDv7q5ij0aj1WHP6Tys3Z+G87mV0LMsPN0UmDY0HvPHJCPU3+Oqlq/W6LDrVA7W7EvHxQKu/+Tt7oTpwxIwb0wSgn3dHdq3a7TYeSIHa/enI6OwGnqWhY+7M6YPj8e80UkI6sD+SmlXa7H9RDbW7ktHZjHXf/L1cMbMEYmYOzoJAd7dmy6F+GfT2KLCxsMZWH/wIoqrGgEA4QGemDO6F2YOT4S7y9Ud+xFXD/K4+pfyb/C4OpNdjqe/2IrmtnYAnGAEAMYG7+/lgveWzbxqHbi3lu/D+oMXHe7z9E1jMGd0ks1tD324ASczSh3a3zd3CJZOG2Bz23cbTuC7Tafs2krEIrz/0AwMSgi1uf3guQK8+O1OqNRaAJzgY/60CA/wxPsPzrDbgfp87VEs33bGbvlSsQgfPzob/WKDbG7fczoPr3y/C2qtzmb5UcFeeH/ZTLsdoMc+3oSj6cV2y2cAvPvAdAzvE2Fz+7srDmDNvjS79nKpGF89NRfxYX42ty97fz1OZ5XZL58BPnlkNgYkhNjd50q4639rkJ5f5aB8Bl8+OQd9ogNtbh//4Ldo12gdlvHCbeMxfVjCFdXzavHb9jP4bO1Rvs2IGIYXTwFgcGII3rx3KlwUXe9Bptfr8fDHm3DKwf3r6arA8hevtykesyyL7zaexPdm969l/Uf1jcCrd02yKR7r9Xrc9956nM+tsFu+r4czlr9wfYficXeg17P45I/D+H33ef47y+OfMiQO/3fLuGvWi+RqolJrcPOrq/jJGlvEhnjj+2cX2hRP21Rq3PzqKlTU2X/Pxof54tun51+2By1x9WhVqvHsV9sE/Qfz+4dhgAfmD8eNk/t1VxUvib/b46CuSYknP9uMi4XV/Hfm508sYvDMzWMxc0TiVSm/prEVj3+6GdnFtfx35v0fqUSE/7t1PKYMjrNpX1Xfgsc/3Yzc0jqb9jKJGC/ePgETBsZclfqX1zbjsU82obCiwWb5cqkEr9w5EWNSoq5K+V3Ntezx8m8kLb8ST362hZ+wtRz7+bg7491l05EQbrvv3tO4ltvf1fC4IuHqX8o/XbjKLa3D3W+vhbJdg8QIP8wYFo+kyADoWRZnc8qx8XAGCisa4OPujO+enQ9/r66d/flx8yl8vf4EAPBeSiP6hEOr0WFvagGKqxv5fT991Fq8eOOn3dh0JIv/P8DLBYOTQqHWaHHkQgkvxgHAO/dPw8i+kQL7dQfS8fav+wFwHkKj+0ZgUK9QaDR67D6di9SsMuj0LMQiBr+9dAPCLDy/zuaU48EPNkCr0yMlNghTh8YhPswXWp0eJzNKsfFwBsprmxHi547vnllgNXuxcudZfPzHEQCAq5MMo/tGYmBiMFTt3Czi2dwK6PUsJGIRVr+2BAEWnjsnM0rw6MeboNOzGJgQjKlD4hET4g21VoeTF7nyK+tbEBnohW+engcXJ6H48NqPu7HlKHf+xCIGyZEBGNQrGG0qLXafzkVVfSu/76pXl1jNnpqLfu7OcoxJicLApAgo23XYfjQd53LKoWdZyCRirHvrZnhaeE698M127DqVBwCQiEToExuA/nFBaGnTYE9qHqobuPIZAOv+ezP8urj9PfHpZhy+UMSVLxahX0wA+sUFoam1HXtT83kPCoYBNr9zq5Xn17THfkCTWRtzdZIhJtgLzUo18svqYf7SWPPmTT3O88q8/Y/rH4WJA2MR7OuGNpUGh84XYvORTDS1tWNwr1B88ODMyw4/tcczX27F/jMFAAB/TxdMHBSDmBBv1Dcpsf1EDrJLuAGJl5sTNvxvqZXn0287zuLTP4+AYYCJA2MwfkAMQoP80KrUYl9qFjYeuIBWlQZjU6Lw5j1TrDyPHvtkE46mcaJtoLcrJg2KQWSQF2ob27D9RA4/oPH3dMGaN2/qcZ5XX647hp+3pkIsYjBlSBzG9Y+Gn6cLGlqU2H+mAFuPZUGl1mLWiEQ8d8u47q5uj2PJSyt5L7+IQE9MHhyLYB93FFXWY8fJXJRWcx54yVEB+ObpeVb2i174jd8nMtAT00YkIcTPG3ml1dh2NJ0XxPrFBuGLJ+b8PQdFdAqdXo9HP96EkxmlcHeRY+bwBIzoHQFnhRSlNU3YfSoXe1PzAQDP3Dz2mvCc+zsHbu0aLe575y9kFFXDx8MZM4cnYGhSGBQyCQoqGrDjRDaOphWDYYA375mKsV0svijbNbj77bXILa2Dn6cLZo5IwNBeYZBJxcgrq8P2Ezk4cbEEIobBOw9Mx/De4QL7NpUG//nfGuSX18PfywUzRyRiSK9QyCRi5JbWYdvxbJzKLIVYxOC9ZTMwJCmsS+vf3NaOu95ag+KqRgT5uGHm8AQMSgyFVCJCdkktth3LQmp2OSRiET56eBb6xwd3aflXg2tZOPi3UVTZgP+8tQbNSjXiQn0wY3gC+kQHggWLc7kV2Hw4E7lldfBwUeC7Z+d36LnYE7iW29/VEK56Vm+VILqIbzecgLJdgyG9QvHE4tHoHR0IkYiBRCzCwIQQPLd0HBLD/VDb1IZft5/p8vKNnhISsQi3zRiA0X0jIWZEkMukmDo0Dosn9uX3ffn7XVb2RtGKYYDZIxMwPDkcEkYEZ5kMEwdEY1z/aH7fl2zYf77mKADOq+KxG0ZiaFI4xIwICpkEM4Yl4MGFwyERi6DTs3jLMMA354u1x6DV6TFhQDQeXDgcCeF+YBgGUkOozvO3jkd4gCdKq5uwZt8FK3ujaBfo7YpHrh+Bwb1CIWJEcFZIMXtkLyybPwxiEQOtTs8LDEZYlsWnfx6FTs9i2tA43D9vGGJDfcAwDORSCUb2jcDzt45HiK87Cirqsf6Q0KtNp9Nhq0G0cpZLcev0/hiSxJXv6iTDdSN74bqRppnS577eJrDX6/X4eWsqACAswAOPXD8SA+KDIRKJ4OaswLzx/XDPnCEQMQzUWh3eX3lQYK9W63jRytVJhttmDMDA+BCIGBHcXeSYM6oXZo3gvJRYAM9+vd3q/F0JSrWaF608XOS4bfoA9DeU7+nqxIV5DonlymeB57/ZIbCvqWsRiFYD44OQEOYDiVgEL1cFBsQHIdDL5CV0+xt/dGn9r5R2tRZfrjsGALhtxgDcMm0AQvzcwTAMXJxkmDIkDs/dMg5uznKcuFiCo2lFXVp+bWMbL1oNTAjBvXOHIi7UFyJGBB8PFyyZ1A9LJnH3f32zEit3nRfYtyjb8d1G7v6557ohuHFyCoJ83MAwDNxdFJg5MhnP3DwOTnIp9p3Jx9kcoVdVaXUTL1oNSw7D3dcNQXSwD0SMCH6errhpcgoWje8NAKhqaMX6QxldevxXSk1jK37dfhYMAzy0cAQWje8DP08XAICnqxOuG9ULTywZDZlEjI2HM5BbWtvBL/67OHA2nxetZo1IwK3TBiDYh+uchwd44c6ZgzBhAPf+SMuvREaB0Ctz16kcXrSaM6oXbpk2AEG+nLAfGeyNu2YNxtiUSADcBEdOCZ3/nsTRC8WcaOUsx3NLx2Hy4Di4OMnAMAxC/Txwy7QBuG0656X95bpjHXrV/tvYcTwHGUXV8PV0xvO3jMe4/tFwkkvBMAyigrxw93VDMH9sMlgW+OzPI9Dru3buf/ORTOSW1iHA2xXP3zoeY/pFQS6TgGEYxIT44L65QzFrRCL0LItP1xyBpe/BhkMXkV9ejyAfNzx/6wSM7hsJuZSzjw31wf3zhmL6sHjo9KzBI7lr6792fzqKqxoR6u+B/7tlPEb0iYBMKgbDMIgP88WyBcMxaVAstDo9Pl97rEvLJojvN51Cs1KN/nFBeOqmMegXGwSRiIFYJEL/uGA8ffNY9I4OQGOrCj9tOd3d1SUuAxKuiH8cVfUtOHC2AGIRgyWT+tn0ppBKxFhsGDxuPpIFZbumy8rfciwTWh3nzTZjWDzEjPVt5uokQ98YLkSrprENtY0mFf37TSf5zyN7h9u093SRI9iH89JpU2lQ02Cy338mn8+JdfPUFIhs2Ls7KzB+ADdTeDa7HCq16fhzSmpxLrcCTnIJFo7vYzOPjJNcyg9+1x1Ih05v8t7bejSLDy+8aYrt8j1dnTCqLxeid/xiCbRak316QRWyimvg6iTDvDHJNst3cZJh/jguR8uafWmCzuPna4/xHkELxibZLN/fyxXhAR6G462DTqfjt63afR4anR4MgJvshFL4ebpgUCLnJbfvTAH0Zsf/3u8H+M8LxtoOAw30dkOQDzcLcdFBON/l8OZPe/nPxnNkSZi/J/y8ODHgdFa5YNvtb/3Jf+4XE2DTPsTPg3e/bmxtt7lPd7HrVC6aWtsRGeiFMf1sz4b7e7li2lAuzOJPB+Ggl8MnfxwGAMikYswcbjuMMi7UF5GBngCAlbvOCbZtPZoNZbsWiRF+dmfDQ/zcMdEQ5vGnhXBsLN9JJrEbStIrwh8hfpyY8YtBpO0pbDiYAZ1ejwHxwegTYzuMNTrYm39+OArn/TdinDTw9XDGgHjbYcij+kbCzZnzkv34zyOCbd9t4CZd/L1c7YZxj02JhqvBy/UjQ3sjegbGiaRpw+LtepKP7heJiEBPNLSosNswyUJwGJ8nc0clwcNOGPWMYQnwcXdGSXUTjl8s6bKyWZbly58/Jpm/Ry25blQveLgokF9WjzPZ5QL7tfs5+wXjkvl71ByGYTB3dBJcnWTILq7FhbzKLqu/Tq/HOkP5i8b1hrPCOoydYRgsGJcMJ7kUafmVyCyq6bLyiX839c1K7DmdCwbAksn9bOYwlYhFWDKJ69dvP54jiF4hrg1IuCL+cZzL5RKRJ0cF2O14AFyOplA/d7Sq1Mjpwln79Qc4DyCxiHEYgjgo0eQivfGwKSxw85FM/rOvh4td+4GJpkGJeS6YnSdzAHA5dNyd7R//0KQwMAygZ1mcyjTlYkrN5j4PiA+BwkHy816R/vBwUaCqvhXlZsnn95zOBQD4uDs5zB80sk8kAECnZ5FWYOo8pRryQg1ODHWYv6ZfTBBcFFKUVjehttEU+rf/bAEALgeV3EHy+PH9TaLGObPO24FzhQCAQB9XyCT2j9/otaDR6gTHf8yQV8tJLoHUkf1Azp4FBMm7r5RUgxDlopDaFD358g1eeyzLorHFlDy+tsn0WSK2bx8d7MV/rmvpOe7Lxo788N6OQyBG9OaEj7PZ5Q73u1TOGfJKJXSwcMIYQ/szb7uA6f6zDAGxZGQfbrtl/dMMQmivSP8O7Lnjr3SQx6g76OzxDzdcvzM5XXv9rnWKK7kw9I5CgFJiOVHQ8t1XYghjH57s2N448ZJdTAPPnkQq//yzf/8wDIPhydz2M9n28zD+21C2a5BRVA2JWITBvWzn/gQAkYjBMMP90ZXnr7FVhfzyeshlEochdBKxCEOSQg3lm55/dU1KFFU2wkkutSs6A9zE7VDD8yG1C99/lXUtqKhrgbuzHMnRtie9AC7HlXHij9of0VWk5VdCo9UjIdzP4dgpyMcN0cHeaNdokVlUbXc/omdCwhXxj6Pd4O1jmffIFsZ9jDZdWX5HK5aZewI1tZpWfTNPRu4Ic1GiwWzVOqO3k1zqeMU9ESPi69iiNM06GOtva7ZOaM/wM2rm50+l4erf0YqDErEIIsNBtrSZVk1sN9h3dP1EIgZOhvJVZuVrDOevo6TN5qJSvdmqWWpD6IRC7rj+MqnEzOvIdP2M3mOyDsp3Mjs/tQ2tDva8NIzefh1df/PZ3Nom6yXuO8r65GkmCpdW2k8C/XdjDH3paMVEY/tSdeG9DwAaw/XvqP16uXB5xSwjNUz1d2xvFIUt62+8/m4drHjp5W4sv2eluTQ9fxxfP1cn62cPAT6BtIeL46T7rob7X6cT5ro02ne06pKxfWl111auzH8yLMvyz4+OFp24Gn2fax3juZNLxR32H65O35HruzjJJA4njQDT+8H8+W+sv7Nc2mH/09g+rkbf11kh5ft2HZZPoapEF3FJYz8bYwfi2oCEK+Ifh49BaS+qaHA4KNNodXwuDx8bK3tdLsZV7owClD2M4XwAkGC2Mp2PG1eXjsaT9WZeMn3NQmqM5TeYbbdFY4uKH3REBJq8Z4znryMvoFalGjUGbxEvN9P58zfko6mzIYaYU9PYyg+SIoM8zcrnfquog/KbWlWob1JCxDD8IBwAvAyJxttUjsM/i6tMv58YaXb+DeXXdCAmlVY38iGJob6m5O7uhgGj+fW1RV6ZacWfrlzZ0tUwoGzqwAU6w2zFpFBfT/6zMbK2Izkj22zFooQwn0uq49XEuEpfYUW9w/2M243Xu6swDvhLzBZgsEV6IeflZzlA8eHr3+DQ3nh/WtbfeP07un+NuY0kPWxVPv750+H1a+D278Jn9z8Bo2Cd3UHuqYJy7vw6y4WdfN6+uCP7hv9v787joq72/4G/ZtgRFRAUxQVT0MotzRXTXEgty62uZi6hWXbJvnVzuXZL8/663TbNrdxSL6KWpriTCiIGoqCiubIIouyCgDCyzPb5/THyiXFmWIaBGfT1fDx8PD7O53w+c2Y4KPPinPcBUH1AQg1HIpGI3w/V/f8pfv9UMTPhSePkYAdbGys8KFPgbkHVM1H/ev9M9+9Pcyc7WEmluP+gDAXFVf/8lqrn+Zs72UMqkaCguBT3ZWUGrtS4nWP6//8q/u/Nu18CWTU/f4jPz3+/yUTEz345hVo7ED9KpVYjveKzn4l//qP6x+CKHjt9urSBazMHZOQVaX04f1Ts9XTIHu484dXaxWC72vrH5MFaz2FI2AXNkj6JRIKX+v9Vi+Zz/2Hi8cUqplHHXPvr3q8O/quW0ozRmsKr5QoVrqRk61xX4WiMZnmik6MtulbaFvaFnh1gb2uN+Nu5SL9r+MP3H3/egkKpRt+n28K1UnD09sua5y+VK5FYxTKSiud3drKHp/tfwc+Lz3WErbUVriRnIyff8EyeiIu3oFILGNS9g9bsjHmvDwSgmTlwM93w80c9XBJoa2OFNpWCp7df7gMAKC6RV/nD/7HYJACaWjDNKs0+en98PwCaJZB3cgx/+D7zsCi4va21zq5+dTH7lecBaGZCZFfx/p2L14yfJg42sLX9K7zw6/fXWLxbRXhXVKm2la2t5Xx4felh4fnTV25XWbvuxPnkh+3114Ey1sShmrpi6XeL8KDMcHh55qpmSWm3R5ZUVPTn1KVbkCv0h9+CIBjsf8XGA7ezC7Vq11WmFtSIvZEBAOhtYbs6VXz9wuNSDM7mEQQBJy7Uz9evsRv0cAnp5ZtZUBnYOVip+uvfZr++nbXO9X+4BOliUibUBq6XK5ViMDaqP99/S1Lx/VDx74M+peUKRF+9/bB9Z4PtnjTWVlKxdmB4nOHaXwXFpTgfr9nZb8Tzpnv/7G1tMLSXFwQBCI8z/PXLK3yAP5OyYCWViiUHAE2IPLhHB6gFAScvGu7/3QIZLt/Mho21VGujn7pq7mSPAc+2g1KlxqmHJRv0ycgrwo3UXNjZWGOIiXdlpCdX906t0MrVCbmFD3D5puHPPnEJmSgoLkX7Vs21Jg1Q48Dgih47NtZWGP+CJsjZeOic3pkPiWl52Bl2CQDw+rBueguAG8vdxUn8LdLllGzcuK1bfDvyciryCjUzkp7vov3B8ak2LWBnowkSbufcR0Kabvh2+uptlD2cYu3dVnu2i7tzE3R+OIPnQOQNrZk9FU5duoWEhx9cxlcKvQDNbx3HDPABAKwNPqP3N4+XkrKw74/rACAWaa/g6d5cLHy+++QVveHPiQs3kZKpCXXeGN5d65yzkwNG9u0MAcDqPWf0ztw6H5+BQw93E3z9kQLkvbt4wuFhba6IS6lI0/P8x2KS8ODhjKyxjxTQ7treXaxNtv34JWTeK9I6r1arEXI2QfyNzfRRvbTOv9CrI2wffv2On0tGZt4j1wtqHDkTj9JyzdfvjWHar7+uxgzsIs7iORydoFPDSC2ocSDqhrgkc/qo3lrnl/qPEI/T7hbphFdKlVqroPuQnh1M2v+6erpDSzzbsRUelCmwNviMzsw7QRBwNCYRZ6+nwUoqEf+tMJUJQ54Rv39/2hejM/NOJaix7Vic+PgHkwZone/t0wZPtXHFfVkZ1u0/q7OUQ60WcCDqBi7dzIKtjRVe89Xezv7Nkb1gbSWFIGie/9HwTKlSI/D3i2KoVxH0WorBPbzQytUJOfkybDl8Xlz6W0GlVuOXsMtISr+HJva2GN3fx0w9tUwfTNJ8PeVKFTYdOAelSnv8lMmV+GlfLFRqAVKJBO+O66t1/v/eGARA84uPnw+d13O9Aj/ti4FaECCVSjDrYVBOlmH8kGdgJZXgzLU7OBabqDPrvKRMgbV7Nf8udn+qFbq05we3yia9qPl5JjQ2CVGXU3Xev/sPyrB6TzRUagGDe3QQN1kxldcf/jzw+5lEcXfYygqKS7F67xmoBQHD+zylU8un4voj0fE4p6dwfH5RCdbsOQMBwMjnO2v90tEk/X/4/h2IvK73F695hQ+w9uGGEKMHeBssQE9UW1ZSKSY9/MXh1pALemdtJ2fkY9tRzW6Ck17spnfzLrJsEsHSClxQg5CXFkMw8NtUS2Vj7wSp1ApqtQqKsqqnccsVKvxjzRHEJWZCIgF6dW6Nbk95QK1WIy4pEzdSNWHQyOc744tZI0z+j1d2fjFe/9dOcbqqVCqBazMHqFUCCopLxWVYjnY2OLbibVhZaS/XScm8h2n//k3rMQc7a6jVghg4AIC1lQThq2bD+pEi4Pful+CNz3eK67ebOdqhvYczlEoVUrIKxJkcHVu7IOjzNyB9pB7Cg1I5AlYcRGJaHqykEvTp4omuHdwhV6hwPj5DLOj7+ovd8PFkX53gLye/GJOX/Coul2zexB7tWzWHXKHCrawC8XGfdm74379e13n/ih6U4/3l+3Ers0BTKLVrW3i3a4FyhRKx19Nx6+Eyl7f8eiJgku4H7+u3cvDON/sqvU9SuDS1h0KpRmGlKfRuzo44+PUMnetTswow48vfxBkfLk3t0a6VK8rlSqRk5ol1jHp5t8ZPn4zTuf5iUiYClh8U/25jJYVzU3vIlWqtKfxtWjTFnv+8pXN9XZ25dgefrAn56/mtpXB2coBcodTaBbCDhzN++WKKzvXr953BtmN/aj0mkeguX7WxkuLUj++atvMmkH73Pt77bj8KikvhYGeNgc+2R7tWziguKUf0ldvIfhjmLZ4+FK8+EvyYwunLt7Hgp9/Fv7dycUJLVycUl5ThTvZ98d+F8UOewcKpQ3SuT8nMx/vf7UdxqRxN7G0wsFsHtGvdAkWyckReuom7BTJIJMAXs0bqzJgBgPALyfhsU6j4dw9XJ7R0ccL9B2VIy/nr+aeM6IEPHwYVluTarRx8uPIQSsuVaOpoB9/uHdDK1Qn5RSWIunwbBcWlsJJK8M37ozGou2UFp5bgfyFx2HgwFoDm+7ate3O4NHVA3v0HyMz7axbmwreG6A1ufz50DluOXBCvb9fKBS5Ojsi7L0NGpV8E/Wvmi3hlYNd6fjVUW/sjr+PbHX8A0HzvD+reAU0d7XAnpxBnrt5BmVwJl6YO2LBwPNpWmu1sqWrzs58pBP4ehw0HNN8/7Vo2x4Bn28HR3hbJGfmIvZ4GuVKFNm5NsWHBhHpZarTxYCz+F6L5cN3Bwxn9n2kHe1tr3Ey/p9mFWaVG+1bNsX7BeDjrma39076z2H7sEgDNz3j9nmkLOxtrJKXfw7mH13t5uGD9gnFiaQNTEQQBq36Lxu6HGwZ18nRF365tYWtjhYQ7eTgfnw6VWkBnzxb4af5r1dYytAQNPf7IeEqVCgt/Ooqz19IgAdC9kwd6dvaAWtBsZHP1lqZEwws9vfDVey9VWwvOEjTm8SeRSGHrYNpwn8HVE+pxD64ATaG+Fbui8PvZRJ0lJ3Y21nh9WDe8N65ftUUwjZV+9z7e/s8elBhYrtTSpQl2L5uqtUyrsvg7uZjzdTBUav3fok3sbXDo65mwt9dfhPtugQxzv9svfkh/VJ8unvhh3iuwttb/+otLyvHtzj9w8kKKznrxJva2mDaqF2aMfs7gbLWM3CL8ffkB5BpYbjbg2Xb4PmCMTmhW4b6sDN/sOIVTl27pBCZNHW0xc0wfvDmyh8Hnv5KSjQ9WHNKZsVHhqTYuCPzX6zqhYYWUzHx8+MMh5OupNSEBMPS5jvhyjp/B/sclZODj1UegMLDcqUs7N2zVE9qZypkrt7Fw/VGoVPrHT/enWmHDwgkGr9cXXlXWxN4aoSvfqXM/60t67n38JzACf+rZdc7duQnmvT4QI024zONRZ67ewWebQvUuV5RKJJjq1xN/nzhAz5UatzLz8VVQhLhLYGUerk74ePJgvNDTy+D1ERdv4d9bT+gtPmollWDmmN5459W+eq60DPG3c/HfoAi9tZratWyOBVOHiDtTka5fw/7ET/ti9C63tLW2woK3XqgydNpx/BI2HIjVf72NFf751lCMHsDZbpYq9NxNrNkTjbz7ujOWe3m3xr9mDIOnezMz9Kz2zPHBbf8f17HxYKzWL7oqDHy2HRbPeLHKncvqQhAE/HbyKrYcOa+1JB/QBMm+3b2wePpQuDTVP1tKEATsOnEZW0PiUFyie/0LPbywePqLVe66Xdf+bz9+CUFHL+rMOJZKJHjxuY5YNG1oo5lt1ZiDgyeRXKHC6j3ROHT6hvhL5gq2NlaY8MIzCJg0ANYGfva3NI15/DG4IpN5EoKrCvful+BoTCLu5BRCKpWgU5sWGNW/4aYon7l2Byt3nUZ+cQkkkKCtezMs8R8Or9Y1K8h99EwCVu6JRkmZHIAELZo74r9zR2nVparKtZQcbDx0Djn3iiGVSuHT3g0BEwfA3blmP3Rl5xfj97OJyL5XDGsrKbq0d8fI5zuLOwpW58+kTPx8+AJyC2SwspLi6Q7u+PvEAWIhz+pk5hXhaEwicvJlsLaS4mmvlhj5fKdqdy2scDwmCesPxqL4QRmkUimeauOCf88eCfeHywGrc/5GOraEXEB+USmsra3Ro3MbzH21t1Zdq6ociY7Hz4fPQ1ZSrnn/27XAF7OGo0Xzmj1/XQVHXMO2Y3F4UCqHlVSKrh3cscR/RI2XCPxr4zFEXPwrPGzexA4bFoxDew/TFZSvT0npeQg7l4z84hI42Nqgd5c2GNzDq94C60cdi03EnpNXcf9BGextrDGwWwfMfrUPbK31B86PunH7LsIvpKCoVAlHezv0e6Y9+nVxr/FvCo+ciUdwxDUUl5bD3tYGQ3p6YcaY52r8/OYkCAKuJGfj1KVUFJWUoYm9LQZ1a4/nu7blFP8aUCrV+PXEnwg9dxOlcgWa2Nti7KCumDDkGYOB+6PX/xJ2CSfibqG0XAknB1u8OsgHrw1+ukbXk3kpVSpE/nkbFxMzUSpXoEUzR4x8vjM6t7WczTRqwlwf3OQKFU7GJeNycjYUSjXcnZtgVH9vtG/l3CDPXy5XIjwuGVdTcqBQqtHK1Qmj+nvXeJZcmVyBE+eTcT31LpQqNVq6OGF0f58GCyxLyxUIO38T8bdzoVSp4dGiKUb39zH58sr61piDgydZQXEpjsYk4nZ2ISQSwMvDBaP7+9RbYFtfGvP4Y3BFJvMkBVdEpsDxR+bE8UfmwrFH5sTxR+bE8Ufm1JjHX30EV/yVGRERERERERERWSQGV0REREREREREZJEYXBERERERERERkUVicEVERERERERERBaJwRUREREREREREVkkBldERERERERERGSRGFwREREREREREZFFYnBFREREREREREQWicEVERERERERERFZJAZXRERERERERERkkRhcERERERERERGRRWJwRUREREREREREFonBFRERERERERERWSQGV0REREREREREZJEYXBERERERERERkUVicEVERERERERERBaJwRUREREREREREVkkBldERERERERERGSRGFwREREREREREZFFYnBFREREREREREQWicEVERERERERERFZJAZXRERERERERERkkRhcERERERERERGRRbI2dwfIPCSSxp1ZNvb+U+PG8UfmxPFH5sKxR+bE8UfmxPFH5tTYxl999FciCIJg8rsSERERERERERHVUeOK7oiIiIiIiIiI6InB4IqIiIiIiIiIiCwSgysiIiIiIiIiIrJIDK6IiIiIiIiIiMgiMbgiIiIiIiIiIiKLxOCKiIiIiIiIiIgsEoMrIiIiIiIiIiKySAyuiIiIiIiIiIjIIjG4IiIiIiIiIiIii8TgioiIiIiIiIiILBKDKyIiIiIiIiIiskgMroiIiIiIiIiIyCIxuCIiIiIiIiIiIovE4IqIiIiIiIiIiCwSgysiIiIiIiIiIrJIDK6IiIiIiIiIiMgiMbgiIiIiIiIiIiKLxOCKiIiIiIiIiIgsEoMrIiIiIiIiIiKySAyuiIiIiIiIiIjIIjG4IiIiIiIiIiIii8TgioiIiIiIiIiILBKDKyIiIiIiIiIiskgMroiIiIiIiIiIyCIxuCIiIiIiIiIiIovE4IqIiIiIiIiIiCwSgysiIiIiIiIiIrJIDK6IiIiInkAymQxjx47FunXrUFRUZO7uEBEREeklEQRBMHcniLKysvD111/j6NGjAIBt27ahf//+NbpWJpMhMDAQoaGhSEtLg1qthqenJ0aMGIGZM2fC1dW1PrtOjdSFCxdw8OBBxMbGIi8vD+Xl5XB3d0evXr0wceJE+Pr61ug+HH9UW1euXEFwcDBiYmKQlZUFQRDQokUL9OrVC6+++ipefPHFGt2HY4/qKjAwEF999RVsbW1x6tSpWo0Zjj+qreDgYCxevLhGbWfNmoVFixYZPM/xR8bKysrCtm3bEBkZibS0NAiCgNatW2PgwIGYOnUqfHx8qryeY4/IPBhckVnJ5XJs3boV69evR0lJifh4TYOr5ORkzJkzBxkZGXrPu7m5Yd26dejRo4fJ+kyNW2lpKZYsWYKDBw9W2W7ixIn48ssvYWVlZbANxx/VRlFRET7//HMxoDdkyJAhWLVqFRwdHQ224dijuhIEAaNGjcLt27fx2muv4bvvvqvxtRx/ZIzaBFfLly/H2LFj9Z7j+CNjHT58GJ9//rnWZ47K2rdvj99//x3W1tZ6z3PskTHS09MxYsSIWl1z4sQJtG3bVu+5JzU8ZXBFZhMZGYkvv/wSqampAAAPDw9kZ2cDqFlwJZPJMG7cOKSnp8PGxgYfffQRxo4dC3t7e5w/fx7ffPMN7ty5Azc3N+zfvx/u7u71/ZLIwsnlcvj7++P8+fOQSqWYPHkyxo0bhw4dOkChUODGjRtYsWIFEhISAABz5szB/Pnz9d6L449qa+XKlVi3bh2cnZ0xbdo0DB8+HG3btkVZWRlu3ryJbdu2ISIiAgDg5+eHtWvX6r0Pxx6ZQkREBN577z0AwO7du9GzZ88aXcfxR8aqHFxdvny5yrY2NjaQSnUrmnD8kbFCQ0Mxb948CIKAfv36Yc6cOejWrRsAICcnB1FRUejTpw969+6t93qOPTKWMcFVeHg4PD09dR5/osNTgaiBKRQKISAgQPDx8RF8fHwEX19fYd++fcKZM2fEx86ePVvtfVauXCm2P3LkiM75ffv2iee/+OKL+ngp1AgdOXJEGDx4sBAVFaX3fElJiTBixAjBx8dH6N69u5Cfn6+3Hccf1ZZarRZ27Ngh3Lt3z2CbpUuXiuMmISFBbxuOPTKFWbNmCT4+PsKECRNqdR3HHxlr79694tgwFscfGePevXtCv379BB8fH2H+/PmCWq2u9T049shYarVaKCsrq/bPP/7xD8HHx0cYPXq03jFaXFwsDB8+XPDx8RGeffZZYdOmTUJWVpZQUFAghIaGCiNHjhR8fHyEQYMGCXfv3jXDK61fLM5ODc7a2hrNmjWDjY0N5syZg2PHjmH8+PGQSCQ1vodKpcIvv/wCAHjuuefw8ssv65zfsGGD+Pfg4GCUlpaa5gVQo/byyy/j5MmTBmtYOTg4YNq0aQCA8vJyxMbG6rTh+CNjSCQSTJ06tcop3FOmTBGPk5OTdc5z7JEppKSk4PTp0wCAt956q8bXcfyROXH8kbG2bduGwsJCtGzZEsuWLavVZw6AY4/qRiKRwM7Orso/hYWFOHbsGABg+vTpesfo5s2bkZ6eDgD49ttv8c4778DDwwPOzs4YOXIkAgICAAB5eXn46aefGu4FNhAGV2QWixYtQkhICObPn48mTZrU+vq4uDgUFBQAAMaMGaNzfu/evUhJScGkSZMAAGVlZYiKiqpbp+mxYah2QYWOHTuKx7m5uTrnOf6ovsjlcvG4ZcuWOuc59sgUtm/fDkEQ4OzsbLCOkD4cf2ROHH9krMOHDwMA3njjjSrrRxrCsUf1LSgoCAqFAs2bN8eECRN0zjM8ZXBFZtK8eXO0b9/e6OuvXr0qHj/33HNa50pLS7FmzRr07NkT//d//6f3GqKqVC7a2bx5c53zHH9UXwIDAwEA3t7eeutscOxRXclkMuzbtw8AMGnSJNjZ2dX4Wo4/qg9qtbpG7Tj+yBjp6elIS0sDAPj6+oobQ02cOBG9e/dGv379MGXKFPzyyy9QKpV678GxR/WppKQEu3btAqAJVx0cHHTaMDwFqp52QGShUlJSxONHd1wIDAzE3bt38f3336NVq1awtraGUqnUuoaoKpWLxvbq1UvnPMcfmYJarYZCocCDBw9w/fp1/O9//0NkZCTatGmDVatW6Z0mzrFHdbVnzx6UlJRAKpVi6tSpWue6dOkCwPAGKRx/ZCoHDx7E/v37kZiYiLy8PDg4OKBnz56YNm0aRo4cqfcajj8yxrlz58RjFxcXTJkyBdeuXdNqc/HiRVy8eBGHDh3C+vXr0axZM63zHHtUn/bu3YuioiJYW1uL5UoeVZvwdO/eveI1fn5+9dfxBsYZV9Qo5efni8cuLi7icUFBAX7++WcMGTJE/KG74j+fipSaqCpyuRyHDh0CoPmPoV27djptOP7IFA4ePIgePXpg4MCBmD17Nq5fv4558+bhwIED6NSpk95rOPaoLgRBwM6dOwEAQ4cONbjVtiEcf2QqCxYswOnTp5GbmwtBEFBSUoIzZ84gICAAX375pd5rOP7IGHfv3hWPP/30UyQlJcHf3x8HDhzA+fPnceTIETHEv3DhApYuXapzD449qi9qtVqcbe/n54fWrVvrbVeT8PSTTz4Rw9NHr3kccMYVNUoVa3ZtbW21ZiWsX78eMpkMn3zyifiYra0tAO3lX0SGbNy4Uaxr9eGHH+ptw/FHpnDr1i2tv9+7dw9BQUF48OAB5s2bp7cOB8ce1cWpU6dw+/ZtALUryl6B44/qwtPTE6NGjYKNjQ369u2L/v37w8PDA3K5HGfPnsV3332HtLQ0BAUF4ZlnnsHEiRO1ruf4I2NUDpASEhKwefNm9OvXT3ysadOmWLp0KaysrBAUFISQkBAEBASgc+fOYhuOPaovoaGh4lLWmTNnGmxX2/A0Pz//sQtPOeOKGjWp9K8hnJGRgZ07d2Ls2LHo2rWr+HhNaycQxcXFYf369QA0a8wHDRpUZXuOP6qLjz/+GAkJCYiLi8PBgwfx7rvvQi6XY8uWLZg8eTJkMpnBazn2yBhBQUEAAC8vLwwePNjo+3D8kTH69++P1atXY/ny5ZgyZQo6duwIBwcHNG/eHKNGjUJQUBCcnJwAAOvWrTN4H44/qo3K/5cuXbpUK7SqrHJoEBISorcNxx6Z2tatWwEAPXr00FkCWBnDUwZX1EhVzERQKBTiYytXroQgCFqFEQGgvLxc6xoifdLT0xEQEACFQoFu3brhs88+M9iW449MqUmTJujSpQs++eQTbNmyBVKpFImJiVi5cqVOW449MlZycjJOnz4NAHjzzTdrvR08wPFH9at169YYPXo0AODOnTviLIQKHH9kDHt7e/G4ql1U27VrJ+50fufOHa1zHHtUHypqqwFVz7aq7EkOTxlcUaPk6uoKQLP1Z3FxMeLj43H48GFMmTJFqyaRQqFAcXGx1jVEj8rJyYG/vz/y8/PRrl07rFu3TusHnUdx/FF9ee6559CnTx8AEHd+q4xjj4y1fft2CIIABwcHnSVYNcXxR/XN29tbPH40POD4I2NULrReVlZWZdumTZsC0K1PxbFH9aFitlWrVq3E0N4QhqescUWN1FNPPSUeZ2Rk4Pvvv4eDgwP+/ve/a7XLysoSU+eOHTs2aB+pccjLy4O/vz/u3LkDT09PBAYGomXLllVew/FH9cnLywvnzp2DTCZDfn6+1g+/HHtkrD/++AOAZrlB3759q2w7Y8YMAJqaROHh4eLjHH9U3ypvA1/5AxrA8UfGqVzsOjs7W6t21aMqgq1HdxXk2CNTS0tLQ2hoKABNzcmKguqGPBqeZmRk4PDhw3jrrbeemPCUM66oUerWrZt4HBgYiMjISMyaNUvnGzQuLk487t69e4P1jxqHnJwcTJs2DcnJyejQoQO2bdsGT0/Paq/j+KP6VPGDs0QiEZctVODYI2MJglDne3D8UX2r2BwF0MxCqIzjj4zRo0cP8TghIcFgu+LiYhQWFgIAPDw8tM5x7JGpBQYGQq1Ww97eHpMnT662PcNTzriiRuq5556Di4sLCgoKEBwcjBYtWsDf31+n3dGjRwFo1rf7+vo2dDfJgqWlpWHmzJnIyMhA165dsXnzZri5udXoWo4/qi8qlQoXLlwAAHTo0AF2dnZa5zn2yFhHjx6tMrw6d+4cZs+eDQDYvHkz+vbtq1MHi+OP6lt0dDQAzZKtRz90cfyRMby9veHs7IzCwkKEh4fjlVde0dsuMjJSPB4yZIjWOY49MqWioiLs3bsXADBu3Dg4OztXe42+8HTevHlPVHjKGVfUKFlZWeHNN98U//7222/rzEyIjo5GREQEAGDSpEla08/pyZaYmIg333wTGRkZGDRoEHbs2FHj0Arg+CPjbNq0CdOnTxd/o6vPunXrkJmZCUAzdfxRHHtkLFtbW9jZ2Rn8Y2NjI7a1sbGBnZ2duDNRBY4/MpYgCPj6668RFhZmsM3vv/8uBvfjx4/XqTXJ8UfGkEql4v+nx44dw/Xr13XalJWV4aeffgIAtG/fHv3799c6z7FHpvTrr7+ipKQEEomkxkXZK8JTAE9seMrgisxCpVKhvLxc60/lWgYKhcLguQqzZ89G27ZtAQA7duxASEgI8vPzkZeXh19++QUBAQEQBAFubm54//33G+y1kWW7ePEipk2bhtzcXIwZMwZr1qyBjY2Nznis+COXy/Xeh+OPaiM+Ph5r165FbGwsRo0ahbVr1+LatWsoKipCQUEBzp49iw8//BBr1qwBAAwYMEDrh+TKOPbInDj+yBibN2/G1q1bERAQgICAAISHh+Pu3buQyWRITEzE999/j/nz5wPQzDZ9tNhwBY4/Msb06dPRqlUrKBQK+Pv7Y/fu3cjJyUFRURFiY2Ph7++PpKQkWFlZ4euvv9baua0Cxx6ZgkKhwPbt2wEAvr6+6NSpU42uY3gKSARTFD0gqqXg4GAsXry4xu0nTJiAr7/+Wufx5ORkzJkzBxkZGXqvc3Nzw7p167TWt9OTbfr06YiNja1xey8vLxw7dkzvOY4/qo0LFy7g008/RWpqapXtxo4di2XLlsHJyclgG449MrWYmBixKPu2bdt0ZhxUxvFHtaVUKrF8+XIEBQXp/WVkhR49emDFihVaxYYfxfFHxrh58yamTZums2NgBUdHR3z77bfw8/MzeA+OPaqr/fv3Y9GiRQA0M/EfXZZaFZlMhnHjxiE9PR0eHh5YtGgRBgwYALVajdDQUHz77bcoKSmBm5sb9u/fD3d39/p6GWbB4IrMwlTBFaD5Jg4MDMTx48eRlpYGQRDQpk0bjBgxAm+//fZjt6MC1U1tg6thw4Zh/fr1Bs9z/FFtqFQqhISEIDw8HJcvX0ZeXh6sra3RqlUr9OnTB+PGjcPzzz9fo3tx7JEp1Sa4Ajj+yDi3b9/Gb7/9hqioKGRmZqK0tBTu7u7w8fHB2LFjMXr06Gp31wI4/sg49+7dQ2BgICIiInDnzh0IggBPT08MHToU06dPR5s2baq9B8ce1cW4ceMQHx+PTp064ciRIzq1JKvzJIenDK6IiIiIiIiIiOrJmTNn8PbbbwMAvvjiC4MlIarzpIanDK6IiIiIiIiIiOpJWVkZoqOjERkZiYULFz52NajqG4MrIiIiIiIiIiKySNxVkIiIiIiIiIiILBKDKyIiIiIiIiIiskgMroiIiIiIiIiIyCIxuCIiIiIiIiIiIovE4IqIiIiIiIiIiCwSgysiIiIiIiIiIrJIDK6IiIiIiIiIiMgiMbgiIiIiIiIiIiKLxOCKiIiIiIiIiIgsEoMrIiIiIiIiIiKySAyuiIiIiIiIiIjIIjG4IiIiIiIiIiIii8TgioiIiIiIiIiILBKDKyIiIqLHlFKpNHcXqI74NSQioicdgysiIiKix1BycjJeeeUVREVFmbsrZKT8/HxMmDABwcHB5u4KERGR2TC4IiIiInrMXLx4EVOnTkVqair++9//QqVSmbtLZITt27cjMTERixcvxoYNG8zdHSIiIrNgcEVERET0GImLi4O/vz8KCwvh5eWFzZs3w8rKytzdIiN88MEHmDhxIgBgxYoVWL16tZl7RERE1PAYXBERERE9JhITEzF37lyUlpbC09MT27Ztg4eHh7m7RUaSSqX46quvMHbsWADAjz/+iO3bt5u5V0RERA1LIgiCYO5OEBEREVHd3Lt3D+PHj8fdu3fh7OyMXbt2wcvLy9zdIhNQKBSYM2cOzpw5A6lUih9//BHDhw83d7eIiIgaBIMrIiIishhpaWkYOXKk+Hdvb28cPnzYjD1qPAICAhAWFgaJRIL169fjxRdfNHeXyITy8/Mxfvx45OTkwNXVFYcPH0aLFi3M3S0iIqJ6x6WCREREZDFCQ0O1/p6UlITU1FTzdKYR2b9/P8LCwgAAkydPZmj1GHJ1dcV//vMfAJoQa8mSJWbuERERUcNgcEVEREQW4/jx4wCAli1b6jxG+imVSvzwww8AgObNm+Ojjz4yb4eo3rzwwgviEsGwsDDExcWZuUdERET1j8EVERERWYTc3Fz8+eefAAB/f3+xqPijs7BMSa1W448//kBJSUm9PUd9O3LkCLKzswFoZlu5uLiYuUdUn+bOnSseb9682Yw9ISIiahgMroiIiMgihIaGQq1WAwBGjhwpLne7cuWKGMwYS61Wo7y8HPn5+UhMTMTRo0fx1VdfYfjw4ZgzZw5Onz5d1+6bTWBgIABAIpFgypQpZu4N1beePXvi2WefBQCEh4cjLS3NzD0iIiKqX9bm7gARERER8NfMKm9vb7Rv3x7Dhw/Hr7/+CkEQEBoaiunTp9f4XklJSQgODkZUVBSys7NRVFRUZfsTJ07Az8+vyjYRERHYs2cPLl26hMLCQjRt2hTe3t4YO3YsJk2aBCsrqxr3z1TS09Nx7do1AECXLl3g6elZ63vk5+dj8ODBUKlU8PT0RHh4eLXXLFmyBLt27QIAbNu2Df3796+yvSneu7S0NJw4cQLnz59HUlIS7t69i/Lycjg5OcHLywu+vr6YOnUq3N3dq73XmjVrsHbtWq3Hli1bJgZ/2dnZ2LRpEyIjI5GZmQmFQlGj15qXl4fdu3cjMjISKSkpkMlkcHBwQIsWLdCzZ08MGzYMfn5+sLau24/gw4cPx7Vr16BWqxEaGopZs2bV6X5ERESWjMEVERERmd39+/cRGxsLABgxYgQAYODAgXB0dERJSQmOHz9eo+BKEASsWrUKmzZtglKp1NtGIpHg2WefhZWVFaRSKdzd3TFgwACD95TL5Vi4cCF+//13rcfz8/MRExODmJgY7Nq1C5s2bYKrq2tNX7JJnD17VjweNGiQUfdwdXVF//79ER0djYyMDNy4cQNPP/20wfaCIIjhlru7O/r27WuwraneO5lMhpdffhlyuVzn3P379/Hnn3/izz//xM6dO7Fq1aoqv56GZGVlAQCuX7+OmTNnVht2Purw4cNYsmQJHjx4oPV4cXExiouLkZqaigMHDqB169ZYuHAhXn755Vr3sYKvry/WrFkDAIiJiWFwRUREjzUGV0RERGR24eHhYtBUUXza1tYWgwcPxvHjx3HhwgXk5+dXGwytXLkS69evBwA4OTlh0qRJ6N69O6RSKVJTU7Fnzx5kZmZCrVbj22+/RadOnaq8n1qtxty5c8WlhJ06dcKECRPQvn17FBUV4eTJkzhx4gSuXr2K2bNnY/fu3bCxsanr21FjN27cEI87d+5s9H3GjBmD6OhoAJqi31UFV1euXEFubi4A4KWXXoJUqr/yhCnfOycnJwwdOhSJiYno27cvnn76abi7u0OpVCIrKwvHjh3D5cuXUVhYiICAAISEhKBVq1YGX8PYsWPRrVs3AMCKFSuQmJiIzMxMZGdnY/bs2SgqKoKPjw/Gjx+PsrIyrF69usr37/z581iwYAHUajVsbGzw6quv4vnnn0fz5s1RWlqK7OxsnDlzBtHR0cjKykJERESdgitvb2/xuGLGHRER0eOKwRURERGZXcXOge7u7ujRo4f4+PDhw3H8+HGoVCqEh4fj9ddfN3iP1NRUbNiwAYAm6AgODkaHDh202syaNQvTpk3D1atX4e/vj+DgYLi5uRm8544dO8Tg5W9/+xuWLl2qtczrjTfewP79+7Fo0SJcv34dW7ZswXvvvVf7N8BId+7cEY+9vLyMvo+fnx+WLVsGpVKJsLAwzJs3z2DbEydOiMdjxowx2M7U793KlSsNLrF75513sG7dOqxcuRIymQxBQUGYP3++wXt17NgRHTt2BABs2bIFAJCZmYlvvvkG+fn5mDlzJhYtWgQrKyvExMQYvE+FrVu3ivXZ/v3vf2PixIk6bebMmYMbN25gy5YtWLx4cbX3rIqTkxPc3NyQl5eH3NxclJeXw87Ork73JCIislQszk5ERERmVVJSIgYcw4cPh0QiEc8NHTpUrH9U3e6C+/btgyAIAIB3331XJ7QCAAcHB3z88ccAgJycHGzbts3g/UpLS7Fq1SoAQNeuXfHFF1/oDU7Gjx+PV155BQAQFBRkcIlifcjLyxOP67KboIuLi7i8Lj4+Hunp6QbbVgRXLVu2RJ8+ffS2qY/3rrq6ULNnzxbDm3PnzlXZVp+rV68iJCQEfn5++PTTT2tVsywlJUU8HjVqlMF2Tz/9NL777juT7PxY+R53796t8/2IiIgsFYMrIiIiMqtTp06hvLwcwF/1rSq4urqiV69eAIDo6GjIZDKD96kcHlRVd6nyMriKulr6REVFobi4GIBmxlBVQUbFDJvc3FxcunTJYDtTKykpEY8dHR3rdK/Ro0eLx2FhYXrb3L59G0lJSQA0AY2hZYLmeO9sbW3FpaT37t2r9fVlZWWwt7fH559/XutrnZ2dxeOG+vo7ODiIx6WlpQ3ynERERObA4IqIiIjMqiIkcXR0xMCBA3XOV9S8ksvl+OOPPwzep2LnN0D7Q/2jbG1txePCwkKD7SIiIsTj7t27G2wHAM8884x4fPXq1SrbmpJKpRKP67qroZ+fn1hjylBwVdNlgvX93imVSiQnJ+P8+fM4deoUTp48iZMnT4rF2yuW7dXWuHHjdGpj9erVCydOnMCJEyfEEPVRFWMUAD744ANs3LgR+fn5RvWhpirPQGvIWX5EREQNjTWuiIiIyGzkcrkYcrzwwgtaoVKFYcOG4bvvvgOgqYVlqKh1+/btxeP4+HiDBcaTk5PF46oKeFdeLnfjxo0qZ/FUDpBycnIMtjO1yu+XTCaDu7u70fdydnbGgAEDEBkZibi4OL3F8CuCKw8PD/Tu3dvgverrvTt+/Dh2796NmJgYvTsM1tWECRN0HrOzs0Pbtm2rvG7GjBmIjY3FH3/8gZKSEixfvhyrVq1C7969MXToUIwcObJONcj0qTz7kPWtiIjoccbgioiIiMzmzJkz4gfwyrNWKuvUqRO8vLyQmpqKU6dOQS6X6w24XnvtNQQGBgIA1q9fj1deeUVvu4oC7gDg6+trsG+Vw5YlS5bU7AUB4hK5htCsWTOTPu+YMWMQGRkJlUqFkydPYtKkSeK5/Px8XLx4EYBmmWDlWmSPMvV7V1JSgo8++ginTp2q8b2MYWhGVXXs7OywYcMG/Pbbb9i8eTNu374NpVKJ2NhYxMbG4rvvvkO3bt0wc+ZMvPrqq1W+dzVV+b2qPA6IiIgeN1wqSERERGZTsZsgAGRnZ+OXX37R+6di5k9JSQmioqL03qtbt27w9/cHoNlhcMaMGTh9+jRkMhkUCgWSkpLwz3/+E+Hh4QA0xa2nTJli8tdUeQZRffPw8BCPCwoK6ny/qpYLRkREiK+tqmWCdWHovfvss8/E0KpJkyaYN28e9u7di/Pnz+PGjRtISEhAQkICPD096/T8dQmUpFIpJk+eLM4KCwgIQI8ePcQ6YFevXsWCBQvwzjvvoKysrE79FAQB9+/fBwDY2NhUuTMmERFRY8cZV0RERGQWKpVKDJEA4IcffqjRdaGhoQZnZy1cuBBubm5YuXIlLl68iFmzZult5+joiNWrV1c5U6VFixZiIfJTp05phUSWonPnzuJxfHw8hg4dWqf7NWvWDIMGDcKpU6cQHR2N0tJSsV5YxTLBNm3aVDszyZTvXUpKCo4cOQJAM7Np586d6Nq1q9H3awg9e/ZEz5498eGHH+LevXvYu3cvNmzYAJlMhqioKPz3v//FsmXLjL5/amqqWJi/Y8eOJpnBRUREZKk444qIiIjM4vz580YVsA4PDzc4M0cqlaK8vBxKpRI2NjY6H+htbGzw0ksvYe/evejXr1+Vz9OmTRvxODc3t9b9bAiVC59fvnzZJPesmE1VVlaGyMhI8fj06dMAql8mCJj2vau88+Mrr7xi8aHVo1q0aIF3330X27dvF2dfBQcH12nWVeWvdY8ePercRyIiIkvGGVdERERkFqGhoeJxWFgY2rVrV2X7xYsXIzg4GIWFhYiNjdW7A2FYWBhWr14NQFPLysfHBzdv3oRCoYCzszO8vb2r3HGwshdeeAHBwcEANCFbdbvjmUP//v1hb2+PsrIyxMXFQaFQiEv9jDVy5EjY2NhAoVAgLCwML730Ek6fPo3S0lIANVsmaMr3rvLOj5UL8Dc2Tz/9NLp27Yrr169DLpcjMzMTTz31lFH3qhzmDRkyxFRdJCIiskiccUVEREQNThAEsYaSt7d3taEVoF28vXLoVdmBAwcAAK6urvD19YW7uzsGDhyIIUOGoEePHjUOrQBNIFDRfseOHWJwY0ns7e3FXRbz8/PF5Xx10bRpUwwePBiAZpmfUqkU7+vp6YmePXtWew9TvneVl3NmZWUZbJeZmSnW+RIEwejnM0ZNdzisPMvK2OV9MpkMISEhADSzuV588UWj7kNERNRYMLgiIiKiBnflyhUxhKjpB+9BgwaJuwSGhYXpDSfUajUATYiza9euOu205+TkhA8++AAAkJaWhnnz5hm8X3JyMj777DOx7lBDmjVrlhiC/Prrrya55+jRowFAnN0WERGh9Xh1TPne9enTRzw+evSo3qWHN2/exOzZs8V7FBQUQKFQ1KivdfXgwQNMmTIF//znP5GTk2Ow3a5du5CSkgJAEzh16NDBqOc7cOCA+Drfeust2NnZGXUfIiKixkIiNPSvpIiIiOiJ9/3332PTpk0AgJ07d2qFE1WZPXu2uKvg7t27dWb/HD9+HPPmzTN4fcUObL169cKECROqLWauVCrh7+8vLs1ycXHBxIkT0a1bN0ilUmRlZeH06dOIioqCIAiYNGkSvvrqqxq9FlOaO3cuTp48CQDYuHFjnYu0y2QyDBw4EHK5HN26dcPVq1cBAHv27Knxsj9Tvnf+/v6Ijo4GALi5uWHq1Kno2LEjHjx4gJiYGBw7dgwKhQJ9+/YVn2/KlClYuHAhmjRponO/W7duITU1FQCwYsUKJCYmAgDWr18vtvHy8kLHjh2rfZ1Lly4VA0MbGxsMGTIE/fr1Q6tWraBUKpGVlYXjx4/jypUr4jVffvkl3njjjWrv/aiioiKMGTMGeXl5aNKkCU6cOAEXF5da34eIiKgxYXBFREREDW7UqFFITU2Fi4sLoqOjxaLV1dmxYwf+/e9/AwDeeecdLFiwQKfN//73P6xZswYymaza+7300ktYvny5OJNLH7lcjkWLFonLswxp164dli1bBl9f32qf19TS09Px2muv4cGDB2jbti2OHDkCe3v7Ot3z/fff19r1sV27duLyzpoy1Xt39+5dzJgxA7du3dJ73t7eHv/617/w0ksv4bXXXkNOTg6kUimioqLQokULnfZr1qzB2rVrq+zTBx98UGUIWkEmk+Gbb75BcHAwlEpllW0dHR2xdOlSjB8/vtr76rNkyRLs2rULgPHhFxERUWPD4IqIiIgaVFJSEsaOHQsAGDduHL799tsaX5uZmYlhw4YB0MyIOXbsmN525eXlSEhIQEFBgbh8UBAEFBQUID4+HocOHRLrIY0fPx7ffPNNtc99+vRpBAcH4+LFi8jNzYVUKoW7uzt69uwJPz8/+Pn5wcrKqsavxdR+++03fPbZZwCAsWPHYvny5XW638GDB7WCwTlz5mD+/PlG3csU751MJkNgYCCOHz+O27dvQyKRwMPDA0OGDMFbb70lFm5PS0vDihUrUFxcjJ9//lnvvUwZXFW4c+cODh48iOjoaKSlpaGwsBBSqRSurq7o0qULBg4ciIkTJ6Jp06Y1vmdlISEh+Mc//gFBEDBs2DCt2WFERESPMwZXRERE9MQpKirCtGnTkJCQAIlEgqNHj8LLy8vc3aqzip0XAWDevHlinSljbdy4UQzAjhw5gs6dO9e5j1R7ly9fxvTp01FWVgYvLy/88ssvcHV1NXe3iIiIGgSLsxMREVGjV15ejpMnT+LkyZNV7jxXoVmzZvjb3/4GQDMTKz4+vr672CC+/PJLjBgxAgCwdu1abN++3eh7yeVysXZTnz59GFqZSUJCAt577z2UlZWhZcuW2LJlC0MrIiJ6ojC4IiIiokZPpVJh7ty5mDt3Lg4ePFijawoLC8VjR0fHeupZw7KyssIPP/yAwYMHQxAE/L//9/+wdetWo+71888/IyMjAwDqPHOLjHPjxg3MmDED+fn5cHNzw+bNm+Hp6WnubhERETUoBldERETU6Dk6OqJNmzYAgODgYBQVFVXZPj4+HkFBQQAABwcH9O7du9772FDs7Oywfv16sY5YREQEVCpVja8XBEEscA9oCtgPGjSoXvpKVYuLi0NhYSE6dOiAX3/9FT4+PubuEhERUYNjjSsiIiJ6LPz4449YvXo1AKBFixZ4+eWX0aVLFzRr1gxWVlYoKytDZmYm4uLiEBkZKe4At3jxYrz99ttm7Hn9EAQBQUFBmDRpEpo0aVJt++vXryMqKgr79u1DSkoKAE0B/N9++w3NmjWr7+6SAbt378bIkSO5PJCIiJ5YDK6IiIjosaBSqTB//nyEhITUqH3Tpk0xf/58TJkypZ571jh89NFH+P3338W/9+vXD6tXr4aLi4sZe0VERERPOgZXRERE9FiJiYnB/v37ce3aNWRnZ0MmkwHQLAls2bIlvL294evrizFjxnAmUSUbN27Etm3b0L17d0yZMgVDhw41d5eIiIiIGFwREREREaBUKmFtbW3ubhARERFpYXBFREREREREREQWibsKEhERERERERGRRWJwRUREREREREREFonBFRERERERERERWSQGV0REREREREREZJEYXBERERERERERkUVicEVERERERERERBaJwRUREREREREREVkkBldERERERERERGSRGFwREREREREREZFFYnBFREREREREREQWicEVERERERERERFZJAZXRERERERERERkkRhcERERERERERGRRWJwRUREREREREREFonBFRERERERERERWSQGV0REREREREREZJH+P/VRkwmiOlD+AAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 2,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: digit-span-plot\n",
- "from blog import theme\n",
- "import seaborn.objects as so\n",
- "\n",
- "theme.set()\n",
- "so.Plot(experiment.to_pandas(), x=\"age\", y=\"y\").label(\n",
- " x=\"Age (years)\", y=\"Performance (z-score)\", title=\"Digit Span Test\"\n",
- ").add(so.Dots())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "85b28969",
- "metadata": {},
- "source": [
- "Visually, it's still unclear if this relationship follows an aging curve, but we'll get back to this matter in the next section.\n",
- "\n",
- "## Bootstrap estimates\n",
- "\n",
- "In the original paper, the authors describe a bootstrap resampling procedure\n",
- "to estimate the distribution of ages of peak performance:\n",
- "\n",
- "> Estimates and standard errors for age of peak performance were calculated using\n",
- "> a bootstrap resampling procedure identical to the one used in Experiment 1\n",
- "> but applied to raw performance data. To dampen noise, we smoothed means for each\n",
- "> age using a moving 3-year window prior to identifying age of peak performance\n",
- "> in each sample. Other methods of dampening noise provide similar results.\n",
- "\n",
- "Let's decompose this method (as I understand it) into steps:\n",
- "\n",
- "1. With replacement, sample $n$ observations from the dataset;\n",
- "2. Calculate the mean performance for each sample and age;\n",
- "3. Repeat steps 1 and 2 $m$ times to get multiple samples;\n",
- "4. Sort each sample by age and smooth age means using a 3-year rolling average;\n",
- "5. Find the age of peak performance for each sample.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "bootstrap",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | label: bootstrap\n",
- "# | echo: true\n",
- "import polars as pl\n",
- "\n",
- "n = experiment.height\n",
- "m = 10000\n",
- "nm = n * m\n",
- "seed = 37\n",
- "samples = (\n",
- " experiment.sample(nm, with_replacement=True, seed=seed)\n",
- " .with_columns(sample=pl.arange(1, nm + 1) % m)\n",
- " .group_by(\"sample\", \"age\")\n",
- " .agg(mean=pl.col(\"y\").mean())\n",
- " .sort(\"sample\", \"age\")\n",
- " .with_columns(smoothed_mean=pl.col(\"mean\").rolling_mean(3).over(\"sample\"))\n",
- ")\n",
- "peak = samples.group_by(\"sample\").agg(\n",
- " age=pl.col(\"age\").get(pl.col(\"smoothed_mean\").arg_max())\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "06107126",
- "metadata": {},
- "source": [
- "This yields the following bootstrap distribution of ages of peak performance:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "bootstrap-distribution",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAACtW0lEQVR4nOzdeXwV5b0/8O8JSSDsqyiigPuCCFqLQIu7VQpapVatVlDEFqlF67X2/m6ttrfttZa2WBfUioob1SIqUte6VetWQRCrVgRUiCiyqCABQjK/P2hOiSEQ4SQZkvf79QpMzsw853sm85zlc2aeySRJkgQAAAAApExefRcAAAAAABsjuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgDqwNq1a7dovb///e+x6667RocOHWL8+PE5rqphy8W229K/27bOfgfUtsb6/Ap8cZkkSZL6LgIAGroePXpESUlJHHzwwXHffffVeL1+/frFCy+8EBER+fn58fHHH0eLFi1qqcqGZWu23bnnnhtTp06NRYsWRVlZWW2WmUr2u3QpLS2NW265JSZPnhyzZ8+OJUuWRNOmTWOnnXaKAQMGxDe/+c044ogjIj8/v75LpQ7cdttt8bvf/S4WLlwYkydPjkMOOaS+S9oiw4cPj/vuuy+6d+8ejzzySHTu3Lm+SwJSyqsbANSBJEniww8/jJkzZ36h9TKZTKXpDX9n07Zm273++utRXFxcG2VtE+x36TF37twYPHhwvPnmm5VuLy0tjTfeeCPeeOON+POf/xzFxcWCq0Zi7ty52deSbf0YhE8++SRmzZoVJSUl9V0KkGJe3YAa6969e7z77rtVbm/evHl06tQp9tprrxg4cGCcdtpp0a1bt3qosPYsXrw43n333SgoKIjevXvXdzmVrF69Ot5777147733on///tG8efP6Lokc+s1vfhNnnHFGfPzxx/GLX/wiNX/fbWG/S+u2y7VPP/003n333ViyZEkcdthhOWmzsWy7tCspKYmjjjoq5s+fHxERRxxxRBx//PHRpUuX+OSTT+K9996Lxx57LPr16+eIuG1IbfRZgIZMcAVstVWrVsW7774b7777bjzyyCNx6aWXxve///349a9/HYWFhfVd3lZ75513okePHhERMWzYsLjlllvqt6DP+d73vhcTJ06MiIj58+dH9+7d67cgcmrAgAExd+7c+i6jim1hv0vrtsu1Xr16xbvvvhvdunWLd955JydtNpZtl3YTJkzIhlYXXXRRXHHFFVWWueyyy+q4KrZWbfRZgIZMcAVskQceeCA7vXbt2li4cGE8//zzMXny5Fi3bl2MGzcuPvzww7jzzjvrsUoA2HY999xz2envf//79VgJANQfwRWwRQYPHlzlth/84Afx05/+NAYOHBhLliyJSZMmxahRo+KrX/1qPVQIANu2RYsWZad33nnneqwEAOpPXn0XADQse++9d/zwhz/M/n7vvffWYzUAsO3a1gfeBoBcEFwBOdenT5/s9MKFCze7/Lp16+Kmm26Ko446KrbbbrsoKCiITp06Rb9+/eJXv/pVfPzxx1/o/pcvXx6/+MUvom/fvtGmTZsoLCyMHXfcMQYNGhQ333zzZi9t/84772SvopXJZLLjW0VETJw4sdK8ip//+Z//qVFta9asiRtvvDEGDRoUXbt2jWbNmkWLFi1i5513jiFDhsTVV1+92cc7fPjwSvddMc5QRESPHj2q1NakSZNYs2bNJtv8/Do77LBDpfmTJk2Kww8/PNq3bx95eXmRyWTi0EMPrba9efPmxe9///s48cQTY88994xWrVpFfn5+tG/fPg4++OD46U9/Gh988MFmt1dExKGHHhqZTCbOOOOMiFh/Ja3x48fHwQcfHG3bto2ioqLYd99948c//nEsW7asRm3Whr///e9x0kknxfbbbx+FhYXRpUuX+Na3vhV///vfv1A73/ve9za6j1X8bMkYa41lv6uNbVdh3bp1ce2118aXv/zlaN26dTRv3jx69eoVl1xySXzyySebXb+ihk3VH1F5O1c39k337t0rPa6Ki2a8++67G33cAwYM2Gx9tbXt/vrXv8bJJ58c3bp1i6ZNm0bbtm1j3333jQsuuCDeeuutGrXx+RrWrVsXt912WxxzzDGxww47RNOmTaNbt24xcuTIeO+997aozlx488034/vf/37svffe0bx582jevHnssssu8Z3vfCcef/zxequrNrz66qvxgx/8IHr37h1t2rTJvm737t07fvCDH8Szzz5b7bobvsauXr06FixYEKecckp06NAhOnToEMOHD49PP/00IiJmz54dgwYNirZt20anTp3iBz/4QaxevXqz9eViv6uQi/cotdFnP2/+/Pnxox/9KPbZZ59o3rx5tGnTJgYMGBC33XbbF2rno48+iksuuST69OkTLVu2jObNm8fuu+8e5557bpUrW27Ou+++G6NHj45dd901mjZtGh06dIjDDz88br/99joPZetiv8vFtlu7dm1MmzYtxowZE/3794/OnTtHYWFhFBUVRffu3eOkk06KadOm1aitp556qsrrybJly+I3v/lN9O3bN9q1axfNmzePfffdNy677LJYtWpVjdqNiHjooYfitNNOi9133z1atmwZTZs2jS5dusTAgQPjsssui3nz5tW4LaiRBKCGunXrlkREsrmnjgceeCC73FlnnbXJZRcvXpx86Utfyi6/sZ/tttsueeqpp2pU44svvph07Nhxk+316dMnef/996ttY/78+Ztcf2M/N99882ZrmzVrVrLLLrtstq0WLVokP/vZz5I1a9ZstJ1hw4Z9odq6deu22do+v04mk0nWrFmTlJeXJ8OHD99ou4cccshG2/rkk0+Spk2bbrau9u3bJ0888cRmazvkkEOSiEiOOeaYZOHChZvcX7p165YUFxdvts1cGzt2bJLJZDZaUyaTSX7+859n+8/m/h7f/e53t3pf21Bj2e9yve0q9ruISBYvXpz07du32na7d++eLFy4sEaPdVP1J0nl7Tx//vyNLrPhc3FNfoYNG7bZx5vr/W7dunXJWWedtck2CwsLk3Hjxm22rYrlf/vb3yavvfZa0rt372rb7Ny5c7JgwYIvVGsu3HDDDUl+fv4mH+/pp5+elJaWbrKdxx9/PHnggQeyPz179syuv+HtFT81fW3MlbKysuTCCy9M8vLyNrvfHXzwwcn06dOrtLHha+zzzz+fdO3atcq6Q4YMSWbMmJG0bt26yrwLLrig2vpyud8lSe7eo+S6z1566aXZZZ988snk6quvToqKiqpt76c//WmNHu8TTzyRtG3bdpPb7rrrrqtRW08//XTSsmXLatv6+te/npx88smbfb7Lldrc75Ikd9vuxz/+cY32kZNOOilZu3btJtt68skns8tPnz49uffee5Ptttuu2jYHDhyYrFu3bpNtLlu2LDnqqKM2W19eXl5y2mmnJYsWLdrsY4aayCSJY5CBmunevXv2W8JNPXVceuml8fOf/zwiIm666aY488wzN7rcp59+Gl/+8pfjX//6V0SsP1LrO9/5TnTr1i0++uijmDx5cvz1r3+NiIiWLVvGc889F/vtt1+19zt9+vQ49NBDY+XKlRERcdxxx8WQIUOiXbt2MW/evLjpppuy33jtvffe8fLLL2/0Eu8lJSWVvh1fvHhxjBgxIiLWX4r8/PPPr7JO3759o1OnTtXWtmzZsthnn33iww8/jIiIo48+OoYMGRI77rhjrFu3Lj788MN4/vnn4957742SkpLYY489YtasWdGsWbMqbc2aNSsWLFiQ/X3cuHHZeidMmBDbbbddpeXbtWu32W9vK769mz17dvy///f/IiLi7bffjhtvvDEuv/zyKCwsjNNPPz0OO+yw+PWvfx2vvfZaHHLIIfHUU09ttL0TTzwxZs+eHYccckj07t07dthhhygtLY0FCxbE5MmT46WXXoqIiNatW8cbb7wRXbp0qba2Qw89NJ5++unYa6+9orCwMF599dXo379/nHzyybHDDjvEa6+9FldddVUsX748IiIOOOCAePnllyOTyWzyMefKxIkTY/jw4RGx/siQb33rW3HsscdGUVFRzJo1K2666ab44IMPIpPJRJIkm72K1OzZs7P9rMLjjz8e48aNi4iIm2++OXt/m9PY9rtcbruK/S4i4qCDDop//OMf8dWvfjW++c1vRpcuXeKNN96Ia665Jrtte/bsGa+88krk5298+NCK/XFT9UesP+Jqc1drfOKJJyp9Mz5ixIhYvHhxbLfddjFhwoQqy++2226x1157bfLx5nLbRUR8+9vfjkmTJkVERJcuXeLss8+Onj17xurVq+PJJ5+MW2+9NXv066ZeJyL+s+2GDh0af/vb3+Kjjz6KL3/5y3H66adHly5dYu7cuTFu3LjseFDDhw+Pm2++uca1bq3rr78+vve970VERLNmzeLMM8+MAQMGRH5+fsycOTNuuOGG7NGgm7sy7YavszUxcODA7H5aF375y1/GT37yk4iI6NixY4wYMSJ69eoVzZs3j08++STmzJkTDzzwQLz66qsRsf654ayzzqrUxoZX6u3atWusWLEixowZE3vuuWdcccUVMWvWrMhkMtGlS5fsvL322is7r23btvHRRx9ttK/lcr/L5XuUXPfZyy67LH72s59FRMS3vvWtuPvuu6N58+YxYsSI6N+/f5SUlMSjjz4af/rTnyIiokmTJvH2229v8uqvjz32WAwZMiTWrFkTBQUFcdppp8Vhhx0WzZs3j3/+859x/fXXx6JFiyKTycRdd90VJ510UrVtvfbaa9G/f/9YsWJFRET0798/vv3tb8f2228f77zzTtx6663x6quvZl8XI2r/6rS1ud/lctvNmjUr+vfvH/369YuvfOUrsdtuu0XLli1j8eLFMXPmzLjjjjuyR4ZdeOGFMXbs2Grbeuqpp+Kwww6LiIhzzjknJkyYEGVlZfHNb34zBg0aFC1atIiXXnoprr766uwR0rfccksMGzas2jaPPvroeOyxxyIiYp999onTTz89dtttt8jPz49ly5bFjBkz4t57741FixZFYWFhzJw5M/bee+/N/HWgBuo1NgO2KTU54urNN99M2rdvn0REsvfeeyerVq2qdtkLL7ww296IESM2+i3PL3/5y+wy/fr1q7at8vLy5KCDDsouu7GjA9asWZMMHjw4u8x///d/b/oB/9uG39LV5MiFjRk3blyN2li0aFEyZsyY5Omnn65x2zU5QqOmNvx27sorr0zy8/OTLl26JLNmzcouU3EkyqaOHNncUQW/+MUvsvdz8cUXb3LZDY98ycvLS/7whz9UWWbOnDlJu3btsstNnTp10w80Rz755JPsEX5NmjRJpkyZUmWZz387WZMjkT7v5ptv3uS+XZ3Gtt9tzJZuuw33uyZNmmz0m/L3338/2WmnnbLL3XbbbdW2V7FMLo64+ryaHs33RW3pttvwqNs+ffoky5Ytq7LME088kT0ys02bNsmHH35YbXsVbUVEUlBQkFxxxRVJeXl5pWVmzpyZXaZdu3ZV5teW999/P3tUSdu2bZNXXnmlyjILFy5Munfvnq3vkUceqba92jiaLlfKysqSDh06JBGRNG3aNHnjjTeqXfa+++5LRo0atdF5G76mtm/fPnn99dez82666aZKf8d//vOfG533r3/9q0q7ud7vcvke5fO2ts9ueMRVRCQHHHBA8uabb1ZZ7rzzzssus6mjzFauXJnsvPPOSUQkHTt23OiRcsuWLUsOPPDAJCKSTp06JR9//HG17W34mvfDH/6wSn8sKytLLr744kqPoS6PuMrlfpfrbZckm34PtWjRouzrTmFh4Sbb2vC1NWL9EakPPfRQleWuvPLK7DLHH398te1t+Dy7zz77JJ999tlGlyspKUnGjRuXXHnlldU/SPiCBFdAjW34hnrDUxXuv//+ZPz48cmIESOSwsLCJCKS/fffP3nnnXeqbevDDz9MCgoKkohIunbtmpSUlFS77MEHH5y937///e8bXebee+/NLvPNb36z2rYWL16c/ZDRpk2bTQZrFXIRXH3ve9+rtO1yqbYChKKioiQ/Pz95+eWXKy2zpQHChlavXp00a9YsiVh/OsmmbBggbOqN929+85vsct/4xje2uLYv4vLLL8/e57nnnlvtcitWrMgGunUZXNnvchNcXX311dUud+edd2aXGzBgQLXLNabgav/9908i1p/6+eqrr1a73IYfXH/5y19Wu9yGH7w2Vcdee+2VXe6jjz6qcb1bY8yYMTXaTx566KHsckcddVSN299wP6xvH3zwQbaWAw88cIvb2fA19fMfbDfcTpua99xzz1VpN5f7Xa7fo3xeLoOrnj17Jp988slGl3vmmWeyy40ePbra9jYM4P785z9Xu9zrr7+ePS3+mmuu2egyL7zwQrat/fbbLykrK6u2vaOPPrpegqtc7ne53HY1ddlll2Xv8+GHH652uQ1fW1u1alVtv9iwb++7777VtvenP/0pu9yFF164VY8BviiDswNbZMiQIdmf448/PkaNGhUTJkyIVq1axfjx42P69OnRrVu3atd/6KGHorS0NCIivvOd72z01KQKFafpRUTcfffdG13m/vvvz06PHDmy2rY6deoUxx9/fEREfPLJJ/HII49Uu2wudejQITv9/PPP18l9bq2SkpIYPXp0HHjggTlvu2nTptlTKxcvXlzj9caMGVPtvFNOOSU7/eKLL255cV/AhgOknnvuudUu17Jly2jVqlVdlFSJ/S43Ro8eXe28E044IXvK8csvvxxr166tq7JS6d13341Zs2ZFRMTBBx+8ydO7zz777Ox0dc/tG+rfv/8mT1fcdddds9OfffZZDardehWvPYWFhdkLSGzMMcccE127do2I9adg1ueFJLZUu3btIi9v/UeHt99+O5YsWbLVbbZu3brS7xu+F9jUvM9f+CHX+12u36PUpt/97ndVtlWFHXfcMTu9qT5x1113RURE586d48QTT6x2ub333jsOPvjgiIiYMmXKRpfZ8HXxu9/9bnaf2ZjPX5CjruRqv4vI7barqZ122ik7XdP3UOedd161/aJz587RokWLiNj0frLhe4qXXnopysvLa3TfkAuCKyCnli5dGmPGjIkzzjhjk+N0VIwLERHxla98ZZNtbjhOTsXYSNW1V5Or8dSkvVw77rjjstP/93//F9/97ne/8NV56lp+fn7813/9V5Xb//SnP8X8+fOzY2dszrp16+LNN9+MZ555Jh566KGYNm1aTJs2LfsGcHNXeayprl27ZsfKWrRoUXz00Uc5abc6JSUl8cILL0TE+jdz++67b63e35ZozPtdXWnWrFn07t07ItZ/qHnttdfqt6B69kWe23fbbbfs2GivvfZalJSUbHL5goKCTc7fMBxO6mAI17lz52bHq9t///03G073798/IiLKy8vj5Zdfru3ycq6wsDC+9rWvRcT6L34OPvjguPPOOzf7d6sLud7vcv0epTZtql9sONZjdX1i4cKF2THJDjjggE0GTRH/uXJ0dfvwk08+mZ0+5JBDNtnWti7X225jli5dGi+99FI8/vjj8Ze//CWmTZsWs2fPzs6v6Xuomj5/buq5s1+/ftkvHZ955pk48sgj46mnnqrzK0TSOG18BFGAzfj8i9SKFSvi7bffjnvuuSd+//vfx5133hkPPPBAPPLII9GvX78q6284yPOG35JvzC677JKd3tjldcvLy+P999+PiMrfGm1pe7Xhy1/+cvzsZz+LSy+9NJIkiRtuuCFuuOGG6NmzZwwaNCiOP/746NevX50NKF4Thx9+ePYIgQ1tv/32NVp/ypQp8cc//jGefPLJjX5LWRu6deuW3ReWLl26yQHzt9YHH3wQ69ati4iI3XffvdbuZ2s0xv2uPnTr1i2ee+65iIhaD0zT7os8t0esfz5evHhxlJWVxbvvvrvZQeQ3pWnTplu87pbYksdaYVu9VPy1114bhx9+eMyfPz/mzp0bp512WrRs2TKOPvro+PrXvx7HHXdcdOzYsc7ryvV+l8v3KGk3f/787PSqVasqHTG1MRVH2n3yySexcuXKaNmyZaX5G267tL425kqut12FDz74IH7729/G5MmTN3kxl1yqyfNnixYt4rbbbosTTjghSkpK4sknn4wnn3wyunTpEoMGDYohQ4bE0UcfvckjFGFLCa6AnGjVqlX06dMn+vTpE0cddVQcccQRsWLFihg6dGjMnz+/ygvihh/uqjvEvULTpk2jsLAw1q5dGx9//HGV+UuXLs0erry5tj6/zMbaqy0//elP46tf/Wpceuml8cwzz0TE+m97X3vttbjiiitip512iu9973tx/vnnb/Rqh3Wt4pD2L+qzzz6Lb33rW/Hggw/muKLN2/CIh9r+236Rfbg+NZb9rj7V5X6Xdl+0X9TX83EuNKbHWqF79+4xc+bM+NWvfhV//OMfY9myZbFy5cqYMmVKTJkyJZo0aRJf//rX48c//vFGv7SqLbn+W+TyPUraVVwZNSLi6aef/kJXqfzkk0+qhC8V266wsLDOw+S6luttFxHxwAMPxLe//e3sFbLT5mtf+1q8+uqrcckll8SUKVNi7dq18f7778eNN94YN954Y7Rs2TK+853vxI9//OPYeeed67tcGhCnCgI5d8ghh8Q3vvGNiFh/ytY999xTZZkvenpYxRFeG7sM8Za2VV17temwww6Lv/3tb9nLtx9zzDFRVFQUEeu/pfyf//mf6NmzZ7z99tt1WtfGbOlROGeffXY2tGrVqlVcdtll8fLLL8fHH38cZWVlkay/MMgmx0DbUhv+bZs0aZLz9qu7rzQdsbQxjWG/q08bjvOxuVNFGrpt6fl4azWmx7qh1q1bx+WXXx6LFi2Kv/zlL3HeeefFbrvtFhHrt8nUqVNjwIAB8ZOf/KTOasr13yKX71EasoqjjjdUsS22xefyurSxbTd79uz45je/mQ2tDjvssLjnnnvi3XffjZKSkuz7p5tvvrmuy61kt912i0mTJsWiRYvi1ltvjW9/+9vZIy1XrlwZ48ePj3333bfS+LOwtRr3uyug1nz1q1/NTm9szJe2bdtmp1esWLHJttasWZMdJLViXIotbevzy2ysvbqwyy67xJgxY+Khhx6KpUuXxm233ZY9pH7+/Plx/PHHb5ODXv7rX//KjkHUrFmzePbZZ+PSSy+NAw88MNq0aVPrH+o3/NtuOIhobWjXrt1G7zfNGup+V98+/fTT7HR9nCaVJtvi8/GWakyPdWMKCwtj0KBB8Yc//CHmzJkTr7/+enYw7iRJ4pe//GV24Oraluu/RS7fo6Rd586ds9MjRozIhiM1+dnYF1AVr40bbpeGKtfb7le/+lX2Ah+nnXZaPP7443HiiSfGzjvvnMrT79q3bx/f+c534o477ogPP/wwHn/88TjyyCMjYn2Adcopp2xyvFv4IgRXQK3Y8MPbxq6etOGYEZsbE2Lu3LnZ6Y0ddtysWbPsoNwffPBBrFq1aqvaq2tFRUVx+umnx8svvxzdu3ePiIjXX3/9Cx1ynhZPPfVUdvrUU0+NXr161en9V4wFkZeXV+kNZW3YsP26GoMilxrSflffNjxSbWPjczUmX+S5PeI/z8eFhYW13mdzbUsfa0Q6Xntybe+9947rrrsuxo0bl73t2muvrZP7zvV+l8v3KGm3Yc0ffPDBVre34XiE2+Jr4xeR62234XuoX/3qV9vUUWt5eXlx+OGHx2OPPRZDhw6NiIjVq1fHTTfdVM+V0VAIroBaUTFAdkRs9E1h3759s9PPPvvsJtvacP5RRx210WUq2kuSJDtI8ta0t6GaXJUnF1q3bh0nnHBC9ve33nqrRuvVVX01sXTp0ux0TQbIzaX58+dn3zj26dNns4P0b602bdpkB/R9//3347333qvV+6stDWG/q0/Lly/PXlWqS5cumx2MOFdX0dxQxd8iDX+HL/LcPmfOnOx4OAMHDtzmxsPZbbfdon379hERMXPmzE1eRn7D16aWLVvW6fhPdW3YsGHZ6Zo+n2ytXO93uX6P8nlp6rPdunWLvffeOyIiXnjhha0+SmrDbff8889vVVtpl+ttV/EeqqCgYJsMQSucccYZ2em6eg6g4RNcAbXigQceyE5/+ctfrjL/m9/8ZnYMottuuy17aPTGbPhtzfHHH7/RZU4++eTs9I033lhtWx999FG2ts6dO9fow8OGp4RteLWcL6KsrKxGH1g3PFqspt+05aK+XKlpLe+99172DdoXeeO+ePHiaudNnDgxO13TDw9b69BDD81O33bbbdUu9/jjj8fChQvroKLKGst+V9s2DOI/b8KECdmxSgYNGlTtchVBanFxcbXLzJs3r9JzZ01V/C0WLVpUK8HYF9GrV6/sB7nnn38+Xn/99WqX3fC5umJcxG1JJpOJb33rWxGx/rSoTT0HPPzww9m//THHHLPNhXQVanKF2C15Ptlaud7vcv0e5fPS1Gcj1j/eiPXByYQJE7aqrZq+Li5atCgeeeSRrbqvNMjltqvYL0pLSzd5BNeMGTOy03Udfqb1OYCGT3AF5FSSJPHzn/88e/WyXXbZJY455pgqy3Xp0iVOO+20iFgfYowZM2ajY+v86le/ihdffDEiIk455ZTo2bPnRu/3hBNOyA4Oe/fdd8cdd9xRZZk1a9bEWWedlR308mc/+1mNxlxq3bp19sia5557rtpvjzb1TduoUaPiK1/5SkyfPr3aZaZPn16p7gEDBmy2tojK325WN2Dnpt5059JXvvKV7PTdd9+90Tder7/+enzta1/L/h2WLFlS428pBw8eHIsWLapy+0svvRS/+c1vImL9qaPnnXfelpT/hX3/+9/Pvim7/PLLY/bs2VWWefLJJ2Po0KH18uGksex3tW3IkCEbDZxefPHF+NnPfhYR6wdl/tGPflRtG3vuuWdErD8y8OWXX64yf/r06XHYYYdt9NTqzan4W5SWlsbtt9++0WXq8m9x0UUXRcT6QeuHDRtWaQywCk8++WRceeWVERHRo0ePGDFiRJ3Vl0vnn39+FBYWRkTE//t//y/++c9/VlmmuLg4zj333IhYv59cdtlldVlizrz++uvRvXv3uPzyy6s9JX/dunWV+kFNn09yIZf7Xa7fo3xe2vrshRdeGDvssENERFxwwQXVDqpdWloa11xzTdx6663VtnXCCSfETjvtFBERf/3rXzf6+rBgwYI46qijcnJ6XX3L5bbb8D1UxX66obKysvjZz34WV111Vfa2TX2xkmt33HFH7LrrrjF58uRqA7MlS5bE//3f/2V/r8vnABq2xnXpCyBnpk2bVun3Tz/9NN58882YPHlyvPHGGxER0bx587jzzjurvbrb2LFj4/HHH4/i4uK47rrrYvr06XH66afHTjvtFIsXL44///nP8fjjj0fE+jeRFcHExhQWFsYf//jHOProo6O0tDROP/30mDJlSgwePDjatGkTb7/9dtx0003xr3/9KyLWfyM4cuTIGj/eH/7wh3HOOefEmjVrol+/fjF69OjYe++9Y926dTF37tyYPHlyfPWrX43x48dXWfeuu+6KP/7xjxER8aUvfSkGDBgQxxxzTPTo0SOaNm0a77//fjzxxBMxbdq0bLhx+umnx7777luj2k444YTo0aNHzJ8/P2655ZZYtGhRHH/88bHddtvF+++/Hy+99FL85S9/iVdeeaXaK/lV/D03DF7eeuutSn/nwYMHb7aW/fbbL4488sj461//GsuXL4/evXvH6NGjY88994wVK1bEk08+GZMnT461a9fGoYceGk899VSsWrUqfvCDH8RvfvObjV4aekP/+Mc/Yp999onhw4fHQQcdFJlMJp599tmYMGFC9lvAH//4x9kxz2rbvvvuG2eeeWbcdNNNsXLlyujXr1+MGjUqvvzlL8cnn3wSjz/+eNx1112x/fbbx3bbbRdz5szZbJvPP/98pVMuIyJmzZpVafrz/a9fv35VBqNvTPtdhVxtuw0VFBTEjBkzomfPnjF8+PD48pe/HEmSxN/+9re4+eabsx8uf/jDH27yNMFvfvOb2W/Jv/71r8dFF10U++yzT3z00Ufx0EMPxeTJkyOTycSgQYOyV+WsqfPOOy8mTJgQpaWlcfbZZ8dzzz0XBx98cDRv3jzee++9ePTRR+PDDz+MV155pdrn41xuu+HDh8ef/vSnePTRR+Pll1+OfffdN0aOHBn77LNPlJSUxBNPPBG33XZblJWVRUFBQYwfPz6VAw/XxJ577hmXXnpp/M///E8sX748DjrooBgxYkT0798/mjRpEjNmzIgbbrghli9fHhHrw62a9rE0KS8vj29961vxwQcfxH//93/H2LFj47jjjou+fftGp06d4pNPPok5c+bEHXfckT1tunnz5vHTn/60zmrM9X6Xy/con5eLPptLbdq0iRtvvDFOOOGEWL16dXzjG9+Io446Kr7xjW9Ely5d4tNPP40ZM2bEn//853j//fejefPm0bdv32wgv6HCwsL45S9/mT1dbMSIEfHYY4/FoEGDIi8vL15++eW44YYbYvXq1dG/f//NDu+QdrncdhdccEHce++9kSRJXH755fGvf/0rjjnmmGjXrl289dZbcfvtt8ebb74Zffr0ifnz58fHH38cV199dRxyyCGVQq/a8N5778WIESNizZo1cdJJJ8Xuu+8exx13XPTs2TPatGkTixcvjldeeSXuvPPO7AUN9txzzxg+fHit1kUjkgDUULdu3ZKIqNHP/vvvn7zyyiubbfNf//pXsvvuu2+yrV133TWZO3dujWq87777kjZt2myyvUGDBiWrVq36wo//nHPO2WS7+fn5yYIFC6qsV15envz2t79N2rZtu9ntlpeXl5x//vlJaWnpF6rtlVdeSbbbbrtNtv29732v2vVr8jetqffffz/Zc889q22nqKgoueGGG5KlS5cmO+64Y/Zxf/jhhxtt75BDDsmue/nllyeZTGaLHmNtWbt2bXLsscdWW9MOO+yQTJ8+PTnhhBOSiEi6deu2yfY2fLw1/XnyySertNPY9rtcbrsN2zrooIOS3/72t0leXl61bZxzzjlJeXn5JmtbtWpVcsABB1TbRseOHZP77rsv+dOf/pS9bf78+TV+7LfccktSUFCwycf6pz/9qU62XZIkycqVK5NBgwZtcv0WLVokf/nLXzb72CqWP+SQQza53LBhw7Zo2+XCT37yk03uI5lMJrn00ku/cLsb/l3q21tvvZUcdthhNdo3evTokUyfPn2j7cyfPz+73M0331xp3pNPPlmjedXte7nc75Ik9+9RNrQ1ffbSSy+tUT/ccFsPGzZsszU98cQTSbt27TZZU5MmTZLvfve7yaeffrrJtv73f/+32jaaNm2a3HLLLcmVV15ZZ322Nve7JMndths7duwm3+f069cvWbx4cfLrX/86e9vo0aM32taGtW/u+afiPf6m3qM89NBDyW677Vaj54Ajjjgi+eijjzZ5n/BF1P+rILDNqC64ys/PT9q3b5986UtfSkaNGpU8/PDDm/0Qt6E1a9Yk11xzTXL44YcnnTt3TvLz85M2bdokAwYMSH73u98ln3322Req84MPPkguueSS5IADDkjatWuX5OfnJ507d06+/vWvJ3/+85+/UG2fN3Xq1GTIkCHZOlu1apUccMAByQUXXJDMmjVrk+t+/PHHydVXX50MHjw46datW9KyZcuksLAw2X777ZOBAwcm//M//7NFb34rfPDBB8mPf/zjZL/99ktatGiRFBQUJF27dk2GDBmSTJgwISkpKal23Zq8CfkiPv300+TnP/95sv/++yfNmzdPWrRokey1117JBRdckLz99tvZ5ebNm5ecfPLJyTHHHFNtW5//4Pbiiy8mp5xyStKlS5ekoKAgadeuXXL00Ucn99xzzxeqMZfWrVuX3HDDDclXvvKVpHXr1knTpk2TPffcM/nxj3+cLFmyJEmSJDn33HM3+6YwSXIfIDSm/a42gqvBgwcnSVJ1v2vfvn1yzDHHJPfdd1+N61uxYkVyySWXJPvss0/SrFmzpHXr1smBBx6Y/OIXv8juJ48//vgWf5CbNWtWcuaZZyY9evRImjZtmhQVFSV77LFHcsYZZyQPPvjgJtfN9X5X4f77709OOumkZKeddkqaNm2aNG/ePOnZs2dy0UUXbTTo35iK+0tzcJUk64Pc733ve8kee+yR7Wc9evRIhg0blrz44otb1GaagqsKzzzzTDJmzJikd+/eSadOnZL8/PykdevWyR577JGcdtppyZ/+9KdNhuC1HSAkSW72uwq5fo+yoS3ts7UVXCVJkixZsiT5xS9+kfTr1y9p27Ztkp+fn3Ts2DHp379/cskllyTvvPNOjR/fX//61+T4449Ptttuu+xrw7Bhw5LZs2cnSZIkd999d4MJrpIkd9vub3/7W3LiiScmnTt3TgoKCpLOnTsnX/va15Jbb701KSsryy43fvz4ZO+9907++te/brSdXAdXSbL+/c7dd9+dnHHGGckee+yRfZ/doUOH5IADDkjOPffc5JlnnqnR44QvIpMkKbicBQBU49BDD42nn346IiIVV2ACAADqjsHZAQAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUyq/vAgBgUw4//PD40pe+FN27d6/vUgAAgDqWSVxbHAAAAIAUcqogAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASKX8+i6AbVfp6s8iScq3aN38ps0jL69JlJeXxbo1q3JcGWxb9AeoTJ+A/9AfoDJ9AipLW5/IZPKioFmLnLYpuGKLJUn5FgdXn28HWE9/gMr0CfgP/QEq0yegsobaJ5wqCAAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkUn59FwBAw5Bf0Czy8gty1l75utJYV7o6Z+0BAADbHsEVADmRl18QSWRixWdbHza1avHvEExwBQAAjZrgCoCcWfHZ6rhk/P1b3c7/jjo+WrdomoOKAACAbZkxrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVMqv7wLSZOXKlTFx4sR47LHHYsGCBVFeXh477rhjHHHEETFs2LBo3759rdcwZcqU+O///u8aLXvWWWfFxRdfXMsVAQAAANQPwdW/zZ07N0aOHBnFxcWVbp8zZ07MmTMnJk+eHOPHj49evXrVU4VV7bvvvvVdAgAAAECtEVzF+iOtzjnnnCguLo6CgoI4//zzY/DgwdGsWbN4+eWX49e//nW89957MWrUqLjvvvuiU6dOdVLXq6++usn5BQUFdVIHAAAAQH0wxlVETJgwIRYuXBgREVdccUWcffbZsf3220fbtm3jyCOPjNGjR0dExJIlS+Laa6+ts7qaNm26yZ+8PH8+AAAAoOFq9MlHWVlZTJo0KSIi+vTpE4MGDaoy//rrr8/+PmXKlCgpKanTGgEAAAAao0YfXM2YMSOWL18eERHHHntslfn33HNPzJs3L4YOHRoREatXr45nn322TmsEAAAAaIwafXD12muvZaf79OlTaV5JSUlcddVVsf/++8eYMWM2uk5dKS8vr/P7BAAAAKhPjX5w9nnz5mWnu3btWmnexIkTY/HixTF27Njo3Llz5Ofnx7p16yqtU5umTp0a9913X7z11luxZMmSKCoqiv333z9OP/30OPLII+ukhk3Jb9p8i9fNZPKy/xc0a5mrkmCb1HD6Q2b9v3lNctbetr092FINp0/A1tMfoDJ9AiprDH2i0QdXy5Yty063a9cuO718+fK48cYbY+DAgdG3b9+IiGjdunUsW7Yse2phbbvooosq/b5q1ap4/vnn4/nnn4/vfOc78ZOf/KRO6qhOXg4+nGYymchkcvUhF7ZtDaU/ZDKZnLXTELYHW84+AP+hP0Bl+gRU1pD7RKMPrioGWi8sLKz0Yeu6666LlStXxoUXXpi9rbCwMCLWB0i1Zccdd4yvfe1rUVBQEAcddFD07ds3tt9++1i7dm288MIL8Zvf/CYWLFgQt912W+yzzz5x4okn1lotm1NeXrbF62YyeZHJZCJJkkgSp0HSuDWU/lDxbU+SJDlpb1vfHmy5htInIBf0B6hMn4DK0tgncnGQy4YafXBVIS/vP8N9FRcXx5133hmDBw+OvfbaK3t7XYwz1bdv3+wRXhsqKiqKr33ta9GrV68YPHhwrFy5MsaPH1+vwdW6Nau2uGMUNGsZmUyTSJLyKF29MseVwbalofSHwqJWERGRbEWoXVmyTW8PtlxD6ROQC/oDVKZPQGVp6xOZTF72c0GuNPrB2Zs3Xz9OU2lpafa2cePGRZIklQZkj4hYs2ZNpXXqww477BDHHHNMRES89957sWDBgnqrBQAAAKA2Nfrgqn379hERUVZWFitWrIg333wzpk2bFqecckrstNNO2eVKS0tjxYoVldapL7vvvnt2+r333qvHSgAAAABqT6MPrnbZZZfsdHFxcYwdOzaKiori3HPPrbTcokWLsqcK9ujRo05r/LyioqLs9IZHigEAAAA0JI0+uOrZs2d2euLEifHMM8/EWWedVeWoqhkzZmSn99tvvzqrb2M++uij7HTnzp3rsRIAAACA2tPog6s+ffpEu3btIiJiypQp0aFDhzjzzDOrLPfwww9HRESzZs1iwIABm2wzSZIYN25c9O/fPwYMGBBXXXVVTmt+7rnnIiKiVatW9X70FwAAAEBtafTBVZMmTeLUU0/N/j58+PBo0aJFpWWee+65eOqppyIiYujQoZVO1duY+++/P8aPHx9Lly6NJUuWxNVXXx1Tp07dbC1JksTll18ef/3rX6td5qGHHorp06dHRMQ3vvGNaNas2WbbBQAAANgWNfrgKiJixIgR0bVr14iIuOOOO+LBBx+MZcuWxZIlS2LSpEkxevToSJIkOnbsGKNGjdpse7Nnz65y26xZsza73oQJE+Lmm2+O0aNHx+jRo+OJJ56IxYsXx8qVK+Ott96KsWPHxn/9139FRES3bt2qXPUQAAAAoCHJr+8C0qBly5Zxww03xMiRI6O4uDguuOCCKst07Ngxxo8fH506ddpse7169apyW+/evTe73vDhw2Pp0qVx2223xV//+tdqj7zq1atX/O53v4tWrVpttk0AAACAbZXg6t923XXXmDp1akycODEeffTRWLBgQSRJEl26dIkjjjgihg8fXmXA9uocd9xxMX/+/Ljrrrsik8nEqaeeGkOGDNnsevn5+XHxxRfHKaecEn/+85/j2Wefjffffz9KSkqiU6dOsccee8TgwYPjmGOOifx8fzoAAACgYcskSZLUdxFsm9aWrIgkKd+idQuatYy8vCZRXl4WpatX5rgy2LY0lP5QWNQqPv1sTVwy/v6tbut/Rx0frVs0jbUlK3JQGduahtInIBf0B6hMn4DK0tYnMpm8KCzK7dlhxrgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgKuVWrlwZgwcPjvHjx8enn35a3+UAAAAA1Jn8+i4gTVauXBkTJ06Mxx57LBYsWBDl5eWx4447xhFHHBHDhg2L9u3b13lN99xzT8yZMyeuvfbaOPnkk+v8/gEAAADqi+Dq3+bOnRsjR46M4uLiSrfPmTMn5syZE5MnT47x48dHr1696qymJEnijjvuiIiIY445pl6CMwAAAID64lTBWH+k1TnnnBPFxcVRUFAQF110UTz99NPx4osvxjXXXBM777xzLFmyJEaNGhUfffRRndX19NNPx7vvvhsREaeffnqd3S8AAABAGgiuImLChAmxcOHCiIi44oor4uyzz47tt98+2rZtG0ceeWSMHj06IiKWLFkS1157bZ3Vddttt0VExL777hv7779/nd0vAAAAQBo0+uCqrKwsJk2aFBERffr0iUGDBlWZf/3112d/nzJlSpSUlNR6XfPmzYu///3vERFx2mmn1fr9AQAAAKRNow+uZsyYEcuXL4+IiGOPPbbK/HvuuSfmzZsXQ4cOjYiI1atXx7PPPlvrdd1+++2RJEm0bds2Bg8eXOv3BwAAAJA2jT64eu2117LTffr0qTSvpKQkrrrqqth///1jzJgxG12nNqxcuTLuvffeiIgYOnRoNG3atFbvDwAAACCNGv1VBefNm5ed7tq1a6V5EydOjMWLF8fYsWOjc+fOkZ+fH+vWrau0Tm2YPHlyrFq1KvLy8uLb3/52pXl77rlnRETceuut0bdv31qtY3Pymzbf4nUzmbzs/wXNWuaqJNgmNZz+kFn/b16TnLW3bW8PtlTD6ROw9fQHqEyfgMoaQ59o9MHVsmXLstPt2rXLTi9fvjxuvPHGGDhwYDYgat26dSxbtix7amFtSJIk7rzzzoiIOOSQQ6qEaWmSl4MPp5lMJjKZXH3IhW1bQ+kPmUwmZ+00hO3BlrMPwH/oD1CZPgGVNeQ+0eiDq4qB1gsLCyt92Lruuuti5cqVceGFF2ZvKywsjIiIVatW1Vo9Tz/9dLz77rsRkf5B2cvLy7Z43UwmLzKZTCRJEklSnsOqYNvTUPpDxbc9SZLkpL1tfXuw5RpKn4Bc0B+gMn0CKktjn8jFQS4bavTBVYW8vP8M91VcXBx33nlnDB48OPbaa6/s7eXltb8T3HbbbRER0b179/jKV75S6/e3NdatWbXFHaOgWcvIZJpEkpRH6eqVOa4Mti0NpT8UFrWKiIhkK0LtypJtenuw5RpKn4Bc0B+gMn0CKktbn8hk8rKfC3Kl0Q/O3rz5+nGaSktLs7eNGzcukiSpNCB7RMSaNWsqrZNrc+fOjb///e8REXHqqafm7HQbAAAAgG1Roz/iqn379hERUVZWFitWrIji4uKYNm1anHbaabHTTjtllystLY0VK1ZUWifXbr/99kiSJIqKiuLEE0+slfsAAAAA2FY0+uBql112yU4XFxfH2LFjo6ioKM4999xKyy1atCh7qmCPHj1qpZa//e1vEbF+3K2DDjpok8ueccYZERGx4447xhNPPFEr9QAAAADUp0Z/qmDPnj2z0xMnToxnnnkmzjrrrCpHVc2YMSM7vd9++9VKLbka0BgAAACgIWj0R1z16dMn2rVrF8uXL48pU6ZEhw4d4swzz6yy3MMPPxwREc2aNYsBAwZsss0kSeLKK6+Mu+++OzKZTJxyyilx3nnnbbaWhx9+eJPh1T/+8Y8YMWJERERMmDAhDjroIONgAQAAAA1Woz/iqkmTJnHqqadmfx8+fHi0aNGi0jLPPfdcPPXUUxERMXTo0CgqKtpkm/fff3+MHz8+li5dGkuWLImrr746pk6dutlaCgsLo2nTptX+FBQUZJctKCiIpk2bRmFh4Rd4tAAAAADbjkYfXEVEjBgxIrp27RoREXfccUc8+OCDsWzZsliyZElMmjQpRo8eHUmSRMeOHWPUqFGbbW/27NlVbps1a1bO6wYAAABoyBr9qYIRES1btowbbrghRo4cGcXFxXHBBRdUWaZjx44xfvz46NSp02bb69WrV5XbevfunYtSAQAAABoNwdW/7brrrjF16tSYOHFiPProo7FgwYJIkiS6dOkSRxxxRAwfPrzKgO3VOe6442L+/Plx1113RSaTiVNPPTWGDBlSy48AAAAAoGHJJC5lxxZaW7IikqR8i9YtaNYy8vKaRHl5WZSuXpnjymDb0lD6Q2FRq/j0szVxyfj7t7qt/x11fLRu0TTWlqzIQWVsaxpKn4Bc0B+gMn0CKktbn8hk8qKwqFVO2zTGFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApFJ+fReQJitXroyJEyfGY489FgsWLIjy8vLYcccd44gjjohhw4ZF+/bt66SO2bNnx5QpU+LFF1+MRYsWRZIk0aFDh+jdu3cMGTIkDj300DqpAwAAAKA+Ca7+be7cuTFy5MgoLi6udPucOXNizpw5MXny5Bg/fnz06tWr1mr49NNP45JLLomHH364yryFCxfGwoULY9q0aTFw4MC48soro3nz5rVWCwAAAEB9q/PgaunSpfHJJ5/ELrvsUu0yixYtinvuuSfmz58fmUwmDjjggDjxxBOjWbNmtVLTypUr45xzzoni4uIoKCiI888/PwYPHhzNmjWLl19+OX7961/He++9F6NGjYr77rsvOnXqVCt13HTTTfHwww9H27Zt4/TTT4/DDz88unbtGqtXr4633347br311njqqafib3/7W/zoRz+Kq6++ulbqAAAAAEiDOg+uLr/88njkkUfiRz/6UZx++ulV5j/++ONx4YUXxpo1a7K3/eUvf4k77rgj7rjjjmjbtm3Oa5owYUIsXLgwIiKuuOKKGDRoUHbekUceGStXroyLL744lixZEtdee21ceumlOa8hImLMmDGx3XbbxTHHHFPptMQ2bdpE586dY8CAAXHZZZfFpEmT4rHHHou33nor9thjj1qpBQAAAKC+1eng7AsWLIi//OUvUVpaGkmSVJm/aNGiuOiii2L16tWRJEmln3nz5sWFF16Y85rKyspi0qRJERHRp0+fSqFVxfzrr78++/uUKVOipKQk53VERGQymfj2t7+9ybG0TjnllOz03Llza6UOAAAAgDSo0+Dq/vvvj/Ly8ujUqVOcfPLJVebfcMMNsWrVqshkMnH00UfHtddeG7/73e9izz33jCRJ4rnnnosZM2bktKYZM2bE8uXLIyLi2GOPrTL/nnvuiXnz5sXQoUMjImL16tXx7LPP5rSGL2Lt2rXZ6e22267e6gAAAACobXUaXL3wwguRyWTiqKOOisLCwkrz1q5dG/fff39kMpno379//OEPf4jDDz88Bg0aFDfffHO0aNEiItafNphLr732Wna6T58+leaVlJTEVVddFfvvv3+MGTNmo+vUtYkTJ0ZExO677x4HHHBAvdUBAAAAUNvqdIyrd999NyIi9tlnnyrznn322ezRVuecc06lee3bt4/BgwfHXXfdFTNnzsxpTfPmzctOd+3atdK8iRMnxuLFi2Ps2LHRuXPnyM/Pj3Xr1lVapzaVl5dHaWlpfPbZZ/H666/HLbfcEs8880x06dIlrrzyyshkMnVSR3Xym275VQ0zmbzs/wXNWuaqJNgmNZz+sP45KZPXJGftbdvbgy3VcPoEbD39ASrTJ6CyxtAn6jS4+vjjjyNi/WDjn/fkk09GRES7du2ib9++VeZXhF3vv/9+TmtatmxZdrpdu3bZ6eXLl8eNN94YAwcOzNbTunXrWLZsWfbUwto2derUuPjii7O/d+jQIc4777w444wzonXr1nVSw6bk5eDDaSaTiUwmVx9yYdvWUPpDrkL1hrI92HL2AfgP/QEq0yegsobcJ+o0uKo4YqmsrKzKvKeffjoymUwMGDBgo+t26NAhIiJWrFiR05oqBlovLCys9GHruuuui5UrV1YaEL7i9MZVq1bltIbqzJ8/v9LvS5cujdtuuy0+++yzOO+886J58y0/4ikXysur/h1rKpPJi0wm8+/B98tzWBVsexpKf6j4tmdjF9/YEtv69mDLNZQ+AbmgP0Bl+gRUlsY+kYuDXDZUp8HVdtttF++99172lMEKL730UixevDgymUx89atf3ei6FYFVxVhXuZaX95/hvoqLi+POO++MwYMHx1577ZW9vby8bneCCy64IC644IL47LPPYuHChTFt2rS4/fbb46abbopnn302Jk2aFC1b1t+hgOvWrNrijlHQrGVkMk0iScqjdPXKHFcG25aG0h8Ki1pFRESyFaF2Zck2vT3Ycg2lT0Au6A9QmT4BlaWtT2QyednPBblSp4Oz77fffpEkSTzwwAOxZs2aiFj/jfo111wTEREFBQVx6KGHbnTdt956KyLWj3eVSxVHLZWWlmZvGzduXCRJUmlA9ojI1lzXRzq1aNEi9txzz7jwwgvjpptuiry8vHjrrbdi3LhxdVoHAAAAQF2q0+DquOOOi4iIt99+O775zW/GFVdcEWeccUa8+OKL2asNVjd20xNPPBGZTCZ69+6d05oqgrCysrJYsWJFvPnmmzFt2rQ45ZRTYqeddsouV1pamj3qK9fh2RfRp0+fOPDAAyMi4t577623OgAAAABqW50GVwMHDoz+/ftHkiTx9ttvx8033xwvv/xyREQ0a9Yszj///I2u9+ijj2ZPL6zuiKwttcsuu2Sni4uLY+zYsVFUVBTnnntupeUWLVqUPVWwR48eOa3hi+revXtERKxcubLS4PIAAAAADUmdBlcR60/DqwivKn7at28fV111VaUjnCqsXbs2fvnLX0Ymk4mdd945jj766JzW07Nnz+z0xIkT45lnnomzzjqrylFVM2bMyE7vt99+Oa3hi1q9enVErL9qQG2N+QUAAABQ3+p0cPaIiNatW8dNN90Ub775ZsybNy/atWsXvXv3jqKioo0uX1hYGBdeeGH85Cc/iUsuuSRnl1mv0KdPn2jXrl0sX748pkyZEh06dIgzzzyzynIPP/xwRKw/Mqy6Kx9WSJIkrrzyyrj77rsjk8nEKaecEuedd15O6i0rK4vp06dHRES3bt2iadOmOWkXAAAAIG3q/IirCnvttVcMGjQo+vXrV21oVeG4446LRx55JL7yla/kvI4mTZrEqaeemv19+PDhVY5ieu655+Kpp56KiIihQ4dutt77778/xo8fH0uXLo0lS5bE1VdfHVOnTt1sLX/84x/jO9/5Tnz88cfVLjN+/Ph4//33IyLitNNO22ybAAAAANuqeguuvqgddtih1toeMWJEdO3aNSIi7rjjjnjwwQdj2bJlsWTJkpg0aVKMHj06kiSJjh07xqhRozbb3uzZs6vcNmvWrE2u8+abb8bVV18dL730Unzta1+Lq6++Ov75z3/Gp59+GsuXL48XXnghfvCDH8RVV10VEREHH3xwpcANAAAAoKGp81MF06hly5Zxww03xMiRI6O4uDguuOCCKst07Ngxxo8fH506ddpse7169apy2+auhrjXXnvFTTfdFP/v//2/eOedd+Kqq67KhlSfN3jw4PjZz34WBQUFm60FAAAAYFsluPq3XXfdNaZOnRoTJ06MRx99NBYsWBBJkkSXLl3iiCOOiOHDh1cZsL06xx13XMyfPz/uuuuuyGQyceqpp8aQIUM2u96BBx4YDz74YDz44IPxxBNPxKuvvhpLliyJ/Pz86Ny5cxx44IFx/PHHx5e+9KWtfbgAAAAAqZdJkiSp7yLYNq0tWRFJUr5F6xY0axl5eU2ivLwsSlevzHFlsG1pKP2hsKhVfPrZmrhk/P1b3db/jjo+WrdoGmtLVuSgMrY1DaVPQC7oD1CZPgGVpa1PZDJ5UVjUKqdtbjNjXAEAAADQuNT5qYJvvPFGvPHGG3HiiSdWu8xDDz0Ud955Z7zzzjuRyWTiwAMPjHPPPTd23333OqwUAAAAgPpU58HVz372s5g1a1a89tpr8dOf/rTK/HHjxsX1119f6baHH344nnrqqZg0aVLstddedVUqAAAAAPWoTk8VnD59esycOTMiIr7yla9UmT9z5sxsaJUkSaWfkpKS+MEPfhDl5Vs2phIAAAAA25Y6Da4eeuihiIjYc8894/DDD68y/4YbbogkSSIvLy9+8pOfxMsvvxzPPvtsHHfccRERsWDBgnjkkUfqsmQAAAAA6kmdBlcvv/xyZDKZOOyww6rMW758eTz99NORyWTipJNOitNPPz1atmwZHTt2jP/7v/+LLl26RETEk08+WZclAwAAAFBP6jS4+vDDDyMiolu3blXmPfHEE1FWVhYREWeccUaleU2aNIkhQ4ZEkiQxe/bs2i8UAAAAgHpXp8HVihUrIiKiVatWVeY9/fTTERGx8847xy677FJlfkXYtWTJklqsEAAAAIC0qNPgqlmzZhERsXr16kq3r1mzJp599tnIZDIxcODAja5bEXaVlJTUbpEAAAAApEKdBlddu3aNiIh//etflW5/7LHHYtWqVRER8dWvfnWj6y5btiwiItq0aVOLFQIAAACQFnUaXH3pS1+KJEli8uTJ8c4770RExMcffxx/+MMfImJ9KNW/f/+Nrjtr1qyIiOjcuXOd1AoAAABA/cqvyzs76aST4s4774zly5fH8ccfH7vvvnu899578emnn0Ymk4lvfetbkZ9ftaTVq1fHE088EZlMJg466KC6LBkAAACAelKnR1ztueeeMWzYsEiSJNauXRv//Oc/swO2d+3aNb773e9udL3bbrstPv7444iI+NrXvlZX5QIAAABQj+o0uIqI+NGPfhRjxoyJNm3aRJIk2QHZb7nllmjRokWV5deuXRsTJ06MTCYTffv2jQMOOKCuSwYAAACgHtTpqYIREZlMJkaNGhXf+973YtmyZdG6desoKCiodvnCwsK45ZZb4oILLoif//zndVgpAAAAAPWpzoOrCplMJjp06FCjZXfbbbeYOnVqZDKZWq4KAAAAgLSo81MFt5TQCgAAAKBx2WaCKwAAAAAaF8EVAAAAAKkkuAIAAAAglbaZ4GrGjBnxi1/8Il544YX6LgUAAACAOlBvVxVcuXJlzJo1K5YuXRrl5eXVLpckSSxevDhuv/32WLJkSbzwwgsxbdq0OqwUAAAAgPpQ58FVWVlZ/Pa3v43bb789SktLa7xekiQREfGd73yntkoDAAAAIEXqPLi68MIL45FHHskGUTXVpk2bGDlyZJx88sm1VBkAAAAAaVKnwdVTTz0VDz/8cGQymdhhhx1i6NChscMOO8Rbb70VEydOjEwmE7/61a8qrfPPf/4zbr/99thxxx1j6NChdVkuAAAAAPWoToOre++9NyIiWrZsGZMnT44OHTpExPpAa+LEiRERccIJJ1Ra54QTToi2bdvG1VdfHaNHj44777yzLksGAAAAoJ7U6VUFZ8+eHZlMJoYMGZINrSIiMpnMJtc799xzo0ePHvHKK6/EAw88UNtlAgAAAJACdRpcLV26NCIi9t5770q3FxYWZqfXrl1bZb28vLw4/vjjI0mSmDp1au0WCQAAAEAq1GlwVVZWFhER7du3r3R7ixYtstPLli3b6Lrdu3ePiIg33nijdooDAAAAIFXqNLhq06ZNRESsWrWq0u0777xzdvq1117b6LqffvppRER88skntVQdAAAAAGlSp8HVTjvtFBER7777bqXb27ZtGzvuuGNERNxxxx0bXfeZZ56JiP+EXwAAAAA0bHUaXO23336RJEm88sorVeYdffTRkSRJvPDCC3HxxRfHBx98EBHrx8X6/e9/H4899lhkMpk44IAD6rJkAAAAAOpJfl3e2YABA+K2226LGTNmRHl5eeTl/Sc3GzFiRNx1111RUlISU6dOjalTp0Z+fn6sW7cuu0wmk4lhw4bVZckAAAAA1JM6PeJqwIABcc4558SkSZMqhVYRER07doyxY8dGfn5+JEkSSZJEaWlpdjqTycRFF10UBx54YF2WDAAAAEA9qdMjrgoKCuKHP/xhtfMPP/zwuOeee+K6666Ll156KT7++ONo06ZNHHjggTFs2DChFQAAAEAjUqfBVU3sscce8bvf/a6+ywAAAACgntXpqYIAAAAAUFOCKwAAAABSqdZOFdx7771rpd1MJhOvv/56rbQNAAAAQHrUWnCVJEltNQ0AAABAI1Crg7NnMplo0qRJ7LfffnHggQdGs2bNavPuAAAAAGhAav2qgmVlZTFz5sz45z//Gb17945+/fpFv379olevXpGXZ4gtAAAAADau1oKrQw45JGbNmhUff/xxRESsXbs2/vGPf8Q//vGP+MMf/hAtWrSIgw46KA4++ODo169f7LHHHrVVCgAAAADboFoLrq6//vqIiHjnnXdi5syZ8corr8TMmTNjzpw5UV5eHitXrownn3wynnrqqYiIaN++fRx88MFx8MEHR//+/WPHHXesrdIAAAAA2AbU+qmC3bt3j+7du8c3vvGNiIj47LPP4tVXX42ZM2fGrFmzYubMmfHxxx/H0qVL4y9/+Us8+OCDERHRtWvX6NevXwwcODCOPPLI2i4TAAAAgJSp9eDq81q0aJEd56rCxo7KWrBgQSxcuDD+/ve/C64AAAAAGqE6D642pnv37pGXlxdJksS6devi008/jQ8++CCSJKnv0gAAAACoJ/USXJWVlcU///nPmDFjRvZn6dKl2fkVgVVRUVF86Utfqo8SAQAAAKhndRJcffbZZ/HKK6/E9OnTY8aMGfHqq6/G6tWrs/Mrgqq8vLzYZ599YsCAAdG/f/844IADoqCgoC5KBAAAACBlai24evDBB2P69Okxffr07JUEK2x4CmCXLl2yQVW/fv2ibdu2tVUSAAAAANuQWguufvjDH0Ymk6kyTlXLli2jb9++0b9//xgwYEB07969tkoAAAAAYBtW66cK5ufnx3777RcDBgyIAQMGxP777x95eXm1fbcAAAAAbONqPbgqKyuLmTNnxsyZM+Oaa67Z6vYymUy8/vrrOagMAAAAgDSr1eDq86cJAgAAAEBN1Vpw9X//93+11TQAAAAAjUCtBVcnnHBCbTUNAAAAQCNglHQAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAq5dd3AWmycuXKmDhxYjz22GOxYMGCKC8vjx133DGOOOKIGDZsWLRv375O6pg+fXpMnTo1XnrppViyZEmsWbMmOnXqFL17944TTzwxBgwYUCd1AAAAANQnwdW/zZ07N0aOHBnFxcWVbp8zZ07MmTMnJk+eHOPHj49evXrVWg0lJSXx05/+NKZOnVpl3sKFC2PhwoUxbdq0OPHEE+MXv/hFNGnSpNZqAQAAAKhvThWM9UdanXPOOVFcXBwFBQVx0UUXxdNPPx0vvvhiXHPNNbHzzjvHkiVLYtSoUfHRRx/VSg1r166Ns88+O6ZOnRp5eXlx6qmnxp/+9Kd4/vnn429/+1tcf/31seeee0ZExJQpU+L3v/99rdQBAAAAkBaCq4iYMGFCLFy4MCIirrjiijj77LNj++23j7Zt28aRRx4Zo0ePjoiIJUuWxLXXXlsrNRQWFsZpp50W2223Xdx4441x2WWXRZ8+faJ9+/bRuXPnOPTQQ+Ouu+6KnXbaKSIibr311li+fHmt1AIAAACQBo0+uCorK4tJkyZFRESfPn1i0KBBVeZff/312d+nTJkSJSUltVLLoEGD4sknn6x2DKuioqI4/fTTIyJizZo18dJLL9VKHQAAAABp0OiDqxkzZmSPXDr22GOrzL/nnnti3rx5MXTo0IiIWL16dTz77LO1Vk9+/qaHHevRo0d2urZOWwQAAABIg0YfXL322mvZ6T59+lSaV1JSEldddVXsv//+MWbMmI2uU9dWrVqVnW7Tpk291QEAAABQ2xr9VQXnzZuXne7atWuleRMnTozFixfH2LFjo3PnzpGfnx/r1q2rtE5de/XVV7PTvXv3rrc6IiLymzbf4nUzmbzs/wXNWuaqJNgmNZz+kFn/b16urnia2ca3B1uq4fQJ2Hr6A1SmT0BljaFPNPrgatmyZdnpdu3aZaeXL18eN954YwwcODD69u0bERGtW7eOZcuW1dug6GvXro0HHnggItYfHVYxUHt9ycvBh9NMJhOZTK4+5MK2raH0h0wmk7N2GsL2YMvZB+A/9AeoTJ+Ayhpyn2j0wVXFQOuFhYWVPmxdd911sXLlyrjwwguztxUWFkZE5dP16tINN9yQHdfqBz/4Qb3UsKHy8rItXjeTyYtMJhNJkkSSlOewKtj2NJT+UPFtT5IkOWlvW98ebLmG0icgF/QHqEyfgMrS2CdycZDLhhp9cFUhL+8/w30VFxfHnXfeGYMHD4699tore3t5ef3tBDNmzIjrrrsuIiJOOumk6N+/f73VUmHdmlVb3DEKmrWMTKZJJEl5lK5emePKYNvSUPpDYVGriIhItiLUrizZprcHW66h9AnIBf0BKtMnoLK09YlMJi/7uSBXGv3g7M2brx+nqbS0NHvbuHHjIkmSSgOyR0SsWbOm0jp1ZeHChTF69OgoLS2Nnj17xk9+8pM6vX8AAACA+tDoj7hq3759RESUlZXFihUrori4OKZNmxannXZapTGkSktLY8WKFZXWqQsffvhhnHnmmbFs2bLYaaedYvz48dGsWbM6u38AAACA+tLoj7jaZZddstPFxcUxduzYKCoqinPPPbfScosWLcqeKtijR486qW3JkiVx5plnxnvvvRc77rhjTJw4Mbbbbrs6uW8AAACA+tbog6uePXtmpydOnBjPPPNMnHXWWVWOqpoxY0Z2er/99qv1uj788MM4/fTTY+7cudGtW7e49dZbY8cdd6z1+wUAAABIi0YfXPXp0yfatWsXERFTpkyJDh06xJlnnllluYcffjgiIpo1axYDBgzYZJtJksS4ceOif//+MWDAgLjqqqu+UE0LFiyIU089NebPnx977bVX3HnnndG1a9cv1AYAAADAtq7RB1dNmjSJU089Nfv78OHDo0WLFpWWee655+Kpp56KiIihQ4dGUVHRJtu8//77Y/z48bF06dJYsmRJXH311TF16tQa1fPWW2/FqaeeGsXFxdG/f/+44447omPHjl/sQQEAAAA0AI0+uIqIGDFiRPaIpjvuuCMefPDBWLZsWSxZsiQmTZoUo0ePjiRJomPHjjFq1KjNtjd79uwqt82aNWuz673yyitx+umnx0cffRTHHntsXHXVVVFQUBBr1qzZ6M/atWu/+IMFAAAA2EY0+qsKRkS0bNkybrjhhhg5cmQUFxfHBRdcUGWZjh07xvjx46NTp06bba9Xr15Vbuvdu/dm1/vd734Xn3zySUREPPTQQ/HQQw9tcvnu3bvHI488stl2AQAAALZFgqt/23XXXWPq1KkxceLEePTRR2PBggWRJEl06dIljjjiiBg+fHiVAdurc9xxx8X8+fPjrrvuikwmE6eeemoMGTIk5zXX1dUNAQAAAOpDJkmSpL6LYNu0tmRFJEn5Fq1b0Kxl5OU1ifLysihdvTLHlcG2paH0h8KiVvHpZ2vikvH3b3Vb/zvq+GjdommsLVmRg8rY1jSUPgG5oD9AZfoEVJa2PpHJ5EVhUauctmmMKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXB1QZWrlwZ11xzTXzjG9+IAw88MPr06RODBw+O3//+97Fs2bJ6qWnRokUxZsyY2HPPPWPPPfeMF198sV7qAAAAAKhr+fVdQFrMnTs3Ro4cGcXFxZVunzNnTsyZMycmT54c48ePj169etVJPWvXro2bb745rrvuuli1alWd3CcAAABAmjjiKtYfaXXOOedEcXFxFBQUxEUXXRRPP/10vPjii3HNNdfEzjvvHEuWLIlRo0bFRx99VOv1PPPMMzFkyJD43e9+F6tWrYrtt9++1u8TAAAAIG0EVxExYcKEWLhwYUREXHHFFXH22WfH9ttvH23bto0jjzwyRo8eHRERS5YsiWuvvbbW6li3bl18//vfj7PPPjveeeed6NSpU/z617+OX//617V2nwAAAABp1eiDq7Kyspg0aVJERPTp0ycGDRpUZf7111+f/X3KlClRUlJSK7Xk5+dH69ato6CgIEaOHBmPPPJIfOMb34hMJlMr9wcAAACQZo0+uJoxY0YsX748IiKOPfbYKvPvueeemDdvXgwdOjQiIlavXh3PPvtsrdVz8cUXx4MPPhj/9V//FS1atKi1+wEAAABIu0Y/OPtrr72Wne7Tp0+leSUlJXHVVVfF/vvvH2PGjIl77rknu85RRx1VK/W0adMm2rRpUyttN3b5Bc0iL78gp22WryuNdaWrc9omAAAAsF6jD67mzZuXne7atWuleRMnTozFixfH2LFjo3PnzpGfnx/r1q2rtE5jlt+0+Ravm8nkZf8vaNYyVyVt9j6TiFjxWW6CplYtmkVefmEUNGn03YitVB/9oXasP605k9ckZ+1t29uDLdVw+gRsPf0BKtMnoLLG0Cca/SfuZcuWZafbtWuXnV6+fHnceOONMXDgwOjbt29ERLRu3TqWLVuWPbWwscvLwYfTTCYTmUyuPuRu3qcrS+LSG/6Sk7Z+ds7Xo03Lojqtn4atrvtDbcnVuHwNZXuw5ewD8B/6A1SmT0BlDblPNPrgqmKg9cLCwkoftq677rpYuXJlXHjhhdnbCgsLIyJi1apVdVtkSpWXl23xuplMXmQymUiSJJKkPIdVbfo+IyKSJMlZm3VZPw1XffSH2pDrPratbw+2XEPpE5AL+gNUpk9AZWnsE7k4yGVDjT64qpCX959x6ouLi+POO++MwYMHx1577ZW9vbw8HTtBWqxbs2qLO0ZBs5aRyTSJJCmP0tUrc1zZxhUWtYqIiGQrAreqkjqrn4arPvpDbch9H9O/GquG0icgF/QHqEyfgMrS1icymbzs54JcafRXFWzefP04TaWlpdnbxo0bF0mSxJgxYyotu2bNmkrrAAAAAFB7Gv0RV+3bt4+IiLKyslixYkUUFxfHtGnT4rTTTouddtopu1xpaWmsWLGi0joAAAAA1J5Gf8TVLrvskp0uLi6OsWPHRlFRUZx77rmVllu0aFH2VMEePXrUaY0AAAAAjVGjD6569uyZnZ44cWI888wzcdZZZ1U5qmrGjBnZ6f3226/O6gMAAABorBp9cNWnT59o165dRERMmTIlOnToEGeeeWaV5R5++OGIiGjWrFkMGDBgk20mSRLjxo2L/v37x4ABA+Kqq67KfeEAAAAADVyjD66aNGkSp556avb34cOHR4sWLSot89xzz8VTTz0VERFDhw6NoqKiTbZ5//33x/jx42Pp0qWxZMmSuPrqq2Pq1Kk5rx0AAACgIWv0wVVExIgRI6Jr164REXHHHXfEgw8+GMuWLYslS5bEpEmTYvTo0ZEkSXTs2DFGjRq12fZmz55d5bZZs2bVqJaysrJYs2ZNpZ8Nr3hYWlpa7TwAAACAhqTRX1UwIqJly5Zxww03xMiRI6O4uDguuOCCKst07Ngxxo8fH506ddpse7169apyW+/evWtUy/333x///d//Xe38ESNGVPr9hBNOiMsvv7xGbQMAAABsSwRX/7brrrvG1KlTY+LEifHoo4/GggULIkmS6NKlSxxxxBExfPjwKgO2V+e4446L+fPnx1133RWZTCZOPfXUGDJkSC0/AgAAAICGRXC1gZYtW8bo0aNj9OjRW9VOJpOJ888/P84///wvvO6JJ54YJ5544lbdPwAAAEBDYIwrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIpfz6LgC2Vc0KCyIiE4VFrXLWZvm60lhXujpn7QEAAMC2THAFW6ggv0kkEbHiszU5aa9Vi2aRl18QIbgCAACAiBBcwVZZ8dnquGT8/Tlp639HHR+tWzTNSVsAAADQEBjjCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCV8uu7AADqR35Bs8jLL8hhi5loVpjL9nIn9481onxdaawrXZ3TNgEAgMoEVwCNVF5+QSSRiRWf5SZ8adWiWRTkN8lJW7lWG481L78gQnAFAAC1SnAF0Iit+Gx1XDL+/py09b+jjo9WzZvlpK3akOvH2rpF05y0BQAAVM8YVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCrl13cBAPB5zQoLIiIThUWtctRiJkftAAAAdUlwBUDqFOQ3iSQiVny2JifttW7RLCftAAAAdUtwBUAqrfhsdVwy/v6ctDXuwpNz0g4AAFC3BFcAUI/yC5pFXn5BTtssX1ca60pX57RNAACoD4IrgG1E7gMO4z6lQV5+QSSRiRWf5SZoatXi3/uJ4AoAgAZAcAWwjch1wGHcp/TI5WmR/zvq+GjdomlO2gIAgPomuIIGyKlHDZdxnwAAgMZEcAUNkFOPAAAAaAgEV9BAOfUIAACAbV1efRcAAAAAABsjuAIAAAAglQRXAAAAAKSSMa4AalHNrvCYWf9vJi8Ki1ptdjkAAIDGQnAFUItyeYXH1i2a5aAiAACAbYfgCqCWbe4Kj5m8JpHJZCJJkkjKy6pdbtyFJ9dGeQAAAKlljCsAAAAAUklwBQAAAEAqOVUQUqJZYUFEZDYzOHdNGcQbAACAbZ/gClKiIL9JJBGx4rM1W92WQbwBAABoCARXkCKbG8S7pgziDQAAQENgjCsAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFTKr+8CAGBb06ywICIyUVjUKgetZXLQBgAANEyCKwD4ggrym0QSESs+W7PVbbVu0WzrCwIAgAZKcAUAW2DFZ6vjkvH3b3U74y48OQfVAABAwyS42sDKlStj4sSJ8dhjj8WCBQuivLw8dtxxxzjiiCNi2LBh0b59+0ZZCwBQv/ILmkVefkHO2itfVxrrSlfnrD0AgNoiuPq3uXPnxsiRI6O4uLjS7XPmzIk5c+bE5MmTY/z48dGrV69GVQsAUP/y8gsiiUys+Gzrw6ZWLf4dggmuAIBtgOAq1h/ddM4550RxcXEUFBTE+eefH4MHD45mzZrFyy+/HL/+9a/jvffei1GjRsV9990XnTp1ahS1AADpkavTU/931PHRukXTHFQEAFD7BFcRMWHChFi4cGFERFxxxRUxaNCg7LwjjzwyVq5cGRdffHEsWbIkrr322rj00ksbRS0AwJbJ9al9rj4JADRWjT64Kisri0mTJkVERJ8+fSoFRRXzr7/++uzvU6ZMiR/96EdRVFTUoGuBDTUrLIiITBQWtcpZm8ZXARqyXJ7aF5Huq0/mPqTzGgHAxhnzsXFq9MHVjBkzYvny5RERceyxx1aZf88998S8efNi6NChcc8998Tq1avj2WefjaOOOqpB1wIbKshvEklErPhsTU7aM74KkDa1cYRUrk7ti0j31SdzHdJ5jQDSRkCfHsZ8bJwafXD12muvZaf79OlTaV5JSUlcddVVsf/++8eYMWPinnvuya5TG2FRmmqpiUwmL1Xt1EReXia279C6UbSX69o+K1kT19z9ZE7aOu+Uw6NlUWGd/u1rqkl+08jLz+VTY2azf4tMXpPIZDKRJEkk5WWbbC3t+1xEpHYfTnN7uWyrqGkuj5CsOD0tyUFb65WvWxdl62oegtfV80TFG+HPSnIT0LcsaprafS63+0hERCbWrSvL8WtE05zV90X3uTRL4+smtSv370v0iS2R69eIFkVNIy+/IDLr1uakvTSrjffWuXrNyfVnkjT01zS8TtRGDZkkSXL3bnQbdMkll8Tdd98dERHPP/98tG/fPjvvuuuui9///vdx6623Rt++fWPfffeNdevWxdFHHx1XXXVVg64FAAAAoL7VfxxXz5YtW5adbteuXXZ6+fLlceONN8bAgQOjb9++ERHRunXr7LyGXgsAAABAfWv0wVVJSUlERBQWFkYm858r9lx33XWxcuXKuPDCC7O3FRYWRkTEqlWrGnwtAAAAAPWt0QdXFfLy/rMpiouL484774zBgwfHXnvtlb29vLy80dUCAAAAUF8afXDVvHnziIgoLS3N3jZu3LhIkiTGjBlTadk1a9ZUWqch1wIAAABQ3xr9VQUrBkAvKyuLFStWRHFxcUybNi1OO+202GmnnbLLlZaWxooVKyqt05BrAQAAAKhvjf6Iq1122SU7XVxcHGPHjo2ioqI499xzKy23aNGi7Ol5PXr0aPC1AAAAANS3Rh9c9ezZMzs9ceLEeOaZZ+Kss86qciTTjBkzstP77bdfg68FAAAAoL41+uCqT58+0a5du4iImDJlSnTo0CHOPPPMKss9/PDDERHRrFmzGDBgwCbbTJIkxo0bF/37948BAwbEVVddVW+1AAAAAGyrGn1w1aRJkzj11FOzvw8fPjxatGhRaZnnnnsunnrqqYiIGDp0aBQVFW2yzfvv///t3XdcU9f/P/AXIA7EDaLiQK1xVMVRQcVRB3XhQq2o4EBxlGqX42Pramtb66qr4qhWcA9wIVVQgYJbsW7AhSKCCAEBkX1/f/DL/QZIQoAAMb6ej4ePxzX33JNzb+4hyTvnvM9xuLm5IT4+HnFxcdi0aRNOnDhRLm0hIiIiIiIiInpfffCBKwCYOnUqGjZsCADYu3cvfHx8IJVKERcXh/3798PV1RWCIMDExASzZs0qtL47d+4UeOzWrVvl0hYiIiIiIiIioveVniAIQnk3Qhs8fvwYLi4uiIqKUrjfxMQEbm5uaN++faF1HT9+HPPnz8/z2OrVqzF06NAybwsRERERERER0fuKgSs5KSkpcHd3h6+vLyIjIyEIAho0aIB+/fph8uTJBZKkKyMIAtavX4+DBw9CT08P48aNw+zZs8ulLURERERERERE7ysGroiIiIiIiIiISCsxxxUREREREREREWklBq6IiIiIiIiIiEgrMXBFRERERERERERaiYErIiIiIiIiIiLSSgxcERERERERERGRVmLgioiIiIiIiIiItBIDV0REREREREREpJUYuCIiIiIiIiIiIq3EwBUREREREREREWklBq6IiIiIiIiIiEgrMXBFRERERERERERaiYErIiIiIiIiIiLSSgxcERERERERERGRVmLgioiIiIiIiIiItBIDV0RERFQmUlJSYGdnBzc3NyQlJZV3c4iIiIjoPaAnCIJQ3o2g99+NGzdw4sQJXL16FXFxcUhPT4epqSk6dOgAe3t72NjYqFVPSkoK3N3d4efnh8jISOTk5MDc3Bz9+vXDpEmTULt27VI+E6KSu3PnDry8vHDlyhVER0dDEATUqVMHHTp0wNChQ/Hpp5+qVQ/7A+kad3d3/Prrr6hYsSICAwOLdA+zP5Au8PLywsKFC9Uq6+zsjAULFijdzz5BuiQ6OhoeHh4ICgpCZGQkBEFA/fr10a1bN4wfPx4SiUTl8ewPRLqNgSsqkXfv3mHJkiU4ceKEynL29vZYvnw5DAwMlJZ5/PgxXFxcEBUVpXC/iYkJ3Nzc0L59+xK1mai0JCUlYfHixTh9+rTKcr169cL69ethZGSktAz7A+kaQRAwYMAAPHv2DMOGDcOqVavUPpb9gXRFUQJXa9asgZ2dncJ97BOkS7y9vbF48WKkpqYq3N+4cWP8888/qFChgsL97A+kC168eIF+/foV6Zhz586hYcOGCvfpWjCXgSsqtoyMDEyZMgXXr1+Hvr4+xo4di+HDh6NJkybIzMzEgwcPsHbtWoSFhQEAXFxcMHfuXIV1paSkYPjw4Xjx4gUMDQ3x9ddfw87ODpUrV8b169fx+++/4/nz5zAxMcGxY8dgampalqdKpJZ169bBzc0NNWvWhKOjI/r27YuGDRsiLS0Njx49goeHBwICAgAAtra22LRpk8J62B9IFwUEBGDGjBkAgEOHDsHS0lKt49gfSJfIB65u376tsqyhoSH09Qtm9WCfIF3i5+eH2bNnQxAEWFlZwcXFBW3btgUAvHr1CsHBwejcuTM6deqk8Hj2B9IVxQlcnT9/Hubm5gUe18lgrkBUAqdOnRJ69OghBAcHK9yfmpoq9OvXT5BIJEK7du0EqVSqsNy6desEiUQiSCQS4dSpUwX2Hz16VNy/bNkyjZ4Dkabk5OQIe/fuFeLj45WWWbp0qXgvh4WFKSzD/kC6yNnZWZBIJMLIkSOLdBz7A+kST09P8X4tLvYJ0hXx8fGClZWVIJFIhLlz5wo5OTlFroP9gXRFTk6OkJaWVui/b7/9VpBIJMLAgQMV9pnk5GShb9++gkQiET7++GNh+/btQnR0tJCQkCD4+fkJ/fv3FyQSidC9e3chNja2HM60eJicnUpk8ODB8Pf3V5rDqkqVKnB0dAQApKen4+rVqwXKZGdnY//+/QCAjh07YvDgwQX2b926Vfy/l5cX3r17p6lTINIYPT09jB8/XuXQWwcHB3H78ePHBfazP5AuevLkCS5cuAAAmDBhgtrHsT8Q5cU+QbrEw8MDiYmJqFu3Ln788Ufo6ekV6Xj2B9Ilenp6qFSpksp/iYmJOHPmDADAyclJYZ/ZsWMHXrx4AQBYuXIlpk2bhnr16qFmzZro378/XF1dAQBxcXHYvHlz2Z1gCTFwRSWmbL65TNOmTcXt169fF9gfEhKChIQEAMCgQYMK7Pf09MSTJ08watQoAEBaWhqCg4NL0mSicpORkSFu161bt8B+9gfSRXv27IEgCKhZs6bSnD2KsD8Q5cU+QbrE29sbADBmzBiVeT+VYX+gD83u3buRmZmJGjVqYOTIkQX263Iwl4ErKnXyiRZr1KhRYP/du3fF7Y4dO+bZ9+7dO2zcuBGWlpb46quvFB5D9D5xd3cHALRo0UJhvgb2B9I1KSkpOHr0KABg1KhRqFSpktrHsj/QhyInJ0etcuwTpCtevHiByMhIAICNjQ0yMjLw999/w97eHp06dYKVlRUcHBywf/9+ZGVlKayD/YE+JKmpqTh48CCA3GBvlSpVCpTR5WCu6qEyRBogn3y0Q4cOBfY/efJE3M6/KoK7uztiY2OxevVqmJmZoUKFCsjKyspzDJG2ysnJQWZmJt6+fYv79+9j165dCAoKQoMGDbB+/XqFw3vZH0jXHDlyBKmpqdDX18f48ePz7GvZsiWA3Oki1tbWBY5lfyBdduLECRw7dgzh4eGIi4tDlSpVYGlpCUdHR/Tv31/hMewTpCuuXbsmbteqVQsODg64d+9enjI3b97EzZs3cfLkSWzZsgXVq1fPs5/9gT4knp6eSEpKQoUKFcRUPPkVJZjr6ekpHmNra1t6DdcQjriiUpWRkYGTJ08CyO08jRo1KlBGKpWK27Vq1RK3ExIS8Ndff6FXr17iFxrZG5YskkykzU6cOIH27dujW7dumDp1Ku7fv4/Zs2fj+PHjaN68ucJj2B9IlwiCgH379gEAevfurXTJZmXYH0iXzZs3DxcuXMDr168hCAJSU1Nx6dIluLq6Yvny5QqPYZ8gXREbGytuf//993j48CGmTJmC48eP4/r16zh16pT4Y8eNGzewdOnSAnWwP9CHIicnR5y1YWtri/r16yssp04w97vvvhODufmP0WYccUWlatu2bWJeqzlz5igsI5tXW7FixTwjULZs2YKUlBR899134mMVK1YEkHf6IZG2evr0aZ7/x8fHY/fu3Xj79i1mz56tMJ8D+wPpksDAQDx79gxA0ZKyy7A/kK4xNzfHgAEDYGhoiC5dusDa2hr16tVDRkYGLl++jFWrViEyMhK7d+9GmzZtYG9vn+d49gnSFfIBpLCwMOzYsQNWVlbiY9WqVcPSpUthYGCA3bt3w8fHB66urvjoo4/EMuwP9KHw8/MTp9ZOmjRJabmiBnOlUul7E8zliCsqNSEhIdiyZQuA3Hm43bt3V1leX///bseoqCjs27cPdnZ2aNWqlfi4ujkgiLTBN998g7CwMISEhODEiROYPn06MjIysHPnTowdOxYpKSlKj2V/IF2we/duAICFhQV69OhR7HrYH0hXWFtbY8OGDVizZg0cHBzQtGlTVKlSBTVq1MCAAQOwe/duGBsbAwDc3NyU1sM+Qe87+c9AS5cuzRO0kif/Jd3Hx0dhGfYH0nV///03AKB9+/YFpgDK0+VgLgNXVCpevHgBV1dXZGZmom3btli0aJHSsrJRJ5mZmeJj69atgyAIeZIpAkB6enqeY4jeB1WrVkXLli3x3XffYefOndDX10d4eDjWrVtXoCz7A+mKx48f48KFCwCAcePGFXmZc4D9gT489evXx8CBAwEAz58/F39hl2GfIF1RuXJlcVvVarONGjVC1apVAeT2CXnsD/QhkOV6A1SPtpKni8FcBq5I4169eoUpU6ZAKpWiUaNGcHNzy/PmlF/t2rUB5C7PmZycjNDQUHh7e8PBwSFPTqzMzEwkJyfnOYbofdOxY0d07twZAMSV1uSxP5Cu2LNnDwRBQJUqVQpMd1IX+wN9iFq0aCFu5/+izj5BukI+0XpaWprKstWqVQNQMD8V+wN9CGSjrczMzMQfNpTR5WAuc1yRRsXFxWHKlCl4/vw5zM3N4e7ujrp166o8plmzZuJ2VFQUVq9ejSpVquCLL77IUy46OlqMDDdt2lTzjScqIxYWFrh27RpSUlIglUrzfIhifyBd8e+//wLIHbbepUsXlWUnTpwIIDf/z/nz58XH2R/oQyS/xLn8lw+AfYJ0h3xy6ZiYmDy5q/KTBbbyryrI/kC6LjIyEn5+fgByc4XKEqorkz+YGxUVBW9vb0yYMOG9D+ZyxBVpzKtXr+Do6IjHjx+jSZMm8PDwgLm5eaHHtW3bVtx2d3dHUFAQnJ2dC3SikJAQcbtdu3aaazhRGZN9ANPT0xOHv8uwP5CuEAShxHWwP9CHSLaoDZD7C7s89gnSFe3btxe3w8LClJZLTk5GYmIiAKBevXp59rE/kK5zd3dHTk4OKleujLFjxxZaXpeDuRxxRRoRGRmJSZMmISoqCq1atcKOHTtgYmKi1rEdO3ZErVq1kJCQAC8vL9SpUwdTpkwpUO706dMAcufE29jYaLT9RGUlOzsbN27cAAA0adIElSpVyrOf/YF0xenTp1UGr65du4apU6cCAHbs2IEuXboUyIPF/kAfoosXLwLInR6V/wsF+wTpihYtWqBmzZpITEzE+fPnMWTIEIXlgoKCxO1evXrl2cf+QLosKSkJnp6eAIDhw4ejZs2ahR6jKJg7e/ZsnQjmcsQVlVh4eDjGjRuHqKgodO/eHXv37lU7aAUABgYGGDdunPj/yZMnFxiFcvHiRQQEBAAARo0alWcYPZG22L59O5ycnMRfBhVxc3PDy5cvAeQO+c2P/YF0RcWKFVGpUiWl/wwNDcWyhoaGqFSpkrjCjQz7A+kSQRCwYsUKnD17VmmZf/75R/xxY8SIEQVyhLJPkK7Q19cXPwedOXMG9+/fL1AmLS0NmzdvBgA0btwY1tbWefazP5AuO3DgAFJTU6Gnp6d2UnZZMBeAzgVzGbiiErl58yYcHR3x+vVrDBo0CBs3boShoSHS09MV/svIyFBYz9SpU9GwYUMAwN69e+Hj4wOpVIq4uDjs378frq6uEAQBJiYmmDVrVlmeIpFaQkNDsWnTJly9ehUDBgzApk2bcO/ePSQlJSEhIQGXL1/GnDlzsHHjRgBA165d83zYksf+QPR/2B9IV+zYsQN///03XF1d4erqivPnzyM2NhYpKSkIDw/H6tWrMXfuXAC5I3LzJ9KVYZ8gXeHk5AQzMzNkZmZiypQpOHToEF69eoWkpCRcvXoVU6ZMwcOHD2FgYIAVK1bkWSlNhv2BdFFmZib27NkDALCxsUHz5s3VOk6Xg7l6giaSUNAHy8nJCVevXlW7vIWFBc6cOaNw3+PHj+Hi4oKoqCiF+01MTODm5pZnTjyRNrlx4wa+//57REREqCxnZ2eHH3/8EcbGxkrLsD+Qrrty5YqYlN3Dw6PAL+ny2B9IF2RlZWHNmjXYvXt3gaTr8tq3b4+1a9fmSaSbH/sE6YpHjx7B0dGxwIqBMkZGRli5ciVsbW2V1sH+QLrm2LFjWLBgAYDcGR35p8mqkpKSguHDh+PFixeoV68eFixYgK5duyInJwd+fn5YuXIlUlNTYWJigmPHjsHU1LS0TkOjGLiiEilq4KpPnz7YsmWL0v0pKSlwd3eHr68vIiMjIQgCGjRogH79+mHy5MnvzaoH9OHKzs6Gj48Pzp8/j9u3byMuLg4VKlSAmZkZOnfujOHDh+OTTz5Rqy72B9JlRQlcAewPpDuePXuGw4cPIzg4GC9fvsS7d+9gamoKiUQCOzs7DBw4sNCVowD2CdId8fHxcHd3R0BAAJ4/fw5BEGBubo7evXvDyckJDRo0KLQO9gfSJcOHD0doaCiaN2+OU6dOFcgBWhhdDOYycEVEREREREREVM4uXbqEyZMnAwCWLVumNLVIYXQtmMvAFRERERERERFROUtLS8PFixcRFBSE+fPnvzc5qEobA1dERERERERERKSVuKogERERERERERFpJQauiIiIiIiIiIhIKzFwRUREREREREREWomBKyIiIiIiIiIi0koMXBERERERERERkVZi4IqIiIiIiIiIiLQSA1dERERERERERKSVGLgiIiIiIiIiIiKtxMAVERERERERERFpJQauiIiIiIiIiIhIKzFwRUREREREREREWomBKyIiIiIiIiIi0koMXBERERERERERkVZi4IqIiIiIiOj/y8rKKu8mUAnxNSTSLQxcERERERERAXj8+DGGDBmC4ODg8m4KFZNUKsXIkSPh5eVV3k0hIg1h4IqIiIiIiD54N2/exPjx4xEREYHffvsN2dnZ5d0kKoY9e/YgPDwcCxcuxNatW8u7OUSkAXqCIAjl3QgiIiIiZcLDwxEVFYWcnBz069evvJtDRDooJCQEzs7OePfuHSwsLODu7o569eqVd7OoGHJycvDDDz+II65cXV0xZ86ccm4VEZUEA1dERERFIJVKsX//fvj7+yMyMhIpKSkwMjJC48aNYWNjgwEDBuDjjz8u72bqlJYtWwIArKyssHv37nJuDSkSGBiIEydO4ObNm4iLiwMAmJiY4OOPP0b//v3Rr18/GBsbl3MriRQLDw+Ho6Mj3rx5A3Nzc+zfvx9mZmbl3SwqAUEQMHfuXHh7ewMAFi9eDEdHx3JuFREVFwNXREREavL398eCBQvw5s0bpWW6deuGXbt2lV2jPgAMXGmvtLQ0fPPNNzh//rzKcnv37sUnn3xSRq0iUl98fDxGjBiB2NhY1KxZEwcPHoSFhUV5N4s0IDMzEy4uLrh06RL09fXx559/om/fvuXdLCIqhgrl3QAiIlIuMjIS/fv3F//fokUL8ddDKlsPHjzAnDlzkJGRAUNDQwwdOhQdO3ZEjRo1IJVK8ezZMwQEBPAXXfqgLFy4UAxaNW3aFPb29mjYsCEyMzMRGxuLGzdu4M2bNwxakdZasmQJYmNjoaenh99//51BKx1iaGiItWvXYsSIEXj16hV++OEHeHt7o06dOuXdNCIqIgauiIi0mJ+fX57/P3z4EBEREfxgXQ7c3NyQkZEBANi0aRM+/fTTAmX+97//lXGriMpPeHg4fHx8AAAdO3bEnj17UKFC3o+WLi4u5dE0IrUcO3YMZ8+eBQCMHTtW4d91er/Vrl0bv/zyC6ZNmwapVIolS5bgzz//LO9mEVERcVVBIiIt5uvrCwCoW7dugceobIWEhAAAGjZsyC83RMhdgU3GwcGhQNCKSJtlZWXhjz/+AADUqFEDX3/9dfk2iEpNz549xSmCZ8+eFd/Piej9wcAVEZGWev36NW7dugUAmDJliri6Uf5RWJqUk5ODf//9F6mpqaX2HO+r169fAwAaNGhQzi0h0g6yPgEA9evXL8eWEBXdqVOnEBMTAyB3tFWtWrXKuUVUmmbOnClu79ixoxxbQkTFwcAVEZGW8vPzQ05ODgCgf//+4iifO3fuiB+2iysnJwfp6emQSqUIDw/H6dOn8euvv6Jv375wcXHBhQsXStp8ItJxXN+H3mfu7u4AAD09PTg4OJRza6i0WVpaiiv+nj9/HpGRkeXcIiIqCo7pJiLSUrKRVS1atEDjxo3Rt29fHDhwAIIgwM/PD05OTmrX9fDhQ3h5eSE4OBgxMTFISkpSWf7cuXOwtbVVWSYgIABHjhzBf//9h8TERFSrVg0tWrSAnZ0dRo0aBQMDA7Xbp2kXL17EoUOHcOvWLbx+/RqVK1eGmZkZbGxsMG7cODRt2rTc2qYJGzduxKZNm1C/fn0EBAQAyH099u3bh3v37uHNmzcwNTWFtbU1pk2bho8++kjtuqVSKTw8PBAQEIBnz54hJycHZmZm6N69O5ycnNC8efNC68jIyMCFCxdw4cIF3L17F8+fP0dSUhL09fVhYmKCtm3bYuTIkejTp09xL4HC55w+fTouXboEAPjkk0/w119/oUqVKhp7DkWcnJxw9epVDB8+HCtXrkRmZiYOHz6MY8eO4cmTJ8jIyECjRo3Qp08fTJs2DTVr1lS77rCwMOzZsweXL19GTEwMKlWqhEaNGqFfv36YOHEiqlevXmgdshUZZUxNTREcHCz+39vbG4cOHUJoaCiSkpIgCEK5rN6oiT4rey3k/fPPP2jWrBkA4L///sPff/+NGzduQCqVIjs7G0DudZbXt29fREVFYfv27bC2tsbGjRtx8uRJJCUlwdLSEj/88ANatGiBxMRErFmzBv7+/khJSUHXrl2xZMkSpaMyIyMjce7cOVy/fh0PHz5EbGws0tPTYWxsDAsLC9jY2GD8+PEwNTVV+1xHjhyJFStWAAAuX74MT09P3LhxA7GxsTA2NkaHDh3g4uKCzp07F1qnTE5ODk6fPg1vb2/cu3cP8fHxMDQ0hJmZGTp16oRhw4aha9euatenje8VL168wL179wDk9hFzc/Mi1yGVStGjRw9kZ2fD3Ny80JU1gdxE8AcPHgQAeHh4wNraWmV5TVw7Td53svceeT/++KMY+IuJicH27dsRFBSEly9fIjMzU61zjYuLw6FDhxAUFIQnT54gJSUFVapUQZ06dWBpaYk+ffrA1ta2xNOR+/bti3v37iEnJwd+fn5wdnYuUX1EVHYYuCIi0kJv3rwRv4D169cPANCtWzcYGRkhNTUVvr6+agWuBEHA+vXrsX37dmRlZSkso6enh48//hgGBgbQ19eHqampyi8lGRkZmD9/Pv755588j0ulUly5cgVXrlzBwYMHsX37dtSuXVvdU9aI7OxsLF68GJ6ennkez8zMRHJyMh49eoR9+/Zh3rx5mDRpktJ60tLSxABIfomJifD39y/wuLm5OSQSSclOoIikUikyMzOxaNEiHDt2LM++ly9f4ujRozh16hS2bduGbt26FVrf5cuXMXv27AKBzWfPnuHZs2c4cuQIFi1aVOjohI0bN2Lbtm0K90VFRSEqKgpnzpzBwIEDsXr1ahgaGhbaNlWys7PxzTffiK9Z+/btsXXr1lIPWsmTSqV49eoVvvjiC9y9ezfPvkePHuHRo0fw8fHB/v37YWZmVmh9O3bswJo1a8TgCpDb9+7fv4/79+9j3759cHNzg6WlZZHaGRcXJ66M+f3338PLy0vtY0NDQxEdHS3+PyIiQtz+77//FE4xtrGxQcWKFZXWqak+q0x0dDSaNWuGw4cPY8mSJeIoVnXEx8djxowZef4WXLp0CZMnT8axY8fg7OyM8PBwcZ+/vz9iY2Ph6ekJPT29PHWlpKRg8ODB4gIP8t68eYNbt27h1q1b2LdvH9avX692YCgxMRHJyclYtGgRTp8+nWdfQkIC/P39ERQUhM2bN6N3796F1hcXF4cvvvhCnKYuk5mZiadPn+Lp06fw9PREly5d8Ouvv6Jx48ZK69Lm94rLly+L2927dy9WHbVr14a1tTUuXryIqKgoPHjwAK1bt1ZaXhAEMbhlamqKLl26KC2rqWtXWvedPNnfhPv372PSpEmF/jCWn7e3N5YsWYK3b9/meTw5ORnJycmIiIjA8ePHUb9+fcyfPx+DBw8uchtlbGxssHHjRgDAlStXGLgieo8wcEVEpIXOnz8vBppkCUUrVqyIHj16wNfXVxwxUNiH/XXr1mHLli0AAGNjY4waNQrt2rWDvr4+IiIicOTIEbx8+RI5OTlYuXJloaNpcnJyMHPmTHEqYfPmzTFy5Eg0btwYSUlJ8Pf3x7lz53D37l1MnToVhw4dKnFQoijmz58Pb29vALkJ7ceMGYMWLVogPT0dV65cwfHjx5GZmYlff/1VvB6KxMXF5cmHIS88PFzhPldX1zIPXKWnp2PevHn4559/0KBBA3z++eewsLBAbGwsDhw4II74+fLLL+Ht7a0yD9GFCxcwc+ZMMagxdOhQWFtbo3Llynj06BEOHDiA169fY9myZahRowYGDRqktK4hQ4Zg9+7d6NChAzp37ozGjRujatWqiI+Px4MHD3Dy5EmkpKTg9OnTaNCgARYsWFDsayAIAr7//ntxZbCWLVvir7/+grGxcbHrLI6oqCi4uLggLCwMHTt2xODBg2FqaoqHDx9iz549ePPmDaKiojBr1iyFgQ15f/75JzZs2AAAqFmzJsaMGYM2bdogJycH169fh5eXF+Lj4zF16lR4eXmpDB7I+n94eDjWrl0LQRAQExODw4cPw8vLC4aGhhg2bBisra3x119/5QnE5Ldr1y4cPXpU4b61a9cWeMzAwAC3b99WWh+guT4LAN9++y0SExMB/F8+m5cvXyIwMFAMWvXs2RO2tra4cuUKTp06pbJt69atQ2xsLD7//HN07doVZ86cwZkzZxAXF4cxY8YgJiYGo0aNgo2Njbjv3r17uHv3Ltq1a5enLmNjY/Tu3Rvh4eHo0qULWrduDVNTU2RlZSE6OhpnzpzB7du3kZiYCFdXV/j4+KgV4IyJiYGLiwtu3ryJBg0aYPTo0WjevDnevHmDgwcP4t69e8jKysLPP/+MXr16qbzvoqOj4ejoiBcvXgDIDcbb29ujefPmyMzMxIMHD3DmzBlERUXh+vXrePbsmdJ7T9vfKx48eCBuF2VEan6DBg3CxYsXAeQm/VYVuLpz546YF+6zzz6Dvr7ijC2avHaavu/s7OzQtm1bALl9Pjw8HC9fvkRMTAymTp2KpKQkSCQSjBgxAmlpaeLfMWWuX7+OefPmIScnR3zf+eSTT1CjRg28e/cOMTExuHTpEi5evIjo6GgEBASUKHDVokULcVs24o6I3hMCERFpnZkzZwoSiUSwsbERcnJyxMe9vLwEiUQiSCQS4fDhwyrrePr0qdCyZUtBIpEInTp1EiIiIgqUSU1NFezt7QWJRCL07NlTeP36tco6PTw8xOdftGiRkJmZWaDM0aNHxTJbtmxR84xL7vz58+LzjhgxQkhMTCxQ5tKlS0Lbtm0FiUQidO7cWYiLi1NYV2RkpFiXuv88PT1L+xRFGzZsyPPcc+fOFdLT0/OUSU1NFUaPHi2W+e2335TW9/btW+HTTz8VJBKJYG1tLdy9e7dAmcTERGHkyJGCRCIRunbtKiQlJalso6J7QyY2Nlbo3bu3IJFIhI8//rjQumTn4OjoWGDfzz//LO4fOHCg0te0tDg6OorP36pVK8HDw6NAmYiICKFLly5iuXPnzimt7/79+0Lr1q0FiUQijB49WoiPjy9Q5sGDB2J9zs7OarXz8uXL4vO7u7sLbdq0EXr06CE8ePCgwLkous6CIAgLFiwoUp/o06ePyjZpss/mJ6v3999/F/r06SN8/PHHgre3t7hfvg/l16dPH0EikQgtW7bMc8zz58/FY1q2bCmcPHlS4b4DBw4obJOqPiEIgrB582axjlWrVqksK3/fyf4GJCcn5ynz9u1boVevXmKZ+/fvq6zTxcVFLPvtt98KaWlpBcpkZ2cLnp6ehf5t1+b3CkEQhGnTponPff369WLXI5VKhTZt2ggSiUQYNmyYyrJr164Vn/Pq1atKy2n62mnyvpMnuwfHjx8vfP3114JEIhF++eUXISsrSxCEvH9zLl++rLCOL774Qq330Pv37wtz584VpFKp2u1Tpnv37uJzKrrHiUg7MTk7EZGWSU1NFX9p7du3b55fyHv37i3mtChsdcGjR4+KyZOnT5+OJk2aFChTpUoVfPPNNwCAV69ewcPDQ2l97969w/r16wEArVq1wrJlyxTmmxgxYgSGDBkCANi9e7fSKYqatm7dOgC5Ux9XrFiBGjVqFCjTtWtXcbpRcnIyDh8+rLCuhg0bIiwsLM8/GSsrqwL7wsLCYG9vr/mTUoOtrS1WrlxZYDpWlSpVsGTJEvH/8vdDfh4eHnj58iUAYNmyZWICW3k1atTAqlWroKenB6lUihMnTqhsl6pcJKamphg9ejSA3ClI//33n8q6lNmwYYOYi6lRo0bYtWsX6tSpU6y6NOF///ufwim8TZo0wYwZM8T/558WJ2/VqlXIzs5GxYoVsXHjRoWjKlu1aoVvv/0WABAcHIxHjx4VqZ1r1qwBALi5uaFVq1ZqH7dixYo89/yXX34p7vPw8CjQJwrL+aPJPqvM3r17ERUVhfnz54t/l9TVv3//PMfUrVs3zz47OzuF+2SjvvIrLD/P1KlTUalSJQDAtWvX1G6nvb09Vq1aVWCUoZGRkbioB5A75VeZgIAABAYGAgDatm2LlStXim2Rp6+vD3t7+zz3c37a/l4B5I6qlSnJaoK1atUSp9eFhoaKo9UUOXfuHIDce0VZzrHSuHaldd/J3L17Fz4+PrC1tcX3339fpJxlT548EbcHDBigtFzr1q2xatUqjaz8KF9HbGxsiesjorLBwBURkZYJDAxEeno6gP/LbyVTu3ZtdOjQAUBuMuOUlBSl9ch/IFSVS0N+akP+xMbygoODkZycDAD4/PPPVX44lQVxXr9+XeygRFFERUUhNDQUANChQ4cCCanljRkzRtzOnz/kfeTk5KR0+k+7du3EqTyJiYl5chLJ8/HxAQCYmJjgs88+U/pczZs3F++/wgKnhalXr564HR8fX+Tjd+3ahT///FOsa9euXWpNrSpNqnIwyQdA8ucPkpFKpWLunT59+uS5RvkNGzZM/ELq6+tbpHampaVh/Pjx4pSf8lBWfTYtLQ1t2rSBo6NjkduYPxAkH8hRtU9RPiF1VKxYUQxUFqVP/PTTT0r3yU/le/fundJy8oHoL7/8skQJ07X5vUJGPh+bkZFRieoaOHCguC2bspzfs2fP8PDhQwC5ARpl0wTL49oV976TSUtLQ+XKlbF48eIiHyu/WEVZvf7yuQ9V9Qki0i7McUVEpGVkH3yNjIwUJtTu27cvbty4gYyMDPz7779K8z3IVvMBoDJJtfxIHWUjBQCIq9cBKJC/Jb82bdqI23fv3sUnn3yisnxJyXKMAECnTp1Ulm3SpAnq1KmD+Ph4PHz4UPzQravat2+P58+fA8gdEZB/dbaYmBhxRFmbNm2UfqGSad26NW7evFkgAbkqCQkJiIyMxNu3b5Geng5BEPLkUipKwmwgd8SSbCU1U1NT7Nq1Cw0bNixSHWWtXr16qFu3LmJjY/H69WuFOeqCgoLEZOyF9TEjIyNYWFjg0aNHRXotgNwRGFOnTi3w+Nq1a5Genq5wpI2mlWWfnTZtWoH7etKkSRg5cmTRGq1BWVlZePbsGRISEvD27VuxD8iCXkXpE6pyQ1WtWlXcVjbiMjs7W/z7LsulWBLa/F4hI7/oQUlXNbS1tcWPP/6IzMxMnD17FpMnTy5QRjbaCoDK/IClfe00ed/JGz58eIEfDjp06CCet7IVC/v27YuQkBAAuQHTWbNmYfTo0aWarF9+BFpZjvIjopJh4IqISItkZGSIH1x79uypcDWuPn36YNWqVQByR1ooC1zJ/9IeGhqqNGns48ePxW1VI1bkp0A8ePBA5S+z8l8KXr16pbScpsTExIjbqhJVyzRq1Ajx8fHIzs5GVFRUoUnp32fyy7wrCkzKv65paWkKV0yUl5CQACB32tbbt2/zfDGW9/r1a+zcuVNM5qwpvr6+WLx4MQRBQM2aNbFz584CwThtZW5uLk5NSUhIKPDlTP61iImJKfS1kAUi5O9/dXTt2lXhaC5lXy5LQ1n1WWNjY9ja2hZ4vHr16qhevbr6DdYQX19fHDp0CFeuXCn2yKyiULWio0x8fLy4olvz5s1LnCRdm98rZOSvS0pKSonu/Zo1a6Jr164ICgpCSEiIwqC0LIBTr149lYHa0rp2pX3fKQoCV6pUqdAfFCZOnIirV6/i33//RWpqKtasWYP169ejU6dO6N27N/r37w8LCwuNtlV+pHpZBOmJSDMYuCIi0iKXLl0SP1TJVhPMr3nz5rCwsEBERAQCAwORkZGh8MvJsGHD4O7uDiB3ZbEhQ4YoLLd161Zx28bGRmnb5D9Ay+dOKoxs2kNpkkql4rY6q8nJlymL9pUn+cCSonOVz/Vy9epVldNF80tJSVEYuDp//jy+++67PNNxNOX8+fPiFzYzM7M8gTltV9hrId/H9uzZgz179qhVr6opw4pYWloWqXxpKKs+27p1a7WCN6UtNTUVX3/9tZhHSpvIVroD8k7dKi5tfq+QkQ9aauJ5Bw0aJI6Y9Pf3z7P6pVQqxc2bNwHkThNUtbKjpq9dWd13sinkRVWpUiVs3boVhw8fxo4dO/Ds2TNkZWWJ70WrVq1C27ZtMWnSJAwdOlTltVOX/LUqj+A1ERUPA1dERFpEPldNTEwM9u/fr7Bc7dq1ERERgdTUVAQHBysMcrVt2xZTpkzB33//jYiICEycOBGzZ8+GpaUlKlWqhIiICOzYsUNMoFyrVi04ODho/JzkfxUuLUV9DvkpMyWdJqLt5M+1sGmARaVomkVYWBjmzJkjTlW1traGo6Mj2rZtizp16oi/cHt5eWHhwoVFfs6ffvoJz58/x40bNxAWFoavvvoKW7ZsKTQBsTYordeiqNNdNPHlr6TKqs9qw7kCwKJFi8TgQdWqVeHs7IxPP/0UTZo0QdWqVcX7oW/fvhodoagOTU6b01Q7Spv8iEPZKNKSsLW1xdKlS8XpgvKBq4CAAPHcVE0TLAll166s7ruS9DN9fX2MHTsWY8eOxa1btxAYGIigoCDcvXsXOTk5uHv3LubNm4fjx4/jzz//LNHUfkEQ8ObNGwC5U2xNTEyKXRcRlS3t/5RHRPSByM7OzrMK1x9//KHWcX5+fkpHZ82fPx8mJiZYt24dbt68CWdnZ4XljIyMsGHDBpW/PtapU0dMLhsYGKgycXRZk2+3bMqLKvJlynMVurIgf66KRlPIf3AfPXo0fvnllxI939atW8Wg1dChQ8WVCDWlYsWK+PPPP+Hg4ICIiAgEBQVh2bJlWL58ucaeo7TIvxaKVseSvxdXrlyJ4cOHl0m7ysOH1GefPHmCU6dOAcgdYbJv374ireZY2uT/Bmhi9JE2v1fIfPTRR+J2aGgoevfuXaL6qlevju7duyMwMBAXL17Eu3fvxNySsmmCDRo0KHRkkiavnbbfd4pYWlrC0tISc+bMQXx8PDw9PbF161akpKQgODgYv/32G3788cdi1y/7wQ8AmjZtqjWBbSIqHFcVJCLSEtevX88zfUZd8lOn8tPX10d6ejqysrJgaGhY4EOaoaEhPvvsM3h6esLKykrl8zRo0EDclp9aog3kc+RERkYWWl6WrPxD+MVV/lf0unXrFthfv359cVt+2mBxyU81/Pbbb0vli0GtWrWwfft2Mfhz+PBhbN68WePPo2my10JfX19h8EW+j2nitdBmH1Kfle8TQ4YM0brggYmJiZjX6unTpyWuT5vfK2TkE5/fvn1bI3XKRlOlpaUhKChI3L5w4QKAwqcJApq9dtp+3xWmTp06mD59Ovbs2SOODPPy8kJaWlqx65R/rdu3b1/iNhJR2WHgiohIS/j5+YnbZ8+eRVhYmMp/sqWwExMTleYlOnv2LDZs2ABBELB161YEBQVh165d2L59Ow4fPoxr165h48aNaNasWaHt69mzp7h9/fr1Ep6tZsl/AL1x44bKshEREWKAsEuXLlqR/6Y0yZYYNzAwQMeOHQvsNzc3FxNd//fff3lWoywOWQJ4Q0PDPF/CNK1x48bYvHmzOPVw/fr1OHbsWKk9X0lFRkaKX0Rbt24NIyOjAmV69OghfrG9du1ambavrH1IfVZ+UQR1EtGXtYoVK8La2hoAkJSUhFu3bpWoPm1+r5CxtrYWp5yFhISU+O8eAPTv318MAMpWB75w4QLevXsHQL1pgpq8dtp+36mrdevWYtAtIyMDL1++LHZd8p+VevXqVeK2EVHZYeCKiEgLCIIgftBt0aIFGjVqVOgx8tMD5YNe8o4fPw4gNyeWjY0NTE1N0a1bN/Tq1Qvt27cXpzKoo1evXmL5vXv3ih/GtUGrVq3yBF8ePXqktOzhw4fF7f79+5d620qbqlWnrly5Io7yadeuHapVq6aw3IABAwDkftE5cuRIidojmwKWmZmpcsTA/fv3xW35/EVF0alTJ6xYsUIM9ixatAiXLl0qVl2aoOq1kA+qKVsEwdTUFJ07dwYA/Pvvv+KUIV30IfVZ+WmR0dHRSsu9fPlSzLdU3D5RXPKr08ov2FEc2vxeIVO5cmXxnKVSqTidrySqVauGHj16AMid5peVlSXWa25urtaiCJq8du/DfafuCofyo6yKO4o3JSUFPj4+AHJHc3366afFqoeIygcDV0REWuDOnTviB0t1P0x1795dHHlw9uxZhR84c3JyAOR+MD948GCJ8pcYGxvjyy+/BJA7emT27NlK63v8+DEWLVpUKqvKKTN16lQAuee8YMEChSutXb58GR4eHgCAhg0bYvTo0WXWvtLy008/iaOq5EmlUixbtkz8v+z6KOLs7CwuB//bb7+JQdT8MjMzsXfvXpUjm2SBFwDitZaXnZ2NTZs2Yffu3eJjsbGxSusrzODBg/Htt9+K7Zs9ezbCw8OLXV9JzJgxQ+G53L59Gzt27ACQm2vG0dFRaR3z5s2Dvr4+srOzMWvWLDx+/FhhucTERPz6668ICwvTTOPLwYfSZ+X7xOnTpxUGdB89eoSpU6eKfzMTEhI0MgpIXcOHD0fr1q0B5OZkWr16tdIp6GfPnsW2bduU1qXt7xUyzs7OYhDkwIEDGqlz4MCBAP5vJHRAQECexwujyWun7ffd27dv4eDggP/973949eqV0nIHDx7EkydPAOQGnJo0aVKs5zt+/Lh4nhMmTBBH6xLR+4HJ2YmItID8aoJ9+vRR65iqVavCysoKwcHBePXqFW7fvl3gF93hw4eLQYglS5YUWF5bli+mQ4cOGDlyZKEJaidPnozAwEBcvXoVQUFBsLW1hb29Pdq2bQt9fX1ER0fjwoULCA4OhiAIyMnJwa+//qrW+ZSUvb09fHx8EBwcjLt372LIkCEYM2YMPvroI6SlpeHKlSs4fvw4srOzYWhoiGXLlunEB9eEhARMmDABAwYMQPfu3WFsbIxHjx7hwIED4hcVa2tr2NraKq2jWrVq+OWXX+Dq6or09HS4urrCxsYG/fr1g5mZGVJSUnDv3j2cPn0asbGxqFKlCtq3b69wiumkSZPg5+cHQRCwbds2PH36FD179kT16tURERGBEydO4MmTJ2jTpg1evHiBpKQk7N27F126dMEnn3xSrGswffp0REZG4tChQ0hOToaLiwsOHToEMzOzYtVXXHfu3MGQIUMwcuRItGvXDnp6erhx4waOHDkijiyYPn26ynZ16NABM2bMgJubGyIjIzF8+HDY2dnB2toaxsbGiI+PR0hICHx9ffHu3TtcvHgRnp6eSu9lf39/AMgTzIuIiBAfB9T/m6Npmu6zN2/ezDM9CsgNIMifa4cOHRQmxi9NLVu2RPfu3XHx4kW8efMGI0aMwPjx49G0aVO8ffsWV65cwZkzZ5CZmQkrKytcvXoV7969w/LlyzF//nxUrVq11NtYoUIFrFixAk5OTkhKSsL27dvh7++PYcOGwcLCApmZmXjy5An8/PzEe6l58+bo16+fwvq0+b1CpkWLFvj000/h7++PS5cuITAwsMRJ2vv374+KFSsiIyMDa9asEUdhFmU1QU1du9K4754+fYqIiAgAeaciyvcxCwsLNG3atNDzXLlyJe7du4d79+7B29sbvXr1gpWVFczMzJCVlYXo6Gj4+vrizp074jHffPNNsVZkTUpKEvMgVq1aFePHjy9yHURUvvSEsh4TSkREBQwYMAARERGoVasWLl68qPYHs7179+Knn34CAEybNg3z5s0rUGbXrl3YuHGjwtEM+X322WdYs2aNyhwyGRkZWLBggTjkXplGjRrhxx9/VDotqjSkpqbi66+/Fpf/VsTIyAjr1q0r8heUli1bAgCsrKzyjBYqDxs3bsSmTZsAALNmzYKHh4fSldnatWuHXbt2wdjYuNB6L1++jDlz5ojLhStiYGCA0aNHY/78+Urr3LlzJ1auXKl02knHjh2xefNmeHp6YvXq1QByfwHPH1iVUefaZ2VlYcaMGQgODgaQOxVt7969ap13STg5OYl5U7777jusXbtW6Xk7ODiovSLWzp07VY56AXJHZ3z11VdwcnJSOn1Gdu1UKe6oLfn70MPDQ8yTVBSa7LPyr4Uy6rSzb9++iIqKwsiRI7FixYo8+2TXU9W+L7/8ErNnz86zLzY2FhMnTlSa/Lxy5cr44Ycf8Nlnn2HYsGF49eoV9PX1ERwcrDCRv/y5qnr9vLy8sHDhQgC5oylluRGVefLkCWbNmiUGJ5SxsrLC8uXLVY5+0eb3CpkXL15g2LBhePv2LRo2bIhTp06Jua+Ka9asWXlWCG7UqJHSUazKaOraafq+k+/zyii6/xVJSUnB77//Di8vL2RlZaksa2RkhKVLl2LEiBGF1qvIkiVLcPDgQQDA8uXLMWbMmGLVQ0TlhyOuiIjK2cOHD8UvCb169SrSr4l9+vQRA1dnz55VGLiaPHkyxo0bh7CwMCQkJIjTBwVBQEJCAkJDQ3Hy5EkkJCTA19cXixcvxu+//670OStWrIg//vgDo0ePhpeXF27evInXr19DX18fpqamsLS0hK2tLWxtbWFgYFCEK1FyRkZG2LZtG86dO4cTJ07g1q1biI+Ph4GBARo1aoSePXti4sSJWrk8e3F169YN48aNw19//YV///0X0dHRMDAwQLNmzWBnZ4cJEyaoncy6a9euOHPmDA4cOIDAwEA8fvwYqampqFatGiwsLNCtWzeMHj0a5ubmKutxdnZG+/bt4e7ujpCQELx58wY1atRAq1atMHToUAwbNgz6+vpwcXGBsbExdu/erXJEmDoqVKiA9evXY/z48QgLC0NoaCjmzJmDrVu3igmTS9v06dPRtWtX7Nq1C9euXUNCQgKMjIzQrl07jB07Fp999pnadTk7O6N3797Yv38/Ll++jBcvXiArKwu1atVC69at0atXL4wYMaLUA3Ol7UPps3Xr1sWRI0fg7u4OX19fPHv2DHp6eqhXrx569eqFCRMmiAm09+7di7Vr1yI5OVlh8KA0NWvWDCdPnsSxY8fg6+uL0NBQJCQkoFKlSjA3N0eXLl1gZ2eHTp06FVqXNr9XyDRs2BALFy7EokWL8OLFC/zwww9Ys2ZNieocNGhQnsCVutME5Wnq2mnzfWdsbIyff/4ZLi4uOHHiBC5evIjIyEgkJiZCX18ftWvXRsuWLdGtWzfY29srzdFYGB8fHxw6dAhA7mcmBq2I3k8ccUVEREhKSoKjoyPCwsKgp6eH06dPw8LCorybRUpoYqQLaYa6I1+ISHstXLgQXl5eAIDZs2eLeaaKa9u2bWIA7NSpU/joo49K3EYqutu3b8PJyQlpaWmwsLDA/v37Ubt27fJuFhEVA5OzExHpoPT0dPj7+8Pf31/lakIy1atXx+effw4gdyRWaGhoaTeRiIhIKyxfvlzM17Vp0ybs2bOn2HVlZGSIyd47d+7MoFU5CQsLw4wZM5CWloa6deti586dDFoRvccYuCIi0kHZ2dmYOXMmZs6ciRMnTqh1jHyiVSMjo1JqGRERkXYxMDDAH3/8gR49ekAQBPz888/4+++/i1XXX3/9haioKAAo8cgtKp4HDx5g4sSJkEqlMDExwY4dOwqd4k5E2o2BKyIiHWRkZIQGDRoAyE3Om5SUpLJ8aGiomPS6SpUqauUvISIi0hWVKlXCli1bYGdnBwAICAhQuThCfoIgiIuhALmLnXTv3r1U2kqqhYSEIDExEU2aNMGBAwcgkUjKu0lEVEJMzk5EpKNGjx6NDRs2ICIiAgMHDsTgwYPRsmVLVK9eHQYGBkhLS8PLly8REhKCoKAgcVWfr7/++r1P+ExERFRUhoaGWL16NSwtLTFq1Ci1ksbfv38fwcHBOHr0KJ48eQIAsLCwwC+//FLazSUlJkyYAENDQ/Tv35/TA4l0BANXREQ6aubMmXj06BF8fHwQHx8vjqhSplq1apg7dy4cHBzKqIVERETaRU9PDxMnTlS7/LZt2/DPP/+I/7eyssKGDRtQvXr10mgeqUmWt5OIdAMDV0REOkqWs8PBwQHHjh3DvXv3EBMTg5SUFAC5UwLr1q2LFi1awMbGBoMGDeIH7fdE8+bNMWHCBJibm6NZs2bl3ZwPmrW1Ndq2bcv8KUQfqDZt2uD69eto164dHBwc0Lt37/JuEhGRztETBEEo70YQERERERG9b7KyslChAscCEBGVJgauiIiIiIiIiIhIK3FVQSIiIiIiIiIi0koMXBERERERERERkVZi4IqIiIiIiIiIiLQSA1dERERERERERKSVGLgiIiIiIiIiIiKtxMAVERERERERERFpJQauiIiIiIiIiIhIKzFwRUREREREREREWomBKyIiIiIiIiIi0koMXBERERERERERkVZi4IqIiIiIiIiIiLQSA1dERERERERERKSVGLgiIiIiIiIiIiKtxMAVERERERERERFpJQauiIiIiIiIiIhIKzFwRUREREREREREWun/ATTLT4hOu7NIAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: bootstrap-distribution\n",
- "def plot_bars(data: pl.DataFrame, title: str):\n",
- " distribution = (\n",
- " data.group_by(\"age\")\n",
- " .agg(count=pl.count())\n",
- " .with_columns(p=pl.col(\"count\") / pl.col(\"count\").sum())\n",
- " )\n",
- " fig = (\n",
- " so.Plot(distribution, x=\"age\", y=\"p\")\n",
- " .add(so.Bars())\n",
- " .label(\n",
- " title=title,\n",
- " x=\"Age of peak performance (years)\",\n",
- " y=\"Mass\",\n",
- " )\n",
- " )\n",
- " return fig\n",
- "\n",
- "\n",
- "plot_bars(peak, \"Bootstrap distribution of smoothed means\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b1cdbbd1",
- "metadata": {},
- "source": [
- "This distribution suggests two important things:\n",
- "\n",
- "1. The most probable age of peak performance is 33;\n",
- "2. There is a non-negligible probability that the age of peak performance happens in the early 20s, but a negligible probability that it happens in the late 20s.\n",
- "\n",
- "Thing 2 certainly deserves attention. This is possibly caused by a confound variable or some measuring error, but I won't investigate this any further. Instead, let's get back to estimating curves. We will use the samples from step 4 to summarize the distribution of mean performances. For each age, we calculate the mean and 90% interquantile range, yielding a nonparametric curve:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "bootstrap-curve",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3xUVfo/8M+dnt47EHqvgggoRbEi2Ht3bWtZy+5+t/5Wt7jdXXXdXV3Xhq4dLIhiQ0AEBWkC0iEQ0sv03s7vj5ghk8wkk8ydlnzer1deTM7cOfcwuTNz7zPPeY4khBAgIiIiIiIiIiJKMopED4CIiIiIiIiIiCgUBq6IiIiIiIiIiCgpMXBFRERERERERERJiYErIiIiIiIiIiJKSgxcERERERERERFRUmLgioiIiIiIiIiIkhIDV0RERERERERElJQYuCIiIiIiIiIioqTEwBURERERERERESUlBq6IiIiIiIiIiCgpMXBFRERERERERERJiYErIiIiIiIiIiJKSgxcERERERERERFRUmLgioiIiIiIiIiIkhIDV0RERERERERElJQYuCIiIiIiIiIioqTEwBURERERERERESUlBq6IiIiIiIiIiCgpMXBFRERERESUBNxud6KHQESUdBi4IiIiIqKU09LSgt/97neYOXMmCgsLoVarkZeXh5NPPhm/+MUvsG3btkQPkeLohz/8IcaPH4/s7OxEDyUqY8aMQWlpKS666KJED4WIKGlIQgiR6EEQEREREUVq5cqVuOGGG2AwGMJus3DhQnz66adxHBUl0oIFC7Bu3ToAQCpf3gwdOhTHjh1DZWUljh49mujhEBElBVWiB0BENBC0n4h2lp6ejqKiIowdOxbz5s3Dtddei8rKygSMMHaamppw7NgxqNVqTJ06NdHDCeJ0OlFdXY3q6mrMmTMH6enpiR4SEfVgx44duOyyy+ByuaBWq3Httddizpw5yM/PR3NzMw4ePIj3338fP/jBDxI9VOqFZP6sICKixGLGFRFRHIQLXHWmUqlwzz334M9//jM0Gk0cRhZbR48exbBhwwAAN954I1544YXEDqiTm266CUuXLgUAVFVVYejQoYkdEBH16LLLLsPy5csBtGVenX/++QkeEUVLjs8KZlwREfVfzLgiIoqz9957L3Db7XajpqYGX375JZYtWwav14vHHnsMjY2NeOWVVxI4SiKi5LRx40YAwLBhwxi0IiIiGgAYuCIiirPFixd3abv33nvx4IMPYt68eWhpacGrr76KO++8E3Pnzk3ACImIkld9fT0AYMiQIQkeCREREcUDVxUkIkoS48aNww9/+MPA72+//XYCR0NERERERJR4DFwRESWRadOmBW7X1NT0uL3X68Vzzz2Hs846C8XFxVCr1SgqKsLs2bPxhz/8AUajsVf7NxgMePjhh3HKKacgJycHGo0GFRUVWLRoEZ5//nn4fL5uH3/06FFIkhT4aa9ZAgBLly4Nuq/955e//GVEY3O5XHjmmWewaNEiDBo0CDqdDhkZGRgyZAiWLFmCf/7znz3+f2+66aagfbfXtwLaph11HptSqYTL5eq2z86PKSsrC7r/1VdfxRlnnIH8/HwoFApIkoQFCxaE7e/IkSN49NFHcckll2DMmDHIysqCSqVCfn4+Zs2ahQcffBANDQ09Pl9AW80XSZJwww03AAA8Hg+efPJJzJo1C7m5uUhLS8OECRPws5/9DHq9PqI+Y8ViseDRRx/FggULUFhYCLVajfz8fMyYMQM/+clPcODAgW4f/+tf/zrwN1i7dm3Y7ToeozfddFNE/bX//Oc//wncX1NTgx/84AcYNWoUtFpt2H3X1dVBqVRCkiRMmTIlkqcCP/rRjwL9ffTRRz1u//777+OSSy5BeXk5NBoNiouLccYZZ+C///1vj6/ZWPv0009x5ZVXorKyElqtFrm5uZgwYQIeeOCBHv+mqWbVqlW49tprMWrUKGRmZkKr1aK8vBzz5s3Dr3/9axw5ciTsY1944QVIkoRZs2YBaJsOOW/ePGRmZqKyshK///3vA3Wb3n33XcyYMQPp6ekYPnw4/vWvf/U4toH0WdHRhg0bcMMNN2Do0KHQarUoKirCBRdcgC+//LJX/ezatQu33347Ro4cCZ1Oh9zcXJx00kn4zW9+0+vnbsOGDbj88stRWloKjUaD8vJyXHHFFdiwYUOv+pFDrI87QJ7nTq/XY+nSpbjpppswdepU5OXlQaVSISsrC+PHj8f3v/99fPPNNxH11f7e3rGm5YEDB/DjH/8Y48ePR3p6OnJycnDqqacGnSP0RI5zFCLqhiAiopirrKwUAERPb7vvvfdeYLvvfe973W7b1NQkZsyYEdg+1E9xcbFYu3ZtRGPctGmTKCws7La/adOmibq6urB9VFVVdfv4UD/PP/98j2P75ptvxPDhw3vsKyMjQ/zmN78RLpcrZD833nhjr8ZWWVnZ49g6P0aSJOFyuYTf7xc33XRTyH7nz58fsi+TySS0Wm2P48rPzxefffZZj2ObP3++ACDOPfdcUVNT0+3xUllZKWpra3vsMxa++uorUVpa2u3/WZIkcfvttwuz2Ryyj4ceeiiw7Zo1a8Luq+MxeuONN4bdrmN/7T+/+MUvhBBCbNu2TeTm5oYcZ6h9L1iwIHD/wYMHe3w+hg4dGnj9er3esNs5nU5xxRVXdPu8zZgxQzQ1NfW4T7l5vV7xve99r9uxaTQa8dhjj3Xbj91uF++9917QT/vjJ06c2OW+9957T+zatStO/8s2er1enHXWWT2+bhUKhbj22mtFfX19lz6ef/55AUCMHj1arFq1Smg0mi6P/9vf/iaeeeYZIUlSl/vefffdsOMbKJ8V7e93AITL5RK33npr2L7UarX48MMPI/r//vWvfxVKpbLb5+6rr76KqK9HHnkk5N+v/T3ut7/9beB8IZLPn2jF8rgTQr7nbtasWT0eH0qlUjzyyCM99tX+3p6VlSX8fr/49a9/HfL/3fl9vztynaMQUXiscUVElES+/vrrwO3TTjst7HZmsxlz587F/v37AbRlal1//fWorKxEc3Mzli1bhk8//RRNTU1YvHgxNm7ciEmTJoXtb+vWrVi4cCGsVisA4IILLsCSJUuQl5eHI0eO4LnnnsO+ffuwfft2LFy4EFu2bEF6enqXfkpKSoKKzzc1NeGWW24BACxcuBD3339/l8eccsop3T4ner0eZ599NhobGwEAZ599NpYsWYKKigp4vV40Njbiyy+/xNtvvw2bzYaXX34ZP/nJT0L29cADD+Cyyy4L/P7YY49h9erVAIBnn30WxcXFQdvn5eV1OzbgRLH9Xbt24Re/+AWEEDh+/DieeeYZvPDCC9BoNLjuuutw+umn489//jN2794dtq/s7GwsWrQIu3btwvz58zF16lSUlZXB4/Hg+PHjWLZsGTZv3gy9Xo+LLroIe/fuRXl5eY9jPHr0KBYtWoSdO3dizpw5uPLKK1FWVobdu3fjiSeegMFgwLFjx7BkyRJs2bIFkiT12KdcPvnkE1x44YVwOBwAgNmzZ+PKK6/E4MGDYTAY8OWXX+LNN9+E2WzGW2+9hYceeghZWVkxH9c111yDGTNmAAB+/vOfY/fu3aiurkZNTQ3OOeccGI1GTJw4ETfeeCMcDgcefPDBsH1dffXVgUys5cuX46c//WnYbbdt2xZYSezyyy+HUqkMuZ3f78eSJUvwySefAGibanzTTTdhxIgRMBqNeO+99/Duu+9iy5YtOOecc7Bp0yao1eo+PBN9c/311+PVV18FAJSXl+PWW2/FxIkT4XQ6sWbNGrz44otwu924//77kZ2djZtvvjlkP42NjViyZEnI+3bv3h3yvgcffBATJ06U7z/TgyuvvDLwdxg/fjyuu+46jBw5EiqVCnq9Htu2bcPbb7+N+vp6vPnmm/jlL3+J0tLSkH3V1tbi6quvRmVlJe69916kpaXhhz/8IcxmM/785z/DZDJh+PDhuPfee5GRkRG47+mnn8YFF1zQpb+B9FnR0fXXX4833ngDgwYNwu23345x48ahqakJL774IjZt2gSPx4N77rkHBw4c6Pb97ne/+13gtV1QUIBbb70VJ510Enw+H9avX4/nn38eTU1NOOecc7B161aMGDEibF9Lly7Fj3/8YwBtmbpXXHEFzjvvPKSlpeGbb77Bc889hwcffDCu77/t5D7uAHmfu6uuugqHDx/GvHnzcMopp2DIkCFQqVSor6/H6tWrsXLlSni9Xvz4xz/GmDFjQtYS7cxiseCuu+7CU089hYyMDHz/+9/HrFmz4PF4sHLlSrz55psAgD/96U+49dZbg7ICO5LzHIWIupHoyBkR0UAQScbVvn37RH5+vgAgxo0bJ+x2e9htf/SjHwX6u+WWW0JmZfz+978PbDN79uywffn9fnHyySd3+622y+USixcvDmzz85//vPv/8HcizW7pzmOPPRZRH/X19eK+++4T69ati7jvjhlYVVVVfRpfuzVr1gT6evzxx4VKpRLl5eXim2++CWzTnhEQLuNKCCE8Hk+3+3n44YcD+/npT3/a7bYdMxAUCoX4xz/+0WWbgwcPiry8vMB2K1as6P4/KiOj0SjKysoC2Qbhsm/MZrP42c9+Jj744IOwfcmdcdVR+/M4d+5cceWVVwoA4v777w+87jr+7UPtu6WlRajVagFAnHzyyd3u6xe/+EWgry+++CLsdv/4xz8C2912220hj5ulS5cGtvnDH/4Q0f9VDh2zoqZNmyb0en2XbT777LNAdmFOTo5obGwM2VessjjlsmPHjsB+x48fL2w2W8jtHA6HeOyxx8Tjjz8e8v72zBcAYubMmcJkMgXuu+GGG3q8r6ysLGS/A+mzouP7HQBx9dVXC6PRGLSNz+cTU6ZMCWyzY8eOsP1t3749kC00c+ZM0dzc3GWbHTt2BN4/zz777LB9mUymQJaaUqkUb731VpdtOmfuxTPjSu7jTs7nToiePxfXrVsX2N8pp5zS7bads2lnzJghDhw40GW7iy66KLDNo48+Gra/WJ6jENEJDFwREcVBx8BVxykt7777rnjyySfFLbfcEkhVnzJlijh69GjYvhobGwMXwYMGDRIOhyPsth3T6zds2BBym7fffjuwzWWXXRa2r6amJpGZmRm40OwusNZOjouR73//+0HPnZxiFbhKS0sTKpVKbNmyJWibSAJXPXE6nUKn0wkAYtasWd1u2/FCrrspWX/9618D21100UV9Hltv/fjHPw7s9/7774+qr3gErtLS0gQAcfHFFwfd31PgSgghFi1aFNjm2LFjYfc1duzYwEWr3+8PuY3NZhM5OTmB94vuphNeddVVgQvMni7+5NIeGJAkSezcuTPsdj/96U8Dz8nvf//7iPtvf0w0ryO5vPbaa4Hx/OhHP+pzPx0DCB2D3UIEP0/h7tNoNF36HGifFR3f72644Yaw2/3ud78LbPfmm2+G3a49iKTVasXx48fDbvfUU08F+vv2229DbvOnP/0psM1dd90Vti+LxRL4AivegSu5jjsh5H3uItU+JVuSpG6PuY6fFZMmTQo7/bzja/vuu+8O218sz1GI6AQWZyciirMlS5YEfi688ELceeedePbZZ5GVlYUnn3wSW7duRWVlZdjHr1q1Ch6PB0DbdAidThd22/apFwDwxhtvhNzm3XffDdy+7bbbwvZVVFSECy+8EABgMpkiKhoth4KCgsDt3hbUTRSHw4G7774b06dPl73v9gLDQNv0mkjdd999Ye+76qqrArc3bdrU98H1ghACr7zyCgBAo9Hg//2//xeX/UbD4XAgLS0N//znP3v92Kuvvjpwe/ny5SG32bt3L/bt2weg7W8SbsrQRx99BJPJBKDtNRtuOiGAwBS8+vp6fPXVV70ed28dO3YsUCR51qxZ3U47u/XWWwO3w70/JbuO70+bN2+G3++Pus/s7Oyg3zu+x4e7z+12d+lnoH1WdPTMM8+Eva+ioiJw22azhdympaUFn332GYC2z+xBgwaF7e+6666DStVWfeWtt94Kuc3KlSsDt++6666wfWVmZsZlKnQoch13cj93kRo8eDCAts+WlpaWiB7zt7/9Lezz3XHqYrjjBEjNcxSiVMTAFRFRkmhtbcV9992HG264AceOHQu73aeffhq43V0dLAA49dRTA7c3b97cbX+SJAVt39f+5NaxfsYf//hH3HHHHYGL+2SlUqkCtUw6eu2111BVVYXXXnston68Xi/27duH9evXY9WqVVi5ciVWrlwZWOlQrhXjBg0aFKiVVV9fj+bmZln67c6WLVtQV1cHoO047njyn8xuuOGGLnXFZs2ahaqqKlRVVQVW5+rswgsvRFpaGoDwgauO7R0DXZ29//77gdsnn3xyt+PtuFLpli1but1WDr15fxo5cmSgrtzu3bsDdc5SyezZswOB5PXr1+PMM8/E2rVrAyuxJdJA+6zoqLt6bh0DwuH+Th9++GHg/bWn11hGRgZGjx4NIPRrzOFwBILGBQUFmDBhQveDT3FyPnfhVFdXY+PGjfjoo48Cn4vtnydA5J+N3R0nHQNa3b2eU/EchSgVsTg7EVGcdT4BslgsOHToEJYvX45HH30Ur7zyCt577z189NFHmD17dpfHHz9+PHC7u2KmADB8+PDA7VBLsfv9/sDJXklJCTIyMqLqLxZmzpyJ3/zmN3jooYcghMDTTz+Np59+GhMnTsSiRYtw4YUXYvbs2QkpaBvOGWecEfJb5nAFmTt766238N///hdr1qwJBKlirbKyMnAstLa2Bi7GY+XQoUOB25MnT47pvuR04403dmnT6XRBS6uHkpWVhfPPPx/Lli3Dxo0bUV9fj7KysqBt2jMOxo8fjylTpoTtq6qqKnB7x44d3WbedbyAq6mp6XaMcujN+xPQ9p7S1NQEn8+HY8eOYezYsbEcnuwyMjLw0ksv4eKLL4bD4cCaNWuwZs0alJeXY9GiRViyZAnOPvvsbrOdYmWgfVbIqeNr7Pjx40EZU6G0f66Heo01NDTA6/UCAEaNGiXjKJOTnM9dR9u2bcNjjz2GlStXwmAwRD/QHmi12oi2S8VzFKJUxMAVEVGCZWVlYdq0aZg2bRrOOussLFy4EBaLBZdeeimqqqq6nDx1zIbpnL7fmVarhUajgdvthtFo7HJ/a2trYGpLT3113iZUf7Hy4IMPYu7cuXjooYewfv16AG0ZGrt378Zf/vIXDB48GN///vdx//33h1zBKt7CZd30xGaz4YorrsAHH3wg84h61vHb5Xj8bevr6wO3UyXbCuj73xZoy6JatmwZhBB4++23g6YMVVVVYfv27YHtutO+ehUA3HHHHRHvv316YSz15v2p8zbxfE+R0znnnIOdO3fiV7/6Fd566y243W7U1dXhmWeewTPPPIPMzExcf/31+NnPfoYhQ4bEbVwD8bNCLh1fY//85z8jnh4c6jXW29dEqpPzuWv34IMP4uGHH06KTMZQUu0chSgVcaogEVESmT9/Pi666CIAbRf2oaYU9XZ6WPuJXnsdCTn6CtdfLJ1++un4/PPPcfjwYTz22GM499xzA1Ovjh8/jl/+8peYOHFiUCZPovT1m9Vbb701ELTKysrCr3/9a2zZsgVGoxE+nw+ibVGVbmug9VXHv213NZPk0vHYi8f+5BLNt+aLFi0KXLh2fm13rO/SU+Cqr9qzPmIpld5T5DRy5Ei8+uqrqK+vx4svvohrrrkGhYWFAACr1Yonn3wSEyZMCKoTFWsD9bMikUK9xjo+F8y6CS/c+9N//vMf/O53v4MQAgqFArfccgs+++wzNDU1wePxBD4XQ2XDxlMqnaMQpSIGroiIkszcuXMDt3fv3t3l/tzc3MBti8XSbV8ulytQnLe9lkxf++q8Taj+4mH48OG47777sGrVKrS2tuKll14KTL+oqqrChRdeKEuB5Hjbv39/oPaVTqfDF198gYceegjTp09HTk4OFIrYfmR3/NvGIwOqpKQkcDsemUDJQKfTBQLT69atCyog3B64mjlzZo/Tujo+d8ePHw9cuPX08/zzz8v/n+okFd9T5JSfn4/rr78eL7/8MhobG7F69WqceeaZANoCWFdddVW3NQzlNNA/K6LR8TX20ksvRfwa6zhNrl1eXl7gdiTPXaqT87nz+/347W9/G/j9qaeewjPPPIPTTz8dRUVFSRkU7a/nKESJxsAVEVGSaf+WHgD0en2X+zte1PZUO+Tw4cOB26GmqOh0ukCh6YaGBtjt9qj6i7e0tDRcd9112LJlS6DG0J49e7Bu3brEDqwP1q5dG7h99dVXx73u09GjRwEACoUi6MIjVjoeP3v37o35/pJFezaVz+fDO++8A6Atu7J9NapIsq06PncNDQ3yDzIKvXl/Ak68p2g0mrgcd/GkUChwxhln4JNPPsGll14KAHA6nXjuuefisn9+VvSdnK+xjsd1+/tsfybnc3fw4MFAbbXhw4d3u5plMupP5yhEicbAFRFRkum4Mk6oC7lTTjklcPuLL77otq+O95911lkht2nvTwiBjRs3Rt1fR5Gs3iSH7OxsXHzxxYHfDxw4ENHj4jW+SLS2tgZuR1LUWk5VVVWBC4xp06b1WHhZDnPmzAlMm1u/fj2cTmdU/XX8W8q12mIsnHnmmYHgdPt0wbfffjswDebKK6/ssY/zzjsvcPvzzz+PzUD7qDfvTwcPHgzU/5k3b17ExZBT0Q033BC4Hen7U7T4WdF355xzTmBM0b7GcnJyAosO1NXVobq6OurxJTM5n7uOn4sdC/6nmr6eoxDRCQxcERElmffeey9we+bMmV3uv+yyywI1gV566SW43e6wfXX8Zv/CCy8MuU3HC+VnnnkmbF/Nzc2BsZWUlIRc8bCzjlMkOq5w1Rs+ny+iQETHDIBI64jIMT65RDqW6urqwMl8by7wult5bunSpYHbkVxkykGj0QSmzRkMBjz55JNR9dcx2FZbWxt2u8ceeyyq/URLpVLhsssuAwCsXr0aRqMxEMBasGBBl5UGQznvvPMCBX7/9a9/9Zj9Ek+TJ0/GuHHjAABffvkl9uzZE3bbju837cdCKopk5c++vD9Fa6B9VsiptLQUp512GgDggw8+wLfffhtVfwsWLAjcfumll8Jut3r16ris/hlLcj53kR4Xbrc7aD/xDH7G8hyFiE5g4IqIKEkIIfDb3/42sCLN8OHDce6553bZrry8HNdeey2AtiDGfffdF7Jewh/+8Ads2rQJAHDVVVdh4sSJIfd78cUXY+TIkQCAN954Ay+//HKXbVwuF773ve/BarUCAH7zm99EVHMpOzs78E3zxo0bw37L2F5bJZQ777wTp512GrZu3Rp2m61btwaN+9RTT+1xbEBwRkK4+j/dXezJqf1EH2j7O4SaYrFnzx6cc845gb9DS0tLt89dR4sXLw5aya/d5s2b8de//hVA23SgH/zgB30Zfp/85je/QWZmJgDg5z//ecjFCIC2v8EjjzzS7bLqY8aMCdx+8803u9zv8Xhw//334/HHH49y1NFrnw7o8XjwwgsvBLISIi3K3l64H2ibAnbppZeGrRO2d+9e3HbbbbDZbNEPPEL/93//B6CtPs2NN94Is9ncZZs1a9YE/hbDhg3DLbfcErfxyenll1/GiBEjAqtFhtLS0oI//vGPgd8jfX+K1kD7rJDbX/7yFygUCvh8PlxwwQVhpzTr9Xo88MAD2LVrV9i+7rnnnkCw4k9/+lPIbdesWYNLL700qTNGIyXXczdmzJhAhur+/fvx0UcfddnGYDDg8ssvx5YtWwJtHTPXYy2W5yhEdELyVbQjIurnOl98m81m7Nu3D8uWLQuc3KWnp+OVV14Ju9raI488gtWrV6O2thZPPfUUtm7diuuuuw6DBw9GU1MT3nzzTaxevRpA28VLe2AiFI1Gg//+9784++yz4fF4cN111+Gtt97C4sWLkZOTg0OHDuG5557D/v37AbR9c9ybOhM//OEPcfvtt8PlcmH27Nm4++67MW7cOHi9Xhw+fBjLli3D3LlzQ2bcvP766/jvf/8LAJgxYwZOPfVUnHvuuRg2bBi0Wi3q6urw2WefYeXKlYGT/euuuw4TJkyIaGwXX3wxhg0bhqqqKrzwwguor6/HhRdeiOLiYtTV1WHz5s14//33sX379rAr+bX/PTueeB84cCDo77x48eIexzJp0iSceeaZ+PTTT2EwGDB16lTcfffdGDNmDCwWC9asWYNly5bB7XZjwYIFWLt2Lex2O+6991789a9/DQSAwvn6668xfvx43HTTTTj55JMhSRK++OILPPvss4GMkZ/97GeBOjbxMHToUDzxxBO45ZZb4HK5cNlll+Gss87CRRddhLKyMpjNZmzduhVvvvkmGhoakJeXF/ZvsXDhQuTl5cFgMGDlypW47LLLcOmllyIzMxO7d+/Gf/7zHxw7dgxz587F7t27YTAYuh3bgQMHAhfPHaerdPy7jh49GqNHj+71/3vu3LmoqKhAbW0tfvWrX8Hr9UKj0QTqIEXigQcewAcffIC1a9fiww8/xMiRI3HzzTdj+vTpUCqVqK6uxieffIKPPvoIQgj4/X48++yzvR5rX9x000147bXX8PHHH2PLli2YMGECbrvtNowfPx4OhwOfffYZXnrpJfh8PqjVajz55JPQ6XRxGZucqqurA8fu5ZdfjlGjRuGCCy7AxIkTkZOTg6amJmzfvh2vvPJKoCj3mDFjcNNNN8VtjAPlsyIWZs2ahV/84hd4+OGHceTIEUydOhVXX301Tj/9dGRnZ6OpqQkbNmzA8uXLYbfb8cknn2DLli0hj+UJEybg5ptvxnPPPQer1YrZs2fjzjvvxMyZM2EymbB69Wq8/vrrKC0tRXFxMQ4ePBiX/2OsyPXcKRQK3H///fh//+//AWjLBrz99tsxY8YMKJVKbNu2DS+++CJaWlpw+umnY82aNQDaPsteeumlQF2pWIn1OQoRdSCIiCjmKisrBYCIfqZMmSK2b9/eY5/79+8Xo0aN6ravESNGiMOHD0c0xnfeeUfk5OR029+iRYuE3W7v9f//9ttv77ZflUoljh8/3uVxfr9f/O1vfxO5ubk9Pm8KhULcf//9wuPx9Gps27dvF8XFxd32/f3vfz/s4yP5m0aqrq5OjBkzJmw/aWlp4umnnxatra2ioqIi8P9ubGwM2d/8+fMDj/3Tn/4kJEnq0/8x1t555x2RlZXV7XOoVCrF7bffLsxmc9h+XnnlFaFQKML2cckllwiz2SzGjh0rAIgbb7wxbF8PPfRQj3/Xhx56qM//5x/+8IdBfV1wwQW97sPpdIorr7yyx3EOHz5cfPzxx30ea19YrVaxaNGibseVkZEh3n///V733f74+fPnyz/wXlq1apUYOXJkRO8DCxcuFM3NzSH7ef755wPbVVVVBd3X8Vjs7r5wBsJnhRDB73fd6fhcP//88z2O6ZFHHhFKpbLbcWVnZ4vHH39c+P3+sP243W5x3nnnhe2jrKxMbN26VVx88cUCgKisrOxxbNGK5XEnhDzPndfrDTwn4X5uv/124fV6g57fN998M2R/Hce+Zs2asGOvqqoKbBfusyIe5yhE1IaBKyKiOAgXuFKpVCI/P1/MmDFD3HnnneLDDz/s9sS3M5fLJf71r3+JM844Q5SUlAiVSiVycnLEqaeeKv7+978Lm83Wq3E2NDSIX/3qV+Kkk04SeXl5QqVSiZKSEnH++eeLN998s1dj62zFihViyZIlgXFmZWWJk046STzwwAPim2++6faxRqNR/POf/xSLFy8WlZWVIjMzU2g0GlFaWirmzZsnfvnLX0Z80RVKQ0OD+NnPfiYmTZokMjIyhFqtFoMGDRJLliwRzz77rHA4HGEfG8kFa2+YzWbx29/+VkyZMkWkp6eLjIwMMXbsWPHAAw+IQ4cOBbY7cuSIuPLKK8W5554btq/OF3KbNm0SV111lSgvLxdqtVrk5eWJs88+WyxfvrxXY4yFxsZG8dvf/lbMnj1b5ObmCpVKJQoKCsScOXPEr371qy4XTuGsW7dOLF68WBQUFAT+jldddVVQ4Gbu3LndXowIEfvA1ddffx3U16uvvtrnvj7++GNxzTXXiKFDhwqtVivS0tLE8OHDxTXXXCPefPNN4fV6+9x3tN59911x+eWXi8GDBwutVivS09PFxIkTxf/93/+FDUD0JJkCV0K0XVi/8cYb4oYbbhCjR48OvHcWFBSIk046Sdx1111i/fr13fYR6wDCQPisiFXgSggh9uzZI+69914xYcIEkZ6eLtRqtSgvLxeLFi0STzzxhDCZTBH14/V6xdNPPy1OO+00kZ2dLbRarRgzZoz42c9+JlpaWoQQQtx11139JnAlhDzPnd/vFy+88IKYP3++yM3NFVqtVlRWVoprr71WrFu3LrCd1WoVP/7xj8WwYcOExWIJ2Zecgat2sT5HISIhJCGSYOkOIiIikt2CBQsCy27z456IiIiIUhGLsxMRERERERERUVJi4IqIiIiIiIiIiJISA1dERERERERERJSUGLgiIiIiIiIiIqKkxMAVERERERERERElJVWiB0BERESxccYZZ2DGjBkYOnRooodCRERERNQnkuD62ERERERERERElIQ4VZCIiIiIiIiIiJISA1dERERERERERJSUGLgiIiIiIiIiIqKkxMAVERERERERERElJQauiIiIiIiIiIgoKTFwRURERERERERESYmBKyIiIiIiIiIiSkoMXBERERERERERUVJi4IqIiIiIiIiIiJKSKtEDIAIAj9MGIfwRbavSpkOhUMLv98Hrssd4ZETBePxRIvH4o0ThsUeJxOOPEonHHyVSKh5/kqSAWpcha58MXFFSEMIfceCq8+OIEoXHHyUSjz9KFB57lEg8/iiRePxRIg3k449TBYmIiIiIiIiIKCkxcEVEREREREREREmJgSsiIiIiIiIiIkpKDFwREREREREREVFSYuCKiIiIiIiIiIiSEgNXRERERERERESUlBi4IiIiIiIiIiKipMTAFRERERERERERJSUGroiIiIiIiIiIKCkxcEVEREREREREREmJgSsiIiIiIiIiIkpKDFwREREREREREVFSYuCKiIiIiIiIiIiSEgNXRERERERERESUlBi4IiIiIiIiIiKipMTAFRERERERERERJSUGroiIiIiIiIiIKCkxcEVEREREREREREmJgSsiIiIiIiIiIkpKDFwREREREREREVFSYuCKiIiIiIiIiIiSEgNXRERERERERESUlBi4IiIiIiIiIiKipMTAFRERERERERERJSUGroiIiIiIiIiIKCkxcEVEREREREREREmJgSsiIiIiIiIiIkpKDFwREREREREREVFSYuCKiIiI4qJRb4XP70/0MIiIiIgohTBwRURERDFnc7hhsDjQarIneihERERElEIYuCIiIqKY8vsFGvQWAIDB4oDb40vwiIiIiIgoVTBwRURERDHVYrLB422bIigE0Gy0JXhERERERJQqGLgiIiKimHG6PTBYHEFtFrsLdqcnQSMiIiIiolTCwBURERHFhBAC9S0WCNH1viaDNf4DIiIiIqKUw8AVERERxYTe7IArTD0rp9sLk9UZ5xERERERUaph4IqIiIhk5/b40NLDCoItJhv8/hDpWERERERE32HgioiIiGTXoLdAhJoj2IHH64fe0n1wi4iIiIgGNgauiIiISFYmqzPi4uutJge8vtDTCYmIiIiIGLgiIiIi2Xh9fjQZIy+8LoRAs8EWwxERERERUSpj4IqIiIhk02SwwufrXd0qk80FpzuyDC0iIiIiGlgYuCIiIiJZWB0umG2uPj22iVlXRERERBQCA1dEREQUNb9foFEf+RTBzuxODyz2vgW9iIiIiKj/YuCKiIiIotZstMHj9UfVR5PB1uNKhEREREQ0sDBwRURERFFxuDwwWBxR9+Px+mCwOGUYERERERH1FwxcERERUZ8JIdDQapGtvxaTDV5fdJlbRERERNR/MHBFREREfaY3O+Dy+GTrz+8XaDXZZeuPiIiIiFIbA1dERETUJ26PDy0xCDIZrQ64PF7Z+yUiIiKi1MPAFREREfVJg94Sk2LqQgDNBpvs/RIRERFR6mHgioiIiHrNaHXA7vTErH+rww2b0x2z/omIiIgoNTBwRURERL3i9fnQFIeMqCa9Neb7ICIiIqLkxsAVERER9Uqj3ga/X/4pgp25PD4YrY6Y74eIiIiIkhcDV0RERBQxq8MFi90Vt/21GO1xCZIRERERUXJi4IqIiIgi4vP70Rjn6Xtenx+tZvlXLiQiIiKi1MDAFREREfXI7xeoazbD4/XHfd96swMery/u+yUiIiKixGPgioiIiLrl9wvUNptgi+Eqgt0RQqDZGPti8ERERESUfBi4IiIiorD8foGaBAat2pltLjhciR0DEREREcWfKtEDICIiouTUHrSyJzho1a6uxYKsdA20ahW0GiU0KhUUCinRwyIiIiKiGGLgKkasViuWLl2KTz75BMePH4ff70dFRQUWLlyIG2+8Efn5+XEZx9atW7FixQps3rwZLS0tcLlcKCoqwtSpU3HJJZfg1FNPjcs4iIgotSRb0AoAPF4f9GZHUJtapYRWo2wLZqlV0GlU0KiVCRohEREREclNEkJwjWmZHT58GLfddhtqa2tD3l9YWIgnn3wSkydPjtkYHA4HHnzwQaxYsaLb7S655BI8/PDDUCoTe5LvdlggRGQFf9W6TCgUSvj9Pnic8V3diojHHyVSvI4/v1/geJNJ1ql5VrsL2w7UoawwC6MGFcrWbyiSJEGrVrb9aFSBDC1Vgj/rUhnf+yiRePxRIvH4o0RKxeNPkhTQpGXJ2iczrmRmtVpx++23o7a2Fmq1Gvfffz8WL14MnU6HLVu24M9//jOqq6tx55134p133kFRUZHsY3C73bj11luxZcsWKBQKXHnllbjwwgtRWVkJj8eDvXv34u9//zv279+Pt956CwUFBfjxj38s+ziIiCj1+Px+1DSZZQ1atZrs+P2La2C0OiFJwO0XzMQp4wfL1n9nQgg43V443V7A5gq0a9VKDC3LgyRxeiERERFRqmBxdpk9++yzqKmpAQD85S9/wa233orS0lLk5ubizDPPxN133w0AaGlpwb///e+YjEGj0eDaa69FcXExnnnmGfz617/GtGnTkJ+fj5KSEixYsACvv/46Bg9uu2h48cUXYTAYYjIWIpKf3ekJ/DhcXX+c7q4/Lrc38MNEWwrH5/fLnmnl9ws8s/JrGK1OAIAQwKuffgOX2yvbPiLl8vjQarbHfb9ERERE1HecKigjn8+HU089FQaDAdOmTcNrr73W5f7FixfjyJEjAACdToevvvoKaWlpMRmP1+uFShU+qe6FF17AH//4RwDAP/7xD5xzzjkxGUckOFWQUkWijz+bw43jTaao+kjTqlFemAW1itOmUk0sj7/2oJXTJW9AadVX+/Hmmt1d2i+ZPwGL54yVdV+RkCRgWFk+62D1UqLf+2hg4/FHicTjjxIpFY+/WEwVZMaVjLZt2xbIXDrvvPO63L98+XIcOXIEl156KQDA6XTiiy++iNl4ugtaAcCwYcMCt5ubm2M2DiKST3vWSjQcLg+ONhhgc7hlGBH1B7EKWlU3GvHWum9D3rfqq/2w2l0h74slIYAGvSXu+yUiIiKivmHgSka7d5/4RnnatGlB9zkcDjzxxBOYMmUK7rvvvpCPiTe7/cR0iZycnISNg4gi4/X5YXXIc6Hv87UV32422mTpj1KXz+/H8Ub5g1Yerw//XfE1fP7Qid0OlxcffLVf1n1Gyu70wGyLPghMRERERLHH4uwyap8CCACDBg0Kum/p0qVoamrCI488gpKSEqhUKni93qDHxNvOnTsDt6dOnZqwcQCASpse8baSpAj8q9ZlxmpIRCEl8vgzGW1QauSdWmxyCniMblQU5kDFqYNJT+7jz+vzo77RAK+khkqrjrq/jl5fswW1LeagtokjyrD7cH3g99VbDuPcORORn5Mh674j0WrzIyc3HSolv8OLBD97KZF4/FEi8fijROLx14aBKxnp9frA7by8vMBtg8GAZ555BvPmzcMpp5wCAMjOzoZer09YUXS324333nsPQFt2WHuh9kRRKHp/wSxJEiSJF9qUGIk4/sx2FxQx2KfT5cOxBiMqinORrtPI3j/JT47jz+vzo7bJBLfHL/txtetwHT76al9Q22lTRuB7S2bhR4+/BYPFAQDw+Px4Z91u3HrhHFn3Hwkh2lY7LCtkxnFv8LOXEonHHyUSjz9KpIF+/DFwJSOHo+1EXKPRBC21/dRTT8FqteJHP/pRoE2jabs47DhdL56efvrpQF2re++9NyFj6Mjv90W8rSQpIEkShBARF3Qnkkuijj+bww2XO3Y1qdxeH47WtaAwNxOFufHPfqHIyHX8eX1+VDfo4fLIv7Kf1e7C028H128szM3A9edNh0ol4aIFk/H8e5sC963bfgjnzh6L8qL4B5D0Ziuy0jUM2EaAn72USDz+KJF4/FEiperx15fElO4wcBUDCsWJaQe1tbV45ZVXsHjxYowde2L1JL8/cQfdtm3b8NRTTwEALr/8csyZE/9vujvzuuy9WlVQkpQQwp8yKytQ/5Go46+5xQyvK/aFrOsb7bCYNSgtyOIUqiQkx/Hn9flxvNEIlyfyLwwiJYTAcys2BTKqAEACcOviGVBLPnhdDswZX44PNmSiUW8NPGbZ6m246+JZso8nEsfrGjCsLC/oCyfqip+9lEg8/iiRePxRIqXi8cdVBZNcenpbnSaPxxNoe+yxxyCECCrIDgCu7y5A2x8TLzU1Nbj77rvh8XgwceJE/L//9//iun8i6j05i7JHwupw41iDAQ6Xp+eNKaV4fb6YBa0AYOPuamzZVxvUtmj2GIweXBj4XalQ4JJ5E4K22bKvFlV1eiSC2+OD3uzoeUMiIiIiSggGrmSUn58PAPD5fLBYLNi3bx9WrlyJq666KqiGlMfjgcViCXpMPDQ2NuLmm2+GXq/H4MGD8eSTT0Kn08Vt/0TUN2abEyL0wmwx4/H6Ud1o5AV9P2KwOHCkzhCzoFWL0YaXP94R1FZZmosL547vsu30sRWoLM0Nalu+7tuYjCsSLSY73DF6XoiIiIgoOgxcyWj48OGB27W1tXjkkUeQlpaGu+66K2i7+vr6wFTBYcOGxWVsLS0tuPnmm1FdXY2KigosXboUxcXFcdk3EUXHaHUmZL9CAE0GK2qbzfAlcHozRcfp9uBogwGNeiv8/thEQP1+gf++9zWc7hM1s9QqBW5bcnLIKacKScJlCyYGte052oRvqxpjMr6eCCHQqLckZN9ERERE1D0GrmQ0ceKJk/ClS5di/fr1+N73vtclq2rbtm2B25MmTYr5uBobG3Hdddfh8OHDqKysxIsvvoiKioqY75eIomd3ehKeCWKxu3C03giXW/5C3hQ7Pr8fjXorjjUY4XTF9m+3atMBHKxpDWq74ozJKC/MDvuY8UOLMa6yKKht+dpvIeKdXvgdm9MDsy0xQWIiIiIiCo+BKxlNmzYNeXl5AIC33noLBQUFuPnmm7ts9+GHHwIAdDodTj311G77FELgsccew5w5c3DqqafiiSee6NWYjh8/jquvvhpVVVUYO3YsXnnlFQwaNKhXfRBR4hityTFVz+P14WiDMWnGQ90z21yoqjPAYHHEfJrpsQYD3vk8eJrfxOElOOOk4WEe0UaSJFzaKevqaIMBW/fXyT7GSDUZbMwuJCIiIkoyDFzJSKlU4uqrrw78ftNNNyEjI3hZ+Y0bN2Lt2rUAgEsvvRRpaWnd9vnuu+/iySefRGtrK1paWvDPf/4TK1asiGg8Bw4cwNVXX43a2lrMmTMHL7/8MgoLC3t+IBElBa/PD4vdnehhBAgh0NBqxf7qFlTV6VHbbEazwQqj1QG70wOvjzWCEs3taSu+XtdihtcX+wCMy+PF0yu+hq/DFMTMNA2+d/70iFbpG16ej+ljyoPa3lq3O2HBI6/Pj2ajLSH7JiIiIqLQGLiS2S233BLIaHr55ZfxwQcfQK/Xo6WlBa+++iruvvtuCCFQWFiIO++8s8f+du3a1aXtm2++6fFx27dvx3XXXYfm5macd955eOKJJ6BWq+FyuUL+uN3Jc3FMRG3MNlfCpk11RwgBl8cHi92FVrMDDa1WVDcacahGjwPHW3C03oC6FjOajTaYbU44XB5mscSYEALNRhuq6vWwOeO3GuSyNbtR3xpcG+rG805Cbmb3X8p0dPG8CegY42rQW7Fh1zG5hthrRouTK2oSERERJRFVogfQ32RmZuLpp5/GbbfdhtraWjzwwANdtiksLMSTTz6JoqKiED0Emzx5cpe2qVOn9vi4v//97zCZTACAVatWYdWqVd1uP3ToUHz00Uc99ktE8ZOK0/L8fgGn2xtUpLudUilBrVKiLD8LWg0/fuRic7jRoLfC441vxtuuww1YvfVwUNtpk4di+pje1VAsL8zGqZOG4oudRwNt767fi1njh0CjVsox1F5raLVgaFleRFljRERERBRbzLiKgREjRmDFihW49957MXbsWGRkZCA9PR0jR47EHXfcgffeey9kQCqUCy64AHfeeSfy8/NRUFCAe+65B0uWLJF9zPFa3ZCIIpMMRdnl5vMJOF1e1DSb4jKNrb/z+nyobTbjeJMp7kEri92F597fGtRWlJuBq8+M7LOtswtPGxe0+qDB4sBn2w5384jYcnl80JvlDxzHalVHIiIiov5MEsk4D4UGHLfDAiEiu5BV6zKhUCjh9/vgcVpjPDKiYPE6/upbzDDZXDHrP9F0WhWGFOdCoWBGS2+odZmQJAVaTRbUNzYnJBAihMC/3/4qqIi6JAE/v24BRg4q6HO/r63eiY83Hwz8nqHT4M93not0nTqq8faVJEkYXp4HtSr6rC+X24sWkx1OtxfDy1Mzk4ufvZRIPP4okXj8USKl4vEnSQpo0rJk7ZMZV0REScbn98OcREXZY8Hp8qJBb+l5Qwri9nhxtK4VjXpLwrJ3vth1rMvKf+fPHhtV0KqtjzHQdZhCanO68eGmA1H1GQ0hBBr10Z0gutxe1DabUVVvgMXugsfrg8nmlGmERERERAMDA1dEREnGZE3OouxyM9tcXMGtl+pbzSHrh8VLk8GKVz4JXiBkaGkeLjhtXNR9Z6Vrce4po4PaPv76YEIDPVaHG+Y+ZD52Dlh11GpyDIjXNxEREZFcGLgiIkoyphQsyt5XrSY7zMxAiYjZ5oLdmbhMPJ/fj2fe2wJXh8CZRqXEbRecHFSfKhpnzxyFrHRt4He3x4eVG/bJ0ndfNRmsEa+K6XK31XALFbBq5/H6wt5HRERERF1xWScioiTicHngClOU3WxzYtVXB9BisiE7XYecTB2yM7TIzdQhJ6P9d51sQYR4qW+1QKVUJqyWUSrw+wWajVZAqe154xj54MsDOFTbGtR25cLJKCuQr4aBTqPCklPHBmV1rd1+BGedPBLFeZmy7ac3vD4/Wox2lOSH37/T7UGLyQ5rhFN8W0x2ZGfo5BoiERERUb/GwBURURIxWkJnW7UVxN6EA8dbeuwjM02DnAwdsjO1yM1IQ06mFtkZukCAq6I4B9npiQuAdCYEUNtiQmVJHjTq6Ath90etJhs8Xj9kqBPeJ1/ursY7678Naps8ohQLpsm/Iu38qcPw8eaDaDHZAQA+v8C76/fitgtOln1fkTJYHMjO0CJNGxxc7W3Aqp3b44PZ5kJ2RvK8DomIiIiSFQNXRERJorui7Idr9REFrYC2ujxWhxu1YTZXKiScPXMULp0/MWlW9fP5BGqaTagszYVSkVoZY7Hm9vigDxPQjIeNu47h2fe3oGNZpqx0LW4+f3pMVsdTq5S4aO54PLNyS6Dtq2+rce6s0RhcnCP7/iLVqLeisjQXkiS1BayMdlgdfZ+62WqyMXBFREREFAFeHRARJQmzLXxR9jXbjsi2H59fYNVXB/CPZRvhcHlk6zdabo8Pdc1mFq7upFFvQaKekg27juHZlcFBK4Uk4ZbzpyMnhlPdZk0Ygoqi7MDvAsBb63bHbH+RcLq9aDLYUNNkwtF6Y1RBKwBweVjrioiIiCgSDFwRESUJkzV0kXKL3YWv99UEtZ09cxQWzR6DUydVYuLwEgwpyUF2hha9yX/ZebgBf3hxbVKt7GdzetBosCZ6GEnDYnfB5kxMcHHDzmN4buUWdIyZKSQJt184E5NHlsV03wqFhEvnTwhq++ZQQ8RZh7FisDiiDlh11Gq2y9YXERERUX/FqYJEREnA4fLA2WG1to427DoGr+/EqmZFuRm44oxJUISYpuXz+2G1u2G0OmGytf2Yrc7A7weOt8BsO5HlUdtixu9e+Az3XDobowcXyv8f6wOjxQmNSoX87LREDyWh/H6BpgQF8dbvPIoX3t/aJWh1x4UzcfK4QXEZw5SRZRhZURBUEH7Z2t34+XXzYzJFMRGcLi9sDjcy0jSJHgoRERFR0mLgiogoCRjDZFv5hcDa7cHTBBdMGxYyaAUASoUCOZltKwyGYrA48MSyL3G0wRBoszrc+Osrn+PG807CaZOH9u0/ILMmgxUatQKZaQO3BlCr2Q6P19/zhjJb/81RvPBBcNBKqZBwx4WnYMbYiriNQ5IkXHb6RPzpf+sCbYdqWrHzcAOmxDjjK55aTHYGroiIiIi6wamCREQJ5veLoCyojvYebUKT4cRUPpVSgVOjCC7lZaXhp9fN6xKA8PkFnnt/K974bBf8/uSoMVXbbIErTBZaf+f2+KA3x78g++c7qvB8iKDV9y+Kb9Cq3ejBhZg8ojSobfna3UlVmy1aDpcHNqd80w+JiIiI+hsGroiIEsxsd4YtSN4522rGmApkp0eXhaRVq/D9i07BBaeN63Lfh5sO4J/Lv0yKwIAQbSsNen2+RA8l7pqM1rgXqV+3owovrNoW1NYetJo+Jv5Bq3aXdKp1VdNsxg8efQ8PL12DN9fswu4jDWGn2aaKVhNrXRERERGFw6mCREQJZrSEniZosDiw/UB9UNuCk4bLsk+FJOGiueNRXpCFZ9/fEjQlbcehevzxpbW49/I5KMzJkGV/feXx+lHTbMaQ4lwoFP2jrlFPrA4XrPb4ZuCs3X4EL364PahNqZBw18WzMG10eVzH0tmQklzMGj8YX+05HmjzC4EjdXocqdNj1VcHoFRIGFqWh7GVRRg7pAgjBxVAq06dUxy70wOHy4M0rTrRQyEiIiJKOqlzVkdE1A853eGLsn++owr+Dlk3FYXZGDWoQNb9zxw/GEW5GfjH8i+DVjWsaTbj4RfW4J5LZ2OkzPvsLafLi/pWCyqKshM6jngQQqBRH99VHtdsO4KXPgoRtLpkFqaNSmzQqt1F88Zjx6H6sK8Vn1/gcK0eh2v1eH/jfigVEoaX52PMkCKMqyzCiIoCaNTKOI+6d1pNdgwqzkn0MIiIiIiSjiTiPReBKAS3wwIhIitCrNZlQqFQwu/3weNMzIpbNHDJffw16C0hM658fj9+8u8PYbCcqHN07dlTsXD6iKj3GYrebMcTy7/EsQZjULtKqcBN552EOZMqY7Lf3ijITkNRXmaihxFTrSY7mo3hA1cqbRoUkhJ+4YPXFX0NrM+2Hsb/Pt4R1KZUSLj7klmYmiRBq3Y1zSZ8tvUw9h1rRoO+d689lVKB4eX5GDukCCePG5S0QdChZbnQaZIz64qfvZRIPP4okXj8USKl4vEnSQpo0rLk7ZOBK0oGDFxRqpDz+PP7BQ7VtoYshr7tQC3+ufyrwO8atRJ/v+d8pOtid1Hrcnvx7PtbsGVfbZf7Fs0eg0vmTwi7mmG8lBVkhV0xMdV5vD4cqTN0W9tKzsDV6q2H8XKnoJVKqcBdF8/C1FHJvWqfweLA/uoW7Ktuwv5jLWg0RP5aVEgS7r/iVEwcXhLDEfZNZroGg4qSM+uKn72USDz+KJF4/FEipeLxF4vAFacKEhEliNnuDLuC39ptVUG/z5owOKZBKwDQatqKtr+7fg/e27Av6L4PvtyP+hYzbrtgJnSaxH10NOgt0GqUSZuVEo0mgy1uBdlXbzmElz/5JqhNpVTgnktmYfLI5A5aAW2rY86aMBizJgwG0JYx2BbIasa+Y83dZq35hcDSVdvwu9vOSuixHIrV7obL7YU2ycZFRERElEg8MyIiShCjNXRR9iaDFburGoPaTp8mT1H2nigkCRfPm4Cygiw89/5WeH0nMiG3H/yuaPtlc1CQkx6X8XQmBFDbbMHQslwoFf1nYVyb0w2L3RWXfX3y9SG8+mmIoNWlszF5RGlcxiC3/Ox0zJ44BLMnDgHQNuVyX3Uz9n8XyGrptGpfq9mOd9fvwZULJydiuN1qMdmTdiojERERUSIwcEVElAAutxdOV+hC0+t2BGdbDSvLQ2VpXjyGFTBrwhAU5WbiieUbYbadCKgcbzLhN8+vxqjBhSjKzUBRbgaKv/u3ICcdalXsC2B7vD40tFr7zcV9W0H2+KR+f7z5IF5bvTOoTaVU4AeXzsakFA1ahVKQk45TJ1Xi1O9qs7UYbVixYS++2HkssM0nXx/C7IlDMKQkN0GjDM1id8Hl8abUqohEREREscSzIiKiBDBYQ9cn8nh9WP/N0aC2BSfFJ9uqsxEV+XjwpjPwj2UbUd1oCrRbHW5sP1DXZXsJQF52WiCg1fknK10LSaYaWRa7C0arA7mZabL0l0gGiwNujy+m+/B4fXh/436s2LA3qF2lVODey2Zj4vD+E7QKpTA3A9ecNRV7jjZBb2577bVPGfzlDadDoUhs7bbO9CY7ygr7R2CWiIiIKFoMXBERxZnfL4KymDraur8WVoc78Hu6To2Z4wbFa2hd5Gen4+fXLcB/3/sa20IEqzoSAPRmB/TmtsLZnWnVShTlZqCyNA+XzJ+AvKzogk6NehvSNOqUrgfk9fm6TGOTk98v8OXuary9/ttAwKadWqXADy6dk5RFymNBp1HhurOn4h/Lvgy0VdUbsHb7EZwRo9U6+8psd6HA44NGHfsMRoqMEAJCIOmCnERERANB6p7tExGlKIvdFbYo+5ptR4J+nzOxMuFThrQaFe66ZBbe+2IvVn11AG5v37KDXB4faprNqGk240idHv/vxtORpu17kXUhBGpbzBhampeyF5PNBlvYYyEaQgjsOtyAZWt3o6bZ3OV+tUqBey+bgwnDBkbQqt3UUeU4aXR5UBB2+brdmDa6POpAqpyEaKvDVVYg74o8FJ7fL+Dx+eD1+uH2+uD1+uDxtd/2w+vzQ6dVobIkV7bMUSIiIooMA1dERHEWrih7TbMJB2tag9pOP2lYPIbUI4Uk4cK543HWyaNQ32pGs9HW5cdgdiDSEEx9qwXPvb8Vd118SlQXgW6PD40Ga0pe4NudHpjCZN5Fo6pOjzfX7Ma+6uaQ92fo1Ljr4lkYN7RY9n2ngmvOmoJvjzbB5W6rMedwefHa6p2486JTEjyyYGabE4Vxqhs3ULg9Pri9Xni8fni8vrZ/fT54vD74fD2/ezldXjQbbSjOy4zDaImIiKgdA1dERHHk9vjgcHlC3re2U7bV2CFFKCtIrjo36To1RlQUYERFQZf7PF4fWk32kEGtJqMtEChot3V/LT746gDOnz0mqjGZrE5k6NTIztBF1U88tRVkt8jaZ5PBiuXrvsXXe2tC3q9SKnDGScOxeM5YZKZrZd13KsnPTscl88bj1U9PFKn/em8NTp1UmVSrKrZnXZXmp15QNhmZrE406C0QUSY46s0OpOvUyEwbuK8hIiKieGPgiogojiz20Bk2TrcXG3dXB7Ulqih7X6lVSpQWZKE0RPaTEAJmuwuPvv5FUKH3t9buRmVJTtTFwRv0Vug06pSpCWS0OuGSqSC72ebEexv2Ye32I/CFmXY4a8JgXDJvAgpzM2TZZ1+V5GeiyWCDiDZ6EKWF00di4+5qHGswBtr+99F2/O62sxI+Nbcjk9WFwpx0qJSpcVwnK73ZjiaDTbb+6lstGFam4t+FiIgoThSJHgAR0UASLnC1ac9xODtkJGVnaHHS6PJ4DSvmJElCToYO91wyGxk6TaBdAPjPu5vRZLBG1b/fL1DXYk54QCQSXp8fzcboL6Jdbi9WfLEXP33qI6zeejhk0GrCsGI8dPNC3H7BzIQHrQqy05CXlYa8rMRnxikUEm489yR0nKXaYrJjxRd7wz8oAYQQXYrqU+80GayyBq0AwOcTqG22pMT7DRERUX/AwBURUZy4Pb6g4FQ7IUSXouxzpwyFStn/3qILczPw/YtmBgUMbE4P/vXWV3B5uj43veF0e2W/QI2FZmN0Bdl9Pj8+23IAP3vqI7yzfk+XKZgAMKQkFz+66jT86Kq5qCzNjWK08sjQqVH0XV2g/Oz0pCimP7QsDwunjwxq+3jzQdQ0mcI8IjEMFie8Pn+ih5FyhGgLZscq8OdweWK6IigRERGd0P+uioiIkpTZHrooe1W9AdWNxsDvEoD5U5KjKHssTBhWgssWTAxqO95kwtIPtkWdwWCwOMJmtSUDh8sDU5ji/D0RQmDL3mr87N/v4oWVm2Gyde2nMCcdt19wMh68+YykWTFQrVKgrPBErTaVUpE0K/hdPG980Fh8foGlH26DP4kyaYQQMJgZIOkNv1+gpskEcwwWP+io1WSHzemO6T6IiIiIgSsiorixhLmIWrs9ONtq0ojShE/rirVzTxmNGWMrgtq+2nMcn3x9KOq+G/QWeLzy1I+Sk98vUN/at4LsQgg89/5W/OP1z1HfYu5yf2aaBlctnIzf3342Zk0YAkUUKzXKSZIkVBRld8kezM9Og1KZ+DGmadW45qwpQW2Ha/X4fEdVgkYUmsHqhM/PrKtIeH1+VDcaYXOGXgRDbvUtFmbEERERxRgDV0REceDyeEMW47Y53Ni8J3gVuAXTUqsoe19IkoTvnT8DFYXBqya+8dku7D3WFFXfPp9AXUvy1Z9pMlrh7mNB9q++PY4Nu451adeolDh/9hj86fvn4uyZo6BWJVex6NL8TOg06i7tSoUC+VnpCRhRVyeNLsfUkWVBbcvW7g6Z0ZYofr+AwcJaVz1xe3w41mAMOSU7Vrw+Pxr6GJAmIiKiyDBwRUQUB+Gmr23cfQzuDtlBBdnpmDwiuhX2UoVOo8I9l85CmvZEYMMvBJ56ZzP0UU6NSrb6MzaHG0ZL3wIhTrcXb67ZFdQmSRLmThmKP37/HFy6YCLSdV2DQ4mWm6VDTmb4Qux5WWlJUcdNkiRce/ZUaDusSGl3evD6pzsTOKqu9GYHs6664XR7UN1oTEi2pdXhjvo9i4iIiMJL/BkjEdEAEGqaoBACa7cHT0maN3VYUhSujpeS/CzctuTkoDaL3YV/Lv8q6gvQZKk/4/P70aDve0bG+1/ug7FDXSyVUoHf3HYubl40PWlqRXWm06pQ8l0x9nAUCgn52cmRdVWQk44L544Pavtqz3HsPtKYoBF1xayr8GwON6obTQmdstdstMHhis/0RCIiooGGgSsiohgLN01wf3VLUM0jpULCvClD4ziy5DB1VBkuPG1cUNvRBgNe+mhH1NP9kqH+TKPeCo+3b2NoMljx0aaDQW3nzh6PoeUFcgwtJpRKCRWF2ZAiqLOVl6WDWpUcpyJnnTwSg4tzgtr+99H2Pk/vjAW92QGvL3nGkwzMNidqmk1RrdQpByGAuhYLs+KIiIhiIDnOFomI+rFwK1ut6VSUfdro8m6nVrVLtjpGclhy2rgudYa+2Hm0S0Zab3l9/pDFzOPFbHNFtbLZG5/tCgq85Wam4cJ5k+UYWkxIElBemB3xMSpJEgpykiPrSqlQ4MbzTkLHcFuT0YaVG/dF3bfH68MXO49i6apt+Orb433ux+8XaDLYoh5Pf6E327+rZ5fokbTxeH1oaLUmehhERET9DgNXREQxFqq+lcnmxLb9tUFtp5/Uc1H2zDQNRlTkY9TgAgwuzkFRbgay0rVJk7XSVwpJwq1LTu4yveyVT3bgUE1rVH3bnB60JqDeldfnQ6Oh71ME9xxtwrYDdUFtV5w5LagmWLIpys1Ahk7Tq8fkZOigUSdHMHZ4eX6X1+Gqr/ajto/BT4PFgeXrduNH//wAz72/Fet2VOHpFZuxaU/fg1dmmwv2OK2Yl8yaDNakDOJZ7C5O6SQiIpJZal/pEBElOZfbG3Kq0fpvjsLXYWpLaX4mxg4p6rG/3Ky2jCylQoGMNA0KctJRUZSNERUFGDnoRDArM12TcsGsdJ0a91w6O6hIts8v8K+3voLRGt2FYIvJFveL/YZWK3y+vqWC+Px+vPrJN0Ftw8ryMGfyMDmGFhNZ6do+1aySJAmFSZJ1BQCXzJ8YlPno8wu8uGob/BGm9QghcKimFU+9swk/+fcqvL9xP6yO4Fprb3/+bVRTyhr1ybdqZrwIIVDfYobenLzBoSaDDa44rmxIRETU36XWVQ0RUYoxh8i28vsF1u0IngK3YNrwHmsCqVVKZKZpw96vUp4IZg0qygkKZhXmpqdEMKuiKBu3LJ4R1GayOfHvtzZFVatKCKC+1Ry3+jNGq6NLsKI31m470iXL55qzpiZt4X6NWomygqw+Pz47QxcUsEykdJ0a15w5JajtYE0rvth5tNvHebw+bNx1DL97YQ3+8NJabN5bExSc7qjJYMPmPTV9HqPL44Ohj6tUpjK/X6CmyQRTFNNv40EIgdoWc8LrbhEREfUXyX0FQ0SU4kJNE9x1pCFo6ppapcCcSZU99tWXFeTag1mFORmBYFZxXkav+4mnGWMH4bxZo4PaDtW24tVPvwnziMh4vH7Ut8Y+U8Xj9UU1hclqd+Gd9XuC2k6dVIkRFfnRDi0mFAoJFUXZUQfVCnOT57icMbYCk4aXBLW9+dkumG1dg0UmqxPvrN+D//v3KjyzcguONhgi2sfKjfuiCmy0mGwJX3gg3hr1FthSZJqk2+NDYxSriXYkhIDN6eYUUSIiGrAYuCIiihGn2xNymuDaTkXZZ44bjMy07usCSZKEnMzw2Va9kZ+djrKCLESw6FvCXDp/IiYMLQ5qW7PtSI9ZLz2x2t2oaTLFNPOqrsUSVUDi7fV7gi7OtRoVLl0wQY6hxURZQRa0alXU/WSla6HTRt+PHCRJwnXnTIOmQ5F5m9OD1z/bFfi9qt6A/674Gj/+1wdY8cXesEX4ywqycP05U/GbW86EosOLrr7Vgi2d6tz1ht8v0GwYOIXAhRCwRJHFmAgmmytksDMSfr+Axe5CfYsZh2pbcbzRhONNJjjdDF4REdHAkxxniERE/ZAlxIVsi8mGnYcagtoWTOu5KHtOphZKhXzfNeRk6qBUSqhtTs5aOQqFhDsunInfvvAZWjpkp7344XZUFOVgWFlen/u2OT04Wm/EoOJsWQIuHenNdjhcfb+wPN5k6hLYXDJnLHIze59tFw8F2WnISpcnoAoARTkZON5kkq2/aBTlZuCC08Zh2drdgbYvd1ejJC8Tu4404HCtvtvHTx5RijNnjMT4YcWBgNWsCYOxcXd1YJuVG/ZixtiKoIBWb5hsLuRmeZK6YL9cHC5vSk69q2+1QqdRR7QAgc/vh9XuhsXhgs3h6fLeLIRATZMZQ8tyoVImx9RaIiKieGDGFRFRjJjtXbMDPt9xFB0vRYaU5GJ4ec9BmL5ME+xJZpoWg4tzkrZuUma6FvdcOjso68Xr8+Nfb30ZsnZYb3i8PhxrMIacytlXLrcXzca+TxEUQuDVT75Bx2vV4rwMnHXySBlGJ78MnVr26X0ZaRqk65InCHP2zFGoKMoOantn/Z6wQSudRoUzZ4zAH+84G/dfcSomDi8JCkqdP2csOr7aaprN2HGwrmtHvdCoHxhZVzZHcte1CkcIgboWc9gvCDxeH/RmB6objThU04r6VgusdnfY7b0+P2qaWD+LiIgGFgauiIhiwOn2wOMNnibo9fnx+Tedi7IP67Eoe4ZOLXtmULt0nRqVJblQKZPz42BISS5uPO+koDa92YH/vrs54lXewvH7BWqbzWgx9T3Y1E4I8V39rL73sXV/HfZVNwe1XbVwMtSq5MusUKsUKCvM7vHY7YvCnOSpdaVSKnDjuSf1uF1xXgauPnMK/nbPIlxz1lSU5IcuVF9WkIWTxw0Kantvw76osh6dbi8MluRdYU8u0Sx2kGhOtzeo7p3L40WLyYaj9QYcrtWjyWCF3emJ+P3D6fZ2GwwjIiLqb5LzSoWIKMWFmia4/UBdUB0cnUaFWROG9NhXbgyyrTrSalSoLM2NaCpLIsyeOARnzgjOOvr2aBM+3nxQlv5bjHbUNkeXwdBissPp9vb58W6PD69/tjOobcKwYkwZWdbnPmNFktpWf4xVsDNdp+6x5ls8jRxUgAXThoW8b8KwYtx3+Rz84Y5zcNbJIyOasrf41LFBvx9rMGLX4YYwW0emvxdq93h9cIWoF5hKDBYH6lvMOFKnR1WdAS3G6N4zrA53VItAEBERpRIGroiIYiDUNMHOtYtmTxwCnab7TCq1SilrDaHu9jOkJDdpimN3dsUZkzB6cGFQ2/K1u3G0PrIV3HpisbtwrMHQJUsuEg6XB3qzvecNu/HhpgNBK00qFRKuPnNKTDKaolWSnwmdJrbT+Qpz02Paf29dtmAihpTkAgA0aiVOnzYcD992Fn501VxMGVnWqxpVg4pyMH1MeVBbtFlXPp+QJXMwWaVytlVHJpsr5IIdfWWwOKA39/9sOyIiIgauiIhk5nB1nSaoN9ux71jwNLDTIyjKnpelk3Vs3VEpFRhSnIuMJKox1E6lVOD2C04OGpvPL/CfdzdHlbXQkcvjw9EGA2zOyC+S/f7opwjqzXZ88OX+oLYzpo9AeWF2mEckTn52WlwKxes06rgEbCOVrtPgwZvOwO9uOwuP3bsY1587Laq/z+I544J+P1ynx56jTVGN0Whx9tsV52z9JHAVC81GK6wpWv+LiIgoUgxcERHJLFTB7y37aoOKsg8tzcOg4pxu+5EkCTmZ8QtcAW2r+Q0qzkF2RvIEDdrlZ6fjpkXTg9oaDVa8/PEO2fbh8wnUNJkizmJoNtqizqB4c81uuDsEOjPTNLjwtHHdPCIx8rPTUJyXGbf9FeamI5kSzhQKCRWF2T1mSUaisjQXUztNA31vw76o+23U97+sKyEEbM7+GZCTgxBAbbMFLpkC+ERERMmIgSsiIpmFClxt2nM86PdTJgzqsk1n2RlaKBXxf5uWJAnlhdkxWckwWtPHVGD+1OB6Qxt2Hevy/EZDCKDJYP0ukyp8KpXN6Y66KPaB4y1dxn7J/AlI1yVPjScAKIhz0AoAtGoVspMo60puSzrVujpwvAX7OxXn7y2HywOT1RlVH8mmrWg5i5B3RwiBmmYTvL7UrgNGREQUDgNXREQyapsmGFwkuclgRVWnWkwnj+05cJWf4MBRSX5m0tUaAoCrzpyMsoLgVdte/HAbWozyZpuYrE4cazSGvBj0+f1oaLVE1b/fL/DKJ98EtQ0pycG8KaELgSdKQU46iuIctDqx74ykyrqS07DyfEwcVhLUtmLD3qj7bTba4PP3n0Lt/aW+Vax5vH7UNEW3yAQREVGyYuCKiEhGobKtvt5bE/T76MGFyM/uPiCUrlNDK8OUpGgV5mSgtCAzqYIHWrUKd1w4M2hVO4fLi/+s2Cz7BbvT5cXReiMcruCpSk16a5cAZW99sfMoqhuNQW3XnDUVCkXyPNmFuekoys1I2P41amXcp8vG05LTgrOu9h5txqGa1qj69Pr8aDFGt1hAMmHgKnJOtxd1reZED4OIiEh2DFwREcko5DTBToGrmeN6zraKRwHsSOVmpqG8MDupgldDSnJx+emTgtoO1+qx4ovoM1Y68/r8qG40BaZgWewumGzRFUO2O91Yvu7boLaZ4wZ1WTkxkYpyM1CYk7igVbvCnPSkXF1RDqMGFWJsZVFQ23syZF0ZrY5+UfPI7fH1aaXPgcxqd6PJYE30MIiIiGTFwBURkUzszq7TBGtbzKhpMgV+lyRgxtiKbvtRqxTISk+uGkdZ6VoMKs5JqmygM2eMwOQRpUFtKzfui7pOUChCtK0e2KBv+4nWig37goKcGpWySyAukYrzMlCQkxzTRFVKZVxX14y3zrWudh1p7DK1uLeEaFu4INUx26pv9GZH1PX3iIiIkgkDV0REMgk5TXBPcLbV+MpiZGd0fxGem5mWlBkmGToNhpS0rTio06gSPkZJkvC986cHrYAoBPD0iq9jdsFrtDjh80VXQ6a+1YzVWw4FtZ03a3TSBIqK8zJ7nMoab/nZ6UkVNJXT2CFFGDmoIKhtpQxZV3anB2Zbahdqtzmiy2wcyJoMVtgY+CMion6CgSsiIpl0DlwJIbBpb/CKcTPHD+62D0lCUtf00WnUKC/MxtCyPIwZUojh5fkYVJyN4rwM5GRoodOq4hpgyM7Q4dbFJwe1GSwOLF21NSlXIhNC4NVPd8LXoYByQXY6zp01OoGjOqEkPxP52ckzTbWdSqlIylUu5SBJEi7olHW1/WA9jnfI1OyrJoMtZYt1+/0C9k615ShyQrRl/PaHKaNEREQMXBERycDu9MDrC54mWN1oQqP+xHQdpULCSaPLu+0nO10bVHQ82WnUSmSmaZGfnY6ywmwMLc3D6MGFGFGRj8HFOSjOy0ROpg5pWnXMAloTh5fg3FNGBbVt3V+Hz785GpP9ReObQw3YfaQxqO2KMyZBq058If7SgsykDg7lZ6dBqeyfWVcThpVgWFleUJscta68Pj9aTfKuthkvNqcbSRh7Til+v0BNsynkyqhERESpJHWujoiIklioaYKbO2VbTRpeioy07mtX5SVhtktfqFVKZKRpkJ+dhrKCLFSW5mL04EKMHJQPXQxWS7xk/kRUluYGtb36yTeoa0meFba8Pj9eW/1NUNuYIYU91jyLh7KCrKRaECAUpUKBwpyMpFokQC6SJHWpdbV1Xy1qZTh+9RYHXJ7Uy7phfSt5eLx+1DSZUzbzjoiICGDgiohIFqGmCW7uVN9q5vjuVxPUaVXQadSyjy2ZqJRKlBdmy559pVIq8P0LZ0KrVgba3F4f/vPu5qRZleyTrw+iyXAi+0WSgKvPnJLQWmGS1Ba0SubpqR3lZaVhREUBivMyoOnwt+4Ppowsw5CSnMDvAsD7G/ZF3a8QQJM+9Qq1250MXMnF6fairjV5gvhERES9xcAVEVGUbE53l2mCh2v1aDXbA79rVEpMHdX9NMH8JJ6mJSeNWonS/EzZ+y3Jz8K1Z08NajveZMKba3bLvq/eami1YEWnIMT8qcMwpCQ3MQNC6gWt2qmUCuRnp2N4eT4qS3ORk6lL+EIBcmjLuhoX1LZp73E0yrCKpc3pCZkVmqxcbm+XFVopOla7G60me88bEhERJaHEF9UgIkpxoacJBmdbTR5Z2u0UOZVSgax0bdj7+5vsDB1sTg9MVnlXPTt1UiV2H2kMev4/3XIIE4cVY/LIMln3FSm3x4d/v7MpqEhyuk6Ni+dNSMh4gPagVXbQioypKE2rRppWjZK8TJjtTpisLjhSuKD3tNHlqCjKRm1zW3aMEMDKjftxy+IZUffdZLAiQ6dJidUZ5Z4maLG78NJH23GwphU6jQpZaVpkpmuQla5FZlrbv+1tmWlaZH13XzKsniqnFpMNmWkaaGMwXZuIiCiW+MlFRBQFIUSXwJXfL/D1vuDA1Sk9rCaYm9U/skZ6oyQvE06XBy6PfFP5JEnCDedOw+E6fVB2wbPvb8VvblmYkDpOr3y6AzWdVoi7bMHEhAUqJQkoL8zuV4FShUJCbmYacjPT4PJ4YbI6YbI54fOlVl0fhSRh8Zyx+M+7mwNtX+6uxgWnjUNRbkZUfXu8fugtdhTmRNdPPMgZuGox2fD3175Aw3fTJU0AGhHZ1EmlQkJmuva7wJYGuVlpmDdlKMYMKZJtfPEkBFCvt6CyJHfAfd4QEVFq41RBIqIo2F2eLhfHB463BGUS6TQqTBpeGrYPSQJyU2y6lhwUCgnlhdmyX0Cl6zS444KZUHTo12J34dmVW+CP8zJlX+6uxuc7jga1zRw3CPOnDovrONpJElBR1L+CVp1p1SoU52ViZEUBKoqykZmmSamC7iePHRQ0ldYvBD74cr8sfbeaHF2mNScbn98Pp1uerLmaJhP+8OLaQNCq92MRMFmdqGkyYe+xZny5uxqPvLoeVXV6WcaXCE6XF3qzI9HDICIi6hUGroiIomC29bya4LRR5d0Wks5K10Kl7F+FpiOl1ahQki9/BsjIQQW44LTgekHfVjXh480HZd9XOLUtZiz9cFtQW0leJm4876S4ZztIkoTcLB2GleUjM63/Bq06kiQJWelaDCrOwYiKfBTlZkCtSv7XmUIh4fw5wSsMfrHzKPTm6OsTCSHQYrL1vGEC2RweyBFfPnC8BX/83zoYZZ6O7PMLPL9qW9IHALvTYrKl5EqTlLp8fn/QdHkiot7iVEEioj4SQsDqCA5ceX1+bNlXG9TW02qCeQOkKHs4uZlpsDs9IYOA0Vg8Zyz2HG3CgeMtgbbla3dj7JAiDC3Lk3VfnbncXjz59ldwd5gGqVYpcOfFpyBNG7+VI5XKtil0eVlpUCkH7ndVKqUSBTnpyMnU4UidHn5/ck8hnDVhMFZ8sRfNxrYgk88vsOqrA10WH+gLk9WJ/Kz0pF2V0eaI/n1g+4E6PPXupi4F3k8eNwhLTh0Lm8MNi90Nq8MFi90Ni90Fq8MFq90NS4d/3WGmMdc0mfDR5oM4f/aYqMeaCEIA9a0WDC2N7fsgUTu704O6FgvKCrJSvrYiESUGA1dERH1kd3adJrj3aFNQfZYMnRoThpWE7UOnUcU1kJGsSvIz4XB54fHKV+9KoZBw+wUn46FnP4XN2Tb1yOcX+M+7m/HQ9xZ2Wyw/GkIIvPTRdtS1BK8Gd+3ZU+O2iqBapUR+dhpyMnQpUYw7XlRKBQpz0tFkSO6sI6VCgfNnj8ELq05k7K3bUYXz54yJuk6bEG0ZN+WF2dEOMyaszujqW32+owpLP9zWJWtr4fQRuPqsKUFTiHvi8nhh/S7AtXLjfmzdf+JLiRVf7MGMMRUoicEKqfHQNmXQjvzs9EQPhQYAm9MNIQTqWsxwedKjrtlHRAPPwP36lYgoSuYIVhOcPqai20yXgZ5t1U6pUKCiKEv2WkT52em48bzpQW2NBiv+9daXMVt97oudx7Bxd3VQ2+yJQzB38tCY7K8jnUaF8sJsDC/PQ15WGoNWIeRlpSVttlFHcyZVoqBDUMHr8+PDTfJMdTXbXLLVkZKTI0TNwEgJIfDehn14YVXXoNUl8yfgml4GrYC2emkFOemoLM3D9edMRYZOE7jP4/XjxQ+3QcS5bp6cmo32sFllRHKyO0+837Sa7KhpNsHnT93ptkQUfwxcERH1Qahpgh6vD9sOdJ4mGH41QaVSYsp8BzqNGkW58mcvzBhbgXlThwa1fVvVhD/9bx0MFnmLFB9vMuF/H28PaisvzMIN50yLaV2rzDQNBpfkYGhZHrIztFwxrBuSJKEkL/mzZFRKBc6bNTqobe32IzDb5KnZ1JyEWWd9XU3QLwRe+eQbvP35t0HtkgTcdN5JWDxnbNSviewMHa5aODmobe+xZnyx61hU/SaSEAL1rZaeNySKgtfn6xIgtdrdqG4wMnBKRBFj4IqIqA9sTneXzIBdRxrgcJ0oPpqdocXYbpZNz83QMcDQSX52GjLTNT1v2EtXnzkFFZ2mRh1vMuHhpWtQ02SSZR8Olwf/fvuroLo6GrUSd148C9oYTEuUJCAnQ4thZXkYVJwTlA1C3ctI08TkOJPb3ClDg1YcdXt8+EimBQZsTg9sUU7Lk5utD4Erj9eH/7y7Gau3Hg5qV6sUuOeS2Zgn4wqecyYNwfihxUFtb6zeCZNMwcREcLg8XGWQYqpjtlVHLo8PxxoNSfc+RETJiYErIqI+MIdYqWrznuBpgiePHRR2qpYkAbmcJhhSaX4W1Cp5P560ahV+fM3cLsWIDRYH/vDSWnxb1RhV/0IILF21DY16a1D7DedM6xIwi5ZCISE/OwPDy/NRVpgdk6DYQFCcmyn71FS5qVXKLllXn207AmuIacp9kUxZV16fD85erjrmcHnw2Bsb8HWnKdrpOjV+dNVcTBtdLucQIUkSbjh3GjQdVqe0OT149ZNvZN1PvDUbbcx8oZjpLiDt8wnUNJkYPCWiHjFwRUTUS0IIWDpdOLrcXuw4VB/U1t1qgplpWqhVyV9nJxFUSgXKCrJlDyrkZOjw02vnYerIsqB2p9uLx97YgPU7j/a577Xbj3SpbzZvylDMmVTZ5z5DydBpMXJwEUrys3j8REmjViI/BYLH86YOQ3b6iSnFLrcXqzYdkKVvp9sr+2qefWVz9K7mlsnmxF9e+Rx7jzUHtedm6vCza+dj9OBCOYcXUJyXiQvnjgtq27y3Bjs7vf+nEiEEGvScMkixYe+hnqQQQJPBivpWS0rXjCOi2GLgioiol6wON/wiuKjojkP1Qd9Y52enYURFQdg+WJS9e+k6NQpy5F/tSqtR4Z5LZ+OMk4YHtfv8As+/vxXvfL6n1yfOR+sNePXTnUFtg4pzcM1ZU6MdbhBJklBakAWlgh/dcinIyZA9u09uWrUK55wyKqjtk68PocUoT7ZUs9GWFBeLvalv1WSw4o8vrsWxBmNQe2l+Jn5xwwIMKs6ReXTBzp45CkNKgvfx0kc7ep0xlkzsTo/sNf+I3B5f0PT57pisTlQ3muD1MfuPiLpK7rM1IqIkZAlRz2TznuNBv88cNyjsClZatRLpOnVMxtafFOZkxOR5UigkXHv2VFxxxqQu963YsBfPrtwCry+yE227040n39kUtL1Wo8JdF50i+8p1+dlp0Kg5LVBOCoWUEsuynzF9RFCw2+vzY9na3bL07fH6YAwx9TmehBAR17k51mDEH15ai6ZOgbthZXn4+fULUJgT+7+nUqHATedND8oKbTXb8da6b8M/KAU0GThlkORld/WufpXD5cGxBmNSrnpKRInFwBURUS9Z7MEXeXanG7uOBNdImjku/GqCednMtopUeWEWVEr5P6okScK5p4zGXRef0qX/jbur8ejrX8Dew4W0EALPvb8VzZ0uoG8+7ySUFmTJOl61SoGCbPkz0Khttbg0bXIHkrVqFS6ZNyGobfPeGhyu1cvSf6vJDr8/cVlXdpcnov3vPdaEP7+8rsv0xonDS/CTa+YhKz1+q7QOLcvDWScHZ8Kt3nIIR+rk+ZskAqcMktx6OwUYADxeP441mGRbQZWI+gcGroiIesHt8Xa5wNp2oC4o46Y4LwOVpbkhH69QSMhO14W8j7pSKZUokzkI1NGMsYPwk2vmITMteIW5vcea8ceX1qHVZA/72E+3HMK2A3VBbaefNBwzx4cPWvZVUW5G2EL/FL2S/OTPupo9aQiGlOQGtb2+eqcs0/y8Pj/0lvDHeqzZI5gm+PXeGjz6+oYu0/FmTxiCey+bk5BFCi6eOx6FHaY0CwAvfLA14ozNZMQpgySn3mZctRNCoK7FgmaDteeNiWhAiOunvN/vx969e/Htt9+ipqYGzc3NsNvt8Hq90Ol0yMrKQmlpKUaOHIlJkyahpKQknsMjIuqRK0QNk86rCc4cNxhSmGmCWWkaBiB6KSNNg4LsNLTGaNWhkYMK8MsbFuDR1zcETT+qbTHj4aVrcP8Vc1DZaTXCw7WteOOzXUFtlaW5uGrhZNnHl6ZVIzuDwc5Y0mnUyM3SwWhJ3m/4FZKEKxdOwl9fWR9oO1Tbiq37azFjbPiFICKlNzuQm5kWkwzHnvRU36qqTo+n3t2EzjG6c2aOwuVnTAo7LTvWtBoVbjh3Gv7++oZAW02zGR9tOoDz54xNyJjk0Gy0ITNNwwUgKCoutxc+X3SB9VazAy6PD2WFrO9INNDFJXC1f/9+vPDCC/jss89gNpsjftyoUaNw2WWX4bLLLkN6OqdIEFHidf6232x3Yc/RpqC2U7rJuGEAom8KczNgd3nh6GF1or4qyc/CL248HU8s2xg0/cpkc+JP/1uHOy86BZO/W43Q6nDjqXc2w9ch8y5Nq8adF50Skwu9VMgG6g8KczJgtrkSOmWuJ+MqizF1ZFnQCqZvrtmNKSPLoj72/H6BVpMdJfmZ0Q6zVzxeH1w91FX6+OtDXYJWV5wxCeeeMjqGI4vMxOGlmDVhML769kSdw3e/2IsZYytQkh+7bNFY8vsFGlotGNwpw4+oN2xOeT6vrQ43jjUYUZiTjsw0Lb/8IxqgYhq6/vbbb3HLLbfgoosuwjvvvAOTyQQhRMQ/Bw8exB//+EcsWLAAjz/+OFyu5FiymYgGrs4FQ7fuq4W/wxVVRVE2KoqyQz5WqZRYlL2PJElCeWFWTE9Ys9O1+L+r52H6mIqgdpfHh8eXbcSabUfgFwLPrvwarebgaVXfO386ivPkv+DPydRBp+ExEw8qpSIuhb2jdfkZE4MyjJqNNqzeeliWvo1WBzze+Bbn7inbyu8X+LYquIbgDedOS4qgVburzpwSNN3Y6/Nj6Yfbk2K1xr6yOT0wWjllkPqur9MEQ3F7fKhrseBgTSvqWsywOlwp/foiot6LScaV3+/Hv//9bzz11FPw+XyBNxadTofp06dj1KhRGDp0KPLy8pCWlga1Wg2LxQKLxQKj0Yg9e/Zg165dqK6uBgCYzWY89dRT+Oijj/DnP/8ZkyZ1XQmKiCgeOk8V3Ly382qC4bOtstK1YacQUs/UqrZ6V7XNkWfu9pZGrcSdF5+CNz/bhY82Hwy0CwG89NF2fPVtNQ7WtAY95uyTR3YJdskhVVa860/ysnQwWR09ZgAlUllBNhZMG4bPth0JtK3cuA+nTapEZpTFyYVoC4SVF4YOvseCrYfA1dEGQ1BwK0OnxtwpQ2M8qt7JTtfiqoWT8czKLYG2fcea8cXOY0k31t5oMtiQoeOUQeo9IQTsMmVcde7XbHPBbHNBqZSQla5FdrqOXwoSDQCyB66MRiPuvPNO7NixA0IISJKEuXPn4tprr8WcOXOg0Wh67uQ7DQ0NeOONN7B8+XI0NjbiyJEjuPrqq/Hzn/8c1157rdxDJyLqltfnh8fng0JqO4k3WBw4UN0StM3MceFrzbAoe/Sy0rXIydTBZI1dLaK2WkKTUZiTjlc+/SZoilLnoNXw8nxcdnpsvkwpzMlISL2hgUySJBTnZ+J4oynRQ+nWBXPH48tvq+FwtQXS7U4PVmzYi2vOmhp132abCwXZ3rgUOxdC9DidaHenFVvHDytJylo3sycOwZe7q/Fth6njb3y2E5NHliInRaeI+/0CjXorBhXnJHoo8Hp9EBBQq/jlTypwursuZCM3n0/AaHHCaHFCrVIiO12D7EwdtOr4L9QQSz6/H81GG0ryMvnlJw1osn7yNzQ04Nprrw0EraZNm4Zly5bhv//9LxYsWNCroBUAlJaW4t5778Xq1avxwAMPQKfTwev14uGHH8bjjz8u59CJiHrk8gRnW329twYdT8uGluaFrQ+jVin4jaBMivMyoFbF/sJ14YyRuOfS2dCEyTbI0Glw50WnxCS4pFUrkZeVmhe7qS5Dp0FWlJlLsZadrsXiTsW/12w7goZWiyz9N3dYpCCW7E5Pj9N9dh1uCPp94vDkXLhHkiRcf+60oPcLm9ODVz/5JoGjip7V4Y7pFwWRcLg8qKrXo67ZyOlhKSIW2Vbd8Xh9aDU7UFVnQFWdHnqzPe7TnmPB5nCjqs4Ao8XZ47Rqov5OtrPturo6XH311Th8+DAUCgV++MMf4tVXX8WECROi7lulUuGOO+7Ae++9hwkTJkAIgaeeegq///3vZRg5EVFkuk4T7LSa4Pjusq2S+0I4lSgVCpQWxKfo8bRR5fjptfNC/v1uXTIDBTmxWTikOJ/frCZScV5G0j//Z84YGXT8+fwCb67dLUvfVocbNmfsL5J6uhCz2l04Uq8Paps4LDkDVwBQnJeJi+aND2rbvLcG33Qopt9bTrcXX++twdPvbsYjr67Hln01PT9IZo0GK7y+xAQBjFYHqhuN8Pp8cLq9aDXZe34QJZw9Du8f4bg8PjQZbDhcq0d1oxFGqwM+vz9h4+kLv1+gQW/B8SYTvL62sZtsybvqLVE8yBK4MhqNuPXWW1FfX4/09HQ8/fTTuP322+XoOsjgwYPxyiuv4JxzzoEQAv/73//w1FNPyb4fIqJQOq4o2Gyw4khd8AVVt9MEU3SqSLLK0GmQn50Wl30NK8/HL288HWUdgmUXzR2PKd+tMii3zHQNMnS9y1AmealVShTkxOf46iu1SonLFkwMatt+oA77q5tl6T8eWVc9Ba72HG0Kmqo7qDgHeVnJ/Xc56+SRqCzNDWp76aPtvVoR1eHy4Ktvq/HP5V/ivsffw5PvbMJXe45jz9Em/PvtTfhMpmL8kWpbZdAa130K0Xbh3tBqDToGWk1WuJO4Bh19V9/K5e15wziwOz1oaLXiUE0rzCkS+HG4PDja0JZl1ZHN4Q4EsYgGoqgDVz6fD3fccQeOHDmC3NxcLF26FKeeeqocYwtJq9Xi8ccfx1VXXQUhBB5//HGsWLEiZvsjImrXMePqq91Hg+4bNagA+dmhs2+0amVc6sUMNIU5GdCo41M0uCg3A7/+3kLcfcks/Pz6+bjgtHEx2Y8kSSiJweqE1Hv5WelxmZIajZnjBmF4eX5Q22urdwatdNpXTpcXFnvsVnN2ebw9TuXZ1am+1aQknSbYkVKhwE3nnRS08qPe7MDbn3/b7eNsDjc27DyGf7y5Efc9vhJPr/ga2w7UwePteqH6v4934IudR+UeeresDjca9da4ZK54fX5UN5q6XLgDgP+7gBYlL7ur5ynA8SYEUNdiSeqVMoUQaDbaUN1oDBmcFaKtBiHRQBX1lZRSqcQFF1yAqqoqPPvss7JMDYzEr3/9a3i9XmzZsgUzZ86Myz6JaODy+wXcXh+U3yXCbNp9LOj+meO7WU0wg9MEY0GhkFBemIVjDUbE4xxZrVLGZPXAjvKz07iCV5JoW9UxE3UtsVvFMlqSJOGqhZPxh5fWBtqONRix6dvjmD1xSNT9NxttyEzTxGTaZE+rCQohuhRmnzS8VPZxxEJlaR7OnjkSH246sTLp6i2Hccr4IRhRcSLQaLG7sP1gHbbsq8Xeo03w9aKY9fMfbIVGpez2s0duBosDZrsThTkZyM3UxeS4cLo9qG02hwzYtbM7PTBZncjJZCZzMop3faveaGi1wu8XYb9oTBSXx4v6FktQZn8oZpszbtnmRMlGlhSAa6+9FosXL0ZOTnxXHXn44YdhsViQlRWfWidENHC5vd5AcKSu2YTqRkPgPkkCZowNH9DgaoKxo9OokZ+d3i/qnqhVChQk2cn0QJedoYXRqpblQkynUUGjVsr+jfnIQQWYMbYCW/bVBtqWr9uN6WMqos5IdHt8MNmcyM2U/0Kpp8DV8SZTUE0XrUaFkYMKZB9HrFw4dzy27K9Fi7HtvUkAWLpqK+6/4lTsPNyALftqse9Yc0TZcQU56ZgwrBgbdh4LBLeEAP773tdQq5WYNqo8lv+VID5f20qDBosDxXkZyEyT74sZk9WJBr01omydJqMVGWlqqJQM9CebZA5cAUCTwQafz4+iJMlu1psdaDbaIjrunW4vXO74rPpKlGxkO+rjHbRqx6AVEcWDM2iaYFXQfeMqi8Mud67TquI2nW2gKsxJh83h7vGbymRXlJsBhSK5C4IPRCV5mTjaYOhTVp9apUB2ujawRLsQAg6Xp9tskr64bMFEbD9QFwhq6M0OfPz1wS4rD/ZFi9Eue/Dd7xew91DzqfM0wfGVRTFZwTNWtGoVbjz3JPzttS8CbTXNZvz4X6sienxxbgamj63AjLGDMLQ0F5IkYdLwUjz59qZAsMvnF3jy7U2497I5cV9t0e3xoabJjAydGsV5mVFdSAsh0GSwwWCJfBpXWwDNhoqi7D7vl+Tn9ws43ckduAKAVrMDfoGwK0HHg8frQ0OrBbZeBvpMNieKNckRdCOKp9Q5AyAiSqD2oIgQokt9q+5XE2S2VaxJkoSywqykXwWuO2laNQv4JymtRtWrjCOFQkJOpg6DS3IwoqIARXmZ0KrbLuolSYrJFJXivEwsnDEyqO39L/fLsgqV1+fvVUAhEjanu8dA4O4jDUG/T0yRaYIdTRhW0qspm6X5mVg8Zyx+/b2F+OP3z8Hlp0/CsLK8wHvb9DEVuHXJDHR8p/P6/Pjn8i9lK8rfWzanB1X1BtS3Wvq08qDX58fxJlOfjjGL3QWrgzV/kond1fNrO1kYLA7Ut5gTUo/LbHOiqt7Q66AV0Ba4SrYaYkTxwMAVEVEEXO62E/LjjUbUtZgC7UqFhJNGh54mKElAdgZXh4sHrVqFotzUnGYnSW0XrJS8CnPToVSGD4xKEpCZpkF5YTZGVhSgrCAr7MqQuZm6mBR9XzJnbNA+XW4v3l2/R5a+W812WVez6mk1QYfLg0M1rUFtqVCYPZSrFk5GZlr4z4GKomxceNo4/O7Ws/D728/GJfMnYEhJbthA/KwJQ3DjopOC2txeHx57cyMO1+pDPiYeTFYnDtca0GKywR9hrS6n24NjDYaoppbFq2A8RSbZpwl2ZrK5UBvH4JXX50dtsxl1LZaIXyed+XwCNmf376FE/REDV0REEWjPuOqcbTVxeEnYi5J0LetvxFN+djrStOpED6PXcjJ1rFeR5JQKBYpyM7q067QqlORnYkRFAQYV5yA7Q9vjdM9YZV1lpGm6rHa5bkcVapujLy7v9wu0mmxR99Oup/pWe48FFyovK8hCYYjnPxVkpWtx86LpQdMch5Tk4pL5E/D728/G7249CxfOHY+KouyIs0bnTRmGa86aEtTmcnvx6BtfoLrRKOfwe0UIgRajHVX1eph7yPYzWZ041mCKetqsx+sP1BGjxEu1wBUAWO1u1DSZ+hxIipTN4cbReoMsq7WarMw0pIGHZ8pERD1we3wQQoSeJjiOqwkmk7KCLBxtMMT8BFQuCoWEwpzUvCAfaHIz02C0OOHzC2RnaJGToetz/brcTB1aTfJmMQHA6ScNx2dbD6PRYAXQVsD7jc924oErT4u6b6PFjsLcLERbZsrl9vb4/+68mmC86zfJbdrocjz0vYVo1FswqCgHxTIUhT5zxki4PT4sW7s70GZ3evDIq+vx0+vmo6IwcbWfPF4/6los0FscKM7NRLruxBcKfaln1RODxYHsDG1KfnHRn3h9/pStNWlzenC8yYRBxdlQKuTN67A7PTBYHLIErNpZHS54ff6UqvtHFC0e7UREPWg/ETtSZ0CL8UTWgVqlwNRRZSEfI0lt37RTfGnUShTnpU4gqDAngyeeKaStblU+inIzolp0IVZZVyqlApefMTGobdeRxi6BoL7wC4HjjQY0G6ywOdx9Dg73NE1QCIFdh4PHm6rTBDuqKMzGSaMrZAlatVs0ewyWnBpcgN/qcOORV9ejUW+VbT995XR5Ud1oRG2zGW6PL6p6Vj1paLWw7k+CpWK2VUcOlwfHG02yfKEghIDJ6sTRegOqG42yBq3a+ofsfRIlO54tExH1wPXdCjmb9x4Pap8ysizsN7wZaRrZv7WjyORmpnVbUyZZaNVK5GWxIHsqkfM1nZupi0nQctqocoweXBjU9sZnO2XJQnS5vWgxWXG8yYSDNS041mBEs9HWq0BWT4Gr+lYLWs0npn6pVQqMHlwU1bj7s4vmjsc5M0cFtZmsTjzy6nq0mpJjCp3F7kJVvR5H66OrZ9Udl8cXdNxQ/NldqV93yeluC7Z6vL1faAAAvD4fmo02HK7Vo77VEtMMNJM1+sU3iFJJwq+qfD4f9u3bh3Xr1mHlypV45513Ej0kIqIgLk/bCcz2A3VB7d1NE+RqgolVWpDZbTHtZFCcn5nSKyFSdBSK2GRdSZKEKxdODmqraTbji51HZd2PEG0ZCq0me9dAljN0IMvn98Pp7j5w0Tk7bMyQoqiy2/o7SZJwxRmTcPq04UHtrWY7/vrq5zBa5c9u6gshIPvU2M5aTXa4PKk5Va0/SPWMq3Zujw/VjUa4PZEHr5xuD+pbzDhcq4/JNPDQ+/TyeKcBJWE1rrZv344XX3wRa9asgcsVnOp40UUXddl+xYoVmDZtGgYPDn+hSEQUC063Fxa7Cy0dvr1WKhSYPCL08uwKhZQSGT/9mUqpREleFupaoi9MHQtZ6dqwq87RwJGbqYNe5hX7AGBYWR5mTxiCL7+tDrS9/fkezBw/GLoYLQTQHshqC2a1TZfWadRI17X9pGnUsDnc6Gk2164jDUG/94dpgrEmSRKuPWcq3F4fNuw6FmhvMtjwyKvr8ZNr5yN7AExdFwJoaLWisjQ30UMZcLw+X68CPcnO4/WjutGIwcU5YRdPEULAYnfDYHHA4UpM0M5kdco6/ZgomcU940oIgYcffhjXXnstPvzwQzidzkDR43Bz0x999FH89Kc/xYMPPhjn0RLRQOf1+eH1+bus1FRRnBM2CyArTdPjymIUe9kZWmQnYYF8SZJSqg4XxU5b1lVaTPq+dMEEqFUnTvNMNidWfbU/JvsKJSgjq7EtI6u9aHw4Lo8X+6tbgtomDg/9BQEFU0gSblp0Ek4eNyiova7Fgr+/tr7HlRz7C4fLE5MaWtQ9m6N/ZFt15PX5cazR2CUo5fP70Wqy40idHnUt5oQFrQDAbHOxtlsEUmXBHupe3ANXv/rVr/Dyyy/D7/ejrKwMd9xxBx577DHcd999YR8zffr0ttW8vvoKO3fujONoiWigc31Xn6Bz4KqyND/sY7IzOE0wWRTnZSZd8fP87DSoVZz6RG1yM9NiMq01PzsdZ3eqffTRpoPQJ6gOkBCAz9f9xcP+6pag7LPC3HSU5jObIFJKhQK3LTkZU0cGLxpS3WjCo29sSOgFdjw1G23w+vpP9k8qsDv7Z2DU7xeobjTB5nDD5faiodWMQzV6NBtt8HhjPx2wJ16fH7Z++tzLxevzoUFvSfQwSAZxPZvfuHEjli1bBgC44oor8OGHH+KBBx7Aueeei3HjxoV93Lx58wL3r1ixIi5jJSICTqwoeKzBGNReWZYXcnulUgpa+psSS6VUoLQgeS581SolCmJQ14hSl0IhxeyYWDRrTNAUMbfXh7c/3xOTfclh1+FO0wSHlbIOXC+plArcefEpmDC0OKj9SJ0e/1i2cUDUxPH7BRqSYFXFgcTej4Oi4rsVVY/UtsBgsSddhpPJytUFwxFCoKbZzOBePxHXwNUbb7wBABg3bhx++9vfQqOJvL7HwoULIYTA119/HavhERF10X6SH2nGVVa6lhdaSSYzTYuczMRnwSkUEgYVZXMaKXURq6yrNK0aF80bH9S2cdexLoH4ZNG5MPvEEaxv1RdqlRL3XDq7y+qS+6tb8O+3voI/yS68Y8Fqd8Ns4wV9PLg9vqTIPoolgeR9zVgdbvj8/fv576uGVgucLi98PhGXgvkUW3ENXO3YsQOSJOHiiy/u9WOHDRsGAKirq+thSyIi+TjdXrjcXjR2+PZWkoAhpaEzrriaYHIqyctM6PQ8SQIqCrPDFnmlgU2hkJCfFZusq7lThqK8MCvwuwCwbM2umOwrGk0Ga1ANLKVCwtghRQkcUWrTalS47/I5GNYpO3jXkUZ8tvVwgkYVX00GKy/o48DuYjZLIgkhGKQNodVkh6nD89KfFg8YqOIauGptbQUAlJWV9bBlV+3ZWQ4HCy4SUXz4/QJujw/Hm0xB37WV5GcjTdt1OqBapeA0wSSlUEgoK8jqecMYKc7LRAZXmqRu5GXFJutKqVDgijMmB7V9e7QJ31Y1hnlEYnTOtho1uDDk+yxFLk2rxgNXnoZBxTlB7cvX7kaL0ZagUcWP1+dHk6H//z8TrT8WZk81Jpsz0UNIKlaHC82d3uM8XgauUl1cA1dpaW0r57QHsHqjqqoKAJCbmyvnkIiIwurtNMGBsNx4KkvXqWO2glt38rPTkJcV//1Saoll1tWk4SUYWxmcvfTmmt1JNWWsc+Bq0nBOE5RDZpoG918+B2naE9meLo8PS1dtS7paPbFgsjpZ3ybGmHGVeE6Xd0DUr4uEy+1FXUvXYuxuPj8pL66BqzFjxgAAPvnkk149TgiBFStWQJIkjB8/vucHEBHJwBluRcGyMIErriaY9IpyM5AVxwBjZroGxXnJUxyekltuli4mWVeSJOHy0ycFtVU3GrF5z3HZ99UXHq8Pe481BbVNGl6aoNH0P/nZ6V3+/t8ebcKGXccSNKL4ami1wu/v/0G6RHC5vT2uFkrxYbYy68rr86Om2RTy9e5ixlXKi2vgatGiRRBCYMOGDXjnnXciftw//vEPHDp0CABw3nnnxWh0RETB2r+9OtYpcDU0ROBKq1ayflEKkCQJFUXZccmA0mlUKC/Ijvl+qP9QKhQxOzaHleVh5rhBQW1vrfs2KaZPHKxphatD/ZHcTB0qivjakdP8qcO6ZN29tnonjNb+X4LD4/Wh1cQpg7Fgc3KaYLIw2wd2nSshBGqbzWEXCmCNq9QX18DVZZddhpEjR0IIgV/84hd4+OGHcfhw+AKRe/fuxY9+9CM89dRTkCQJo0ePxgUXXBDHEfed1WrFv/71L1x00UWYPn06pk2bhsWLF+PRRx+FXq8fsGMhSiVOtxdenx+1zeag9lBTBbMyOE0wlZTkZ6I4LyNm/atVCgwq5gqC1Ht5WWkxO24unjcByg59t5jsWLPtSEz21Ru7jzQE/T5xeClXZ5WZJEm46byToOmwSIXd6cHLH+9I3KDiSG9xoNlog9HqgM3hhsvjZRaWDOychpk0PF4/bI6B+/do0FvhcIUPpHq8vgExPbo/i2t6gFqtxjPPPIOrrroKDQ0NePnll/Hyyy9Dp9NBqz1x0XfOOeegtbUVNlvbtyNCCJSUlODpp5+GUpm4VaEidfjwYdx2222ora0Naj948CAOHjyIZcuW4cknn8TkyZPD9NA/x0KUalxuH+pbLUFL6OZlpSEnMw1+EfzNDVcTTD352elQKRWob7VAznMZhULCoKIcqFLg84qSj1KhQH52GlqMdtn7LsnPxIJpw7G6w6pyKzfuw2mThyZ0YYldrG8VF8V5mbh4/ni8vvrEqpJb99dhy74azBg7qJtHpj4h2lYZ60yhkKBWKqBWKaFUKqBWKaBWKqFSKqD67nZ3gWSf3w+/X8DvF/D5BfzCf+K2X8Dv98Mn2m5npWvjOlU91oQQsHcTKKD4M9mcA3IhGL3ZDlMPUyWFaAvuadQ8N0tVcc24AoDS0lK8/vrrOOussyCEgBACDocDJpMp8O1adXU1rFZr4P758+fjtddeQ0lJ8p/IWK1W3H777aitrYVarcb//d//Yd26ddi0aRP+9a9/YciQIWhpacGdd96J5ubmATMWolTj8nghhEB1gzGofUiIbCudVsUPwhSVnaHDoOIc2TJcJAkoL8zitFGKSiyzrpacOjbo+LQ63Fi1aX9M9hUJvdkelNUqScD4ocUJG09/d9aMURhWlhfU9r+PdsA6QDM1/H4Bl8cHq8MNk9WJFqMd9a0WHG8yoarOgAPHW3DgeAuq6vQ42mDAkTo9Dte24sDxFuw71oyDx1txuFaPqnoDqhuNqGkyo67Fgka9Fc1GG1rNDhgtTphtLtQ2m6E3yx+QjkT7NZWcnG5mrSUbi90Nnz/0VLn+yupwRbx6qNvLAu2pLO6BKwAoKSnBE088gVdffRXXX389hgwZAqVSGXhTVSqVqKiowNVXX40XXngB//nPf1BWVpaIofbas88+i5qaGgDAX/7yF9x6660oLS1Fbm4uzjzzTNx9990AgJaWFvz73/8eMGMhSjUud+j6VpWleV22ZbZVasvQaTCkJAcqZfQficV5mchM6z/fqFNixLLWVXaGDuedMjqo7ZPNh2CwJKbW0e6q4GyrEeUFAzJjIF4UCgk3nz89aMqo2e7Ca59+k8BRJbf24JbT5YXb44PH6+9zwKbJYEOD3hLXKUserw/HGo2ob+260lo07L2ob+VyewPnVRQ7QghYBlCtK5cn9AqC4bDOVWpL6FfC06ZNw7Rp0/DLX/4SAGAwGAAAeXldLwxTgc/nw6uvvgqg7f+2aNGiLvf/5z//Cfz+1ltv4Sc/+QnS0uQ/OU2msRClIleEKwpKEpCdwYusVKfTqFFZmovjTaY+n9jkZaXFpeg7DQz52WkwWBwxyWg4Z+YofLbtMMy2tgsct9eHd9fvwU2Lpsu+r57sOtxpmuCI5M+uT3WDinKweM5YvPvF3kDbxt3VOGX8YEwawdUcY81occLj8aG8KBtKRWxzCGwON+pazfD5BJwuL9RKK4pkWunWFmF9q3U7qvDKJzugVChw/uwxWDR7DGvYxZDJ6kJuZv8/F/H6/KhpMvfqM9KdBIuRUN8lJOMqnLy8vJQNWgHAtm3bAsG3UKsfLl++HEeOHMGll14KAHA6nfjiiy/6/ViIUpHT7YVfCBxvMga1d864SteqWcuon1CrlBhSkgudtvff6WSmaVCSL8/FABEQ26wrrUaFC08bH9S2fudR1LaYwzwiNrw+P/YcDQ5cTRweu8CJWpVUp70Jdf6csV1Wbnzxw+3dFjcm+dicHlQ3GGO6qmez0YbjTSb4fCcu7FvNDllWkhRCwOHqOYPK6fbi1U+/gcfrh9PtxfJ13+KZlVuSYjXT/srh8vT7zCIhBOpazL0+jvr789Lf8RNcRrt37w7cnjZtWtB9DocDTzzxBKZMmYL77rsv5GP661iIUpHT40WL0RZ0YpamVXf5ppKrCfYvKqUCQ4pzkZkeeRadTqNCeWF2zxsS9VIsa13NnTI0KNgqBPDW2vieBxyp0we9x2amaVBZmhuTfRXkpGNERQFGDspHaUEmMtM1AzrrQ6VU4HuLpqPjU9BqtmN5nI+Bgczl8eFYgxFOt7zBQq/Pj+ONxpDF6AGgUW+F1RHddDK7yxPRdMcDx1u6BAu+3F2Nv732BawDaEpbvJls3RcqT3UNemuvpqq2Y+AqtbF6rIyOHDmxpPSgQcGrsyxduhRNTU145JFHUFJSApVKBa/XG/SY/jqWSKi06RFvK0mKwL9qHTMcSH5erw+SSoea1uBMgMrSPCiktuwqCQqotenIzy+Ieao/xd/QtEw0tJp7/GZapVRiWFk+VKr4ZN3x/W9gUQMoKpTQaoqs8GxvqABcceZJeOKNzwNt2w/W40ijBaOHdC2OLn33XacEBVRaeTLB9hxrDfp98shyaHSRnw9EQiFJKCvMQXZGWy1CNYC0DKAIbbWL7E43rA4XrHYXPL6BdVEzalgFzp09Dqs2npgy+Nm2I5g9ZSTGVCZXgfxYHH/Jos7gRnlhGrIyoq+XaXe6Uac3wSNUUHWTPdxk9iItPRs6bd9WE/U4rBH9HfYd14dsP3C8Bb9/aR1+eM3pKEuBL35S7fize/rvOYLebIPNI/X576DQpKfceTvP/dowcCUjvf7Em3PHKY8GgwHPPPMM5s2bh1NOOQUAkJ2dDb1eH5jO15/HEgmFovcXfZIkQZI4RYvk5/J6oZCUXVYUHFpWEPiGXpIkZKbroFYlbgl5iq2K4nxoNFa0GKwh75ckCUNK86HRxP8Y4PvfwFGYmw2jxRWTYs4zxw/FyEF7cajmxMrCr3+yHQ/ecl7YbCRJkiBBnmNv1+H6oN8njxoU+HJADiqlAoNKcpGmDZ1BqVAA2ZkqZGe2Bcucbg+sdhcsdhecA2TK3GWnn4Rt+2rQqD9R4PjZFV/hD3cugUadfJcJch5/yaSuxYJiP1CQk9HnPvRmW9vfUSCi11FtsxlDywug7sMXLw63N6J97KlqCHtfo96C3z37Ee67agHGDU2N2mqpcvz5/IDD5UVGP1ssxupwodloj+pzwutDn475ZDDQz/3i+ol0ww03dGmTJAl///vfUVBQEM+hxITD0fbNvEYTnH7+1FNPwWq14kc/+lGgTaNpO4my22OzLG4yjSUSfn/k33JKkgKSJH23CuXAWvKV4sPhdMEvfDhaH5wNMKQ0D0KIwPGXla7p1bFLqacgOw1KSaCh1QKB4MDB4KI8aNWKuB4DfP8beBQSkJuljUnWFQBcedY0/P75jwO/HzzejK/3HsWMcUOCtpPQ4dhD9MeeyepAVV3we+zE4aXwC3leTzqNGoOKc6FWKSN+jWpUCuRnpyE/Ow1enz+QiWVzuOHvp683tVrC95acgj8u/TTQ1tBqxvI1O3DlWdO6eWR8yX38JaOGViNcbjdK8rN6NY3V5/ejvsUMi71308PcXh+O1rdgaFl+rzJQ/H4Bu8PV5TOxM7PVieqGE1+KSwBGDi7CweMnAuVWhwt/WvoJbrlgFk6bOrxX44+nVDz+DGYb0vpQszNZudxeHG/QR/1e7HS5oFWnXsZVKp779SUxpTtxPZo3b94ceNLbSZIEl6t/zXFWdHjzr62txSuvvILFixdj7NixgXa/Pz4HXTKNpTtelz3iF6JalwlJUkIIPzzO0JkQRNGwWszwulw4Vh+c4j6oIB0CfkhQQpIAreSBx8nlnfu7DDVQkqNCbfOJJcyL8zKhVXjg6UONhWjw/W9gytIINLmdMcm6GlGahakjy7Dj0Inspzc+2YZJQ4OnQau0aZCghIAfXlf0xZ2/2Xcs6PfK0lykq4UsfWema1CemwF4HfBE8RadoQIyslUQWUrYnR60mu19qquS7EaV52DBtGFYu70q0LZq4x5MH1WCoWXJsWiS3Mdfsmp2OeCwWVBemB1RfTuX24vaFnOfa/d4XUBVtRNDSnIiDpZZHS54XD1/2b374PGg34eU5uL/rj4NS1dtw4ZdJ17/Pr8fT7+zEXVNelw8b3xS1p5LxeNP73aiIEMRszqJ8eTz+3G0Xp7FDGxWCemq1PrSORXP/SRJAU1alqx9xjXc2P5GNGrUKJx88sk4+eSTMWPGDGi1/SONMT29LdXc4zlxUvPYY49BCBFUBB1AIFjX/pj+PBaiVON0e2GyOoOKW6qUCpQWnHgDzkrX9ouTAYpMZpoWQ0pyoFRKyM3SIT87+WtcUP+hUiqQlxV9/ZtwLj19YlCR7ga9Feu/ORqz/QHA7iPBNQQnybSaYEF2GgYV5cj6/ixJEjLSNCjNz0ISXlPL4vLTJwWtYukXAs9/sBVeX+K/3BxorA43jjUY4O2h5prJ6sTRBmPUBacdLg/qWiw9b/idSIO3e442Bf0+fmhx26IA50/HxfMmdNl+5cZ9+M+7m7nioEyEELD0kwL4TQabbMcFC7SnrrgGrrKz24rv3X777XjppZcCP/1hmiAA5OfnAwB8Ph8sFgv27duHlStX4qqrrsLgwYMD23k8HlgslqDH9OexEKUSv1/A4/XhWKMxqH1QUQ5UyhNvmdmZsbuIpOSUplVjaGkeSvIGbmFMSpz87PSYZSJUFGbjtMlDg9reXb8XLndsMkr9foHdVZ0CVyNKoupTkoDywqwuK7/KSaNWIjezfwat07Rq3HBu8NTA400mrPrqQIJGNLC5PD4crQ+94qDfL1DfakF9q0W2LEyL3YWmMPUcO4s4cHUsOHA17ruC/5IkYcmpY/H9C2cGnVcBwOa9NfjLK5/D3E8CLonWH1YXdLo9MFnl+3+4o0nDpYSKa+CqfXra5s2b47nbuBk+/MTc7NraWjzyyCNIS0vDXXfdFbRdfX19YHresGHD+v1YiFKJ87sLtepOgashpf+fvfuOb6s8+8f/OTrakiVL3rETO3tvMkggIYQdCBRIKaUto02BTlo6vv21fTp5npY+bXnKhgINsxQITYAGCJABBJKQRSZZjmM73lu2ts7vD2PFR/KQZOlo+PN+vfLCunXGHSJLOte5ruu2Bn8WRRVM+r6b/VJm06jFlCxjoMyX6Kyrq8+bDI367NfCtk4X3t55LCHnqqhtgcPpCT426DQYMyL2m2eiKGBUQXZw5cBEyrEaMzbbdua4IiycOlI29tqHh1Hd2J6kGQ1vPn8AFbVtcDjPBnE8Xj9O17XG9UK+R3O7Ey0dA5fB+fyB4PekgdS3ONDYeracUC2qMH6kPFFh/pSR+MmXlyDLKK+8OVHdjN+veQ9n+Lobsi6XN+0z2Oqa49vf0eNjFmm6UjRwtWrVKkiShHXr1uHYsei+DG3evBmTJ0/GlClTEjS7oZs2bVrw5zVr1uD999/HbbfdFpbJtHv37uDP06dPz/i5EKUTt7fvwFVpQXbw5yyjnsELIlKc3ZK4oIndYsTF88bLxjZ8fDQhmQ/7Q8oEp47Oj3l5cp1GRFmhDQadMqt7qkVVRpcK33jRTFkgwecP4B//2YVAIP791WhwkiShqr4dze1OdHS5caq2JaLAUazqWxwDlpdFmm11uKJB9nhccQ50faxSOa4kBz//2gUoypH3wmls7cI9T28OKzek6KVz1lV7pxvOOK/wKklS2gfzhitFA1dXXnklvvCFL8Dj8WD16tU4fPhwVPt3d9JP3Q/O2bNnw2brbmK5du1a5OTk4NZbbw3b7s033wQA6PV6LF68eMBjSpKE++67D4sWLcLixYtx//33J20uRMNBMOOqtlU2PqpX4MrKMkEiSoJEB02uWDhBlk3q8vjw+ofRfVeLxP6TtbLH08bEViZoNmhRWmhTfGlze5YxrMQpU2QZdbjp4pmysRPVzXh31/Ekzahbc1snTtU0DdsAWn2LA9UN7Qn/+0sScKaxo99gQZfb0+d4qNCA0+Sy/H63zbeZ8fOvXYDJZXmycafbi7+++AG27i3vZ0+KRJsjPcsuJUlCQ2tiVtNln6v0pPin7v/8z/9g9erVaGxsxKpVq/CHP/wBdXV1g++YBkRRxI033hh8fMstt8BkMsm22bZtGzZv3gwAuO6662AwDPwFdN26dXj44YfR1NSExsZGPPDAA1i/fn1S5kI0HLg9PjjdXtT3+rAUBKAkv7tUUCUIMLJMkIiSxJ5lhCgmJuvKqNfiqsWTZGObdp+MuPdNJBxOD06eka/YOm109IEru8WAkvz4NmGPlEolIMeauQvazJtcglnji2Rjr2w5mLCLyIH4/AG8+O6n+MFfX8UvHnkd9/9r67ANXilFkiRUNbT1eXEfScZVQJJwOKwxe14/W3cz6rX4wRfPw5KZZbJxf0DCPzbsxkub9iOQwskLqczr86flaqjN7c6EZUZ5mHGVlsJzNhPM5/Phi1/8IvLz8/HnP/8Za9aswbPPPouFCxdi1qxZ/e536tQpxeY4FF//+texfv16VFVV4bnnnkNJSQkWLlyIQCCAjRs34t5774UkScjNzcWdd9456PH2798fNrZv3z6sXLlS8bkQZTpJkuD2+lFZ3yYbL7RnBVPc+0p1JyJSikolIMdiimswqbdlc8Zg4yfH0dTW3Z/GH5CwdstBfOeGC+Jy/EOn6tH7+rMkzwK7JfIgkCB0vycnO/M126xHS4czI+/cC4KAr146G5+dbgxm3ni8fqzZsBt3f+k8xUrl65o78Mi6HajolQG960gl3iy04opzJyoyh+HK7+8OXo0qyA5mF/r8/ohe71X1bSE97NQoK7INup9aVOHmy+egwG7Gy5sOoHeYasPHR1Hf0omvXjYbFmNmrEavpLZOF4x6Zcqp48Hn96OpvWvwDWOUie/bw4GiV2Dnn38+mpqawsr9fD4fPvzwQ3z44YdKTichzGYzHnvsMaxevRrV1dX4wQ9+ELZNbm4uHn74YeTlDXz3AQBmzJgRNjZQgC+RcyHKdB6vH5Ikyb4kA/L+VnqF+qgQEfXHlqVHS0cXvAloMqtRi7h2yVQ8/trO4NiOw1UoP9OEscX9l/tE6kBYmWBhxPuKooDiXGtKXIAJgoC8bBOqGzKzgbQty4AbLpyOf2w42wv10Kl6vL/vFJbMSvxiPh/ur8Czb+2Bu48LzFe3HsTU0QUoLcxO+DyGM4/Xj+qGdoz8PLOx0xnhaoIh2VYTR+VF3MNOEARcvnAi8m1mPL5+pywzZtdn1dh3vAbzJpVg2ZwxGFtsZ7/RCDmcbkiSOW3+fzW0diU0s5IrC6YnRUsFGxoaEAgEgr2qevesCh3r60+6GDt2LNavX4/vfe97mDRpEkwmE4xGI8aNG4fbb78dr732Wp8Bqb6sXLkSd955J+x2O3JycvCd73wHV111VVLmQpTp+mvMPqrXl2O9lhlXRJRcgiAg12oafMMYLZg6EqMKrLKxFzfuGfJ3MUmSwhqzT4+iv1WhPSslglY9sow66HWZ+5lw/swyTC6V39hcs2E3/v7aTjQnKBvC6fbi8fU78cTrn/QZtAK6swAfW7+DWRMKcLq9ONPUHZztckXW3yq8TDD6gPfcicX46U1LYA1ZKdTnD+Cjg6fx389sxm+eehdb9pbDncBm9ZnC75fgdKfH/yeXx5uQVTN7Y6lgehIkBSNCkyZNgiAI+MEPfhBx1lCPvXv34i9/+QsEQYi6qTulPo+zA5IU2Z1jjd4MlUpEIOCH15WYUgkanupbHGhud+JXT7wjKxe8+0vnYernPVjGl5XAaNDz9UdJwfc/6q38THO/F/dDdeBkHf7y4geysZ989SJMG1sIn9sZ0zEr69vwqyfeCT7WaUT87a6rImquLgjdK5DFuvpgonS5vGE3OzJJfYsD//XEO2FBIq1axCXzx+OKcyfG7YZO+ZlmPLpuh6zHZI/xI/NwrFK+Ut1F54zFly+eFZdz08BsWQY4nO5Bszx9/gC+89f1stfL71ZfjOJcS0znbWrrwv+99CGqBshsNOjUWDStFBfOHYOinNjOMxi1zgCVICIg+WN+/0u2HIsBeTZzsqcxqNN1rYr05JowMjcpPRJjkY7f/QRBBa0ha/ANo5CU20QTJ07E/Pnzo9qnqytxda5EREB3Y3avz48zjfIvSD2lgoIA6JhxRUQpIjeBpWrTxhRgSlm+rOznnxt34bejr4j5mPtPyMsEJ5fmR7wioF6rSbmgFQAY9RqYDVpZT59Mkm8z48sXz8Q//rNbNu7x+fH6tiPYuq8c1y6ZivNmlMV8ERiQJLy1/SjWbjkIf0h5kEatwo0XzcTyBVPwxPrt2Lrn7OqG73xyAjPGFsW8KiVFrqUjsmDNyTPNsqCV1azHiJzYL15zrEb8/OZl2LT7JDbvPtlnUNPp9uHdXSfw7q4TmFSahwvnjMGs8SMyduXPWDmcHuQN3mosqdo73Yo1kvf6/PxOn2YU/41Op5I/IhpeXF4fzjS2y7442y0GmD9vBKrTqNOmPwARZb5El6pdf8E02ePTtS34aH/sS9MfCCkTjCbgYDKkTolgqDybCZn80bBk5mj88Ibz+syaae904x8bduPXT74T9u8biTaHC3/95wd4adOBsKBVcZ4F/3XLclwwe0x3w/jL5yMvW54x8sQbn8DR5Y76vJQYh8pDygRL84f8vUmnUeOyBRPw33dcih/esBizxhf1+/t2pKIBD726HT9+aAP+/f6hiANuw4Hb60/YKn3xIEmSoiuXJipbmRJH0TDjkSNHYt73ggsuGNL+REQD8fr88PslVIT2t+rVmJ13Zogo1eRlm1BZ1zb4hjEoK7JhwZSR2H6oMjj2z427Ud80FlPK8lBWZIs4C8rp9uJYVaNsLKrAlV4b8bZK02nUsJj0Ce/LkkzTxhRgctlyvL/vFP699RDaQ4JFVQ3t+MuLH2DamALccOEMFOcNXrK1/0Qtnnj9k7BjAd2rW95w4QxoNWcz8gw6DW6/dhHueert4MqUbQ4X1ry5B9/6wgLeWEoBhyqG3t+qPypBwLQxhZg2phCNbZ3YsrccW/eeQkcfr582hwvrPziM1z88gtkTRuDCOWMwqTRv2L9GHE4PbFmGZE+jT83tTkUDax6fDwBXqEwnvAojIkKvxuwhKwr2DlyxMTsRpRqTXguTXoPOBJVXXLt0Kj45UhXMhmlzuPDq1oN4dWv3e+LEUbmYXJqPSaV5KMm3QtXPheGRigZZRk2B3Yz8CPutqFQCDCm+omtethHtne6MriwQVSpcMHsMFkwZiQ0fH8VbO46G9Tw6cLIOB8s3Yums0bj6/ClhzbWB7j5Ir2w+gLd2HAt7zqTX4NYVczFnQnGfc5gwKh8rzp2E17edvZm967NqbNt/GotnlA7xb0hD4XR7UX6mWTY2uSwxq5bnWk24buk0rFw8Gbs+O4NNu0/gWFVT2HYBScKuz6qx67NqjMjNwq1XzMXY4pyEzCkddKZo4Mrn96MpQQs+9IeLO6QfXoUREQFweXpWFJRnLpQycEVEKS7PZkJnTWtijp1twrI5Y/HOJ8fDnnN5fNh3vBb7jnf3rjIbtJhUmofJpfmYUpaHfNvZ5df3n5T3t4pmNcFUzrbqoRZF2LP0aGrP/NIkg06Da5dOxQWzR+OVzQfx0cHTsuclCdi8pxwfHazEinMn4pJ544OZU3XNHXhk3Q5UhNwkArqbJX9z5TzYLcYBz7/yvMnYf7JWdoznNu7FhFG5yMtO3GqbNLCjlY1hwenB/i2HSqMWsXDqSCycOhKV9W3YtPsEPjpwus8ysDONHfjjc1vxzZXzcM6kkoTOK1V1urwIBKSUa0re0NqFQEDZoD9XFkw/vAojIgLg9vgRCEiorG+VjY/q3Zhdw7dMIko9eq0GWUZdnyUz8fCFJVNQ1dCOIyFlQKEcTg8+OVKNT45UA+heiWxyaR4ml+Vj/4nQ/laFEZ8/lftb9Wa3GtHa6YLfn7lZV73ZLUasXjkPF80bhxff/RRHK+WloG6PD2u3HMTmPSdx3dJpCEgSnn17L9yf3yjqIQjA1edNwZWLJkV0Qa0WVfjmynn4zZPvBS8+XR4fHn9tJ/7fTUtT7qJ8uOi9kAMQ3zLBSIzMt+Jrl83BqmXTse3AaWzafQJnGjtk2/j8ATz06nasWtaJyxZMGHalg5Ikwen2wmRInZsBLo83KWXWzLhKP7wKIyJC95feuhaH7C6dSa+F3dKdUq1Vi/wyTEQpKzfbCIfTjURUqhl0GvzslovR2NqFAyfP4ODxahyuaBg0UNbS4cS2A6ex7YA8I0ctqjBxVG7E50+HjCugu5Qux2JEfYtyDYZTwegiG3560xLsOXYG/3pvf9jfv7ndicdf29nnvnaLAd9cOR8TRkb+egCAohwLvnjhdDz79t7g2PGqJmz4+DOsWDQp6r8DDd3hJAeuehh0GiyfOxYXzhmDo5WNeHfXiWAwvcdLmw6gobUTN10yKyVXK00kh9OTUoGrZL1fBgISfH4/1GJkK9tS8jFwRUTDnj8QgNfnx+nQxuyF1uDdOJYJElEqS3SDcEEQUGC3IM9mwvnTSiBJEqob2nG4oh6HKxrw2ekGON2+wQ8EYOKo3IgzWLUaERp1+lxY2LIMaOlwhvV+ynSCIGDOhGLMGFuETbtPYP0HR9Dp8gy4z9yJxbjl8jkxX0QvmzMG+47XYH+v1Qz//f4hTB1dgLIiW0zHpNi0dbpQ1dAefCwAmDQqMf2tIiUIAiaOysPEUXl4f98pPP3mblkp4+Y95Whq68Id1yxI+R568eRwehB5oXZidXS50ZWg/oyR8HgDDFylkaReie3duxcbNmzAp59+isrKSnR0dEAUReTk5KCoqAiLFy/G8uXLMW7cuGROk4gynNvTnWUVGrgq5YqCRJRGlGwQLggCSvKtKMm34uJ54+EPBFBR24rDp7oDWceqGvsN3swYG0WZYJpkW/UQBAF52aawEqXhQi2qcPG88Vg0rRSvbTuCdz85LgsWAIBGrcKNF83E0lmjh1SqJQgCbltxDn75941wOLuDZP6AhMdf24n/uvVClvcr6PCpBtnj0kJbSmX1nD+zDHaLAQ+9+rEswL7/ZB3++NwWfH/V4pRsWp4IXp8fbq8v6b8fkiQlPTvV4/PBiOETtEx3SXnFHjt2DP/1X/+FvXv3ysZ7vmg5nU5UVVVh586duO+++7BixQr8+Mc/RkFBqsSHiSiTBBuzD7CiIANXRJTq1KIIW5YezUloEC6qVBgzwo4xI+xYsWgSvD4/TlQ3d2dknWpAeU0z/AEJowqsWDJzdMTHTZf+Vr1ZTN3/Bi5PZBlomchk0OJLy2fgwjlj8PLmA8FSreI8C+64egGK8yxxOY/VrMctV8zBA698HByraerAy5sO4KZLZsXlHDS4sP5Wo5NTJjiQqaML8LOvXoD/+9c22Qp2p+va8Ps1m/D9VYtk3/syWafTk/TAVXO7E94kN0hnn6v0ovgrdufOnbjjjjvQ1dUVdkdQo9FAkiT4fPIP+jfeeAOffPIJnnvuORQX9708LhFRrNxeHyRJQkVoqSBXFCSiNGO3GNHqcCm+QlMojVrEpNI8TCrNwxeWAE63F+2dbuRlmyLuFygIgFGXOlkb0cjLNqGyvm3wDTNcvs2Mb31hIepbHGjrdGHsiJy494ucM6EY588sw/v7TgXH3t11AjPGFmJ6FNl9FBtJksL6W00uTW6ZYH9K8qz4+c0X4P9e2iZblbKlw4n/eXYLvv2FBVEtHJGuHE5Pwld8HIjP75cFD5OFgav0omg3uo6ODtx1113o7OyEJEmYNWsWfve73+GNN97Ap59+iv379+PAgQP49NNP8cYbb+C3v/0tZs6cCUmSUFtbi9tuuw1ud2JWzCGi4cvt8aGlwxksNQC6+6oU2rMAdF+ADbfmnUSUntSiKrioRCox6DQosJujClrotZq0XRTDZNDCpE+/bLFEybeZMb4kN2H/nl9aPgN52SbZ2JNv7ErYSpt0Vn1LpywIoRZVGF8SXbN9JWWbDfh/Ny3FrHFFsnG3x4f7/rUNm/ecTNLMlON0e+EPJK8PX0NrV9JvrgCQLchEqU/RK7Hnn38eTU1NEAQBP/zhD/HPf/4Tq1atwtixY6HVnr2jptVqMXbsWHzxi1/Eiy++iLvuugsAcPr0abz44otKTpmIMpwkSXB7fWH9rUbmWYNfsJltRUTpxJ5lhFpM/2B7OpYJ9pZnMw2+EcWFQafB6qvmoXfLrLZOF9Zs2K1Iz7fh7HCFPNtqfEkOtJrUbnit06rxnevOxfK5Y2XjAUnC02/uwUub9iOQwa8bSQI6nclpiu72+BK2iEi0fH4/3x/SiKLfajZt2gRBELBo0SJ885vfjHi/O+64A+eeey4kScJbb72VwBkS0XDj8fohSd09DnpjmSARpSuVSkCONXllIPGSbo3ZQ+m1GlhMuiEfRxAAs0Ebl2NlsnElObhy0STZ2O6jZ/DB/ookzWh4COtvVZZ6/a36olIJuOmSWbjxohkIzQPc8PFRPLpuR9J7MCVSpzM52Yh1LY6knLcvkgR4MvjfONMoGriqqOj+4Lj00kuj3veyyy4D0N3YnYgoXnqa54b1tyrMDv7MwBURpZtssx4adWpnPQxEFIWMWKI+12pCrAvnGfUaFOaYMbY4ByX5VozItYSVw5HcVYsnY3SRTTb2/MZ9qE+hi+VMEpAkHKmQryg4OU0CVz0unjce375uIbQh75c7D1fhTy+8n7RyU58/gNN1rXj/01N4adN+bN5zEj5//Mr7Ol3KZ1x1dLnRlYTzDoR9rtKHoldjHR3dSwPb7fao983JyQEAdHUlv5EbEWUOt7c7cFU5QGN2rihIROlGEATkZRtxprEj2VOJSbo2ZQ+l1YjINhvQ0hHZSo96nRoWox4WkxZqMTzwmGM1QqMWUdPUwRKXPqhFFVZfNQ+/furd4AWp2+PD31/7BD/9yhL2q4yzyro2WX9Qg06DskLbAHukpjkTivHTmwz4v5e2ob1XoOp4VRPueXoTfvSV5RiRm7i/l9fnR1VDOypqW3C6rhUVta2orG8LC1Q1tHZi1bLpcTmnzx+A0+1V7AaBJEmob+lU5FzRyOSsukyj6NWYxWJBS0sLqquro963pqYGAJCdnR3nWRHRcOby+NDp9KCx7WxQXCUIKPl8qW6NWpURvWKIaPixmPRoautKywa06d7fqrccqxFtnf2v9KjViLCYdLAY9RH1BrKYdNCoVahqaIPfz+BVqMKcLNxw4Qw889ae4Njx6ib856OjuGrxpAH2pGgdOlUnezypNC9tF1QYPcKOX9y8DH/914eoaTob8K9v6cRv//4WvnfDUoweYYcgSVDFmkaJ7humVfVtOFXbHaA6XdeC6oZ2+CNoVr5lbzm+sGRq3L6XOpwexQJXze3OlAwSpePn43ClaOBq0qRJ2LZtG9atW4evfe1rECL8pZckCevXr4cgCBg/fnyCZ0lEw4nL48Pp+lbZWFFuVrDEhtlWRJTO8mwmVNW3J3saUUv3/la99az02Nh69gaJRq2CxaiDxaSP6XOmJ7Olsr6NpS59uGD2aOw7XoNPT9QGx9Z/cAgFdjMmjcqFxaRP4uwyx+FT8jLBdOlv1Z/cbBN+/rUL8ODaj3G4Vwmkw+nGf//j7eBjrUaEVi1Cp1F3/6z5/Gd1r58/H9dqRGhEEXUtDpyubcWZpnbEmizZ5fLiYHkdZoasiBirTqdHkfJjnz8gW3kylfD9M30oekV2xRVXYNu2bTh8+DB+9atf4Re/+IVsNcG++Hw+3HPPPdi/fz8EQcAll1yi0GyJKNN5fX4EAlLYioJszE5EmcJs0MGg08DpTq2+IgPRasS07s/VF3uWEY6u7uwGi0kXlywHjVpEaWE2qhvaU65vTLIJgoBbV8zFf/39nWCPIn9AwiP/3g6guwdcaWE2RhV0/yktyEaO1RjxTXXq/g51tLJRNjalLC9Js4kfo16LH9xwHtZs2I0P+2ns7/H64fH6ZWWSiZBt1kOtVsmC3jsOV8UtcOXy+ODz+/ssS46n5vaufjNOk83j8yV7ChQhRa/IvvCFL+CFF17AwYMH8dJLL+H999/HypUrMXfuXIwaNQpmsxkA0NnZicrKSuzatQvr1q0LlgmWlpZi1apVSk6ZiDJYT2P207XyFQVLGbgiogySl20KC9CnskzKtuqhUgkoK4p/jxxRpcLIfCtqmzrQ1pmcJtKpymrS45Yr5uD+lz8Ke67V4ULr8VrsO342I8uk12Bkr0DWqMJsFNmzYi59C0gSPF4/3F4f3B4fjDoNzMbMWRny5Jlm2YpstiwDCu1ZSZxR/KhFFW5bMRd52Sb8+/1Dipwzx2pEaUE2SguzUVpoQ2lBNqxmPQ5X1ONPz78f3G7P0TPw+vxxC+53Or2wmhMXuPL5A2jpcCXs+EPl90vwBwLsf5cGFL0iE0URjz/+OL785S/j1KlTqK2txWOPPTbofpIkoaCgAI8++ijUal5EElF89DRmZ8YVEWUyo14Ds0Gb8OyAeMmk/lZKEAQBRbkWaDVdaGhNvebHyTR7/AgsmzMGm3afHHTbTpcXRyoaZKvkadUiSvKtGFVgRa7VBI/PD7fH93kwyg+X1wePxwfX58Ept7fX8yElSAKAyxZOwPUXTMuIzK6D5fWyx5NL8zLi79VDEASsPG8yivMseHPHcdQ1dcDt9cWlT1O+zRQMTpUWdgdK+wtqThyZB6tJj7bO7uCPy+PDpydqMXdi8ZDnAXT3ubKaE1c629LhTPmFJDxePww6Bq5SneJXZHa7HS+//DIefPBBPPPMM/ANkp4niiKuuuoq/OQnP4lpNUIiov64PD54vH5ZE04AGFVgBdB9xy3R6dNERErIyzalReBKEDJnRUGlccXBvt108SyML8nBkYoGVNS1orqhPWy1tv54fH6cPNOMk2eahzwPCcCGj4/C5fHhpktmDanBdyo4XCEPXKV7f6v+zJ1YjAUzxkEliAhIfnhcXfB+nknn8frh9vk/Lx3sDlb2/Ozxnd3G4/XDbNSitMCGUQXZMOojD86rVALOmVSMd3edCI7tPFwVt8BVp8sDSZISEnQMBCS0OiJbUTWZugNXvGGS6pKSSmA2m/HTn/4Uq1evxtatW7Ft2zbU1NSgpaUFfr8fFosFI0eOxMyZM3HppZciPz8z3wiJKLncHh+qGtoQ6PUFPzfbCOPnZSq6CFZ3IiJKBzqtGhaTDu0pXk5m0GnSdlWyVGAx6aAWVahu5IqDPVQqAQunjsLCqaMAdJcunWlsx+m61s//tOF0XWuwfUCibdp9EpIk4SuXzk7b4JXT7UX5mRbZ2OQMDVyFUgkCdFq1oov3zJ9SIgtc7T1eA7fHF5c5BAISutzehJRotzqcafE+5PGyz1U6SGoNjN1uxzXXXINrrrkmmdMgomHIHwjA6wuElQmyvxURZapcqwkdXe6YV7RSQib2t1KaUa9BaYENVQ1ccbAvalEVbMreIyBJaGjpREVPMKu2+7/tXUML9GrVInRaNdwen6wf1OY95QgEJHzt8jmKBK8a2zohSYjbCnKfnW6Q3fQrysmCLcsQl2NTuLHFObBlGdDS0Z295PH6se9ELeZPLonL8Tudnri/90qShOb21M+2AgB3HMo/KfF4VUZEw1KwMfsA/a10WqYNE1Hm0GpEWM16tKZwo1z2t4oPrYYrDkZDJQgosJtRYDcHgwGSJKHV4QpmZnW6vNBpROi1aug0n//RqqHXitBq1GfHtWLw+Z7sweqGdvzp+a2yQNjWfacQkCTccvnchGUZuj0+PLdxHz749BQAYMW5E3HdBdOGfNxDp4ZHmWCqUAkC5k0uwds7jgXHdh6ujFvgyuH0ID/Oa0e0OlwRl+Qmm5cB/rTAwBURDUtuT/eHVEVtq2ycjdmJKJPlWo1oc7hTsgeSKArQ84ZB3HDFwaERBAG2LANsWQbMHFc0pGMV51nwk5uW4E/Pvx9ssg0AH3xagUBAwm0rzol78KqqoQ0Pv7pd1sfzjY8+Q47ViAtmjxnSsQ+fapA9ZuAq8eaHBK4+PVELp9sbl95MPX24tHFqkZFO2VYA4PGlR4BtuGP7fCIaltweL/yBAKoa2mTjPYErlUqI2wc4EVGqUIsi7JbULOlhmWD89aw4mJttTPZUhr0Rud3Bq9AV3LYdOI0nXv8EgUB8gsmSJGHr3nL87h/vhS0+AwDPvb0XRysbYz5+q8OJ6sb24GNBACaOyo35eBSZ0UU22e+x1xfA3mM1cTt+PBfv6Ohyx2X1RaVIksSy6jTAwBURDUsujw+1TQ54e91lsRh1yP78CyWzrYgoU9ktBohi6jWFZuAqcXKtJuSkaMByOCnKycL/u2lJWD+ojw6exuOv7YQ/MLTMD6fbi8fW78Q/NuyWfb/pzR+Q8NDaj9Hc3hXTOUKzrUYX2YOL2lDiCIKAeZPkpYE7D1fF7fidzvhlZTa1xfbaSqZ0CrQNV4oHrj766CPcd999CETxxuz3+/HHP/4RH330UQJnRkTDhSRJ8Pj8ffa36lkOmIErIspUokqFHEvqZeCwv1Vi5VhN0KiZSZxsBfYs/OTL4cGr7Ycq8dj6nTH3BaqobcVvnnoX2w9Vhj0XWsrX3uXG/a98FFOWSWh/q8lleVEfg2Izf/JI2eP9J2vR5YpPplSX2xuXrL+OLjfcaZi9lI5zHm4UDVz5fD78/Oc/x6OPPopf/epXEe93zz334KmnnsKvfvWrlOzJQETpxe31QZKAitDAVWF28GcGrogok9myDNCoUyfxXqcRoRYZVEkklUpAod2c7GkQgAK7GT+9aUlYAHnn4So8um5HVMErSZLw7q4TuOfpTahv6ZQ9p9WI+PqKc/CjG8/HlYsmyZ6rqG3FPzbsiuraSpIkHK5gY/ZkGVVgRYHt7O+wPyBh99EzcTm2JAGdcQiCNcWYyZdsHp8v2VOgQSj6jeU///kPzpzp/uW65pprIt7vhhtugCAIqKysxMaNGxM0OyIaLnoasw+8oiADV0SUuQRBQK7VlOxpBJkMLDVSgsmgRZZRl+xpEIB8W3fwKtcqD17t+qwaj/x7e0TBqy6XBw+9+jGee3tv2PYleRb86tYLsXhGKQDgmiVTMCukyfzHByvxVq+G34Opb3HImm5r1CqMK86JeH8aGuHz1QV723EofuWCQ+1z1enywOVOzwAQe1ylPkUDV++88w4AYObMmZg7d27E+02cOBGLFi0CAAauiGjIXB4fJEkKC1yVFlgBdH8x0GkYuCKizGYx6VJmEQr2t1JOgd0U9xXsKDa52Sb85KYlYc3zdx89g4de/XjAvjsnqpvx6yffxa7PwjNuLpg9Gr+4+UIU5ViCYypBwOqV81CUkyXb9qVN+7H/RG1E8w0tExxfksvyU4XNnyIPXB06VY+Orvj0pxpq2WE69rbqwcBV6lM0cLV//34IgoBly5ZFve95550HSZKwb9++BMyMiIYTl8eHprYudLm8wTG9Vo28z9OvWSZIRMOBIAjIy05+1pUgCHFZ0p0ioxbFlMq2G+5yrSb8v5uWIj/kd3HvsRo8uDY8eCVJEt7cfhR/eHYzGkMCBXqtGndcPR9fu2xOn0Fpg06D711/Loz6s79vkgQ8sm4HavtYgTDUoZDG7CwTVF5JnhUjcs8GHwOShF2fVcfl2F5fAG5PbBlTTrdX9r063fj8gbit7EmJoWjgqqmpCQBQVlYW9b4jRowAADQ0NAyyJRFR/yRJgsvjC+tvNTLfChUbsxPRMJNl1EGvS+57nlGnZgaQwmxZen7WpRC7xYiffmWprH8RAHx6ohYPvPJRMHjl6HLjby9vw7/e2w9/yEV2aWE2fnXrcsyfIm/gHarAnoU7rp4PodevnNPtxf2vfASnu//AQyAg4UhFaGN2Bq6SIbRJezxXF4y1XDBde1v1xj5XqU3RwJVK1X06rzf6aKzf3/2GHc1qhEREoTpdnj7LBHv3t+KXeSIaTpKddcX+VsoTBAGFOWzUnkpsWQb85KYlYQ3095+sw99e3oaD5XX41ZPvYt/x8LK+i84Zi//vqxegIMLm+9PGFGLVsumysZqmDjy+ficC/TRrP13Xis5eGTUmvQalvb47kXJC+1wdOd2Atk5XXI4dS+DK7fHB0RWf1Q2TieWCqU3RwFVhYSEAxFTud+DAAQBAfj4j+0QUu54P5Mq6Ntm4vDE7+zUQ0fBh0mth0ievVI/9rZJDr9XAlmVI9jSol57gVWgfqoPl9fjzPz9AS4dTNm7Ua/Cd6xbiyxfPirrX1KXzx2PhVHnmzt7jNfj31kN9bh/a32pSaR4zJZOkKCcLoz7vywp0l3t+ciQ+5YJOtzeqVS2BzMi2AgA3A1cpTdHA1dy5cyFJEl599dWoSv46Ojrw6quvQhAEzJw5M4EzJKJM13NHKLRUsCdwJQhgY3YiGnbybMnJulKLKq7imkS52UaoRUUvB2gQ2ebu4FXvPkZ9GTvCjl/fthxzJhTHdB5BEHDL5XNRWpgtG39925E+S88OhwSu2N8queYlsFwwmibtHq8/bs3hk22gxRAo+RT9pLr++usBAJ2dnVi9ejXq6uoG3aezsxN33XUXWlpaAAArV65M6ByJKHP13EXq6HLL7lqKKgHFed0r7+g0aggC7yAS0fCi12pgMekUP68xiZleBIgqFfJtLBlMNVaTHj/58hKU5Fn6fP6yBRPw068sHXKTfa1GxHevOzfsd/+JNz6RtVTw+vw4WtUo22ZyKQNXyTRvkjxgeayyMSwjL1bRlAs2d3Shn+rStMNSwdSmaOBq9uzZuP766yFJEj777DOsWLECf/rTn7Br1y44HI7gdh6PB0eOHMHf//53XHXVVdi2bRsEQcDSpUuxZMkSJadMRBnE8fkdodD+VsV5luAdZ975J6LhKtdqgtJxe5YJJp/FpEtqqSj1zWLS48dfXoKS/LMlYWaDFnetWoQvXjg9bplydosR3752IcReZX8erx/3v/JRMJPmeHUTvL5Ar30MEffTosTIt5kxusgWfCwhfllXDmd3P9jB+Px+tDni01srFbBUMLUpfoX2m9/8BjU1Nfjwww/R2dmJJ598Ek8++SQAQBRFqFSqsObtkiRh4sSJ+POf/6z0dIkog3R8fgeJjdmJiMJpNSKsZj1aO5S7EDEZGDBJBQX2LJTXtER0sUrKyTLq8LOvLMWm3Sfh8wewZFYZss3x70s2viQXX7l0NtZs2B0ca2rrwsOvbscPv3ReWH+ryaX5zE5PAfMml6C8piX4eOfhKlwyf/yQjxsISHC6fYNmxDa3OzMm2wrojjn4/H6oRfa6TUWKF7WLoojHH38cd999N3Q6HSRJCv7x+XzweDyyMQC46aab8MILL8BkSu6qN0SUvjxefzAFuKK2VfYcA1dERN1yrUbFLkh1GpEXCClCqxGRY2Wj9lRk0GlwxbkTsfK8yQkJWvVYOms0ls0ZIxs7croBL777KQ6fkvcmZn+r1DA/ZHXBE2ea0djaGZdjdzoH7lvlDwTQouBNDqUw6yp1JeUKTaVSYfXq1bjuuuuwceNGvPfee6ioqEBDQwMCgQBycnJQVFSE888/H5dffjlGjhw5+EGJiAbg6PUB3F/GFRuzE9FwpxZF2C0GNLUlfpUok4Flgqkkx2JEe6ebfV6GsRsvmonqhnYcrTzbz+rdXSfCtptclqfktKgfdosR44pzcLy6KTi280gVLl84ccjHdjg9yLP1/3xLhzMjMzQ9Xj9M+mTPgvqS1Cs0u92OG264ATfccEMyp0FEw0DH56sJujw+1DWf7aknABj5ef8IrVrk0s5ENOzZLQa0Opzw+xN7UcL+VqlFEAQU2M2orGtL9lQoSdSiCt+6diF+99R7aGrvO3hdnGtJaOYXRWfe5BJZ4GrH4fgErtxeP7w+PzTq8KzYQECKWyP4VMPAferi+rdElPF8/gBcnu7eeVX1beh9KZZvM8Og667hZ5kgEVH3SnM5FmNCzyEIQvC9l1KHSa+FNQmrS1LqsBh1+O7150LbR8ACYLZVqjlnUjF633KtqG2V3aAdiv5WF1TixkayeLy+ZE+B+sHAFRFlvE6nJ9g8siK0TLAwO/izTsuLKCIiAMg2G6BRJ+5rolGnZoZrisqzmflvM8yNKsjGbSvm9vlcLP2tNGqRAdEEsWUZMGFUrmxsR5xWF+zsI3AlSRKa2zMz2woAPL1Wz6TUwsAVEWW8jgj6WwHMuCIi6qFSCcixJi7riv2tUpdaVCHfxgWRhrv5U0ZixbnykjOVIGDiqOgzrkwGDYpyLcjOYvOgRAht0r7zcGVcjtvp8iIQkGdWtXW64PNnbnDH6/NnZO+uTMDAFRFltEBAQqfTG3wcGrgqLbAGf9ZpuboVEVEPq0kPrSYx74vsb5Xass0GlnISvrBkKuZOLA4+Xjp7dEyvi57f90J7FnIs7I8Vb3MnFqP3YrBVDe0409g+5ONKkoQut0f2uKktc7OterDPVWpiegERZbQutyd458TnD6C6Qf5B3pNxpVGLEFWM5RMR9RAEAXnZprD3zaFSiyromOGa8grtZpyqbQGTD4YvlUrAnV9YgAMn6yAAmDamIOpjCAJg1J8NduXZzBBUAhpbE79y6XBhMekxuTQfh07VB8d2HK7CNedPGfKxHU4PzIbuMs+OLje8vswP6nh8fn5GpSDF/0WamprQ1taGMWPG9LtNTU0NXnnlFZSXl0MQBMyZMwfXXnst9HqmlxJRdHpWEwSAM43tsvTmbLMels/XvGWZIBFRuCyjDnqdGvFsV2vSM5MnHei0atiyDBndz4YGpxIEzBhbGPP+Oq067MZgrtUElSCgvqVzqNOjz82fUiILXO08XIWrz5sMQRhav7reVQtNbcMj2MiMq9SkeHrBH/7wB1xzzTV49tln+3z+3XffxeWXX44HH3wQ//nPf/DGG2/gd7/7Ha677jq0trYqO1kiSnsO9rciIhqSvOz49jtif6v0kWs1JbRJP2W+/sqC7RYjCnPMCs8mc82ZUAyx16IKNU0dqIpDtqzX54fb64PD6YZ7mAR0uLJgalL0k6iyshJvvPEGvF5vn03Pampq8OMf/xgulwuSJMn+nDx5EnfffbeS0yWiNNfl8sqW62Xgiogoeia9FiZ9/FYEM7K/VdpQqQTk2xhcoNgN1M8u22zAiNwsDDEpiACYDVpMHS0v5dwRrybtTg8ah0m2FQC4h0E5ZDpSNHC1bt06BAIB5OXl4YYbbgh7/rHHHkNXVxcEQcAll1yChx56CH/5y18wceJESJKEbdu2Yffu3UpOmYjSWGevbCsAOF3XJntcWpgd/Jm17ERE/YtX8EKvVUMtMoMnnWQZdTAbkxdsFEUBI3KtKMq1Dr4xpRRBEGDQDfz9ymLSY0SuhcGrOJgXurrgoaq4rJDX3O6Eyz18spBYKpiaFP3m8PHHH0MQBFx88cXQauUfgB6PB+vWrYMgCFi0aBH+9re/4cILL8QVV1yBp556CiZTd5r6G2+8oeSUiSiNdTjP9rdyur04eaZZ9vzI/O4vwRq1ihdSREQD0Os0sFmMUA3x6pL9rdJTgc085F45sbCYdBhdZIfVbEB2lgG2LKPic6DYmfSaiF43WUYdSvKsSXmNZZLZ40fIvs/Wt3biVG3rkI/buz/scBAISMPu75wOFL1Sq6ioAABMmRK+wsEHH3yArq7uFMRvfvObsufsdjuuvPJKSJKEvXv3JnyeRJT+3F6f7I7JgZN1sg+hvGxTsG8Ls62IiAZXmGPBhFH5KC3MRr7NBLNRC1GM7kLTyP5WaUmjFjG6yAaLKX4lowOfT4WSfAtG5FpkF+IF9izZCnWU2qIpCzYZtBiZb4VKxeBVrIx6DaaHrPy4M07lgsMNs65Sj6KBq57m6lZreKrvpk2bAAA2mw0LFiwIe74n2HXmzJnETZCIMoaj12qCALDnqPy9Y86EEcE7e+xvRUQUme7SHw3sFiNK8qwYX5KL0SNsKMwxw2rSQaMWB9zXqGPQIV1pNSJG5FowusiW0NLB7Cw9yopsMBvCg2SCIGBEroUN49OEyRDd77tRr8HIfGvUAXE6a97kkbLHOw9Xx6VcMF0dLK/D02/uxtZ95QgEIv//4PENn9LIdKHo1ZparYbP54PfHx7B3LJlCwRBwOLFi/vcNycnBwDQ0dGR0DkSUWZw9CoT9PkD2HeiVvb87Akjgj8zcEVEFDudRg2dRo1sswFA93uu0+2F0+1Fl9sLt8cHSYq8bIhSm06rRkmeFS6PF42tXbLP26HQakQURpBRpRZVKM6zoKK2bVhfkKc6taiCThP99yuDToNR+dmorG9juVYMZo0vglYtwvN5g/Gm9i6cqG7GuJKcJM9MWW6vD/9851Ns2VvePbCnHBpRxLnTRkW0PzOuUo+ityvy8/MBnC0Z7LFjxw7U19cDAM4///w+9+0JWPX0uiIi6k/PRVOPIxUNsscWow7jis9+gDNwRUQUP2pRhSyjDvk2M8oKbRhfkouRBVbkWNmfKJPotRqU5FsxqiB7SOV7ggDkWI0YXWSL+Dh6rQZFOVztMJUNpZ+dTqvGyAIrM+tioNeqMWNcoWxsx+GqJM0mOarq2/Dbp947G7T63PZDkZdNeriyYMpR9N1g+vTpkCQJr732Gtzu7tW+JEnCgw8+CADQaDS44IIL+tz36NGjALr7XRERDcQRsppgaJngrPFFwR4KalEFtdh/aQsREQ2NSiXApNfCwDLBjGTUazCqIBsjC6zQD7KCXCi9Vo2yQhvysk1RZ+NZTHrYsgxR7UPKMQ2xn51Oo8aoguwBy4+pb/NDVhf85EgVAsMgO1GSJLy36wR++4/3UNMUXqVV1+yI+FjMuEo9iqYZrFy5Eq+//jqOHz+O66+/Hueffz7279+PnTt3BlcbtFgsfe773nvvQRAEzJo1S8kpE1Ea6t3fKiBJ2H1MHrhimSAREVF8mfRamAq1cDjdaGztgsvTf48YQRCQl22ELcswpPLRfJsJbq8PXS7v4BuTouLRRF+jFlFaaMXpujYGEqIwfWwhdBoR7s//n7U6XDhW2YiJo/KSPLPEcXS58dR/dmHPsZp+t2ls64Q/EICoGjx3x+vzQ5IklrenEEUzrpYsWYJFixZBkiQcP34cTz31FD755BMAgF6vx1133dXnfm+//XawvLC/jCwiIqB7CdvOXl9gy8+0oM3hCj7WadWYUpYve0xERETxYTboUFZkw4hcC3Sa8GwZo16D0UU22C3GIV8Usll7atJpxLhls6tFEaMKsmE16cAYQmR0GjVmjR8hG8vkcsHPTjfgV0++22fQqvdLxh+Q0NjaFdExJQnw+thjLZUo/i5/3333BYNXPX/sdjvuv/9+jBw5Mmx7j8eDe+65B4IgYNSoUbjkkkuUnjIRpZFOl0fWrHVPSLbV9DEFsrRzZlwRERHFn8Wkw+gRdozIzYJGLUKlElCYY8aogmxo+whoxaqnWTszI1LHUMsEQ6lFFYpyLRhdZIfFFL7aJIULLRfcdaQa/kBmBWL8gQD+vfUQ7n1+K1o6nLLn9Fo1Vl81D+NH5srG61qiKBfkyoIpRfErNovFgieffBJHjhzByZMnYbPZMGvWLBgMfdeoa7Va3H333fjFL36BX/7yl/xQIqIBObrk/a12f1YtezxngvwOFANXREREiWMx6ZFl1MEfkKAWE3PPvKdZ+5lGrj6eCkz6+Aauemg1IkbkWpBj8aGxrQsdId/56KxpYwpg0KnhdHcHX9q73PjsdKOs6iCdNbV14bH1O3CsqinsudFFNtx+9Xzk28w4XNGAo5WNwefqmh3A2MjO4fH6AbbRSxlJu2KbNGkSJk2aFNG2K1euxLx581BUVJTgWRFROpMkCQ7X2f5WNU3tqO3ViFFUCZgx9uz7iEolsOknERFRggmCALWY2JvPFpMeTrcvLPOClCUISPhCDDqtGsV5Frg8XjS2dsHh9Ay+0zCjUYuYM6EYH+6vCI7tOFSZEYGrXZ9V46n/7Oqzt93lCyfgC0umBoPkBXb56qP1UWRcudlXLaWkTaoBg1ZENBin2we//2yZ4O7P5GWCk0rzZM1CmW1FRESUOdisPfkMOk1w5eZE02s1KMm3wun2orG1U9bjlIB5k0tkgat9J2rTuuG4x+vHP9/dh817ysOes5h0WH3VPEwdXSAbL7DJA1dcWTB98aqNiDKGwxlSJnhUHrhimSAREVHm6mnWXlHbwsbKSZKoMsGBGHQajCzIRpfLi4bWTjjdDGABwOTSPNnqgm0OF6oa2jEy35rkmUWvqqENj/57B6ob28OemzamAN+48hxYTPqw50IzrqLpceX1MXCVSnjVRkQZo6PrbKp4S4cT5TUtsudDV1hh4IqIiCiz9DRrr6htky3WQsowGRJbJjgQo16D0sJsdDo9aGjrhMs9vJtra9QiJpXmYd/x2uDYgZO1aRW4kiQJm/eU45/v7gsLRosqAdcvm4aL542Hqp8ssnybSfa4sa0TPn8gon57Pn8A/kAAooqrlqYC/isQUUZwe3yyOyN7QrKtxoyww5Yl77CoY+CKiIgo4/Q0aydliaIAvTZ5gaseJoMWZYU2lORbhv1NymljCmWPD5ysS9JMoheQJDzx+id45q09YUGrfJsJP//aMlw6f0K/QSsA0GnUsu//kgQ0tHZGPAeWC6aO4f2bTEQZI7QxZ2jganZImaAgCNBp+BZIRESUidisXXlGnfJlggMxG3QwG3Ro73SjvsUBn3/4lY9OHyPv+XS0shEujy8tAnrb9ldg24HTYeOLpo3CTZfMingRgAK7WfY+UNfcgaKcrIj29fr8CV9sgCKTEhlXH3/8MZYvX46LLroo2VMhojTV0au/VZfLgyOnG2TPs78VERHR8JJvM8kWZaHESmaZ4EAsJh3KimwwG1MrsKaEfJtZVi7nD0g4UlGfxBlFxun24uXNB2RjOq0aq6+ah29cNS+qYFJYg3auLJiWUiJw5XK5UF1djerq6mRPhYjSkM/vl/Ux2He8Fv7A2b4WRTlZYXdWGLgiIiLKbD3N2jXqlLjkyXjJaMweKbWoQkmeFQV2c9quqher6SHlgvvToFzw9W1H0N559qa0WlThFzcvw7nTRkV9rLAG7VxZMC3xXZyI0l7vpuwAsOfYwGWCAANXREREw0FPs3aVangFK5SmUYvQqMVkT2NQtiwDygqzodWk/lzjZVpIueD+k7UpvXBBXXMH3t5xTDZ22YIJKM61xHS8oWRcebzDu8F/KmHgiojSXmev/lZenx/7T9TKng8tEwQYuCIiIhou9FoNxpfkYGS+FdlZemZgJUCqlgn2RadVo6zQBqtZn+ypKGLSqDzZKnqNrV2ojyJ4o7QX390vq5ywZRmw4tyJMR8vPyTjqr45iubsvuHXFy1V8V2biNJaICCh03U2cHWwvF5Wj55t1qOsyCbbRxCEYXWnjYiIaLgTBAEmgxaF9iyMLc5BWVE2crONvJEVJ6lcJtgXlUpAUU4WRuRmfjaeTqvG+JE5srFUXV3wwMla7D1eIxtbtWzakFYCz882ofe/cHN7l2wl8oFIkhTxtpRYDFwRUVpzOD3one0cViY4fkTYMrk6jTjs+hsQERHRWXqtBrlWE8qKbBhXYkdhjhlmgzYh3w9UKgGZ/LVDEJC2TfAtJh1GF9kyfuW4dOhz5fMH8MI7n8rGxhXnYMGUkUM6rkYtwm41Bh9LAOpbosi6Yp+rlMBbDESU1hy9VhMMBCTsPSa/SzNnYniZ4FDu2hAREVFmUYsiss0GZJsNCAQkdLk96OjyoNPpgc8/cKmQIAhQiypo1CpoRBXUavHzn0WoP/+vSiWgpcMZVVPodKLTqiGq0jcfQqMWMarAisa2LjS3dyGF2z/FbNqYAvzrvf3Bx0dON8Dr86dUX7JNu0+gpqkj+FgA8OWLZ8YlmFxgM6OprSv4uK6lA8V5kfXMcnv9MBmGPAUaIl69EVHakiQJjl79rY5XN6Gj62wgy6DTYOKovLD9WBZAREREfVGpBJgNOpgNOgCA0+2Fw+mB1+eHWlRBLX4emFJ3/9y7d9BAbFkGuNxetPVaKS1TpFuZYF8EQUBetgkmvRY1Te3wZlhvo+JcC2xZBrR0OAF0ZxEdrWzE1NEFg+ypjPYuN/79/mHZ2OIZZWHtPmJVYDPj0Kn64ONogshujxcAI1fJlr6hcSIa9rrcXgR6NW/cfVReJjhzbGGfXygZuCIiIqJIGHQa5GWbMCLXgnybGXaLAVlGHfRaTcRBqx4F9qyM/A6SCYGrHka9BmVFNpiNmfN3AroDc6GrC6ZSn6t/bz0Ip9sbfKzXqnHd0qlxO36BPfaVBds63ThW1Yiaxna0d7rhD2RWUDNdMHBFRGnL0XU220qSJOwJCVz1VSaoUgkZ+aWRiIiIUptKJaA4zwJRzJyGV4IgwKDLrO9VokqFkjwrCuzmjOqJOj1FA1en61qxZW+5bGzleZPjuupjvi32lQUBwO+X0NbpxpnGdhyvakJlXSua253sf6WgzHqXIaJhpXd/q6qGdjS0nv0QUouqPtOfsxLUeJWIiIhoMBq1iBG5FlTVt2VELyWTXpOx36tsWQYYdRrUd/jg9aX/P9bk0nwIAoKvu+rGdjS3d8FuMQ68YwJJkoQX3tkn+10osJlx0Tnj4nqeoWRchZIkoNPlRafLi/oWQKsRkWXQwmTQwaBTZ+zvQ7Ix44qI0pLb45P1HwjNtppSlt/nCjFmoy7hcyMiIiLqj0mvRV62KdnTiAtjBpUJ9kWnVaOsKAe52SYISO+AhMmgxdgRObKxA+XJzbra9Vk1PjvdKBu7YfmMqMtwB5OXbZKt7NnS4YTb64vLsT1eP5ranThd14rj1U04w5LChGDgiojSUodT3tw0tL9VX2WCgiBkVB8GIiIiSk92ixEWU/rfTDMZwm8SZhqVSkCeLQujR+T0eVM0naRSnyuP148Xe610CHTPb+a4wrifSy2qkGuVB4vrW6IrF4yE3y+hvVdJ4em6VtnCURS7lAhczZo1C08//TTWrFmT7KkQUZro3d+qsbUTp+tag48FALPGFYXtYzJooFKl990yIiIiygyF9izoNGKypxEztaiCTjN8Os/otGqUFmajKCcrbfuUhfa5Olhen7TMoDe3H0VTW1fwsagS8KXlMxJWalcQ0ucqmpUFYyFJQJfLi+Z2Z0LPM1ykROAqOzsb8+fPx/z585M9FSJKA16fHy7P2fTePcfk2VbjSnJgMYU3dLSwTJCIiIhSRHezdmvCb6rlWAwwG+KfcW7Sp3f2UaysZj1GF9lhTcOMudIim+y14HR7cfJMs+LzaG7vwn8++kw2duHcsRiRa0nYOePZ5yoava9ZKHYpEbgiIoqGw+mRPd5ztEb2uO8ywe7afiIiIqJUodWIKE7QxbpaVGFkvhV5NjMKc7KgUcf30m84f69SiyoU5VowqiAb2jTKmlMJAqaFLF60/4Ty5YIvbToAj+/sinxmgxZXnzc5oecMC1w1dyT0fD0kSYpbP63hjIErIko7jl614h1dbnxW2SB7fvb48MCVUaeBqOJbHhEREaUWkyH+zdqNeg3KirKDwSW1qMKIXAviWYVlHKYZV70Z9RqMLrJ93vw7PcoHpya5z9XRykZsP1QpG7t26dSEN/pXulSwN7fHP/hGNCBexRFRWnF7fOh0eYOP9x2vkS2hW5JnQX7IBxMAZKVhOjcRERENDzlWI8zGoV+4CwKQm23EqIJsqEV5JpBBp4lbgEynEcOOP1wJgoAcqxGji2xpUT4ZmnFVUduCdoUaiAckCS+8s082NqrAiiUzRyf83MkqFQQAt8c7+EY0IAauiCitNLTKVwDZE7qa4ITiPvdLRG8HIiIiongpyskaUtlZd2lgdtjqab3ZLca4fCcazmWC/dFqRIwsyMaIXAvUYupeZlvNeowqyA4+lgAcKlcm6+qDT0+horZVNnbjRTMVWTwpx2qE2Os87Z1uON3KBJTY52roUvc3KoTfz/Q6ouGuy+WV9bdye3w4EPJBO3tCeJmgQafhXUEiIiJKaaJKheI8S0wX8WaDFmVFtojK9+LR78qU4LKudGYx6TB6hA22LEOyp9Kv0NUF9ytQLtjl8mLt5oOysXmTSzBxVF7Czw10/37lhmQc1ivVoJ09roZM0cDVpEmTMHnyZHzve99Da2trVPu+//77mD17Nq699trETI6IUl5ottWB8jp4fWeX8M2xGjGqwBq2X1YcUu+JiIiIEk2nUaMoJyvi7QUByLeZUJJvjTjLRy2qUJQTe78rQei+KUj9E1UqFNjNKC3Mhl6rTvZ0wkwLCVwdPFmHQO/eGwnw+rbDspJEjVqFVcumJfScoZLV58rvl+BjIs6QKJ5xJUkSNm7ciCuvvBJbt26Nal+n04nDhw8naGZElMoczvB03tAywdnjR/TZGDPLyP5WRERElB6yjDrkWI2DbqdRqzCqIBt2y+DbhjLqNQOWFA7EoNMoUtqVCQw6DUoLs1GYY477qo5DMbY4RxZQa+9yo7KuNWHnq23qwMadx2Vjly+cGPNrMFbJ7HPFcsGhUfy3RxAESJKExsZG3H777fj1r38Nl8ul9DSIKM00tMizrXz+APYdr5GNzemjTFCvVUOjZpkgERERpY+8bNOAvaiyjDqUFdmGlPmUY42t3xXLBKMjCAKyzQaMLrIj32ZKiaCfWlRhclm+bCyR5YL/fPdT+ANnM7psWQZcvnBCws7Xn2SuLMjA1dAkJey7fPlyaDQaSJKEF198Eddccw3279+fjKkQURpo73TB7ZWn1x6rbJStLmg2aDF+ZE7YvvFYoYeIiIhIaUW5WWE33wShO2ukOM8CUTX0S7lY+l2ZDCwTjIVKJcBuMWJssR05FkOfVQJKCu1zdSBBgatPT9Ti0xO1srEvXjgdOo3yJZTMuEpfSQlcffGLX8RLL72E8ePHQ5IkVFRU4MYbb8QDDzyAQCAw+AGIaNiQJAkNrV1h47tDygRnjivq8wtcloFlgkRERJR+RJUKJXmWYIBDqxFRWpgd16bf0fa7EkUBei0DV0MhqlTIs5kxttgGq1kfc6+xoZo2Wh64OlHdhC5XfFfZ8/kD+Oc7+2Rj40tyMH9ySVzPE6lkZly5PexxNRRJK7SdNGkSXnnlFdx8880AAJ/PhwcffBBf+tKXUFFRkaxpEVGKaXW44PXJ3+glScKeY/LAVV9lglqNCF0KNsQkIiIiioRO292s3WLSoazQlpCgUTT9row6ZrLHi1oUUZSThbIiW1IqBHKzTbKFAPwBCYcr6uN6jvd2nUBtr+CQAODLF89MWraZ3WKULWLgcHrQ5fIMsEf8eH1++JmkE7OkdojTarX42c9+hieffBKFhYWQJAn79+/HNddcg+effz6ZUyOiFBAISGhqC8+2qqhtRXO7M/hYqxYxZXR+2HZZMfRtICIiIkolFpMOI3ItCe2NFGm/K5YJxp9Oo0ZJnhWjCrIVX60xdHXBeJYLtjlcWPeBfGG182eWobTQFrdzREulEpCXLQ/Sss9VekiJpQ3OPfdcrF+/HpdffjkkSYLT6cTvfvc7rF69Gg0NDcmeHhElSXNHF3z+8DsToWWC08YU9Fknb+ZqgkREREQRiaTfFTOuEseo716BsCTfAp1GmYWF+upzJUlSP1tH57mNe2Urght0aly7dGpcjj0UyexzxXLB2KVE4AoALBYL/vrXv+Lee+9FVlYWJEnCBx98gKuuugpvvfVWsqdHRArz+QOyrKre9oQErmb3USaoUasUv2tFRERElK4G63elUYvQKhRQGc7MBh1Gj7CjKIbG+dGaMDJPdo6m9i7UNHUM+bi7j1bjkyPVsrGrz5sCi0k/5GMPVXL7XMW3h9hwkjKBqx4rV67EunXrMG/ePEiShNbWVtx111247777kj01IlJQc3sXAoHwOz51zR2obmwPPlYJAmaOKwrbzsym7ERERERRGajfFcsElWU16zG6yI7cbGPCzqHViJg4Mk82NtRywS6XB8+8tVc2VlZow/Jzxg7puPHClQXTU8oFrgBgxIgRePrpp/GjH/0IGo0GkiThs88+S/a0iEghPr8fLR2uPp/bc6xG9njiqNw+ezIko8klERERUbrrr9+VSc/vVkpTqQTkWk2yhuLxFu8+V//atB9tjrPf40WVgFtXzO1z9e9kSGbGlcfnj1sp5nCTGq+ePgiCgG984xt46aWXMH78eP4DEw0jDa1d/f7O7/5s8DJBURRgZJkgERERUUxC+10JQnc2FiWHKYELDk0fKw9cfVbZAI83tl5MhyvqsXXvKdnY5QsnYmS+NdbpxV1fGVdKxRokCXB7mXUVC0XXiX/33XcBALm5uRHvM2nSJLzyyiv485//jI0bNyZqanHlcDiwZs0abNy4EZWVlQgEAiguLsby5ctx8803w263KzaXXbt2Yf369dixYwcaGxvhdruRl5eHWbNm4dprr8XixYsVmwtRJNxeH9o7+862anO4cKK6STY2e3x44Mqs1yZtmV0iIiKidNfT76qyvhWSBOi06pTJmBmOLEadLIspngrtWcixGoMreXt9AXx2ugHTxxZGdRy314c1/9kdcmwzrlo8KW5zjYfsLAM0ahW8vu4FoLpcXjicHmQptKiTy+ODXssgcLQUDVwVFxfHtJ9Wq8XPfvYz/OxnP4vzjOLvxIkTWL16Naqr5c3ojh07hmPHjuHll1/Gww8/jBkzZiR0Hk6nE//1X/+F9evXhz1XVVWFqqoqvP7667j22mvx+9//HqLIRouUGhpbu9DfTY89x86g91OlhdnIsYbX/WeZ2N+KiIiIaCh6+l01tHayTDDJjHoNVCqhz/6vQyUIAqaPKcDmPeXBsf0n66IOXK17/zDqWzvPHhfArSvmQqNOretMlSCgwGZGVcPZnrl1zQ5FA1cUPYbN48jhcOCb3/wmqqurodFo8OMf/xhbtmzB9u3b8eCDD2LUqFFobGzEnXfeiYaGhoTNw+Px4Bvf+AbWr18PlUqFG2+8Ef/85z/x0UcfYevWrXj00UcxceJEAMDatWvx17/+NWFzIYqGy+NFR5e73+dDVyeZ00eZoCAI/HJFREREFAc9/a743Sq5BEHos+9YvIT3uaqNav9TNS14a8dR2diyOWMwviTySislsUF7+mHgKo6eeOIJVFVVAQDuvfdefOMb30BhYSGys7Nx0UUX4dvf/jYAoLGxEQ899FDC5qHVanHTTTchPz8ff//73/HrX/8as2fPht1uR0FBAS644AK8+OKLGDlyJADg6aefRktLS8LmQxSp+pbOfp8rP9OMQ6fqZWN99bcyG1gmSERERBQvhTlZMOgULdShPiRyxezJpfkQVWe/P9c2O9DY2v/38t58/gCe+s8uWcWE3WLAdRdMi/c04yY/iQ3a3Z7Y+ocNdwxcxYnf78cLL7wAAJg9ezauuOKKsOcfffTR4OO1a9fC6XQmbD5XXHEFNm3a1G8PK4PBgK985SsAALfbjR07diRsLkSR6HR60OXy9vv8ug8Oyx6PK85Bca4lbLssriZIREREFDdqUcWbgikgkTdnDToNxhbnyMYOlEe2uuBb24+isr5NNva1S2fDkMILJYVmXNUrmHElSRIbtMeAgas42b17dzBr6fLLLw97/pVXXsHJkydx3XXXAQBcLhc++OCDhM5JrR74zsjo0aODPyeydJEoEg0D3NU5eaYZn56Qpyxfff7ksA9vQUjsqitERERERMmgUgkwJXBlx+kh5YL7Tw4euKpp6gi7ubxwykjMGFcU17nFW0FoxpWCgSsAcLNcMGoMXMXJgQMHgj/Pnj1b9pzT6cT999+PmTNn4vvf/36f+yRDV1dX8GerNXWWKKXhp73TPWC99/o+sq2mlOWHbWfSa7niDRERERFlJHMCKwumjZE3Yz98qh4+f6Df7QOShDUbdsu2MRu0+NLFMxM2x3gJ63HV7IDU3+pQCcDAVfR4hRcnJ0+eDP5cUlIie27NmjWor6/H3XffjYKCgmAmVO99kuHTTz8N/jxr1qzkTYSGNUmS0Ng29GwrILEf5kREREREyWQ26JCoqs2RBVZYeq3M7fL4cKK6qd/tt+wpx9HKRtnYjRfNhEWh1fmGwmrSQ6c9W53k8vjQPsACUfHGBu3RY5e9OGlubg7+bLPZgj+3tLTg73//O5YsWYIFCxYAACwWC5qbm5PaEN3j8eC1114D0J0h1tOoPVnUOmPE2wqCKvhfjd48yNaU6lo7uhBQaaHu5zPutW2fyR6PH5mHGRNLw8sEIcBmy4FaTGw8nq8/Sia+/ihZ+NqjZOLrj5IplV5/GgDmLB+cbk9Cjj99XDE+3Hc2ueJgRROmjh8Vtl1zWyde2iSvHpoxbgTOmzMhbfqhFdizcLr27PV4Y4cXOXbbAHvEjy+K11Iqvf6SKW6BK0mSkvIijdd5owkkWSwW5OXlycZ6Gq1rtfKmeY888ggcDgfuvvvu4JhW250V0rtUT2mPPfZYsK/V9773vaTNo4dKJUa9jyAIEITo96PUEQhIaGp3QdXPv+OJqgbsO3ZGNnbdslkQVeFvXUa9FlqNck0g+fqjZOLrj5KFrz1KJr7+KJlS5fWXnWVM2Mp0M8fLA1f7T9TgSxefI9tGkiSs+c9OuDxnF1XSa9W47apz+/yOnqoKcyyywFV9iwOTy5TpzSVJgD8AaNSRv55S5fWXLHF5ZX344Yf4wx/+gCeeeAL5+eF9ZxLlH//4B7Zs2YKHHnoIBoNhSMd67rnn8MADD0S07fXXX4977rmnz+dUvfrrVFdX4/nnn8eVV16JSZMmBccDgf5rhZWwe/duPPLIIwCAVatWYdGiRUmdDwAEApG/+QpC98omkiRBkpL7/5KGpqmtEx5v/3eM1m7eK3s8fmQeJo/OR0AKf72YDOqoXkex4uuPkomvP0oWvvYomfj6o2RKtdefSa/p87twPEwdXQABQE+3p4qaZjS3O5CddfZa++MDp7DnsyrZfquWz4bdakjYvBKhwJ4le1zb2Kbo/J0uN8QIyipT7fUXqVgSUwYy5MCV3+/Hb3/7W1RUVOCWW27BmjVrwrKREuG5557DH/7wBwiCgFdeeQVf+cpXEn7OgRiN3aVuXu/ZyPN9990HSZJkDdkBwO12y/ZRUlVVFb797W/D6/Vi2rRp+MUvfqH4HPric3dF/Iuo0ZshCCIkKQCvS9kVICh+/IEA6hqa4ff33Qjx5JnmsGyrlYsnwu9x9bm9XmVQ5PXA1x8lE19/lCx87VEy8fVHyZSKrz+15E1InySDGigrsqG85mwm0r7PKrB4eikAwNHlxjP/2SnbZ1xxDpbOHAmf2xn3+SRSnkUeNKppbFX079DRIUCnMg26XSq+/gYjCCpoDVmDbxiFIQeuRFHEQw89hC9/+csoLy/Hl7/8ZTz55JMJ7Zn00EMP4YEHHoAgCFixYkVcglbf/e538d3vfjfm/e12O4DuQF5HRweqq6vx+uuv46abbpL9v/B6vejo6JDto5S6ujrceuutaG5uxsiRI/Hwww9Dr9crOgeiHs3tzn6DVgCw7v1DssfjSvpeSRDoTk+OJtWWiIiIiChdmY3ahDX4njamQBa4OnCyLhi4+ue7n6KjVxNztajCLVfMgSpN+lr11tfKgkpig/boxKWL8dixY/HII49Ar9ejqqoKq1atwtatW+NxaBmPx4Mf//jHuP/++xEIBLB48WL88Y9/jPt5YjFmzJjgz9XV1fjf//1fGAwGfOtb35JtV1NTEywVHD16tGLza2xsxK233orTp0+juLgYa9asUbSsk6g3n9+P5vb+72icqG7G/pN1srFrzp/Sbz+7rDRYvYSIiIiIKB6yDIn77jt9TKHs8cHyOgQCEg6crMW2A6dlz125aBJG5FoSNpdEKrCFBK5aHJCk/m+qx5ubgauoxG35rdmzZ+OJJ56AxWJBa2sr7rjjDvz2t79FW1tbXI6/detWrFixAq+//jokScJFF12Ehx56CKKYGlkW06ZNC/68Zs0avP/++7jtttvCsqp2794d/Hn69OmKzK2urg5f+cpXcOLECZSWluLpp59GcXGxIucm6ktTm3PAD4b1H8izrcaX5GByaf8lyGajNm5zIyIiIiJKZboEVhuMHmGDUX92wSOH04PPTjdgzZt7ZNsV51lwxbkTEzIHJWQZdTDozhagebx+tDr6bkmSCF5fAP4k975OJ3FdN37OnDl45plnkJeXh0AggBdeeAGXXHIJ/vrXv6Kmpibq4/n9frz99tu47bbbcPvtt6OyshKSJOG6667D3/72t+DqfKlg9uzZsNm6l89cu3YtcnJycOutt4Zt9+abbwIA9Ho9Fi9ePOhxJUnCfffdh0WLFmHx4sW4//77o5pXZWUlbrzxRpSXl2PSpEl4/vnnUVJSEtUxiOKpo8uNlo7osq2uHiDbSqsRodOkzwomRERERERDlZWgG7eiShXWnuPRdTvQ1NYVfCwIwK1XzIVajGs4QVGCICA/NOuK5YIpK+5XexMmTMC6devwy1/+Eu+++y7a2trw2GOP4fHHH8fEiRNx7rnnYvz48SgrK4PNZoPBYIBarYbD4UBHRwdaWlpw+PBh7N+/H7t370ZzczOA7gCOyWTCz372M1x//fXxnvaQiaKIG2+8EQ899BAA4JZbboHJJG+2tm3bNmzevBkAcN1110W0EuK6devw8MMPBx8/8MADKC0txcqVKwfd9+jRo7jtttvQ0NCARYsW4f7774fZbB50P6JE6XJ5caaxY8Btos22yjKkTgCbiIiIiEgJWUbdgK03hmLamAJ8cqQ6+Li9V18rALh43niMGaFsv+ZEKLCZUVHbGnxc1+LApAGuO+LN7fHBpOe1TCQSkqZgt9vx4IMP4t///jfuu+8+1NbWQpIkHDlyBEeOHInqWJIkQRAEXHDBBfjlL3+Z0iVuX//617F+/XpUVVXhueeeQ0lJCRYuXIhAIICNGzfi3nvvhSRJyM3NxZ133hnRMffv3x82tm/fvkEDV3v27MHtt9+OtrY2XH755fj9738PjUYTXNEwlCAIKZXBRpnH7fGhqqFtwBLBaLOtACDLxP5WRERERDS8GHQaqEUVfP74l5tNG13Q73O52UZ84fwpcT9nMiS7QTv7XEUuofU111xzDa666iq8/vrrePrpp3Hw4MGo9tfr9bj88svx9a9/HePGjUvQLOPHbDbjsccew+rVq1FdXY0f/OAHYdvk5ubi4YcfRl5eZJHcGTNmhI3NmjVr0P3+8pe/BPuLbdiwARs2bBhw+7KyMrz11lsRzYkoWl6fH1UNbQgEBm54uC7KbCuNWgW9VtPv80REREREmcps1KK1I/59mewWI4rzLKhuaA977ubL5kCnzYw2HYX2LNnjuhaWCqaqhL/iRFHE1VdfjauvvhrV1dX4+OOPcfjwYZw+fRqNjY3o6uqC3++HVquFxWJBYWEhxo4dixkzZmDBggXQ6dIrm2Ls2LFYv3491qxZg7fffjvYl2vEiBFYvnw5brnllrCG7QNZuXIlysvL8eKLL0IQBNx444246qqr4j5vJVc4pOHF5w+gsr4NXt/Ad4NOVDfhQBQrCQKAOYErqhARERERpbIsgy4hgSsAmD6mICxwdd6MUkwdIBsr3YT2uKpXOOPK4/MjEJCgUvV/vUPdBEnJNR+J+uFxdkCSIktz1ejNUKlEBAJ+eF3KvrlQdAIBCZX1bXC6vYNu+5cXP5AFriaMzMVPb1oyYOBqVEG2bNUTJfD1R8nE1x8lC197lEx8/VEypfLrT5IkHKtqGrSqIRaHT9XjTy+8H3xsMelwz+pLYMqg/rIOpwffu++14GONWoWHf3QNVANcf8RbaWE2DLr+r2dS+fXXH0FQQWvIGnzDKKTvMgBElNIkScKZpvaIglZ9ZVtdfd7kAYNWoigoHrQiIiIiIkoVgiDAnKBA0qTSPMwaVwQA0GlErL5qXkYFrQDAbNDKmqN7fQG0JKjhfX/cXpYLRiIzilOJKOXUNjvg6PJEtO26Dw7LHk8YmTvoih4sEyQiIiKi4c5s0KG9s+8FuIZCEAR89/pzUd3YjmyTHmZjZn73LrCbcfJMc/BxXYsDOVajYudnn6vIMOOKiOKuobUTbY7I6u1jybYCgCxjZt3xISIiIiKKltmgHfR7c6wEQUBJnjVjg1YAUGBL7sqCDFxFhoErIoqrlg4nmtq6It5+3fvRZ1upVIIsrZeIiIiIaDjq/l7M9hmxKrCHBK4UXlnQ7fErer50xcAVEcVNR5c7qrsUx6uacKA8JNvq/MGzrRJ5Z4mIiIiIKJ1kZXBGVKIle2VBSZLY5yoCDFwRUVx0ubw409gR1T7r++ptNWrgbCuA/a2IiIiIiHqYDFrwnm5skp1xBQBulgsOioErIhoyt8eHqoY2SFLkS/HGmm0liolbPYWIiIiIKN2oRRUMOpYLxiK0x1V9iwOBQOTXNPHAPleDY+CKiIbE6/Ojsr4t6jf4WLOtbFkGqFS8pURERERE1IMVCbEx6jWyUkt/QEJjW6eic2DG1eAYuCKimPn8AVTWt8HnD0S1X6zZViqVAFuWIep5EhERERFlMq64Hbu+sq6U5GKPq0ExcEVEMQkEJFQ1tMHjjX4ljHUfHJI9jjTbKtush6ji2xYRERERUW8atQi9Vp3saaSlsD5XCjdo9/sleH1cXXAgvAIkoqhJkoQzje1wuaO/O3C8qgkHy+tlY9ecP2XQbCtBAOwWZlsREREREfXFzKyrmISuLJiMBu3sczUwBq6IKGp1LQ44nJ6Y9g3Ntpo4KheTSgfPtrKY9FCLYkznJCIiIiLKdFnscxWTZGdcAYCb5YIDYuCKiKLi8njR2uGKad++sq2uPm9KRPsy24qIiIiIqH86rRoaNW/0Riu0xxUzrlIPA1dEFJWmNmdM+3l9fjy/cZ9sLNJsqyyjDjoNa/aJiIiIiAZiYblg1PJtJtnjxtauqBefGiquLDgwBq6IKGJurw8dXe6Y9n1p0wGcqm2RjUWabZVjZbYVEREREdFgzEaWC0bLoNPAatIHHwckCU1tnYrOwesLKB4sSycMXBFRxJrbumLab/fRarzzyXHZ2JwJIyLKtjLqNdBrNTGdl4iIiIhoODHoNFCLvMyPFvtcpTa+ookoIh6vH+0xZFs1tnbiyTd2ycZyrEbcesXciPbPsRijPicRERER0XDF1QWjFxa4SkKfK5YL9o+BKyKKSFN7FyQpun18/gAe/vd2dLm8wTFRJeCOqxfAZBj8A1WvVUe0HRERERERdePqgtELa9CehIwrNmjvHwNXRDQor8+P9s7oVxJ8efMBlNfI+1pdv2waxhbbI9rfzmwrIiIiIqKoGPUaqFRCsqeRVphxldoYuCKiQTW3O6POttpz7Aze3nFMNjZrXBEumTc+ov01ahEWE+8WERERERFFQxAEmFm1EJWwjKskBK48Pj8CgSgvuoYJBq6IaEA+fwCtjuiyrRrbOvHk65/IxnIsRtx25TkQhMju/nAlQSIiIiKi2JhZLhiVPJtJ9riprUvxVf4kiQ3a+8PAFRENqKW9C1IU6VY+fwCP/nsHOkP6Wt1+9fyI7/yoRZVsSVoiIiIiIoqc2aCN+IYxATqNGrasszfOJQloaGWfq1TBwBUR9cvnD6AlymyrtVsO4sSZZtnYtUunYlxJTsTHsFsM/KAlIiIiIoqRSiXAZNAkexppJbTPVW0SGrQz46pvDFwRUb9aOpxR1VnvO16DN7cflY3NGFuISxdMiPgYKpUAq5nZVkREREREQ8HVBaPDlQVTFwNXRNQnfyCAlg5nxNs3t3fh76/J+1rZsgz4+pXnQBVF9pTNrIeo4lsTEREREdFQmAxasIghcqEZV/VJWVnQH1WbluFCncyTBwIB7N27FwcOHEBtbS0cDgf8fj/uueeeZE6LiAC0drgizrby+QN4ZN0OdLo8wTGVIOCOa+Yjyxj5nR5BEGCzGKOeKxERERERyalFFQw6Dbp69Z6l/qVCxpUkSfD4/NBpkhqqSTlJ+b/h9/vxxBNP4Nlnn0VDQ0NwXJIkCIIQFrhyOp245557sGLFCpx77rlKT5do2AkEJDR3dEW8/b/fP4TjVU2ysS8snYrxJblRnddq1kEtMtuKiIiIiCgezAYdA1cRyg/JuKpLQsYVALg9PgauQij+f6O5uRnf+MY3cPjw4YhT4P77v/8bL7/8Mnbu3Ik333yTTZuJEqzV4YLfH9nv5/4TtfjPR5/JxqaNKcDlCyPvawUAggDkMNuKiIiIiChuzAYt6luSPYv0kJ9tggCg5yqoud0Jj9cPrUZUdB4ujw8Wk6KnTHmKpjYEAgF885vfxKFDhyBJElasWIEnnngC27ZtwwMPPNDvfrfccgsEQcDp06exceNGBWdMNPxIkoTm9siyrVo6nHj8tZ2ysWyzHt+4al5Ufa0AIMuog0at7IcCEREREVEm02pEaNSsaIiERi3CbpXfSK9vZYP2VKDoK/iVV17BgQMHIAgC/vjHP+LPf/4zFi9eDLvdDrW6/+SvsWPH4rzzzgMABq6IEqzV4YLPHxh0O38ggEfX7YDDebavlSAAt189H5Yo+lr1YLYVEREREVH8GfXaZE8hbaRCnyu3l4GrUIoGrl5//XUIgoDly5fj6quvjmrfxYsXQ5Ik7Nu3L0GzI6LubKvIVhJc9/5hHK1slI1dc/5UTByVF/V5zQYtdFrWcRMRERERxZtJr0n2FNJGaOAqGSsL+v0SvD6/4udNZYoGro4dOwYAWLZsWdT7FhUVAYCsmTsRxVd7pzuiN8kDJ+vwxrYjsrGpZflYsWhiTOe1M9uKiIiIiCghjAxcRawgtEF7EjKuAJYLhlI0cNXe3g4AsFgsUe/r93dfTAcCg5cwEVFsmiLobdXT16p363arWY/VK6PvawUABp2GH6ZERERERAmiFkXFG4ynq7DAVZJWFmTgSk7RwJXNZgMAnD59Oup9Dx48CADIy4u+DImIBtfe6YbHO3C2VSAg4fH1O9HR5Q6OCQJw+8r5sJj0MZ3XbjHEtB8REREREUXGxD5XEUmFHlcA+1yFUjRwNWvWLEiShFdffTWqzCmHw4G1a9dCEATMnj07gTMkGr6a2joH3ebN7Udx5LS8XPfq86ZgUmlsAWWdRkRWDI3ciYiIiIgocqxwiExutklWRdLqcMGdhOynZJwzlSkauLruuusAACdOnMBvfvMbSJI0yB6A2+3GD3/4Q7S0tAAArr322oTOkWg46uhywz1ItpXX58eb24/KxiaX5eHKRZNiPi97WxERERERJZ5Rr0EMXT2GHbWoQq5Vfo2SjHJBry8Q0Urvw4Wiy3hdcMEFuOyyy/Dmm2/iX//6Fz799FOsWrUK06dPR319fXC7+vp6NDQ0YOfOnXj++edRWVkJQRBwxRVX4Nxzz1VyykTDQiS9rT45Ug2H0xN8bNBp8M2r5kOliu0TUKNWwWJithURERERUaKJKhV0GjV7J0Ug325GfevZapT6FgdGFWQrPg+31wc2Vemm+Prz9957L9rb27Ft2zYcOXIEv/vd74LPCZ+HgJcuXSrbR5IkLFiwAH/4wx8UnSvRcNDp9MDlHvwD7L1dJ2SPz5tRCqs5tr5WAGDLMgZ/54mIiIiIKLFMeg0DVxEosJlxAHXBx7XJ6nPFf6sgRUsFAUCr1eKJJ57Az3/+c5jNZkiSFPzTo/eYXq/Hj3/8Yzz55JPQaFiXSxRvjW2DZ1tV1LbgxJlm2diy2WNiPqcoCsgeQtCLiIiIiIiiY2SD9oiErSyYpMAVg4xnKZ5xBXRnVn31q1/FqlWr8MEHH2Dz5s2oqqpCU1MTACAnJwdFRUVYsmQJlixZApPJlIxpEmW8LpcXTrd30O3e231S9nhqWT4Kc7JiPq8tyxBziSEREREREUXPoOvucxVBq+lhLWxlwST0uAIYuOotKYGrHnq9HhdddBEuuuiiZE6DaNiKZCXBTqcH2w9WysaWzR1atpUti9XaRERERERKUqkE6LWaiG5cD2ehGVf1Scq48nj9CAQkqBSvk0s9/F9ANEw53V50ugb/0PpwfwU8vrMrDtotBswcVxTzefOzzRD57ktEREREpDiTge13BpNjNULsVR3S3uVOWrDP7WWQEWDgimjYimQlwYAk4b3d8qbsF8weE3PgyaDTDKmhOxERERERxc6oY5+rwYgqFXKz5e2KktbnKoJFtIYDBq6IhiG3xwdHl2fQ7Q6V16G+5Ww5oagScP7MspjOKQhAYUjaLRERERERKcegU3Nl7wikSp+r3pUvwxkDV0TDUCQrCQLhTdnnTSqB1RRbxpQ9ywCdNqlt9YiIiIiIhjVBEGDUDY/v5KIoQKOOLeQR2ueqprEjHlOKmsRO+gCS0Jy9srISp0+fxuLFi6Pab9OmTRg3bhxGjhyZoJkRDQ+dLg86utyDbtfY1ol9x2tkYxfOHRvTOTVqFXKsXB2UiIiIiCjZTAZtRL1uU5lKJUAtqqARVVCrRWjUKmhEEWpRBfXnP6tUAjpdHlTWtUV9/NBKkY2fHMO500aiwB77yuoUO8Uzrv6//+//w+rVq/HYY49FvM9jjz2Gb33rW/jlL3+ZwJkRZT5JkiKuz96yp1y2VO7IfCvGFttjOm++zQyViinJRERERETJZtSnT4N2nUZEjtWIwhwzSvItGF1kw/iROZgwMhdjRtgxsiAbRTlZyLWaYDXrYTJoodOog9ceWrUY03lnjiuSNWh3un14YO3HcHvYcyoZFA1cbd++HTt37oQkScjPz494v7Fjx0KSJGzfvh179+5N3ASJMlxjWxc83sHrpL0+P7buOyUbu3Du2Jjq4c0GLbKMuqj3IyIiIiKi+NNrNRDF1L+pLAjAiDwL8rJNyDYbYDbooNOqo1ooSqMWY7qGsVuMWLVsumysuqEdT/1nF8v3kkDRwNX69esBAMXFxbjmmmsi3m/58uWYMGECAOD1119PxNSIMp7b60NzBCsJAsAnR6pl5YQGnQYLp0RfpisIAvJtbMhORERERJRKDLrUz7rKsRqh0wy9u1Gsfa4unjcO8yeXyMZ2HK7CO58cH/KcKDqKBq52794NQRBw6aWXRr3vxRdfDEmSsGPHjgTMjCjz1TU7EOnNgfd2n5A9Xjy9NKbG6jlWA7Sa2NJziYiIiIgoMUx6bbKnMCCdRkSOxRiXY8VaLigIAm69Yi6K8yyy8X+9tx9HKxvjMTWKkKKBq7q6OgDA5MmTo953zJgxAIAzZ87EdU5Ew0Gbw4WuCBswVtS24kR1s2xs2ZwxUZ9TG8cPGyIiIiIiip9U73NVmJMVU4lfXzQxBq4AQKdV4zvXLoSh10qM/oCEh179GC0dznhMjyKgaODK6+2+cNZoov8l6dnH5XLFdU5Emc7nD6C+NbKG7EB4ttWUsnwU5US/ekaB3Ry3DxsiIiIiIoofnUYNtaj4Wm0Ryc7Sx7WUcSiBKwAosGfhG1fNk421d7rx8Kvb4fMHhnRsioyir9ScnBwAwPHj0deEnjp1CgBgs9niOSWijNfQ4oDfH1mNYKfTg+0HK2VjF86NPtvKYtKlfPoxEREREdFwlopZV2pRhbxsU1yPqdUMPewxe/wIXLlokmzseHUTXnz30yEfmwanaOBq6tSpkCQJr776KjweT8T7BQIBrF+/HoIgxFRmSDRcdbo8aOt0D77h5z7cXwGP7+yqg3aLATPHFUV1TpVKQL4tvh82REREREQUX6l4o7nAbo5q1cBIDDXjqsc150/BtNEFsrF3d53ARwdOx+X41D9FA1crVqwAAFRXV+MXv/hFxMtI3nfffcEsrYsvvjhh8yPKJJIkobYp8hLBgCRh0+6TsrGls8ZE/cGRazVBLbIhOxERERFRKku1jCuzUYssoy7ux9XE6dpEpRLwzZXzkGOV9/Fds2E3Tte1xuUc1DdFA1eXX345ZsyYAUmS8Nprr+GGG27Ali1b4Pf7+9z+008/xXe+8x08/vjjEAQBpaWluOaaa5ScMlHaamzrgtfX9+9WXw6V16Ou5WygS1QJWDKrLKpz6rVq2LL0Ue1DRERERETK06jFuGUjDZVKJaDQbk7YsePVz8ts1OE71y6UHc/j8+PBtR+j0xl5VRlFJ/r17YdAEAQ8/PDD+OIXv4jq6mrs378fd9xxB7RaLcaOHYvs7GyoVCo4HA6Ul5ejvb0dQHfmiNVqxSOPPBJTY3ei4cbt9aG5vSuqfUKbsp8zqQRWU3RBKDZkJyIiIiJKH0a9Bm2OyG92J0pedmKrNjRqMW6N1EsLbfjqZbPx1Bu7gmMNrZ14/LWd+N6qRVDxeijuFF9GICcnB8899xyWLFkCSZIgSRLcbjcOHz6Mjz76CB9++CH27duHtra24POTJ0/GmjVrUFZWpvR0idJSbZMDEVbiAgAa2zqx73iNbCzapuxWc3xX/yAiIiIiosRKhT5XBp0GtixDQs+hVcc39HH+jDJcMHu0bOzTE7V4/cMjcT0PdVM046pHYWEhHnvsMWzZsgXr16/H5s2b0dnZKZ+YWo2FCxfiiiuuwNVXXw2RPXOIItLqcMLp9ka1z5Y95bJA18h8K8YV50S8vygKcV/9g4iIiIiIEivZfa4EASjMSUyJYG8aTfzjCTdeNBMVta0or2kJjq17/xDKimyYMbYw7ucbzpISuOqxdOlSLF26FIFAAE1NTWhoaIDf70dubi5yc3NZFkgUJZ8/gIbWzsE37MXr82PrvlOysWVzxkRV8pefbY5b3TgRERERESlDLaqg04hwe5NTLmi3GKHTJD4soU1ALy+NWsS3r12I3zz1Hjq6uldylwA8tn4H/uuWC5FvS3xAbrhIiStNlUqFvLw8TJkyBdOnT0dRURGDVkQxqG9xwO+PokYQwCdHqoNvtEB3qu65U0dFvL9Bp4HVzIbsRERERETpyJikckGtRkRuyAp9iZKoJvR2ixF3XD0fve/5d7m8eHDt8xCuPQAAdDFJREFUx3B7fQk553CUEoErIhq6TpcH7Z3uwTcMEdqUffH0Uui0kd31EAQkbPUPIiIiIiJKPJMhOUkjSi7slMjVEyeX5eP6C6bJxirr2/DMm3sgRdN4mPrFwBVRBggEJNQ2OaLer6K2FSeqm2Vjy+ZE3pTdlmWIOMhFRERERESpx6DTQOmF8KxmvaKN4dWiCipV4v6Sly2YgHMmFcvGth04jU27TybsnMMJA1dEGaCpvQteX/R16ZtCsq2mlOWjKCcron01ahVyrWzITkRERESUzkSVStGb0WpRhXyb8tcRiehz1UMQBNx6xdywa6kX3tmH41VNCTvvcMHAFVGac3t9aG7vinq/TqcHHx+slI1dODfybKu8bHNC71oQEREREZEyTDrlygXzbWaIKuVDEYksFwS6M9e+c91CWRDQH5Dw0Ksfy3oKU/SSVuNz5MgRnD59Gl1d0V9wX3PNNfGfEFGaqm1yIJbS6Q/3V8DTK0vLbjFg5riiiPY1G7SwmHTRn5SIiIiIiFKO0aBFU7sz4edJ5nWEVp34YFlRjgVfX3EOHnr14+BYq8OFzXvKcdXiSQk/f6ZSPHD1/vvv43e/+x0qKysH37gPgiAwcEX0uVaHE063N+r9ApIUVm+9dNaYiO985CUhtZeIiIiIiBLDoNVAEISENhMXBAEFSVzYSZ3gjKse50wqxiXzx+PtHceCY6dqmgfYgwajaH7e7t27ceedd6KyshKSJMX8h4gAnz+A+pbOmPY9VF6PupazzdxFlYAls8oi2levU0OnYUN2IiIiIqJMoVIJMOgS+x0/L9uU8HK9gSSyx1WoeZNKZI/rW2O7bqNuil59PvbYY/D5fACAwsJCXHDBBRg1ahRMJhO0WuVWFCDKBPUtDgQCsQVyQ5uynzOpBFaTPqJ9I92OiIiIiIjSh1GvQZcr+mqOSOh1atgthoQcO1JKBs0KQipUGlo6IUkSBKWXb8wQigau9u3bB0EQMHXqVDzzzDMwGJL7wiVKV51OD9o7Y2vw19TWhb3Ha2RjkTZlFwSwtxURERERUQYy6bVoRPQ9qAcjCEBhEksEe2jUKggCYuoPHC2TQQuDThNs6+Lx+dHqcMGWxRhILBQtFXQ4ukuTbrjhBgatiGLkDwRQ2+wYfMN+bN57UvZmXZJvxbjinIj2NRm0SVkBhIiIiIiIEkuvVSdk1XB7lgF6rXKrFvZHEASoRWWyrgRBQH5o1hXLBWOm6BVofn4+AMBqtSp5WqKMUtfsgLfXaoDR8Pr82Lr3lGzswjljIk5ZZZkgEREREVFmEgQBRl18A0watYgca+os7KTEyoI98m3yLLPePYYpOooGrubMmQMAOHHixCBbElFf2hyumEsEAeCTI9Xo6Dq7v0GnxrlTR0W0rygKMBvYi46IiIiIKFMZ9fELXKlFFUbmWxOSxRUrjUa5Plf52eF9rig2igaurr/+ekiShJdffhmdnfxHI4qG2+sbUomgJEl455PjsrHF00uh00bW6i7LqGMzQSIiIiKiDGbSx+dGtSgKGJlvhVbBQFEklFxZMC+kVLCeGVcxUzRwtWDBAlx66aWorq7G7373OyVPTZTWJEnCmYZ2SEPoJHisqgnlNS2ysWVzImvKDrBMkIiIiIgo0+m0aoji0G5Wq1TdQatIb5ArSdmVBeWlgvXMuIqZ4q+ke+65B3V1dVi3bh1EUcRvf/tbiAo1SCNKV/UtnXB7Y+tr1eOt7Udlj2eMLURRjiWifbUaEYY417sTEREREVHqMeq0svYi0RAEASV51pRoxt4XRTOuQksFW5lxFStFA1c/+9nP0NbWBo/HA0mSsHbtWqxduzaqYwiCgEOHDiVohkSpp6PLjZYO55COUdvUgb3HamRjly2YEPH+zLYiIiIiIhoejHpNTIErQQBK8ixx7ZMVb0pmXGVnGaAWVfD5AwCATpcXDqeHfYNjoGjg6tVXX5X1yBlK2RPRcOD1+VHb3DHk47y98xh6/7aVFmZj4qjciPe3mHRDngMREREREaW+WPpcCQIwItcCU4oHZVQqAaIowO9PfCxCJQjIt5lwpvHs9VxDiwNmgz3h5840igau5s2bp+TpiNKaJEk409gx5DfV9i43PtxfIRu7dP6EiButG/UaRe9MEBERERFR8mg1IjRqFby+QMT7FNqzkGVMj5vdGrUIv9+nyLnys82ywFV9aydGj2DgKlqKBq6eeeYZJU9HlNaa2rvgdHuHfJxNu07IPnRyLEacM6k44v1ZJkhERERENLwYdRq0+SIrFyywm2E1p881g1YtwuVWJnAVvrIgG7THQtFVBYkoMl0uL5rauoZ8HI/Xj/d2n5SNXTRvLNRiZL/6giDAbEztdF8iIiIiIoovY4Tlgvk2E2xZhgTPJr6UrCbJD1tZkA3aY8HAFVGK8fkDqGlqRzxawG07UCFrrGjQqbFk5uiI988yaiGq+DZBRERERDScmAyDN1jPsRphtxgVmE18KbmyYH7YyoLMuIoFr0iJUkxtc0dU9eT9CUgS3tpxTDa2dNYYGHSRr/LBMkEiIiIiouFHLYrQavoP8NiyDMgLCcqkC2UzrkJLBZlxFQsGrohSSEuHE44uT1yO9enxGtQ1n31jFFUCLjpnbMT7q0VVSi9lS0REREREidPftYDVrEeB3dznc+lAq1EuDJJjNaH3mlitDhfcXmX6a2WStAlcOZ1ONDc3J3saRAnj9vjiGoF/c7s822r+5JFRpfJaTLqIVx4kIiIiIqLMYtSF97mymHQoyslKwmziRy2Kil3nqEUVcqzyazCWC0YvLQJXfr8ff/zjH3H++efj9ttvT/Z0iOIuEJBQ3RifvlYAUH6mGUcrG2Vjly4YH9UxWCZIRERERDR8hWZcmQ3atA9a9dCqlQuF5GfLs9MauLJg1NTJOGlDQwOeeeYZ7NixA83NzfD7/f1uK0kSWlpa4HK5AABmc/qmJBL1p67FAY+3/9+DaIX2tppclodRBdkR76/TiNBpk/L2QEREREREKUAtqqDXquHy+GDUazAi15IxFRkajQh3HK+/BpJvM+HQqbOP69jnKmqKX5lu374d3/nOd+BwdP9jSYOkmAiCENymoKAAP/zhDxM+RyIltXe60OZwxe14ja2d2HmkSjZ22fwJUR3Dama2FRERERHRcGfUawABKMmzQqXKjKAVAGhEJRu0M+NqqBQNXDU2NuJ73/seOjo6AAA6nQ52ux0ejwdNTU0QBAFFRUWyfVpbW+F0OjF//nzcf//9sFgsSk6ZKKE8Xj9qm+MbcX9753FZyWFxngXTxhREvL8gdNeuExERERHR8GY16ZFjNWZU0ApQdmXB0NUX61uZcRUtRQNXzz//PNra2iAIAr7//e/jtttug1arxebNm3HHHXcAAN577z3ZPmfOnMHXv/517Ny5E2+//Tauv/56JadMlDCSJOFMUzsCgTg1tgLQ6fTg/X3lsrFL5o+PKqXXqNNAreAdCCIiIiIiSk2Z2j5EyZUFQzOu6plxFTVFm7N/+OGHAIAZM2bgjjvugFYbvkpBqBEjRuD++++HWq3GPffcg8rKykRPk0gRja2dcLnjuxTqlr3lslptq0mPhVNGRnUMlgkSEREREVEmUzLjKj8k46qprQs+f0Cx82cCRQNXp06dgiAIuPTSS+WTUA08jXHjxuGSSy6B0+nE888/n8gpEimi0+lBU7szrsf0+QN455PjsrGLzhkb1ZuySiXAbGCZIBERERERZS6tgoErnVYtW7E9IElobu9S7PyZQNHAVU9D9sLCQtm40WgM2ybUwoULAQBbt25N0OyI4k+SJLg9PrR3utHU1oWaxnacqm1BVUN73M+1/VAlWns1eddqRCydPSaqY2QZdRlXv05ERERERNSbIAjQqJULh+TZQvpcsVwwKooWrOp0OjidTmg0Gtm43W4P/nz69GlMmTIlbF+TqfsfuqamJrGTJIqB1+eHx+eHx9vzxwePLwCvT5klViVJwlvbj8rGzp9RBrNh8HLc3tiUnYiIiIiIhgONWoTXp0zJXoHNjONVTcHH9S0OAJEvoDXcKRq4ys/PR0VFBerr62XjpaWl0Gq18Hq92Lx5c5+Bq/Ly7obTkhS/RtZEsWrvdMHh9MDj9cPt9Sf9dXmwvF6WxSUIwMXzxkV1DI1aBZM+ukAXERERERFROupuqeJV5FzhKwsy4yoaipYKjh8/HgBw5MgR2bgoiliwYAEkScKTTz6JY8eOyZ5vamrC888/D0EQUFZWptR0ifrV3uVGe6cbLo8v6UErAHhrhzzbau7E4rDVKwZjMbEpOxERERERDQ9K9rnKDykVbGjpu0US9U3RjKu5c+di48aN2LFjR9hzq1atwvvvv4/Ozk6sWrUKK1aswKhRo1BTU4MNGzagra0NgiDgkksuUXLKRCmvsr4NB8vlWYyXzp8Q9XFYJkhERERERMOFoisLhiQVsMdVdBQNXC1fvhx/+ctfMHHiRAQCAdlqgpdccgmWLFmCrVu3wu12Y+3atWH7jx49GjfffLOSUyZKeaG9rcaX5GBssb2frfum16mh0yj6dkBERERERJQ0Wo1yBWj5IaWCDa2dkCQJgsCFsSKhaKngyJEjsW3bNvztb3+TBa16/N///R+uuOIKSJIU9mfRokVYs2aNbAVCouGupcOJ7YcqZWOXLhgf9XGsLBMkIiIiIqJhRMmMK5NBC4Pu7CJ1Hp9ftiI8DUzxFAuzuf++OwaDAX/5y1/w3e9+Fzt27EBrayssFgvmzp2LCROiL30iynTvfHIc/sDZHlsFNjNmjRsR1TEEAcgyskyQiIiIiIiGD1GlgkolIBBIfM9iQRCQbzOhorY1OFbf4oAty5Dwc2eClKwNGj16NEaPHp3saWQch8OBL33pS1ixYgVuuukmWCyWZE+JhsDp9mLznnLZ2CXzx0Olii7d1GTQQi0qmnxJRERERESUdFq1CJfHp8i58m1meeCqtRMTR+Upcu50l5KBq3TncDiwZs0abNy4EZWVlQgEAiguLsby5ctx8803w26Prv9QvLzyyis4duwYHnroIdxwww1JmQPFzwefnoLTfXb5VrNBi0XTR0V9HJYJEhERERHRcKRRMnAV2ueKDdojxsBVnJ04cQKrV69GdXW1bPzYsWM4duwYXn75ZTz88MOYMWOGovOSJAnPPfccAOCyyy5LWvCM4sMfCODtncdlYxfOGRt1g3VRFGA2aOM5NSIiIiIiorSgVSvYoD1sZUGHYudOd0kJXB08eBCHDh1CS0sLPB5P1Pt/5zvfScCshs7hcOCb3/wmqqurodFocNddd+HKK6+EXq/HJ598gj/+8Y84ffo07rzzTvz73/9GXp5yaYFbtmxBRUUFAOArX/mKYuelxNh1pBpNbV3Bx2pRhQvnjon6OFlGHVeyICIiIiKiYUmjUa5Be75NnnFVz4yriCkauKqpqcF3vvMdHDp0aEjHSdXA1RNPPIGqqioAwL333osrrrgi+NxFF10Eh8OBn/70p2hsbMRDDz2EX/3qV4rN7ZlnngEATJ06FTNnzlTsvBR/kiThrR3HZGOLp5fCEkPJH8sEiYiIiIhouFJyZcG80FLBVmZcRUrRjsy/+c1vcPDgQUiSNKQ/qcjv9+OFF14AAMyePVsWtOp5/tFHHw0+Xrt2LZxOpyJzO3nyJD788EMAwE033aTIOSlxjlY2orymRTZ2yfxxUR9HqxFlS7ISERERERENJ1oFA1fZWQbZolidLi8czugr0IYjRTOutm/fDkEQcOmll+JHP/oR8vPzodVmRn+d3bt3o6WlO5hw+eWXhz3/yiuv4OTJk7juuuvwyiuvwOVy4YMPPsDFF1+c8Lk9++yzkCQJ2dnZuPLKKxN+Pkqst7bLs61mjStCUU70K0RaTLp4TYmIiIiIiCjtaNQiBAFQIj9GJQjIt5lwprEjONbQ4oDZwP7Tg1E048pk6k6Nu+SSS1BSUpIxQSsAOHDgQPDn2bNny55zOp24//77MXPmTHz/+9/vc59EcTgcePXVVwEA1113HXQ6BivSWU1TB/Yer5GNXbpgfEzHYpkgERERERENd0qWC+ZnhzRob2Wfq0gomnG1bNkyvPTSS/joo4/CSunS3cmTJ4M/l5SUyJ5bs2YN6uvr8b//+78oKCiAWq2Gz+eT7ZMoL7/8Mrq6uqBSqfDlL39Z9tzEiRMBAE8//TQWLFiQ8LkMRK0zRrytIKiC/9XozYNsnRganQ9qv3JvcD3e2fWp7PHoEXZMGTcy6gbrRr0WRrM1nlMbNlLh9UfDF19/lCx87VEy8fVHycTXX+YzGL0IuNyKnKsg1wr0SkRobHdDrTP0uz1ff90UDVz96Ec/wt69e/HKK6/g3HPPzajgVXNzc/Bnm80W/LmlpQV///vfsWTJkmBwyGKxoLm5OVhamCiSJOH5558HACxdujQsoJZKVKrog0CCIEAQlA8edZ9bBZXC5+5yebBtf7lsbMXiaRBV0f8aZ2eZYvp/Tmcl8/VHxNcfJQtfe5RMfP1RMvH1l7l0Wi2cbp8i5yq0y5MH6lscA15X9iQoDPfXn6KBK6vViqeeegqrVq3Cj370I7z55pvB8sFICYKA//7v/4773KIJJFksFuTl5cnGehqta7VaWfbLI488AofDgbvvvjs41lMi2dXVNdRpD2jLli2oqKgAkPpN2QMBf8TbCoIKgiB83qw/kMBZ9U+SAghIkc85Hj7Ydxxuz9k3VFuWAXMmlUQ9DwECzAZNVP/P6axUeP3R8MXXHyULX3uUTHz9UTLx9Zf51CIUu7bLs8njH/XNHQOeu2dxunR7/cU7SULRwNXx48dxyy23oKmpCQCwcePGmI6TiMDVc889hwceeCCiba+//nrcc889fT6nUp1tG1ZdXY3nn38eV155JSZNmhQcDwSUecE988wzAICysjKcd955ipwzVj53V8S/iBq9GYIgQpIC8LqSs4So190Jn1u5FSAkScJ7Oz+TjZ0/swzwueGL8uaA2aBFwNOF9HnbSy2p8Pqj4YuvP0oWvvYomfj6o2Ti6y/zCX43fG6nIufKMctDMLXN7QOeW5KMn/83fV5/gqCC1pAV12MqGri655570NjYqOQpFWM0dr+gvF5vcOy+++6DJEmyhuwA4Ha7ZfskwokTJ/Dhhx8CAG688caoeyBRajle3YSqhvbgY5UgYMnMspiOlWVkg34iIiIiIiIA0CrYnD3HaoJKEBD4PJOqzeGC2+uDTqNoaCbtKPp/Z+/evRAEAZdeeil+9KMfIT8/P2VWFvzud7+L7373uzHvb7d3L2Hp9/vR0dGB6upqvP7667jpppswcuTI4HZerxcdHR2yfRLh2WefhSRJMBgMuPbaaxN2HlLGpt3yRv4zxxfBbok+8CkIgNmYGr9zREREREREyabkqoJqUQW71YDG1rNtgxpaO1GSx4WzBqJ4jyuXy4VLLrkkpRuFx2LMmDHBn6urq/G///u/MBgM+Na3viXbrqamJlgqOHr06ITNZ+vWrQC6e2/NmzdvwG2/9rWvAQCKi4vx3nvvJWxOFJuOLjc+OVItG1s2e0w/Ww/MpNdC7FXOSkRERERENJypVALUogo+vzLNVPKzzbLAVX2Lg4GrQSh6BXvllVdCkiRs375dydMqYtq0acGf16xZg/fffx+33XZbWFbV7t27gz9Pnz49YfPpaeJG6e+DT0/J3kTzs02YMjo/pmOxTJCIiIiIiEhOyayr/NAG7S2dip07XSmacfW9730PBw4cwMsvv4yFCxfi8ssvV/L0CTV79mzYbDa0tLRg7dq1yMnJwa233hq23ZtvvgkA0Ov1WLx48aDHlSQJ//d//4d//etfEAQBX/rSlyIqaXzzzTcHDF7t3LkTX//61wEATzzxBObNm8c+WCkoIEnYsqdcNrZ09mioYvi3YpkgERERERFROK1aBadbmXPl28yyxw0MXA1K0cDVjh07cM011+DUqVO4++67sWHDBphMpsF37EUQhISsKjhUoijixhtvxEMPPQQAuOWWW8L+btu2bcPmzZsBANdddx0MBsOgx123bh0efvjh4OMHHngApaWlWLly5YD7DdY7TKPRyH7W6ZiJk4oOldejvvXsG5laVGHxjLKYjmXUaVgmSEREREREFEKjUS7jKi87NOMqPVYLTCZFA1ff+MY3glk9kiRh48aNUe0vSVLKBq4A4Otf/zrWr1+PqqoqPPfccygpKcHChQsRCASwceNG3HvvvZAkCbm5ubjzzjsjOub+/fvDxvbt2zdo4Ioyw+Y98qbs50wqhiXGcr8sE4OTREREREREoZRcWbAgJOOqd6IC9U3RwNWIESOUPJ3izGYzHnvsMaxevRrV1dX4wQ9+ELZNbm4uHn74YeTl5UV0zBkzZoSNzZo1a6hTpTTQ0uHE3mM1srFlc2Jryi4IgNnAwBUREREREVEoJXtchWZcNbV1wecPQC2yOqY/igauhsOKdWPHjsX69euxZs0avP3226isrIQkSRgxYgSWL1+OW265Jaxh+0BWrlyJ8vJyvPjiixAEATfeeCOuuuqqBP4NKFVs2VuOQK8+ZcV5FowrzonpWEadhm+EREREREREfdColbtW0mnVsJr0aOt0Aejua9zU1oUCu3mQPYcvRQNXw4XZbMa3v/1tfPvb3x7ysQRBwF133YW77rpr6BPrZcGCBfjss8/iekyKH38ggK175U3Zl80eE3MDfZYJEhERERER9U0tihAEYcAFzuIp32YKBq4AoKHVwcDVAJiCQZSC9h6rQavj7BuZTiPi3GmjYjoWywSJiIiIiIgGplUw6yp0ZcF6riw4IAauiFJQaFP2hVNHwaDT9LP1wFgmSERERERENDCuLJi6FC0VnDx5ctiYIAh45513Mr5xO1Gk6podOFheLxu7YHZsTdkBlgkSERERERENRsmVBcMyrriy4IAUDVwpVS9KlM627JVnW40ZYUdpYXZMx2KZIBERERER0eCUXFkw3ybPuGpgqeCAFA1ciaKIQCCAK664AqNHjw6OWywWJadBlLK8Pj8++LRCNrZsCNlWBpYJEhERERERDUrRjKvQUsFWBwKSBFWMi3FlOkUDV3a7HY2NjVi4cCFWrVql5KmJ0sInR6rhcHqCj016DeZNLon5eFlGZlsRERERERENRsmMK5NBC4NOA6fbCwDw+gJoc7hgyzIoNod0omgqxpw5cwAA77zzTtT7trW1YefOndi5c2e8p0WUMjaFNGVfPL0U2hibBAoCA1dERERERESR0KhVUCrhSRCEsHJBNmjvn6KBq9tuuw2CIGDr1q3YsGFDVPvu2bMHX/3qV3HzzTcnaHZEyVVV34bjVU2ysaUsEyQiIiIiIko4QRCgFpPYoJ19rvql6FXtzJkz8Zvf/AaCIOAnP/kJnnvuuaiPwQbvlKlCs60ml+ahKCcr5uMx24qIiIiIiChyGrVyIZK++lxR3xRPx1i1ahUeeeQR5Ofn4/e//z2uvfZabNiwAV6vV+mpEKUMl8eHjw6clo0tmxN7thXAwBUREREREVE0lF1ZUJ5xxZUF+6doc/ZTp06hpqYGDQ0NuOyyy/Dcc8/h8OHD+OEPfwiz2YxJkyZB6KeotLW1VcmpEinq44On4fL4go+tJj1mjR8R8/GMepYJEhERERERRUPRlQVDelzVscdVvxQNXF122WX9BqYcDgc++eQTJadDlBIkScKm3fIywfNnlg0p8MRsKyIiIiIiougomXGVF1Iq2NDKjKv+KBq46sE+VURnnTzTjMr6tuBjQQCWzho9pGNmGbVDnRYREREREdGwotUoV7WSnWWARq2C1xcAAHS5vHA4PTAbeC0XKimBq0cffRRLly6Nap9NmzbhzjvvTNCMiJJn855y2eOZY4uQYzXGfLzuMkHl7hQQERERERFlAiUzrlSCgLxsE840dgTH6lscMBvsis0hXaRNE5z+SgyJ0pnD6cGOw5WysQtmDzXbimWCRERERERE0RJVKoiicrGH/Gx5g/Z6Nmjvk6IZV/PmzQMAZGdnR71vdnZ2cH+iTLFtf0UwNRQAcq1GTBtTOKRjskyQiIiIiIgoNhq1CL/fN/iGcRDaoL2hlQ3a+6Jo4OqZZ56Jed9Zs2YNaX+iVCNJEjbtkTdlXzp7DFSq2CP8Bh3LBImIiIiIiGKlVYtwuZUJXOXZmHEVibQpFSTKNIcrGlDXfDaiLqoEnD+jdEjHZJkgERERERFR7JTsc5UfsrJgfQszrvrCwBVRkmwOybaaO7EYFpN+SMe0mFgmSEREREREFCutkoGr0IyrVmZc9YWBK6IkaHU4sefoGdnYsjljhnRMlgkSERERERENjZIZVzlWI1S9FqJrc7jg9ihTpphOGLgiSoL3952CPyAFH4/IzcKEkblDOibLBImIiIiIiIZGo1YuTKIWVbBbDbKxBmZdhVG0OXt/PB4Pqqur0dHRAVEUkZOTg5ycHGg0mmRPjSjuAgEJW/aWy8YumD0GgjC0ZVdZJkhERERERDQ0GrUIQRAgSdLgG8dBQbYZja1dwcf1rQ6U5FsVOXe6SFrgqrm5GS+//DI2bNiAY8eOwe/3y57XaDSYN28eLrroIlx33XXQanlRTplh34kaNLc7g4+1GhGLpo0a0jFZJkhERERERBQfGrUKHq9/8A3jIM9mAk6dfcyVBcMlJXD16quv4n/+53/Q0dEBAH1GMj0eD7Zt24Zt27bhqaeewq9//WssWrRI6akSxd3m3fKm7AumjIRRP7TALMsEiYiIiIiI4kOrFhULXIU1aOfKgmEUD1w9/fTT+J//+R8AZwNWOTk5GDlyJEym7qUgOzs7cfr0aTQ3NwMATp8+jdtvvx0PPfQQzj//fKWnTBQ3Da2dOHCyTjZ2weyhNWUHgCwjMxKJiIiIiIjiQckG7fk2k+xxAzOuwigauDp16hT+9Kc/QZIkaLVa3HzzzVi1ahVGjeq7TKqiogL/+te/8Mwzz8Dj8eD73/8+NmzYgIKCAiWnTRQXkiTh31sPoXd+YVmhDaOLbEM6rl6nVvSNlYiIiIiIKJMpGrjKlmdc1bUy4yqUoqsKvvDCC/B6vVCr1fj73/+Ou+++u9+gFQCUlpbixz/+MR577DGIogin04lnn31WwRkTxc+Gj4/io4OnZWPL5gw928rCMkEiIiIiIqK40WqUC5XkZcszrprbnPD5A4qdPx0oGrj68MMPIQgCrr76asyfPz/i/RYuXIiVK1dCkiRs2bIlgTMkSoxdn1Xj5c0HZGMFNjMWTBk55GOzvxUREREREVH8KJlxpdOqYTXpg48DkoSmtq4B9hh+FA1c1dV19/ZZsGBB1PsuXLgQAFBZWRnXOREl2qmaFjy+fqdszKjX4HurFkGrGdobIssEiYiIiIiI4kuj8IrtYX2uWC4oo2jgyuVyAQB0uugzRPT67ghkIMCUOUofLR1O/O3lbfD4zq5IIaoEfOsLC1GUkzXk47NMkIiIiIiIKL5UKgFqUblwSejKgnVs0C6jaOAqLy8PAHDs2LGo9z1+/DiA7hUIidKB2+PD317ehlaHSzb+lUtnY0pZflzOwTJBIiIiIiKi+FOysiW0z1VDCzOuelM0cDVz5kxIkoSXXnoJDkfk/xAOhwMvvfQSBEHAzJkzEzhDovgISBIef20nKmpbZeOXzB+PpbNGx+UcLBMkIiIiIiJKDK06eRlX9a3MuOpN0cDVqlWrAAD19fW4+eabg1lUAzlx4gRuvfVW1NbWAgBWrlyZ0DkSxcPaLQex++gZ2djMcYX44rLpcTsHywSJiIiIiIgSQzPEfsTRCO1xVc+MKxm1kidbtGgRrr32WqxduxaHDh3CypUrMXPmTMydOxejRo2C2dwdZezs7ERlZSV27dqFvXv3BvtaLV36/7d3p+FRVPnbx+/qJTshgQSQAIII4gyyiIIQB0VARVERdEQFNSIqIqOOqOM8KsP8HRfcUBjBBTUsMqBEQEAhgCCLAyK4ILIIIiGsIWDShOz1vMikTcjWSbq7OuH7uS4uK12nqn45HpDcnnPqMvXp08efJQPVtvb7vVry1Y5Sn7Vo0lD3Xt9dNpvhteewTBAAAAAAfCPIj6tbmpy+VPDESRWapt+eH+j8GlxJ0rPPPqucnBwtXrxYpmnq22+/1bffflthe/N//7Li4+M1ceJE/xQJ1NCOfUeV+NnmUp9FhgfroZt6KTTY6bXnsEwQAAAAAHzHnz9vhYcGKSzEqazsPElSXn6hfnNlq2ms30oIaH5dKihJNptNr7zyiqZMmaIOHTrINM1Kf7Vt21bPPfecpk2b5n6zIBCIDqe7NHnef1VQ+Hsy7nTYNGZILzVuGObVZ7FMEAAAAAB8x5/BlWEYZTZoZ7ng7/w+46pYnz591KdPHx04cEDr16/XoUOHlJ6eroKCAkVGRqpVq1bq1KmTzjvvPKtKBDx28lSuXv9onU5m55b6fMTAi9U2rpHXnxceGuT1ewIAAAAAijjsNtlshgoL/bNkr0l0RKmXex05zgbtxSwLroo1b95cN910k9VlADWWX1CoKfM36FB66UR80J/+oO7nt/D68xx2m4Kdlv/WBQAAAIB6LchhV3Zuvl+eVWaD9hPMuCrm96WCQH1imqY+TP5W2/YeKfX5JX9sqeviO/jkmWEh3tsrCwAAAABQPn8uF2wSFVHqa2Zc/Y7gCqiF5Zt+1qotv5T67Ny4xkq4ppsMw3tvECyJ4AoAAAAAfC/I4b/IpMyMK/a4cvP6vwWXy6XNmzdX3RCo4777+aD+s+L7Up/FNAzTg0Mu8WkyHxbM/lYAAAAA4GtOpx9nXEWXnXFlmv7ZXyvQeT24WrlypW6//XYNGzbM27cGAsa+Qyc0dcFGlfxzJCTIoYdujldkuO/eful02BTkxz88AQAAAOBMFREa7LOVNKdrGBEiZ4kZXqdy8pSZleOXZwc6rwdXy5cvl2maioyMLPd8fn6+CgsLvf1YwG/SM7L0wszVyimxSZ9hSKMG9VBcbPnj3lvCglkmCAAAAAD+4LDbFBke7Jdn2QxDsVGllwseOpbhl2cHOq8HV1u3bpVhGOrWrVu559euXatOnTqpX79+3n404HM5efl6YspSpf2WVerz2/p11gVtm/n8+WEhLBMEAAAAAH9p1CDUb886fbngwTSCK8kHwdWxY8ckSU2aNKmwTX5+vlJTU739aMDnFq79ST/+crjUZ1dceI76XnSuX57PxuwAAAAA4D/BQQ6F+mnlS5PTZlwdZMaVJB++VdDhcPjq1oBlUg7/VurrP7Zpolv7d/bLs50Ou19fxwoAAAAAkKL9NOsqlhlX5fJ6cBUTEyNJ2r9/v7dvDVju2l4d1PB/m6+3bxmjUYMukd3mn1ekMtsKAAAAAPyvQViQHHbf/9zXNJo9rsrj9WlRXbp0UWpqqj755BONGDFCNj/9UA/4w3mtYjT3/27Vj78cVmR4iGx+esOEJIUTXAEAAACA3xmGoagGIUo7kVV141qIjTp9xtVvFbQ8s3g9uLrhhhu0ePFi/fLLLxo2bJhuueUWNW/e3H1+586d7uNNmzbJNM1qP+Piiy/2Sq1ATTQIC1aLJg3lysr163OZcQUAAAAA1oiKCNGx37JUgwjDY40bhslmGCr830OOZ57SqZxcBTvP7C1jvB5c9e7dW3369NEXX3yhLVu2aMuWLeW2M01Tw4cPr/b9DcPQtm3balsmUKcEOe1y2M/sP6wAAAAAwCoOu10NwoKVcTLHh8+wqVHD0FIzu/Yf+U1t4xr57Jl1gU/W8U2cOFEDBgyQaZrl/ipW0fmqfgFnGmZbAQAAAIC1/LFJe9PTlgumHD7u82cGOp+8+i84OFivvfaaHnjgAW3ZskVHjhxxn/vll1+0ePFiGYah0aNH++LxQL0TFhxkdQkAAAAAcEYLDXYqJNih7Jx8nz0jNjpc2vv71/uPEFz5JLgq1q5dO7Vr167UZ6tWrdLixYslSQ8++KAvHw/UG8y4AgAAAADrRUeE6mBOps/u3yS69Iyr/UdO+OxZdQWv/AMCXLDT7pdXrwIAAAAAKhcZHiy73Xdvl28SHV7q6/0sFSS4AgJdeCjLBAEAAAAgEBiGoagI3+111SSKGVen8+lSwfI0a9ZMN954o78fC9RZLBMEAAAAgMAR3SBE6RlZ8sW742KjSs+4OpiWobz8Au8/qA7xe3DVoUMHPf/88/5+LFAnGUbRBoAAAAAAgMDgsNsVERqszKwcr987OMihhhEh+s2VLUkqNE0dTMvQWVFn7s+FLBUEAlhwkEN2G79NAQAAACCQRDfw5XLB0/a5OsOXC/ITMRDAwpltBQAAAAABJyzEqWCn3Sf35s2CpRFcAQEsLISN2QEAAAAgEEVH+mbW1elvFjz220mfPKeuILgCAhT7WwEAAABA4IoMC5Hdbnj9vl3aNS/1dYfWTb3+jLrEr5uz33HHHWU+MwxDr776qho3buzPUoCAFxLklM3m/T8EAQAAAAC1Z7MZahgeovSMU169b8smDTXmpp764Zej+lOXc9WnWzvlZbu8+oy6xK/B1caNG2UYhswS74w0DEM5Od7fiR+o68JCmG0FAAAAAIEsukGo14MrSerarrmu7HmBmsdGq7CwwOv3r0v8GlwZRtHskXbt2ikqKsr9eXBwsD/LAOoEgisAAAAACGxOh10RYUFyZeVaXUq95dfgKjIyUhkZGbr33nt13XXX+fPRQJ1iGIZCgwiuAAAAACDQRUeEElz5kF83Z+/QoYOkoiWDACoWGuxgfysAAAAAqAPCQ4MU5LRbXUa95dfg6uabb5ZpmlqwYIF27dpVrWtXrVql888/X3/4wx98VB0QOFgmCAAAAAB1R3SDUKtLqLf8GlwNHDhQN954o3JzczVy5Ej99NNP1breNM1SG7sD9VVYcJDVJQAAAAAAPNQwPIRVMz7i1+BKkp5//nmNHDlSaWlpuvnmm/XCCy/o8OHD/i4DCFiGYSg02K/bzwEAAAAAasFmM9QwPMTqMuolv/90nJ+frz//+c9q0qSJXnnlFSUmJmrmzJm65JJL1KVLlwqv27t3r99qBKwUFuxwv4ETAAAAAFA3RDcI1fHMU1aXUe/4Nbj605/+pGPHjpVZ7pefn69169Zp3bp1/iwHCEhhISwTBAAAAIC6JshpV3iIUyez86wupV7xa3B19OjRCs+xdxVQhI3ZAQAAAKBuio4MJbjyMr8vFTQMQ4888kilywLL8+233+rVV1/1TVFAgLDZDIUEsb8VAAAAANRFEaHBcjrsyssvsLqUesOSn5DPO+88de/evVrXZGVl+agaIHCEBTvZ3woAAAAA6rDoBiE6cvyk1WXUG35/qyBLAoGKsUwQAAAAAOq2hhEhTEjwIr/OuNq+fXuNr7388strdT1QFxBcAQAAAEDdZrfZ1DAiWCcys60upV7w+4wrAOWz2w2FBBFcAQAAAEBdFx0RanUJ9QbBFRAgQoMJrQAAAACgPggOcrCixksIroAAER4SZHUJAAAAAAAviQwPtrqEeoHgCggQpPEAAAAAUH847XarS6gXCK6AAOCw2xTs9Ou7EgAAAAAAPuSwE7l4g6U/Ke/evVvJycnaunWrDh06pMzMTBUWFio5OblM29zcXAUFsZQK9ROzrQAAAACgfrETXHmFJcFVSkqKxo8fr3Xr1rk/M01TkmQYRpn2O3fu1KOPPqqhQ4fq9ttv91udgL8QXAEAAABA/eKw22QYhjvvQM34Pf77/vvvNWTIEK1bt06macput6tt27Zq27ZthdfMmzdPu3bt0sSJE3Xy5Ek/Vgv4R1gwswkBAAAAoL5huWDt+bUHMzMzNWrUKGVkZCgyMlLjx4/X119/rUWLFumxxx6r8LpRo0YpNDRULpdLCxYs8GPFgO85HTYFOdm0DwAAAADqG4Kr2vNrDyYmJurYsWMKCQnR9OnTdcsttyg0NLTK66KionTllVfKNE19+eWXfqgU8J+wYJYJAgAAAEB9RHBVe37twZUrV8owDA0ePFjnnXdeta698MILJUk//fSTL0oDLBMWwjJBAAAAAKiPnA6Cq9ryaw+mpKRIki666KJqX9u4cWNJUnp6uldrAqzGxuwAAAAAUD8x46r2/NqDOTk5RQ+1Vf+xLpdLkuRwWPIiRMAnnA67nA72twIAAACA+ojgqvb82oPNmjWTJG3btq3a127YsEGS1KJFC6/WBFiJ2VYAAAAAUH857ExUqC2/BleXXHKJTNPURx99pN9++83j63bv3q1FixbJMAz17NnThxUC/hVOcAUAAAAA9RYzrmrPrz04bNgw2e12nThxQvfdd5+OHDlS5TW7d+/WqFGjlJeXJ7vdrqFDh/qhUsA/mHEFAAAAAPUXwVXt+XXDqPbt2+uvf/2rXnrpJX333Xfq37+/+vTpowsuuEAHDx50t/v000+Vlpamr7/+Wl9++aUKCgpkGIbGjh2rc845x58lAz4T5LQzbRQAAAAA6jGbzZDNZqiw0LS6lDrL7zudjxgxQtnZ2XrzzTeVk5OjpUuXaunSpZIkwzAkSY8//ri7vWmastlsuu+++3TXXXf5u1zAZ5htBQAAAAD1n9NuU05hgdVl1FmWzFkbPXq0Pv74Y/Xq1Us2m02maZb7S5IuuugizZ49Ww899JAVpQI+ExYcZHUJAAAAAAAfY7lg7fh9xlWx888/X++9956OHz+uNWvWaP/+/Tp27JgkqXHjxmrevLkuvfRSxcTEWFUi4FPMuAIAAACA+o/gqnYsC66KRUdH6/rrr7e6DMCvgp12/vACAAAAgDOAw8HexrXBT86ABcJCWCYIAAAAAGcCJi3UDr0HWCA8lGWCAAAAAHAmILiqHb8uFTx69KiOHDmigoICNW7cWHFxcf58PBAQnA6bwplxBQAAAABnBKeD4Ko2fB5cmaapDz/8UDNnztTevXtLnWvcuLGGDBmie++9V+Hh4b4uBQgIDSNCZBiG1WUAAAAAAPyAGVe149PgKj8/Xw8++KBWr14tqSjEKiktLU1vv/221qxZo/fee09RUVG+LMdvXC6XEhMTlZycrJSUFBUWFiouLk59+/bVnXfeqUaNGvm9poMHD2r69Olas2aNUlJSZJqmzjrrLPXs2VO33Xab2rdv7/eazkSGIUVFhFhdBgAAAADAT+w2mwxDOi0SgYcM8/Q0yYteffVVvf322zIMQ6ZpqkGDBoqLi5PD4dChQ4eUlpZWVIRh6MILL9SsWbN8VYrf7N69WyNHjlRqamq552NiYjRlyhR16tTJbzUtWrRITz/9tLKysso936pVK3322WdyOKx7yWTuqUyZZqFHbZ0hEbLZ7CosLFBetsvHlZVv/9Hf5MrKrfZ1DcKCFRcb6YOK4C+BMP5w5mL8wSqMPViJ8QcrMf7gLT/vP6b8As9+5i0WG9NYzWOj69T4MwybgkIbePWePksq0tLS9MEHH8gwDIWHh+uZZ57RtddeK7v999dAfvvtt/rXv/6lH374QZs3b9by5cvVr18/X5Xkcy6XS/fee69SU1PldDr18MMPa+DAgQoJCdGmTZv04osvat++fRo1apTmz5+v2NhYn9eUnJyssWPHyjRNde/eXSNHjlTHjh0lSYcPH9batWvVrVs3S0OrM0lUA2ZbAQAAAMCZxuGwVTu4QhGfpRWLFi1Sbm6uDMPQ1KlTddFFF5Vp06VLFyUmJur6669Xamqq5s6dW6eDq2nTpmn//v2SpAkTJuiaa65xn+vXr59cLpeeeOIJpaWl6c0339S4ceN8Wk96erqeeuopmaap66+/XhMmTCi1t1KjRo10/vnn+7QG/C7IaWdTdgAAAAA4A7HPVc35rOc2btwoSerVq1e5oVWxsLAwJSQkyDRNffPNNyosrJsJZEFBgWbPni1J6tq1a6nQqvj8W2+95f46KSlJp06d8mlN06dP14kTJ9SkSRONHz+eDcEtFhURanUJAAAAAAALEFzVnM96bteuXTIMQ/Hx8VW2veSSSyRJWVlZSklJ8VVJPrV582YdP35ckjRgwIAy5+fNm6c9e/ZoyJAhkqTs7GytXbvWpzUtWrRIknTzzTcrLCzMp89C5QzDUMOIYKvLAAAAAABYgOCq5nzWc8UhTrNmzapse9ZZZ7mPT5w44auSfGrr1q3u465du5Y6d+rUKU2aNEmdO3fWQw89VO413rZ//353CBgfH6/c3Fy9//77Gjx4sC688EJ1795dQ4cO1ezZs5Wfn++zOlAkMjxYdht/UAEAAADAmchZYr9vVI/P9rg6efKkJCk8PLzKtiVnA2VkZPiqJJ/as2eP+7hFixalziUmJurIkSN6+eWX1bRpUzkcDuXn55e6xtu+/vpr93F0dLSGDh2qH3/8sVSbLVu2aMuWLfr00081depURUZa97Y7R7DnM8IMw+b+pzMkwlclVcoZnC9Hged/8DSJaSxnsNOHFcFfAmH84czF+INVGHuwEuMPVmL8wVtCTKccrupNGmH8FfFZcGWaZo32VKqre1ylp6e7j6Ojo93Hx48f17vvvqvevXurR48ekqTIyEilp6e7Z6X5wpEjR9zHf//737Vr1y4lJCRo0KBBiouL0+HDhzVr1ix9+OGH+uabbzRu3Di99tprPqunKjZb9dNnwzBkGNak1oZhk83DZ4cEOxUWytsE6xsrxx/A+INVGHuwEuMPVmL8obaCnE6Pf4YsVpypnOnjz2fBVV1TnSApMjJSsbGxpT4r3mg9KCioVGA3depUuVwuPfroo+7PgoKK3iyXlZVV27IrVPJ72bFjh6ZNm6bu3bu7P2vQoIHGjRsnu92uGTNmaMmSJRo9erTOPfdcn9VUmcLCAo/bGoZNhmHINE2ZpjVBp2kWqtD0rOaGERHV+v4Q2AJh/OHMxfiDVRh7sBLjD1Zi/MFb7DZ5/DNkMdM03f+sS+OvJhNTKuPz4CoxMVGff/6519obhqHnnnvOG6WVMmvWLE2ePNmjtjfddJP+9a9/lXvOVmIfo9TUVH344YcaOHCgOnTo4P7cH7PKXC6X+3jcuHGlQquS7rzzTs2YMUOStGTJEv3lL3/xeW3lyc/J8vg3ojMkQoZhl2kWKi/bVfUFPpCXc1L5OblVtrPbDYXawi2rE94XCOMPZy7GH6zC2IOVGH+wEuMP3lSQm+0OozxhmmH/+2fdGX+GYVNQaAOv3tPnwdVXX33lUbviWUqetPdFcFVbxft05eXluT+bOHGiTNMstSG7JOXk5JS6xhdCQn5fmjZw4MAK27Vs2VLh4eE6efKk9u3b57N6zlQNw0Nks1V/ySwAAAAAoH5x2G3Ky2c1TnX5NLiqTpLoqZrsm+WJMWPGaMyYMTW+vlGjRpKkgoICZWZmKjU1VYsWLdLtt9+uli1butvl5eUpMzOz1DW+UHKj9ezsbEVEVLyRW4MGDXTy5Emf7rl1poqKCLW6BAAAAABAACC4qhmfBVfTp0/31a0D0jnnnOM+Tk1N1csvv6zQ0FA98MADpdodPHjQvVSwTZs2PqvnrLPOch8fOnSo0r2rsrOzJcnStwrWR+EhTgU5z9wN9AAAAAAAv3M6bDqVY3UVdY/PgquK9lSqrzp27Og+TkxM1Jo1azRmzJgys6o2b97sPr7gggt8Vk+nTp3cxzt27KgwuMrMzNSJEyckSc2aNfNZPWeiqAbMtgIAAAAAFHHYbVU3Qhn0mpd07dpV0dHRkqSkpCQ1btxYCQkJZdoVbzwfEhKi+Pj4Ku9rmqYmTpyoXr16KT4+XpMmTfKonnbt2ikqKkqStHLlygrbrVmzxn3cu3dvj+6NqjkdNkWEBlldBgAAAAAgQBBc1Qy95iV2u1233nqr++u77rpL4eHhpdqsX79eq1atkiQNGTJEoaFVz8hZsGCBpkyZomPHjiktLU2TJ0/WwoULq7zOZrPp9ttvlyQtXbpU27ZtK9MmOztbb775piSpVatW6tGjR5X3hWcaRoT4bD82AAAAAEDd47CzlUxNEFx50YgRI9SiRQtJ0qxZs7RkyRKlp6crLS1Ns2fP1ujRo2WapmJiYjRq1CiP7vnDDz+U+ey7777z6Nrhw4eradOmysvLU0JCgubOnavDhw8rIyNDGzduVEJCgnbt2iW73a4XXnhBNhvDwRsMQ4qKCKm6IQAAAADgjMGMq5rx6VsFzzQRERF6++23NXLkSKWmpuqRRx4p0yYmJkZTpkxRbGysR/csuVdVsS5dunh0bXR0tN577z0NGzZMx48f19NPP12mTVhYmCZMmKBu3bp5dE9ULSI0mCQdAAAAAFAKwVXNEFx5Wdu2bbVw4UIlJiZq2bJlSklJkWmaat68ufr27au77rqrzIbtlbn++uv1yy+/aM6cOTIMQ7feequuu+46j68/99xztXjxYiUmJmrVqlXat2+fTNNUXFycLrvsMg0fPlzNmzevybeKCkQ1YLYVAAAAAKA0p4PgqiYM0zRNq4sAck9lyjQLPWrrDImQzWZXYWGB8rJdPq6sfPuP/iZXVm6Zz4Ocdp3T3PNgEnVPIIw/nLkYf7AKYw9WYvzBSow/eNuu/WkqKPAshomNaazmsdF1avwZhk1BoQ28ek/iPsCLoiKq3nAfAAAAAHBmcrC3dLXRY4CXGIahhhHBVpcBAAAAAAhQ7HNVffQY4CWR4cGyk54DAAAAACrgcPAir+rip2zAS6LZlB0AAAAAUAlmXFUfPQZ4QUiwQyFBTqvLAAAAAAAEMIKr6qPHAC+IZlN2AAAAAEAVnA5imOqix4BastsNNQhjU3YAAAAAQOWYcVV99BhQSw3DQ2SzGVaXAQAAAAAIcARX1UePAbUUxTJBAAAAAIAHHHa7DOY9VAvBFVAL4SFOBTl5nSkAAAAAwDPMuqoeeguohagGzLYCAAAAAHjOTnBVLfQWUENOh00RoUFWlwEAAAAAqEOYcVU99BZQQw0jQmSwOBkAAAAAUA1OO9vNVAfBFVADNsNQVESI1WUAAAAAAOoYZlxVD70F1EBEaLAcpOQAAAAAgGoiuKoeeguogQZh7G0FAAAAAKg+h4MopjroLaAG2NsKAAAAAFATzLiqHnoLAAAAAADATwiuqofeAgAAAAAA8BO7zcYqnmoguAIAAAAAAPAjJ/tceYyeAgAAAAAA8COWC3qOngIAAAAAAPAjgivP0VMAAAAAAAB+RHDlOXoKAAAAAADAjxx2u9Ul1BkEVwAAAAAAAH7EjCvP0VMAAAAAAAB+RHDlOXoKAAAAAADAj5wO4hhP0VMAAAAAAAB+xIwrz9FTAAAAAAAAfmQYhux2w+oy6gSCKwAAAAAAAD9z2IhkPEEvAQAAAAAA+JnTYbe6hDqB4AoAAAAAAMDP7Oxz5RF6CQAAAAAAwM/YoN0z9BIAAAAAAICfOR1EMp6glwAAAAAAAPyMGVeeoZcAAAAAAAD8jODKM/QSAAAAAACAnznsvFXQEwRXAAAAAAAAfuaw22QYVlcR+AiuAAAAAAAALMBywarRQwAAAAAAABawE1xViR4CAAAAAACwgJN9rqpEcAUAAAAAAGABlgpWjR4CAAAAAACwAMFV1eghAAAAAAAACzgdxDJVoYcAAAAAAAAswObsVaOHAAAAAAAALMBSwarRQwAAAAAAABbgrYJVI7gCAAAAAACwgM1myGYzrC4joBFcAQAAAAAAWITlgpWjdwAAAAAAACxCcFU5egcAAAAAAMAiToKrStE7AAAAAAAAFmHGVeXoHQAAAAAAAIvYebNgpQiuAAAAAAAALOJ0EM1Uht4BAAAAAACwCEsFK0fvAAAAAAAAWITgqnL0DgAAAAAAgEUIripH7wAAAAAAAFjEMAzCq0rQMwAAAAAAABYiuKoYPQMAAAAAAGAhgquK0TMAAAAAAAAWshNcVYieAQAAAAAAsJDTQTxTEXoGAAAAAADAQiwVrBg9AwAAAAAAYCGCq4rRMwAAAAAAABZy2u1WlxCwCK4AAAAAAAAsxObsFaNnAAAAAAAALOSw22QYVlcRmAiuAAAAAAAALMY+V+WjVwAAAAAAACzmYJ+rchFcAQAAAAAAWIwZV+WjVwAAAAAAACxGcFU+egUAAAAAAMBiTgcRTXnoFQAAAAAAAIsx46p89AoAAAAAAIDF7ARX5aJXAAAAAAAALObkrYLlIrgCAAAAAACwGEsFy0evAAAAAAAAWMxmM2SzGVaXEXAIrgAAAAAAAAIAs67KokcAAAAAAAACgJPgqgx6BAAAAAAAIAAw46osegQAAAAAACAAEFyVRY8AAAAAAAAEAIfDbnUJAYfgCgAAAAAAIAAw46osegQAAAAAACAAEFyVRY8AAAAAAAAEAKeDmOZ09AgAAAAAAEAAsNuIaU5HjwAAAAAAAAQAwzBYLngaegMAAAAAACBAEFyVRm8AAAAAAAAECAf7XJVCbwAAAAAAAAQIZlyVRm8AAAAAAAAECIKr0ugNAAAAAACAAOG0260uIaAQXAEAAAAAAAQIZlyVRm8AAAAAAAAECIKr0ugNAAAAAACAAGEnuCqF3gAAAAAAAAgQDrtNhmFYXUbAILgCAAAAAAAIICwX/B09AQAAAAAAEEAIrn5HTwAAAAAAAAQQgqvf0RMAAAAAAAABxOkgrinmsLqA+sjlcikxMVHJyclKSUlRYWGh4uLi1LdvX915551q1KiRX+tJSUnR7NmztW7dOv36668yTVPNmjXTRRddpJtvvlldunTxaz0AAAAAAKBiDrtNptVFBAjDNE36wot2796tkSNHKjU1tdzzMTExmjJlijp16uSXembNmqUXXnhBubm5Fba55ZZbNG7cONntdr/UVJ7cU5kyzUKP2jpDImSz2VVYWKC8bJePKwNKY/zBSow/WIWxBysx/mAlxh+sknEyW3kKUvPY6Do1/gzDpqDQBl69J3PPvMjlcunee+9VamqqnE6nHnvsMa1evVobNmzQv//9b7Vq1UppaWkaNWqUjh496vN6PvvsM/3zn/9Ubm6uOnbsqLfeekurV6/WunXrlJiYqPj4eEnSnDlz9MYbb/i8HgAAAAAAUDWHhRNLAg3BlRdNmzZN+/fvlyRNmDBB99xzj5o1a6aoqCj169dPo0ePliSlpaXpzTff9Hk9r7/+uiSpdevWmjFjhi6//HI1a9ZMMTExuuSSS/Tuu+/q4osvliR98MEHOnXqlM9rAgAAAAAAlWNz9t/RE15SUFCg2bNnS5K6du2qa665psz5t956y/11UlKST4OizMxM/fLLL5Kka6+9VmFhYWXa2Gw2DR48WJKUnZ2tX3/91Wf1AAAAAAAAzxBc/Y6e8JLNmzfr+PHjkqQBAwaUOT9v3jzt2bNHQ4YMkVQUFK1du9Zn9ZTcuqyyzeAbNmzoPg4ODvZZPQAAAAAAwDM2m0F49T/0gpds3brVfdy1a9dS506dOqVJkyapc+fOeuihh8q9xtsiIyPVrFkzSdL69esrbPf1119LKlpOePbZZ/usHgAAAAAA4DmCqyIOqwuoL/bs2eM+btGiRalziYmJOnLkiF5++WU1bdpUDodD+fn5pa7xhfvuu0/jx4/XihUr9Mwzz+iRRx5RdHS0+/yKFSs0c+ZMhYeH6/nnn5fNZt1vCkdw2aWMFTEMm/ufzpAIX5UElIvxBysx/mAVxh6sxPiDlRh/sJLTzJPE+CO48pL09HT3cclw6Pjx43r33XfVu3dv9ejRQ1LRbKj09HT30kJfue2225SZmak33nhDc+bM0fz583X55Zerb9+++uabb/TRRx+pXbt2mjBhgjp06ODTWqpis1X/jQmGYcgweNMCrMH4g5UYf7AKYw9WYvzBSow/WMHpLJTE+CO4+p/qBEmRkZGKjY0t9VnxRutBQUEyDMP9+dSpU+VyufToo4+6PwsKCpIkZWVl1bbsKt13333q0KGDHnjgAeXk5Gjp0qVaunSppKLv4+mnn7Y8tJKkwsICj9sahk2GYcg0TZlmoQ+rAspi/MFKjD9YhbEHKzH+YCXGH6xk/9+qqLo2/moyMaUyBFf/M2vWLE2ePNmjtjfddJP+9a9/lXuu5HK71NRUffjhhxo4cGCpcKiw0D8DrqCgQK+99po++OADRUZGasyYMQoODtbnn3+udevWKSMjQ8OGDVP//v31wgsvKCLCuqmH+TlZHv9GdIZEyDDsMs1C5WW7fFwZUBrjD1Zi/MEqjD1YifEHKzH+YKXi5YF1afwZhk1BoQ28ek+CKy8JCyvaoykvL8/92cSJE2WaZqkN2SUpJyen1DW+kJubq1GjRmnt2rVq27atpk2bprPOOkuSNGTIEB05ckTTpk3TjBkzlJycrL1792rmzJmKioryWU0AAAAAAADVQXD1P2PGjNGYMWNqfH2jRo0kFc1yyszMVGpqqhYtWqTbb79dLVu2dLfLy8tTZmZmqWt84a233tLatWtls9k0YcIEd2hVrEmTJnryySfVvXt3PfDAA9q1a5defPFFPf/88z6rCQAAAAAAoDp4t6KXnHPOOe7j1NRUvfzyywoNDdUDDzxQqt3BgwfdSwXbtGnjs3rmz58vSWrVqpU6duxYYbu+ffuqe/fukqQlS5YoNzfXZzUBAAAAAABUB8GVl5QMhxITE7VmzRrdfffdZWZVbd682X18wQUX+Kyew4cPS5KaN29eZdtWrVpJkrKzs/Xbb7/5rCYAAAAAAIDqILjykq5duyo6OlqSlJSUpMaNGyshIaFMu88//1ySFBISovj4+Crva5qmJk6cqF69eik+Pl6TJk3yqJ6mTZtKkg4cOFBl271790oqetth48aNPbo/AAAAAACArxFceYndbtett97q/vquu+5SeHh4qTbr16/XqlWrJBVtkB4aGlrlfRcsWKApU6bo2LFjSktL0+TJk7Vw4cIqr7viiiskFYVSS5curbDd8uXLtWnTJklSv379Sr0VEQAAAAAAwEqkFF40YsQItWjRQpI0a9YsLVmyROnp6UpLS9Ps2bM1evRomaapmJgYjRo1yqN7/vDDD2U+++6776q8buTIke5ZV2PHjtVrr72m7du3y+VyKSMjQ1u3btWLL77ofuNhdHS0Hn74YQ+/UwAAAAAAAN/jrYJeFBERobffflsjR45UamqqHnnkkTJtYmJiNGXKFMXGxnp0z06dOpX5rEuXLlVe16RJE73//vt6+OGHtXPnTk2dOlVTp04tt+0555yjV155RWeffbZHNQEAAAAAAPiDYZqmaXUR9Y3L5VJiYqKWLVumlJQUmaap5s2bq2/fvrrrrrvKbNheGdM09frrr2vOnDkyDEO33nqrxowZ4/H1+fn5Wrx4sZKTk7Vt2zalp6dLkho1aqTzzz9fffv21XXXXSen01nt79Obck9lyjQLPWrrDImQzWZXYWGB8rJdPq4MKI3xBysx/mAVxh6sxPiDlRh/sFJdHH+GYVNQaAPv3pPgCoGA4Ap1BeMPVmL8wSqMPViJ8QcrMf5gpbo4/nwRXLHHFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACEsEVAAAAAAAAAhLBFQAAAAAAAAISwRUAAAAAAAACksPqAgBJMoyaZag1vQ7wBsYfrMT4g1UYe7AS4w9WYvzBSnVl/PmiTsM0TdPrdwUAAAAAAABqqW5EdgAAAAAAADjjEFwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAAAAACAgEVwBAAAAAAAgIBFcAQAAAAAAICARXAEAAJzBXC6XBg4cqClTpigjI8PqcgAAAEoxTNM0rS4CKHbw4EG98MIL+vzzzyVJ06dPV48ePTy61uVyKTExUcnJyUpJSVFhYaHi4uLUt29f3XnnnWrUqJEvS0cd9c0332jhwoXauHGj0tLSlJOTo9jYWHXp0kWDBw9WfHy8R/dh/KG6fvjhByUlJWnDhg06ePCgTNNU48aN1aVLF1133XW6/PLLPboPYw+1lZiYqOeee05BQUFavXp1tcYM4w/VkZSUpCeffNKjtnfffbeeeOKJCs8z9lAbBw8e1PTp07VmzRqlpKTINE2dddZZ6tmzp2677Ta1b9++0usZf4B/EVwhIOTm5ur999/X1KlTlZWV5f7c0+Bq9+7dGjlypFJTU8s9HxMToylTpqhTp05eqxl126lTp/TMM89o4cKFlbYbPHiwnn32Wdnt9grbMP5QHRkZGXr66afdAX1Fevfurddff11hYWEVtmHsobZM09RVV12lX3/9Vddff71eeuklj69l/KG6qhNcvfLKKxo4cGC55xh7qI1Fixbp6aefLvUzR0mtWrXSZ599JofDUe55xh+qa//+/erbt2+1rlmxYoVatGhR7rkzMTgluILl1qxZo2effVZ79+6VJDVr1kyHDh2S5Flw5XK5dMMNN2j//v1yOp16+OGHNXDgQIWEhGjTpk168cUXtW/fPsXExGj+/PmKjY319beEAJebm6uEhARt2rRJNptNt9xyi2644QadffbZysvL008//aRXX31VO3bskCSNHDlSY8eOLfdejD9U18SJEzVlyhRFRUVp2LBhuuKKK9SiRQtlZ2fr559/1vTp07Vq1SpJUv/+/TV58uRy78PYgzesWrVK9913nyRp7ty56ty5s0fXMf5QEyWDq++//77Stk6nUzZb2V1NGHuojeTkZI0ZM0amaap79+4aOXKkOnbsKEk6fPiw1q5dq27duunCCy8s93rGH2qiJsHVypUrFRcXV+bzMzY4NQGL5OXlmaNHjzbbt29vtm/f3oyPjzc/+eQT86uvvnJ/9t///rfK+0ycONHdfvHixWXOf/LJJ+7z//jHP3zxraAOWrx4sXnppZeaa9euLfd8VlaW2bdvX7N9+/bmBRdcYKanp5fbjvGH6iosLDRnzZplHjt2rMI248aNc4+bHTt2lNuGsQdvuPvuu8327dubN954Y7WuY/yhJubNm+ceFzXF2ENNHTt2zOzevbvZvn17c+zYsWZhYWG178H4Q00UFhaa2dnZVf7661//arZv3968+uqryx2fmZmZ5hVXXGG2b9/e/OMf/2i+88475sGDB83jx4+bycnJZr9+/cz27dubvXr1Mo8cOWLBd+o7bM4OyzgcDkVGRsrpdGrkyJFaunSpBg0aJMMwPL5HQUGBZs+eLUnq2rWrrrnmmjLn33rrLffXSUlJOnXqlHe+AdRp11xzjb744osK97AKDQ3VsGHDJEk5OTnauHFjmTaMP9SEYRi67bbbKp3GPXToUPfx7t27y5xn7MEb9uzZo3Xr1kmSbr/9do+vY/zBKow91Mb06dN14sQJNWnSROPHj6/WzxwS4w81ZxiGgoODK/114sQJLV26VJI0fPjwcsfntGnTtH//fknShAkTdM8996hZs2aKiopSv379NHr0aElSWlqa3nzzTf99g35AcAVLPfHEE1qyZInGjh2r8PDwal+/efNmHT9+XJI0YMCAMufnzZunPXv2aMiQIZKk7OxsrV27tnZFo96oaO+CYm3atHEfHz16tMx5xh98JTc3133cpEmTMucZe/CGmTNnyjRNRUVFVbiXUHkYf7AKYw+1sWjRIknSzTffXOn+kRVh/MGXZsyYoby8PDVs2FA33nhjmfNnenBKcAVLNWzYUK1atarx9Vu3bnUfd+3atdS5U6dOadKkSercubMeeuihcq8BKlNy086GDRuWOc/4g68kJiZKktq1a1fuPhuMPdSWy+XSJ598IkkaMmSIgoODPb6W8QdvKyws9KgdYw81tX//fqWkpEiS4uPj3S+GGjx4sC688EJ1795dQ4cO1ezZs5Wfn1/uPRh/8JWsrCzNmTNHUlGwGhoaWqbNmR6cVj7dAAhwe/bscR+f/taFxMREHTlyRC+//LKaNm0qh8Oh/Pz8UtcAlSm5cWyXLl3KnGf8wRsKCwuVl5enkydPatu2bfrggw+0Zs0aNW/eXK+//nq5U8UZe6itjz/+WFlZWbLZbLrttttKnTvvvPMkVfyCFMYfvGHhwoWaP3++du7cqbS0NIWGhqpz584aNmyY+vXrV+41jD3U1Ndff+0+jo6O1tChQ/Xjjz+WarNlyxZt2bJFn376qaZOnarIyMhS5xl/8JV58+YpIyNDDofDvVXJ6aoTnM6bN899Tf/+/X1XuB8x4wp1Wnp6uvs4OjrafXz8+HG9++676t27t/sv3cX/8SlOqoHK5Obm6tNPP5VU9B+Hli1blmnD+IM3LFy4UJ06dVLPnj01YsQIbdu2TWPGjNGCBQvUtm3bcq9h7KE2TNPUhx9+KEm67LLLKnzddkUYf/CGxx57TOvWrdPRo0dlmqaysrL01VdfafTo0Xr22WfLvYaxh5o6cuSI+/jvf/+7du3apYSEBC1YsECbNm3S4sWL3SH+N998o3HjxpW5B+MPvlBYWOiead+/f3+dddZZ5bbzJDh99NFH3cHp6dfUdcy4Qp1WvG43KCio1KyEqVOnyuVy6dFHH3V/FhQUJKn08i+gIm+//bZ7X6u//OUv5bZh/MEbfvnll1JfHzt2TDNmzNDJkyc1ZsyYcvfhYOyhNlavXq1ff/1VUvU2ZS/G+ENNxcXF6aqrrpLT6dTFF1+sHj16qFmzZsrNzdV///tfvfTSS0pJSdGMGTP0hz/8QYMHDy51PWMPNVUyQNqxY4emTZum7t27uz9r0KCBxo0bJ7vdrhkzZmjJkiUaPXq0zj33XHcbxh98ITk52b2M9c4776ywXXWD0/T09HoVnDLjCvWCzfb7UE5NTdWHH36ogQMHqkOHDu7PPd0/Adi8ebOmTp0qqWidea9evSptz/hDbTzyyCPasWOHNm/erIULF+ree+9Vbm6u3nvvPd1yyy1yuVwVXsvYQ03MmDFDktS6dWtdeumlNb4P4w/V1aNHD73xxht65ZVXNHToULVp00ahoaFq2LChrrrqKs2YMUMRERGSpClTplR4H8Yeqqvkf0vHjRtXKrQqqWRwsGTJknLbMP7gTe+//74kqVOnTmWWAJZ0pgenBFeo04pnIuTl5bk/mzhxokzTLLUxoiTl5OSUugYoz/79+zV69Gjl5eWpY8eOeuqppypsy/iDN4WHh+u8887To48+qvfee082m007d+7UxIkTy7Rl7KGmdu/erXXr1kmSbr311mq/Dl5i/MF3zjrrLF199dWSpH379rlnIRRj7KGmQkJC3MeVvUW1ZcuW7jed79u3r9Q5xh+8rXhfNany2VYlnanBKcEV6rRGjRpJKnr9Z2ZmprZv365FixZp6NChpfYkysvLU2ZmZqlrgNMdPnxYCQkJSk9PV8uWLTVlypRSf9E5HeMPvtK1a1d169ZNktxvfiuJsYeamjlzpkzTVGhoaJllWJ5i/MGX2rVr5z4+PThg7KGmSm60np2dXWnbBg0aSCq7PxXjD95WPNuqadOm7tC+Imd6cMoeV6jTzjnnHPdxamqqXn75ZYWGhuqBBx4o1e7gwYPu5LlNmzZ+rRF1Q1pamhISErRv3z7FxcUpMTFRTZo0qfQaxh98qXXr1vr666/lcrmUnp5e6i+/jD3U1JdffimpaMnBxRdfXGnbO+64Q1LRvkQrV650f874gy+VfA18yR/QJMYeaq7khteHDh0qtXfV6YqDrdPfKsj4gzelpKQoOTlZUtF+k8Ubqlfk9OA0NTVVixYt0u23335GBKfMuEKd1rFjR/dxYmKi1qxZo7vvvrvMb9LNmze7jy+44AK/1Ye64fDhwxo2bJh2796ts88+W9OnT1dcXFyV1zH+4EvFf3E2DMO9bKEYYw81ZZpmre/B+IMvFb8YRSqahVASYw811alTJ/fxjh07KmyXmZmpEydOSJKaNWtW6hzjD96UmJiowsJChYSE6JZbbqmy/ZkenDLjCnVa165dFR0drePHjyspKUmNGzdWQkJCmXaff/65pKL17fHx8f4uEwEsJSVFd955p1JTU9WhQwdNmzZNMTExHl3L+IOvFBQU6JtvvpEknX322QoODi51nrGHmvr8888rDa++/vprjRgxQpI0bdo0XXzxxWX2wWL8wZfWr18vqWi51uk/dDH2UFPt2rVTVFSUTpw4oZUrV+raa68tt92aNWvcx7179y51jvEHb8nIyNC8efMkSTfccIOioqKqvKa84HTMmDFnTHDKjCvUaXa7Xbfeeqv767vuuqvMzIT169dr1apVkqQhQ4aUmoKOM9vOnTt16623KjU1Vb169dKsWbM8Dq0kxh9q5p133tHw4cPd/0e3PFOmTNGBAwckFU0fPx1jDzUVFBSk4ODgCn85nU53W6fTqeDgYPfbiYox/lATpmnqhRde0PLlyyts89lnn7lD+0GDBpXZZ5Kxh5qy2Wzu/54uXbpU27ZtK9MmOztbb775piSpVatW6tGjR6nzjD94y3/+8x9lZWXJMAyPN2UvDk4lnZHBKcEVLFVQUKCcnJxSv0ruZ5CXl1fhuWIjRoxQixYtJEmzZs3SkiVLlJ6errS0NM2ePVujR4+WaZqKiYnRqFGj/Pa9IbBt2bJFw4YN09GjRzVgwABNmjRJTqezzHgs/pWbm1vufRh/qI7t27dr8uTJ2rhxo6666ipNnjxZP/74ozIyMnT8+HH997//1V/+8hdNmjRJknTJJZeU+ktySYw9WInxh+qaNm2a3n//fY0ePVqjR4/WypUrdeTIEblcLu3cuVMvv/yyxo4dK6lopunpmw0XY+yhpoYPH66mTZsqLy9PCQkJmjt3rg4fPqyMjAxt3LhRCQkJ2rVrl+x2u1544YVSb28rxvhDbeXl5WnmzJmSpPj4eLVt29aj68704NQwvbHZAVBDSUlJevLJJz1uf+ONN+qFF14o8/nu3bs1cuRIpaamlntdTEyMpkyZUmp9O85sw4cP18aNGz1u37p1ay1durTcc4w/VMc333yjv//979q7d2+l7QYOHKjx48crIiKiwjaMPXjbhg0b3JuyT58+vcyMg5IYf6iO/Px8vfLKK5oxY0a5/yOyWKdOnfTqq6+W2mz4dIw91NTPP/+sYcOGlXljYLGwsDBNmDBB/fv3r/AejD/Uxvz58/XEE09IKpqFf/qS1Mq4XC7dcMMN2r9/v5o1a6YnnnhCl1xyiQoLC5WcnKwJEyYoKytLMTExmj9/vmJjY331bfgdwRUs5a3gSir6jZyYmKhly5YpJSVFpmmqefPm6tu3r+6666569VYF1F51g6s+ffpo6tSpFZ5n/KE6CgoKtGTJEq1cuVLff/+90tLS5HA41LRpU3Xr1k033HCDLrroIo/uxdiDN1UnuJIYf6i+X3/9VR999JHWrl2rAwcO6NSpU4qNjVX79u01cOBAXX311VW+XUti7KHmjh07psTERK1atUr79u2TaZqKi4vTZZddpuHDh6t58+ZV3oPxh5q64YYbtH37drVt21aLFy8us49kVc7U4JTgCgAAAAAAwIe++uor3XXXXZKkf/zjHxVuB1GVMzE4JbgCAAAAAADwoezsbK1fv15r1qzR448/Xq/2oPI1gisAAAAAAAAEJN4qCAAAAAAAgIBEcAUAAAAAAICARHAFAAAAAACAgERwBQAAAAAAgIBEcAUAAAAAAICARHAFAAAAAACAgERwBQAAAAAAgIBEcAUAAAAAAICARHAFAAAAAACAgERwBQAAAAAAgIBEcAUAAAAAAICARHAFAAAAAACAgERwBQAAAAAAgIBEcAUAAIBK5efnW10Caol/hwCAuorgCgAAABXavXu3rr32Wq1du9bqUlBD6enpuvHGG5WUlGR1KQAAVBvBFQAAAMq1ZcsW3Xbbbdq7d6+ef/55FRQUWF0SamDmzJnauXOnnnzySb311ltWlwMAQLUQXAEAAKCMzZs3KyEhQSdOnFDr1q01bdo02e12q8tCDTz44IMaPHiwJOnVV1/VG2+8YXFFAAB4juAKAAAApezcuVP333+/Tp06pbi4OE2fPl3NmjWzuizUkM1m03PPPaeBAwdKkv79739r5syZFlcFAIBnDNM0TauLAAAAQGA4duyYBg0apCNHjigqKkpz5sxR69atrS4LXpCXl6eRI0fqq6++ks1m07///W9dccUVVpcFAEClCK4AAEC9k5KSon79+rm/bteunRYtWmRhRXXH6NGjtXz5chmGoalTp+ryyy+3uiR4UXp6ugYNGqTDhw+rUaNGWrRokRo3bmx1WQAAVIilggAAoN5JTk4u9fWuXbu0d+9ea4qpQ+bPn6/ly5dLkm655RZCq3qoUaNG+te//iWpKMR65plnLK4IAIDKEVwBAIB6Z9myZZKkJk2alPkM5cvPz9drr70mSWrYsKEefvhhawuCz/zpT39yLxFcvny5Nm/ebHFFAABUjOAKAADUK0ePHtV3330nSUpISHBvKn76LCxvKiws1JdffqmsrCyfPcPXFi9erEOHDkkqmm0VHR1tcUXwpfvvv999PG3aNAsrAQCgcgRXAACgXklOTlZhYaEkqV+/fu7lbj/88IM7mKmpwsJC5eTkKD09XTt37tTnn3+u5557TldccYVGjhypdevW1bZ8yyQmJkqSDMPQ0KFDLa4Gvta5c2f98Y9/lCStXLlSKSkpFlcEAED5HFYXAAAA4E3FM6vatWunVq1a6YorrtB//vMfmaap5ORkDR8+3ON77dq1S0lJSVq7dq0OHTqkjIyMStuvWLFC/fv3r7TNqlWr9PHHH+vbb7/ViRMn1KBBA7Vr104DBw7UkCFDZLfbPa7PW/bv368ff/xRknTeeecpLi6u2vdIT0/XpZdeqoKCAsXFxWnlypVVXvPMM89ozpw5kqTp06erR48elbb3Rt+lpKRoxYoV2rRpk3bt2qUjR44oJydHERERat26teLj43XbbbcpNja2yntNmjRJkydPLvXZ+PHj3cHfoUOH9M4772jNmjU6cOCA8vLyPPpe09LSNHfuXK1Zs0Z79uyRy+VSaGioGjdurM6dO6tPnz7q37+/HI7a/VX+iiuu0I8//qjCwkIlJyfr7rvvrtX9AADwBYIrAABQb/z222/auHGjJKlv376SpJ49eyosLExZWVlatmyZR8GVaZp6/fXX9c477yg/P7/cNoZh6I9//KPsdrtsNptiY2N1ySWXVHjP3NxcPf744/rss89KfZ6enq4NGzZow4YNmjNnjt555x01atTI02/ZK/773/+6j3v16lWjezRq1Eg9evTQ+vXrlZqaqp9++knnn39+he1N03SHW7Gxsbr44osrbOutvnO5XLrmmmuUm5tb5txvv/2m7777Tt99950+/PBDvf7665X++6zIwYMHJUnbtm3TnXfeWWXYebpFixbpmWee0cmTJ0t9npmZqczMTO3du1cLFizQWWedpccff1zXXHNNtWssFh8fr0mTJkmSNmzYQHAFAAhIBFcAAKDeWLlypTtoKt58OigoSJdeeqmWLVumb775Runp6VUGQxMnTtTUqVMlSRERERoyZIguuOAC2Ww27d27Vx9//LEOHDigwsJCTZgwQW3btq30foWFhbr//vvdSwnbtm2rG2+8Ua1atVJGRoa++OILrVixQlu3btWIESM0d+5cOZ3O2naHx3766Sf38bnnnlvj+wwYMEDr16+XVLTpd2XB1Q8//KCjR49Kkq688krZbOXvYOHNvouIiNBll12mnTt36uKLL9b555+v2NhY5efn6+DBg1q6dKm+//57nThxQqNHj9aSJUvUtGnTCr+HgQMHqmPHjpKkV199VTt37tSBAwd06NAhjRgxQhkZGWrfvr0GDRqk7OxsvfHGG5X236ZNm/TYY4+psLBQTqdT1113nS666CI1bNhQp06d0qFDh/TVV19p/fr1OnjwoFatWlWr4Kpdu3bu4+IZdwAABBqCKwAAUG8UvzkwNjZWnTp1cn9+xRVXaNmyZSooKNDKlSt10003VXiPvXv36q233pJUFHQkJSXp7LPPLtXm7rvv1rBhw7R161YlJCQoKSlJMTExFd5z1qxZ7uDlz3/+s8aNG1dqmdfNN9+s+fPn64knntC2bdv03nvv6b777qt+B9TQvn373MetW7eu8X369++v8ePHKz8/X8uXL9eYMWMqbLtixQr38YABAyps5+2+mzhxYoVL7O655x5NmTJFEydOlMvl0owZMzR27NgK79WmTRu1adNGkvTee+9Jkg4cOKAXX3xR6enpuvPOO/XEE0/Ibrdrw4YNFd6n2Pvvv+/en+2f//ynBg8eXKbNyJEj9dNPP+m9997Tk08+WeU9KxMREaGYmBilpaXp6NGjysnJUXBwcK3uCQCAt7E5OwAAqBeysrLcAccVV1whwzDc5y677DL3/kdVvV3wk08+kWmakqR77723TGglSaGhoXrkkUckSYcPH9b06dMrvN+pU6f0+uuvS5I6dOigf/zjH+UGJ4MGDdK1114rSZoxY0aFSxR9IS0tzX1cm7cJRkdHu5fXbd++Xfv376+wbXFw1aRJE3Xr1q3cNr7ou6r2hRoxYoQ7vPn6668rbVuerVu3asmSJerfv7/+/ve/V2vPsj179riPr7rqqgrbnX/++XrppZe88ubHkvc4cuRIre8HAIC3EVwBAIB6YfXq1crJyZH0+/5WxRo1aqQuXbpIktavXy+Xy1XhfUqGB5Xtu1RyGVzxvlrlWbt2rTIzMyUVzRiqLMgonmFz9OhRffvttxW287asrCz3cVhYWK3udfXVV7uPly9fXm6bX3/9Vbt27ZJUFNBUtEzQir4LCgpyLyU9duxYta/Pzs5WSEiInn766WpfGxUV5T7217//0NBQ9/GpU6f88kwAAKqD4AoAANQLxSFJWFiYevbsWeZ88Z5Xubm5+vLLLyu8T/Gb36TSP9SfLigoyH184sSJCtutWrXKfXzBBRdU2E6S/vCHP7iPt27dWmlbbyooKHAf1/athv3793fvMVVRcOXpMkFf911+fr52796tTZs2afXq1friiy/0xRdfuDdvL162V1033HBDmb2xunTpohUrVmjFihXuEPV0xWNUkh588EG9/fbbSk9Pr1ENnio5A82fs/wAAPAUe1wBAIA6Lzc31x1y/OlPfyoVKhXr06ePXnrpJUlFe2FVtKl1q1at3Mfbt2+vcIPx3bt3u48r28C75HK5n376qdJZPCUDpMOHD1fYzttK9pfL5VJsbGyN7xUVFaVLLrlEa9as0ebNm8vdDL84uGrWrJkuvPDCCu/lq75btmyZ5s6dqw0bNpT7hsHauvHGG8t8FhwcrBYtWlR63R133KGNGzfqyy+/VFZWll555RW9/vrruvDCC3XZZZepX79+tdqDrDwlZx+yvxUAIBARXAEAgDrvq6++cv8AXnLWSklt27ZV69attXfvXq1evVq5ubnlBlzXX3+9EhMTJUlTp07VtddeW2674g3cJSk+Pr7C2kqGLc8884xn35DkXiLnD5GRkV597oABA7RmzRoVFBToiy++0JAhQ9zn0tPTtWXLFklFywRL7kV2Om/3XVZWlh5++GGtXr3a43vVREUzqqoSHByst956Sx999JGmTZumX3/9Vfn5+dq4caM2btyol156SR07dtSdd96p6667rtK+81TJvio5DgAACBQsFQQAAHVe8dsEJenQoUOaPXt2ub+KZ/5kZWVp7dq15d6rY8eOSkhIkFT0hsE77rhD69atk8vlUl5ennbt2qW//e1vWrlypaSiza2HDh3q9e+p5AwiX2vWrJn7+Pjx47W+X2XLBVetWuX+3ipbJlgbFfXdU0895Q6twsPDNWbMGM2bN0+bNm3STz/9pB07dmjHjh2Ki4ur1fNrEyjZbDbdcsst7llho0ePVqdOndz7gG3dulWPPfaY7rnnHmVnZ9eqTtM09dtvv0mSnE5npW/GBADAKsy4AgAAdVpBQYE7RJKk1157zaPrkpOTK5yd9fjjjysmJkYTJ07Uli1bdPfdd5fbLiwsTG+88UalM1UaN27s3oh89erVpUKiQHHuuee6j7dv367LLrusVveLjIxUr169tHr1aq1fv16nTp1y7xdWvEywefPmVc5M8mbf7dmzR4sXL5ZUNLPpww8/VIcOHWp8P3/o3LmzOnfurL/85S86duyY5s2bp7feeksul0tr167V888/r/Hjx9f4/nv37nVvzN+mTRuvzOACAMDbmHEFAADqtE2bNtVoA+uVK1dWODPHZrMpJydH+fn5cjqdZX6gdzqduvLKKzVv3jx179690uc0b97cfXz06NFq1+kPJTc+//77771yz+LZVNnZ2VqzZo37eN26dZKqXiYoebfvSr758dprrw340Op0jRs31r333quZM2e6Z18lJSXVatZVyX/XnTp1qnWNAAD4AjOuAABAnZacnOw+Xr58uVq2bFlp+yeffFJJSUk6ceKENm7cWO4bCJcvX6433nhDUtFeVu3bt9fPP/+svLw8RUVFqV27dpW+cbCkP/3pT0pKSpJUFLJV9XY8K/To0UMhISHKzs7W5s2blZeX517qV1P9+vWT0+lUXl6eli9friuvvFLr1q3TqVOnJHm2TNCbfVfyzY8lN+Cva84//3x16NBB27ZtU25urg4cOKBzzjmnRvcqGeb17t3bWyUCAOBVzLgCAAB1lmma7j2U2rVrV2VoJZXevL1k6FXSggULJEmNGjVSfHy8YmNj1bNnT/Xu3VudOnXyOLSSigKB4vazZs1yBzeBJCQkxP2WxfT0dPdyvtpo0KCBLr30UklFy/zy8/Pd942Li1Pnzp2rvIc3+67kcs6DBw9W2O7AgQPufb5M06zx82rC0zcclpxlVdPlfS6XS0uWLJFUNJvr8ssvr9F9AADwNYIrAABQZ/3www/uEMLTH7x79erlfkvg8uXLyw0nCgsLJRWFOHPmzKnVm/YiIiL04IMPSpJSUlI0ZsyYCu+3e/duPfXUU+59h/zp7rvvdocg//nPf7xyz6uvvlqS3LPbVq1aVerzqniz77p16+Y+/vzzz8tdevjzzz9rxIgR7nscP35ceXl5HtVaWydPntTQoUP1t7/9TYcPH66w3Zw5c7Rnzx5JRYHT2WefXaPnLViwwP193n777QoODq7RfQAA8DXD9Pf/SgIAAPCSl19+We+8844k6cMPPywVTlRmxIgR7rcKzp07t8zsn2XLlmnMmDEVXl/8BrYuXbroxhtvrHIz8/z8fCUkJLiXZkVHR2vw4MHq2LGjbDabDh48qHXr1mnt2rUyTVNDhgzRc88959H34k3333+/vvjiC0nS22+/XetN2l0ul3r27Knc3Fx17NhRW7dulSR9/PHHHi/782bfJSQkaP369ZKkmJgY3XbbbWrTpo1OnjypDRs2aOnSpcrLy9PFF1/sft7QoUP1+OOPKzw8vMz9fvnlF+3du1eS9Oqrr2rnzp2SpKlTp7rbtG7dWm3atKny+xw3bpw7MHQ6nerdu7e6d++upk2bKj8/XwcPHtSyZcv0ww8/uK959tlndfPNN1d579NlZGRowIABSktLU3h4uFasWKHo6Ohq3wcAAH8guAIAAHXWVVddpb179yo6Olrr1693b1pdlVmzZumf//ynJOmee+7RY489VqbNBx98oEmTJsnlclV5vyuvvFKvvPKKeyZXeXJzc/XEE0+4l2dVpGXLlho/frzi4+OrfK637d+/X9dff71OnjypFi1aaPHixQoJCanVPUeNGlXqrY8tW7Z0L+/0lLf67siRI7rjjjv0yy+/lHs+JCRE/+///T9deeWVuv7663X48GHZbDatXbtWjRs3LtN+0qRJmjx5cqU1Pfjgg5WGoMVcLpdefPFFJSUlKT8/v9K2YWFhGjdunAYNGlTlfcvzzDPPaM6cOZJqHn4BAOAvBFcAAKBO2rVrlwYOHChJuuGGGzRhwgSPrz1w4ID69OkjqWhGzNKlS8ttl5OTox07duj48ePu5YOmaer48ePavn27Pv30U/d+SIMGDdKLL75Y5bPXrVunpKQkbdmyRUePHpXNZlNsbKw6d+6s/v37q3///rLb7R5/L9720Ucf6amnnpIkDRw4UK+88kqt7rdw4cJSweDIkSM1duzYGt3LG33ncrmUmJioZcuW6ddff5VhGGrWrJl69+6t22+/3b1xe0pKil599VVlZmbq3XffLfde3gyuiu3bt08LFy7U+vXrlZKSohMnTshms6lRo0Y677zz1LNnTw0ePFgNGjTw+J4lLVmyRH/9619lmqb69OlTanYYAACBiOAKAACghjIyMjRs2DDt2LFDhmHo888/V+vWra0uq9aK37woSWPGjHHvM1VTb7/9tjsAW7x4sc4999xa14jq+/777zV8+HBlZ2erdevWmj17tho1amR1WQAAVIrN2QEAAP4nJydHX3zxhb744otK3zxXLDIyUn/+858lFc3E2r59u69L9Itnn31Wffv2lSRNnjxZM2fOrPG9cnNz3Xs3devWjdDKIjt27NB9992n7OxsNWnSRO+99x6hFQCgTiC4AgAA+J+CggLdf//9uv/++7Vw4UKPrjlx4oT7OCwszEeV+Zfdbtdrr72mSy+9VKZp6v/+7//0/vvv1+he7777rlJTUyWp1jO3UDM//fST7rjjDqWnpysmJkbTpk1TXFyc1WUBAOARgisAAID/CQsLU/PmzSVJSUlJysjIqLT99u3bNWPGDElSaGioLrzwQp/X6C/BwcGaOnWqex+xVatWqaCgwOPrTdN0b3AvFW1g36tXL5/Uispt3rxZJ06c0Nlnn63//Oc/at++vdUlAQDgMfa4AgAAKOHf//633njjDUlS48aNdc011+i8885TZGSk7Ha7srOzdeDAAW3evFlr1qxxvwHuySef1F133WVh5b5hmqZmzJihIUOGKDw8vMr227Zt09q1a/XJJ59oz549koo2wP/oo48UGRnp63JRgblz56pfv34sDwQA1DkEVwAAACUUFBRo7NixWrJkiUftGzRooLFjx2ro0KE+rqxuePjhh/XZZ5+5v+7evbveeOMNRUdHW1gVAACoqwiuAAAAyrFhwwbNnz9fP/74ow4dOiSXyyWpaElgkyZN1K5dO8XHx2vAgAHMJCrh7bff1vTp03XBBRdo6NChuuyyy6wuCQAA1GEEVwAAAPCa/Px8ORwOq8sAAAD1BMEVAAAAAAAAAhJvFQQAAAAAAEBAIrgCAAAAAABAQCK4AgAAAAAAQEAiuAIAAAAAAEBAIrgCAAAAAABAQCK4AgAAAAAAQEAiuAIAAAAAAEBAIrgCAAAAAABAQCK4AgAAAAAAQEAiuAIAAAAAAEBAIrgCAAAAAABAQCK4AgAAAAAAQEAiuAIAAAAAAEBAIrgCAAAAAABAQCK4AgAAAAAAQEAiuAIAAAAAAEBA+v8DMLP7Hl+juAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 5,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: bootstrap-curve\n",
- "def plot_bands(curve: pl.DataFrame, title: str):\n",
- " return (\n",
- " so.Plot(\n",
- " data=curve,\n",
- " x=\"age\",\n",
- " y=\"mean\",\n",
- " ymin=\"ymin\",\n",
- " ymax=\"ymax\",\n",
- " )\n",
- " .add(so.Line())\n",
- " .add(so.Band())\n",
- " .label(\n",
- " title=title,\n",
- " x=\"Age (years)\",\n",
- " y=\"Performance (z-score)\",\n",
- " )\n",
- " )\n",
- "\n",
- "\n",
- "curve = samples.group_by(\"age\").agg(\n",
- " mean=pl.col(\"smoothed_mean\").mean(),\n",
- " ymin=pl.col(\"smoothed_mean\").quantile(0.05),\n",
- " ymax=pl.col(\"smoothed_mean\").quantile(0.9),\n",
- ")\n",
- "plot_bands(curve, \"Bootstrap curve of smoothed means\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e84d94ad",
- "metadata": {},
- "source": [
- "This figure is analogue to figure 3a in the paper. This curve is entirely empirical, so there isn't much to interpret here. It does indicate, however, the rising and falling behavior of an aging curve, with a steep increase from age 10 to 20, followed by a plateau between 20 and 30, and a slow decline beginning at 40.\n",
- "\n",
- "## Penalized splines\n",
- "\n",
- "Splines are wiggly curves...\n",
- "\n",
- "$$\n",
- "\\begin{align}\n",
- "g(x) &= \\alpha + Z \\bf{b} \\\\\n",
- "y &\\sim \\mathrm{Normal}(g(x), \\sigma) \\\\\n",
- "\\alpha &\\sim \\mathrm{Student}(3, 0, 0.1) \\\\\n",
- "\\sigma &\\sim \\mathrm{HalfCauchy}(1)\n",
- "\\end{align}\n",
- "$$\n",
- "\n",
- "Polynomials... [@Kolassa2017] \n",
- "Adaptive smoothing...\n",
- "\n",
- "$$\n",
- "\\begin{align}\n",
- "b &= \\tau \\bf{z} \\\\\n",
- "\\tau &\\sim \\mathrm{HalfCauchy}(1) \\\\\n",
- "\\bf{z} &\\sim \\mathrm{Normal}(0, 1)\n",
- "\\end{align}\n",
- "$$\n",
- "\n",
- "https://www.pymc.io/projects/examples/en/latest/howto/spline.html \n",
- "https://www.tjmahr.com/random-effects-penalized-splines-same-thing/ \n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "spline-basis",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | label: spline-basis\n",
- "from patsy import dmatrix\n",
- "import numpy as np\n",
- "\n",
- "\n",
- "def b_spline(x: pl.Series) -> np.typing.NDArray:\n",
- " B = dmatrix(\n",
- " \"bs(x, df=10, degree=3, include_intercept=True) - 1\",\n",
- " {\"x\": x},\n",
- " )\n",
- " B = np.asarray(B, order=\"F\")\n",
- " return B\n",
- "\n",
- "\n",
- "x = experiment.get_column(\"age\")\n",
- "Z = b_spline(x)\n",
- "y = experiment.get_column(\"y\")\n",
- "x_min = x.min()\n",
- "x_range = np.arange(x_min, x.max() + 1)\n",
- "Z_range = b_spline(x_range)\n",
- "# B_range"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "spline-model",
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "# | label: spline-model\n",
- "# | echo: true\n",
- "import pymc as pm\n",
- "\n",
- "with pm.Model() as spline:\n",
- " Z = pm.ConstantData(\"Z\", Z)\n",
- " α = pm.StudentT(\"α\", 3, 0, sigma=0.1)\n",
- " τ = pm.HalfCauchy(\"τ\", 1)\n",
- " z = pm.Normal(\"z\", 0, 1, size=Z.shape[1])\n",
- " b = pm.Deterministic(\"b\", τ * z)\n",
- " μ = pm.Deterministic(\"μ\", α + pm.math.dot(Z, b.T))\n",
- " σ = pm.HalfCauchy(\"σ\", 1)\n",
- " pm.Normal(\"y\", μ, σ, observed=y)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "b12b01c6-d2c8-4d1b-af8d-72b44f2d9777",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Auto-assigning NUTS sampler...\n",
- "Initializing NUTS using jitter+adapt_diag...\n",
- "Sequential sampling (4 chains in 1 job)\n",
- "NUTS: [α, τ, z, σ]\n",
- "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 55 seconds.\n"
- ]
- }
- ],
- "source": [
- "# | label: spline-sample\n",
- "# | warning: false\n",
- "\n",
- "with spline:\n",
- " curve = pm.Deterministic(\"curve\", α + pm.math.dot(Z_range, b.T))\n",
- " samples = pm.sample(chains=4, cores=1, progressbar=False, random_seed=seed)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "469693a5-4eac-402b-9886-36247f8726da",
- "metadata": {},
- "source": [
- "When, where and how things change... https://www.youtube.com/watch?v=Zxokd_Eqrcg&t=506s "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "255b5202-2b4d-4f25-ab9b-a01249a0e936",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd5hU1f0/8Ped3na2VxZYepUuVYoUFcTeQCzYo35jSWKixkRjjPpLTNRoFI1GscdCFAsqUhQUkF4EpC1le5vd6f3+/lh22GF2Zmd3p+/79Tw8zN5758yZmTO3fO45nyOIoiiCiIiIiIiIiIgowUjiXQEiIiIiIiIiIqK2MHBFREREREREREQJiYErIiIiIiIiIiJKSAxcERERERERERFRQmLgioiIiIiIiIiIEhIDV0RERERERERElJAYuCIiIiIiIiIiooTEwBURERERERERESUkBq6IiIiIiIiIiCghMXBFREREREREREQJiYErIiIiIiIiIiJKSAxcERERERERERFRQmLgioiIiIiIiIiIEhIDV0RERERERERElJAYuCIiIiIiIiIiooTEwBURERERERERESUkBq6IiIiIiIiIiCghMXBFREREREREREQJiYErIiIioihxu93xrgIREVFc8BhIkcLAFREREVEU7N+/H0OHDsXXX38d76oQERHF1KZNmzBo0CBs3bo13lWhFCCIoijGuxJEREREqWTDhg2YP38+GhoaMHToUOzatQtSqTTe1SIiIoqJ6dOn47vvvoNOp8OyZcswZ86ceFeJkhgDV0RE1CnV1dW4/PLLsWPHDlx++eX4z3/+A0EQ4l0torj74YcfMGfOHFitVgwcOBCrVq1CcXFxvKuVkqqrq7F58+ag67OzszFp0qSIvE533985nU4oFIp4VyMhsN1RNLhcLshksph9x3v37sWRI0eCrh84cCAGDhzY6fLr6upwzjnnYPv27ZDL5fj0009x7rnndro86uZEIiKiTrj//vtFAL5/X375ZbyrRBR3u3fvFjMzM0UAYklJiVhWVhbvKqW0//3vf377odP/TZ8+PSKvw/2dKF5//fVienq6OHLkSLGqqire1YkrtjuKhtdee01UqVTioEGDxBUrVkT99e6+++6Q7fjhhx/u8mvU19eLQ4YMEQGIWq1W3LhxY9crTt0Sc1wREVGnnH5HUCLhIYW6t5qaGpx77rkwGAzIysrC119/jR49esS7WhQB3N81a2pqws6dO2Gz2eJdlW6B7a77sdvt+Pnnn1FVVRXvqkREy7GwqKgIFosF559/Po4fPx7valES4t6PiCJq7dq1EAQh4J9EIkF6ejr69euHiy66CE8//XTKHJRb1NTUYPPmzdixY0e8qxITd999N6ZMmQKtVovFixdj9uzZ8a4SUVzddtttqKiogCAIeOONNzBgwIB4VynlXXzxxRBFMeBfpHF/R62x3VEqeOaZZwLa8Jo1ayL+OsXFxXjvvfcgk8lQX1+PxYsXR+X3QqmNgSsiiglRFGE0GnHkyBEsX74cv/rVr1BSUoIHHngALpcr3tXrsqNHjyI/Px/jx4/HM888E+/qxER+fj7Wr18Ps9mM1157jXk3qFt788038fHHHwNoDmCdf/758a0QRRT3dxQPbHeUKqZOnYr77rsPALBmzRr885//jHONKNkwcEVEUTNr1ix8+umnvn/vvvsu/vrXv/ruGDocDjz55JO45JJL4PF44lxbIqLOcbvdePDBBwEAmZmZeOyxx+JcIyIiosTy4IMPoqioCADwpz/9CRaLJc41omTCwBURRU1xcTHmz5/v+7dgwQLcd999WLlyJdauXQu9Xg8A+Pzzz/HCCy/EubZERJ3z3nvvoaysDEBzb6vs7Ow414iIiCix6HQ63HXXXQAAg8GAV155Jc41omTCwBURxcX06dPxr3/9y/f3888/H8faEBF1XsvwYEEQ8Itf/CK+lSEiIkpQt9xyCxQKBQDg2WefZa4rChsDV0QUNwsWLEB6ejoA4MCBA6ioqAi6rdvtxn/+8x/MmTMHeXl5kMvlyM3NxaRJk/D444+jsbGxQ6+9a9cu3HXXXRg1ahTS09N95Y0aNQp33XUX1q9fH/L5R48e9Us+36dPH9+6pUuXtpmg/ve//33Y9autrcUf/vAHjB49GjqdDhqNBgMGDMAdd9yB/fv3h1XGjBkzAurw888/+9Zv3LgRV155JYqKiiCTyXzbBPPee++1+b5a/i1evDjs99fa/v378X//938YMmQINBoNNBoN+vbti2uvvRarVq0Kq4xHHnkkoD4vvfSSb31ZWRl++ctfYsCAAVAqlb5t1q5d26k6d4XJZMLTTz+NGTNmICcnB3K5HFlZWRg3bhx++9vf4sCBAyGf3/q9hqp/6zYa6ruJ1GdXUVEBqVQKQRAwcuTIcD4K/PrXv/aV99VXX7W7/eeff45LL70URUVFUCgUyMvLw8yZM/Hvf/87bsONjx49iq1btwIARowYgd69e3e6rJbP4j//+Q+A5gkfHnroIQwdOhQajQZ6vR6TJk3CCy+80OH329XPrqWdlJSU+JYdOHAAv/nNb3z1S09Px5QpU7B06dJ2yxNFEZs2bcIf//hHzJkzB71794ZarYZCoUBBQQHOOeccLFmyBHa7vUPvM1Iivb9bvHhxyPJO//fII4+EVW4kjhUtjh07hjvvvBP9+vWDUqlEdnY2Zs6cibfeeishLi5XrFiBRYsWYcCAAdDpdFAqlSgqKsK0adPwyCOP4MiRI+2W0XJcvO666wAALpcLL774IiZOnIiMjAyo1WoMGzYM999/PxoaGqL9lgJEst1F+jfbWiTbXVeVlJRAEAR8+eWXsNvtuP/++9GzZ0/odDrMnj0bP/30EwCgoaEBt956KwoLC6HVanHBBReENbtdJM5RWlgsFjz++OMYNWoUNBoN0tLSMHr0aDz++OOwWq2dev+7d+/Grbfeiv79+0OlUiEjIwNjxozBn/70pw6fG8dCVlYWpkyZAgAoLS3Ftm3b4lwjShoiEVEErVmzRgQgAhCvv/76drcfOXKkb/vNmze3uU1NTY04btw433Zt/cvLyxPXrl3b7ut5PB7x17/+tSiRSEKWB0CcOHGiuHXr1jbLKS0tbff5p/977bXX2q2fKIri6tWrxYyMjKDlKBQKccmSJe2WM3369IDnfv3116IoiuIrr7wS9DMI5t133w35/sL5vk/38ssvizKZLGS511xzjehyuUKW8/DDDwc878EHHxRFURS3bdsW9PNcs2ZNh+vcFRs3bhQLCgpCvl9BEMRbb71VNBqNbZbR+r2Gqn/rNhrqu4nkZzdjxgzf+oMHD7b7eZSUlPh+v263O+h2drtdvPLKK0N+buPGjRNramrafc1Ie/XVV311+PWvf92lslrKefLJJ8Vvv/1WzM/PD/p+586d2+7vQhQj99m1tJO0tDTR6/WKjzzyiKhQKIKW2dKGgvnyyy/D2m8OHz5cPHHiRIc+R1E89VlOnz69w88Vxcjv766//voOHS8efvjhdsuM1LFCFEXx22+/FXU6XdCyzj//fPGqq67y/V1aWtqh998VDQ0N4pw5c9r9zCQSibho0SKxsrIyaFktx8XzzjtPLCsrC3lu0bt3b7G8vLxDdU2kdhfp32yLSLa7SOjdu7cIQHz99dfFWbNmBdQnPz9frKysFIcPHx6wbsyYMaLX6w1adqTOUURRFCsrK8VBgwYFLadfv35+x+Nwzhn/9re/iVKpNGiZeXl54saNGzvycfqdx4ezH+qMxx9/3Pcaf/vb36LyGpR6ZCAiiiO5XO577Ha7A9YbjUZMnTrV11No9OjRuPbaa9G7d2/U1tbiww8/xDfffIOamhrMnz8fP/zwA84444ygr/fEE0/g73//OwAgJycHN910E0aMGAGNRoOmpiYcPHgQn376KXbt2oWNGzdix44dGDNmTEA5+fn5+PTTT31/19TU4KabbgLQnJT+nnvuCXjOhAkT2v08Vq5ciQsuuAAOhwNyuRyLFi3C2WefDY1Gg59++gkvvfQSKisrcfvttyMrKwtXXHFFyPdaX18PALjgggsAAMePH8eKFStw6623wuv14rzzzsMll1yCNWvW4L333gtZt2nTpvm959Pfd0e99NJLvmFVKpUKN9xwA6ZMmQKZTIYdO3bg5ZdfRkNDA9566y1IpVK8/vrrQcu6+uqrMW7cOADAAw88gD179uD48eMoKyvDueeei8bGRgwfPhzXX389bDYb/vjHP3aqzl2xcuVKXHTRRbDZbACASZMm4aqrrkLPnj1hMBiwYcMGfPDBBzAajVi2bBkefvhhpKWlRb1ekfzsFi5c6OuJ9dFHH+F3v/td0G23bduGo0ePAgCuuOIKSKXSNrfzer244IILsHLlSgDAkCFDsHjxYvTr1w+NjY349NNP8cknn2DLli0499xzsWnTJr/9SrRt377d93jYsGERKXPt2rV4/PHHYTKZsGDBAsyaNQs6nQ6rV6/Gq6++Cq/XixUrVuC+++7D008/HbScaHx2JpMJd9xxB5YsWQKtVotf/OIXmDhxIlwuFz777DN88MEHAIAnn3wSN998s19v1NZmzZqFwsJC9OjRA9OmTcOQIUOQk5ODxsZGHD58GG+++SaOHTuGPXv24NJLL8WmTZtiOqNapPd39957Ly6//PKg6w0GA26++WY4nU7IZDLMnz8/ZHmRPFbs2bMH8+fPh9lsBgBMnjwZV199NQoKCnD06FG88cYb+Pzzz+M2o91VV13la8NDhw7FNddcg/79+0Mmk6GhoQHbtm3D//73P1RWVuKDDz7A73//exQUFIQs8+jRo5g3bx527dqFyZMn46qrrkJhYSH27NmD5557DgaDAceOHcMFF1yALVu2xOy9R7rdAZH7zQKRbXeR9tBDD6GiogK33HILZs6ciY8++ggffvghqqurMX78eJSVleHGG2/EnDlzfOu2bduGrVu3+o6BrUXyHMVqtWL27Nm+c9mSkhLccsstGDhwIBoaGvDJJ5/giy++wKOPPhr2+/3zn//sOx5nZ2fj5ptvxpgxY+DxeLBu3Tq89tprqKmpwbnnnoutW7eiX79+Hfg0o6v1sbKlxzJRu+IdOSOi1NLRHlete58cOXIkYP2vf/1r3/qbbrqpzV4Zf/nLX3zbTJo0KehreTweMTs7WwQgKpVKcd++fUG3/fjjj8Xbb7+93fq3CLd3Syhms1ns1auXCEDMyclps7dXQ0ODOHbsWBGAmJubKzY2NoZVdkvd7rvvPrGkpESUy+Xiu+++61vf+i5fR3T2fVdUVPju7mdkZIjbt28P2KasrMzXIweA+NVXX4VVdssd9alTp/p6CNxzzz2+ttO6jcaqx1VjY6NYWFgoAs09qp555pk2tzMajeL9998vfvHFF0HLinSPq9a6+tnV1dWJcrlcBCCeeeaZIV/rwQcf9JW1fv36oNv985//9G13yy23tHlne+nSpb5tHn/88bDea6TMnTs3rPcRjpZyAIhZWVnid999F7DNBx984NtGpVKF7CkVyc/u9J5548aNEw8cOBCw3cUXX+zb5umnnw75fkP1UnA6nX6f7YoVK0KWdbqW53W250tbIrGfD6Z1b6ZHH3005LaRPla07s30q1/9KqAHisfjEX/3u9/5ff+x6nG1Y8cO32sOHTpUtFgsbW5ns9nEZ555Rnz22WdDlte6J7JEIhH/+c9/Bmxz8OBBMTMz07fd8uXLw65vIrW7SP9mo3mO0hUtPa4EQfA7rzly5IjvfQmCIL7zzjttrnvppZcCyoz0OUrr89SpU6eKZrM5YJuPPvrIr0dcqB5X27dv9/W0Gj9+vFhbWxuwzY4dO3zt+Jxzzgla1uli0eNq3759vteYMGFCVF6DUg8DV0QUUR0JXG3YsMGvO/PpJ8vV1dW+i+Di4mLRZrMFLWvixIm+sr7//vs2t6mqqvJtM3bs2A6/t1AicUHT+sTmgw8+CLrd3r17RUEQRADiv/71r7DKbilXrVaLAAJO7mMduLr77rt9z3v++eeDbrdixQrfdnPmzAmr7JYLk5b3eskll/itj0fg6je/+Y3vNe+5554ulRWLwFVXPrt58+b5tjl27FjQ1xo8eLAINA/HCTZUw2KxiOnp6SIAceTIkSGHEy5YsEAEIBYWFoY1bCNSRo8e7Xu/+/fv71JZLeUolUpx06ZNQbc7//zzfdsGC4JG+rNr3e7OOOOMoENZ33vvPd92d955Z4h32761a9f6yrr//vs79NxECiC056233vKVO3HixJDflShG9lixceNGv+/V4/EELe+cc86JeeCqdXvq6lBcUfQPXAX77Yhi8xCslu0uvvjisMtPpHYX6d9sNM9RuqIlcHX68cpms/nqG2pdWwH7SJ6j2O1239BKlUolHj9+PGh5rYfQhQpctQSblUplyKHUS5Ys8ZX3008/Bd2utVgErmpra32v0atXr6i8BqUeJmcnorgwm82+KXEB4IYbbgjoir9ixQq4XC4AwLXXXguVShW0vNbd6N9///02t8nMzIRE0rzbO3ToEOrq6jpd/2j473//C6B5GOKll14adLshQ4Zg4sSJAIBly5Z16DVsNhtGjx6N//u//+t8RSPgk08+AQAoFApfkty2nHfeeSguLgYArFq1qkPJcm02G9RqddxnrBRFEe+88w6A5vf70EMPxbU+4ejKZ7dw4ULf448++qjNbfbt2+dL4LtgwYKgw3C++uorNDU1AWieiSjYcEKgeR8CAJWVldi4cWOH691ZFovF91ir1UakzIkTJ2L8+PFB1y9YsMD3eNOmTW1uE83P7u9//3vQYayth6O0/mw6o2fPnr7HNTU1XSorUR0/fhx33nkngOb28+abb4b8roDIHis+++wz3+PbbrvNd4xsS2FhYch6RUN2drbv8Y8//giv1xuxsu++++6g68L5jSWTSPxmY3GO0hV6vd7v79bnjKHWORyOgLIieY6yfv16X5L0+fPn++3XThfOb6yurg6rV68G0JwGouX123LNNddAJmvODBTL76I9rY+VXT1OUPfBwBURxYzZbMa+ffvwwgsvYMSIEdi8eTMAYNSoUXjwwQcDtv/mm298j88666yQZbfMUAI0n9y2RaFQ4NxzzwUANDU1YeLEiXjnnXd8OYfiqaysDLt27QIAjBkzJuTFA9Cc6wsAtmzZ0uHX+u1vfxtQ/j333IPS0lKUlpZ2uLyOOnz4sC+30ciRI9vN4zR58mQAzfl6Ovp+r7vuOhQVFfktmzhxou+9tpxcR9OWLVt8M2aeddZZfhdiiayzn91FF10EtVoNIHjgqvXy1oGu033++ee+x2eeeWbI+rb8JoDO/S46q3VuvpYLhGhrnS9v586dbW4Tzc8uVB6s1r9nsQMz0VmtVuzYsQNr167F559/js8++8xv5sp4zRoZTV6vF9dff70vwPiPf/wD/fv3D/mcSB8r1qxZ43s8ffr0sOseK5MmTUJubi4AYN26dZg9ezbWrl0b9VkOi4uLffu/yspK1NbWRvX1oq2rv9lYnqPEW6TPUSL9G/vyyy99+8P29u1arRYDBw4EkFjfRev22HKDmqg9TM5ORFGzdOnSdqdYnjx5Mj755JOAu2EAcOLECd/j9pJK9u3b1/c41JTYL7zwAmbOnInS0lIcPnwYixYtgk6nwznnnIPzzz8fF154IXJyckK+VjS0DhhZrVa/u+Btaekt1tTUBLPZDJ1OF9br6PV6XHLJJQHLMzIykJGREX6Fu6Aj3ysQ/nfbluuvvz5gmUql8psePNoOHTrkezxixIiYvW5XdfazS0tLw/nnn48PP/wQP/zwAyorKwPuIrfc+R06dChGjhwZtKzWv4sdO3aE7HXTOrBRVlYWso6RpFQqfY+NRmO7SaEjoXfv3r7HLRMwnC5en13rz6M9drsdS5YswVtvvYXt27dHtDdNMvj73//uC87Nnz8ft956a7vPifSxovX+eMCAAeFWPWZaeqFdcsklsNlsWLNmDdasWYOioiLMmzcPF1xwAc4555yQPbI7q3fv3r6bDvX19b4AWqoJ5zcbq3OURBDpc5RI/8ZafxcnTpxo97toCUbG8rjYnpZgPQDfjS6i9jBwRUQxp9PpcNZZZ+Hmm2/GZZddFnS71nc42wpstaZUKqFQKOB0On1dsttSUlKCHTt24PHHH8e///1vNDQ0wGw2Y9myZVi2bBmkUinOP/983H///Zg0aVKH31tnVVdX+x5/++23+Pbbb8N+blNTU9gnhaNGjerQhWU0dOR7PX2bUN9tW2LRo6o9lZWVvsfJ0tsK6Npnt3DhQnz44YcQRRH/+9//cMcdd/jWlZaW+mbiC9XbCvD/Xdx2221hv37rk+Joy8zMjPnrKhSKdvd3if7ZHTx4EPPmzfML7HYnu3bt8g0bzs3NxSuvvBLW8yJ9rGjZHysUirgfG4I599xzsWvXLvzhD3/AsmXL4HQ6UVFRgVdeeQWvvPIKdDodrr32Wtx///3o1atXxF63dU+bjh57Uk2szlESQaTPUTpaXntafxfPP/982EP6Y3lcbE/rusTqpiklPw4VJKKomTVrFj799FN8+umn+OKLL/DDDz/g559/hsFgwIoVK0IGrYCODw1puavU3nAdvV6PJ598EpWVlfj888/xy1/+0jc8w+PxYPny5ZgyZUpS5CIC/IcqtSde05m31tnvFej4UKxEe7/t5a5JJF357ObNm+c7QT99uGDrPBvtBa46qyO/ia5qnV8klnnzWn4XkW5TsfjsrFYr5s6d6wta9evXDy+99BL27dsHi8UCsXnyoJgMXY4Hh8OBRYsWwel0AgBefvll5OfnR/112/puW9pRIuwrQ+nfvz/effddVFZW4o033sDVV1/t6x1tNpvx4osvYtiwYb7cRJHQ+tiTTPvuRBPL/XEkRPocpfX6eP7OEul7aN1TOFSOLqLWGLgioqgpLi7G/PnzMX/+fMydOxeTJk3CwIEDww4+tL4LYzKZQm7rcDh84+Tz8vLCKl+hUGDevHn45z//iYMHD2Lv3r2+5LSiKOIvf/mLLxlptLW+aLnpppt8F27h/Gs9bCgZdOR7PX2bcL/bRNL6u02kO57RpFKpcPHFFwNovjvfOqDTErgaP358u8MwWn92J06cCPs38dprr0X+TQUxdOhQ3+MdO3bE5DVb7++C9eJL5M/uzTffxOHDhwE0J3LeunUrbr31VgwePBgajSbqrx9v999/P/bs2QOgOTF+y28lHJE+VrT0GGzdphJZVlYWrr32Wrz99tuorq7GqlWrMHv2bADNAawFCxbg2LFjEXmt1seeZOotGw08RwmuvXOU1r1ywymvPa2/izfffDPs7yGRbgS09LoG/I+hRKEwcEVECav1RW17uY1aLoIAdHqowJAhQ7BkyRI888wzvmUvvPBCp8rqqNZ1rqqqislrxktHvlcgMt9tPLWu8759++JYk9hq6U3l8Xjw8ccfA2geNrlhwwa/9aEkw++i9ex/wSaGiLSWxMEAAhLot0jkz6510vX7778f6enp8atMjK1atQrPPvssAKBPnz6+x+GK9PfaOidb63aVDCQSCWbOnImVK1f6enDb7Xb85z//iUj5LZ+HRCKJSY+4RJbI+5NIi/Q5SqR/Y6nwXbQ+VoaaQZeoNQauiChhtZ45a/369SG3bb1+zpw5XXrd1kmpDxw4ENZzWnf/7sxsR71798aQIUMAABs3bkyKO9+d1b9/f2RlZQFo7qESaipkURTxww8/AGjOjRbLvGORMnnyZN+wuXXr1sFut3epvNZtLZFnWps9e7ZvKE/LcMH//e9/EEUREokEV111VbtlzJ071/f4u+++i05Fu2jGjBm+5LLff/99TH67Lb8JIPiMq4n82bUeJhJO8uNUYTAYsHjxYt9v4I033mh3xrLTRfpY0fo42xJUTkbXXXed73G4x+1QSktLfUGB0aNHQ6vVdrnMZMZzlLaFc44S6d/Yueee6zsPSLR9e7hacqRJJBLfbN9E7WHgiogS1uWXX+7LK/Hmm2/68oG0pfUd1osuuijodg6Ho93XtVqtvsfh5iNo3RW89QwyHXH55ZcDaL6oe/XVVztVRjIQBAFXXnklgObv48033wy67Zdffony8nIAwHnnnZewyYNDUSgUvqFABoMBL774YpfKa30B1fLZtKV1z8F4kMlkvja9atUqNDY2+gJYM2bMCJhpsC1z5871DR3717/+5ffbTBRqtdoXhKutrY1Ijp36+vqQM+y1nq01WKA+kT+7cPeX27Zt8z3u6A2BllnmQl10xtrtt9/um9nrvvvuCxp0bE8kjxUzZszwPQ61L66srMRXX33VpdfqrGgdt0PNtBnOb6wtidjuIoXnKIHCOUeZNm0aJJLmS+6PP/446HBBj8cT8rVaFBQU+PYdX3zxBX766ad2n9MRrWf5i0Y7XrNmjS+/4fz581N2tk6KPAauiChhFRUVYdGiRQCA48eP4+67727zYu7xxx/Hpk2bAAALFizA8OHD2yxv7969KCkpwZNPPhn0Is7tduO3v/2t7+8pU6aEVVe9Xo/BgwcDaO4NEeyOb6i7lL/+9a99F/P33ntv0Atgl8uFf/3rX3jjjTfCqlsiuueee6BQKAAADz74YJsnXuXl5b7Z6GQyGR555JFYVjGi/vSnP/lmVXrggQcCEpa3cDqdeOqpp0JObz1o0CDf4w8++CBgvcvlwj333NPhIUjR0DIc0OVy4fXXX/fdHQ43KXtaWprvez9y5Aguu+yyoHnC9u3bh1tuuSUuF4y/+c1vfBfLS5Ys6XJ5e/bswa233trmBfvzzz/vu1s9cuRInHPOOW2WkcifXeuAzfPPP9/mfv2TTz7x6/1aUVHRoddomXb+p59+Sohp4N966y1fzsRRo0bh0Ucf7XRZkTxWXHLJJejZsycA4Jtvvmkzx9mJEycwZ86cuAxLevvtt9GvXz/fLKVtqaurwxNPPOH7O9zj9vz58/1mfW3x448/4m9/+xuA5kDUL3/5y7Drm2jtLpJ4juIv3HOUwsJCX9DPYDDgrrvuCmjLdrsdV199NVavXh1W/f76179CIpHA4/HgwgsvDJqGoKGhAffeey92794dVrlAcy/YluPZqlWrIp7UvfXNu9/85jcRLZtSW8emZyIiirGnnnoKq1atQnl5OZYsWYKtW7fimmuuQc+ePVFTU4MPPvgAq1atAtAc6Go52Tyd1+vFlVdeiaqqKjzwwAN46qmncOGFF2LChAnIzc1FU1MTDh48iLfffhvHjx8HAGg0Gvzxj38Mu66/+tWvfBebkyZNwp133okhQ4bA7Xbj8OHD+PDDDzF16tSgPW7S09Pxyiuv4JJLLoHdbsfFF1+MOXPm4OKLL0ZRURGMRiO2bduGDz74ABUVFdBoNJgwYYJfIKO1DRs2+A3JAZrvlLYOikyaNCnspLMHDhwICMi1vmNdVlYWEHAZOHAgBg4cGFDWoEGD8PDDD+P3v/89DAYDzjzzTNx0002YPHkypFIptm3bhpdffhkGgwFA84njsGHDwqpb6/fcuj7B6hILJSUleO6553DTTTfB4XDg8ssv9323hYWFMBqN2Lp1Kz744ANUVVUhMzMT27dvbzOp7axZs5CZmQmDwYDPPvsMl19+OS677DLodDrs2bMHL730Eo4dO4apU6diz549vs8wmGh+dlOnTkWPHj1QXl6OP/zhD3C73VAoFO3OKNravffeiy+++AJr167Fl19+if79++OGG27A2LFjIZVKcfz4caxcuRJfffUVRFGE1+uNeW+AYcOG4fzzz8dnn32GVatW4YsvvsC8efO6VOarr76KtWvX4oYbbsCgQYNgNBrxySefYPny5QCaL5T+/ve/h+xdkqif3XXXXYdHH30UdXV1+P777zF27FgsXrwYPXr0QGVlJT7++GOsXr0aGRkZGDVqFHbs2IE1a9bg5Zdfxq233hr2a9x3332w2WyYOnUqbr/9dvTr1w/19fXYunUrpFJpyByGkdzfHT9+HP/3f//n+3vBggX4+uuvQ9a/T58+Qfd5kTxWKBQK/OUvf/ENtbvpppuwcuVKzJs3DxKJBFu2bMHLL78Mu92OyZMn+w1Tjbbjx4/79plXXHEFBgwYgAsvvBDDhw9Heno6ampqsH37drzzzju+XiyDBg3C4sWLwyp/8+bNGDp0KBYvXowzzzwTgiBg/fr1ePXVV31B4/vvvz9oHrm2JFK7i7RIn6MkskifozzyyCP4/PPPYbFY8Prrr+PAgQO47rrrkJWVhQMHDuDll1/G8ePHMW3atLCG/02cOBEPPvggHnvsMRw5cgSjRo3CwoULcfbZZ0Ov16Ompgbff/89PvroI1itVqxcuRJbtmzx9QgMJScnB/PmzcPnn3+O7du3Y8aMGbj22muRk5OD8vJyfPvttzj//PNx4403hv+BnvTDDz/gww8/BNCcRmHq1KkdLoO6MZGIKILWrFkjAhABiNdff31Eyvz555/FAQMG+Mpt61+/fv3Ew4cPhyznwIED4tlnnx2ynJZ/ffr0Ebdu3drhut56660hy5XJZOKJEydClrF69WoxMzMzZDlSqVS87bbbRKPRGLSc6dOnt/s+16xZE/Z7e/jhh8P67Fr/e/jhh0OW+dBDD4kSiSTo8wVBaLeMcOsWTjnR9vHHH4tpaWntfre33npryO/2nXfeCfm5XXrppaLRaBQHDx7c7m8x2p/dr371K7+yLrzwwg6XYbfbxauuuqrdevbt21f8+uuvO13XrigtLfV9t3369BGtVmuHy2h5HxMnThQvueSSkG3kzTffDKvMSH12rdtJqP1GaWlpWMeANWvWhPwtFBcXixs2bBDXr18vyuVyEYA4bNiwsN6zKIqi0+kU586dG7R8lUolNjY2hvV+u7q/e+211zpc1hNPPNHue4zUsUIURfHPf/5z0DKUSqX4+uuvi88++6xvWWlpabv1i4QVK1aI/fv3D+szmzVrllhbWxuyvNbHxSeffFIUBCFoeb/4xS86XN9EaneR/s22iGS7i4TevXsHrXuo99Xe5yeKkTtHEUVRXLlypahSqUK2tx07dvj+fu2119ot86mnnhKlUmnI70Kv14vPPvus6PV6w6qnKIriiRMnxJKSkqBlTpw4MeyyWrhcLnH48OG+fcqePXs6XAZ1bxwqSEQJb+DAgdizZw/+9a9/YebMmcjPz4dMJkN6ejqmTJmCf/zjH9i1axf69u0bspwBAwZg9erVWLduHe6++26MGjUKubm5kMlk0Ov1GDhwIBYtWoT33nsPBw4cwJgxYzpc15deegnLly/HBRdc4KtnWloaxowZg3vvvRdbt25FcXFxyDLOPvtsHDx4EI899hgmTZqEjIwMyGQy5OTkYPLkyfjDH/6Aw4cPY8mSJR1O7Jto/vznP2Pr1q34xS9+gYEDB0Kn00GhUKBPnz64/vrrsXHjxqQeIni6iy66CIcOHcKjjz7q991mZ2f7vttDhw7hpZdeCvndLly4EGvWrMH8+fORnZ0NuVyO4uJiX0+Ojz76CGlpaQmRO+L0YYHhDhNsTalU4r333sPXX3+Nq6++GiUlJVAqlVCr1ejbty+uvvpqfPDBBzhw4ECXJ2forJKSEjz99NMAmhM733zzzZ0uS6lUYtmyZXjvvfcwZ84cZGVlQSaToaioCFdffTU2b96Ma665JuyyEvGzmzFjBnbu3Ilf/OIX6NOnDxQKBTIzMzF+/Hg88cQT2Lt3LyZOnIgpU6bg66+/xrRp03DFFVeEXb5cLsenn36KF198ERMmTIBWq4VMJkN+fj7OPfdc/OMf//ANBUpELUPPQ4nkseKhhx7CN998g4suugh5eXm+fcr111+PLVu24Prrrw8rL12knXfeedi/fz/ef/99XHfddRg4cCAyMzN9+80xY8bgjjvuwLp16/DNN9/4JoQIx+9+9zts3LgRCxYsQFFREeRyOTIzM3HOOefgo48+6lQ+wmRvd+HgOUrnzlFmz56NnTt34uabb0ZJSQnkcjlycnJw3nnn4bPPPsOLL77Yod59QPPwzd27d+Ouu+7CsGHDoNFoIJfLUVRUhHnz5uG5557DiRMncNddd4Wd+w0AiouLsW3bNjzwwAMYPHgwlEollEol+vTpgwULFuB3v/tdh+oJAHfffTf27NkDAPjLX/4SsocaUVsEUezE9FdEREREFODGG2/05Qn605/+1KHhxi0XFtOnT8fatWujUT2ibm3GjBm+HHG8BCKKjeeff96XK+6yyy7D+++/70tYTxQuthgiIiKiCPn3v//tm9n0kUcewfPPPx/nGhEREcXH22+/jXvuuQdAc2+9t99+m0Er6hS2GiIiIqIIkUqleO+993DOOedAFEX88pe/xD/+8Y94V4uIiCimli5diuuuuw4ejweTJk3CJ598AqVSGe9qUZJi4IqIiIgoglQqFT777DNcffXVAIDPP/8cHo8nzrUiIiKKnc8//xxerxfz58/HqlWrkj7nGcWXLN4VICIiIko1crkcb731FiZMmIAbb7wRUqk03lUiIiKKmbfeeguTJk3CXXfdxWMgdRkDV0RERERRIAgC7rrrrnhXg4iIKOYUCgXuvffeeFeDUgQDV0REREQJYNGiRSgpKcH48ePjXRWilDRz5kyMGzcOJSUl8a4KERF1gCByLlgiIiIiIiIiIkpATM5OREREREREREQJiYErIiIiIiIiIiJKSAxcERERERERERFRQmLgioiIiIiIiIiIEhIDV0RERERERERElJAYuCIiIiIiIiIiooTEwBURERERERERESUkBq6IiIiIiIiIiCghyeJdASIAcNktEEVvvKsRFplSA4lECq/XA7fDGu/qUApjW6NYYDujWGA7o1hhW6NYYDujWEnGtiYIEshV2oiWycAVJQRR9CZN4Kq1ZKwzJSe2NYoFtjOKBbYzihW2NYoFtjOKle7c1jhUkIiIiIiIiIiIEhIDV0RERERERERElJAYuCIiIiIiIiIiooTEwBURERERERERESUkBq6IiIiIiIiIiCghMXBFREREREREREQJSRbvCqQqs9mMpUuXYuXKlThx4gS8Xi969OiBWbNm4frrr0dWVlZM6rF161YsX74cP/74I+rq6uBwOJCbm4tRo0bh0ksvxZQpU2JSDyIiIiIiIiKijhJEURTjXYlUc/jwYdxyyy0oLy9vc31OTg5efPFFjBgxImp1sNls+OMf/4jly5eH3O7SSy/FY489BqlUGrW6hMNpM0EUvXGtQ7jkKh0kEim8Xg9cdnO8q0MpjG2NYoHtjGKB7YxihW2NYoHtjGIlGduaIEigUKdFtEwOFYwws9mMW2+9FeXl5ZDL5bjvvvvw7bffYtOmTfjXv/6FXr16oa6uDrfffjtqa2ujUgen04mbb74Zy5cvh0QiwcKFC/Hee+9hw4YN+O677/DSSy9h0KBBAIBly5bh6aefjko9iIiIiIiIiIi6goGrCHv11VdRVlYGAPjrX/+Km2++GQUFBcjIyMDs2bNx5513AgDq6urwwgsvRKUOCoUCixYtQl5eHl555RU88sgjGD16NLKyspCfn48ZM2bgv//9L3r27AkAeOONN2AwGKJSFyIiIiIiIiKizmLgKoI8Hg/effddAMDo0aMxb968gPUvvfSS7+9ly5bBZrNFpS7z5s3DmjVrguawUqvVuOaaawAADocDP/74Y1TqQURERERERETUWQxcRdC2bdt8PZfmzp0bsP6jjz7CkSNHcNlllwEA7HY71q9fH7X6yGShc+/36dPH9zhawxaJiIiIiIiIiDqLgasI2rNnj+/x6NGj/dbZbDY899xzGDlyJO6+++42nxNrVqvV9zg9PT1u9SAiIiIiIiIiakvoLjnUIUeOHPE9Li4u9lu3dOlS1NTU4KmnnkJ+fj5kMhncbrffc2Jt165dvsejRo2KWz0AQKbUxPX1O0IQJL7/5SpdnGtDqYxtjWKB7Yxige2MYoVtjWKB7YxihW2tGQNXEdTQ0OB7nJmZ6XtsMBjwyiuvYNq0aZgwYQIAQK/Xo6GhIW5J0Z1OJz799FMAzb3DWhK1x4tEIo3r63eGIAgQhOSrNyUftjWKBbYzigW2M4oVtjWKBbYzipXu3tYYuIqglkTrCoUCgiD4li9ZsgRmsxm//vWvfcsUCgUA/+F6sfTyyy/78lrdddddcalDa16vJ95VCJsgSCAIAkRRhCh6410dSmFsaxQLbGcUC2xnFCtsaxQLbGcUK8na1iLdMYWBqyiQSE6lDisvL8c777yD+fPnY/Dgwb7lXm/8Gt22bduwZMkSAMAVV1yByZMnx60uLdwOa9L8EOUqHQRBClH0wmU3x7s6lMLY1igW2M4oFtjOKFbY1igW2M4oVpKxrQmCBAp1WkTLZHL2CNJomvM0uVwu37JnnnkGoij6JWQHAIfD4fecWCkrK8Odd94Jl8uF4cOH46GHHorp6xMRERERERERhYs9riIoKysLAODxeGAymVBeXo7PPvsMixYt8ssh5XK5YDKZ/J4TC9XV1bjhhhvQ0NCAnj174sUXX4RKpYrZ6xMRERERERERdQR7XEVQ3759fY/Ly8vx1FNPQa1W44477vDbrrKy0jdUsE+fPjGpW11dHW644QYcP34cPXr0wNKlS5GXlxeT1yYiIiIiIiIi6gwGriJo+PDhvsdLly7FunXrcOONNwb0qtq2bZvv8RlnnBH1elVXV+Oaa67B4cOH0bt3b7zxxhvo0aNH1F+XiIiIiIiIiKgrGLiKoNGjRyMzMxMAsGzZMmRnZ+OGG24I2O7LL78EAKhUKkyZMiVkmaIo4plnnsHkyZMxZcoUPPfccx2q04kTJ7Bw4UKUlpZi8ODBeOedd1BcXNyhMoiIiIiIiIiI4oGBqwiSSqVYuHCh7+/FixdDq9X6bfPDDz9g7dq1AIDLLrsMarU6ZJmffPIJXnzxRdTX16Ourg7PP/88li9fHlZ9Dhw4gIULF6K8vByTJ0/G22+/jZycnI69KSIiIiIiIiKiOGHgKsJuuukmX4+mt99+G1988QUaGhpQV1eHd999F3feeSdEUUROTg5uv/32dsvbvXt3wLKdO3e2+7zt27fjmmuuQW1tLebOnYvnnnsOcrkcDoejzX9Op7Pjb5aIiIiIiIiIKIo4q2CE6XQ6vPzyy7jllltQXl6Oe++9N2CbnJwcvPjii8jNzW23vBEjRgQsGzVqVLvP+8c//oGmpiYAwIoVK7BixYqQ25eUlOCrr75qt1wiIiIiIiIiolhh4CoK+vXrh+XLl2Pp0qX4+uuvceLECYiiiKKiIsyaNQuLFy8OSNgezIUXXojS0lL897//hSAIWLhwIS644IKI1zlWsxsSEREREREREYVLEEVRjHcliJw2E0TRG+9qhEWu0kEikcLr9cBlN8e7OpTC2NYoFtjOKBbYzihW2NYoFtjOKFaSsa0JggQKdVpEy2SOKyIiIiIiIiIiSkgcKkhERESd4nC54XJ7IECAIAiQSABBECCVnPxbaP6fiIiIiKizGLgiIiKikNweDxxODxwuNxxONxwuDxwuD8LJNiAIbQezJAIgkUgglQpQyKSQy6SQyySQy6SQStghnJKXKIpwuNxwujxwON1we0XIZRK/di6TSuNdTSIioqTBwBUREREBADxe76kAlcvte+z1dj4dpig2X8h3pAyJJDCYpZBJITt58c9eXJQofAGqVr8Xl9uD9mK6giAEBLNat3MGb4mIiE5h4IqIiKibcns8MDZZYHO4YXM4YbcmRtJPr1eE3emG3eluc71M2nKRL4Hs5MV+64t/okjrSq/DtoiiCKfLA6fL0+Z6qVSAXNrcrrsSp1XKZUjXKdnDi4iIkhoDV0RERN2I2+OFyeqA0eKAzeGCTKmGRJDCK7Z9AZ2I3B4v3B4vbI7AdYKA5iCWVAK5/GQPFqkUCnnz8CyZlD1ZKDx2pwtGiwMmqwMud2xnPvZ4RHg8wYO34XOgrskCrUqBdJ0KOrWCPRaJiCjpMHBFRESU4jxeL8xWJ4wWO6wOV7vDmJKZKOJUTxa7K2B9yzBEmUwClUIGtUIOlVLGoVkEoHnoX0uwKlhvqGQjioDZ5oTZ5oRMKkG6Vol0nRoKOXthERFRcmDgioiIKAV5vSLMNidMVgfMNmenhzSlmpZhiHACZqvTt1whl0KtkEGllEOtlEEpl7FnSjfhcnt8waqu93BKbG6PF/VGG+qNNmhUcmToVNCplZBI2NaJiChxMXBFRESUIkRRhMXuhMnigMnm7FJS9e6mpZdWk6V5/KEgCM09spQyqBRyaFQy5glKIW6P1xessjkCe+Z1B1a7C1a7CxKJGXqtEhk6FVQKebyrRUREFICBKyIioiTncLphMNtgsjrg8TBYFQmiKMLmcJ0MatgANCeFVyll0CjlUMplvoTw7JmVHDze5vxuJosj5YfMdoTXK6LRZEejyQ6VQoZ0nQp6rZLDZ4mIKGEwcEVERJTETFYHKupMHAoYA25Pc66w1kMMBeHULIctgazWsxyyl1bseL0iPN7mxP2+/z3Ny5wuDyx2J4NV7bA73bA3mFFjsCBNo4BK0TxsViGXcsZOIiKKGwauiIiIklSD0YoagyXe1ejWRBFwub0nZ50LHHImCEJAMEsuk0KtlHOGww5wON1wuNxwe9oOTrk9XgZvI0gURRgtzbOPtpBIBCjlMigV0ub/Tz5mzywiIoo2Bq6IiIiSjCiKqDFYYDDZ4l0VaocoiqdmOTyNUi6FRqWAVi2HWilnAKAVURRhtbt8s+G53Kkxw18y83pbD589RSaVQCmXQqk4FcxSyGRM+E5ERBHDwBUREVES8XpFVNQZYbY529+YEprD5YHDZYPBZIMgAEqFDFqlHBq1AmqFvNtd+Hu8XlhsTpisTljsnFwgWbg9zT3fLHb/gJZSLvXN0qlWyKFU8LKDiIg6h0cQIiKiJOH2eFBWY4Td6Y53VSjCRBGwO9ywO9yoN9ogCALUShm0KgU0KjlUCllKJoF3ujww2xww25ywMWF6SmkOzHrQZG7+u6VNqxUyX0CLOeCIiCgcDFwRERElAYfTjbLappO5lCjVtQyVs57sxSKRCNAo5dCoFFAqpJAIAiSCAEEQIJE0P06WHlpWuwsWmwMmm7PNIZSUmvzbdPMwZ7lMApWiOYilUjQHaJOlHRMRUewwcEVERJTgLHYnymuNHDrVjXm9oi/fUyjNgSxAIkggEQChJah1MrAltDz2rZOc3P60IJjv75NlnRZM8HpFeEUvvN7mgIS35Z9XPPV3yzqvFxKFFyIEmCw2OGycUICaNU9s4IDJ2pwEXhAApVwG1cnhhSplc94sIiLq3ngkICIiSmBNZjuqGkwcQkVhEUURHg/gQeR7MrUMVezM7H0yJSARpPCK7DFIwYkiYHe6YXe60Qg7AEAqFaCSy6BWyX3BLE5kQETUvTBwRURElKBqGy2ob7LGuxpEADoXsCLqKo9HhMXj8kv+rpBL/XJlKeWpmQOOiIiaMXBFRESUYERRRGW9CUaLI95VISJKOE6XB06XB02WliGGAlQKGdRKGdL0MqRp1WAYi4godTBwRURElEA8Xi/KaoywOVztb0xERBBFETaHCzaHC0YHIKk3QauSQy31QKdWMOE7EVGSY+CKiIgoQThdHpTVNnGmNSKirhABk9UOg8MGiUSATq2AXquEVqXgkEIioiTEwBUREVECsDlcKKttgseT2HmERFGE0epAWU0TymuNqGuyQiYVoJDLoJRLoZQ355tRKk4+VjQv91uvkEEmZXJlIoo+r1eE0eKA0eKAVCpAp1b6glhERJQcGLgiIiKKM4fTjePVTQmX/NrmcKG81oiy2uYgVctjs83Z5bKlkuZgV4ZOhb5FWehblIm+RdkoztNzxjAiigqPR0ST2Y4msx0yqQRpmuYgllopj3fViIgoBAauiIiI4sjj9aKs1hjXoJXL7UF5rQHHymv8glT1xujNaOjxnspJU1lvwve7jwEAFDIpSgozTwaystC3KAtZek3U6kFE3ZPb44XBZIPBZINcJoVeo4Beq4JSwcsjIqJEwz0zERFRHFXUGuFyxz6nlcPpxg97jmHdruM4Xm2A15sYvb2cbg8OnKjDgRN1vmUZOhX69cjyBbJKCjJ5cUlEEeNye1BvtKHeaINKKUO2XoM0jTLe1SIiopN41kdERBQntQYzLPbYzh5Y12TB6q2H8d3Oo7B28rUVMikKc9JQnJuOwuw0CAJgd7rhcHngdLnhcHrgcLlP/mtjmdMDbwd6mDWa7dj6cwW2/lwBAJAIAorz9OhblIWBPXMxpHcu0nWqTr0XIqLW7A43ymuNUMilyNZroNcqmdCdiCjOGLgiIiKKA6PFgXqjLSavJYoiDpyowzdbDmHbgQqEGzOSCALys3QozktHjxw9euTqUZybjtwMbZemlxdFEW6PF3anG2W1TThSYcCR8nocrmiA0eJo9/leUcTx6iYcr27C2u2lAIAeOXoMKcnFkN55GNQrBxomXiaiLnC6PKisN6GuyYIsvQbpWlWX9ntERNR5gphomWCpW3LaTBBFb7yrERa5SgeJRAqv1wOX3Rzv6lAKY1tLXQ6XG0crG6Oe18rl9mDj3hNYteUQjlc3hdw2J12LHrlp6JHbHKQqzktHQZYOcpk0qnVsTRRF1ButvkDWkQoDjlYZ4PZ07PggCEBJQSaGlORhSO9c9C/OhlLOe3XxJFOqIRGk8IoeuB2xCdhS9xSttiaTSpCZpkZGmooTSBDP0ShmkrGtCYIECnVaZMtk4IoSAQNXRIHY1lKTx+vFsapGOF3Ry2tlMNmwZtsRfLujFCZr8B5MOrUCZ48biNlnDkamXpWQAQW3x4sTNU04UtGAI+UNOFLRgGpDx34PMqkE/XtkY3DvXAwtyUNJYSZkUl54xhIDVxQr0W5rEomAzDQ1MtPU3I90YzxHo1hJxrbGwBWlLAauiAKxraWmspommG3OqJR9pKIB32w+hM37y+AJkWy9OFeP2Wf2x8ShvaDR6ZIuoGC2OnCkogEHyuqx72gNjlYZwh7+CABKhQyDeuZgaEkeRg0oRF6mLnqVJQAMXFHsxKqtCYKAzDQVsvRqyKSx65lKiYHnaBQrydjWGLiilMXAFVEgtrXUU9toQX2TNaJluj1ebP25HN9sPoTDFQ1BtxMAjBpYhDnj+mNQrxxfsuFUCChY7U78fLwOe4/WYP+xWpTXGTv0/MLsNIwaUIhRAwrRryibeWyiIBXaWUd4vSLMdidMFgcsdiccJycvcLjczZMVuDynLTs5ecFpy5wuD2RSCZQKKRRyGZRyKZRyWfO/gGVSKBUyv8dalQLZ6RqolfJ4fyQxE+u2JgiAXqtCtl4DhZwBrO6C52gUK8nY1hi4opTFwBVRILa11GKyOlBe27GASntqDGY8v2wjymqC569SK+WYOrIEs8b2Q26GNmB9KgYUmsx27DtWi33HarDvWA3qGsMPFurUCozs3xzEGtYnHyoFc2NFQiq0M4fLDZPFgSaLAyarHUarAyaLA0arA0aLA0ar3fe3yeroUC/AaNOpFcjN0CInQ4ucdA1yM7TNf6drkZ2uSakhb/Fqa4IA6DVK5GXpmAOrG+A5GsVKMrY1Bq4oZTFwRRSIbS11OFxuHKtqhDfE8L2O2n+sFi/8b2PQYYf5WTrMHtcfU87oHTL4kgoBhfbUNlqag1hHm4NZ4cxcCDTnxhrSOxejBhRiZP9CZOk1Ua5p6krEdub1ijDbWgWe2glIOaKYly6eBAHIStMgJ0ODnHTtqaBWhgaF2Xro1Mk1Q2e825pcJkVxrh5KBr1TGs/RKFaSsa0xcEUpi4ErokBsa6khGsnY12w7jHdW7mwzj9XwPvmYfWZ/DO+bD4nQ/pC3eF/kxZooiqioM+Gn0mrsPFSJn4/XwRvmqVCv/AyMGlCI0QMK0Ss/wzfcktoX63ZmsTlR12RBbaMVtY1mGEy2k0GoU0Eps9UBngS3L12nQnGuvnnG0Vw9inPTUZSTlrAzdSbCPk0QBBRk6ZCuU8Xl9Sn6eI5GsZKMbY2BK0pZDFwRBWJbSw1ltU0wWyOTjN3t8eLdlTuxZvuRgHVjBxXh0unDUJit71CZiXCRF08WmxO7jzQHsXYdroLN4QrreRk6FQb2zEHfoiz0LcpC74IMyGXMbxNMpNuZy+1pFZiyoK7R4vd3uN9jNGlUcqRplNCpFVDJZVAo/PNRKeSykzmpTl928m+FDAqZFG6PBw7nyRxYLk9zjizf320tO5Uvq8liR32TNeRkDZ0hAMjN1DYHs3L0KM5rDmrlZ+riPuwwkfZpGWkq5GfqGOROQTxHo1hJxrbGwBWlLAauiAKxrSW/uiZLh/IrhWK2OvDCx5uw/1htwLpLpg3D/MmDOnVxlEgXefHm9nhxsKwOOw5WYsfBStQ2WsJ+rlQioFd+hi+Q1bcoC3mZWl6wntTRdub1ijCYbCeDUZaTwSkrak/+3WS2x6DW/qQSAXqtCnqtEmkaJfQaJfRaJfRald/faZrmf4kSyPR6RTSabW1+jnWNFjRG8LOUSSUoyE5DcY4evQoyMLhXLnrlZ8R0woNE26eplDL0yNEnTHugyOA5GsVKMrY1Bq4oZTFwRRSIbS25mW0OlNVEJhl7ea0Rz374fUAQTCmX4tYLx2P0wKJOl51oF3mJQhRFVNSbsONgJXYerMTh8voODyvTqRV+gay+RZnQqJIrX1CknN7ORFGE2eZEXaMFtU2tek01WlDbZIlKL6G2aFWKU4GoIAGpNI0S6Vol1Ep5SgYim3uvBfZcq24wobLe1OXvQauSY1CvXAzpnYshJXkozE6L6ueYiPs0qVRAUY4e2m76+09FPEejWEnGtsbAFaUsBq6IArGtJS+ny4OjVYaIJGPfcbACLy3fDIfT7bc8J12Duy6fjOK89C6Vn4gXeYnIaLFj5+Eq7DxYiT2l1Z3OWVaYnYa+RVkoztP7EmHnpGuhUckjXOP4cbk9MPkSmzfnlDI7PWgy2VFjMKHGYEJtoyWgTUeSXCZBTvqpGfRyMrRIb+kZ1apXVLyHtSU6t8eLaoMZ5bVGlNc2oezk/7UGS6fzg6XrVL4g1pDeuchJD5zttCsSdZ8mCPDN4kjJj+doFCvJ2NYYuKKUxcAVUSC2teTk9Yo4VmXo8gxkoijii40HsGztnoALxIE9c3DHpROh1yi79BpA4l7kJTKX24NjVY04UtHg+1fX1LUhoVqVAjkZmlMzuqVrkXvy7+x0bVwCLF5RhLNVviSnywOL3XlaknM7TFYHmiynkp7HIr+UACBTr271WZ2aCS8nXYt0nSqsyQmocxxONyrqTX7BrLJaY6eGcOZlaDG4JBdDe+dhcO9c6LVdS2ie6Ps0nUaBwuw0SCUMmiYznqNRrCRjW2PgilIWA1dEgdjWklN5rREmq6NLZThdHrz+xVZs3HsiYN30UX2w6JxREQtkJPpFXrJostibg1jlJ4NZlYaI9SgSAGSkqX3BGb1W2emgzKlg1MmE3i3JvE8Gplon947kTJidoVMrmoNSma16Tp0MUmWna9hbKgGZrQ6U1xlxvLoJB07UYv+xWljsHQtkFufqMaQkD6MGFGJQz9wO58dKhn2aQi5Fjxw9lIrEnJmR2sdzNIqVZGxrDFxRymLgiigQ21ryqT+ZJ6YrDCYbnv9oA0orDX7LJYKAhbNHYObYfhHND5MMF3nJyOsVUVFv9AWyDlc0oKLW2OnhValIIZP6eki17jGVm6FDTroGamXqDJ/srrxeESdqGrHvWC32Hq3BgRN1HQqIputUOHNwMSYM7Ym+RZlh7fuSZZ8mCAIKs3Vd7mFG8cFzNIqVZGxrDFxRymLgiigQ21pysdpdOFHTiK4cVY9UNOC5jzYEDLfRquS4/ZKJGFqS18VaBkqWi7xUYHO4cLTKgKOVhlOzuzVaUG+0wu1JjmNgOAQBviTnaVol0jUqpOu1SNdqkJWuRpZWjtxMLfQaZUomO6fg3B4vjlQ0YP/JQNbh8vqwk7/nZGgwYUhPTBjaM2Ruv2Tbp2WmqTkDaRLiORrFSjK2NQauKGUxcEUUiG0tuRytNMDehaFhG/Ycx2tfbA0IYBRmp+GuyycjP0vX1Sq2Kdku8lKRVxTRaLKdCmY1WVrN8GaFwRS/70Uhk0Ihl0KpkEEpl0KtlEOvVTUHpVpm3zsZoGpZrlUrAoYysp1RWxwuNw6eqMe+YzXYd7QWx6oMYfVK7JGjx/ihPTFhaDHyMv33jcnY1tRKOXrkpkEmlca7KhQmnqNRrCRjW2PgilIWA1dEgdjWkofRYkdFnalTz/V6RXz07R6s2HggYN2IfgW49cLxUZ1xLhkv8robl9uDuibryUCWpcM5g06nkJ0KRCnlsubAlFx2aplC5lseqQTnbGcUDovNiZ9P1GLrzxXYdqAirDxxfQozMWFoT5w5pBiZaeqkbWsyqQSFOWnQqhTxrgqFgedoFCvJ2NYYuKKUxcAVUSC2teQgiiKOVDTA5e7cPuztr3dg1dbDAcvnThyIy6YP73Bi4o5K1os8Si5sZ9RRTpcHuw5XYdPeE9h5qLLd4bQCgIG9cjDpjL6YMKwPtBp5Ura17HQNctI1HDqY4HiORrGSjG2NgStKWQxcEQViW0sODUYragydS8i+ftdR/OfzrX7LZFIJFs8dg8ln9I5E9drFgALFAtsZdYXN4cK2AxX4ce8J/FRaA287ly8yqQQThpdg9pgS9C7IjFEtI0etlKMoJw1yGYcOJiqeo1GsJGNbY+CKUhYDV0SB2NYSn8frxeHyBnjDTC7cWmmlAU+8udavF4Feq8QvL5uMfj2yIljL0DoaUBAEQCmXQaWUQa2QQ6mQwuMR4XR74HJ74HJ74XJ74HR7OvW5UGpi4IoixWR1YMv+cvy47wQOHK9rNyfWgOJszDmzP0YPLIJUIolJHSNBKhVQmJ0GnVoZ76pQG3iORrGSjG2NgStKWQxcEQViW0t8NQYzGowdvwg3Wh149LVVfs+VyyR48Nqz0bsgI4I1bF97AQWZVAK1Ug61UgaVQg6VQhb28EWP92QQy+WF29MczHK7vb4gF89Aug8GrigaGoxWbN5fhk0/leFolSHkttl6DWaO7YupI/tAp06ePFKcdTAx8RyNYiUZ2xoDV5SyGLgiCsS2lthcbg+OVDR0OPji8Xrx93fXY//xWr/lt1xwJiYN7xXBGoandUDB47RDpZD5glQalSyqs1y5PR5Y7W5YbA6Y7U54PDwlSVUMXFG0VTeY8OO+Mny/+zhqDMGPmQqZFJOG98Lscf3RI1cfwxp2nkohQ1GOHgo5hw4mCp6jUawkY1tj4IpSFgNXRIHY1hJbRZ0RRoujw89775ud+HrzIb9lc87sj4WzR0aqah2iT09Hhk4LpVwCidcet7v6oijC5nDDbHPAbHPC6fLEpR4UHQxcUaxI5ErsOlSFLzfsxd7SqpDbDi3Jw+xx/TGif0HEZtCMFolEQEGWDnqtKt5VIfAcjWInGdtaNAJXsoiWRkRE1A3Yna5OBa02/nQ8IGg1qFcOrjj7jEhVLSyCIECvVSIrTQ2dPqPVCVHH31Mk66RRyaFRyZGXCThcblhsTpisTtidLg4rJKKwSCQSjBnUE6MGFuFoWRW+2XIIG/Ycb3Pm171Ha7D3aA3yMrWYNbY/zhrRG2qlPA61bp/XK6KizgSLzYn8rLSozzhLRJRI2OOKEgJ7XBEFYltLXMerG2G1uzr8nMffWAun+1RPosw0NR6+YWbM7qDLpBJkpKmQoVNDJm1OUpwM7czt8cJic8Jsc8JidzLpexJijyuKlbbamtnqwHc7j2LV1sMwmIK3P5VChrNGlOCc8f2Rk66NVZU7TCGXokeOHkoF+yDESzIcOyk1JGNb41BBSlkMXBEFYltLTGabA2U1xo49x+rAo6+vRl2T1bdMJpXggWumo09R9GcQVCllyEpTI02jDBgKmGztTBRFWO0umGwOWGzONntRUOJh4IpiJVRb83i92PZzBVZuOYRDZfVBy5BKBEwf1QfzpwxGhk4d7Sp3iiAIyMvUIjMtMeuX6pLt2EnJKxnbGocKEhERxZEoiqgxWDr0HK9XxEuf/OgXtAKA684bHdWglSAAaRolMtPUCTv0pTMEQYBWrYD25KxgDqcbppN5sewOd5xrR0SJTCqR4MwhxThzSDGOVhqwcssh/Lj3BDyn9eL0eEWs3nYE63cdw8yx/TBv4kDoNMo41bptoiiiusEMq92FgmwdpBJJvKtERBQ17HFFCYE9rogCsa0lnkazDVX1HfsuPlizGys2HvBbdvaYvrj23NGRrJqPVCogQ6dGZpoqrBkBU6mduT0emG1OmK1OWOwu8BQncbDHFcVKR9tak9mONduPYO22IzBa287zp1LIcO74AThn/ICEvBEgl0lQlKNPyLqlqlQ6dlJiS8a2xqGClLIYuCIKxLaWWLxeEUcqGuD2hL+v+nFfGZZ8vMlvWf/ibPz26mm+HFORopRLkaXXIE2j7FDS3lRtZ16vCIv9ZF4sm7ND3xtFHgNXFCudbWsutwcbfzqBT7/fF9BDtoVOrcDciQMxc2w/KOWJNXBFEAT0yE2DTp1YPcNSVaoeOynxJGNbY+CKUhYDV0SB2NYSS12TBXWNbV/MtKWspgmPvbEGTtepZOwZOhUevmEW0nWRS8YuCAIKs9Og13buYqW7tDObwwWztXlIoaPVd0KxwcAVxUpX25rb48V3O0rx6Q/70WS2t7lNuk6F+ZMHY/qoPhG/CdEVggAU5eiRlmDDGlNRdzl2UvwlY1tj4IpSFgNXRIHY1hKH2+PB4XJD2EPPLDYn/vz6atQ0nsqHJZUIuP+a6ejXIzti9ZLLpCjO7drMUt2xnbncHpisThitdubFihEGrihWItXWHC431mw7gi82/AyzzdnmNtnpGlx41hBMHt4rYXJMCQJQkJUW0RskFKg7HjspPpKxrTFwRSmLgSuiQGxriaOqwYRGU9t33k/n9Yp49oPvsftItd/y6+eOwfRRfSJWJ41KjqIcfZfv9nf3duZwutFotqPJYofXy1OiaGHgimIl0m3N5nBh5eZD+HLTAdidbQe6C7J0uHjqUIwbUgyJEP5Q7WjKz9JxxsEo6u7HToqdZGxrDFxRymLgiigQ21picLjcOFppQLhHy2Xf/oTPftjvt2zaqBIsnjs2YnXKSFMhP1MHIQIXSGxnzbxeEWabA41mO6x2V7yrk3IYuKJYiVZbM1sdWLHpAFZtOQynu+3hxj3z0nHp9GEY2b8wYq/bFXmZWmTpNfGuRkrisZNiJRnbGgNXlLIYuCIKxLaWGMpqmoIOEznd1p/L8a9lG/2W9S3Kwu8WTYNc1v4Mf+0RBCAvM7J30dnOAjldHjSZbWiyOJjUPUIYuIo+QQAUMimUChmUchmUCikECHC43HA43XC4PHC4PCk/22a021qj2YbPf/gZa7cfgSdIL82xg3rgmnNGJcRwvZwMDXLStfGuRsrhsZNiJRnbGgNXlLIYuCIKxLYWf1a7C8erG8PatqLOiD8vXQNHq6Ekeq0SD98wKyKBJqlUQFGOHlqVostltcZ2FpwoNs9M2Gi2w2Jzht3rjgJ1l8CVRCJAKpFAJpVAKm1+LBEEeLxeuD1eeDxeuL1eeL1il9qTXCaFUiFtDlCdDFIpZNKwemE6XZ7mYJbLDYez+bHL7UmZ9h2rtlbXZMHy9fvx/e6jbX52WpUcV80agSln9I5I79iuyNKrkZepi2sdUg2PnRQrydjWGLiilMXAFVEgtrX4O1plCCt5t9XuwmNLV6Oq4dT3JJUIuO/qaRjYM6fL9VDIpSjOTYdC3vVeW6djOwuP2+NBk7l5KKEryDAhCq69YIJEIjQHeyTNAZ+Wx63/94peuNxeuNweON0euN1eON2eqOYmEwQ016mlflL/OrWuq1QigUQSfoCidSDL4/HC7RHh8Xjg9oq+QJfXK0Iulfh6USnkzcGqjrxOOERRPBXQatU7y+3xJl0PrVgHSavqTfh43V78uK+szfXD+uTh+vPGICcjvr2eMtJUKMiK7IVkd8ZjJ8VKMrY1Bq4oZTFwRRSIbS2+jBY7KupM7W4niiKe/2gDth+s9Ft+zTmjMHNsvy7XQ6dWoDAnLWozVrGddZzF7oTF5oTb4z0t+MBTqhaCgFYBHQEqTRrkchkkAiC6bAFBn670SPF4TwazXF64Pc1BLZfLA5fH22ZPotN7RZ0eJDt9WXfnOdm2fb3GfL3HRN/fifQbiFfvvuPVjVi6YhtKKw0B65RyKS6bMRwzx/aLa/L2dK0SBdlpce8Blgp47KRYSca2xsAVpSwGrogCsa3FjyiKOFJhCKtnzeZ9ZXjx401+y6ac0Rs3nj+2yxcH2Xo1cqM8vIPtLLLa7EXT5gV/8g3Nahn61l7PqJbtWotnO3N7PPB4RF+vLl60R1fLb8DhcsNic8LqcMHljt05XjyHpXq9Ir7efBAff7e3zQTu/YuzccO8MSjM1se0Xq2laZQoymHwqqt47KRYSca2xsAVpSwGrogCsa3FT4PRihqDpd3tnC4Pfv/vr1HfZPUtKynIxAPXTu9SMnZBEFCYrYNeG/3Evmxn8eH1inC6T+UYcjjdzT2FYniBLwgCZH7BqODD4braK4rtrHtzujywOpyw2FywOpxR7ZmVCPnUqhvMWLpiG/Yfrw1YJ5NKcOFZQ3DehIFx69GnUytQlKOP+JDT7oT7NIqVZGxr0QhcySJaGhERUZLzeL2oN1rb3xDAVz8e8AtaSSUCbrlwXJeCVjKpBD1y9VAr5Z0ugxKfRCJApZBDpfD/nj1e76lg1snk2U63O+wL/dN7RbWVhylYryiiaFHIpVDI1cjQNU9U4XC6YbG7YLU398iKZp6yeMjP0uE3V0/FdztK8cGa3bC1ypXo9nix7NufsGV/GW6YNw69CzJiXj+zzYmy2iYU56YzeEVESYGBKyIiolbqm6xhBQkajFZ8vuFnv2Uzx/br0hAQlVKG4lw9ZNLIJ2Gn5CCVSKBRSaBR+Qe03B6PL6Dl8XghlUr9e0tFoFcUUawoFTIoFTJk6dUQRRF2pxtWuwsWuxM2hzvpEsK3RSIImDG6L0b0K8CbX23HzkNVfuuPVzfhz6+vxnkTB+Kis4Z06YZHZ1jtLhyvaUTPvHQGsYko4TFwRUREdJLL7YHBFN7Qkg/X7oHTdSqHiU6twIVThnT6tfVaJQqy0nj3m9okk0ohU0uhVSviXRWiiBIEAWqlHGqlHNnpGoiiCKvdhUazHWabI+lywZ0uS6/BXZdPxqa9ZXhn5Q6YbU7fOq8o4osNP2Prz+W4Yd7YiMxC2xF2hxsnqptQnJfOiQiIKKFxD0VERHRSXaMlrIukQ2X12PjTCb9ll04f1umggk7DfCNEREBzIEurVqBHrh79emQjL1MLpTy5e6EKgoCJw3risVvPwYShPQPWVzeY8eRb3+Ktr7bD5nDFtG52pxvHqxv9bsQQESUaBq6IiIjQnDzYaHW0u51XFPHuNzv9lhXnpWPayD6del2lXIqiOM4wRUSUqGRSCbL0GvQpykLvggyk61RJPRxWr1HitovG467LJyEzTR2wfvW2I/jTa6twrMoQ03o5XR6UVhrQaI5PMnsiovYwcEVERASgwWQNq7fVht3HUVrpf1GxcPaITvWWkkoF9GByXCKidqmVchRmp2FAcTYKsnVQKZM348moAUX4881zMH1U4A2PGoMFjy1dg5WbD8Y015coiqiqN6OspgluD3tfEVFiYeCKiIi6PbfHgyZz+72tbA4XPvx2j9+ysYN6YEjvvA6/piAARTl6KJJ8CAwRUSxJJAIydGqUFGSiT2EmMtPUkEqTL/ivUclx/dwxuO/qqcjN0Pqt83hFvPvNLjz34QaYw+gJHElmmxOllQaYYvy6REShMHBFRETdnsFoC+vO9hcbfkaT2e77WyaV4MqZZ3TqNfMyddCqmGibiKizlAoZ8rN06N8jG0U5emhPm40zGQzpnYdHb56NGaMDe1/tOFSJh/+zCgdO1MW0Th6PiPJaIyrrjPB4vTF9bSKitjBwRURE3ZrH64WhVTAqmBqDGV/9eNBv2bkTBgTcKQ9HRpqqzfwmRETUcYIgQK9Vomd+Bvr1yEGmXgNJEuXCUspluO68Mbj94glQnzYE0mCy4f+9/S2Wr98Hrze2Uyw2WRw4WmmAxe5sf2Mioihi4IqIiLq1RpM9rIuBD9bshttz6s5zuk6F8ycN7vDraVRy5GfqOvw8IiJqn0IuQ0G2Hv2Kc5GtVydVDsEzhxTjkRtno09hpt9yUQQ+XrcXT723DgZTbBOou9xenKhuQo3BHNOcW0RErTFwRURE3ZbXK4Z1EbDvaA22/lzht+yKGcOhUnQsObBcJkVRjj6pZ8UiIkoGMqkEuZk69OuRhdwMbdLkwcrN0OKBa2fgvAkDA9btP1aLR/6zCrsPV8W8Xg1GG45WGuBwumP+2kREDFwREVG31WSx+/WiaovH68W73+z0W9anMBMTh/fq0GtJJAKK8/SQSXnoJSKKFalEgux0DfoVZSMvUwe5LPH3wS35E++9cgrSNEq/dSarA0+//z3eX7273eNXpDlcHhytMqC+yRrT1yUiSvw9NxERURSIoogGY/sn39/tOIqyWqPfsqvnjOxw/pSinDQo5ck7fTsRUTKTSARk6dXoW5SFgmxdUszoeka/Ajxy4ywM6Z0bsO7LTQfwxJtrUWMwx7ROogjUNlpwrKoRTpcnpq9NRN0XA1dERNQtmawOuNyh71ZbbE7877uf/JZNGt4L/Xpkd+i18jK10KmV7W9IRERRJQgCMnTNAayiHH2Hh3zHWmaaGr9eMBWXTBuG0++XlFYa8KfXVmHzvrKY18vmcKG00oBGc2xzbhFR98TAFRERdUvhDHX4ZP0+mG2nZlNSyKW4fMbwDr1OulaJLL2mw/UjIqLo0muVKCnMRHGeHmqlPN7VCUoiEXDBlMH43aLpATPS2hxuvPjxJrzx5baY94ASRRFV9WYcr26E0eJg8nYiihoGroiIqNsx2xxwtHOCX1FnxJpth/2WnT9pcMBFQygqpQwF2WmdqiMREcWGTq1E74IM9MrPgEaVuAGsgT1z8KcbZ2HUgMKAdWu3l+LPS1ejqt4U83pZ7S5U1BlxqLweNQYzHC4mcCeiyGLgioiIup36ptBDG0RRxHvf7ILHe+rucU66BueOHxD2a8hlEhTncgZBIqJkoVHJ0Ss/Az1y9QmbA0unUeKXl03C1XNGBkz2UV5rxKOvr8bWn8vjUjePR0SD0YbSCgOOVTWiyWyH18teWETUdQxcERFRt2K1u2BzuEJus+twFfaUVvstu3LmiLAvZARBQI9cPWTSxLzwISKi4NI0SvQpzERepg5SaeLdfBAEAbPH9cfvr5uBvEyt3zq7041/LduID9bshscb21kHW7M5XKisN+FQeT2qGkywO0Mfd4mIQmHgioiIupX2ZhJ0e7x475tdfssG9crB2EFFYb9GYXYaVIrEHW5CREShCcKpWQiz9OqAxOiJoHdBJh6+YRYmDu0ZsG7FxgP4x3vrYbTY41CzU7xeEY0mO45WNqK0ogENRltcA2pElJwYuCIiom7D4XT7JVtvy6qth1DdanpxQQAWzh4Z9pC/7HQN9FrOIEhElAqkEgnyMnXoU5gFnUYR7+oEUCvluOXCM7FozkhIJf7HqX3HavGn11bjcHl9nGrnz+HyoMZgxqGyBlTUGWGxhz4eExG1YOCKiIi6jfp2elsZLXYsX7/Pb9n0UX3QKz8jrPJ1GgVyM7Ttb0hERElFIZeiODcdPfPToVLI4l0dP4IgYNa4/vjdounI0Kn81hlMNjz51rdYs+1wwsz6J4oijBYHTlQ34XB5A8w2R7yrREQJjoErIiLqFpwuD0zW0CfHy777CTbHqdmQ1Eo5Lp42LKzyFXIpirL1XaojERElNq1KgZLCTBRmpwUkR4+3/sXZePjGWRjUK8dvuccr4s2vduCVz7Yk3Ix/LrcHZTVGVDWYmMidiIJKrL0tERFRlNQbrQh1s/l4dSPW7Tjqt+yis4ZArwlv2F9+lg4SSQImQSEioohL16nQtygLORmahJo9Nl2rwm8WTsV5EwJnwd2w5zj+8sZa1LQaDp8oGk12lFYa2p08hYi6JwauiIgo5bk9npAJakVRxDsrd6J1XKsgS4eZY/uFVb5Oo4BWlXi5T4iIKHokEgE56Vr065GJ9ATKbSiVSHDlzBG445IJUJ42rLGspgl/em01dhysiFPtgnO5PThe3YjaRkvCDGskosTAwBUREaW8BqMtZG+rrT+X48CJOr9lC2aPDGsYiCAAeRm6rlaRiIiSlEwqRWGOHiWFGVDKpfGujs+4wcX44+KzUZid5rfc5nDhnx9uwLJvf0q44XmiCNQ3WXGsqjHhhjUSUfwwcEVERCnN4/Wi0Ry8t5VXFPHJOv+E7Gf0zceIfgVhlZ+VpoYigS5UiIgoPlQKOUoKM5GlV8e7Kj6F2Xo8dP3ZGDe4R8C6z37Yj6f/u77d/I/xYHe6cbSyEQ1GW7yrQkQJgIErIiJKaQaTLeQd5R0HK1BeZ/T9LQjAgtkjwipbJpUgO52zCBIRUTNBEJCXqUPP/HTIZYlxqaVWynH7xRNw1awzIDktH9dPR2vw6GurUVppiFPtghNFETUGM45XN8Ll9sS7OkQUR4mxNyUiIooCr1eEwRT8bq0oivjs+5/9lk0Y0hOFYc4OmJuhZUJ2IiIK0DL7YKLkvhIEAeeOH4j7rp4K/Wl1qjda8cSba/HtjtKEzC1ltbtQWmkImauSiFIbA1dERJSyGs12eDzBT8J/Kq3B0Sr/u8zzJg8Kq2yVUoZ0napL9SMiotQllUhQmKNHj1w9pNLEuMkxqFcuHr5hFvoXZ/std3u8WLpiG177YhucrsTr3eT1iqioM6G81gi3xxvv6hBRjDFwRUREKUkURRhM1pDbfPbDfr+/Rw8sQnFueljl52cyITsREbUvTaNEn8JM6NSJMftsZpoav716GmaP6x+wbv2uo3j8zbWobbTEvmJhMFkdOFppgMXmjHdViCiGGLgiIqKUZLQ44HIHvyt74ERdwEyC8ycPDqtsvVYJtVLepfoREVH3IZNKUZyXjoJsHQQh/r2vZFIJrp4zErdeOD5ggpHj1Y149LVV2HW4Kk61C83t8eJETROqGkwJNysiEUUHA1dERJSS6o3t9Lb63r+31bA+eehTmNluuc2Jd5mQnYiIOi5Dp0afwkyolLJ4VwUAMHFYTzx0/dnIz/LvRWyxu/Ds+9/jk3V74U3AvFcA0Giy43BFPWoMZjhc7nhXh4iiiIErIiJKOSarI2SOjtJKA/aUVvstC7e3VXa6GjKptP0NiYiI2qCQS9E7PwM5GRokQOcrFOem44+LZ2LMwCK/5SKAT9bvwz8/+AHmBB2a5/GIaDDaUFphwNEqAxrNoWcSJqLkxMAVERGlnPZ6W31+Wm6rAcXZGNQrt91y5TIJstI0XaobERGRIAjISdeid0FGwFC9eFAr5bjz0om44uzhAcG0XYer8Ojrq3CsqjEudQuX3eFGVb0Zh8rrUVlvgs3hineViChCGLgiIqKUYrE7YXcEHzJQXmvEtgMVfsvC7W2Vm6GDRJIAt8eJiCglqBRylBRkIjNNHe+qQBAEzJ04CL9ZMBVpGqXfurpGKx5/cw3W7Toan8p1gNcroslsx7GqRpRWNKDBaONMhERJjoErIiJKKQ1N7fS22uDf26p3QQaG981vt1yNSg69VtnudkRERB0hkQjIz9Khd0FGQkz8MaQkDw/fMBN9i7L8lrvcXrz2+VYsXbENLnfw4fiJxOHyoMZgxuHyepTXGjkbIVGSYuCKiIhSht3pgsUefGhAjcGMTXtP+C2bP3lwWDM85Wfq2t2GiIios9RKOXoXZKAoRw+5LL7DB7P0Gvxu0TScPaZvwLpvd5Tiybe+RX07N4oSiSg25788UdOEw+UNqGuywO1JjuAbEQGJMZ0FERFRBDQYbSHXf7HhZ7SeHKlHjh6jT0tG25Z0nQpKBQ+ZREQUfXqtEmkaBQwmG+qarHFLNi6XSXHtuaPRrygLb3y5Hc5WvaxKKw3402urcNtF4zGsT/u9lhOJy+1BXaMVdY1WSCQCZFIJpBJJ8/9S4dTjVsta/qaOEUURVocLVnvzP5fbg3SdCplpKk50Qx3Cs3AiIkoJLrcHJqsj6PoGoxXf7z7mt2zepEGQtNPbSiIRkJuhjUgdiYiIwiEIArL0Gui1KtQ1WdBktvvdeImlyWf0Rs/8DPzrow2oabT4lpttTvzjv+txybRhYR1PE5HXK8Lp9QBov/eVIMAXzFKqXdCqlUjXqaJfySRj8wWqnLA63BBPa7j1TVY0GK1I0yiRmaZOiOGxlPgYuCIiopRgMNlCntR/uekAPK3uWudmaDF+aHG75eakayCT8i4rERHFnkwqQUFWGjLT1Kg1WGCOU46mnnnp+OMNM/HKp1uw41Clb7koAsu+/QlHKhpw8/xx0KgUcalfLIgi4PZ4m/8JDtgcbtQ1mqCVi8hOV3fbHkQOpxsWuwtWhxNWuyusHoKiCBgtDhgtDqiUMmSlqZGmUYaVuoG6J56JExFR0vN4vWg024OuN1rs+G7HUb9l8yYNarfbv0IuTYiZnoiIqHtTymUozktHz7x0KOXxCZBoVAr83+WTcOn0YTg9vLDjYCUefW01TtQ0xaVu8eIVRRhMNhwub0BlvQlOV+rnzXK5PWg021BRZ8ShsnqUVhpQYzDDbHV2alir3eFGRZ0Jh8sbUN9k5QyQ1CYGroiIKOk1me0hT5a+3nzILzdHZpoak4f3arfcvEwt7/4REVHC0KoVKCnMREG2Li69gSWCgPmTB+NXC86CTu3fu6qm0YK/LF2DDXuOx7xe8SaKzecipZUNqKgzwuF0x7tKEeV0eVDXZEFpRQMOlzegqt4Mo8UR0SCT2+NFbaPFFwRMtc+QuoaBKyIiSmriybudwVhsTqzeethv2XkTBrQ7Y5NOrYBOrYxIHYmIiCJFEARk6NToU5SJbL06LjdYhvXJx8M3zEJJQabfcqfbg39/uhlvfbW9W/acaRkCV1ppQFlNE2yO4DMdJzq3x4MGoxVHqww4UtGAukYrHDHoUSaK4skgoAHHqxtD5i+l7oM5roiIKKmZrA643MFPjldtPQx7q7t2aRolpo3qE7JMQQByM5mQnYiIEpdUIkFupg4ZaWrUGCwxv8DPTtfggWun452VO/HtjlK/dau3HcGxqkbcfskEZOk1Ma1XojDbnDDbnNCo5MjWa6BVJ37+L7fHC5PVAZPVAas9/kG3ltkI5TIpsvRqpm/oxtjjioiIklqDMXhvK7vTjZWbD/ktO2f8ACjloe/bZOjU7W5DRESUCOQyKXrk6pGfpUOsO1/JZVJcP3cMbjh/bMDQxcMVDXj0tdXYd6wmtpVKMFa7CydqmnC00pCQvYc8Xi+azHaU1TThcHk9qhvMCRG0as3l9qC6wQy7M7HqRbHDwBURESUti93p15vqdGu3H4HFfmoGJo1Kjplj+oYsUyoVkJPRPe8OExFR8spMU6NXfkZccl9NHVGC3183Aznp/sdPo9WBp95dhxUbf4YYaurfbsDudKO81ogjFQ1oNNvgcscvkbvXK8JocaC81ohDZc05pcw2Z8jZmRNBfVPwm5WU2ng7OUrMZjOWLl2KlStX4sSJE/B6vejRowdmzZqF66+/HllZWd2yLkREkdTQZA26zuX24KtNB/2WzRrbD2qlPGSZOenadmcbJCIiSkRqpRwlhZmoqDPGvNdM74JM/PGGWfj38h+x+0i1b7koAh+s2YMjFQ248fxx7R6HU53T5UFVvRkAIJNKoFLKoFbIff9LJJHvNudye+BwueFwNv9vtnVuBsB4M1kdcLo8UMRpZk2KH0Hs7qHvKDh8+DBuueUWlJeXt7k+JycHL774IkaMGNGt6hKK02aCKCZHAke5SgeJRAqv1wOX3Rzv6lAKY1sLzeF0o7TSEHT96q2H8dbXO3x/K+VS/O2OudBpgidcV8ql6FPUvYL5bGcUC2xnFCtsa81EUURdowX1IYbTR4tXFPHp+n1Yvn4fTr/QLMjS4c5LJ6FHrj7m9YokmVINiSCFV/TA7YjcZywIgEImhUoph0bZHMzqSOoCt8cLh8sNp8s/UJWMQapg0nUqFGanxbsaMZOM+zRBkEChjux3xMBVhJnNZlx00UUoKyuDXC7HPffcg/nz50OlUmHLli34f//v/+H48ePIycnBxx9/jNzc3G5Rl/YwcEUUiG0ttMo6I5osbeeKcHu8eOClr1DfqkfWueMH4KpZoYP0PfPSkyJ5aiSxnVEssJ1RrLCt+TNZHaisN8UlcLHrcBX+vfxHWE7r+aWUS3HDvLEYP7RnzOsUKdEKXLVFIhGgVsigUsqhVsqgUsghEYTTAlRuOFyebjGToyAA/XpkQSbtHr2uknGfFo3AFcdCRNirr76KsrIyAMBf//pX3HzzzSgoKEBGRgZmz56NO++8EwBQV1eHF154odvUhYgoktweD4whEpxu/Om4X9BKJpXg3AkDQpapUsq6XdCKiIhSW5pGid4FGVDGYWjViH4F+OMNs9ArP8NvucPlwZJPfsS73+zsFoGWrvJ6RVjsLtQ3WVFWY8ShsnocOFGHY1WNqKw3ocFog8Xu6jafpSiGnpiHUhMDVxHk8Xjw7rvvAgBGjx6NefPmBax/6aWXfH8vW7YMNlt0fnSJVBciokgzGG1BE4h6vSI+3/Cz37KpI0qQoQs9hfLpCWWJiIhSgVIuQ++CTOi1wYfKR0tuhhYPXjsDZ43oHbBu5eZD+Ns736HRzGsQ6hiDyd5tAnXUjIGrCNq2bRsMhuZ8K3Pnzg1Y/9FHH+HIkSO47LLLAAB2ux3r169P+boQEUWS1yvCYLYHXb/l53JUN5zqSi2VCJg7cWDIMpVyKXTq2J/QExERxYJEIqAoR4+8TB2EyOf+Dklxcmjg9XPHBMx4eLCsHn/6z2rsPVoT20pRUhNFkQHPboaBqwjas2eP7/Ho0aP91tlsNjz33HMYOXIk7r777jafk6p1ISKKpEazPWiuDlEU8dkP+/2WTRzWCzkZ2pBlZqeHXk9ERJQKsvRq9MzLCAggRZsgCJg+qg8euGY6svT+PaCbLHY89e46vLNyJ5wuT0zrRcnLYLKlVNJ5Ci38KQqoXUeOHPE9Li4u9lu3dOlS1NTU4KmnnkJ+fj5kMhncbrffc1K1LuGQKZNniI4gSHz/y1W6ONeGUhnbWiBRFGFy2iBTtj3sb/vPZSirafL9LQC4cPqIoNsDgEIuQ3Z2dqSrmjTYzigW2M4oVtjW2peuArQ6Pcpqm2BzOGP62gP69MCfbzsfL370PfYcqfRb982WQ9h7tBa3XToZfYoS+7gsnOz/IUAS8hyDosviliBLn9o3H7lPa8bAVQQ1NDT4HmdmZvoeGwwGvPLKK5g2bRomTJgAANDr9WhoaPAN50vluoRDIkm+WSEEQYAgJF+9KfmwrZ1itNjh8QCSNj4PURSxfJ1/z9Hxw0rQIzcrZJm5Gfqk3AdFGtsZxQLbGcUK21poCoUUfYpyUGMwoaHVZCaxkK7T4rfXzsZHa3Zi+bpdfjkrK+qa8OgrX+KSGSNxwVlnQBrjnmEdJQgCBLCdxYvB5EB2ehqEWI9/jYPuvk+LaeDK6/Vi3759+Omnn1BWVoba2lpYrVa43W6oVCqkpaWhoKAA/fv3xxlnnIH8/PxYVq/LWpKbKxQKvx/PkiVLYDab8etf/9q3TKFonrnKao3OgSKR6hIOrzd5ugULggSCIEAURYgikwJS9LCtBaozGOEV295f/HSkEofL6vyWXTB1WNDtAUAulSJNI0+qfVCksZ1RLLCdUaywrXVMboYWSrkUlXVN8Aab9SQaBOCymSMwvF8BXvrf96hrtPhWebwiPly9A9sPlOG2SyajIFsfu3qFSUCrdga2s3hxujwwmCztTsCTzJJ1nxbpm8IxCVz9/PPPeP3117F69WoYjcawnzdgwABcfvnluPzyy6HRJM9QMonk1J2B8vJyvPPOO5g/fz4GDx7sW+71xqbRJVJdQnE7rEnzQ5SrdBAEKUTRC5fd3P4TiDqJbc2f1e6CyRT8GPLJt7v8/h7ZvwBFmSq4HcGTd2Zn6eB2WIKu7w7YzigW2M4oVtjWOk4tBYoyFSirMcZ8prZ+BWn4042z8N6qXVi386jfusNldXhoyee4auYIzBjdJ6F61ciUagiQQoQ35HkGRV91jRNaWeje9cksGfdpgiCBQp0W0TKj2vfyp59+wk033YSLL74YH3/8MZqamk5GCsP7d/DgQTzxxBOYMWMGnn32WTgcjmhWt8tagmsul8u37JlnnoEoin5J0AH43ku0AnKJVBciokhoMAbvFXqsyoD9x2r9ls2fPDjI1s1kUgnStaqI1I2IiCiZqRRy9C7IgFIe+6FIaqUcN8wbi19eNglpGv8Zfp0uD978ajueef97ziJHbXK6PDBZEztOQF0XlR5XXq8XL7zwApYsWQKPxwPxZLdTlUqFsWPHYsCAASgpKUFmZibUajXkcjlMJhNMJhMaGxuxd+9e7N69G8ePHwcAGI1GLFmyBF999RX+3//7fzjjjDOiUe0uy8pqjvR6PB6YTCaUl5fjs88+w6JFi9CzZ0/fdi6XCyaTye85qVwXIqKucrjcMNuCJ5BdufmQ39+De+eiX4/QiV2z9GpIJIlz95aIiCie5DIpehVkoLzWCKvd1f4TImz0wCL065GF11dsw46D/onbdx+pxh9f+QbXnTcG4wb3iHndKLHVG60BQU9KLREPXDU2NuL222/Hjh07IIoiBEHA1KlTsWjRIkyePNmXTykcVVVVeP/99/HRRx+huroaR44cwcKFC/HAAw9g0aJFka56l/Xt29f3uLy8HE899RTUajXuuOMOv+0qKyt9w/P69OmT8nUhIuqqBmPwu6xNZjs27T3ht+ycMweELE8qFVI6HwIREVFnSCUS9MxLR1W9CU2W2Pdi0WtV+OVlk7B+1zG8881OOJxu3zqzzYkX/rcRk4b3wqI5o6BRyWNeP0pMdocbFrsTWlX4sQZKLhEdKlhVVYVFixb5glajR4/Ghx9+iH//+9+YMWNGh4JWAFBQUIC77roLq1atwr333guVSgW3243HHnsMzz77bCSrHhHDhw/3PV66dCnWrVuHG2+8MaAn07Zt23yPo9V7LJHqQkTUFW6PF8YQJ89rth+Bx3sqoWxephYj+heELDMzjb2tiIiI2iIIAgpz9MjJiE8aEUEQMHVkCf504ywMKA7sPb1hz3H88dWV2HesJg61o0QV69kxKbYiFriqqKjAwoULcfjwYUgkEvzqV7/Cu+++i2HDhnW5bJlMhttuuw2ffvophg0bBlEUsWTJEvzlL3+JQM0jZ/To0cjMzAQALFu2DNnZ2bjhhhsCtvvyyy8BNA+dnDJlSsgyRVHEM888g8mTJ2PKlCl47rnn4lYXIqJ4MJhsviHnp3O5PVi77Yjfstnj+kMSIoGrRCIgM429rYiIiELJSdeiKCcN8cqJnpepw+8WTccVZw+H9LSbTQ1GG/72zjq8981OuNzdd2ZgOsVid8HujP0QV4qNiASuGhsbcfPNN6OyshIajQYvv/wybr311kgU7adnz5545513cO6550IURbz11ltYsmRJxF+ns6RSKRYuXOj7e/HixdBqtX7b/PDDD1i7di0A4LLLLoNaHfri6ZNPPsGLL76I+vp61NXV4fnnn8fy5cvjUhcioljzesWQyVh/3FsGY6uEnGqlDFPO6B2yzEydClJJVOcmISIiSgl6rQrFeelx66UskQiYO3EQ/rB4Jnrk6gPWf735EP746jf4qbQ6DrWjRFPfxAT+qarLZ+4ejwe33XYbjhw5goyMDCxdujSqPXeUSiWeffZZLFiwAKIo4tlnnw0rkBMrN910E4qLiwEAb7/9Nr744gs0NDSgrq4O7777Lu68806IooicnBzcfvvt7Za3e/fugGU7d+6MS12IiGKtyWKHx9N2bytRFLFyy0G/ZVNHlECtDJ7zQhAEZOo5gyoREVG4tCoFehdkQC6L/YyDLXrlZ+CPi2fivAkDcHoIrbrBjL+/tx5LPt4Eg4mBi+7MZHXA4XK3vyElnS4nZ5dKpbjwwgtRWlqKV199NSJDA8PxyCOPwO12Y8uWLRg/fnxMXjMcOp0OL7/8Mm655RaUl5fj3nvvDdgmJycHL774InJzc9stb8SIEQHLRo0aFZe6EBHFWqik7AdO1OF4dZPvbwHAzLH9QpaXoVNBJmVvKyIioo5QymXoXZCBstom2B3xCQzIZVJcOXMERvYvxCufbUH9aTmNftxXhl2Hq3Dx1KGYNa4fe1d3Uw1GGwqz0+JdDYowQQyWOKSDmpqakJ6eHomiOsRkMiEtLfEaptlsxtKlS/H111/jxIkTEEURRUVFmDVrFhYvXhyQJD2Yll5l//3vfyEIAhYuXIhf/vKXcalLNDltJoiiN97VCItcpYNEIoXX64HLbo53dSiFdfe2ZrI6UF5rDLr++Y82YNuBCt/fowcW4ZeXTQq6vSAAfYuy4nrHOBF193ZGscF2RrHCthZdXq+IinojzFZnXOthc7jw/urd+G5HKdq6mC3O1eOac0djYM+cqLy+TKmGRJDCK3rgdrCXVyJJtfO9ZNynCYIECnVkYzQRC1wRdQUDV0SBuntbO1bVCJuj7SSbtY0W3L/kS7Q+gv326mkY3Dt479F0nYp34NrQ3dsZxQbbGcUK21ps1BjMIXtFx8qRiga8+dV2HKtqbHP9lDN644qzh0OvVUX0dRm4SmyZaWrkZ+niXY2ISMZ9WjQCV+w/SURECcfmcAUNWgHAqq2H/YJWPfPSMahX8LuqggBkM7cVERFRRORl6pCfpYvbjIMt+hZl4Q/Xz8Sic0a1mePy+93H8ODLX2PNtsPwetlfo7toNNvh9iRHpwgKDwNXRESUcELdxbU5XFi386jfstln9ocQ4uw5TaOEQp4aXcaJiIgSQWaaGj1y9SGPv7EgkQiYNbYfHr/tHEwe3itgvdXuwptf7cBjS9egtNIQhxpSrImiyET9KYaBKyIiSihOlwcmqyPo+h92H/PrjZWmUWLi0J4hy2RvKyIiosjTqZXoXZAOuSz+l5XpWhVuvuBM/G7RNPTI0QesP1plwGOvr8YbX26DxRbfHF0UfY1mG3vZpZD472GIiIhaCXWHzCuK+GbLYb9lM0b3CZmAU6dRQKno8iS6RERE1AaVQo7eBZltDtWLh0G9cvHwjbNw5cwzAo7/IoC120vx4MtfY/2uo/Ay3XPK8nhENJrZ6ypVMHBFREQJw+3xotFsD7p+9+EqVBtOJaaUSgScPaZvyDJz0tnbioiIKJpkUgl65acjXauMd1UANNfnvAkD8Zdb5mDc4B4B601WB/7z+VY88cZabPzpBFxuTxxqSdHWYLSBc9GlBt6CJiKihGEwhT7B+GbzIb+/xw/piQydOuj2WpUcKkVi3AEmIiJKZYIgoDBHD6XCitpGCxIhXpCl1+COSyZiz5FqvP31Dr+bXwBwuKIBh5f/CK1KjknDe2HqyD7omZcep9pSpLk9XjRZ7CHPFSk5xD1w5fF4cPDgQVRXV8NkMsHtduPiiy+Od7WIiCjGvN7QXbrLa4346WiN37I5Z/YPWWZ2ujYidSMiIqLwZOk1UMplKK8zJkyOoeF98/HozbPx5aYD+OyH/XC5/Wecs9hd+GbLYXyz5TD6FGZi6sgSTBjaM2GGP1LnNRhtDFylgLgFrrZv34433ngDa9asgcPhn4S3rcDV8uXLMXr0aPTsGToBLxERJadGsx0eT4jeVlv8e1v1L85GSWFm0O3VSjk0Kp5wEhERxZpWrUDvggyU1xrhdCXGMDy5TIoLpgzBxGG98O43O7HjYGWb25VWGlBaacB7q3Zh/JBiTBvZB/16ZMV99kTqHKfLA6PFAX2CDGOlzol54EoURfzlL3/BO++8A1EUA4aEtLVDePrpp/Hyyy9j4sSJeO2112JVVSIiipHmaYutQdebrQ78sOeY37Jz2ultxdxWRERE8aOUy9C7IAMVtUZY7K72nxAjuRla3HX5ZJTXGrFuZyl+2HMc5jZmGXS6PFi/6xjW7zqGwuw0TB1Zgsln9IZewwBIsmkwWhm4SnIxD1z94Q9/wEcffQRRFFFUVIQLLrgAQ4YMQWlpKZ599tk2nzN27FiIooiNGzdi165dGDFiRIxrTURE0WSyOgK67bf27c6jfuuz9RqMHlgUdHuVQgatWhHROhIREVHHSCUSFOelo7bRggZjYs3w1iNXjwWzR+KyGcOx/WAl1u0oDUhJ0KKy3oT3V+/GR2v3YPTAIswYOwgj+vcA2AkrKdidbljsTmhVPDdMVjENXP3www/48MMPIQgCrrzySjz00ENQKJobz9q1a4M+b9q0aRgyZAj279+P5cuXM3BFRJRiQp3Muj1erN562G/ZzLF9IZUEnxg3m72tiIiIEoIgCMjL1EEpl6GqwZQQSdtbk8ukGD+kGOOHFKO20YL1u45i/a5jMJgCz008XhFb9pdjy/5yZKdrMXJAEQb3zMKgXrlIY0+shGYw2hi4SmIxDVy9//77AIAhQ4bg0Ucf7dBzZ82ahX379mHz5s3RqBoREcWJxeaE3ekOun7bz+V+J48KuRTTRvYJur1SLuXJIxERUYJJ16kgl0lRXtcUMqdlPOVmaHHJtGG46Kyh2FNajXU7S7HjYCU8bSSZr2+yYPWWg1i9pfnvXvnpGNw7D0N752JAzxwmdk8wZpsTDpcbSnnc56ejTojpt7Zjxw4IgoBLLrmkw8/t06f5IqWioiLS1SIiojiqNwbPbQUAKzf7J2WfMrx3yGGA7G1FRESUmDQqOUoKMlFeawx50yreJBIBI/oVYES/AjRZ7Phh9zF8t/MoqhvMQZ9zvLoJx6ub8PWPByGVCOhTmIXBvXMxtCQP/XpkQS6Txqz+oijCaHGgttGC2kYL6ppO/t9ohcFsC8gz3RGZaWqMHlCE8UOLk262vgajDYXZafGuBnVCTANX9fX1AIDCwsIOP7dlSKHNllhjo4mIqPPsThesIRK2Hi5vwOGKBr9ls8/sF3R7uYy9rYiIiBKZXCZFr/wMVNabYLI62n9CnKVrVZg7cRDOmzAQB8vqsW7nUWzeVwanO/hsiR6viEPl9ThUXo/PftgPuUyCAcU5GFKShyG9c1FSkAmJpGsJsmwOl19gqq7R6vu7vskasn5dUWOw4Ofjdfjvql0Y1DsXE4b2xNiBRdAlwfmX0eJAboYWMmnwdBOUmGIauFKr1TCZTL4AVkeUlpYCADIyMiJcKyIiipf6ptA3I77Z4t/banjffBRm64Nun5mm4nTVRERECU4iEdAjV+8LsiQDQRAwsGcOBvbMwfXzJ+LgiTrsOVKBnw5X4kR1I0L1YXK5vdh7tAZ7TyZ/Vytl0GtVnauI2DzszWIPnAkxlkQA+4/VYv+xWrz11XYM65OPCUN7YvTAIqgUiTkcTxRFNJptyEnXxrsq1EExbVGDBg3Cli1bsHLlSlx11VVhP08URSxfvhyCIGDo0KFRrCEREcWK0+WB2Rb8TqvBZMOW/WV+y+aM6x90e0EQkK7r5EkgERERxVxuhhaiKCbcjIPtUSnlGDmgGGf0L4TbYYPZ6sD+43XYd6wG+47WoCrEkEIAsDncsDlCb5NMPF4Ruw5XYdfhKihkUozoX4AJQ3tiRL+CmA6RDEejyY5svYY3OpNMTANX8+bNw+bNm/H999/j448/xsUXXxzW8/75z3/i0KFDEAQBc+fOjW4liYgoJhpM1pAzC63edtgvGWphdhqG9c0Pun26ThlypkEiIiJKPLkZWjicblhCpA5IdDqNEuMG98C4wT0ANN9823e0BvuO1WLfsZq4BObUShly0rXIydAiN0OL3HQNcjK0yE7XQN7JoXIujxd7jlRj094TOFbV2OY2TrfHN/OiWinDmIE9MGFoMYaU5CXEeZrb44XR4uDNziQT08DV5ZdfjrfffhuHDh3Cgw8+iD179mDhwoXo16/tfCX79u3DK6+8gi+++KK5a+bAgbjwwgtjWWUiIooCt8eLJnPw3lZOlwffbi/1WzZ7XD9IQtwdy0xLrgShRERE1NxjuihXj2NVjXC6opOXKdYy09SYfEZvTD6jN0RRRI3B0twb61gt9h2tgdnW9WF+UolwMjClaQ5MZWhPBarSNdCqFVHpVVScm47zJgxEVb0Jm/aewKa9J4L2MLM53Ph+9zF8v/sY0k4G9+aM64+COCdIbzBaGbhKMoLYlSkFOqGqqgoLFixAVVWV74ekUqmgVCrR2NgIQRDQq1cv1NfXw2KxAGgeKpifn4/3338f+fnB77ZT8nLaTBBFb7yrERa5SgeJRAqv1wOXPXW6+FLiSeW21l5Oi+92lOL1Fdt8f2tUcvz9znlQBsmZoFHJ0Ss/I9LV7BZSuZ1R4mA7o1hhW0teTpcHR6sM8HpjennaKTKlGhJBCq/ogdvRsd5UXlFEQ5MVLk/nr32UcikydOouJ3iPBFEUcaKmCZv2nsCPe8vanS1aLpPg9osnYNSAohjVsG0989OhVQWfpTpRJOM+TRAkUKgjG5yMeeAKAKqrq/HYY49h5cqVpypyWjS4dbWmT5+ORx55pFOzEVJyYOCKKFCqtjWvV8Thinp4PG0ffkRRxB9f/QbltUbfsvMmDMSVM88IWmaPXD1nE+ykVG1nlFjYzihW2NaSm8XmRFltU8hUAomgK4GrVOYVRRwpb8CmvSeweV8ZjEFmjZQIAhbPG4OzRpTEtoKt6NQKFOelx+31w5WM+7RoBK7iku4/Pz8fzz33HLZv344vvvgC3377LSoqKuB2u5srJZMhPz8f06ZNw7nnnouJEyfGo5pERBQFjWZ70KAVAOw7VusXtJIIAmaNbXtIOdB8545BKyIiouSnVSuQm6FDjSE5LtDJn0QQ0L84G/2Ls7Fg9gjsP1aLTXvLsPXnctgcp3KYeUUR//l8K0xWB86bMDAuidLNNiccLjeU8sScAZH8xaXHVTAGgwEAkJmZGeeaUKyxxxVRoFRsa6Io4khFA1zu4L/3f37wA3YcqvT9PW5wD9xxSfAbGHmZWmTpNRGtZ3eSiu2MEg/bGcUK21pqqKw3oclsj3c1gmKPq45xuT1Yu70U763aGdCb7pzxA3DlzDNC5jGNlow0FQqy4ptvqz3JuE+LRo+r+Kf1byUzM5NBKyKiFGayOkIGraobzNjZKmgFAHPO7B90e0EQmFyTiIgoxRRk6aBWyuNdDYoQuUyKOWf2xx2XTITstBkNv/7xIF79dAvcXcj51VlNZkdcXpc6LqECV0RElNramw561dZDaH0jrndBBvr3yA66vV6rTIiplYmIiChyBEFAj1w95DIe41PJ2EE98KurzoJa6T88b8NPx/HPD3+Aw+mOaX1EUUSjmT3mkgH3BEREFBMWmxP2ECckVrsL63Yd81t2zpkDQuY9yEpTR6x+RERElDhkUgmKc9Pjkv+Iomdw71z8btF06LX++Un3HKnG395dB3OQhO7R0miyI4GyJ1EQDFwREVFMtDc98ve7j/rdaUvXqnDmkOKg22tUcigVTKhJRESUqpQKGYpyEjsHEXVcr/wMPHjtDORlaP2WH6lowBNvfYv6ptDnjJHk9nhhtMQ2WEYdF9Mz/uuuuy5gmSAI+Mc//oHs7OBDQYiIKLnZnS5Y7a6g672iiNVbj/gtO3tM34A8CK1lsrcVERFRykvTKJGToUFdY+yCGRR9eZk6PHDdDDz93+9xvLrRt7yy3oTH31yLXy04Cz1y9DGpS4PRypypCS6mgasff/wRgiD4dcUTBAEOByOcRESprL4pdP6AvaXVqG419bVUImD66D5Bt5fLJNCpFRGrHxERESWunHQtnC4Pe8akmHStCr9bNA3Pf7QB+47V+pYbTDY8+eZa3H3FFPQvjn4HF4fLA4vdCa2K55aJKqZDBVvGJw8YMABnnnkmzjzzTIwbNw5KpbKdZxIRUbJyujww20KfaJ7e2+rMIcVI1wa/85WhUzPnBRERUTdSkJUGFVMEpBy1Uo57rpyCcYN7+C232F146t11AbNNR4uhnQmEKL5i+svX6/UwGo249dZbccEFF8TypYmIKE4aTFaEynlZ12gJOCmZOaZf0O0FQWB3biIiom5GIhFQnKfH0cpGuD3eeFeHIkguk+IXF03A2+odWLP91M1Mp9uD5z7cgBvOH4spZ/SOah3MNiccLjeUcgZHE1FMe1wNHjwYQPOQQSIiSn1ujxdN5tC9rdZsP4LWca3eBRno1yMr6PZ6rTJk7isiIiJKTTKpFD1y9ex1nYIkEgHXnDsKF501xG+5VxTx6mdb8OWmA1Gvg8HEXleJKqZn/ldccQVEUcQnn3yCgwcPdui5a9euxZAhQzB06NAo1Y6IiCLNYLKFnGLY6fJg3c6jfstmjukX8oQ0i0nZiYiIui21Uo7CbF28q0FRIAgCLpo6FNeeOxqnnwm+v3o33l+9C95Q3fi7qMnsYG++BBXTwNX8+fNxySWXwOl04pZbbsG+ffs69HxRFENeABERUeLwekU0mkPfufpx3wmYbU7f31qVHOOHFgfdXqOSQ8n8FkRERN2aXqtCtp43slLV2WP64vZLJgT0sP9y00F8ur5jMYSOEEURTWZ71Mqnzov5WIsnnngCt9xyC+rq6nDFFVfgySefRHV1dayrQUREUdZotsPjCX6zQRRFrNp62G/Z1JElIXMLZOh4kkpERERAbqYOei0n+UpV4wYX496rpgQk5P98w8+oaTUTdaS1N1qA4iPmt63dbjeuvPJK5OXl4e9//zuWLl2Kt956CxMnTsSoUaOCPu/o0aMxqyMREXWNKIowmKwhtzlSYcCxqkbf3wKAGaP7Bt1eLpMgTcNpiomIiKhZUY4eaqUNNQYLgw0paEjvPPxu0XT8/b11vh76bo8X76/ejf+7bFJUXtPt8cJocXAioAQT08DV1KlTUV9fH7BTcbvd+P777/H999/HsjpERBQlJqsDLnfoHAGrt/n3tjqjXwHyMoPnrMjQqZmMlYiIiPxkpqmhUcpRXmeE0+WJd3UownoXZGDBrBF45bMtvmXbDlRg79EaDC3Ji8prGkw2Bq4STEyHCtbW1sLr9fpyVbXOWXX6srb+ERFRcmgwhs5tZbTYsXlfmd+ymWP7Bd1eEASeQBAREVGblAoZSgoykc6hgylp4vBe6FvkP+P0u9/shMcbnUTqdqcbFruz/Q0pZmI+VFAQBNx7770hhwW2ZceOHfjHP/4RnUoREVHEWGxO2J3ukNus23nUb9aWvAwthvfND7q9XqsMSNBJRERE1EIiEVCYo4dWbUdVgxleLzs+pAqJIGDh7JH4yxtrfMvKa434bkcpzh4T/MZnVxiMNmhVTFGRKOIyNdOgQYMwfvz4Dj3Hag2dK4WIiBJDvTH0/trj9WLN9iN+y84e2xeSEMMAM9PY24qIiIjap9eqoFLIUVFnbPdGGiWPfj2yMHl4L/yw57hv2f++24szh/SETh35AJPZ5oTT5YFCLo142dRxMb99zSF/RESpy+50wWp3hdxm56FKv6GECpkUZ51REnR7tVIOlUIeqSoSERFRilPIpehdkIHMNM5GnEoumzEcylaBJLPNieXr90bt9RramWiIYiemPa7279/f6efOmDGjS88nIqLoq28KndsKAFZv9e9tNXFYT2hD3CnjSScRERF1lCAIyM/SQauWo7LeBI+HHSiSXWaaGudPHoxl3/7kW7Z66xFMH90XPXL0EX+9JrMDOelapqtIAPwGiIgoIpwuD8w2R8htKuuN2Hu0xm9ZqKTscpkEaRrmFyAiIqLO0amVKCnIhFrJ3tup4NzxA5CTrvH97RVFvPfNzqiM7BJFEU1me8TLpY5j4IqIiCKiwWRFe+cMp/e26l+cjV75GUG3z9CpIYTIfUVERETUHrlMil756chuFfCg5CSXSXHlzBF+y34qrcHOQ1VReT2DycZ0RwmAgSsiIuoyt8eLJnPo3lY2hwvf7z7mt2xmiJlgBEFAuo5J2YmIiKjrBEFAboYWPfPTOfQryY0dVITBvXL9lv131S6/Gasjxe3xwmQNfY5L0cdfLBERdVk4d6M2/nTcb3YfvVaJcYN7BN1er1HwxJKIiIgiSqtSoKQwMyoz0VFsCIKABbNHoHWn/GqDGd9sORSV12swtZ/DlaKLVwRERNQlXq+IRnPoA7ooili19bDfsumj+oQMTGXqmZSdiIiIIk8mlaA4Lx39i7NRnKdHdroGWpUcEgnTEySLXvkZmD6qj9+yT7/fhyZL5HNS2R1u2J2hZ82m6IrprIKn27FjB1asWIFdu3bhxIkTMJlMkEqlyM7ORmFhIaZMmYJZs2ahf//+8awmERGF0Gi2tztTz8/H61Dx/9m77/C4yjP//58zfVRGXS5y7wZ3io1NjenFIRgHCCR0EkJISAi7v+w32Ww2SwqbwoaEtoHEgGGTUIJDN8XY2ICNC7jhbkuWZav3Mu38/lAse2SrzGjmjMr7dV2+0DlznnNuD0eyzj33cz/ldW3bNsPQuTPHdHi81+2Ux0UTVQAAkDgOu01pXrfSvO62fS2BoJpbgmryB9TcElRLINhlD08kx5Vnn6yPtx5QU0trUqmpJaiX3t+imy49Je7Xqq5v1uBsfjdNlqQkrnbu3Kl///d/18aNGyP2H5lm0tTUpAMHDmjt2rV68MEHddlll+m+++7ToEGDkhAtAKAjpmmqqq6xy+PaV1vNmjhUWekdV1R19hoAAECiuJ0OuZ0OZai1z2Y4bKrZ31px0/TPypu+lscyjNam5k67TXa7TXWN/n7RcNyX4tYXz5ys/3vns7Z9Kz/dp/NmjdXIwZlxvVZtQ4vyM9OoyksSyxNXa9eu1Te+8Q01NjYe983idDplmqaCwWDE/ldffVWffPKJlixZooKCjvuhAACsVdfYokCw80aYlbWN2rDjYMS+zpqyO+w2pafQdwIAACSfzWYoxeNUiudotY3h8KolEFZDc7PqaoNqagkmPRHkdNjaklNOp11Ou11Oh10up00Ouz3i2FA4rJr6ZlXVNSsQDCUp4vj4wilj9f7GvSqpaK3sNyU99/an+tfrz47rytThsKnaxmZlpvHhajJYmriqq6vTPffco4aGBknSjBkztHDhQs2aNUvDhw+Xy9X6oOL3+1VUVKR169bphRde0KeffqpDhw7plltu0dKlS+V2uzu7DADAIpW1XTerfH/jXoWP+WWuINeniSNyOzw+M90T1180AAAA4snhsMvlcinV61SW15BpmvIHQmpsCai5JaAmf1D+QHwTQna78c/ElF0uh601BkdrcsrpsEX1u5PdZlO2L0XZvhTVNbaoqq5Jjc19s4eTw27TNfOn6cG/rmrbt6OoXGs/L9bpk4fF9VrV9SSuksXSxNWzzz6riooKGYah7373u7rjjjtOeJzL5dLYsWM1duxYffnLX9ajjz6qBx98UIWFhfrLX/6ir33ta1aGDQA4gYYmf8QqgScSDIX1/sa9Efu+cMqYDn+5MgwpM80TtxgBAAASzTAMuV0OuV0O6Z/tDkLhcESvrCZ/oNOeoIZhyOmwRSSjnP9MTjkcNtltiVlXLT3FrfQUt1r8QVXWNam2oSXp1WPRmjZ2sKaNHazPdh9q2/e3dzdpxrghcjntnYyMTnNLUC3+YOv/Z1jK0nf8vffek2EYmjt3bodJqxP5xje+oY8//lgffvih3nzzTRJXANALVNR23dvqk8+LVdvQ0rbtdTt0xpSRHR6f6nEdV84OAADQ19htNqV6XUr1Hm1/4A+E1OwPqNkflM1mRCSpkv37j9vl0JCcdOVlpqq6vknVdc0KhjpvB9GbXDN/mrbsPaxQuDXpVlHbqDc+3qEFZ06O63Wq6ps0ODs9rudE1xKTtu3A/v37JUkXXXRR1GMvvvhiSa2N3QEAydXsD3SrpPzddk3Z504ZKU8nn1JlUG0FAAD6KZfTLl+qR/lZacrNSJUv1SOv25n0pNWxHHabcjNSNbYgW0Nz0+Vx943qoiE56Zp/6riIfa99uF2V3figNRq1DS0Kh/tWRVp/YGniqq6utWFadnZ21GNzcnIkSY2N8b3xAADRq6jpurfV/kPV2lVcEbHvC6eM6fD41iWpacoOAACQbIZhyJfq0ajBWRo5OFO+VLd6ewvSBfMmRfwu6Q+G9Px7m+N6jXDYVF1jS9cHIq4sTVz5fD5JUnFxcdRjS0pKJEmZmZnxDAkAECV/IKT6pq7/wX53fWS11Umj8jUkx9fh8RmpbpqyAwAA9DJet1NDc30aW5Ddqz9kTPG4dNU5J0fs+2hrkXYdqOhgRGyq6rv+ABfxZWniatKkSTJNUy+//HJUDd9M09TSpUtlGIbGjx+fwAgBAF2prGtUVz/C65v8+nhLUcS+zqqtJCmDVVoAAAB6LYfdrmH5GcrNTEl2KB06e/poDc/PiNj37LJPI1a47qkjTdphHUsTV5deeqkkadu2bfrxj38sv9/f5ZhgMKj//M//1KZNmyRJF154YUJjBAB0LBgKq6a+62qrDz7bJ3/w6DLQOb4UTR83pMPjUzzOuK76AgAAgMTIzUjV8PwM2e29r1LeZjP0lQumR+zbd6hKqzftj+t1quub43o+dM7STmtf+tKX9Nxzz2nLli3629/+ppUrV2rBggU65ZRTNGLECKWlpUmSGhoaVFRUpHXr1unll19umyY4cuRILVq0yMqQAQDHqKpr6rJiNmyaem/9noh9584c3ekyzpk0ZQcAAOgzUr0ujRqcpeKyWjX3suqjiSPydOqkAn3y+dEWRc8v36xTJhbI63bG5Ro1Dc3Ky0yVzdb7knf9kaWJK7vdrv/93//VV77yFe3bt0+HDh3S448/3uU40zQ1aNAgPfbYY3I4+saqBgDQ34TDpqq7Mad/8+5DKqtuaNt22G06a8boDo+32w2lp7jjEiMAAACs4XTYNXJwpg5V1quml1Ugffm8qdq4s0TBUFhS62qAr6z+XIvOmxqX8x9p0s6K2NawdKqg1Lqi4PPPP6+bb75Zdrtdpml2+sdms+nKK6/USy+9pJEjR1odLgDgn6rrmxUKdd0f4N121VanTR4mXyeJKV+Kh6bsAAAAfZBhGBqSk67BOWm96ve53MxUXTx7QsS+ZWt3qaoufo3VmS5onaSUL6Wlpelf//Vfdfvtt2vFihVavXq1SkpKVFVVpVAoJJ/Pp+HDh2v69Om66KKLlJ+fn4wwAQD/ZJqmquoauzyutKpem3Yfitj3hVljOx3DNEEAAIC+LTPNK4/LoeKyWgWC4WSHI0m69IyJ+uCzfW0JpmAorI+2FOqSORPjcv6mloBaAkG5ncwKS7SkvsPZ2dm68sordeWVVyYzDABAF+oaW7r1S8h76/fo2JqsUYOzNGZoVofHe9wOuV38Yw8AANDXeVxOjRycpZLyWjU0B5Idjjwuhy6ePUH/985nbfs+3FIUt8SVJFXXNWtQdlrczocTs3yqIACg76mo6braqiUQ1Aef7YvY94VTxnRaNk61FQAAQP/hsNs0fFCmcjJSkh2KJGn2ScN17K+iB0prVFRaE7fz1zY2d7lwEXqOxBUAoFMNTX61BEJdHvfRlqKIT9dSPS6dPnl4h8cbhiFfCokrAACA/iYvM1XD8n1JX3UvI82jk0cPitj34ebCuJ0/FGpt0o7EInEFAOhURW3X1VamaertT3ZF7Dtn5mi5nPYOx/hS3Un/ZQYAAACJkeZ1a9TgLHmS3BbijJNHRGx/vLVI4XD8qqRo0p54JK4AAB1q9gfU2I0eBdsLy1VcVtu2bRjSeTPHdDqGaYIAAAD9m8tp14hBmcpI7XiF6USbNWGo3Md8mFpV16TthWVxO39jc2uTdiSO5YmrDz/8UA8++KDC4e6vNBAKhfTLX/5SH374YQIjAwC0V1HTvSWD21dbzZpQ0GlvA7fTLq/b2aPYAAAA0PvZbIaG5Po0KDtNnbQ+TRi3y6FZEwsi9q2O43RBSaqh6iqhLE1cBYNB/b//9//02GOP6cc//nG3x91///3605/+pB//+Mc0PgMAi/gDIdU3dT1nv7ymQRt2HozYd/6pYzsdk0G1FQAAwICSle5VQZ6v04V7EqX9dMF124vjWiVV00CT9kSyNHH12muv6eDB1oebK6+8stvjrrnmGhmGoaKiIi1btixB0QEAjlVZ16ju/Pv73vo9EccNy/NpwvDcDo83DMmXSuIKAABgoEnzujVycIYcdmsnf00elaeMY37/bPYH9enOkridnybtiWXp3fL2229LkqZPn65TTjml2+MmTpyouXPnShKJKwCwQDAUVk191//4+gMhrdi4L2Lf+aeO6/STtDSv2/JfVgAAANA7eFxOjRycGdF3KtHsNptmnxy52nW8pwvSpD1xLH1y2LRpkwzD0HnnnRf12DPPPFOmaerTTz9NQGQAgGNV1TV1q9z5o62Famj2t22nepzH/VLQHk3ZAQAABjanw64RgzOV6rGu52n76YKb9xxWbRyrpBqbA/IHQnE7H46yNHFVUVEhSRo1alTUY4cOHSpJKiuLX/d/AMDxQuGwquq6bspumqbe/mR3xL6zZ4yW29nxksdOh12pXlePYwQAAEDfZrfZNCw/w7LepyMGZWhobnrbdtg0tXZrUVyvUV3fvYWNEB1LE1c2W+vlAoGul1ZvLxRqzVxGsxohACB6VXVNCoe7rrbaUVSuA6U1bduGIZ03a0ynYzLSkrcUMgAAAHoXwzA0JCdduZkdr0Ydz2udMWVkxL64ry5Ik/aEsDRxNXjwYEmKabrf5s2bJUn5+flxjQkAcFQoHFZlbfc+KWpfbTVz/FDlZqR2eLxhME0QAAAAx8vNSNXQ3HQlesHBOSdFtrTYW1KlQxV1cTt/a5N2f9cHIiqWJq5OOeUUmaapl156Kaopf3V1dXrppZdkGIamT5+ewAgBYGCrrmvuVrVVZW2jNuw4GLFv/qljOx2T6nHJYbeuCScAAAD6Dl+qR8PzM2W3Jy57lZORookjIle//mhLfKcL1jBdMO4sTVxdffXVkqSGhgbdfvvtOnz4cJdjGhoadM8996iqqkqStGDBgoTGCAADVThsqrKusVvHvrd+j8LHlEEX5Pk0aURep2Os6l8AAACAvinF49SIQZlyOhL3YecZUyKbtH+4pTCu0/saaNIed5YmrmbOnKmrr75apmlq+/btuuyyy/Tf//3fWrdunerr69uO8/v9+vzzz/XHP/5RV1xxhVavXi3DMHTOOefo7LPPtjJkABgwquqaFAp1/Y+2PxDS+xv3Ruybf8pYGZ3UdjvsNqXRlB0AAABdcDsdGjk4Ux53xwv+9MSpEwvksB9NhZRVN2h3cWVcr0HVVXwl5k7oxE9+8hOVlJRo1apVamho0JNPPqknn3xSkmS322Wz2Y5r3m6apiZOnKhf//rXVocLAANCNNVWH28rUn3T0bn7KR7nccsLt5eR6u40sQUAAAAc4bDbNCI/UyUVdaprbInruVM8Ls0YP0SffF7ctu/DzYUaNywnbteoaWhRbmYqv//GiaUVV1Jrcup///d/de+998rtdss0zbY/wWBQfr8/Yp8kXX/99XruueeUmtpx018AQOyq67tXbWWapt75ZFfEvrOnj5Lb1fnnIBlp3h7FBwAAgIHFZjNUkOdTti/+v0e2ny64ZtsBBUPhuJ0/GArTpD2OLK+4kiSbzabbb79dCxcu1LJly/Tuu+9q//79KisrUzgcVk5OjoYMGaKzzjpLl1xyiYYPH971SQEAMQmHzW6vJLjzQIUKD9e0bRuSzpvVeVP2FI9TLidN2QEAABC9/Kw0Oex2lVbVd31wN00dM1ipHpcamluTSw3Nfm3afUgzJwyN2zVq6pvkS3XH7XwDWVISV0dkZ2frmmuu0TXXXJPMMABgQKuub+72J0xvt6u2mjF+iPIyO6+GzaQpOwAAAHog2+dVbWOzmluCcTmfw27T6ZOH6b0Ne9r2fbilMK6Jq4bmgALBUEIbzQ8Ulk8VBAD0HqZpqqqbva0qaxu1fvvBiH3zTx3X6RibzVCal0+aAAAA0DN5GfFtHdR+uuDGnSVqbI7v9L7q+ua4nm+gInEFAANYdX2zAsHuVVst37BX4WOWCh6am67JI/M6HZOR6pHNRlNKAAAA9Eyq1yWv2xm3840tyFb+MTMHgqFwRMP2eKipb27r3Y3YkbgCgAHKNE1V1nav2ioQDGn5MaXUkjT/lHFdrpTCNEEAAADES25GStzOZRiG5rSruvpwS2Hczi+1JsPKqhvies6BiMQVAAxQNQ3dr7Zas/WA6puOlk573c7jyqvb87gdXa42CAAAAHRXvKuuzjg5ciG47YXlKq+Jb6Kpsrap2wsh4cRIXAHAAGSapipquvcPqGmaentdZFP2s6aPkqeLpBTVVgAAAIi3eFZdDcpO15ih2RH7Pt5SFLfzH1FaVa/ahpa4n3egsPyj8IqKCtXU1GjMmDEdHlNSUqIXXnhBe/fulWEYmjVrlq666ip5PDwEAUA81Da0KBAMdevY3cWV2n+oum3bkPSFWR3/DJdaS6/TU2jKDgAAgPg6UnXV1BKIy/nOmDJCew5Wtm2v3lyoS8+Y2GVLjGiVVNTJYbcpxRO/irGBwvKKq1/84he68sor9cwzz5zw9XfeeUeXXHKJ/vCHP+i1117Tq6++qp/+9KdauHChqqurrQ0WAPoh0zRV0c3eVpL09ieR1VbTxw1RflZap2N8KS7ZbRT1AgAAIP7iWXV12uRhsh+zmFBJRZ0KD1fH7fxHmKapA2U1agkE437u/s7Sp4qioiK9+uqrCgQCJ+ysX1JSovvuu0/Nza2d94/9s2fPHt17771WhgsA/VJdY4v8ge5VW1XVNWnd9sjVVeafOrbLcRlp3phiAwAAALoSz15XvhS3powZFLHvw83xbdJ+RDhs6kBpjYKh7v0ujlaWJq5efvllhcNh5eXl6Zprrjnu9ccff1yNjY0yDEMXXnihHn74Yf3mN7/RxIkTZZqmVq9erfXr11sZMgD0O+U13a+2Wr5hj0Lhox80DMlJ10mj8jsd43baKYEGAABAQuVmxq/q6owpIyO2P956QKFw9xYxilYgGFbR4ZqEnb8/sjRx9dFHH8kwDF1wwQVyuVwRr/n9fr388ssyDENz587V7373O33hC1/QpZdeqj/96U9KTU2VJL366qtWhgwA/UptQ/errQLBkN7fsDdi3/xTxnY5359qKwAAACRaqid+VVczxg2JWHiopqFZ2/aVxuXcJ9ISCKm4rPaEM9FwPEsTV/v375cknXTSSce99sEHH6ixsbUK4I477oh4LTs7W5dffrlM09TGjRsTHicA9FcVUSzvu3bbAdU2Hl39xOt2aO7UkZ2MaG3KnpFGU3YAAAAkXryqrlxOu06dVBCx78PN8V9d8FiNzQGVVNQl9Br9haWJqyPN1TMyMo577b333pMkZWVlafbs2ce9fiTZdfDgwcQFCAD9WF1ji1q6WW1lmqbe/mR3xL4zp42K+CTqRNJpyg4AAACLxLPq6owpIyK21+0oVrM/sY3UaxtaVFZVn9Br9AeWPl04HK0PPKETNCJ7//33ZRiG5s2bd8KxOTk5kqS6OjKSABCLiih6W+05WKl9h6ratg1JX5jVdVP2TKYJAgAAwELxqrqaOCJPWelHf5f1B0LasCPxhTMVtU2qrG1K+HX6MksTV/n5rQ19j0wZPGLNmjUqLW2dP3rWWWedcOyRhNWRXlcAgO6rb2qJ6hOjd9pVW00dO1iDstM6HeOiKTsAAAAslupxxeV3UJthaM7JwyP2JWp1wfZKq+pVd0yLDkSyNHE1depUmaapf/zjH2ppaf2fYpqm/vCHP0iSnE6nzj333BOO3bFjh6TWflcAgOhEs5JgdX2T1n5+IGLf+ad2p9rKE3VcAAAAQE/lZMSn6qr9dMEt+w6rpr45LufuysHyOjU2Byy5Vl9jaeJqwYIFkqRdu3bp6quv1gMPPKCvfe1r+vjjj9tWG/T5fCcc++6778owDM2YMcPCiAGg72to8qu5pfvVVss37FUofHSFk8HZaTpp9KBOxxiG5EslcQUAAADrxavqalhehobnH+3JbZrSx1sT26T96LVMFZfXqCWQ2L5afZGliauzzz5bc+fOlWma2rVrl/70pz/pk08+kSR5PB7dc889Jxz31ltvtU0v7KgiCwBwYmVRrCQYDIW1fMOeiH3zTxkrm2F0Oi49xS2HnabsAAAASI5EVV19uMWa6YKSFAqZOlBao+AJ+oIPZJY/ZTz44INtyasjf7Kzs/XQQw9p+PDhxx3v9/t1//33yzAMjRgxQhdeeKHVIQNAnxVttdWarUWqbTg6v97jcmju1JFdjstgmiAAAACSKF5VV7NPGq5jP7Ldf6haxeW1PT5vdwWCYR0orVUoHLbsmr1d5+uaJ4DP59OTTz6pzz//XHv27FFWVpZmzJghr/fEK1G5XC7de++9+uEPf6gf/ehHMrr41B8AcFQ0va1M09Sba3ZG7Js3dWSXSwy7nHalelwxxQcAAADES25Gqgqbq3t0jqx0ryaPytfWfaVt+z7aXKiF507pYXTd1+wP6mBZrUaPSLfsmr2Z5YmrIyZNmqRJkyZ169gFCxbotNNO05AhQxIcFQD0Hw3NfjW1dL/B49Z9pSoqrWnbNiRdcNq4LsfRlB0AAAC9QYrHqRSPs8dNzs84eURk4mpLkb50zsldts+Ip4bmgCpqGpSfndH1wf1cn2lIQtIKAKJTEUW1lSS9+XFktdWsiQXKz0rrdAxN2QEAANCb5Gak9vgcsyYOlcthb9uuqG3UzqLyHp83WsEQ0wWlPpS4AgB0X0OzP6pPmopKa7R57+GIfRfPHt/luDQvTdkBAADQexypuuoJr9upmROGRuyzanVBHI+nDQDoh8qqur+SoCS91a631bhhORpbkNPluMx0qq0AAADQu8Sj6mrOyZGLx23bV9bjcyI2JK4AoJ+pbWhRs7/7KwlW1TXpo3bL/Han2srpoCk7AAAAep94VF1NGpEnu+1oT6vDVfWqrm/qaWiIAYkrAOhHTNNUWXV01VZvf7JLobDZtj0oK00zxg3tZEQrmrIDAACgt+pp1ZXb5dCowVkR+7YXWt/nCr0kcfXRRx9p/vz5Ov/885MdCgD0adX1zQoEQ90+vqkloPc37o3Yd+Hp42Wzdb5iimFIGSSuAAAA0EuleJxK7WHV1YQRuRHb2wuZLpgMvSJx1dzcrOLiYhUXFyc7FADos8JhM+qVBD/4bF9EE/c0r0tzp47ochxN2QEAANDb5fSw6mriiLyIbSqukoOnDgDoJyrrGqNaMjcUDuuttbsi9n1h1li5nY4uxzJNEAAAAL1dT6uuxg/LkXHMRISSijrVNjTHITJEg8QVAPQDwVBYlbXRNYtc93lxRIWWw27TF04Z0+U4p8OuVC9N2QEAAND75WbGXnXldTs1YlBmxL4dRVRdWY3EFQD0AxU1jQof02C9K6Zp6vWPd0Tsmzd1pHypXVdSUW0FAACAvsLr7tkKg0wXTD4SVwDQxwWCoaiX5t1RVK79h6oj9l14+vgux7U2ZXdHdS0AAAAgmdJTYv/9dWL7Bu1UXFmu60YmiFp9fb0WL16sZcuWqaioSOFwWAUFBZo/f75uvPFGZWdnWxbLunXrtHTpUq1Zs0bl5eVqaWlRXl6eZsyYoauuukrz5s2zLBYAiVFe3SCz+8VWkqQ32lVbzRg/RENy0rscl+p1yWG3R3cxAAAAIInSU1w6XBnb2AnDcmVIOvLrdnFpjeqb/EqjdYZlSFzF2e7du3X77bcft0Lizp07tXPnTj3//PN65JFHNG3atITG0dTUpH//93/X0qVLj3vtwIEDOnDggF555RVdddVV+q//+i/ZeRAF+qQWf1A1DS1RjTlYXqtPdx2K2Hfx7AndGpuV5o3qWgAAAECyOex2ed1ONbUEuj64nVSvS8PyM1RUWiOpNYG1s6hcMycMjXOU6AhTBeOovr5ed9xxh4qLi+V0OnXffffp/fff18cff6w//OEPGjFihMrLy3XnnXeqrKwsYXH4/X7ddtttWrp0qWw2m6677jr93//9nz788EOtWLFCjz32mCZOnChJevHFF/Xb3/42YbEASKyy6oaox7y1dmfE9ughWRo/LKfLcU6HjabsAAAA6JPiOl2wMHHP8zgeias4euKJJ3TgwAFJ0gMPPKDbbrtNgwcPVmZmps4//3zdddddkqTy8nI9/PDDCYvD5XLp+uuvV35+vv74xz/qP/7jPzRz5kxlZ2dr0KBBOvfcc/WXv/xFw4cPlyQ99dRTqqqqSlg8ABKjsTmg+iZ/VGNqGpq1elNhxL6LZk+Qcew6vx3IoCk7AAAA+qj0lNg/gJ0wvF2DdvpcWYrEVZyEQiE999xzkqSZM2fq0ksvPe71xx57rG37xRdfVFNTdM2Uo3HppZfqvffe67CHldfr1Q033CBJamlp0Zo1axIWC4DEKK2uj3rMu+t2KxgKt23nZqTolIldlzkbBqsJAgAAoO9yOuzyuGPrljShXcVV4eFqNTZHP+0QsSFxFSfr169vq1q65JJLjnv9hRde0J49e7Rw4UJJUnNzsz744IOExuRwdP5NOXr06LavEzl1EUD81TW2qLklGNWYlkBQ767bE7HvgtPGy27r+p8CmrIDAACgr/PFOF3Ql+LW0NyjCxmZprTzAFVXViFxFSebN29u+3rmzJkRrzU1Nemhhx7S9OnT9Z3vfOeEY5KhsbGx7euMjIwkRgIgGqZpxtTbatVn+9XQfHRqYYrHqbOmj+rWWKqtAAAA0NeleXvQ56rddMEdTBe0TK9YVXDGjBl66qmnkh1Gj+zZc7SKYdiwYRGvLV68WKWlpfrVr36lQYMGyeFwKBgMRoxJhs8++6zt6xkzZiQvEEkOd0pSrx8Nw7C1/dfpSUtyNOjPOrrXqusaFba55Iji391wOKy31u6K2Df/1AlKS0/vYMRRTrtdWVldN29H38TPNFiB+wxW4V6DFbjP+i6nR0pLD6rZH/00v8ljh+q9DUef4XcUVcrhTuyK29xrrXpF4iozM1Onn356ssPokcrKyravs7Ky2r6uqqrSH//4R5199tmaPXu2JMnn86mysjKpDdH9fr/+8Y9/SGqtEDvSqD1ZbLa+NwXJMAwZRt+LG33PsfdaOGyqorZZtijvvXXbD6i06mhPLLvdpgvnnNSt82RlpPXJ71FEh59psAL3GazCvQYrcJ/1Tb60FPmrou8Ve9KoyL6we0sq5PeH5XE74xXacY4soDTQ77VekbjqDaJJJPl8PuXlRZYJHmm07nK5IlbnevTRR1VfX6977723bZ/L1bqawbFT9az2+OOPt/W1+va3v520OI4Ih0PJDqHbDMMmwzBkmqZMM9z1ACBGJ7rXyqsb5A9Et5KgJL26KnJq8typo5WR5lbY7Px7z5ChjBRXn/oeRXT4mQYrcJ/BKtxrsAL3Wd+W5nGqtIvfgU/El+bS4Jx0Haqok9T6gfL2wkOaOq7rhY5iZZpm23/70r0W7w+9SVz905IlS/T73/++W8deffXVuv/++0/4mu2YJsfFxcV69tlndfnll2vSpElt+8Ph5N5w69ev16OPPipJWrRokebOnZvUeCQp2NLYZ74RnZ40GYZdphlWoDn6TD3QXe3vtVA4rMNllQqHzajOs+tAhXa1ax55wamjFWzpemXTNK9LZrBJgej6wKMP4WcarMB9Bqtwr8EK3Gd9m02SPexXSyD65NWEYTltiStJ2rqnWJOHZ3UyomdMM+Wf/+0795ph2OTydt2OJBo0Z4+TlJTWGyoQODpX9sEHH5RpmhEN2SWppaUlYoyVDhw4oLvuukuBQEBTpkzRD3/4Q8tjABCbyprGqJNWkvTmmh0R21PGDNKwvO4tyJCZTlN2AAAA9C9pMa4uOHFE5Myr7YU0aLcCFVf/dPfdd+vuu++OeXx2drYkKRQKqa6uTsXFxXrllVd0/fXXR/SPCgQCqqurixhjlcOHD+vmm29WZWWlhg8frkceeUQeDw+lQF8QCIZUWdcc9bjDlfVav/1gxL6LZ0/o1linw6ZUjyvqawIAAAC9mS/FrYqa6Fv3TByRG7G992ClWgJBuZ2kVhKpz1RchUK9u7/KmDFj2r4uLi7Wr371K3m9Xn3zm9+MOK6kpKRtquDo0aMti6+8vFw333yzCgsLVVBQoMWLFys/P9+y6wPomfKaxrY57tF4a+1OHTtqxKAMTR6Z1+Hxx/KleiJ69gEAAAD9gdvlkNMRfR+mbF+KcjOPzpwKhU3tOVjZyQjEg6WJq0mTJmny5Mn69re/rerq6qjGrly5UjNnztRVV12VmOB6aMqUKW1fL168WCtXrtQtt9xyXFXV+vXr276eOnWqJbEdPnxYN9xwg3bv3q2RI0fqqaeeUkFBgSXXBtBzLf6gahuir7aqa2zRqs/2R+y76PQJ3U5GZaZRkQkAAID+yZcS28yCicOZLmg1yyuuTNPUsmXLdPnll2vFihVRjW1qatK2bdsSFFnPzJw5U1lZrU3ZXnzxReXk5Ojmm28+7rg33nhDkuTxeDRv3rwuz2uaph588EHNnTtX8+bN00MPPRRVXEVFRbruuuu0d+9eTZo0Sc8++6yGDRsW1TkAJFdZdb1iKLbSe+v3yB88Wq2ale7VaZO79/2f5nXF9CkUAAAA0Bekp8ba5ypyuuAOElcJZ3ni6siyoeXl5fr617+u//iP/1Bzc/SVBL2N3W7Xdddd17Z90003KTU1NeKY1atXa/ny5ZKkhQsXyuv1dnnel19+WY888ogqKipUXl6u3//+91q6dGm3YtqxY4euu+46FRcXa+7cuVqyZIlyc3O7Hgig12hq8auuMfqfkYFgSO+s2x2x74LTxslh796PfZqyAwAAoD/zuJxyOqJPibRv0L77YIUCwd7d2qivS0qPq/nz58vpdMo0Tf3lL3/RlVdeqU2bNiUjlLi69dZb26qZlixZotdee02VlZUqLy/Xc889p7vuukumaSo3N1d33nlnt855ovfl008/7XLchg0bdMMNN6isrEyXXHKJHnroITmdTrW0tJzwj9/vj+4vC8AShyvruj7oBFZvLlRdY0vbtsfl0NnTu9dXz+W0K80b2ydQAAAAQF+RHsPqgrkZKcpKP1qEEgiGtbekKp5hoZ2ktL7/8pe/rLvvvlv33Xefdu7cqf379+u6667TN77xDX3zm9+UzdZnesZHSEtL0+OPP67bb79dxcXF+u53v3vcMbm5uXrkkUeUl9e95sjTpk07bt+MGTO6HPeb3/xGNTU1kqTXX39dr7/+eqfHjxo1Sm+++Wa3YgJgjbqGZjU1B6IeFzZNvbVmZ8S+c2aMVorH2a3xx/5DDAAAAPRXaV63KmubohpjGIYmjsjVR1uK2vZtLyzThOHMbkqUpGWIJk2apBdeeEE33nijJCkYDOoPf/iDrr32Wu3fv7+L0b3X2LFjtXTpUn3729/WpEmTlJqaqpSUFI0bN05f//rX9Y9//OOEyaiOLFiwQHfeeaeys7OVk5Ojb33rW7riiiviHreVKxwC6FooHNahGKutPtt1SCUVR8fabYYuOG1ct8babIYyUpkmCAAAgP4vxePsdiuNY7WfLkiD9sRKSsXVES6XSz/4wQ907rnn6gc/+IEOHTqkTZs26corr9R9992nr3zlK8kML2ZpaWm66667dNddd/X4XIZh6J577tE999wT1binn366x9cGkDylVQ0KhgzZjOgapJumqdc+3B6x77TJw5TtS+lgRKTMNI9stu6tOggAAAD0dWkpLlXXRddTdmK76qpdxRUKhsIxJcHQtV7xrp5xxhlaunSpLrnkEpmmqaamJv30pz/V7bffrrKysmSHBwCWamjyq6Y+tkUrNu4q0a7iioh9F50+oVtjDYNpggAAABhYYulzNSg7LWKWgj8Q0v5D9LlKlF6RuJIkn8+n3/72t3rggQeUnp4u0zT1wQcf6IorrqD3EoABoydTBMNhUy8s3xyxb9rYwRo5OLNb49O8bjkd0VV4AQAAAH1Zitspuz26GQdH+lwdi+mCidNrEldHLFiwQC+//LJOO+00maap6upq3XPPPXrwwQeTHRoAJFxZdYMCwXBMY1dt3q+D5UeTXoakq8+d0u3xVFsBAABgoDEMI6YVtY9PXDFbLFF6XeJKkoYOHaqnnnpK3//+9+V0OmWaprZv3971QADowxqa/VHPrz/CHwjp7yu2RuybO3WkhuVndGu8x+Xo9qqDAAAAQH/ii2G64IThkQ3adx6oUCgc2wfQ6FyvTFxJrVnP2267TX/72980fvx4maaZ7JAAIGHCYVOHKupjHv/u+t2qqju6lK/DbtMXz5rc7fFUWwEAAGCgSvE4o16gaGhuutK8rrbtZn9QhYdr4h0aZHHi6p133tHbb7+tOXPmdHvMpEmT9MILL+jGG2/U0KFDNWTIkARGCADJ0TpFMBTT2MZmv15d/XnEvi/MGqPcjNRujXfYbfKlRv8pEwAAANAfGIah9GOSUN0dw3RBa1iauCooKFBBQYHc7ugekFwul37wgx/o3Xff1bvvvpug6AAgORqbAxHVUtF67aMdamgOtG173Q5dNndSt8dnpntkGNF9wgQAAAD0J+kxfJDbfrrgDhq0J0SvnSoIAANBOGyqpCK2VQQlqaquSW+v3RWx7+LZE7u9rK9hSJlpTBMEAADAwJbqcUU9XbB9xdWOA+UK0+Yo7khcAUASldfEPkVQkpZ+sE3+Y8ZnpHp04Wnjuj3el+KWw84/BQAAABjYWlcXjG664LD8jIgFjhqbAzpQSp+reONpBQCSpKkloMra2KcIllTUaeWn+yL2LThzstwuR7fPkeWj2goAAACQpDRvdNMFbYahCcPa97liumC8kbgCgCQwzZ5NEZSkF9/fElGKPCgrTWdNH9Xt8SkepzwuZ9cHAgAAAANAmtcVde/XCe2nCxbRoD3eSFwBQBKUVzfIH4h9iuDu4kqt214cse+qc06OatpfVjrVVgAAAMARNpuhVG90H+xOHBHZoH17YblM+lzFFYkrALBYsz+gyh6sImiapp5fvili36jBWTp1UkG3z+F02LvdwB0AAAAYKHxR/o48YlCGPMe06qhv8utgec9mViASiSsAsJBpmiopr1NPPoTZtOfwcXPnF503Jaqy5qx0T+wBAAAAAP1UqtelaGYL2m02jR+WE7FveyHTBeMpbomrZJXCUYIHoC8pr2lUSw+mCIZNUy8s3xyx7+TR+Zo8Kr/b5zAMQxlpJK4AAACA9uw2m1I90a0u2H664I4iGrTHU1wSV6tWrdKCBQtUWloaj9N125///GfdcsstamqKfcoNAFilxR9UZW1jj87x8ZYiFbVbYvfqc6dGdY7MNI/sNgpuAQAAgBOJtqXGxBHHryxIkU389PjJJRQK6T//8z+1c+dO3XTTTSors6YkbsmSJfrFL36hjz76SC+88IIl1wSAWB1ZRbAn/34FgiG9tGJLxL7ZJw3XyMGZUZ2HpuwAAABAx6KdLjhycJZcTnvbdk1Dsw5X1icgsoGpx4kru92uhx9+WBkZGdq7d6++8pWvqKioKB6xdejhhx/W/fffL8MwdNlll+mGG25I6PUAoKcqahvV7A/26BzLN+xVec3Rii27zdCXzj4pqnOkeV0R/6gCAAAAiOSw25Ti7v7qgg67TeMK2vW5Yrpg3MRlrsjYsWP16KOPyuPx6MCBA1q0aJFWrFgRj1NH8Pv9uu+++/TQQw8pHA5r3rx5+uUvfxn36wBAPLX4g6qo6dkUwaaWgP6xalvEvnNnjlF+VlpU56HaCgAAAOhaWo+nC9KgPV7i1uRk5syZeuKJJ+Tz+VRdXa1vfOMb+s///E/V1NR0PbgbVqxYocsuu0yvvPKKTNPU+eefr4cfflh2O5UDAHov0zRVUtmzKYKS9ObHO1Xf5G/bdjvtunzepKjO4XbaleqNrtEkAAAAMBBF3+cqskE7fa7iJ67deWfNmqWnn35aeXl5CofDeu6553ThhRfqt7/9rUpKSqI+XygU0ltvvaVbbrlFX//611VUVCTTNLVw4UL97ne/k8vFAxiA3q2ytknNLT2bIlhT36Q31+yI2HfR6ROUkRrdyoBZPqqtAAAAgO5w2G1K8XR/uuDoIVlyOo6mWKrqmlRW3ZCI0AYcR7xPOGHCBL388sv60Y9+pHfeeUc1NTV6/PHH9b//+7+aOHGizjjjDI0fP16jRo1SVlaWvF6vHA6H6uvrVVdXp6qqKm3btk2bNm3S+vXrVVlZKam1aiE1NVU/+MEPdPXVV8c7bACIu6q6JpXX9Pwfq5ff36SWQKhtOz3FrYtmj4/qHHa7IV9KdIkuAAAAYCBL87rV2Bzo1rFOh11jh+bo82OmCO4oKo+6tQeOF/fElSRlZ2frD3/4g/7+97/rwQcf1KFDh2Sapj7//HN9/vnnUZ3LNE0ZhqFzzz1XP/rRj1RQUJCIkAEgrkqr6lVZ29Tj8xyurNV763ZG7Lt87iR5o2gWKUmZqR7ZbFEsjQIAAAAMcL5Ul0qrun/8hBG5EYmr7YXlOnPaqPgHNsAkJHF1xJVXXqkrrrhCr7zyip566ilt2bKl60HH8Hg8uuSSS3Trrbdq3LhxCYoSAOInHDZ1sKJW9Y3+rg/uhr+9s0Gh8NG58bmZKTp35uiozmEYTBMEAAAAouWw2+VxO7rd+mPi8HYN2oto0B4PCU1cSZLdbtcXv/hFffGLX1RxcbE++ugjbdu2TYWFhSovL1djY6NCoZBcLpd8Pp8GDx6ssWPHatq0aZo9e7bc7ugaogFAsgRDYR0oq+lxT6sj9h2s0Eeb90Xs+9JZJ8vpiG5RivQUtxwsZAEAAABEzZfi7vbv92MKsmW3GW0fPJdXN6qytlHZvpREhtjvJTxxdayCggItXLjQyksCgCVaAkEdKK1VIBjq+uBu+uvbGyO2h+dnaPbJw6M+T1Y61VYAAABALKJp0eF2OjR6aLZ2Haho27e9sFxnTBmRiNAGjLiuKggAHenPS8E2NPu1/1B1XJNWW/eVavOeyNVYrz53imxGdH2qPG5H1P2wAAAAALRyOaObuTBxRLvpgoVMF+wpSyuuAAwMpmmqJRBUU0tQzS0BNfmD8gdCcjnt8roc8rid8rodcjsdMqJMxPQ2tQ3NKqmoUzzzcmHT1PPvbY7YN2lEnqaMGRT1ubKptgIAAABiZrfZZLcbCoW69wv/xOF5elXb27a3F5YnKrQBg8QVgB4LhkJqbA6q2R9oTVb5gyessPIHQvIHQqppaJEkGYYhj8shr9shj6s1mRVt/6ZkKq9pUHl1Y9zP+976Pdp3KHL5kqvPmxJ1ks9htyk9hT6BAAAAQE+4HA41hQLdOnbcsBzZDEPhfz4PHa6qV3V9kzLT+EA5ViSuAEQlHDbV7G9NUjW2BNTcElQwFI7pXKZpqqkloKaWgKQmSa3JFo/bIa/L2fZfm613VWWZpqlDFXVtCbh4OlxZp7+9tyli32mTR2jM0Oyoz5WV7u3zFW0AAABAsrmc9n8+s3TN43Jo1JAs7TlY2bZvR2G5Tj8p+l61aEXiCkC3NDYHVFpVr5ZAMK7T4toLhsKqb/SrvtEvSTIMyeWwKyPNq6x0T9ITMaFwWMVltWps7t4/XNEIh0098co6+QNHe2V53E5dd9EpUZ/LZjOUkeaJZ3gAAADAgOSOss/VhOG5EYmr7SSueoTm7AC6VN/UoqLSmn9OAbT22qYptQRCKq2q156Dlaqub0pao/dAMKTCQ9UJSVpJ0ptrdmhXcUXEvq9ecppyM1OjPle2zyuHnR/xAAAAQE/1uEF7EQ3ae4KnGgCdqqlvVnFZba9YFTAQDOtQRb32HKxSbUOzpddu9ge0/1C1WgLxWznwWMVltXppxdaIfTMmFOjsGeOiPpfdbiiLpuwAAABAXLgc0U1WGz8sV8dOFDlYXqe6xvi3GRkoSFwB6FBFTWPcV8yLh0AwpIPlddp7sNKSfwDqm1q0/1BNzL28uhIMhfXHV9ZGnD/V49QtV8yOaWpkji9Fdhs/3gEAAIB4cDpsiubX8hSPU8PyMiL2HSitiXNUAwdPNgBOqLSqXmXVDckOo1MtgZCKy2q171CVGpr8cT13MBRSbUOzSsprdaA0sRVnr324XfsPVUfsu+GimcpMT4n6XE6HjRVLAAAAgDgyDCPq1c+H50cmropIXMWM5uwAIpimqZKKOtUmYMW8RGluCaqotEYpHqdyM1KV4nFGfY5QOKzG5oAamv1qbA5ENEhPpP2HqvSPVdsi9p06qUCnTx4W0/lyMlJ63SqMAAAAQF/nctqjekYY1i5xdaCMxFWsSFwBaBMOmyouq1FDgpqPJ1pjc0CFzdVK87qUm5kij6vjBFY4bKqp5WiiqtkftDDSVoFgSH/8xycKhY9Wc/lS3PrqRTNjmiLodNiVkcpKggAAAEC8uR121UdxPBVX8UPiCoCk1j5LB8pq1NxifQIn3uqb/Kpv8is9xa3czBS5nQ6ZpqmmluAxiapA0nt3vfzBNhWX10bsu/HSWUpPccd0vrzMlJgSXgAAAAA653JGlz5p3+PqYHmtwmGT2RExIHEFQIFgSEWlNZZNj7NKXWOL6hpb5HE71OIP9YqVEY/YdaBCr3+0PWLfvKkjNXP80JjO53ba5aPaCgAAAEgIlzO6Hle+VLfSU9xti0kFgmEdrqrXkJz0RITXr9GcHRjgWgJBFR6u7ndJq2M1twR7VdKqJRDUE698ElHxlZXu1XXnT4v5nHlZqXGIDAAAAMCJRJu4MgxDw/J9EftYWTA2JK6AAayxOaD9h6oVCIaTHcqA8sLyzTpcFTlD/uZLT1GKxxXT+bxup9K8sU0vBAAAANA1u80muz26aX7D8+hzFQ8kroABqr6pRUWlNQqHe08l0kCwbX+p3v5kd8S+c2eO1pQxg2I+Z25mSk/DAgAAANAFlyPKPlesLBgXJK6AAaimvlnFZbW9avrcQNDUEtCTr66L2JebmaIvfyH2KYKpHqdSY6zUAgAAANB90U4XbN+gncRVbEhcAQNMRU2jSirqkr6i3kD0l3c/U0VNY9u2IenWy06VxxX7Ohn0tgIAAACs4Y4ycTU016djF/0ur25UU0sgzlH1fySugAHCNE0drqxXWXVDskMZkD7bfUgrNu6L2HfBaeM0cURezOdMS3HJ43L2MDIAAAAA3RFtxZXLadfg7MhVBIvLauMZ0oBA4goYAIKhkAoP16iqrinZoQxIDU1+/fm1yCmCg7PTdNU5U3p03rxMqq0AAAAAq0Tb40o6vs8VDdqjR+IK6OcamwPaV1JNSWoSPbvsU1XXN7dtG4Z02xWnRf2JzbEyUt1yO2OfYggAAAAgOk6HLWLqX3cc1+eKxFXUeOoB+rHK2kaVVTfQzyqJ1m0v1odbCiP2XXbGJI0Zmh3zOQ1DyqXaCgAAALCUYRhyOuzyB0LdHjMs3xexTYP26JG4AvqhcNhUSUWd6hpbkh3KgFbb0Kyn3tgQsW9YfoYWnDm5R+fNSPPI6Yi9WgsAAABAbFzO6BJXw0+wsqBpmjKiLd0awJgqCPQzLYGg9h2qImmVZKZp6uk3N0T8f7DbDN12+aly2GP/0WsYhnIzUuIRIgAAAIAouaP8ADknIyViFfGmlqAqahs7GYH2SFwB/UhtQ4v2H6qO6hMAJMaytbu0bvvBiH0LzjxJIwZl9ui82ekeOexUWwEAAADJ4Iqyz6xhGMc1aKfPVXSSOlUwHA5r48aN2rx5sw4dOqT6+nqFQiHdf//9yQwL6HNM01RZdYMqa1k1MNlM09RLK7bqldWfR+wfPSRLl54xoUfnttkMZVNtBQAAACRNLAssDc/L0K4DFW3bRaW1mjF+aDzD6teSkrgKhUJ64okn9Mwzz6isrKxt/5F5nu0TV01NTbr//vt12WWX6YwzzrA6XKBXC4ZCOlhep8ZmVg1MtnC4dXrg+xv3Rux3Omy69fJTZbf1rMg12+ft8TkAAAAAxC6WxFX7Bu3FNGiPiuWJq8rKSt12223atm2bzG4udfazn/1Mzz//vNauXas33niDJmZIusOVtXI6bEpN8vIGjc0BHSyvVTAUTm4gUCAY0mMvr9H6HZHTA11Ou7511RwNzfV1MLJ77HZD2elUWwEAAADJZLfZZLcbCoW6v3R7+6mCRUwVjIqlH92Hw2Hdcccd2rp1q0zT1GWXXaYnnnhCq1ev1u9///sOx910000yDEOFhYVatmyZhREDJ+YPhFRSXqM9BytV25CcJuiVtU0qKq0madULNDYH9Ju/fHBc0irN69J9152tKWMG9/gaOb5U2Wwk7QEAAIBkczmiq2AoyI1MXB2qrFMgSF/i7rI0cfXCCy9o8+bNMgxDv/zlL/XrX/9a8+bNU3Z2thyd/I8fO3aszjzzTEkicYVexR8I6WB5rfaVVKm+yZoEVjhs6mB5rUqr6tXNokUkUHV9k3655H1tLyyP2J/t8+oHXz1HYwuye3wNp92urHRPj88DAAAAoOeinS6Y4nFGrAxumtLB8tp4h9VvWZq4euWVV2QYhubPn68vfvGLUY2dN2+eTNPUp59+mqDogNg1+4M6UFqr/YeqE9ZrKhAMqbK2SfsOVSWtyguRDlfW6WdPLz+u1Hdobrr+7avnakhOz6YHHpGbmcoUaQAAAKCXcMfU54rpgrGytEPPzp07JUnnnXde1GOHDBkiSRHN3IHepqkloMLD1Ur1OJWbmSqv29nj89U3+VXf2KKWAKWkvcn+Q1X6zV9Wqa4xMok4riBH3140V2leV1yu43LalZHmVbClIS7nAwAAANAzMTVoz8vQxp0lbdsHyqi46i5LE1e1ta3/Y3y+6KsQQqHWh/ZwmH4+6P0amgNqOFSttBSX8jJS5XZ171stHDbV2OJXXaNfDU1++lf1Ulv3leqhFz5Uiz8YsX/a2MG680uz5XbG70drXlY61VYAAABALxJtjyvp+IqrA1RcdZuliausrCyVl5ersLAw6rFbtmyRJOXl5cU7LCBh6hv9qm/0y5fqVm5G6gkz88FQqLWqqsmvhqZAt1fbRHKs3XZA//uPtcclFedNHakbL5klhz1+M7A9Lqd8qR6Fw1TbAQAAAL2F02GTYSiqnsPD8yMLeEhcdZ+lPa5mzJgh0zT10ksvRVU5VV9frxdffFGGYWjmzJkJjBBIjNqGFu0tqVRJRevqES3+oMprGrTvUJV2HajUoYp61Tf6SVr1cu+u261H//7xcUmrS+ZM0C2XnRLXpJVhSENy49MjCwAAAED8GIYhpyO66YL5WWlyOo4+L9Q2tqimoTneofVLliauFi5cKEnavXu3fvKTn3TrIb2lpUXf+973VFVVJUm66qqrEhojkCimKdXUN2t3caX2llSpvLpRzS3Brgci6UzT1N9XbNUzb21U+59aX/7CVC06b2rcp/PlZabK4+pZjzQAAAAAiRFtnyu7zaahuVRdxcLSqYLnnnuuLr74Yr3xxhv661//qs8++0yLFi3S1KlTVVpa2nZcaWmpysrKtHbtWj377LMqKiqSYRi69NJLdcYZZ1gZMoABLhw29cxbG7R8w96I/XaboZsvPUVzp46M+zVTPE5l+1K6PhAAAABAUrgddtVHOWZ4fob2H6pu2z5QVqOTRw+Ka1z9kaWJK0l64IEHVFtbq9WrV+vzzz/XT3/607bXjlQsnHPOORFjTNPU7Nmz9Ytf/MLSWAEMbIFgSI8vXaN12w9G7Hc57PrmVXM0bezguF/TZjM0JCc97ucFAAAAED+uGBZkGpbXvkE7Kwt2h+WJK5fLpSeeeELPPPOMfve736murq7ttSOJq2OnEHq9Xn3rW9/STTfdJLs9+iUnASBajc1+rfxsn95Zt1vl1Y0Rr6V6nPrOonkaNywnIdcenJ0W9Xx5AAAAANaKdqqgdPzKgkVMFewWyxNXUmuC6qtf/aoWLVqkDz74QMuXL9eBAwdUUVEhScrJydGQIUN09tln6+yzz1ZqamoywgQwwJRU1OntT3Zp9ab9agkcv5JfVrpX37v2TBUkqGm6L9UtX6onIecGAAAAED/xSFwdLK9VKByW3WZp+/E+JymJqyM8Ho/OP/98nX/++ckMA8AAFjZNbdlzWMs+2aXNew53eNyQnHTde+2ZCes95XTYNCg7LSHnBgAAABBfdptNdruhUKj7K8P7UtzKSPW0rSYYDIV1qLI+YR+M9xdJTVwBQLI0+4NatWm/3vlklw5VdtxW0WG3ae7UEbr63KlK87oSFs/gnHQ+aQEAAAD6EJfDoaZQIKoxw/J9qtnb3LZdXFpD4qoLJK4ADChl1Q16Z91urfx0n5paOv5HJjPNo/NmjdU5M0fLl+JOaEzZPq9SPYlLigEAAACIP5fT3ukzxYkMy8vQlr2lbdtFZTU6XcPjHVq/QuIKQL9nmqa2F5Zr2Se7tHHnQZmdVPOOGZqt808dp1MnFchhT3wFlNtpV14mffwAAACAvsYdhz5XB2jQ3iUSVwD6pUAwpP2HqrX7YIVWbSrs9B8Eu83QqZOG6fxTx2lsQbZlMRqGNDTX17aiKgAAAIC+I5YG7cOPS1zVxiucfsvyxFVRUZEKCws1b968qMa99957GjdunIYPp4QOQCTTNFVa1aA9Byvb/hQerlYo3HmjxDSvS+fOHKPzZo1RVrrXomiPystMldvF5wcAAABAX+RyRP+7/JCcdNkMQ+F/TgOpqG1UY7NfKbQO6ZDlT0z/9m//pnXr1umee+7RHXfc0a0xjz/+uH77299q9uzZ+vOf/5zYAAH0eo3Nfu05WBWRqKpv8nd7/LD8DF1w6jjNOXm4nI7oPyWJhxSPM2ErFAIAAABIPKfDJsNQp61Ijh9j15CcdBWXH620OlBWqwnDcxMQYf9gaeLq448/1tq1a2UYhvLz87s9buzYsTJNUx9//LE2btyoGTNmJC5IAL1KIBjSwfLaiERVSUVd1OcxDGnG+KG64NRxmjgiN6nT82w2Q0Ny0pN2fQAAAAA9ZxiGnA67/IFQVOMK8nyRiavSGhJXnbA0cbV06VJJUkFBga688spuj5s/f74mTJignTt36pVXXiFxBfRD4bCpw1X1Ki6rVXFZjQ7887+Hq+qj+gTjWDkZKRo7NFtjhmZr5oShvaYJ+uDstKRVegEAAACIH5cz+sTV8PwMrdl2oG37QBkN2jtjaeJq/fr1MgxDF110UdRjL7jgAu3YsUNr1qxJQGQArGKapqrqmtoSU63/rVVJRa0CwXDM53W7HBo9JKstUTVmaLYy0jxxjDw+fKlu+VJ7X1wAAAAAoud22FUf5Zj2KwsWsbJgpyxNXB0+fFiSNHny5KjHjhkzRpJ08ODBuMYEILGCobA+212izXsOtyWpmloCPTqnIWlonu9okqogW0NzfLLZevfqfE6HTYOy05IdBgAAAIA4cTmjT6sct7JgWa3Cpikbq42fkKWJq0Cg9WHV6XRGPfbImObm5rjGBCAxSirqtPLTfVq9ab9qG1t6dK7cjBQNz89oS1KNGpwlrzv6nyPJNjgnXXabLdlhAAAAAIgTlzP6FiBZ6V6leJxqbG7NkbT4g6qoaew1rU16G0sTVzk5OTp8+LB27doV9XTBffv2SZKysrISEBmAeGgJBPXJ58Va+ek+7Sgqj3q8L8WtgnyfCnIzNCzPp4K8DA3NTe+TSar2sn1epbLELQAAANCvxJK4MgxDw/IyIp6ZDpTWkLjqgKWJq5NPPlmHDh3SSy+9pNtvv10uV/ce4sLhsJYuXSrDMGKaZgggcUzT1P5D1Vrx6V59vLVITS3BLse4XQ4Ny/UdTVLl+1SQ6+u3vZ/cTjv/CAEAAAD9kN1mk91uKBSKbkWpYXm+iMRVUWmNZk4YGu/w+gVLE1eXXXaZ3nnnHRUXF+uHP/yhfvnLX3ZrSfoHH3xQu3btkmEYuuCCCyyIFEBXGpr8+mhrkVZ+uleFhztvJuh1OzT7pOGaNnaIhuX7lONL6db3fn9gGNLQXN+A+fsCAAAAA43L4VBTKLo+vu0btLOyYMcsTVxdcskl+vOf/6zPPvtM//jHP7Rv3z7dddddOvPMM2W3H19e99lnn+nxxx/XO++8I8MwNHLkSF155ZVWhgzgGKZpanthuVZ+uk+fbD/Q5SqAE4bn6qzpo3TqpAK5Y2ha2B/kZabK7RqYf3cAAABgIHA57VEvQNW+QTsrC3bM0qcpwzD0yCOP6Mtf/rKKi4u1adMmfeMb35DL5dLYsWOVmZkpm82m+vp67d27V7W1tZJaH5YzMjL06KOPxtTYHUDP+AMhvbNul97fuFelVQ2dHutLcWvetJE6c9ooDclJtyjC3ikvM1XZvpRkhwEAAAAggdwx9LkqyItMXJVW1aslEBywH/h3xvJ3JCcnR0uWLNG///u/a8WKFZKklpYWbdu2LeI40zw6P3Ty5Mn6+c9/rlGjRlkZKgBJNQ3N+t3fVmtvSVWHxxiGNHXMYJ01fZSmjxsih31gr5xnGNKg7DRlpnmTHQoAAACABIulQbvH5VBeZqrKqlsLA0xTOlhep9FDWJCuvaSk8gYPHqzHH39c77//vpYuXarly5eroSGyisPhcGjOnDm69NJL9cUvfvGEUwkBJFZxea3+56+rVF7TeMLXczNSdNb0UZo3dSSVRf9kGIaG5qYrPcWd7FAAAAAAWMDliC21Miw/oy1xJbWuLEji6nhJrUE755xzdM455ygcDquiokJlZWUKhULKzc1Vbm4u0wKBJNq2v1S/f+Gj4+ZqO+w2zZowVGdNH6XJo/Jlo+l4G5utdVnbFA8/uwAAAICBwumwyTBaq6aiMTwvQxt2HGzbps/VifWKyZM2m015eXnKy8tLdigAJK3atF9/fm2dQuHIn7xTRg/SbQtOk49qouM47DYNz8+gETsAAAAwwBiGIafDLn8gFNU4VhbsHp6wALQxTVNLP9imlz/Ydtxr58wYresvnDHg+1ediMtp1/D8DDkdTGkGAAAABiKXM/rE1fB8X8T2gdIamaYpg1ktEUhcAZAkBUNh/fm1dVq9ufC41xadN0UXz57AD9AT8LgcGpafQUIPAAAAGMDcDrvqoxyTl5kml8Muf7A14VXf5FdNQzOLPLVD4gqAGpr8+sNLH+nz/WUR+x12m267/FSdftLwJEXWu6V6nCrIy5DNRkIPAAAAGMhczujTKzaboYI8X8QK7gdKa0hctUOJADDAlVc36GdPLz8uaZXmdem+r5xF0qoDvlS3huWTtAIAAADQOlUwFu37XNGg/XhJq7j6/PPPVVhYqMbGxqjHXnnllfEPCBiA9h6s1P88v1q1DS0R+/OzUvXdL8/ToOz0JEXWu2WlezUoOy3ZYQAAAADoJWJOXOW1a9BeWhuPcPoVyxNXK1eu1E9/+lMVFRXFNN4wDBJXQBxs2HFQj728pm0+9RHjCnJ099VnKJ2VA08oNzNFuRmpyQ4DAAAAQC9it9lktxsKhcyuDz7GcFYW7JKliav169frzjvvVCgUkmlG9z8TQPwsW7tT//f2Z2r/XXja5GG67fJTWR3vBAxDGpSdxnxzAAAAACfkcjjUFApENWZYXuTKggfLaxUMhVn86RiWJq4ef/xxBYNBSdLgwYN17rnnasSIEUpNTZXL5bIyFGBACodN/d87n+rtT3Yf99olcyZo4blTZGPlwOMYhqGhuelUoQEAAADokMtpV1NLdImrtBS3MtM8qq5vliSFwqYOVdYdN4VwILM0cfXpp5/KMAydfPLJevrpp+X1UrkAWKXFH9TjS9dow86SiP02w9ANF83QuTPHJCmy3s1mMzQsL0MpHmeyQwEAAADQi7l70KD9SOJKal1ZkMTVUZbWntXX10uSrrnmGpJWgIX8gZB+9dzK45JWbpdD31k0l6RVB+x2QyMGkbQCAAAA0LVYG7S373PFyoKRLE1c5efnS5IyMsgcAlb6+8ot2n2wMmJfVrpXP7jhHE0dOzhJUfVuDrtNIwZlyuMiaQUAAACgay5HbJPa2ldXFZexsuCxLE1czZo1S5K0e/fx/XUAJMbu4kq9uWZnxL5h+Rn6f187VyMGZSYnqF7O6WhNWrmdli+8CgAAAKCPcjpsiqVlMBVXnbM0cXX11VfLNE09//zzamhosPLSwIAUCIb05Kuf6NhFPLN9Xv1/15+tbF9K8gLrxZwOu0YMyoy5zBcAAADAwGQYRkwrtA/OSZfddjTjVVXXpPomfzxD69MsTVzNnj1bF110kYqLi/XTn/7UyksDA9LSVdtUUlEXse+mS2YpxcMqnifidto1cnBGTP/YAAAAAEAsH4A77DYNyUmP2FdcRtXVEZYmriTp/vvv14wZM/Tyyy/r//2//6dQKGR1CMCAsK+kSq9/uCNi35nTRmrKGHpanYjH5dDwQZly2ElaAQAAAIiNO8YPwYcxXbBDljZw+cEPfqCamhr5/X6ZpqkXX3xRL774YlTnMAxDW7duTVCEQP8QDIX15KufKHzMHMHMNI+unT8tiVH1Xl63U8PyfbLbLM/lAwAAAOhHXDH2yR2en6GPthS1bR+g4qqNpYmrl156ScYxncrMYxvvAIibV1Z/rgPtVqL42sVMETyRVI9TBXkZstli6KIIAAAAAMeItVdu+5UFD5SysuARliauTjvtNCsvBwxIhYer9erqzyP2nXHyCM0YPyRJEfVeaSkuFeT6IhLqAAAAABCrmBNX7aYKHiirUThMsY9kceLq6aeftvJywIDTOkVwnULH/IDzpbp13QXTkxhV7+RLdWtITjpJKwAAAABxY7fZZLcbCoWiSzplpnmU6nGpobl1NUF/IKRDlbUaNig7EWH2KTR0AfqRNz7eocLD1RH7vnrRTKV5mSJ4rIw0j4ZSaQUAAAAgAVyO6GuEDMPQ8HZVV/tLKuMVUp9G4groJ4rLarX0g20R+06fPEynTCxIUkS9U1a697ilZgEAAAAgXmKfLuiL2N53kMSVZPFUQQCJEQq3riIYDIXb9qV5XfrKhTOSF1QvlOPzKi8rLdlhAAAAAOjH3HHqc7W3pCIe4fR5JK6AfuCtNTu1t6QqYt8NF86QL8WdpIh6n7zMVOVkpCQ7DAAAAAD9XLxWFtzHVEFJfWiqYFNTkyor+Z8GtFdSUaeXVmyN2DdrwlCdNnlYkiLqXQzD0KDsNJJWAAAAACwRS48rSa0rnh+zfaiiVk0t/vgE1Yf1icRVKBTSL3/5S5111ln6+te/nuxwgF4jHDb1p9fWRUwRTPW49NWLZtJ4XFJaiktjhmYpK92b7FAAAAAADBBOh02xPI65XQ7lH9PaxDSl3QfK4xhZ35SUqYJlZWV6+umntWbNGlVWVioUCnV4rGmaqqqqUnNzsyQpLY3+NLGqr6/Xtddeq8suu0zXX3+9fD5f14PQq72zbpd2HYic9/yVC6YrI82TpIh6B6fDrkHZqUrzMlUSAAAAgLUMw5DTYZc/0HGuoyPD8jN0uKq+bXtnUZlOGj0onuH1OZYnrj7++GN961vfUn196/8I0zQ7Pd4wjLZjBg0apO9973sJj7Gn6uvrtXjxYi1btkxFRUUKh8MqKCjQ/PnzdeONNyo7Ozspcb3wwgvauXOnHn74YV1zzTVJiQHxU1pVrxeWb4nYN33cYM05eXiSIko+wzCU7fMqx5cim42KMwAAAADJ4XLGlrganp+hdduL27Z3FpXFM6w+ydLEVXl5ub797W+rrq5OkuR2u5WdnS2/36+KigoZhqEhQ4ZEjKmurlZTU5NOP/10PfTQQ72+Smj37t26/fbbVVxcHLF/586d2rlzp55//nk98sgjmjZtmqVxmaapJUuWSJIuvvjipCXPEB9hs3WKoD949Aeh1+3U1y6eNWCnCKZ5XcrPSou5ESIAAAAAxIvbYVd914cdpyAvMuexq6g0PgH1YZYmrp599lnV1NTIMAx95zvf0S233CKXy6Xly5frG9/4hiTp3XffjRhz8OBB3XrrrVq7dq3eeustXX311VaGHJX6+nrdcccdKi4ultPp1D333KPLL79cHo9Hn3zyiX75y1+qsLBQd955p/7+978rLy/Pstjef/997d+/X5J0ww03WHZdJMb7G/Zoe2HkXOdr508bkL2cnA6b8rPSlM4KigAAAAB6CZcztnTL8PzIlQV3FpV1OVOtv7O0OfuqVaskSdOmTdM3vvENuVyuLscMHTpUDz30kBwOh+6//34VFRUlOsyYPfHEEzpw4IAk6YEHHtBtt92mwYMHKzMzU+eff77uuusuSa2VZw8//LClsT399NOSpJNPPlnTp0+39NqIr/KaBv31vc0R+6aMHqQzp41MUkTJYRhSjs+r0UOySVoBAAAA6FVinQmSm5kq9zFjaxuaVVYdS+1W/2Fp4mrfvn0yDEMXXXRRZBC2zsMYN26cLrzwQjU1NenZZ59NZIgxC4VCeu655yRJM2fO1KWXXnrc64899ljb9osvvqimpiZLYtuzZ09b0vD666+35JpIDNM0tfi19WrxB9v2eVwO3XjJwJoimOJxatSQLOVlpdHLCgAAAECvE2viymYYGpZ3fNXVQGZp4upIQ/bBgwdH7E9JSTnumPbmzJkjSVqxYkWCouuZ9evXq6qqSpJ0ySWXHPf6Cy+8oD179mjhwoWSpObmZn3wwQeWxPbMM8/INE1lZmbq8ssvt+SaSIyVn+7Tln2Rc5y//IWpyslI6WBE/+Kw2zQ0N10jBmXKHWPpLQAAAAAkmt1mk90e24fsw9pNF9xF4so6bnfrdB6n0xmx/9hG4YWFhSccm5qaKkkqKSlJUHQ9s3nz0albM2fOjHitqalJDz30kKZPn67vfOc7JxyTKPX19XrppZckSQsXLmz7f4C+p7K2UX9597OIfZNH5umcGaOTFJG1stK9Gj00S75UT7JDAQAAAIAuuRyxfdg+ekhWxLa9i1lq/Z2lJQv5+fnav3+/SksjK0ZGjhwpl8ulQCCg5cuX66STTjpu7N69eyWp1zYl27NnT9vXw4YNi3ht8eLFKi0t1a9+9SsNGjRIDodDwWAwYkyiPP/882psbJTNZtNXvvKViNcmTpwoSXrqqac0e/bshMfSGYe771QMGUbrDw1DNjnc1jVDf2HFOjW1HJ0i6HLadesX58rp6TvvXSxshk0F+RlK8w68pGvbvWbY5PSkJTka9FfcZ7AC9xmswr0GK3CfobtS00IKKPoWQWfOmqj3NuzV/kNVGpLr04VzTpLTk5qACPsGSxNX48eP1/79+/X5559H7Lfb7Zo9e7ZWrlypJ598UhdccIHGjx/f9npFRYWeffZZGYahUaNGWRlyt1VWVrZ9nZV1NDtaVVWlP/7xjzr77LPbkkM+n0+VlZVtUwsTxTTNtp5g55xzznEJtd7EZott/m8yGYYhQ9bEXVXXqDVb9kfsu/b8UzQ4J9OS6yeLy2nXsPwsuV0De1qgYRgyjL73PYK+hfsMVuA+g1W412AF7jN0xeN2y9bgj36cy66ffv0KNfsDmja+QE7HwL7PLH0aPOWUU7Rs2TKtWbPmuNcWLVqklStXqqGhQYsWLdJll12mESNGqKSkRK+//rpqampkGIYuvPDChMQWTSLJ5/MpLy8vYt+RRusulyuiSfajjz6q+vp63XvvvW37jqym2NjY2NOwO/X+++9r//7WZEdvb8oeDoeSHUK3HfmExTRNmQpbcs3l63YoFD5abTgkx6cvnDZeYbPvvG/RSvW4VZCfIbvN6FP3RzwZhk2GYbTea6Y19xoGHu4zWIH7DFbhXoMVuM/QXU67EfszmyENzcuQ02Hvc/davAtTLE1czZ8/X7/5zW80ceJEhcPhiNUEL7zwQp199tlasWKFWlpa9OKLLx43fvTo0brxxhsTEtuSJUv0+9//vlvHXn311br//vtP+Nqxf6fi4mI9++yzuvzyyzVp0qS2/eGwNTfc008/LUkaNWqUzjzzTEuuGatgS2Of+UY8Ug5sKqxgS+JXhgyFw3r3kx0R+86dOVrhQLNFaTPrZaV7lZ/hUNjf2G//jt3h9KTJMOwyzbACzQN7CVwkDvcZrMB9Bqtwr8EK3GfoLiMU6tEzo2mm/PO/fedeMwybXN70uJ7T0g5fw4cP1+rVq/W73/0uIsFzxP/8z//o0ksv/Wc2MfLP3LlztXjx4ogVCHuTI3EFAoG2fQ8++KBM04xoyC5JLS0tEWMSYffu3Vq1apUk6brrrouoAkPf8tmuQ6qqO/rDzuW0a97UEUmMKHEMQxqck6ZB2WncswAAAAD6NKfDJh5res7yxjFpaR03r/N6vfrNb36ju+++W2vWrFF1dbV8Pp9OOeUUTZgwIaFx3X333br77rtjHn9kZcRQKKS6ujoVFxfrlVde0fXXX6/hw4e3HRcIBFRXVxcxJhGeeeYZmaYpr9erq666KmHXQeK9u353xPack4YrxeNKUjSJY7cbKsjNUIrH2fXBAAAAANDLGYYhp8Muf2Bgtj6Jl17Z8Xj06NEaPXp0ssOIypgxY9q+Li4u1q9+9St5vV5985vfjDiupKSkbapgIv+OK1askNTae+u0007r9Nivfe1rkqSCggK9++67CYsJ0TtcWa8teyNX4Txv1pgOju67PC6HCvJ8A77pIAAAAID+xWG3kbjqIUunCvZnU6ZMaft68eLFWrlypW655ZbjqqrWr1/f9vXUqVMTFo9pml0fhF5v+YY9EdtjhmZr5OCsDo7um9JT3BoxKJOkFQAAAIB+x2kn7dJTvbLiqi+aOXOmsrKyVFVVpRdffFE5OTm6+eabjzvujTfekCR5PB7Nmzevy/Oapqn/+Z//0V//+lcZhqFrr722W1Ma33jjjU6TV2vXrtWtt94qSXriiSd02mmn0VOol/EHQvrgs/0R+86b2b+qrXIyUpSXmZrsMAAAAAAgIRwkrnosKYmrLVu2aOvWraqqqpLf7496/Le+9a0ERNUzdrtd1113nR5++GFJ0k033aTU1MgH8tWrV2v58uWSpIULF8rr9XZ53pdfflmPPPJI2/bvf/97jRw5UgsWLOh0nMvVeQ8kp9MZ8bXb7e4yFlhr7bYDamg++v2R6nHptMnDkhhR/BiGoSE56fKlct8BAAAA6L8czCzpMUsTVyUlJfrWt76lrVu39ug8vTFxJUm33nqrli5dqgMHDmjJkiUaNmyY5syZo3A4rGXLlumBBx6QaZrKzc3VnXfe2a1zbtq06bh9n376aZeJK/R977WbJnjmtJFyOfv+Dz2nw6aCPJ88LpqwAwAAAOjfqLjqOUsTVz/5yU+0ZcsWKy9pqbS0ND3++OO6/fbbVVxcrO9+97vHHZObm6tHHnlEeXl53TrntGnTjts3Y8aMnoaKXm7/oSrtOVgZse/cfjBN0Ot2qiDPxw9vAAAAAAOC08GzT09Zmrj6+OOPZRiGLrroIn3/+99Xfn5+l1Pa+pqxY8dq6dKlWrx4sd566y0VFRXJNE0NHTpU8+fP10033XRcw/bOLFiwQHv37tVf/vIXGYah6667TldccUUC/wboDd5bH1ltdfLofA3KTktSNPGRme7RoKw0eqkBAAAAGDD40L7nDNPC5efOPPNMVVRU6Ne//rUuvfRSqy6LPsDfVCfTDCc7jG5xetJUXFar2oZGBVua4n7+xma/vvfQa/IHjy6ZevfCMzRzwtC4X8sKToddg7PTlOrtX0lqKzg9abLZ7AqHQwo01yc7HPRT3GewAvcZrMK9BitwnyFa2wvLFEvmJS83R0PzsvrUvWYYNrm86XE9p6Wpv/POO0+maerDDz+08rJAn7JqU2FE0ior3atp4wYnMaLYZaV7NXpIFkkrAAAAAAMWVVc9Y+m79/3vf1/jx4/XCy+8oNdee83KSwN9gmmaem/97oh9584cLbutb/2gczntGjk4U4Oy02SzMTUQAAAAwMDlsPf9RbaSydIeVxkZGfrTn/6kRYsW6fvf/77eeOMNpaamRnUOwzD0s5/9LEERAsn1+f4yHao8WgJqtxk6e/roJEYUHcOQsn0pys1IoZcVAAAAAIiKq56yNHG1a9cu3XTTTaqoqJAkLVu2LKbzkLhCf/Xehsim7LMmFigjzZOkaKLjcTk0JCddbpelP1YAAAAAoFdjZcGesfQJ8/7771d5ebmVlwT6jKq6Jq3ffjBi33kzxyQpmu4zDEO5GSnK9nmpsgIAAACAdqi46hlLE1cbN26UYRi66KKL9P3vf1/5+flyuWjaDEjSyk/3KXzMUhNDctI1cURuEiPqmtft1JCcdLmczNkGAAAAgBOhx1XPWN7jqrm5WRdeeKGGDRtm5aWBXi0UDuv9jXsj9p03a0yvrWCy2QzlZaYqK92b7FAAAAAAoFej4qpnLH33Lr/8cpmmqY8//tjKywK93sadJaqqa2rbdjntmjtlZBIj6lia16XRQ7JIWgEAAABAN9Djqmcsffe+/e1va86cOXr++ef1+uuvW3lpoFd7b31kU/Y5Jw9XiseZpGhOzDAMDclJ17D8DDkdlLoCAAAAQHdQcdUzlk4VXLNmja688krt27dP9957r15//XWlpqZGdQ7DMFhVEP3KoYo6bd1XGrHvC7PGJimajg3NTVd6ijvZYQAAAABAn2IYhhx2m4KhcLJD6ZMsTVzddtttbT17TNPUsmXLohpvmiaJK/Q7yzdEVluNLcjWiEGZyQmmA4Oy00haAQAAAECMSFzFztLE1dChQ628HNDrtQSCWrVpf8S+82aOSVI0J5bj89LPCgAAAAB6wOGwSf5kR9E3WZq4evfdd628HNDrrdl2QA3NgbbtNK9Lp03uPStu+lLdystKS3YYAAAAANCn0ecqdrxzQBItb9eU/cxpo3pN4/MUj1NDctKTHQYAAAAA9HlOe+94zuuLSFwBSbK3pEp7S6ratg1J584cnbyAjuF22lWQ52vrSQcAAAAAiB0VV7HjnQOS5L121VYnjxmk/F4wLc/psGn4oAzZbfx4AAAAAIB4cDh4voqVpT2uJk+efNw+wzD09ttv07gdA0pDk19rthZF7PvCrOQ3ZbfZDA3Lz5CDMlYAAAAAiBsqrmJnaeLKNE0rLwf0Wqs27Zc/GGrbzvGlaNrYIUmMSDIMaVhehtxOS38sAAAAAEC/R4+r2Fn6hGq32xUOh3XppZdq9OijvXx8Pp+VYQBJZZqm3tsQOU3wnJmjZbMlt5/UkByfUjzOpMYAAAAAAP2RzWbIZjMUDlPQEy1LE1fZ2dkqLy/XnDlztGjRIisvDfQa2/aX6XBlfdu23WborOmjkheQpPysNPlS3UmNAQAAAAD6M6fdppZwqOsDEcHSSZazZs2SJL399ttRj62pqdHatWu1du3aeIcFWOq99bsjtk+ZWKCMVE+SopGyfV5l+7xJuz4AAAAADAT0uYqNpe/aLbfcIsMwtGLFCr3++utRjd2wYYO++tWv6sYbb0xQdEDiVdU1acOOkoh95yWxKbsv1d0rVjIEAAAAgP7O4aDPVSwsTVxNnz5dP/nJT2QYhv7lX/5FS5YsifocNHhHX/b+xr0KH3MPF+T6NGF4blJiSfE4NSQnPSnXBgAAAICBhoqr2Fj+ri1atEiPPvqo8vPz9V//9V+66qqr9PrrrysQCFgdCmCpYCisFRv3Ruw7d9YYGYb1TdndTrsK8nxJuTYAAAAADEROB4mrWFjanH3fvn0qKSlRWVmZLr74Yi1ZskTbtm3T9773PaWlpWnSpEkdPkhXV1dbGSoQd9sLy1Rd39y27XbaNXfKCMvjcDpsGj4oQ3YbPzQBAAAAwCpUXMXG0sTVxRdf3GFiqr6+Xp988omV4QCW2rzncMT2qZOGyet2WhqDzWZoWF6GHHbmVgMAAACAlZw8h8XE0sTVEfSpwkDUPnE1fdxgy2PIz0qV25WUb3sAAAAAGNDsVFzFJClPsI899pjOOeecqMa89957uvPOOxMUEZBYlbWNKi6vbdu2GYZOGpVvaQwup10ZqR5LrwkAAAAAaOWw22QYBsU8Ueoz6T6aSKMva19tNaYgWykel6Ux5Gak8n0EAAAAAElEn6voWVpxddppp0mSMjMzox6bmZnZNh7oaza1S1xNHTPI0ut7XA75Ut2WXhMAAAAAEMnpsCkQDCU7jD7F0sTV008/HfPYGTNm9Gg8kCzBUFhb90UmrqaMsba/VW5miqXXAwAAAAAcj4qr6PGOAQm252ClmlqCbdtpXpdGDs607Ppet1NpXqqtAAAAACDZnCSuosY7BiRY+/5WU8YMks3CXlN5mamWXQsAAAAA0DG73Z7sEPocEldAgm3acyhie6qF0wRTPU6leJyWXQ8AAAAA0DGngzRMtHjHgASqbWjW/kPVEftOHp1v2fXzsqi2AgAAAIDegh5X0bO0OXtH/H6/iouLVVdXJ7vdrpycHOXk5MjppFIEfduWvaUR2yMHZ8qX6rHk2ukpbnlcfA8BAAAAQG9BxVX0kpa4qqys1PPPP6/XX39dO3fuVCgUuRyk0+nUaaedpvPPP18LFy6Uy+VKUqRA7JI1TdAwWEkQAAAAAHobh90uw5BMM9mR9B1JSVy99NJL+vnPf666ujpJknmC/2N+v1+rV6/W6tWr9ac//Un/8R//oblz51odKhCzsGmesDG7FXwpbrmdvaKgEgAAAABwDIfdpkAwnOww+gzLn2yfeuop/fznP5d0NGGVk5Oj4cOHKzW1tR9PQ0ODCgsLVVlZKUkqLCzU17/+dT388MM666yzrA4ZiMn+Q9Wqb/K3bXvdTo0tyE74dVurrehtBQAAAAC9kZ3EVVQsTVzt27dP//3f/y3TNOVyuXTjjTdq0aJFGjFixAmP379/v/7617/q6aeflt/v13e+8x29/vrrGjTImqoVoCc27Y6cJnjSqHzZbYmfz5yZ5pXTwRKrAAAAANAbOe12NSuY7DD6DEu7gj333HMKBAJyOBz64x//qHvvvbfDpJUkjRw5Uvfdd58ef/xx2e12NTU16ZlnnrEwYiB27acJTrVgmqBhGMrJoLcVAAAAAPRWrCwYHUvfrVWrVskwDH3xi1/U6aef3u1xc+bM0YIFC2Sapt5///0ERgjER0OTX7sPVkTss6K/VXa6hx+CAAAAANCLsbJgdCx9tw4fbq1AmT17dtRj58yZI0kqKiqKa0xAImzdVxqxSkRBnk/ZvsRWQtlshrKptgIAAACAXo1ig+hY+m41NzdLktxud9RjPR6PJCkcpoEZer9NSZgmmONLsaSHFgAAAAAgdg47PYmjYelTbl5eniRp586dUY/dtWuXpNYVCIHezDRNbd4T2Zh9ypjBCb2mw25TVro3odcAAAAAAPQcFVfRsfTdmj59ukzT1N/+9jfV19d3e1x9fb3+9re/yTAMTZ8+PYERAj1XXFar6vrmtm2X067xwxKbcM32pchmMxJ6DQAAAABAz9HjKjqWvluLFi2SJJWWlurGG29sq6LqzO7du3XzzTfr0KHWCpYFCxYkNEagpza1q7aaPDJPTkfiSkGdDpuy0j0JOz8AAAAAIH4Mw5DdTuFBdzmsvNjcuXN11VVX6cUXX9TWrVu1YMECTZ8+XaeccopGjBihtLQ0SVJDQ4OKioq0bt06bdy4sa2v1TnnnKPzzjvPypCBqG1u198q0dMEczNSZRj80AMAAACAvsJptysUCiY7jD7B0sSVJP3Xf/2XWlpa9Oqrr8o0TW3cuFEbN27s8Hjzn0uzzZs3Tw8++KA1QQIxavYHtaOoPGJfIhuzu5x2ZaRRbQUAAAAAfQl9rrrP8nfKZrPp17/+tR555BFNmjRJpml2+mfs2LH62c9+pieeeKJtZUGgt/p8f6lCYbNtOz8rVflZaQm7Xl5masLODQAAAABIDAd9rrrN8oqrI8477zydd955OnjwoFavXq1Dhw6psrJSoVBIPp9PI0aM0LRp0zRx4sRkhQhEbVO7aYJTEzhN0ONyKD3FnbDzAwAAAAASg4qr7kta4uqIoUOH6uqrr052GECPmaZ5XGP2KQmcJki1FQAAAAD0TU574hbw6m9I8QFxUlpVr/LqxrZth92mSSPyEnKtFI9TqV5XQs4NAAAAAEgsKq66j3cKiJP20wQnDM+V25WYokaqrQAAAACg76LHVffF/Z2qr6/X+vXr431aoNfbtNuaaYJpXpe8bmdCzg0AAAAASDymCnZf3BNX7777rq6//nrdcMMN8T410Gv5AyFtLyyP2Jeoxuw5GSkJOS8AAAAAwBo2myGbzUh2GH1C3BNXb7/9tkzTlM/nO+HrwWBQ4XA43pcFkmpHUbn8wVDbdrbPq6G56XG/jmEY8iRo+iEAAAAAwDr0ueqeuL9LmzdvlmEYOuWUU074+gcffKBp06bp/PPPj/elgaTZfILVBA0j/tlzr9uRkPMCAAAAAKzlJHHVLXF/lyoqKiRJ+fn5HR4TDAZVXFwc70sDSdO+MXuipgl6qbYCAAAAgH6BiqvuSdi75HDwgI2BobymQSUVdW3bNsPQ5JEdJ257wkNTdgAAAADoFxwOGrR3R9wTV7m5uZKkAwcOxPvUQK+0uV211bhhOUrxJCbB5HWTEAYAAACA/oCKq+6J+7s0Y8YMmaapl156iSbsGBDaJ66mjBmUkOs4HTY5WDIVAAAAAPoFp4PEVXfEvXzji1/8ol599VXt3btXN9xwg6655hoNHTq07fUdO3a0ff3JJ5/INM2or3HaaafFJVagp4KhsLbuK43YNzVBiSuPi2mCAAAAANBfUHHVPXFPXJ199tk677zz9N5772nDhg3asGHDCY8zTVNf/epXoz6/YRjaunVrT8ME4mJ3cYWa/cG2bV+KW8MHZSbkWkwTBAAAAID+gxk13ZOQ9N6DDz6oSy65RKZpnvDPER293tUfoLdoP03w5DGDZDOMhFyLiisAAAAA6D8cdpsS9PjYrySkhMPtduu3v/2tvvnNb2rDhg0qLT06lWrv3r169dVXZRiG7rrrrkRcHrDMpnaJq0RNEzQMyeOi4goAAAAA+hOH3a5AMJTsMHq1hD4Jjx8/XuPHj4/Yt3z5cr366quSpG9961uJvDyQUNV1TSo8XN22bUg6aXRiEldup0M2G6l4AAAAAOhPHHYbiasu0AkMiNHm3SUR26OGZMmX4k7ItbxupgkCAAAAQH/DyoJd4x0CYvTZroMR21MSNE1QojE7AAAAAPRHrCzYNcufhgcPHqwvfelLVl8WiKtQOHxcxdXUMYMTdj0aswMAAABA/8PKgl2zPHE1adIk/fznP7f6skBc7T5QrvqmlrbtFI9To4dmJeRadrshl5MfZgAAAADQ31Bx1TXeISAG6z8vitg+efQg2W2J+XbyUm0FAAAAAP0SPa66xjsExGDD9sjEVSL7W3nobwUAAAAA/RIVV13jHQKiVF3fpJ1FZRH7poxOYGN2Kq4AAAAAoF9y2G0yjGRH0buRuAKitGbLfoVNs217WH6GstK9CbseFVcAAAAA0D8ZhpGwtjP9haVPxF/72teO22cYhn7zm98oJyfHylCAmH24aW/E9tQEThN0Oe38EAMAAACAfszhsCkYCic7jF7L0sTVmjVrZBiGzGOqVQzDUEtLSyejgN7DNE19uGlfxL5E9rfyupkmCAAAAAD9GX2uOmdp4sr458TN8ePHKzMzs22/2+22MgwgZruKK1RR09C27XbaNX5YbsKu52WaIAAAAAD0a067Pdkh9GqWPhX7fD7V1tbqjjvu0BVXXGHlpYG4+GhL5GqCk0flJzQ7TmN2AAAAAOjfqLjqnKXvzqRJkyS1ThkE+qLDlfUR24nsb2UYhtwuKq4AAAAAoD9zOkhcdcbSd2fRokUyTVMvv/yydu7cGdXY5cuXa/LkyTrppJMSFB3QtVMnFbR9nZnm1emThyfsWkwTBAAAAID+z07FVacsfXcuv/xyfelLX5Lf79ftt9+ubdu2RTXeNM2Ixu6A1c6dOUYP/8uXdcsVc/Tvt12kVK8rYdfyUm0FAAAAAP0ePa46Z3la7+c//7luv/12lZeXa9GiRfrFL36hw4cPWx0GELPTThqhBWdPU25mWkKv42FFQQAAAADo9+hx1TnLSzqCwaC+/OUvKz8/X7/+9a+1ePFiPfPMM5ozZ45mzJjR4bh9+/ZZFiPQGzBVEAAAAAD6P5vNkN1uKBRihtmJWPpkfNZZZ6miouK46X7BYFCrVq3SqlWrrAwH6LWcDpsclIsCAAAAwIDgsNkUCoWSHUavZGniqqysrMPX6F0FHOVxMU0QAAAAAAYKp8OulgCJqxOxfC6SYRj67ne/2+m0wBPZuHGjfvOb3yQmKKCX8dLfCgAAAAAGDFYW7FhSmuhMnDhRp59+elRjGhsbExQN0PvQ3woAAAAABg6ng8RVRyx/Z5gSCHTOMCSPi8QVAAAAAAwUrCzYMUufjj///POYx5577rk9Gg/0FW6XQ4ZhJDsMAAAAAIBFnCzO1SFSekAv46UxOwAAAAAMKFRcdYx3Buhl6G8FAAAAAAOLgx5XHeKdAXoZDxVXAAAAADCg2G02WsZ0gMQV0IvY7YZcTuY2AwAAAMBAw8qCJ8a7AvQi9LcCAAAAgIGJPlcnltRmOrt379ayZcu0efNmHTp0SHV1dQqHw1q2bNlxx/r9frlcriRECVjH6yZxBQAAAAADkZPE1QklJXFVVFSkn/zkJ1q1alXbPtM0JemEczp37Nihe++9V9dee62uv/56y+IErOahMTsAAAAADEhUXJ2Y5e/KZ599poULF2rVqlUyTVN2u11jx47V2LFjOxzzwgsvaOfOnXrwwQfV0NBgYbSAtTwuElcAAAAAMBA5HPQ7PhFLE1d1dXW68847VVtbK5/Pp5/85Cdau3atXnnlFd13330djrvzzjvl9XpVX1+vl19+2cKIAeu4nXbZbWTYAQAAAGAgouLqxCx9VxYvXqyKigp5PB499dRTuuaaa+T1erscl5mZqQsvvFCmaWrFihUWRApYz0N/KwAAAAAYsFhV8MQsfVfeffddGYahq666ShMnToxq7KxZsyRJ27ZtS0RoQNJ56W8FAAAAAAMWFVcnZum7UlRUJEk69dRTox6bk5MjSaqsrIxrTEBv4XVRcQUAAAAAA5XDbtcJ1qsb8CxNXLW0tLReNIY+PvX19ZIkh4OqFPQ/NpshN43ZAQAAAGBAo+rqeJa+I4MHD5Ykbd26NeqxH3/8sSRp2LBhcY0J6A1YTRAAAAAA4LCzsmB7liau5syZI9M09be//U01NTXdHrd792698sorMgxDZ5xxRgIjBJLDS2N2AAAAABjwqLg6nqXvyA033CC73a7q6mp9/etfV2lpaZdjdu/erTvvvFOBQEB2u13XXnutBZEC1qIxOwAAAACAlQWPZ+nT8oQJE/S9731P//3f/61PP/1UF1xwgc477zxNnTpVJSUlbcf94x//UHl5udauXasVK1YoFArJMAx9//vf15gxY6wMGbCEh8bsAAAAADDgUXF1PMvLPG699VY1Nzfr4YcfVktLi9588029+eabkiTjn+3z/+Vf/qXtVY58twAAQ0FJREFUeNM0ZbPZ9PWvf1033XST1eECCed02PnhBAAAAACgx9UJJOVp+a677tLzzz+vuXPnymazyTTNE/6RpFNPPVXPPfecvvOd7yQjVCDhmCYIAAAAAJCouDqRpD0xT548WU8++aSqqqq0cuVKHThwQBUVFZKknJwcDR06VGeeeaZyc3OTFSJgCaYJAgAAAAAkelydSNJLPbKysrRgwYJkhwEkDRVXAAAAAACJiqsT4R0BksgwDHlcJK4AAAAAAK3PiCSvIvFuAEnkdtnbFiUAAAAAAIDEVSRLSz3KyspUWlqqUCiknJwcFRQUWHl5y9TX12vx4sVatmyZioqKFA6HVVBQoPnz5+vGG29Udna25TGVlJToqaee0sqVK1VUVCTTNDVkyBCdccYZ+spXvqIJEyZYHhMkL/2tAAAAAADHcDhskj/ZUfQeCU9cmaapZ599Vs8884z27dsX8VpOTo4WLlyoO+64Q6mpqYkOxRK7d+/W7bffruLi4oj9O3fu1M6dO/X888/rkUce0bRp0yyL6ZVXXtGPfvQjNTY2Ruzft2+f9u3bp1WrVun111+Xw8GUNat53SSuAAAAAABHUXEVKaGZimAwqG9961t6//33JbUmsY5VXl6uxx9/XCtXrtSTTz6pzMzMRIaTcPX19brjjjtUXFwsp9Ope+65R5dffrk8Ho8++eQT/fKXv1RhYaHuvPNO/f3vf1deXl7CY1q2bJm+//3vyzRNnX766br99ts1ZcoUSdLhw4f1wQcf6JRTTiFplSQ0ZgcAAAAAHMtptyc7hF4loU/Nv/vd77R8+XIZhiHTNJWenq6CggI5HA4dOnRI5eXlMk1T27Zt01133aUlS5YkMpyEe+KJJ3TgwAFJ0gMPPKBLL7207bXzzz9f9fX1+td//VeVl5fr4Ycf1o9//OOExlNZWakf/vCHMk1TCxYs0AMPPBDRTyk7O1uTJ09OaAzomMNuk9PBDyQAAAAAwFFUXEVK2LtRXl6uP//5zzIMQ6mpqXrggQf00Ucf6e9//7uef/55ffDBB/q///s/TZ06VaZpav369Xr77bcTFU7ChUIhPffcc5KkmTNnRiStjrz+2GOPtW2/+OKLampqSmhMTz31lKqrq5Wfn6+f/OQnNAHvZTxUWwEAAAAA2nE4SFwdK2HvxiuvvCK/v7Wb2KOPPqoFCxbI3q7cbcaMGVq8eLGGDRsmSfrrX/+aqHASbv369aqqqpIkXXLJJce9/sILL2jPnj1auHChJKm5uVkffPBBQmN65ZVXJEmLFi1SSkpKQq+F6NGYHQAAAADQHhVXkRL2bqxZs0aSNHfuXJ166qkdHpeSkqKbb75Zpmlq3bp1CofDiQopoTZv3tz29cyZMyNea2pq0kMPPaTp06frO9/5zgnHxNuBAwdUVFQkSZo3b578fr/+9Kc/6aqrrtKsWbN0+umn69prr9Vzzz2nYDCYsDjQMSquAAAAAADt0eMqUsKenHfu3CnDMDRv3rwuj50zZ44kqbGxUUVFRRo5cmSiwkqYPXv2tH19pILsiMWLF6u0tFS/+tWvNGjQIDkcDgWDwYgx8bZ27dq2r7OysnTttddqy5YtEcds2LBBGzZs0D/+8Q89+uij8vl8CYunKw5336kIM4zWfK8hmxxub2znkCGfL0s2G9M30bG2e82wyelJS3I06K+4z2AF7jNYhXsNVuA+gxVcnibutX9KWOLqyLS5wYMHd3nskCFD2r6urq7uk4mrysrKtq+zsrLavq6qqtIf//hHnX322Zo9e7YkyefzqbKysu09SoTS0tK2r//t3/5NO3fu1M0336wrr7xSBQUFOnz4sJYsWaJnn31W69at049//GP99re/TVg8XbHZ+l5G2TAMGYotbrfLwUqO6DbDMGQYfe97BH0L9xmswH0Gq3CvwQrcZ0gkt8vZ1qd6oN9rCXtybmhokCSlpqZ2eeyx/Zdqa2sTFVKnokkk+Xw+5eXlRew70mjd5XJFNEF/9NFHVV9fr3vvvbdtn8vlktRaYZYox/5dtm/frieeeEKnn35627709HT9+Mc/lt1u19NPP63XXntNd911l8aNG5ewmDoTDoeSct1YHMl6m6YpU7FNbXU7XX3q74zkMAxb26qsptk3p1Gj9+M+gxW4z2AV7jVYgfsMVrAZrc+ckvrcvRbvwpSEJa5M04xpFbtk9bhasmSJfv/733fr2Kuvvlr333//CV+z2Y62DSsuLtazzz6ryy+/XJMmTWrbb8Xfsb6+vu3rH//4xxFJq2PdeOONevrppyVJr732mr797W8nPLYTCbY09plvxCMlmqbCCrbEtjKkM82hQHN91wdiQHN60mQYdplmmPsFCcN9Bitwn8Eq3GuwAvcZLBFqlmm2JoD60r1mGDa5vOlxPSet6uPkSNVYIBBo2/fggw/KNM2IhuyS1NLSEjEmETweT9vXl19+eYfHDR8+vK0qrrCwMGHxIBKN2QEAAAAAHWFlwaMS/vS8ePFivfHGG3E73jAM/exnP4tHaBHuvvtu3X333TGPz87OliSFQiHV1dWpuLhYr7zyiq6//noNHz687bhAIKC6urqIMYlwbKP15uZmpaV13MgtPT1dDQ0NCe25haNsNkNuJ4krAAAAAMCJOR020VymVcKfnj/88MNuHXdkWmF3jk9E4qqnxowZ0/Z1cXGxfvWrX8nr9eqb3/xmxHElJSVtUwVHjx6dsHiObXh/6NChTntXNTc3S1JSVxUcSDwuklYAAAAAgI457DaF+kY3nYRLaO1ZawOx+P7praZMmdL29eLFi7Vy5Urdcsstx1VVrV+/vu3rqVOnJiyeadOmtX29ffv2Do+rq6tTdXW1pO6tAImeczoG7moQAAAAAICuOe08Nx6RsNKPp556KlGn7pVmzpyprKwsVVVV6cUXX1ROTo5uvvnm4447Mg3S4/Fo3rx5XZ7XNE39z//8j/7617/KMAxde+213ZrSOH78eGVmZqq6ulrvvvuuLrvsshMet3Llyravzz777C7Pi55zOpirDAAAAADomN1ukwJdHzcQJCxx1dEqdv2V3W7Xddddp4cffliSdNNNN7U1PT9i9erVWr58uSRp4cKF8nq9XZ735Zdf1iOPPNK2/fvf/14jR47UggULOh1ns9l0/fXX6w9/+IPefPNN3XrrrTrppJMijmlubm6Ld8SIEZo9e3aX8aDnXFRcAQAAAAA64bDbZLP13llnVqL0I45uvfVWDRs2TJK0ZMkSvfbaa6qsrFR5ebmee+453XXXXTJNU7m5ubrzzju7dc5NmzYdt+/TTz/t1tivfvWrGjRokAKBgG6++Wb99a9/1eHDh1VbW6s1a9bo5ptv1s6dO2W32/WLX/xCNhu3gxWYKggAAAAA6ArTBVvRJTqO0tLS9Pjjj+v2229XcXGxvvvd7x53TG5urh555BHl5eV165zH9qo6YsaMGd0am5WVpSeffFI33HCDqqqq9KMf/ei4Y1JSUvTAAw/olFNO6dY50XNMFQQAAAAAdMVh59lRInEVd2PHjtXSpUu1ePFivfXWWyoqKpJpmho6dKjmz5+vm2666biG7Z1ZsGCB9u7dq7/85S8yDEPXXXedrrjiim6PHzdunF599VUtXrxYy5cvV2FhoUzTVEFBgc455xx99atf1dChQ2P5qyIGhmHIQdYcAAAAANAFZuu0MszevFQfBgx/U51Ms2+s9en0pKm4rFa1DY0KtjRFNdbltGvM0O4nLjGwOT1pstnsCodDCjTXJzsc9FPcZ7AC9xmswr0GK3CfwSqGwyuXy9Wn7jXDsMnlTY/rOak7AyxEY3YAAAAAQHc4eH6UROIKsBSlngAAAAAAdB+JK8BCNGYHAAAAAKD7eIoGLETFFQAAAAAA3UfiCrAQPa4AAAAAAOg+EleAhRxMFQQAAAAAoNt4igYsYrcbstv4lgMAAAAAoLt4igYs4rQzTRAAAAAAgGiQuAIsQmN2AAAAAACiQ+IKsIiL/lYAAAAAAESFJ2nAIg4qrgAAAAAAiAqJK8AiLhJXAAAAAABEhcQVYBF6XAEAAAAAEB0SV4BFnPS4AgAAAAAgKjxJAxZwOmwyDCPZYQAAAAAA0KeQuAIs4LAzTRAAAAAAgGiRuAIs4GKaIAAAAAAAUeNpGrCA00nFFQAAAAAA0SJxBVjAyVRBAAAAAACiRuIKsIDTQeIKAAAAAIBokbgCLOBy8q0GAAAAAEC0eJoGEswwWFUQAAAAAIBYkLgCEoxpggAAAAAAxIbEFZBgTjvfZgAAAAAAxIInaiDBnE4qrgAAAAAAiAWJKyDBnPS3AgAAAAAgJiSugASjxxUAAAAAALEhcQUkmMvJtxkAAAAAALHgiRpIMAdTBQEAAAAAiAmJKyCBbDZDDlYVBAAAAAAgJjxRAwnkJGkFAAAAAEDMeKoGEsjpZJogAAAAAACxInEFJJCLFQUBAAAAAIgZiSsggWjMDgAAAABA7EhcAQnkcvItBgAAAABArHiqBhLIyVRBAAAAAABiRuIKSCAnUwUBAAAAAIgZiSsgQRx2m2w2I9lhAAAAAADQZ5G4AhLE4eDbCwAAAACAnuDJGkgQF/2tAAAAAADoERJXQILQmB0AAAAAgJ4hcQUkiJOpggAAAAAA9AhP1kCCUHEFAAAAAEDPkLgCEoQeVwAAAAAA9AyJKyABDENy2Pn2AgAAAACgJ3iyBhLAYbfLMIxkhwEAAAAAQJ9G4gpIABqzAwAAAADQczxdAwlAY3YAAAAAAHqOxBWQADRmBwAAAACg50hcAQnAVEEAAAAAAHqOp2sgAZgqCAAAAABAz5G4AhKAxBUAAAAAAD1H4gqIM8Mw5LDzrQUAAAAAQE/xdA3EmYv+VgAAAAAAxAVP2ECcMU0QAAAAAID4IHEFxBmJKwAAAAAA4oPEFRBnJK4AAAAAAIgPEldAnDnpcQUAAAAAQFzwhA3EmYuKKwAAAAAA4oLEFRBnDiquAAAAAACIC56wgTiy2w3ZbXxbAQAAAAAQDzxhA3FEY3YAAAAAAOKHxBUQR047iSsAAAAAAOKFxBUQRy76WwEAAAAAEDc8ZQNx5GCqIAAAAAAAcUPiCogjF4krAAAAAADihsQVEEc0ZwcAAAAAIH5IXAFx5KTHFQAAAAAAccNTNhAnTodNhmEkOwwAAAAAAPoNEldAnDjsTBMEAAAAACCeSFwBceJimiAAAAAAAHHFkzYQJ04nFVcAAAAAAMQTiSsgTpxMFQQAAAAAIK5IXAFx4nSQuAIAAAAAIJ5IXAFx4nLy7QQAAAAAQDzxpA3EgWGwqiAAAAAAAPFG4gqIA6YJAgAAAAAQfySugDhw2vlWAgAAAAAg3njaBuLA6aTiCgAAAACAeCNxBcSBi6mCAAAAAADEHYkrIA5ozA4AAAAAQPyRuALiwOXkWwkAAAAAgHjjaRuIA1YVBAAAAAAg/khcAT1ksxmy2/hWAgAAAAAg3njaBnqIxuwAAAAAACQGiSughxwOvo0AAAAAAEgEnriBHqLiCgAAAACAxCBxBfQQjdkBAAAAAEgMEldADzmZKggAAAAAQELwxA30EBVXAAAAAAAkBokroIecdhJXAAAAAAAkAokroAccdptsNiPZYQAAAAAA0C+RuAJ6gGmCAAAAAAAkDokroAdozA4AAAAAQOLw1A30ABVXAAAAAAAkDokroAeouAIAAAAAIHF46gZ6gIorAAAAAAASh8QV0AMuElcAAAAAACQMiSsgRoYMOex8CwEAAAAAkCg8dQMxcjhsMgwj2WEAAAAAANBvkbgCYkR/KwAAAAAAEovEFRAj+lsBAAAAAJBYJK6AGDkdjmSHAAAAAABAv0biCoiR08G3DwAAAAAAicSTNxAjl5OpggAAAAAAJBKJKyBGTBUEAAAAACCxSFwBMbDbbHLY+fYBAAAAACCRePIGYkB/KwAAAAAAEo+nbyAGTBMEAAAAACDxSFwBMaAxOwAAAAAAiUfiCoiB00HiCgAAAACARCNxBcSAxBUAAAAAAIlH4goAAAAAAAC9Eh2mE6C+vl6LFy/WsmXLVFRUpHA4rIKCAs2fP1833nijsrOzLY2nqKhIzz33nFatWqX9+/fLNE0NHjxYp556qhYtWqQZM2ZYGg8AAAAAAEB3GKZpmskOoj/Zvfv/b+/O46os8z6OfwERcRdByd1MsslcctSU0nKpTMptGs20QrMsorHJcuwpzZ6m1NTcSrSsEM20JDU1FddASnOZ0lzTUERcEA2O7HA/fzDcDwgHDnCAg37er5evbs593RfXOf5K+XYtJzVmzBjFxMQUeN/T01MLFixQu3btymU8y5Yt09SpU5WWlma1zdChQzV58mS5uFTc8re05EQZRlaFff/icK1WU87OLsrKylR6iqWih4MbGLWG8kCdoTxQZygv1BrKA3WG8lIZa83JyVlV3WvZtU+WCtqRxWLRc889p5iYGLm6uuq1117Tzp07tXv3bn300Udq1qyZ4uLi9MILL+jSpUtlPp7vv/9e77zzjtLS0tS2bVstXLhQO3fu1K5duxQcHCxfX19J0ooVKzR37twyHw8AAAAAAEBxEFzZ0eLFi3X27FlJ0vTp0/Xss8/K29tbdevWVZ8+fRQQECBJiouL08cff1zm45kzZ44kqUWLFgoJCdH9998vb29veXp66p577tGnn36qzp07S5K++OILJScnl/mYAAAAAAAAbEVwZSeZmZlavny5JKljx4565JFH8t1fuHCh+XVoaGiZBkWJiYn6448/JEn9+/dX9erV87VxdnbW4MGDJUkpKSk6ffp0mY0HAAAAAACguAiu7GT//v26cuWKJKlfv3757q9atUqnTp3SkCFDJGUHRREREWU2ntxblxW2GXydOnXMazc3tzIbDwAAAAAAQHERXNnJoUOHzOuOHTvmuZecnKx58+apffv2+sc//lHgM/ZWu3ZteXt7S5IiIyOttvv5558lZS8nbN68eZmNBwAAAAAAoLiqVPQAbhSnTp0yr5s0aZLnXnBwsC5evKgZM2aoYcOGqlKlijIyMvI8Uxaef/55TZkyRVu3btWkSZP0yiuvqF69eub9rVu3aunSpapRo4bef/99OTtXXI5ZxS3/UkZH5eTkbP7TtVrNCh4NbmTUGsoDdYbyQJ2hvFBrKA/UGcoLtZaN4MpO4uPjzevc4dCVK1f06aefqkePHuratauk7NlQ8fHx5tLCsjJ8+HAlJiZq7ty5WrFihVavXq37779fvXv31r59+/T111+rdevWmj59utq0aVOmYymKs7NLhX7/knBycpKTU+UbNyofag3lgTpDeaDOUF6oNZQH6gzl5WavNYKr/ypOkFS7dm15eXnleS1no/WqVavKycnJfD0oKEgWi0Wvvvqq+VrVqlUlSUlJSaUddpGef/55tWnTRi+++KJSU1O1adMmbdq0SVL2+3jrrbcqPLSSpKyszIoegs2cnJzl5OQkwzBkGFkVPRzcwKg1lAfqDOWBOkN5odZQHqgzlJfKWmv2nphCcPVfy5Yt0/z5821q+7e//U3//ve/C7yXe7ldTEyMvvzyS/n5+eUJh7KyyqfgMjMz9eGHH+qLL75Q7dq1FRgYKDc3N23cuFG7du1SQkKCRowYob59+2rq1KmqWbPiph5mpCZVmn8RXavVlJOTiwwjS+kplooeDm5g1BrKA3WG8kCdobxQaygP1BnKS2WsNScnZ1V1r2XXPgmu7KR69ew9mtLT083XZs+eLcMw8mzILkmpqal5nikLaWlpeuGFFxQREaFWrVpp8eLFuuWWWyRJQ4YM0cWLF7V48WKFhIQoLCxMUVFRWrp0qerWrVtmYwIAAAAAACgOgqv/CgwMVGBgYImf9/DwkJQ9yykxMVExMTFat26dnnzySTVt2tRsl56ersTExDzPlIWFCxcqIiJCzs7Omj59uhla5WjQoIEmTpyoLl266MUXX9SJEyc0bdo0vf/++2U2JgAAAAAAgOKouGPkbjC33nqreR0TE6MZM2bI3d1dL774Yp52sbGx5lLBli1bltl4Vq9eLUlq1qyZ2rZta7Vd79691aVLF0nShg0blJaWVmZjAgAAAAAAKA6CKzvJHQ4FBwcrPDxco0aNyjerav/+/eb1XXfdVWbjuXDhgiSpUaNGRbZt1qyZJCklJUV//vlnmY0JAAAAAACgOAiu7KRjx46qV6+eJCk0NFT169eXv79/vnYbN26UJFWrVk2+vr5F9msYhmbPnq3u3bvL19dX8+bNs2k8DRs2lCSdO3euyLZRUVGSsk87rF+/vk39AwAAAAAAlDWCKztxcXHRE088YX79zDPPqEaNGnnaREZGaseOHZKyN0h3d3cvst81a9ZowYIFunz5suLi4jR//nytXbu2yOd69eolKTuU2rRpk9V2W7Zs0d69eyVJffr0yXMqIgAAAAAAQEUipbCj0aNHq0mTJpKkZcuWacOGDYqPj1dcXJyWL1+ugIAAGYYhT09PvfDCCzb1efDgwXyv/fLLL0U+N2bMGHPW1fjx4/Xhhx/q6NGjslgsSkhI0KFDhzRt2jTzxMN69epp3LhxNr5TAAAAAACAssepgnZUs2ZNLVq0SGPGjFFMTIxeeeWVfG08PT21YMECeXl52dRnu3bt8r3WoUOHIp9r0KCBPv/8c40bN07Hjx9XUFCQgoKCCmx76623aubMmWrevLlNYwIAAAAAACgPToZhGBU9iBuNxWJRcHCwNm/erOjoaBmGoUaNGql379565pln8m3YXhjDMDRnzhytWLFCTk5OeuKJJxQYGGjz8xkZGVq/fr3CwsJ0+PBhxcfHS5I8PDx0xx13qHfv3nr00Ufl6upa7PdpT2nJiTKMrAodg61cq9WUs7OLsrIylZ5iqejh4AZGraE8UGcoD9QZygu1hvJAnaG8VMZac3JyVlX3Wvbtk+AKjoDgCsiPWkN5oM5QHqgzlBdqDeWBOkN5qYy1VhbBFXtcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhVanoAQCS5ORUOTPUyjpuVD7UGsoDdYbyQJ2hvFBrKA/UGcpLZam1shink2EYht17BQAAAAAAAEqpckR2AAAAAAAAuOkQXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAoMQsFov8/Py0YMECJSQkVPRwAADADcbJMAyjogcBOIrY2FhNnTpVGzdulCQtWbJEXbt2telZi8Wi4OBghYWFKTo6WllZWWrcuLF69+6tp59+Wh4eHmU5dFQC+/bt09q1a7Vnzx7FxcUpNTVVXl5e6tChgwYPHixfX1+b+qHWUJiDBw8qNDRUu3fvVmxsrAzDUP369dWhQwc9+uijuv/++23qhzqDrYKDg/Xee++patWq2rlzZ7FqgzqDNaGhoZo4caJNbUeNGqUJEyZYvU+dwVaxsbFasmSJwsPDFR0dLcMwdMstt6hbt24aPny4fHx8Cn2eWgPKBsEVICktLU2ff/65goKClJSUZL5ua3B18uRJjRkzRjExMQXe9/T01IIFC9SuXTu7jRmVR3JysiZNmqS1a9cW2m7w4MF699135eLiYrUNtQZrEhIS9NZbb5nBuzU9evTQnDlzVL16dattqDPYyjAMPfTQQzp9+rQee+wxffDBBzY/S52hMMUJrmbOnCk/P78C71FnsNW6dev01ltv5flZILdmzZrp+++/V5UqVQq8T63BmrNnz6p3797Fembr1q1q0qRJgfduxoCU4Ao3vfDwcL377ruKioqSJHl7e+v8+fOSbAuuLBaLBgwYoLNnz8rV1VXjxo2Tn5+fqlWrpr1792ratGk6c+aMPD09tXr1anl5eZX1W4IDSUtLk7+/v/bu3StnZ2cNHTpUAwYMUPPmzZWenq4jR45o1qxZOnbsmCRpzJgxGj9+fIF9UWsozOzZs7VgwQLVrVtXI0aMUK9evdSkSROlpKTo999/15IlS7Rjxw5JUt++fTV//vwC+6HOUBw7duzQ888/L0lauXKl2rdvb9Nz1BmKkju4+vXXXwtt6+rqKmfn/DugUGewVVhYmAIDA2UYhrp06aIxY8aobdu2kqQLFy4oIiJCnTp10t13313g89QaClOS4Grbtm1q3Lhxvtdv2oDUAG5S6enpRkBAgOHj42P4+PgYvr6+xrfffmv8+OOP5ms//fRTkf3Mnj3bbL9+/fp897/99lvz/ttvv10WbwUObv369ca9995rREREFHg/KSnJ6N27t+Hj42PcddddRnx8fIHtqDUUJisry1i2bJlx+fJlq20mT55s1sixY8cKbEOdoThGjRpl+Pj4GIMGDSrWc9QZirJq1SqzBkqKOoMtLl++bHTp0sXw8fExxo8fb2RlZRW7D2oNhcnKyjJSUlKK/PXPf/7T8PHxMR5++OEC6zAxMdHo1auX4ePjY9x5553GJ598YsTGxhpXrlwxwsLCjD59+hg+Pj5G9+7djYsXL1bAOy07bM6Om1aVKlVUu3Ztubq6asyYMdq0aZMGDhwoJycnm/vIzMzU8uXLJUkdO3bUI488ku/+woULza9DQ0OVnJxsnzeASuORRx7R9u3bre5h5e7urhEjRkiSUlNTtWfPnnxtqDUUxcnJScOHDy90eviwYcPM65MnT+a7T52hOE6dOqVdu3ZJkp588kmbn6POUB6oM9hqyZIlunr1qho0aKApU6YU62cBiVpD0ZycnOTm5lbor6tXr2rTpk2SpJEjRxZYh4sXL9bZs2clSdOnT9ezzz4rb29v1a1bV3369FFAQIAkKS4uTh9//HH5vcFyQHCFm9qECRO0YcMGjR8/XjVq1Cj28/v379eVK1ckSf369ct3f9WqVTp16pSGDBkiSUpJSVFERETpBo1Kydp+CDlatmxpXl+6dCnffWoN9pCWlmZeN2jQIN996gzFsXTpUhmGobp161rdX6gg1BnKA3UGW61bt06S9Pjjjxe6/6M11BrsISQkROnp6apTp44GDRqU7/7NHpASXOGmVqdOHTVr1qzEzx86dMi87tixY557ycnJmjdvntq3b69//OMfBT4D5Mi9EWidOnXy3afWYA/BwcGSpNatWxe4Twd1BltZLBZ9++23kqQhQ4bIzc3N5mepM5RGVlaWTe2oM9ji7Nmzio6OliT5+vqaBzYNHjxYd999t7p06aJhw4Zp+fLlysjIKLAPag2llZSUpBUrVkjKDlDd3d3ztbnZA9LCpwAAKNSpU6fM6+tPfQgODtbFixc1Y8YMNWzYUFWqVFFGRkaeZ4AcuTee7dChQ7771BqKKysrS+np6bp27ZoOHz6sL774QuHh4WrUqJHmzJlT4BR06gy2+uabb5SUlCRnZ2cNHz48z73bb79dkvUDTqgzFNfatWu1evVqHT9+XHFxcXJ3d1f79u01YsQI9enTp8BnqDPY4ueffzav69Wrp2HDhum3337L0+bAgQM6cOCAvvvuOwUFBal27dp57lNrKK1Vq1YpISFBVapUMbcPuV5xAtJVq1aZz/Tt27fsBl6OmHEFlEJ8fLx5Xa9ePfP6ypUr+vTTT9WjRw/zL+05f8jlJOVAjrS0NH333XeSsv8gatq0ab421BqKa+3atWrXrp26deum0aNH6/DhwwoMDNSaNWvUqlWrAp+hzmALwzD05ZdfSpJ69uxp9bhua6gzFNdrr72mXbt26dKlSzIMQ0lJSfrxxx8VEBCgd999t8BnqDPY4uLFi+b1G2+8oRMnTsjf319r1qzR3r17tX79ejOc37dvnyZPnpyvD2oNpZGVlWXOiO/bt69uueWWAtvZEpC++uqrZkB6/TOVHTOugFLIWTdctWrVPLMXgoKCZLFY9Oqrr5qvVa1aVVLeJWGAJC1atMjc1+rll18usA21huL6448/8nx9+fJlhYSE6Nq1awoMDCxwHw/qDLbYuXOnTp8+Lal4m7LnoM5gi8aNG+uhhx6Sq6urOnfurK5du8rb21tpaWn66aef9MEHHyg6OlohISH6y1/+osGDB+d5njqDLXIHSMeOHdPixYvVpUsX87VatWpp8uTJcnFxUUhIiDZs2KCAgADddtttZhtqDaURFhZmLld9+umnrbYrbkAaHx9/QwWkzLgC7MDZ+f//VYqJidGXX34pPz8/tWnTxnzd1j0ZcHPZv3+/goKCJGWvae/evXuh7ak12OqVV17RsWPHtH//fq1du1bPPfec0tLS9Nlnn2no0KGyWCxWn6XOUJiQkBBJUosWLXTvvfeWuB/qDIXp2rWr5s6dq5kzZ2rYsGFq2bKl3N3dVadOHT300EMKCQlRzZo1JUkLFiyw2g91hsLk/rNw8uTJeUKr3HIHChs2bCiwDbWGkvj8888lSe3atcu3BDC3mz0gJbgCSiFnxkJ6err52uzZs2UYRp4NGCUpNTU1zzPA2bNnFRAQoPT0dLVt21Zvvvmm1bbUGkqqRo0auv322/Xqq6/qs88+k7Ozs44fP67Zs2fna0udoSgnT57Url27JElPPPFEsY+Nl6gz2Mctt9yihx9+WJJ05swZc8ZCDuoMtqhWrZp5XdjpqE2bNjVPID9z5kyee9QaSipn/zSp8NlWud2sASnBFVAKHh4ekrKPH01MTNTRo0e1bt06DRs2LM8+Renp6UpMTMzzDG5uFy5ckL+/v+Lj49W0aVMtWLAgz1+erketwR46duyoTp06SZJ5Ilxu1BmKsnTpUhmGIXd393xLs2xFncFeWrdubV5fHyZQZ7BF7o3WU1JSCm1bq1YtSfn3p6LWUFI5s60aNmxoBvHW3OwBKXtcAaVw6623mtcxMTGaMWOG3N3d9eKLL+ZpFxsbaybfLVu2LNcxwvHExcXJ399fZ86cUePGjRUcHKwGDRoU+gy1Bntp0aKFfv75Z1ksFsXHx+f5yzN1hqL88MMPkrKXLHTu3LnQtk899ZSk7L2Ktm3bZr5OncFech8Zn/uHOYk6g21yb4R9/vz5PHtXXS8n2Lr+VEFqDSURHR2tsLAwSdn7ReZsqG7N9QFpTEyM1q1bpyeffPKmCEiZcQWUQtu2bc3r4OBghYeHa9SoUfn+I7F//37z+q677iq38cHxXLhwQSNGjNDJkyfVvHlzLVmyRI0bNy7yOWoN9pLzF28nJydz2UMO6gxFMQyj1H1QZ7CXnINNpOwZC7lRZ7BFu3btzOtjx45ZbZeYmKirV69Kkry9vfPco9ZQEsHBwcrKylK1atU0dOjQItvf7AEpM66AUujYsaPq1aunK1euKDQ0VPXr15e/v3++dhs3bpSUvY7e19e3vIcJBxEdHa2nn35aMTExatOmjRYvXixPT0+bnqXWYA+ZmZnat2+fJKl58+Zyc3PLc586Q1E2btxYaHj1888/a/To0ZKkxYsXq3Pnzvn2waLOYC+RkZGSspdwXf8DGnUGW7Ru3Vp169bV1atXtW3bNvXv37/AduHh4eZ1jx498tyj1lBcCQkJWrVqlSRpwIABqlu3bpHPFBSQBgYG3jQBKTOugFJwcXHRE088YX79zDPP5JvBEBkZqR07dkiShgwZkmdaO24ex48f1xNPPKGYmBh1795dy5Ytszm0kqg1FO2TTz7RyJEjzf8jXJAFCxbo3LlzkrKnpV+POkNRqlatKjc3N6u/XF1dzbaurq5yc3MzTzfKQZ2hKIZhaOrUqdqyZYvVNt9//70ZxA8cODDfPpHUGWzh7Oxs/nm4adMmHT58OF+blJQUffzxx5KkZs2aqWvXrnnuU2sorq+++kpJSUlycnKyeVP2nIBU0k0ZkBJc4aaWmZmp1NTUPL9y75GQnp5u9V6O0aNHq0mTJpKkZcuWacOGDYqPj1dcXJyWL1+ugIAAGYYhT09PvfDCC+X23uA4Dhw4oBEjRujSpUvq16+f5s2bJ1dX13y1l/MrLS2twH6oNVhz9OhRzZ8/X3v27NFDDz2k+fPn67ffflNCQoKuXLmin376SS+//LLmzZsnSbrnnnvy/CU7N+oM5YE6Q2EWL16szz//XAEBAQoICNC2bdt08eJFWSwWHT9+XDNmzND48eMlZc8evX5j4hzUGWwxcuRINWzYUOnp6fL399fKlSt14cIFJSQkaM+ePfL399eJEyfk4uKiqVOn5jnVLQe1Blulp6dr6dKlkiRfX1+1atXKpudu9oDUybDHZgVAJRUaGqqJEyfa3H7QoEGaOnVqvtdPnjypMWPGKCYmpsDnPD09tWDBgjzr6HHzGDlypPbs2WNz+xYtWmjTpk0F3qPWYM2+ffv0xhtvKCoqqtB2fn5+mjJlimrWrGm1DXWGktq9e7e5KfuSJUvyzUzIjTqDNRkZGZo5c6ZCQkIK/J+GOdq1a6dZs2bl2Zj4etQZbPH7779rxIgR+U4MzFG9enVNnz5dffv2tdoHtQZbrF69WhMmTJCUPVv++qWnhbFYLBowYIDOnj0rb29vTZgwQffcc4+ysrIUFham6dOnKykpSZ6enlq9erW8vLzK6m2UO4Ir3NTsFVxJ2f8hCQ4O1ubNmxUdHS3DMNSoUSP17t1bzzzzzA11qgOKp7jB1QMPPKCgoCCr96k1WJOZmakNGzZo27Zt+vXXXxUXF6cqVaqoYcOG6tSpkwYMGKC//vWvNvVFnaEkihNcSdQZCnf69Gl9/fXXioiI0Llz55ScnCwvLy/5+PjIz89PDz/8cJEncUnUGWxz+fJlBQcHa8eOHTpz5owMw1Djxo3Vs2dPjRw5Uo0aNSqyD2oNRRkwYICOHj2qVq1aaf369fn2gSzKzRqQElwBAAAAAACUoR9//FHPPPOMJOntt9+2um1DUW7GgJTgCgAAAAAAoAylpKQoMjJS4eHhev3112+oPajKGsEVAAAAAAAAHBKnCgIAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAAAAAADAIRFcAQAAAAAAwCERXAEAAAAAAMAhEVwBAACgUBkZGRU9BJQSv4cAgMqK4AoAAABWnTx5Uv3791dERERFDwUlFB8fr0GDBik0NLSihwIAQLERXAEAAKBABw4c0PDhwxUVFaX3339fmZmZFT0klMDSpUt1/PhxTZw4UQsXLqzo4QAAUCwEVwAAAMhn//798vf319WrV9WiRQstXrxYLi4uFT0slMBLL72kwYMHS5JmzZqluXPnVvCIAACwHcEVAAAA8jh+/LjGjh2r5ORkNW7cWEuWLJG3t3dFDwsl5OzsrPfee09+fn6SpI8++khLly6t4FEBAGAbJ8MwjIoeBAAAABzD5cuXNXDgQF28eFF169bVihUr1KJFi4oeFuwgPT1dY8aM0Y8//ihnZ2d99NFH6tWrV0UPCwCAQhFcAQCAG050dLT69Oljft26dWutW7euAkdUeQQEBGjLli1ycnJSUFCQ7r///ooeEuwoPj5eAwcO1IULF+Th4aF169apfv36FT0sAACsYqkgAAC44YSFheX5+sSJE4qKiqqYwVQiq1ev1pYtWyRJQ4cOJbS6AXl4eOjf//63pOwQa9KkSRU8IgAACkdwBQAAbjibN2+WJDVo0CDfayhYRkaGPvzwQ0lSnTp1NG7cuIodEMrMfffdZy4R3LJli/bv31/BIwIAwDqCKwAAcEO5dOmSfvnlF0mSv7+/uan49bOw7CkrK0s//PCDkpKSyux7lLX169fr/PnzkrJnW9WrV6+CR4SyNHbsWPN68eLFFTgSAAAKR3AFAABuKGFhYcrKypIk9enTx1zudvDgQTOYKamsrCylpqYqPj5ex48f18aNG/Xee++pV69eGjNmjHbt2lXa4VeY4OBgSZKTk5OGDRtWwaNBWWvfvr3uvPNOSdK2bdsUHR1dwSMCAKBgVSp6AAAAAPaUM7OqdevWatasmXr16qWvvvpKhmEoLCxMI0eOtLmvEydOKDQ0VBERETp//rwSEhIKbb9161b17du30DY7duzQN998o//85z+6evWqatWqpdatW8vPz09DhgyRi4uLzeOzl7Nnz+q3336TJN1+++1q3LhxsfuIj4/Xvffeq8zMTDVu3Fjbtm0r8plJkyZpxYoVkqQlS5aoa9euhba3x2cXHR2trVu3au/evTpx4oQuXryo1NRU1axZUy1atJCvr6+GDx8uLy+vIvuaN2+e5s+fn+e1KVOmmMHf+fPn9cknnyg8PFznzp1Tenq6Te81Li5OK1euVHh4uE6dOiWLxSJ3d3fVr19f7du31wMPPKC+ffuqSpXS/VW+V69e+u2335SVlaWwsDCNGjWqVP0BAFAWCK4AAMAN488//9SePXskSb1795YkdevWTdWrV1dSUpI2b95sU3BlGIbmzJmjTz75RBkZGQW2cXJy0p133ikXFxc5OzvLy8tL99xzj9U+09LS9Prrr+v777/P83p8fLx2796t3bt3a8WKFfrkk0/k4eFh61u2i59++sm87t69e4n68PDwUNeuXRUZGamYmBgdOXJEd9xxh9X2hmGY4ZaXl5c6d+5sta29PjuLxaJHHnlEaWlp+e79+eef+uWXX/TLL7/oyy+/1Jw5cwr9/bQmNjZWknT48GE9/fTTRYad11u3bp0mTZqka9eu5Xk9MTFRiYmJioqK0po1a3TLLbfo9ddf1yOPPFLsMebw9fXVvHnzJEm7d+8muAIAOCSCKwAAcMPYtm2bGTTlbD5dtWpV3Xvvvdq8ebP27dun+Pj4IoOh2bNnKygoSJJUs2ZNDRkyRHfddZecnZ0VFRWlb775RufOnVNWVpamT5+uVq1aFdpfVlaWxo4day4lbNWqlQYNGqRmzZopISFB27dv19atW3Xo0CGNHj1aK1eulKura2k/DpsdOXLEvL7ttttK3E+/fv0UGRkpKXvT78KCq4MHD+rSpUuSpAcffFDOzgXvYGHPz65mzZrq2bOnjh8/rs6dO+uOO+6Ql5eXMjIyFBsbq02bNunXX3/V1atXFRAQoA0bNqhhw4ZW34Ofn5/atm0rSZo1a5aOHz+uc+fO6fz58xo9erQSEhLk4+OjgQMHKiUlRXPnzi3089u7d69ee+01ZWVlydXVVY8++qj++te/qk6dOkpOTtb58+f1448/KjIyUrGxsdqxY0epgqvWrVub1zkz7gAAcDQEVwAA4IaRc3Kgl5eX2rVrZ77eq1cvbd68WZmZmdq2bZv+9re/We0jKipKCxculJQddISGhqp58+Z52owaNUojRozQoUOH5O/vr9DQUHl6elrtc9myZWbw8ve//12TJ0/Os8zr8ccf1+rVqzVhwgQdPnxYn332mZ5//vnifwAldObMGfO6RYsWJe6nb9++mjJlijIyMrRlyxYFBgZabbt161bzul+/flbb2fuzmz17ttUlds8++6wWLFig2bNny2KxKCQkROPHj7faV8uWLdWyZUtJ0meffSZJOnfunKZNm6b4+Hg9/fTTmjBhglxcXLR7926r/eT4/PPPzf3Z3nnnHQ0ePDhfmzFjxujIkSP67LPPNHHixCL7LEzNmjXl6empuLg4Xbp0SampqXJzcytVnwAA2BubswMAgBtCUlKSGXD06tVLTk5O5r2ePXua+x8Vdbrgt99+K8MwJEnPPfdcvtBKktzd3fXKK69Iki5cuKAlS5ZY7S85OVlz5syRJLVp00Zvv/12gcHJwIED1b9/f0lSSEiI1SWKZSEuLs68Ls1pgvXq1TOX1x09elRnz5612jYnuGrQoIE6depUYJuy+OyK2hdq9OjRZnjz888/F9q2IIcOHdKGDRvUt29fvfHGG8Xas+zUqVPm9UMPPWS13R133KEPPvjALic/5u7j4sWLpe4PAAB7I7gCAAA3hJ07dyo1NVXS/+9vlcPDw0MdOnSQJEVGRspisVjtJ3d4UNi+S7mXweXsq1WQiIgIJSYmSsqeMVRYkJEzw+bSpUv6z3/+Y7WdvSUlJZnX1atXL1VfDz/8sHm9ZcuWAtucPn1aJ06ckJQd0FhbJlgRn13VqlXNpaSXL18u9vMpKSmqVq2a3nrrrWI/W7duXfO6vH7/3d3dzevk5ORy+Z4AABQHwRUAALgh5IQk1atXV7du3fLdz9nzKi0tTT/88IPVfnJOfpPy/lB/vapVq5rXV69etdpux44d5vVdd91ltZ0k/eUvfzGvDx06VGhbe8rMzDSvS3uqYd++fc09pqwFV7YuEyzrzy4jI0MnT57U3r17tXPnTm3fvl3bt283N2/PWbZXXAMGDMi3N1aHDh20detWbd261QxRr5dTo5L00ksvadGiRYqPjy/RGGyVewZaec7yAwDAVuxxBQAAKr20tDQz5LjvvvvyhEo5HnjgAX3wwQeSsvfCsrapdbNmzczro0ePWt1g/OTJk+Z1YRt4514ud+TIkUJn8eQOkC5cuGC1nb3l/rwsFou8vLxK3FfdunV1zz33KDw8XPv37y9wM/yc4Mrb21t333231b7K6rPbvHmzVq5cqd27dxd4wmBpDRo0KN9rbm5uatKkSaHPPfXUU9qzZ49++OEHJSUlaebMmZozZ47uvvtu9ezZU3369CnVHmQFyT37kP2tAACOiOAKAABUej/++KP5A3juWSu5tWrVSi1atFBUVJR27typtLS0AgOuxx57TMHBwZKkoKAg9e/fv8B2ORu4S5Kvr6/VseUOWyZNmmTbG5LMJXLloXbt2nb9vv369VN4eLgyMzO1fft2DRkyxLwXHx+vAwcOSMpeJph7L7Lr2fuzS0pK0rhx47Rz506b+yoJazOqiuLm5qaFCxfq66+/1uLFi3X69GllZGRoz5492rNnjz744AO1bdtWTz/9tB599NFCPztb5f6sctcBAACOgqWCAACg0ss5TVCSzp8/r+XLlxf4K2fmT1JSkiIiIgrsq23btvL395eUfcLgU089pV27dslisSg9PV0nTpzQv/71L23btk1S9ubWw4YNs/t7yj2DqKx5e3ub11euXCl1f4UtF9yxY4f53gpbJlga1j67N9980wytatSoocDAQK1atUp79+7VkSNHdOzYMR07dkyNGzcu1fcvTaDk7OysoUOHmrPCAgIC1K5dO3MfsEOHDum1117Ts88+q5SUlFKN0zAM/fnnn5IkV1fXQk/GBACgojDjCgAAVGqZmZlmiCRJH374oU3PhYWFWZ2d9frrr8vT01OzZ8/WgQMHNGrUqALbVa9eXXPnzi10pkr9+vXNjch37tyZJyRyFLfddpt5ffToUfXs2bNU/dWuXVvdu3fXzp07FRkZqeTkZHO/sJxlgo0aNSpyZpI9P7tTp05p/fr1krJnNn355Zdq06ZNifsrD+3bt1f79u318ssv6/Lly1q1apUWLlwoi8WiiIgIvf/++5oyZUqJ+4+KijI35m/ZsqVdZnABAGBvzLgCAACV2t69e0u0gfW2bduszsxxdnZWamqqMjIy5Orqmu8HeldXVz344INatWqVunTpUuj3adSokXl96dKlYo+zPOTe+PzXX3+1S585s6lSUlIUHh5uXu/atUtS0csEJft+drlPfuzfv7/Dh1bXq1+/vp577jktXbrUnH0VGhpaqllXuX+v27VrV+oxAgBQFphxBQAAKrWwsDDzesuWLWratGmh7SdOnKjQ0FBdvXpVe/bsKfAEwi1btmju3LmSsvey8vHx0e+//6709HTVrVtXrVu3LvTEwdzuu+8+hYaGSsoO2Yo6Ha8idO3aVdWqVVNKSor279+v9PR0c6lfSfXp00eurq5KT0/Xli1b9OCDD2rXrl1KTk6WZNsyQXt+drlPfsy9AX9lc8cdd6hNmzY6fPiw0tLSdO7cOd16660l6it3mNejRw97DREAALtixhUAAKi0DMMw91Bq3bp1kaGVlHfz9tyhV25r1qyRJHl4eMjX11deXl7q1q2bevTooXbt2tkcWknZgUBO+2XLlpnBjSOpVq2aecpifHy8uZyvNGrVqqV7771XUvYyv4yMDLPfxo0bq3379kX2Yc/PLvdyztjYWKvtzp07Z+7zZRhGib9fSdh6wmHuWVYlXd5nsVi0YcMGSdmzue6///4S9QMAQFkjuAIAAJXWwYMHzRDC1h+8u3fvbp4SuGXLlgLDiaysLEnZIc6KFStKddJezZo19dJLL0mSoqOjFRgYaLW/kydP6s033zT3HSpPo0aNMkOQr776yi59Pvzww5Jkzm7bsWNHnteLYs/PrlOnTub1xo0bC1x6+Pvvv2v06NFmH1euXFF6erpNYy2ta9euadiwYfrXv/6lCxcuWG23YsUKnTp1SlJ24NS8efMSfb81a9aY7/PJJ5+Um5tbifoBAKCsORnl/b+SAAAA7GTGjBn65JNPJElffvllnnCiMKNHjzZPFVy5cmW+2T+bN29WYGCg1edzTmDr0KGDBg0aVORm5hkZGfL39zeXZtWrV0+DBw9W27Zt5ezsrNjYWO3atUsREREyDENDhgzRe++9Z9N7saexY8dq+/btkqRFixaVepN2i8Wibt26KS0tTW3bttWhQ4ckSd98843Ny/7s+dn5+/srMjJSkuTp6anhw4erZcuWunbtmnbv3q1NmzYpPT1dnTt3Nr/fsGHD9Prrr6tGjRr5+vvjjz8UFRUlSZo1a5aOHz8uSQoKCjLbtGjRQi1btizyfU6ePNkMDF1dXdWjRw916dJFDRs2VEZGhmJjY7V582YdPHjQfObdd9/V448/XmTf10tISFC/fv0UFxenGjVqaOvWrapXr16x+wEAoDwQXAEAgErroYceUlRUlOrVq6fIyEhz0+qiLFu2TO+8844k6dlnn9Vrr72Wr80XX3yhefPmyWKxFNnfgw8+qJkzZ5ozuQqSlpamCRMmmMuzrGnatKmmTJkiX1/fIr+vvZ09e1aPPfaYrl27piZNmmj9+vWqVq1aqfp84YUX8pz62LRpU3N5p63s9dldvHhRTz31lP74448C71erVk3/8z//owcffFCPPfaYLly4IGdnZ0VERKh+/fr52s+bN0/z588vdEwvvfRSoSFoDovFomnTpik0NFQZGRmFtq1evbomT56sgQMHFtlvQSZNmqQVK1ZIKnn4BQBAeSG4AgAAldKJEyfk5+cnSRowYICmT59u87Pnzp3TAw88ICl7RsymTZsKbJeamqpjx47pypUr5vJBwzB05coVHT16VN999525H9LAgQM1bdq0Ir/3rl27FBoaqgMHDujSpUtydnaWl5eX2rdvr759+6pv375ycXGx+b3Y29dff60333xTkuTn56eZM2eWqr+1a9fmCQbHjBmj8ePHl6gve3x2FotFwcHB2rx5s06fPi0nJyd5e3urR48eevLJJ82N26OjozVr1iwlJibq008/LbAvewZXOc6cOaO1a9cqMjJS0dHRunr1qpydneXh4aHbb79d3bp10+DBg1WrVi2b+8xtw4YN+uc//ynDMPTAAw/kmR0GAIAjIrgCAAAooYSEBI0YMULHjh2Tk5OTNm7cqBYtWlT0sEot5+RFSQoMDDT3mSqpRYsWmQHY+vXrddttt5V6jCi+X3/9VSNHjlRKSopatGih5cuXy8PDo6KHBQBAodicHQAA4L9SU1O1fft2bd++vdCT53LUrl1bf//73yVlz8Q6evRoWQ+xXLz77rvq3bu3JGn+/PlaunRpiftKS0sz927q1KkToVUFOXbsmJ5//nmlpKSoQYMG+uyzzwitAACVAsEVAADAf2VmZmrs2LEaO3as1q5da9MzV69eNa+rV69eRiMrXy4uLvrwww917733yjAM/e///q8+//zzEvX16aefKiYmRpJKPXMLJXPkyBE99dRTio+Pl6enpxYvXqzGjRtX9LAAALAJwRUAAMB/Va9eXY0aNZIkhYaGKiEhodD2R48eVUhIiCTJ3d1dd999d5mPsby4ubkpKCjI3Edsx44dyszMtPl5wzDMDe6l7A3su3fvXiZjReH279+vq1evqnnz5vrqq6/k4+NT0UMCAMBm7HEFAACQy0cffaS5c+dKkurXr69HHnlEt99+u2rXri0XFxelpKTo3Llz2r9/v8LDw80T4CZOnKhnnnmmAkdeNgzDUEhIiIYMGaIaNWoU2f7w4cOKiIjQt99+q1OnTknK3gD/66+/Vu3atct6uLBi5cqV6tOnD8sDAQCVDsEVAABALpmZmRo/frw2bNhgU/tatWpp/PjxGjZsWBmPrHIYN26cvv/+e/PrLl26aO7cuapXr14FjgoAAFRWBFcAAAAF2L17t1avXq3ffvtN58+fl8VikZS9JLBBgwZq3bq1fH191a9fP2YS5bJo0SItWbJEd911l4YNG6aePXtW9JAAAEAlRnAFAAAAu8nIyFCVKlUqehgAAOAGQXAFAAAAAAAAh8SpggAAAAAAAHBIBFcAAAAAAABwSARXAAAAAAAAcEgEVwAAAAAAAHBIBFcAAAAAAABwSARXAAAAAAAAcEgEVwAAAAAAAHBIBFcAAAAAAABwSARXAAAAAAAAcEgEVwAAAAAAAHBIBFcAAAAAAABwSARXAAAAAAAAcEgEVwAAAAAAAHBIBFcAAAAAAABwSARXAAAAAAAAcEgEVwAAAAAAAHBI/wfuyDrxnrjPrwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 9,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: spline-curve\n",
- "import arviz as az\n",
- "\n",
- "\n",
- "def summarize_curve(samples: az.InferenceData, name: str = \"\") -> pl.DataFrame:\n",
- " summary = az.summary(samples, hdi_prob=0.9)\n",
- " summary = pl.DataFrame(summary).with_columns(\n",
- " age=pl.lit(x_range),\n",
- " ymin=pl.col(\"hdi_5%\"),\n",
- " ymax=pl.col(\"hdi_95%\"),\n",
- " name=pl.lit(name),\n",
- " )\n",
- " return summary\n",
- "\n",
- "\n",
- "curve = summarize_curve(samples.posterior.curve)\n",
- "plot_bands(curve, \"Posterior curve (penalized spline model)\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "5fb5bd43-a758-432e-97bc-00c4589a4b4e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAACvqklEQVR4nOzdd5wU9f0/8Pced3D0IogCCmrsimBDIfaGit0k+g0GsEUksUSNMV+Nxp8xJprEBBX1qyKxJ2oUC/YSFSuIPWIEFRGlqyf17ub3B7nN4VVg73aOez4fDx7s7cx89j07Mzuzr535TCZJkiQAAAAAIGUK8l0AAAAAAFRHcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAGg0paWl+S4BAPLCPnD1CK4AAGgUX3/9dQwePDh+/etf57sUAGhUc+fOje233z5uvvnmfJfS5AiuAABocF988UXsscce8eSTT8Zll10W06dPz3dJANBoRo8eHW+99VaMGDEifvvb3+a7nCYlkyRJku8iANLuiy++iKOPPjqmTJkSRx99dNx0002RyWTyXVaTtmzZsmjZsuUqT/fCCy/Ej370o1i4cGFccsklMXLkyAaobu2Ui/dudZdbU2e9WzNz5syJ7373uzF16tRo27ZtjB8/Pvbee+98l7VWKi0tjUceeaTWcYYMGbLGr1NeXh4nnHBC3H333dGvX7+4++67o3v37mvcblOyfPnyKCwsdDwQ1jsaRnl5eZSXl0dhYWGjvN4XX3wRr776ao3D11lnndh1111Xu/2K9bfijKtf/epXzkCurwSAOv3iF79IIiL775FHHsl3SU1enz59ku7duyeHHXbYKk23yy67ZJdDYWFhUlJS0jAFroXW5L0bOXJk0rNnz6SgoKABK0wv693q++qrr5Ltt98+iYikVatWyZNPPpnvktZqCxYsWGl/Vd2/XHjkkUdWavMXv/hFTtptSsaOHZsUFxcnm2++eTJhwoR8l5NX1jsawvTp05MWLVokvXv3Ti655JIGf71//OMfta7De+yxxxq/Rnl5eXLsscdm2xw9evSaF94MuFQQoB6+/WtqQYGPzzWVJEl88cUXMWXKlFWarvKyyGQyfuleBWvy3r377rsxc+bMKC8vb4jSUs96t3qSJImjjz46Jk+eHJlMJm677TZnWq0l7BdXWLJkSbz//vvx+eef57uUZsF61/yUlZXFxx9/HB988EG+S8mJTCYT48aNi3322SciIk4//fR44IEH8lxV+tnSYQ0888wz2S8wlf8VFBREx44dY5NNNonDDjss/vSnP611BzSzZ8+OV199dZVDh6bq9NNPj0GDBkXbtm1j+PDhse++++a7pGbr8ssvj4033ji6dOkSf/7zn6NNmzb5LikiVnx5mTp1ajzxxBOxaNGifJdTrbS+d7n21VdfxVtvvRVPP/10ztpsLu9drv3lL3+Jxx57LCIizj777DjqqKPyXNHar1OnTpEkSZV/e+yxR05fZ7/99ovhw4dH27ZtY9CgQXHaaafltH2aFusda4PDDz+82vU414qKiuKOO+6Inj17Zi8fnD17ds5fZ23SOBeLQjOTJEl89dVX8dVXX8W0adNi/Pjxcd5558WZZ54ZF198cRQVFeW7xDXy0UcfxUYbbRQREcOGDWsWd8bo3r17PP/88/kug4gYNGhQfPjhh/kuo4pTTjklxo0bFxER06dPjz59+uS3oGqk9b3Ltb59+8bHH38cvXv3jo8++ignbTaX9y6X3n///TjvvPMiImKbbbaJSy+9NM8VkUuZTCbGjh0bY8eOzXcpNCPWO9YW3bp1ixtvvDEGDx4cc+bMiR//+Mfxj3/8I99lpZbgCnJkn332iTPOOCP7d0lJScyYMSMee+yxeOKJJ2Lp0qVx2WWXxVtvvRX3339/tGjRIn/FAkADu/DCC2Px4sURseLMq8bqXBcAmoIDDjggDj300Bg/fnzcd999MXHixBg4cGC+y0ollwpCjvTq1SuGDBmS/XfMMcfEOeecE48//ng888wz0aFDh4iIeOihh+Kaa67Jc7UA0HA+/vjjuPvuuyMiYpdddom99torzxUBQPr88pe/zD6+/PLL81hJugmuoBHssccecfXVV2f/vuqqq/JYDQA0rNGjR0dZWVlERIwcOTLP1QBAOg0YMCB22GGHiIgYP358TJs2Lc8VpZPgChrJMcccEx07doyIiKlTp8Znn31W47ilpaVx0003xX777RfrrrtuFBUVRbdu3WLXXXeNSy+9NBYuXLhKr/3mm2/GaaedFv369YuOHTtm2+vXr1+cdtppdfbd9NFHH63U+XxF/1YREePGjau2g/r//d//rXd9c+bMiQsuuCD69+8f7dq1izZt2sSmm24ap556avzrX/+qVxt77rlnlRref//97PCXXnopvv/970ePHj2isLCwzruC3XnnndXOV8W/4cOH13v+KvvXv/4VP/nJT2LLLbeMNm3aRJs2bWLjjTeO4447Lp588sl6tXHRRRdVqee6667LDv/000/jpz/9aWy66abRqlWr7DjPPPPMatW8ul544YX43ve+F+utt160bNkyevToEd///vfjhRdeWKV2TjnllFqXxer0sbZ06dK44YYb4qCDDopevXpFcXFxtG3bNjbccMM45JBD4qqrrqpzOxs+fPhKdVT0bxURsdFGG1Wps0WLFrF06dJa2/z2NOuvv/5Kw++4447Ye++9o0uXLlFQUBCZTCb23HPPGttriPeuQmlpaVxzzTWx8847R4cOHaJNmzbRt2/fuOCCC+LLL7+sc/qKGmqrP2Ll97mm/qr69Omz0nx9/PHHEbHirJ/q5nvQoEF11tdQ790TTzwRP/jBD6J3797RqlWr6NSpU2y99dZx5plnxtSpU+vVxrdrKC0tjVtuuSUGDx4c66+/frRq1Sp69+4dJ510UnzyySerVeeaqjjbqqCgIA4++ODVbqfis/1HP/pRREQsX748xowZE7vsskt06tQpWrduHVtvvXX84he/iPnz569S22+99VacfPLJ8Z3vfCeKi4ujU6dOsf3228evf/3reu1nK9+gpWLdnD9/flx++eUxYMCA6Ny5c7Rp0ya23nrruOiii+p104Zp06bFn/70pzjyyCNj8803j/bt20dhYWF06dIldtlll/jVr36Vt5u9fP7557VuE6var9/NN99ca3vf/lfXZ0WFZcuWxbXXXht77rlndO7cOVq1ahUbbLBBfP/734/HH398lWr85ptv4tJLL41+/fpFmzZton379tG/f/+49NJLU3ETjjU9vov47zHFhhtumH3uoYceioMPPji7/+7du3cMHz483n333YacnWrlcr1riG22Qi7XuzVVsd/8xS9+ERERY8eOja222iratGkT2223XbYfpfLy8vjd734Xm2yySbRu3Tp23HHHeh0rLliwIC655JIYMGBAdOzYMVq2bBk9e/aMgw46KMaOHZv90aI+kiSJW2+9Nfbaa6/o1KlTFBcXx3e+8534yU9+str7r1x8r2hshx56aESsWCb6uapBAqy2p59+OomIJCKSYcOG1Tn+dtttlx3/1VdfrXac2bNnJzvuuGN2vOr+rbvuuskzzzxT5+uVlZUlZ511VlJQUFBrexGR7LLLLsmkSZOqbWf69Ol1Tv/tf2PHjq2zviRJkqeeeirp1KlTje20bNkyufbaa+tsZ4899qgy7WOPPZYkSZLccMMNNb4HNbnjjjtqnb/6LO9vu/7665PCwsJa2x06dGiyfPnyWtu58MILq0z3y1/+MkmSJJk8eXKN7+fTTz+9yjWvriuuuCLJZDLV1pHJZJKLL7446d27dxIRSe/evWtt68c//nFO1rUKb7zxRrLxxhvXuQ63bds2+fWvf50sXbq02naGDRu2SttEXfOZJEm179XSpUuT8vLyZPjw4dW2u8ceezTKe1d5G5s9e3YyYMCAGtvt06dP8umnn9ZrXmurP0lWfp+nT59e7TgV61J9/9Vn+831eldaWpocf/zxtbbZsmXL5Morr6yzrYrx//CHPyRvv/120q9fvxrb7N69ezJjxoxVqnVNffjhh9nX32GHHdaorYr1bvDgwcmnn35a6/6xd+/eycyZM+vV7uWXX560aNGixrbWXXfd5KWXXqq1jcrHAJMmTUr+8Y9/JOuuu26Nbe6+++5JaWlpje19+eWXSatWrepcf7t06ZI89dRTq/Q+JsnK2/DqmDVr1hp/xlU2duzYVdpu6/qsSJIkmTFjRrL11lvX2s7xxx9f63KoPL+bb755je1ssskmK+2PV/UzYU3k6vguSf57TFFcXJwsW7Ys+dGPflRjW61atUqefPLJVao1TetdrrfZCrlc73KhYr958sknJxdccEGVWgoKCpJXXnklOe6446oMa9euXa3775dffjnp2rVrrfPav3//5LPPPquzzuXLlydHHnlkje20bds2GTNmTPbv+uy7c/W94ttW5XNodUycODH7GgcffHCDvEZTp5dMaESV7yZYWlpaZfhXX30Vu+22W/ZMof79+8dxxx0XvXv3jjlz5sTdd98dTzzxRMyePTuGDBkSEydOjG233bbG1/vtb38bf/jDHyIiomvXrnHCCSdE3759o02bNvHll1/GBx98EA888EC8+eab8dJLL8WUKVNi++23r9JO9+7d44EHHsj+PXv27DjhhBMiomqn9BUGDBhQ5/vx+OOPxyGHHBJLly6NoqKi+OEPfxh77bVXtGnTJt5555247rrrYtasWTFy5Mjo0qVLfO9736t1XufNmxcREYccckhERHzyyScxYcKEOPnkk6O8vDwGDx4cRxxxRDz99NNx55131lrb7rvvvtI8f3u+V9V1110Xp5xySkREFBcXx4gRI2LQoEFRWFgYU6ZMieuvvz7mz58ft956a7Ro0aLWszn+53/+J3bccceIiDjvvPPi7bffjk8++SQ+/fTTOOCAA2LhwoWxzTbbxLBhw2Lx4sXxq1/9arVqXl3jxo2Ls88+OyJWnBny/e9/Pw488MBo3bp1vPHGG3HTTTfFr371q1rPeKts1KhRMWTIkJWee/LJJ+PKK69c5drmz58f+++/f3zxxRcREbH//vvHIYccEj179ozS0tL44osv4sUXX4x//OMf8c0338Rtt90WP//5z6tt68wzz4yjjz46+/eVV16ZPWvuxhtvjHXXXXel8Tt37lxnfRXr3FtvvRW//OUvI0mSmDFjRtxwww1x8803R8uWLWPo0KGx1157xe9+97t4++23a20vl+9dZQcffHC8+uqrsdtuu8XRRx8dPXr0iPfeey+uvvrq+OKLL+Kjjz6KwYMHx+uvv94oHXLfdNNNK/0yXnFb6XXXXTduvPHGKuN/5zvfqbPNXL93xx13XNxxxx0REdGjR4848cQTY5tttoklS5bE008/HX/9619j2bJlccYZZ0SHDh1ixIgRdbY5ceLEuOyyy2LOnDmx8847x9ChQ6NHjx7x4YcfxpVXXhmzZs2KL774Ii644IJGvQPX66+/nn289dZb56TNjz76KA466KB48803Y+DAgfGDH/wg1l9//Xj77bdj9OjRsWDBgvj444/jkEMOiddee63Wz5f/9//+X/ZzcZ111okTTzwxtt9++ygrK4vnnnsuxo4dG7Nnz44DDjggJk2aFJtsskmd9V133XVx4403RllZWRx99NFx0EEHRdu2beOVV16Jq666KpYuXRr//Oc/49Zbb41hw4ZV20aHDh3ioIMOirfeeiv22GOP6NevX6y//vqxfPnymDFjRtx9993xyiuvxPz58+Pwww+P9957L3r06LF6b+hq6Ny5c5X9YkSs9m3c991332rbq+z000/PXjZz5JFH1jruzJkzY+DAgTFjxoyIiNhvv/3iyCOPjHXXXTdmzJgR48aNi9dffz1uuummaN26da3dNixatCj23Xff7PFYnz594qSTTorNNtss5s+fH/fff388/PDDcfHFF6/KLOdMro7vKluyZEkMHTo0/va3v8WGG24YJ598cmy22Wbx2WefxbXXXhv/+te/YunSpXHEEUfE22+/HRtssEFjzGrO17sKudhmI3K73uXaww8/HJ9++mnsvffeMXz48Pj3v/8dF198cZSXl8dRRx0VM2bMiD333DNGjBgRH374YVx88cVRUlISd9xxR/Y4rrJJkybFPvvsEyUlJRGx4iyhQw45JDp37hzTpk2Lm266Kf71r3/F66+/Hvvss0+89tpr0aZNmxrrO/nkk+Pee++NiIh27drFSSedFDvvvHMsW7Ysnnvuubj11lvj1FNPrff85vJ7RWOrvK+cNGlSHitJsXwnZ9CUreoZV+utt152/GnTplUZftZZZ2WHn3DCCdX+MvOb3/wmO86uu+5a42uVlZUl66yzTvYXsvfee6/Gce+7775k5MiRddZfofIZWKtz5lGSJElJSUmy4YYbJhGRdO3atdpfA+fPn5/ssMMOSUQk3bp1SxYuXFivtitqO+ecc5I+ffokRUVFyR133JEdXvkX0lWxuvP92WefJe3atUsiIunUqVPy+uuvVxnn008/Tfr06ZNt/9FHH61X2xW/ZO62227JD37wgyQikjPOOCO77lReRxvjjKsvv/wy+0tcixYtknvvvbfKOPPnz0/222+/1fq1tELlX+pX5VfuK6+8sl7LcNasWcnpp5+ePPvss/Vuuz5nBtVX5eX25z//OSksLEx69OiRvPHGG9lxKpb9qv76t7rvXeVfzVu0aFHtL5afffZZssEGG2THu+WWW2psr2KcXJxx9W31PZtvVa3ue/fAAw+s9Ev0/Pnzq4zz1FNPZc+26dixY/LFF1/U2F5FWxGRFBUVJb///e+T8vLylcaZMmVKdpzOnTtXGd6Qfve732Vf+5JLLlmjtiqvdwUFBclf/vKXKuN88MEHSefOnbPjjR8/vsb2Xn/99eyZVjvvvHMyZ86cKuNMmTIl297+++9fY1uVt9OIFWe3TZgwocp4f/7zn7PjHHbYYbXOb11n3F5yySXZts4999xax/22NT3zpSYNtb1VPtNi3333rXMdrjhzI5PJVLt9lpWVJSeeeGJ2nOeff77Gtiofa+22225JSUlJlXHuueeepGXLlqv1mbAmcn189+2zuIcOHZosWbJkpXG++eabZOedd86O87Of/aze9aZpvWuIbTaX612uVN5vjhw5cqVtp+LYu7Zhxx57bJU2y8vLk5122qnW9X3p0qXJkCFDsuOcd955Ndb4wgsvrLQcpk6dWmWct99+e6Uzqms7bmvI7xVJ0vBnXCVJknTv3j37OosXL26w12mqBFewBlYluHrxxRez46677rpVDsC++OKLpKioKImIpFevXrV+YO2yyy7Ztl544YVqx/n888+z46zppRrflovgqvJB4d///vcax3v33Xezl5xdffXV9Wq7ot3WrVtnv/hX1tjB1emnn56d7qqrrqpxvAkTJmTH22+//erVdsUBYcW8HnHEESsNb+zg6rLLLsu+3qmnnlrjeF9//XXSpUuXRg+uTjnllOx0DzzwwCq/bm0aKrhq3bp1UlhYmLz22msrjZPP4Kq29fj222/Pjjdo0KAax2tOwVXFZeKZTCZ58803axzv3HPPzbb/m9/8psbxKn/xqq2OLbbYIjtedQFNQznzzDOzr7s6l2RUVnm9q+0yyssvvzw73uGHH17jeBWheatWrWq9hPLaa6/NtvfOO+9UO07l7bR9+/Y1LtvK++Ott966xtesjyVLliTFxcVJxIpLwFZFmgKEurz//vtJmzZtkogVwWtdl7tW/hI8atSoGsdbsmRJtt7vfe97NY5TcalRcXFx8sknn9TY3qWXXtrowVWuj+8qHxMdccQRNQaEr776ana8Ll261DsMT9N6l+ttNpfrXS5V7DfXXXfdKmF4xWX+tQ2rLrD/xz/+kZ3Xo48+usbXnj17dvbH2o4dOyaLFi2qdrzBgwdn2/vb3/5WY3uVL6Gr7di7Ib9XJEnjBFeVLzet7gSH5k7n7NAISkpK4rTTTsv+PWLEiCqXMUyYMCGWL18eESsuKSkuLq6xvcqXq/3tb3+rdpzOnTtHQcGKTfzf//53zJ07d7Xrbwh33XVXRKy4DLG20/+33HLL2GWXXSIisqcT19fixYujf//+8ZOf/GT1C82B+++/PyIiWrZsme1guDqDBw+OXr16RcSKS5JWpaPhxYsXN/op6NV58MEHs49rO727Xbt20b59+8YoaSXrrLNO9vGLL77Y6K+/OhYvXhyjRo3K3nEmDUaNGlXjsCOOOCJ7acBrr70Wy5Yta6yyUunjjz+ON954IyIidtlll1ov7z7xxBOzj2v6bK9s4MCBtd4oovIlbt988009qs2Nyq/Vtm3bnLV7+umn1zjsmGOOyT5++eWXqx1n7ty58dRTT0XEikvKKz5vqzN06NDsZa712ff89Kc/rXHZdu/ePfs+rOlyaNWqVXTr1i0iYo0uk0qz0tLSOO6447KX/1599dW1LquI/x5TRNR+F8tWrVrF//zP/0TEikuzK467Knv++eeznfMPGTKk1kvivn0DjcbQkMd3p512Wo2X2e64447Zz5T58+fHBx98kLPXzYdcbLO5XO8aQuvWratcrl/x/aK2YdXdSKbiWDYi4qSTTqrxNbt16xaHHXZYRER8+eWX8eijj1YZZ9GiRfH0009HRMS6664bRx11VI3t1Xcba4zvFQ2t8v6yMffZTYXgChpISUlJvPfee3HNNddE375949VXX42IiH79+sUvf/nLKuM/8cQT2cff/e53a2278h2xXnnllWrHadmyZRxwwAERsWLHscsuu8Ttt98eixcvXuV5ybVPP/003nzzzYiI2H777bMHYDXp379/RKz4Eryqfv7zn1dp/4wzzojp06fH9OnTV7m9VfXhhx9m71yz3Xbb1RnWDBw4MCJW3FVkVef3Rz/6UZX+TnbZZZfsvFbsqBvK4sWL46WXXoqIFQFRrvq2yaWKu7ZErOgj5Mc//nFq7zBTobCwsNq+Ju68886YPn16nf21Nbbi4uLo169fRKw4+K2rH6613ap8tn/nO9/J9o329ttv1/l5XbnfxOpU/rxJkqSuUnOmch+OjdHHWUREr169sp9/s2bNijlz5lQZ55FHHsne7WqnnXaqtb22bdvGZpttFhH12/fUd1msynIoLS2Nf/3rX/Hcc8/FhAkT4sEHH4wHH3ww+6VyVe7c1ZRcfPHF2WObY489No499tg6p3nooYciIqJNmzax1VZb1TpuxTHFkiVL4p133qkyvOILdUTEHnvsUe+6G0s+j+8q919aEcg3VbnYZnO53qVdxb6sPnfmret7ysSJE7OfY7vttlud3wPq0pjfKxpS5XWyscLNpkTn7JAj48aNi3HjxtU6zsCBA+P++++PDh06VBlW0aljRNTZEezGG2+cfVzRaWl1rrnmmth7771j+vTp8eGHH8YPf/jDaNeuXey///5x8MEHx6GHHhpdu3at9bUaQuXAaNGiRSudpVOdil8Tv/zyyygpKYl27drV63U6dOgQRxxxRJXnO3XqFJ06dap/wWtgVZZrRP2XbXWq6zy0uLh4lW9Rvro+//zz7BfWTTfdtFFec1XtvPPO8etf/zouvPDCSJIkrr/++rj++utjm222iYMOOigOO+yw2HXXXevdcXxj2Hvvvas922C99dbLQzX107t375g4cWJERLUBQnOyOp8Bs2fPjrKysvj4449jiy22WO3XbtWq1WpPuyYqv+5XX33VaK/bu3fv+OyzzyIiYt68edkzkypU3vfMmDGjzn1PxRfWTz/9dI1rW5Vlce+998b//d//xdNPP13tmQ9rs5deeikuvfTSiFgRRl5zzTV1TpMkSXz88ccRsWKfVxEm1KSiw/WIFcu2ImivUHmbTeu+LF/Hd717984+rrghztqqrm021+tdmpWXl2c/WyufjVaTuo5lc72NNdb3iob25ZdfZh+3bt06j5Wkk+AKGli7du3iu9/9bpx44om1ngpb+ctddcFWZa1atYqWLVvGsmXLsqezV6dPnz4xZcqUuPTSS+P//u//Yv78+VFSUhL33ntv3HvvvdGiRYs4+OCD4xe/+EXsuuuuqzxvq6vijm4REc8++2w8++yz9Z72yy+/rPcOpl+/fnn74lZhVZbrt8epbdlWp6HPqKrLqs5rvvzqV7+K3XbbLS688MJ47rnnImLF2S1vv/12/P73v48NNtggTjnllDjjjDNqvRtOY8n3cl0dlc/0WdX1eG3TmJ8BaVH5DpqVD8QbWl3rXeV9z1VXXVXvS6sbax6++eab+P73vx8PP/xwo7xe2pSUlMTQoUOjrKwsMplM3HzzzfX6kWnevHnZH03mz5+fvbNwfVS3bJvCvixfx3c+2/8r1+tdms2bNy/Ky8sjIjf7sVxvY431vaKhVV4vGusH9qbEpYKQI/vss0888MAD8cADD8TDDz8cEydOjPfffz8WLFgQEyZMqDW0ilj1U/4rfgmu6zKMDh06xGWXXRazZs2Khx56KH76059mbwVfVlYW48ePj0GDBsX555+/Sq+fL5UvQalLGs6aWd3lGrHql9jke34r157vWuqy1157xT//+c/48MMP48orr4zBgwdnf92aMWNG/O///m9ss8028e9//zvPlab/vaxOxQFuRKzxJQBNXWN+BqRF5TMEG7N/xcrvXYsWLXLW7qrsd9bEiSeemA2t2rdvHxdddFG89tprsXDhwigrK4tkxU2VVjrrZW1y5plnxocffhgRK/pa2meffRr8Natbtk1lX5aP47uG2saam8b6TMmVXO/H0rSNpWVZJEmS7du2qKgounfvnueK0qd5H01CDvXq1SuGDBkSQ4YMiQMPPDB23XXX2Gyzzer9xaNysv7111/XOu7SpUuz1z5X9IdSl5YtW8ZBBx0Uf/nLX+KDDz6Id999N3784x9HQUFBJEkSv/nNb1bqZLIhVf4wPuGEE7IH4/X519QO2FdluX57nPou27SofJZFfeY1DTbeeOM4/fTTY8KECTFv3ry45ZZbsqetT58+PQ477LCVQhjqp/LlYfm4HDlNmtNnQIXKfb1MmTKl0V638ntX+UYMFSrve2655ZZ673caoz/E999/P9tfXXFxcTz//PNx4YUXxg477BAdO3Zc6wPg+++/P2644YaIWLH+XHbZZfWedp111skea22yySardExR3SX2TW1f1pjHd3VtY81Jrte7NMv1fizX29ja8L3igw8+yHbIvsUWW+Q90EujtXsvCE1I5b5P6urbqOIXyYiIDTfccLVeb8stt4xrr702rrzyyuxz9elLIhcq1/z55583ymvmy6os14jcLNt8qXzgUNEhfVPSunXrGDp0aLz22mvZfsHefffdVTrlnBUqn6lW193A1nar+xnQsmXLJvuL6/bbb5/9QldxY5LGUPG5U1BQUO17l+Z9zzPPPJN9fOyxx0bfvn3zV0wj++KLL7J3KSsqKopbb7211jsrf1smk8l+zsyePXuNb0RQuf/Aprgva8jju8rvx7dvBtPc5Hq9S7Pi4uLs8v7888+zd/ysSV3HsrnextL82V5flTux33nnnfNYSXoJriAlKt+p5fnnn6913MrD99tvvzV63cq/+kydOrVe01T+FWB1dtS9e/eOLbfcMiJWdMS6Nt854zvf+U506dIlIlaceVDb7W2TJMl2aN2uXbtG7XcsFzp27JjtSPqzzz6LTz75JM8VrZ5vd+rfWNvF2mLBggXZu/v06NGjzo5XG+LOaBXLIg3LYVU+2z/44INs3x+777573vvoW13t27fP3kFxwYIFjXLW1fTp07NfWPr3719t58EHHHBAdt345z//2eA1rYrKHV3XpxP/tckJJ5yQXe8vuuii7B2/VsWBBx4YESvO3nj99dfXqJ7K2+yLL764Rm3l0+oc39Wl4v1o0aJFkztGaQi5XO/SrmK7qHysWpO6vqdU3sYq7ka9JtaG7xWVf7yoWK9YmeAKUuLoo4/O9hdwyy23xLJly2oc96abbso+Puyww2ocrz53I6r8q0l9T0utfIpv5TuDrIqjjz46IlYcrN94442r1UZTkMlk4vvf/35ErFget9xyS43jPvLIIzFz5syIiBg8eHCT/NK65557Zh/XNq9PPvlkTu7UtarKysrqFZTka7toKiruLlSdG2+8MdtnxEEHHVTjeBXBQsU6X51p06bFAw88sMr1VSyLWbNmNUgwtir69u2bPaB+8cUX4913361x3IpLpSIiDj/88IYurUENHz48+7jyfK2J2bNn1zis8l19a/pBZ7311ssGag8//HCqbklf38+PTz75JBtyrWowW/kuVbX9iNKYrr322uzd2AYOHBjnnnvuarVTcUwREfH73/9+jWrafffds5dm3nfffTVeylRWVlbrfq4hNdTxXW3b2DPPPJO9i95OO+0UHTt2rFebaVzvciWX613a/eAHP8g+ru0zfc6cOdn9dvfu3asNOLt37579oXPatGnxwgsv1NjezTffXK/6Gvp7RcVZoA2xDn/99dfZy3nXXXfdOPjgg3P+GmsDwRWkRI8ePeKHP/xhRKw4MD399NOr7Vvn0ksvjZdffjkiIo455pjYZpttqm3v3XffjT59+sRll11W4ym9paWl8fOf/zz796BBg+pVa4cOHbI7nIkTJ9b4S15tv3icddZZsf7660fEig5Z77///hrbuPrqq+Ovf/1rvWpLozPOOCNatmwZERG//OUvq/2yNHPmzDj11FMjYkVHlhdddFFjlpgzP/nJT7IHyJdddlm89dZbVcZ5+umn46ijjspLoDBy5Mj47ne/G5MmTapxnEmTJsVtt92W/bu+20XlXxDHjh1b7Ti1BdJNySGHHFJt4PTyyy/Hr3/964hYsR5X/nz5ts033zwiVpwp89prr1UZPmnSpNhrr72ynZWuioplsXz58rj11lurHacxl8U555wTESs6rR82bNhKfYBVePrpp+PPf/5zRERstNFGccIJJzRafQ3hf/7nf6Jnz54REXHrrbdGSUnJGrc5ZMiQmDVrVpXnX3nllbj88ssjYsWXi5/+9Kc1tvH73/8+CgoKoqysLA499NB47733qh1v/vz5ceaZZ1b7GdYQKgK1iIi//e1v1V7u8u6778YBBxyQfS/nzp27SmcWVD778ZFHHlmDanNj6tSpcdZZZ0XEirOMb7nlltXu8HvvvffOBuV33XVXnH/++TX2T/jII4/EL3/5yxrbWn/99bNfghcsWBCnnXZalZBwyZIl8T//8z/x1FNPrVa9a6Ihj+9GjRpV7Rkwc+fOjZEjR2b/rvhMq4+0rXe5lMv1Lu2OOOKIbOf/f/vb31Y6TqqwdOnSOP7447OfUb/+9a9r7J/vtNNOyz4+9dRTq90v/uEPf4iLL764XvU19PeKivX4nXfeyfkPr7fcckv2PfvJT36ySpdKNydN83Y1sJa64oor4sknn4yZM2fGtddeG5MmTYqhQ4fGBhtsELNnz46///3v8eSTT0bEiqCr4kD928rLy+P73/9+fP7553HeeefFFVdcEYceemgMGDAgunXrFl9++WV88MEHcdttt2Uv52rTpk386le/qnetP/vZz+Lkk0+OpUuXxq677hqjRo2KLbfcMkpLS+PDDz+Mu+++O3bbbbcYM2ZMtdN37NgxbrjhhjjiiCNiyZIlcfjhh8d+++0Xhx9+ePTo0SO++uqrmDx5cvz973+Pzz77LNq0aRMDBgzIftn9thdffHGlSy0iVvzq8uCDD2b/3nXXXevdmejUqVOrBHKVf4n89NNPV2o7ImKzzTaLzTbbrEpbm2++eVx44YXxv//7v7FgwYLYaaed4oQTToiBAwdGixYtYvLkyXH99dfHggULImJFuLX11lvXq7bK81y5nppqaWhbb711jBgxIm666aYoKSmJXXfdNUaOHBk777xzfPnll/Hkk0/GXXfdFeutt16su+668cEHH9TZZnXL9o033ljp8beXRXXL+q677or/+7//i4iIHXfcMQYNGhSDBw+OjTbaKFq1ahWfffZZPPXUU/Hggw9mQ7WhQ4fWuiwqO+KII2KjjTaK6dOnx8033xyzZs2Kww47LNZdd9347LPP4pVXXomHHnooXn/99Ro7A62Yj8pflqdOnbrS/A0ZMqRe9UTk7r2rrKioKCZPnhzbbLNNDB8+PHbeeedIkiT++c9/xtixY7OB0M9+9rNaLxM8+uijY/LkyRERcfDBB8c555wTW221VcyZMycmTJgQd999d2QymTjooIOyd1qrr5/+9Kdx4403xvLly+PEE0+MiRMnxi677BJt2rSJTz75JB577LH44osv4vXXX6/xi3Iu37vhw4fHnXfeGY899li89tprsfXWW8dJJ50UW221VSxevDieeuqpuOWWW6KsrCyKiopizJgxTf7AtaioKM4888w4++yz48svv4yLL754jc9IePXVV2OrrbaK4cOHx0477RSZTCaef/75uPHGG7NnoPziF7+ote+dXXbZJX75y1/GJZdcEtOmTYt+/frFscceG3vttVd06NAhZs+eHS+88ELcc889sWjRonj88cfjtddea/Dlse2228a+++4bTzzxRCxYsCD69esXo0aNis033zy+/vrrePrpp+Puu++OZcuWxZ577hnPPPNMLFq0KE477bS4/PLL63U79+OOOy5Gjx4dEREjRoyIl19+OXbYYYdYsmRJvPfee/HSSy/Fk08+WeM2MW/evGovnVu8eHH2/29vE+uss061Z1yUlpbG0KFDs8HLYYcdFu+++26tZyR26NAhdt999xqHjxkzJnbdddf47LPP4je/+U384x//iOOOOy4222yzWLp0abz//vtx//33Zy9d3XLLLeO4446rtq2LLrooHnroofjmm2/i5ptvjqlTp8aPfvSj6NKlS0ydOjWuv/76+OSTT2L33Xdv1MtOG/r4bu7cubHbbrvF0UcfHfvtt1906NAh3nnnnbj22muzYepee+210uX0dUnTetcQcrnepVnLli3j//7v/2L//feP5cuXx9ChQ+Pee++NIUOGRMeOHePf//533HTTTfH+++9HxIoz8Cv6rqvOCSecEKNHj4733nsv3nzzzdhuu+3ilFNOie985zvx2WefxR133BEvvvhi7LbbbvHcc8/VWV+uv1d8249+9KM455xzYvHixbHbbrvFyJEjY5NNNol58+bFpEmTokWLFqvVl9zChQuz4Vz79u2zP2JTjQRYbU8//XQSEUlEJMOGDctJm++//36y6aabZtut7t8mm2ySfPjhh7W2M3Xq1GSvvfaqtZ2KfxtttFEyadKkVa715JNPrrXdwsLCZMaMGbW28dRTTyWdO3eutZ0WLVokP/7xj5Ovvvqqxnb22GOPOufz6aefrve8XXjhhfV67yr/u/DCC2tt8/zzz08KCgpqnD6TydTZRn1rq087DWXZsmXJgQceWGNt66+/fjJp0qTkiCOOSCIi6d27d63t1WfZ1mdZl5eXJ3/4wx+STp061Tl9QUFBcsYZZyTLly9fpXl//fXXk3XXXbfWtk855ZQap6/PvK2KXL13ldvaaaedkj/84Q+1rssnn3xyUl5eXmttixYtSrbffvsa2+jatWty3333JXfeeWf2uenTp9d73m+++eakqKio1nm98847G+W9S5IkKSkpSQ466KBap2/btm3y0EMP1TlvFePvsccetY43bNiw1XrvcmXZsmXZZVxYWJi89dZbq9xG5eVw2WWXJZlMZrW2rW+74oorkhYtWtS6PDp06JD8+c9/rnFdrnwMUNdnbu/evev8vPvss8+SzTffvMZ6WrdunVx//fXJvHnzkp49e2Y/q7744ot6z/f/+3//r9Z5fuSRR2qctvL81vdfTevo9OnTV7mtAw44oM75++STT5Jtt922zrb22muv5IMPPqi1rccffzwpLi6udX2bMmVK9u+xY8fWWV8u5Pr4rvIxxfnnn5+0b9++xvZ22mmn5Msvv1zlmtOy3uV6m62Qy/UuFyo++6urveIztbZhte1b7rvvvqRjx461zudBBx2ULFq0qM46Z8yYkfTp06fGdnbZZZdk/vz52e8J9fmulavvFd9W17FtcXFxsnDhwnq3V+HHP/5xto0bbrhhladvTgRXsAYaIrhKkiRZunRpcvXVVyd777130r1796SwsDDp2LFjMmjQoOSPf/xj8s0339S7reeeey45/fTTk379+iXdunVLCgsLkw4dOiSbbbZZ8sMf/jC58847V/nLeWXjx49PDjnkkGyd7du3T7bffvvkzDPPTN544416tTF37tzkkksuSXbdddekU6dOSWFhYdK1a9dk4MCByQUXXJB89NFHdbbRFIKrJFkRbJxyyinJZpttlrRr1y5p2bJlstFGGyXDhg1LXn755ZzVls/gKkmSpLS0NLn++uuT7373u0mHDh2SVq1aJZtvvnnyi1/8Ipk7d26SJEly6qmn1uugMNcBwsKFC5OrrroqGTJkSNK7d+/sclhvvfWS3XffPfnf//3fOoPh2nz++efJL37xi2TbbbdN2rZtmxQVFSW9evVKDjnkkOTGG29MFi9eXOO09Zm3VdEQwdWQIUOSJEmSl19+OTnmmGOSHj16JEVFRUmXLl2SwYMHJ/fdd1+96/v666+TCy64INlqq62S4uLipEOHDskOO+yQXHLJJdn15Mknn8zWtqrhyxtvvJGMGDEi2WijjZJWrVolrVu3TjbbbLPkRz/6UfLwww/XOm2u17sK999/f/K9730v2WCDDZJWrVolbdq0SbbZZpvknHPOqTPor1DXl7MK+Q6ukiRJ3n777aRVq1ZJRCRbbrnlKh/YV14OSVJ1vevcuXOy//77J/fcc88q1/buu+8mp512WrL11lsnbdq0SYqKipIePXokBx10UDJ69Og6v6A3xJfgr776Krn44ouT7bbbLmnTpk3Stm3bZIsttkjOPPPM5N///nd2vGnTpiU/+MEPksGDB9d3drMeffTR5KCDDkq6dOmStGjRIunUqVOy6667JhdddFEyc+bMGqfLd3B1+umn12v+li1bltx0003J4MGDs8cmHTp0SLbddttk1KhRyYsvvljv9+r9999PTjzxxKRPnz5JUVFR0rVr12Tw4MHJgw8+mCRJksyePTtbX2MFVxVydXxX+Zji6aefTj799NPk9NNPTzbddNOkuLg4adu2bbLjjjsmf/jDH5KlS5eudr1pWO8aKrhKktyud2uqIYOrJFlxnHPBBRck22+/fdK5c+eksLAw6d69e3LwwQcnf//73+v84aqyBQsWJBdccEGy7bbbJsXFxUn79u2TnXbaKRk9enR2/d1qq62SiPp/18rF94rqlJaWJmPGjEkGDBiQtG3bNjvfBxxwQHLNNdfUK6yr7K677sr+GHPIIYesVk3NSSZJUnDLHQAA1krjxo2LESNGRJIksf/++8dDDz0UhYX1661izz33jGeffTYiIhV3iYS1zUUXXZTtm/Dpp59e6SYrQMN49dVXY4899ojFixfHZpttFi+88EJ07do132Wlms7ZAQBoMMOGDcv2b/XYY4/Fcccdl73zJAA0J2+99VYcfPDBsXjx4ujRo0c89thjQqt6EFwBANCgzj777LjgggsiIuLOO++MY445ZpXuiAcATd2UKVNir732ijlz5kT37t3j0UcfrfGGPaxMcAUAQIO7+OKLY/To0VFQUBAvvfTSSndqBYC13cSJE2PevHnxne98JyZOnBjbbLNNvktqMurXwQAAAKyhn/zkJ9GjR4/Ycssto2fPnvkuBwAazamnnhpFRUVx+OGHR7du3fJdTpMiuAIAoNEceeSR+S4BAPLipJNOyncJTZLgCgCAVNp7771jxx13jD59+uS7FFgrbbXVVjFq1Kjo06dPbLHFFvkuB6BamcS9hQEAAABIIZ2zAwAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQqzHcBsHzJN5Ek5fkugxoUtmoTBQUtory8LEqXLsp3OZBKthOonW0E6mY7gdrZRpqGTKYgiorb5rRNwRV5lyTlgqsmwnKCutlOoHa2Eaib7QRqZxtpXlwqCAAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkUmG+CwCal0xBYRQWtYrIZPJdSs2SJEqXL42kvDTflQAAADRrgiugURUWtYqCFun/6CmMiOVLBVcAAAD5lP5vj8Da5T9nWpWWlsWchSV5Lqaqbp3aRWFhi3SfEQYAANBMCK6AvJizsCR+O3ZCvsuo4rwRB8b6XTvmuwwAAABC5+wAAAAApJTgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQrzXUCalJSUxLhx4+Lxxx+PGTNmRHl5efTs2TP22WefGDZsWHTp0qVR6pg0aVKMHz8+XnnllZg7d24sXbo0unXrFv369YsjjzwyBg0aVO+20jJPAAAAAKsqkyRJku8i0uDDDz+Mk046KWbOnFnt8K5du8aYMWOib9++DVbD4sWL41e/+lWMHz++1vGOPPLIuOSSS6JFixa1jpeGeaqPZYu/jiQpz2sN1KyouF0UFLSI8vKyWL6kJGftzZr7Zfx27IQcVJhb5404MNbv2jFn80vzkOvtBNY2thGom+0EamcbaRoymYJo2bp9Ttt0qWCsOCvp5JNPjpkzZ0ZRUVGcc8458eyzz8bLL78cV199dWy44YYxd+7cGDlyZMyZM6dBali2bFmceOKJMX78+CgoKIhjjz027rzzznjxxRfjn//8Z1x33XWx+eabR0TEvffeG3/6059SP08AAAAAa0JwFRE33nhjfPrppxER8fvf/z5OPPHEWG+99aJTp06x7777xqhRoyIiYu7cuXHNNdc0SA0tW7aMH/7wh7HuuuvGDTfcEBdddFH0798/unTpEt27d48999wz7rrrrthggw0iIuKvf/1rLFiwINXzBAAAALAmmn1wVVZWFnfccUdERPTv3z8OOuigKsOvu+667N/33ntvLF68uEFqOeigg+Lpp5+usQ+r1q1bx9ChQyMiYunSpfHKK69UO16a5gkAAABgdTX74Gry5MnZM5cOPPDAKsPvueeemDZtWhx11FEREbFkyZJ4/vnnG6yewsLa+8vfaKONso9rusQvbfMEAAAAsDqafXD19ttvZx/3799/pWGLFy+O0aNHx3bbbRenn356tdM0tkWLFmUfd+zYsdpxmto8AQAAAFSn9tN7moFp06ZlH/fq1WulYePGjYvZs2fHFVdcEd27d4/CwsIoLS1daZrG9uabb2Yf9+vXr9pxmto8FbZqk7fXpm6ZTEH2/6LidjlrLyIiU1D7nTHzKVfzS/OQ6+0E1ja2Eaib7QRqZxtpvpp9cDV//vzs486dO2cfL1iwIG644YbYfffdY8CAARER0aFDh5g/f36tnaI3pGXLlsUDDzwQESvOpKroqP3bmtI8RUQUpDi84L8ymUxkMrldVplMJqft5VJDzC9rP+sN1M42AnWznUDtbCPNT7MPrio6JW/ZsuVKX6KvvfbaKCkpibPOOiv7XMuWLSNi5cv1GtP111+f7dfqtNNOq3G8pjRPERHl5WV5e23qlskURCaTiSRJIknKc9ZeRESSJGvcXkPJ1fzSPOR6O4G1jW0E6mY7gdrZRpqOXJ+c0uyDqwoFBf+9fGnmzJlx++23x5AhQ2KLLbbIPl9enr+NY/LkyXHttddGRMT3vve9GDhwYJ3TpH2eKpQuXeSDJ8WKittFJtMikqQ8li8pyVl7ERFJikPLXM0vzUOutxNY29hGoG62E6idbaRpyGQKomXr9jlts9l3zt6mzYr+lZYvX5597sorr4wkSVbqvDwiYunSpStN01g+/fTTGDVqVCxfvjy22WabOP/882sdvynMEwAAAEBdmv0ZV126dImIiLKysvj6669j5syZ8eCDD8YPf/jDlfqQWr58eXz99dcrTdMYvvjiixgxYkTMnz8/NthggxgzZkwUFxfXOk3a5wkAAACgPpr9GVcbb7xx9vHMmTPjiiuuiNatW8epp5660nizZs3KXla30UYbNUptc+fOjREjRsQnn3wSPXv2jHHjxsW6665b53RpnicAAACA+mr2wdU222yTfTxu3Lh47rnn4vjjj69yBtLkyZOzj7fddtsGr+uLL76IoUOHxocffhi9e/eOv/71r9GzZ896TZvWeQIAAABYFc0+uOrfv3907tw5IiLuvffeWGeddWLEiBFVxnvkkUciIqK4uDgGDRpUa5tJksSVV14ZAwcOjEGDBsXo0aNXqaYZM2bEscceG9OnT48tttgibr/99ujVq1e9p2+IeQIAAABobM0+uGrRokUce+yx2b+HDx8ebdu2XWmciRMnxjPPPBMREUcddVS0bt261jbvv//+GDNmTMybNy/mzp0bV111VYwfP75e9UydOjWOPfbYmDlzZgwcODBuu+226Nq1a97nCQAAAKCxNfvgKiLihBNOyJ7RdNttt8XDDz8c8+fPj7lz58Ydd9wRo0aNiiRJomvXrjFy5Mg623vrrbeqPPfGG2/UOd3rr78eQ4cOjTlz5sSBBx4Yo0ePjqKioli6dGm1/5YtW9Zo8wQAAADQ2Jr9XQUjItq1axfXX399nHTSSTFz5sw488wzq4zTtWvXGDNmTHTr1q3O9vr27VvluX79+tU53R//+Mf48ssvIyJiwoQJMWHChFrH79OnTzz66KPVDsv1PAEAAAA0NsHVf2yyySYxfvz4GDduXDz22GMxY8aMSJIkevToEfvss08MHz68SufmNTn00ENj+vTpcdddd0Umk4ljjz02DjnkkJzXXNedAHM5TwAAAACNLZMkSZLvImjeli3+OpKkPN9lUIOi4nZRUNAiysvLYvmSkpy1N2vul/HbsbWfVZgP5404MNbv2jFn80vzkOvtBNY2thGom+0EamcbaRoymYJo2bp9TtvUxxUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKhfkuACBNWhat+FjMZAqiqLhdnqupRZJE6fKlkZSX5rsSAACABiO4AqikfZtWERGRyWQik2mR52pqVxgRy5cKrgAAgLWX4AqgkkwmExERpaVlMWdhSZ6rqV63Tu2isLBFxH9qBQAAWFsJrgCqMWdhSfx27IR8l1Gt80YcGOt37ZjvMgAAABqcztkBAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApFJhvgtIk5KSkhg3blw8/vjjMWPGjCgvL4+ePXvGPvvsE8OGDYsuXbo0ek2zZs2Kyy67LB555JGIiPjrX/8aAwYMqHO6e++9N84777x6vcbxxx8f55577hrVCQAAAJBrgqv/+PDDD+Okk06KmTNnrvT8Bx98EB988EHcfffdMWbMmOjbt2+j1LNs2bIYO3ZsXHvttbFo0aIGfa2tt966QdsHAAAAWB2Cq1hxptXJJ58cM2fOjKKiojjjjDNiyJAhUVxcHK+99lr87ne/i08++SRGjhwZ9913X3Tr1q1B63nuuefikksuiY8++igiItZbb734/PPPV7u9N998s9bhRUVFq902AAAAQEMRXEXEjTfeGJ9++mlERPz+97+Pgw46KDts3333jZKSkjj33HNj7ty5cc0118SFF17YIHWUlpbGGWecEY8//nhERHTr1i3OPvvsWG+99WLYsGGr3W6rVq1yVSIAAABAo2n2nbOXlZXFHXfcERER/fv3Xym0qhh+3XXXZf++9957Y/HixQ1SS2FhYXTo0CGKioripJNOikcffTQOP/zwyGQyDfJ6AAAAAGnW7IOryZMnx4IFCyIi4sADD6wy/J577olp06bFUUcdFRERS5Ysieeff77B6jn33HPj4YcfjrPPPjvatm3bYK8DAAAAkHbNPrh6++23s4/79++/0rDFixfH6NGjY7vttovTTz+92mlyrWPHjrHhhhs2WPvl5eUN1jYAAABALjX7Pq6mTZuWfdyrV6+Vho0bNy5mz54dV1xxRXTv3j0KCwujtLR0pWmagvHjx8d9990XU6dOjblz50br1q1ju+22i6FDh8a+++6b7/KisFWbfJdALTKZguz/RcXtctZeRESmoMUat9eQUl9fjpYJay7X2wmsbWwjUDfbCdTONtJ8Nfvgav78+dnHnTt3zj5esGBB3HDDDbH77rvHgAEDIiKiQ4cOMX/+/OylhU3FOeecs9LfixYtihdffDFefPHFOO644+L888/PU2UrFKQ8HGCFTCYTmUxul1Xa+29rCvXlepmwZiwTqJ1tBOpmO4Ha2Uaan2YfXFV0tN6yZcuVvqRee+21UVJSEmeddVb2uZYtW0bEiuAn7Xr27BkHHHBAFBUVxU477RQDBgyI9dZbL5YtWxYvvfRSXH755TFjxoy45ZZbYquttoojjzwyb7WWl5fl7bWpWyZTEJlMJpIkiSRZ80tNK9qLiEiSZI3ba0hNob5cLBPWXK63E1jb2EagbrYTqJ1tpOnI9ckpzT64qlBQ8N/Ll2bOnBm33357DBkyJLbYYovs802pf6gBAwZkzxSrrHXr1nHAAQdE3759Y8iQIVFSUhJjxozJa3BVunSRD54UKypuF5lMi0iS8li+pCRn7UVEJCkPLVNfX46WCWsu19sJrG1sI1A32wnUzjbSNGQyBdGydfucttnsO2dv02ZF/0rLly/PPnfllVdGkiQrdcgeEbF06dKVpmnK1l9//Rg8eHBERHzyyScxY8aMPFcEAAAAsLJmH1x16dIlIiLKysri66+/jn/961/x4IMPxjHHHBMbbLBBdrzly5fH119/vdI0Td2mm26affzJJ5/ksRIAAACAqpp9cLXxxhtnH8+cOTOuuOKKaN26dZx66qkrjTdr1qzspYIbbbRRo9bYUFq3bp19XPmMMwAAAIA0aPbB1TbbbJN9PG7cuHjuuefi+OOPr3JW1eTJk7OPt91220arryHNmTMn+7h79+55rAQAAACgqmYfXPXv3z86d+4cERH33ntvrLPOOjFixIgq4z3yyCMREVFcXByDBg2qtc0kSeLKK6+MgQMHxqBBg2L06NG5LzwHJk6cGBER7du3X2vOIgMAAADWHs0+uGrRokUce+yx2b+HDx8ebdu2XWmciRMnxjPPPBMREUcdddRKl9hV5/77748xY8bEvHnzYu7cuXHVVVfF+PHjc157TZIkicsuuyyeeOKJGseZMGFCTJo0KSIiDj/88CguLm6s8gAAAADqpdkHVxERJ5xwQvTq1SsiIm677bZ4+OGHY/78+TF37ty44447YtSoUZEkSXTt2jVGjhxZZ3tvvfVWlefeeOONetVSVlYWS5cuXelf5f6nli9fXuOwCjfeeGOMHTs2Ro0aFaNGjYqnnnoqZs+eHSUlJTF16tS44oor4uyzz46IiN69e1e5eyIAAABAGhTmu4A0aNeuXVx//fVx0kknxcyZM+PMM8+sMk7Xrl1jzJgx0a1btzrb69u3b5Xn+vXrV69a7r///jjvvPNqHH7CCSes9PcRRxwRl1122UrPDR8+PObNmxe33HJLPPHEEzWeedW3b9/44x//GO3bt69XbQAAAACNSXD1H5tsskmMHz8+xo0bF4899ljMmDEjkiSJHj16xD777BPDhw+v0mF7TQ499NCYPn163HXXXZHJZOLYY4+NQw45pIHn4L8KCwvj3HPPjWOOOSb+/ve/x/PPPx+fffZZLF68OLp16xabbbZZDBkyJAYPHhyFhVYBAAAAIJ0ySZIk+S6C5m3Z4q8jScrzXQY1KCpuFwUFLaK8vCyWLynJWXuz5n4Zvx07IQcV5tYfzvxeFBWmt76IiPNGHBjrd+2Ys2XCmsv1dgJrG9sI1M12ArWzjTQNmUxBtGyd26u69HEFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQqbOwXnDdvXnz55Zex8cYb1zjOrFmz4p577onp06dHJpOJ7bffPo488sgoLi5uxEoBAAAAyKdGD64uu+yyePTRR+PnP/95DB06tMrwJ598Ms4666xYunRp9rmHHnoobrvttrjtttuiU6dOjVgtAAAAAPnSqJcKzpgxIx566KFYvnx5JElSZfisWbPinHPOiSVLlkSSJCv9mzZtWpx11lmNWS4AAAAAedSowdX9998f5eXl0a1bt/jBD35QZfj1118fixYtikwmE/vvv39cc8018cc//jE233zzSJIkJk6cGJMnT27MkgEAAADIk0a9VPCll16KTCYT++23X7Rs2XKlYcuWLYv7778/MplMDBw4MP7yl79kh+2yyy6x3377xaJFi+Khhx6K7bffvjHLBgAAACAPGvWMq48//jgiIrbaaqsqw55//vlYtGhRREScfPLJKw3r0qVLDBkyJJIkiSlTpjR4nQAAAADkX6MGVwsXLoyIiI4dO1YZ9vTTT0dEROfOnWPAgAFVhleEXZ999lnDFQgAAABAajRqcFVYuOLKxLKysirDnn322chkMjFo0KBqp11nnXUiIuLrr79uuAIBAAAASI1GDa7WXXfdiPjvJYMVXnnllZg9e3ZEROy2227VTlsRWLVt27YBKwQAAAAgLRo1uNp2220jSZJ44IEHYunSpRERkSRJXH311RERUVRUFHvuuWe1006dOjUiVvR3BQAAAMDar1HvKnjooYfGgw8+GP/+97/j6KOPjt122y3eeuutePXVV7N3G+zQoUO10z711FORyWSiX79+jVkyAAAAAHnSqMHV7rvvHgMHDoyJEyfGv//97/j3v/+dHVZcXBxnnHFGtdM99thj8fHHH0cmk6nxjCwAAAAA1i6NeqlgRMSVV14ZAwcOjCRJsv+6dOkSo0ePjg022KDK+MuWLYvf/OY3kclkYsMNN4z999+/sUsGAAAAIA8a9YyriIgOHTrETTfdFP/6179i2rRp0blz5+jXr1+0bt262vFbtmwZZ511Vpx//vlxwQUXRCaTaeSKAQAAAMiHRg+uKmyxxRaxxRZb1GvcQw89NHbaaadYf/31G7gqAAAAANKi0S8VXF1CKwAAAIDmpckEVwAAAAA0L4IrAAAAAFJJcAUAAABAKgmuAAAAAEilRr+r4HvvvRfvvfdeHHnkkTWOM2HChLj99tvjo48+ikwmEzvssEOceuqpsemmmzZipQAAAADkU6MHV7/+9a/jjTfeiLfffjt+9atfVRl+5ZVXxnXXXbfSc4888kg888wzcccdd8QWW2zRWKUCAAAAkEeNeqngpEmTYsqUKRER8d3vfrfK8ClTpmRDqyRJVvq3ePHiOO2006K8vLwxSwYAAAAgTxo1uJowYUJERGy++eax9957Vxl+/fXXR5IkUVBQEOeff3689tpr8fzzz8ehhx4aEREzZsyIRx99tDFLBgAAACBPGjW4eu211yKTycRee+1VZdiCBQvi2WefjUwmE9/73vdi6NCh0a5du+jatWv89re/jR49ekRExNNPP92YJQMAAACQJ40aXH3xxRcREdG7d+8qw5566qkoKyuLiIgf/ehHKw1r0aJFHHLIIZEkSbz11lsNXygAAAAAedeowdXXX38dERHt27evMuzZZ5+NiIgNN9wwNt544yrDK8KuuXPnNmCFAAAAAKRFowZXxcXFERGxZMmSlZ5funRpPP/885HJZGL33XevdtqKsGvx4sUNWyQAAAAAqdCowVWvXr0iIuL9999f6fnHH388Fi1aFBERu+22W7XTzp8/PyIiOnbs2IAVAgAAAJAWjRpc7bjjjpEkSdx9993x0UcfRUTEwoUL4y9/+UtErAilBg4cWO20b7zxRkREdO/evVFqBQAAACC/Chvzxb73ve/F7bffHgsWLIjDDjssNt100/jkk0/iq6++ikwmE9///vejsLBqSUuWLImnnnoqMplM7LTTTo1ZMgAAAAB50qhnXG2++eYxbNiwSJIkli1bFu+88062w/ZevXrFj3/842qnu+WWW2LhwoUREXHAAQc0VrkAAAAA5FGjBlcRET//+c/j9NNPj44dO0aSJNkO2W+++eZo27ZtlfGXLVsW48aNi0wmEwMGDIjtt9++sUsGAAAAIA8a9VLBiIhMJhMjR46MU045JebPnx8dOnSIoqKiGsdv2bJl3HzzzXHmmWfGxRdf3IiVAgAAAJBPjR5cVchkMrHOOuvUa9zvfOc7MX78+MhkMg1cFQAAAABp0eiXCq4uoRUAAABA89JkgisAAAAAmhfBFQAAAACpJLgCAAAAIJWaTHA1efLkuOSSS+Kll17KdykAAAAANIK83VWwpKQk3njjjZg3b16Ul5fXOF6SJDF79uy49dZbY+7cufHSSy/Fgw8+2IiVAgAAAJAPjR5clZWVxR/+8Ie49dZbY/ny5fWeLkmSiIg47rjjGqo0AAAAAFKk0YOrs846Kx599NFsEFVfHTt2jJNOOil+8IMfNFBlAAAAAKRJowZXzzzzTDzyyCORyWRi/fXXj6OOOirWX3/9mDp1aowbNy4ymUxceumlK03zzjvvxK233ho9e/aMo446qjHLBQAAACCPGjW4+sc//hEREe3atYu777471llnnYhYEWiNGzcuIiKOOOKIlaY54ogjolOnTnHVVVfFqFGj4vbbb2/MkgEAAADIk0a9q+Bbb70VmUwmDjnkkGxoFRGRyWRqne7UU0+NjTbaKF5//fV44IEHGrpMAAAAAFKgUYOrefPmRUTElltuudLzLVu2zD5etmxZlekKCgrisMMOiyRJYvz48Q1bJAAAAACp0KjBVVlZWUREdOnSZaXn27Ztm308f/78aqft06dPRES89957DVMcAAAAAKnSqMFVx44dIyJi0aJFKz2/4YYbZh+//fbb1U771VdfRUTEl19+2UDVAQAAAJAmjRpcbbDBBhER8fHHH6/0fKdOnaJnz54REXHbbbdVO+1zzz0XEf8NvwAAAABYuzVqcLXttttGkiTx+uuvVxm2//77R5Ik8dJLL8W5554bn3/+eUSs6BfrT3/6Uzz++OORyWRi++23b8ySAQAAAMiTwsZ8sUGDBsUtt9wSkydPjvLy8igo+G9udsIJJ8Rdd90VixcvjvHjx8f48eOjsLAwSktLs+NkMpkYNmxYY5YMAAAAQJ406hlXgwYNipNPPjnuuOOOlUKriIiuXbvGFVdcEYWFhZEkSSRJEsuXL88+zmQycc4558QOO+zQmCUDAAAAkCeNesZVUVFR/OxnP6tx+N577x333HNPXHvttfHKK6/EwoULo2PHjrHDDjvEsGHDhFYAAAAAzUijBlf1sdlmm8Uf//jHfJcBAAAAQJ416qWCAAAAAFBfgisAAAAAUqnBLhXccsstG6TdTCYT7777boO0DQAAAEB6NFhwlSRJQzUNAAAAQDPQoJ2zZzKZaNGiRWy77baxww47RHFxcUO+HAAAAABrkQa/q2BZWVlMmTIl3nnnnejXr1/suuuuseuuu0bfvn2joEAXWwAAAABUr8GCqz322CPeeOONWLhwYURELFu2LF599dV49dVX4y9/+Uu0bds2dtppp9hll11i1113jc0226yhSgEAAACgCWqw4Oq6666LiIiPPvoopkyZEq+//npMmTIlPvjggygvL4+SkpJ4+umn45lnnomIiC5dusQuu+wSu+yySwwcODB69uzZUKUBAAAA0AQ0+KWCffr0iT59+sThhx8eERHffPNNvPnmmzFlypR44403YsqUKbFw4cKYN29ePPTQQ/Hwww9HRESvXr1i1113jd133z323Xffhi4TAAAAgJRp8ODq29q2bZvt56pCdWdlzZgxIz799NN44YUXBFcAAAAAzVCjB1fV6dOnTxQUFESSJFFaWhpfffVVfP7555EkSb5LAwAAACBP8hJclZWVxTvvvBOTJ0/O/ps3b152eEVg1bp169hxxx3zUSIAAAAAedYowdU333wTr7/+ekyaNCkmT54cb775ZixZsiQ7vCKoKigoiK222ioGDRoUAwcOjO233z6Kiooao0QAAAAAUqbBgquHH344Jk2aFJMmTcreSbBC5UsAe/TokQ2qdt111+jUqVNDlQQAAABAE9JgwdXPfvazyGQyVfqpateuXQwYMCAGDhwYgwYNij59+jRUCQAAAAA0YQ1+qWBhYWFsu+22MWjQoBg0aFBst912UVBQ0NAvCwAAAEAT1+DBVVlZWUyZMiWmTJkSV1999Rq3l8lk4t13381BZQAAAACkWYMGV9++TBAAAAAA6qvBgqvf/va3DdU0AAAAAM1AgwVXRxxxREM1DQAAAEAzoJd0AAAAAFJJcAUAAABAKjX4XQWBxpUpKIzColYRmUxu2ssUZP8vKm6Xs/ZaFvn4AQAAoHa+OcJaprCoVRS0yP2mnclkIpNpkbP22rdplbO2AAAAWDsJrmBt858zrUpLy2LOwpI8F1NVt07torCwRWRydEYYAAAAay/BFayl5iwsid+OnbDG7WQKVoRMSZJEUl62xu2dN+LAWL9rxzVuBwAAgLWfztkBAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkks7ZAQCAVMkUFEZhUavs3ZJTKUmidPnSSMpL810JwFpNcAUAAKRKYVGrKGiR/q8qhRGxfKngCqAhpX9v0IhKSkpi3Lhx8fjjj8eMGTOivLw8evbsGfvss08MGzYsunTp0ug1zZo1Ky677LJ45JFHIiLir3/9awwYMKDe06dxngAAoFb/OdOqtLQs5iwsyXMxVXXr1C4KC1uk+4wwgLWE4Oo/PvzwwzjppJNi5syZKz3/wQcfxAcffBB33313jBkzJvr27dso9SxbtizGjh0b1157bSxatGi12kjbPAEAwKqYs7Akfjt2Qr7LqOK8EQfG+l075rsMgGZB5+yx4qykk08+OWbOnBlFRUVxzjnnxLPPPhsvv/xyXH311bHhhhvG3LlzY+TIkTFnzpwGr+e5556LQw45JP74xz/GokWLYr311lvlNtI2TwAAAACrSnAVETfeeGN8+umnERHx+9//Pk488cRYb731olOnTrHvvvvGqFGjIiJi7ty5cc011zRYHaWlpfGTn/wkTjzxxPjoo4+iW7du8bvf/S5+97vfrXJbaZknAAAAgNXV7IOrsrKyuOOOOyIion///nHQQQdVGX7ddddl/7733ntj8eLFDVJLYWFhdOjQIYqKiuKkk06KRx99NA4//PDIrOK182maJwAAAIDV1eyDq8mTJ8eCBQsiIuLAAw+sMvyee+6JadOmxVFHHRUREUuWLInnn3++weo599xz4+GHH46zzz472rZtu1ptpG2eAAAAAFZHsw+u3n777ezj/v37rzRs8eLFMXr06Nhuu+3i9NNPr3aaXOvYsWNsuOGGa9RG2uYJAAAAYHU0+7sKTps2Lfu4V69eKw0bN25czJ49O6644oro3r17FBYWRmlp6UrTpFFTm6fCVm3y9tpro0zmv3l0pqBFDtrL/Pf/HLS3Uts5bi/XUl9fpiCKitvluwziv9udZQLVs42wqnJ9PNNQcrlO206gdraR5qvZB1fz58/PPu7cuXP28YIFC+KGG26I3XffPQYMGBARER06dIj58+dnL8NLq6Y2TwUpPhhp6la1f7Sm3l6uNYX6MhnbT5pYJlA72wirI83744ZYp20nUDvbSPPT7IOrik7JW7ZsudJO8dprr42SkpI466yzss+1bNkyIiIWLVrUuEWuoqY2T+XlZXl77bVRJlOQXe5JkuSgvf+uQ7lor7Jct5drTaG+JCnPdxnEf7c7ywSqZxthVeX6eKah5HKdtp1A7WwjTUeuT05p9sFVhYKC/56OPHPmzLj99ttjyJAhscUWW2SfLy9vWhtHU5mn0qWLfPDkUFFxu+wvEEkuQsGCFv/dQeQ4ZMx1e7mW+vqS8li+pCTfZRD/3e4sE6iebYRVlfPjmQaSy3XadgK1s400DZlMQbRs3T6nbTb7ztnbtFnRv9Ly5cuzz1155ZWRJMlKnZdHRCxdunSladJqbZwnAAAAoPlp9mdcdenSJSIiysrK4uuvv46ZM2fGgw8+GD/84Q9jgw02yI63fPny+Prrr1eaJq3WxnkCAAAAmp9mf8bVxhtvnH08c+bMuOKKK6J169Zx6qmnrjTerFmzspfVbbTRRo1a46paG+cJAAAAaH6afXC1zTbbZB+PGzcunnvuuTj++OOrnIE0efLk7ONtt9220epbHWvjPAEAAADNT7MPrvr37x+dO3eOiIh777031llnnRgxYkSV8R555JGIiCguLo5BgwbV2maSJHHllVfGwIEDY9CgQTF69OjcF16LhpgnAAAAgMbW7IOrFi1axLHHHpv9e/jw4dG2bduVxpk4cWI888wzERFx1FFHRevWrWtt8/77748xY8bEvHnzYu7cuXHVVVfF+PHjc157TRpingAAAAAaW7MPriIiTjjhhOjVq1dERNx2223x8MMPx/z582Pu3Llxxx13xKhRoyJJkujatWuMHDmyzvbeeuutKs+98cYb9aqlrKwsli5dutK/yncHXL58eY3DGnKeAAAAABpbs7+rYEREu3bt4vrrr4+TTjopZs6cGWeeeWaVcbp27RpjxoyJbt261dle3759qzzXr1+/etVy//33x3nnnVfj8BNOOGGlv4844oi47LLLqoyX63kCAAAAaGyCq//YZJNNYvz48TFu3Lh47LHHYsaMGZEkSfTo0SP22WefGD58eJXOzWty6KGHxvTp0+Ouu+6KTCYTxx57bBxyyCENPAdV5XKeAAAAABqb4KqSdu3axahRo2LUqFFr1E4mk4kzzjgjzjjjjFWe9sgjj4wjjzxyjV6/slzNEwAAAEBj08cVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSqTDfBQAAADQlLYtWfI3KZAqiqLhdTtrMZApy3mYkSZQuXxpJeWlu2gPIA8EVAADAKmjfplVERGQymchkWuS07Vy3WRgRy5cKroCmS3AFAACwCjKZTERElJaWxZyFJXmupnrdOrWLwsIWEf+pFaCpElwBAACshjkLS+K3YyfkpK1MQYvIZDKRJEkk5WVr3N55Iw6M9bt2zEFlAPmlc3YAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKhfkuAIDVk8kURFFxu3yXUb0kidLlSyMpL813JQAAQBMmuAJoojKZTGQyLfJdRo0KI2L5UsEVAACw+gRXAE1UkiTx+byv8l1GFd06tYvCwhYRmUy+SwEAAJo4wRVAE1VaVh6/HTsh32VUcd6IA2P9rh3zXQYAALAW0Dk7AAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoV5ruANCkpKYlx48bF448/HjNmzIjy8vLo2bNn7LPPPjFs2LDo0qVLk6nl3nvvjfPOO69er3X88cfHueeem4uyAQAAAHJGcPUfH374YZx00kkxc+bMlZ7/4IMP4oMPPoi77747xowZE3379l3ratl6661z0g4AAABALgmuYsXZTSeffHLMnDkzioqK4owzzoghQ4ZEcXFxvPbaa/G73/0uPvnkkxg5cmTcd9990a1btyZVy5tvvlnr8KKiolyVDwAAAJAz+riKiBtvvDE+/fTTiIj4/e9/HyeeeGKst9560alTp9h3331j1KhRERExd+7cuOaaa5pcLa1atar1X0GB1QAAAABIn2afWJSVlcUdd9wRERH9+/ePgw46qMrw6667Lvv3vffeG4sXL17rawEAAADIt2YfXE2ePDkWLFgQEREHHnhgleH33HNPTJs2LY466qiIiFiyZEk8//zza30tAAAAAPnW7IOrt99+O/u4f//+Kw1bvHhxjB49Orbbbrs4/fTTq52mqdVSXl6+ZkUCAAAANJJm3zn7tGnTso979eq10rBx48bF7Nmz44orroju3btHYWFhlJaWrjRNU6hl/Pjxcd9998XUqVNj7ty50bp169huu+1i6NChse++++Z8PlZVYas2+S5hrZLJ/DePzhS0yEF7mf/+n4P2Vmo7x+3lWtrri0h3jZlMQRQVt8t3GY2iYrtrTvMMq8I2wqrK9fFMQ8pVfQ11zJXJFETL1h1y1l6uJYkf1qkf+5Lmq9kHV/Pnz88+7ty5c/bxggUL4oYbbojdd989BgwYEBERHTp0iPnz52cv52sqtZxzzjkr/b1o0aJ48cUX48UXX4zjjjsuzj///BzNweopSPnBSFNWcQDUXNrLtbTXF5HuGjOZTGQyzWv7bo7zDKvCNsLqSPO+LqJh6stlm+l//3wmsGrsS5qfZh9cVXRu3rJly5U+1K+99tooKSmJs846K/tcy5YtI2JF8JP2Wnr27BkHHHBAFBUVxU477RQDBgyI9dZbL5YtWxYvvfRSXH755TFjxoy45ZZbYquttoojjzyyQeapPsrLy/L22mujTKYgu/4kSZKD9v67Luaivcpy3V6upb2+iHTXmCRJs/kVtWK7a07zDKvCNsKqyvXxTEPKVX0NdcyVJEl8Pu+rnLWXK906tYvCwhY+F6g3+5KmI9cnpzT74KpCQcF/T0eeOXNm3H777TFkyJDYYostss83Vv9QuahlwIAB2bOzKmvdunUccMAB0bdv3xgyZEiUlJTEmDFj8hpclS5d5IMnh4qK22V/gUhyEQoWtPjvDiLHIWOu28u1tNcXke4ak6Q8li8pyXcZjaJiu2tO8wyrwjbCqsr58UwDyll9DXTMVVpWHr8dOyFn7eXKeSMOjPW7dvS5QL3ZlzQNKy5Pbp/TNpt95+xt2qzoX2n58uXZ56688spIkmSlTtAjIpYuXbrSNE25lvXXXz8GDx4cERGffPJJzJgxY7XaAQAAAGgozT646tKlS0RElJWVxddffx3/+te/4sEHH4xjjjkmNthgg+x4y5cvj6+//nqlaZp6LZtuumn28SeffLLa7QAAAAA0hGYfXG288cbZxzNnzowrrrgiWrduHaeeeupK482aNSt7ed5GG220VtTSunXr7OPKZ3kBAAAApEGzD6622Wab7ONx48bFc889F8cff3yVM5kmT56cfbztttuuFbXMmTMn+7h79+6r3Q4AAABAQ2j2wVX//v2jc+fOERFx7733xjrrrBMjRoyoMt4jjzwSERHFxcUxaNCgWttMkiSuvPLKGDhwYAwaNChGjx6dt1pqM3HixIiIaN++fYOdRQYAAACwupp9cNWiRYs49thjs38PHz482rZtu9I4EydOjGeeeSYiIo466qiVLrGrzv333x9jxoyJefPmxdy5c+Oqq66K8ePHN1otSZLEZZddFk888USNrzVhwoSYNGlSREQcfvjhUVxcXGd9AAAAAI2p2QdXEREnnHBC9OrVKyIibrvttnj44Ydj/vz5MXfu3Ljjjjti1KhRkSRJdO3aNUaOHFlne2+99VaV5954441Gq+XGG2+MsWPHxqhRo2LUqFHx1FNPxezZs6OkpCSmTp0aV1xxRZx99tkREdG7d+8qdywEAAAASIPCfBeQBu3atYvrr78+TjrppJg5c2aceeaZVcbp2rVrjBkzJrp161Zne3379q3yXL9+/RqtluHDh8e8efPilltuiSeeeKLGM6/69u0bf/zjH6N9+/b1qg0AAACgMQmu/mOTTTaJ8ePHx7hx4+Kxxx6LGTNmRJIk0aNHj9hnn31i+PDhVTpJr8mhhx4a06dPj7vuuisymUwce+yxccghhzRaLYWFhXHuuefGMcccE3//+9/j+eefj88++ywWL14c3bp1i8022yyGDBkSgwcPjsJCqwAAAACQTlKLStq1a5e9vG5NZDKZOOOMM+KMM87Iay29e/eOs88+O3tZIAAAAEBToo8rAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVCvNdAAAA0LgyBYVRWNQqIpPJdynVymRW/L7essjXFYDmzp4AAACamcKiVlHQIv1fBdq3aZXvEgDIs/TvrQAAgNz6z5lWpaVlMWdhSZ6Lqapbp3ZRWNgiMik9IwyAxiO4AgCAZmrOwpL47dgJ+S6jivNGHBjrd+2Y7zJoBJlMQRQVt8t3GdVLkihdvjSS8tJ8VwLNmuAKAACAvMhkMpHJtMh3GTUqjIjlSwVXkE+CKwAAAPIiSZL4fN5X+S6jiorLVdN6AwNoTgRXAAAA5EVpWbnLVYFaFeS7AAAAAACojuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFKpMN8FALB2aVm0YteSyRREUXG7PFdTgySJ0uVLIykvzXclAABALQRXAORU+zatIiIik8lEJtMiz9XUrDAili8VXAEAQJoJrgDIqUwmExERpaVlMWdhSZ6rqapbp3ZRWNgi4j91AgAA6SW4AqBBzFlYEr8dOyHfZVRx3ogDY/2uHfNdBgAAUA86ZwcAAAAglZxxBQAAAE1MpqAwCotapbv7AzfEIQcEVwAAAFBJU7hLciZTkO1bNM3cEIc1JbgCAACASprKXZIj3BCHtZ/gCgAAACpJ+12SIyLWW6dDZDIZN8RhrSe4AgAAgGqkNRSKiPjDmd+LosJ0nw0GueCuggAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASKXCfBcAAABrk0xBYRQWtYrIZPJdSo0ymRW/X7cs8nUAgHSzpwIAgBwqLGoVBS2axmF2+zat8l0CANSqaexRAQCgqfjPmValpWUxZ2FJnoupXrdO7aKwsEVkUnxWGABECK4AAKBBzFlYEr8dOyHfZVTrvBEHxvpdO+a7DACok87ZAQAAAEglwRUAAAAAqeRSQQCapUymIIqK2+WsrVy3GUkSpcuXRlJempv2AACgCRJcAdAsZTKZyGRapLrNwohYvlRwBQBA8yW4AqBZSpIkPp/3Vb7LqFbF3b7C3b4AAGjmBFcANEulZeU5u9tXpmDFLeWTJImkvGyN23O3LwAAWEFwBQAAADSIXPUBqk/R5ktwBQAAADSIXPcBqk/R5kdwBQAAADSItPYrqk/RpkNwBQAAADSIXPUrqk/R5qsg3wUAAAAAQHUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUKsx3AdDUZAoKo7CoVUQmk+9SqpXJrMijWxbZvAEAAGjafLOFVVRY1CoKWqR/02nfplW+SwCABtFUfkQCANZc+r99Q9r85yC5tLQs5iwsyXMxVXXr1C4KC1tEJqUH8wCwpprKj0gAwJqzx4fVNGdhSfx27IR8l1HFeSMOjPW7dsx3GUAOZDIFUVTcLt9lVC9JonT50kjKS/NdCc1Ryn9EWm+dDn5AAoAcEVwBQEplMpnIZFrku4waFUbE8qWCK/InrT8i/eHM70VRYXq3XQBoSgRXlZSUlMS4cePi8ccfjxkzZkR5eXn07Nkz9tlnnxg2bNj/b+++w5o63z6AfwFBQdwi1olacYsbFbfgxK2tW4vFUWurbdWfrVq7rLvuvcA9wFG0igMRXFWxbkBFFFFECAiRDef9gyvnTSQJAQIcyPdzXb16zDl5cp+T8/Akd56BihUrFrlYpHRORESUM4IgICI6rrDDyEIxJFmq8wsRERER6UrSPdwB9nIHE1eiZ8+ewdXVFeHh4SqPP3nyBE+ePMHRo0exadMmNG/evMjEIqVzIiKinEtLz5BkbxIOSSYiIqLiQuo93AH2cmfiCpm9kiZPnozw8HCYmppi5syZcHZ2RqlSpXDr1i0sXboUL1++xLRp03D8+HFYWVlJPhYpnRMRERUvZqaZHx8k/Qslf50kIiIiHUi1hzvAXu4KTFwB2LFjB169egUAWLZsGfr16yfuc3R0hFwux9y5cxEVFYWNGzfi559/lnwsUjonIiIqXspYlAQg/V8opfzrpJFxCZQwLSnpD6JGRsYQBAGAoJeyFP/XR7JTUZ4iiUpERJRbUu3hDrCXu4LBt/bp6ek4cOAAAKBly5YqCR7F/i1btoj/9vT0xJw5c2Bubi7ZWKR0TkREVPwYSXxFN8Wvk0bGJpLtEWZkZFwkVp3Td4z6TnYqkqhERERUfBl84iogIAAxMTEAgL59+2bZ7+HhgZCQEAwbNgweHh5ISkqCv78/nJycJBuLlM6JiIiKL6mu6Kb4dVLqPcIA6Q5PqFqpLIyMjKSfnCwCyT8iIiLKG4NPXD148EDcbtmypcq+xMRErFu3DnZ2dvj222/h4eEhPic/kjz6ikVK56QLRXf/oqaEiTGqVipb2GFkUcLk/6+nPuIzMs78YiAIAoSM9DyXp+/48otU31+A1zCv8uP6sZ5Ii+L6CYKAKAkmXQCgQhkLlChhgrT0DOw6eaWww8li9vjeMC1hgpj4BL3Ep+864jqkM6wqlAHAOpJbUv87I/X4FPT5HhtaWyL1+BSkXI8VpBojv5fknXKMReV7c37EaSRkTl5gsBYsWIDDhw8DAK5du4aKFSuK+zZv3oy//voL7u7usLe3R5MmTZCWloZevXph3bp1ko1FSudERERERERERJRbRSNll49kMpm4XaFCBXE7JiYG27dvR5cuXWBvbw8AKFu2rLhPyrFI6ZyIiIiIiIiIiHLL4BNXiYmJAAAzMzOVeRI2b94MuVyO77//XnzMzMwMAJCQkCDpWKR0TkREREREREREuWXwiSsFY+P/vxTh4eHYv38/nJ2d0bBhQ/HxjIyMIhWLlM6JiIiIiIiIiCinDD5xZWFhAQBITU0VH1u9ejUEQcC3336rcmxycrLKc6Qai5TOiYiIiIiIiIgotwx+VUHFxOXp6emIj49HeHg4vLy8MGbMGNSsWVM8LjU1FfHx8SrPkWosUjonIiIiIiIiIqLcMvgeV3Xr1hW3w8PDsWLFCpibm+Orr75SOe7NmzfisLo6depIOhYpnRMRERERERERUW4ZfOKqadOm4rabmxv8/Pzg4uKSpQdSQECAuN2sWTNJxyKlcyIiIiIiIiIiyi2DT1y1bNkSFSpUAAB4enqiUqVK+OKLL7Icd+bMGQBAqVKl4ODgoLVMQRCwevVqdOzYEQ4ODli3bl2BxpIf50REREREREREVNAMPnFlYmKCUaNGif+eOHEiSpcurXLM1atXcenSJQDAsGHDYG5urrXMEydOYNOmTYiOjkZUVBTWr1+PkydPFlgs+XFOREREREREREQFzeATVwAwadIk1KhRAwCwb98+nD59GjKZDFFRUThw4ACmT58OQRBQuXJlTJs2Ldvy7t+/n+Wxu3fvFmgs+j4nIiIiIiIiIqKCZiQIglDYQUjBs2fP4OrqivDwcLX7K1eujE2bNqF58+bZlnXixAnMmTNH5bEVK1ZgwIABBRqLPs+JiIiIiIiIiKigMXGlRC6Xw83NDd7e3ggLC4MgCKhWrRp69uyJiRMnZpncXBNBELBmzRocOnQIRkZGGDVqFGbMmFEoseirHCIiIiIiIiKigsbEFRERERERERERSRLnuCIiIiIiIiIiIkli4oqIiIiIiIiIiCSJiSsiIiIiIiIiIpIkJq6IiIiIiIiIiEiSmLgiIiIiIiIiIiJJYuKKiIiIiIiIiIgkiYkrIiIiIiIiIiKSJCauiIiIiIiIiIhIkpi4IiIiIiIiIiIiSWLiioiIiIiIiIiIJImJKyIiIiIiIiIikiQmroiIiIiIiIiISJKYuCIiIiIiIiIiIkli4oqIiIiIiIiIiCSJiSsiIiIiyhW5XA5nZ2ds2rQJcXFxhR0OkSSxnhAR5Y2RIAhCYQdBRAXn/v378PT0xI0bN/DmzRsIgoBKlSqhRYsWGDBgALp166ZTOXK5HG5ubjh37hzCwsKQkZGB6tWro2fPnpgwYQIqVqyYvydClE/yWkc8PT0xb948nV7LxcUFc+fO1UPURIXDzc0NixcvhpmZGXx9fXP0t5/tCBmK3NQTtiVUnOnz/mZbYhhKFHYARFQw4uLisGDBApw5cybLvlevXuHVq1fw8vJCly5dsGbNGlhYWGgs69mzZ3B1dUV4eLjK40+ePMGTJ09w9OhRbNq0Cc2bN9f7eRDlF33WEV01adIkz2UQFRZBELBv3z4AQJ8+fXL05YDtCBmKvNQTXbEtoeJM2/3NtsRwMHFFZCB27tyJM2fOoHz58hg7dix69OiBGjVqICkpCU+fPoW7uzsuXbqEy5cvY86cOVi/fr3acuRyOSZPnozw8HCYmppi5syZcHZ2RqlSpXDr1i0sXboUL1++xLRp03D8+HFYWVkV8JkS5Y6+6oiye/fuad1vamqqr/CJCpyvry9evHgBABg7dqzOz2M7QoYkt/VEGdsSKs5ye3+zLTEsTFwRGYhvv/0WVapUyfJrX7ly5WBtbQ0HBwcsWrQIBw4cwLlz5xAcHAxbW9ss5ezYsQOvXr0CACxbtgz9+vUT9zk6OkIul2Pu3LmIiorCxo0b8fPPP+f/yRHpgb7qiLKSJUvmd9hEhWbPnj0AMn8Nt7Oz0/l5bEfIkOS2nihjW0LFWW7vb7YlhoWTsxMZCCMjI4wePVprF/WRI0eK28+ePcuyPz09HQcOHAAAtGzZUqWBUOzfsmWL+G9PT08kJibmNXSiAqGPOkJkKEJCQnDlyhUAwJgxY3R+HtsRMiS5rSdEpB3bEsPDxBURiVJSUsTtKlWqZNkfEBCAmJgYAEDfvn2z7Pfw8EBISAiGDRsGAEhKSoK/v38+RUtU8LKrI0SGYu/evRAEAeXLl4ezs7POz2M7QoYkt/WEiLRjW2J4mLgiIpGbmxsAoH79+mjVqlWW/Q8ePBC3W7ZsqbIvMTER69atg52dHb799lu1zyEq6rKrI9pkZGTkR0hEBU4ul+PYsWMAgGHDhuVomAfbETIUeakn2rAtoeJM1/ubbYnh4RxXRAYqIyMDqamp+PDhAx49eoTdu3fDz88P1apVw5o1a2BkZJTlOSEhIeJ2jRo1VPa5ubkhMjISK1asgLW1NUqUKIG0tDSV5xAVJbmpIx87efIkjh8/juDgYERFRcHc3Bx2dnYYO3YsHB0dC+AsiPTv6NGjSEhIgLGxMUaPHq2yr0GDBgAAd3d32NvbZ3ku2xEyFHmpJx9jW0LFWW7ub7YlhoeJKyIDdfLkScydO1f8d6VKlTBjxgyMHz8eZcuWVfscmUwmbleoUEHcjomJwfbt29GlSxfxA1jZsmUhk8nEbrxERU1u6sjHZs+erfLvhIQEXLt2DdeuXcO4ceMwf/58vcZMlN8EQcD+/fsBAF27ds3yhSE7bEfIEOS1nnyMbQkVZ7m5v9mWGB4mrogM1PPnz1X+HR0djT179uDDhw+YMWMGLCwssjxHMamhmZmZSm+TzZs3Qy6X4/vvvxcfMzMzA5DZ+BAVRbmpIwBQvXp19O7dG6ampmjbti3s7e1RtWpVpKSk4Pr161i+fDnCwsKwZ88eNG7cGEOHDi2I0yHSC19fX7x48QJA7iabZjtChiCv9QRgW0LFW17vb7YlhoeJKyIDNWvWLMyaNQsfPnzAq1ev4OXlhb1792Lnzp3w9/fHgQMHYGlpqfa5xsb/Pz1eeHg49u/fD2dnZzRs2FB8nHMwUFGX2zpib2+vduiHubk5evfujebNm8PZ2RlyuRybNm3ilw0qUvbs2QMAsLGxQadOnXJdDtsRKs70UU/YllBxpq/7m22J4eDk7EQGrnTp0mjQoAG+//577Ny5E8bGxggODsbq1auzHKvoYZKamio+tnr1agiCoDL5IQAkJyerPIeoqMpJHdHFJ598gj59+gAAXr58ibCwMD1GS5R/nj17hitXrgAARo0apdM8bx9jO0LFnT7qiS7YllBxlt39zbbE8DBxRUSili1bonXr1gAgroSjrGLFigCA9PR0xMfHIzAwEF5eXhg5ciRq1qwpHpeamor4+HiV5xAVB9nVEV3Vr19f3H758mWe4yIqCHv37oUgCDA3N8917w62I1Tc6aOe6IptCRVn2u5vtiWGh0MFiUiFjY0Nbt68CblcDplMpvJHvm7duuJ2eHg4VqxYAXNzc3z11VcqZbx580bsllunTp2CCZyogGirI7oyNzcXt5V/LSSSssuXLwPInFukbdu2Wo8dP348gMx5TC5evCg+znaEijt91BNdsS2h4kzb/c22xPCwxxURqUhKSgIAGBkZoXTp0ir7mjZtKm67ubnBz88PLi4uWb64BwQEiNvNmjXLx2iJCp62OqKrd+/eidvW1tZ6iYsovwmCkOcy2I5QcaePeqIrtiVUnGm7v9mWGB72uCIiUXp6Om7fvg0AqF27NkqWLKmyv2XLlqhQoQJiYmLg6emJSpUq4YsvvshSzpkzZwAApUqVgoODQ/4HTlRAsqsjurp69SoAoEyZMvwFkIqMM2fOaP1SfvPmTUyaNAkAsGPHDrRt2zbL/D5sR6i400c90RXbEirOtN3fbEsMD3tcERmIbdu2Ydy4cYiNjdV4zKZNm/D69WsA6pdvNjExwahRo8R/T5w4MUuPk6tXr+LSpUsAgGHDhql08yWSMn3UEUEQsGTJEpw/f15jGf/884+Y/Bo8eDBKlSqVt8CJCoiZmRlKliyp8T9TU1PxWFNTU5QsWVJchlyB7QgVd/qoJ2xLqDjTx/3NtsTwsMcVkQEIDAzE+vXrkZSUhN69e2PcuHHo3r07atasifT0dAQFBWH//v04e/YsAKB9+/YqjYGySZMm4eTJk3j16hX27duHGjVqoH379sjIyMC5c+ewbNkyCIKAypUrY9q0aQV5mkS5pq86smPHDuzatQu7du2Co6Mjhg0bhqZNm8LCwgKvX7/GyZMnsWvXLgCZPbY+XvmGyBCwHSHSjm0JFWf6ur/ZlhgWI6EgB2ITUaG5ffs2fvzxR4SGhmo9ztnZGb/88gssLS01HvPs2TO4uroiPDxc7f7KlStj06ZNaN68eV5CJipQ+qgjaWlpWLlyJfbs2aN1otzmzZtj1apVKivfEBV1N27cECebdnd3h729vcZj2Y6QodKlnrAtoeJMn/c32xLDwcQVkQFJT0/H6dOncfHiRdy7dw9RUVEoUaIErK2t0bp1awwaNAht2rTRqSy5XA43Nzd4e3sjLCwMgiCgWrVq6NmzJyZOnMglZ6lI0lcdefHiBY4cOQJ/f3+8fv0aiYmJsLKygq2tLZydndGnTx+UKMFOz1S85CRxBbAdIcOUk3rCtoSKM33d32xLDAMTV0REREREREREJEmcnJ2IiIiIiIiIiCSJiSsiIiIiIiIiIpIkJq6IiIiIiIiIiEiSmLgiIiIiIiIiIiJJYuKKiIiIiIiIiIgkiYkrIiIiIiIiIiKSJCauiIiIiIiIiIhIkpi4IiIiIiIiIiIiSWLiioiIiIiIiIiIJImJKyIiIiIiIiIikiQmroiIiIiIiIiISJKYuCIiIiIiIiIiIkli4oqIiIiIiIiIiCSJiSsiIiIiIiIiIpIkJq6IiIiIiIiIiEiSmLgiIiIiIiLKgbS0tMIOgfKI7yFR0cHEFRERERERkY6ePXuG/v37w9/fv7BDoVySyWQYMmQIPD09CzsUItIBE1dEREREREQ6uHPnDkaPHo3Q0FD8+eefSE9PL+yQKBf27t2L4OBgzJs3D1u2bCnscIgoG0aCIAiFHQQRERFRXgQHByM8PBwZGRno2bNnYYdDRMVQQEAAXFxckJiYCBsbG7i5uaFq1aqFHRblQkZGBn766Sexx9X06dPxzTffFHJURKQJE1dERER6JpPJcODAAfj4+CAsLAxyuRwWFhaoVasWHBwc0Lt3bzRp0qSwwyxWGjRoAABo164d9uzZU8jRkDq+vr44efIk7ty5g6ioKABA5cqV0aRJEzg6OqJnz56wtLQs5CiJ1AsODsbYsWPx/v17VK9eHQcOHIC1tXVhh0V5IAgCfvjhB3h5eQEAFixYgLFjxxZyVESkDhNXREREeuTj44O5c+fi/fv3Go/p0KEDdu/eXXBBGQAmrqQrKSkJs2bNwsWLF7Uet2/fPrRp06aAoiLSXXR0NAYPHozIyEiUL18ehw4dgo2NTWGHRXqQmpoKV1dXXLt2DcbGxtiwYQN69OhR2GER0UdKFHYARESUN2FhYXB0dBT/Xb9+ffHXQypYjx8/xjfffIOUlBSYmppiwIABaNmyJcqVKweZTIYXL17g0qVL/EWXDMq8efPEpFWdOnUwdOhQ1KhRA6mpqYiMjMTt27fx/v17Jq1IshYuXIjIyEgYGRlh6dKlTFoVI6ampli1ahUGDx6Mt2/f4qeffoKXlxcqVapU2KERkRImroiIirhz586p/PvJkycIDQ3lB+tCsGnTJqSkpAAA1q9fj27dumU55n//+18BR0VUeIKDg3H69GkAQMuWLbF3716UKKH68dPV1bUwQiPSyfHjx3H+/HkAwOeff6727zoVbRUrVsQff/yBL7/8EjKZDAsXLsSGDRsKOywiUsJVBYmIijhvb28AQJUqVbI8RgUrICAAAFCjRg1+uSFC5gpsCiNHjsyStCKSsrS0NPz1118AgHLlymHmzJmFGxDlm86dO4tDBM+fPy+250QkDUxcEREVYe/evcPdu3cBAF988YW4utHHvbD0KSMjA5cvX0ZCQkK+vUZR9e7dOwBAtWrVCjkSImlQ1AkA+OSTTwoxEqKcO3XqFCIiIgBk9raqUKFCIUdE+Wnq1Kni9o4dOwoxEiL6GBNXRERF2Llz55CRkQEAcHR0FHv53L9/X/ywnVsZGRlITk6GTCZDcHAwzpw5g8WLF6NHjx5wdXXFlStX8ho+ERVzXAOIijI3NzcAgJGREUaOHFnI0VB+s7OzE1f8vXjxIsLCwgo5IiJSYH9tIqIiTNGzqn79+qhVqxZ69OiBgwcPQhAEnDt3DuPGjdO5rCdPnsDT0xP+/v6IiIhAXFyc1uMvXLgAJycnrcdcunQJR48exX///YfY2FiUKVMG9evXh7OzM4YNGwYTExOd49O3q1ev4vDhw7h79y7evXuHUqVKwdraGg4ODhg1ahTq1KlTaLHpw7p167B+/Xp88sknuHTpEoDM92P//v14+PAh3r9/DysrK9jb2+PLL7/Ep59+qnPZMpkM7u7uuHTpEl68eIGMjAxYW1ujY8eOGDduHOrVq5dtGSkpKbhy5QquXLmCBw8e4OXLl4iLi4OxsTEqV66Mpk2bYsiQIejevXtuL4Ha15w8eTKuXbsGAGjTpg22b98Oc3Nzvb2GOuPGjcO///6LQYMGYdmyZUhNTcWRI0dw/PhxhISEICUlBTVr1kT37t3x5Zdfonz58jqXHRQUhL179+L69euIiIhAyZIlUbNmTfTs2RPjx49H2bJlsy1DsSKjgpWVFfz9/cV/e3l54fDhwwgMDERcXBwEQSiU1Rv1UWcV74Wyf/75B3Xr1gUA/Pfff9i1axdu374NmUyG9PR0AJnXWVmPHj0QHh6Obdu2wd7eHuvWrcPff/+NuLg42NnZ4aeffkL9+vURGxuLlStXwsfHB3K5HO3bt8fChQs19soMCwvDhQsXcOvWLTx58gSRkZFITk6GpaUlbGxs4ODggNGjR8PKykrncx0yZAiWLFkCALh+/To8PDxw+/ZtREZGwtLSEi1atICrqytat26dbZkKGRkZOHPmDLy8vPDw4UNER0fD1NQU1tbWaNWqFQYOHIj27dvrXJ4U24pXr17h4cOHADLrSPXq1XNchkwmQ6dOnZCeno7q1atnu7ImkDkR/KFDhwAA7u7usLe313q8Pq6dPu87Rduj7JdffhETfxEREdi2bRv8/Pzw+vVrpKam6nSuUVFROHz4MPz8/BASEgK5XA5zc3NUqlQJdnZ26N69O5ycnPI8HLlHjx54+PAhMjIycO7cObi4uOSpPCLSDyauiIiKqPfv34tfwHr27AkA6NChAywsLJCQkABvb2+dEleCIGDNmjXYtm0b0tLS1B5jZGSEJk2awMTEBMbGxrCystL6pSQlJQVz5szBP//8o/K4TCbDjRs3cOPGDRw6dAjbtm1DxYoVdT1lvUhPT8eCBQvg4eGh8nhqairi4+Px9OlT7N+/H7Nnz8aECRM0lpOUlCQmQD4WGxsLHx+fLI9Xr14dtra2eTuBHJLJZEhNTcX8+fNx/PhxlX2vX7/GsWPHcOrUKWzduhUdOnTItrzr169jxowZWRKbL168wIsXL3D06FHMnz8/294J69atw9atW9XuCw8PR3h4OM6ePYs+ffpgxYoVMDU1zTY2bdLT0zFr1izxPWvevDm2bNmS70krZTKZDG/fvsVXX32FBw8eqOx7+vQpnj59itOnT+PAgQOwtrbOtrwdO3Zg5cqVYnIFyKx7jx49wqNHj7B//35s2rQJdnZ2OYozKipKXBnzxx9/hKenp87PDQwMxJs3b8R/h4aGitv//fef2iHGDg4OMDMz01imvuqsJm/evEHdunVx5MgRLFy4UOzFqovo6GhMmTJF5W/BtWvXMHHiRBw/fhwuLi4IDg4W9/n4+CAyMhIeHh4wMjJSKUsul6Nfv37iAg/K3r9/j7t37+Lu3bvYv38/1qxZo3NiKDY2FvHx8Zg/fz7OnDmjsi8mJgY+Pj7w8/PDxo0b0bVr12zLi4qKwldffSUOU1dITU3F8+fP8fz5c3h4eKBt27ZYvHgxatWqpbEsKbcV169fF7c7duyYqzIqVqwIe3t7XL16FeHh4Xj8+DEaNWqk8XhBEMTklpWVFdq2bavxWH1du/y675Qp/iY8evQIEyZMyPaHsY95eXlh4cKF+PDhg8rj8fHxiI+PR2hoKE6cOIFPPvkEc+bMQb9+/XIco4KDgwPWrVsHALhx4wYTV0QSwcQVEVERdfHiRTHRpJhQ1MzMDJ06dYK3t7fYYyC7D/urV6/G5s2bAQCWlpYYNmwYmjVrBmNjY4SGhuLo0aN4/fo1MjIysGzZsmx702RkZGDq1KniUMJ69ephyJAhqFWrFuLi4uDj44MLFy7gwYMHmDRpEg4fPpznpEROzJkzB15eXgAyJ7QfMWIE6tevj+TkZNy4cQMnTpxAamoqFi9eLF4PdaKiolTmw1AWHBysdt/06dMLPHGVnJyM2bNn459//kG1atXw2WefwcbGBpGRkTh48KDY4+frr7+Gl5eX1nmIrly5gqlTp4pJjQEDBsDe3h6lSpXC06dPcfDgQbx79w6LFi1CuXLl0LdvX41l9e/fH3v27EGLFi3QunVr1KpVC6VLl0Z0dDQeP36Mv//+G3K5HGfOnEG1atUwd+7cXF8DQRDw448/iiuDNWjQANu3b4elpWWuy8yN8PBwuLq6IigoCC1btkS/fv1gZWWFJ0+eYO/evXj//j3Cw8Mxbdo0tYkNZRs2bMDatWsBAOXLl8eIESPQuHFjZGRk4NatW/D09ER0dDQmTZoET09PrckDRf0PDg7GqlWrIAgCIiIicOTIEXh6esLU1BQDBw6Evb09tm/frpKI+dju3btx7NgxtftWrVqV5TETExPcu3dPY3mA/uosAHz33XeIjY0F8P/z2bx+/Rq+vr5i0qpz585wcnLCjRs3cOrUKa2xrV69GpGRkfjss8/Qvn17nD17FmfPnkVUVBRGjBiBiIgIDBs2DA4ODuK+hw8f4sGDB2jWrJlKWZaWlujatSuCg4PRtm1bNGrUCFZWVkhLS8ObN29w9uxZ3Lt3D7GxsZg+fTpOnz6tU4IzIiICrq6uuHPnDqpVq4bhw4ejXr16eP/+PQ4dOoSHDx8iLS0Nv/32G7p06aL1vnvz5g3Gjh2LV69eAchMxg8dOhT16tVDamoqHj9+jLNnzyI8PBy3bt3CixcvNN57Um8rHj9+LG7npEfqx/r27YurV68CyJz0W1vi6v79++K8cL169YKxsfpZXfR57fR93zk7O6Np06YAMut8cHAwXr9+jYiICEyaNAlxcXGwtbXF4MGDkZSUJP4d0+TWrVuYPXs2MjIyxHanTZs2KFeuHBITExEREYFr167h6tWrePPmDS5dupSnxFX9+vXFbUWPOyKSAIGIiIqkqVOnCra2toKDg4OQkZEhPu7p6SnY2toKtra2wpEjR7SW8fz5c6FBgwaCra2t0KpVKyE0NDTLMQkJCcLQoUMFW1tboXPnzsK7d++0lunu7i6+/vz584XU1NQsxxw7dkw8ZvPmzTqecd5dvHhRfN3BgwcLsbGxWY65du2a0LRpU8HW1lZo3bq1EBUVpbassLAwsSxd//Pw8MjvUxStXbtW5bV/+OEHITk5WeWYhIQEYfjw4eIxf/75p8byPnz4IHTr1k2wtbUV7O3thQcPHmQ5JjY2VhgyZIhga2srtG/fXoiLi9Mao7p7QyEyMlLo2rWrYGtrKzRp0iTbshTnMHbs2Cz7fvvtN3F/nz59NL6n+WXs2LHi6zds2FBwd3fPckxoaKjQtm1b8bgLFy5oLO/Ro0dCo0aNBFtbW2H48OFCdHR0lmMeP34slufi4qJTnNevXxdf383NTWjcuLHQqVMn4fHjx1nORd11FgRBmDt3bo7qRPfu3bXGpM86+zFFuUuXLhW6d+8uNGnSRPDy8hL3K9ehj3Xv3l2wtbUVGjRooPKcly9fis9p0KCB8Pfff6vdd/DgQbUxaasTgiAIGzduFMtYvny51mOV7zvF34D4+HiVYz58+CB06dJFPObRo0day3R1dRWP/e6774SkpKQsx6SnpwseHh7Z/m2XclshCILw5Zdfiq9969atXJcjk8mExo0bC7a2tsLAgQO1Hrtq1SrxNf/991+Nx+n72unzvlOmuAdHjx4tzJw5U7C1tRX++OMPIS0tTRAE1b85169fV1vGV199pVMb+ujRI+GHH34QZDKZzvFp0rFjR/E11d3jRFTwODk7EVERlJCQIP7S2qNHD5VfyLt27SrOaZHd6oLHjh0TJ0+ePHkyateuneUYc3NzzJo1CwDw9u1buLu7aywvMTERa9asAQA0bNgQixYtUjvfxODBg9G/f38AwJ49ezQOUdS31atXA8gc+rhkyRKUK1cuyzHt27cXhxvFx8fjyJEjasuqUaMGgoKCVP5TaNeuXZZ9QUFBGDp0qP5PSgdOTk5YtmxZluFY5ubmWLhwofhv5fvhY+7u7nj9+jUAYNGiReIEtsrKlSuH5cuXw8jICDKZDCdPntQal7a5SKysrDB8+HAAmUOQ/vvvP61labJ27VpxLqaaNWti9+7dqFSpUq7K0of//e9/aofw1q5dG1OmTBH//fGwOGXLly9Heno6zMzMsG7dOrW9Khs2bIjvvvsOAODv74+nT5/mKM6VK1cCADZt2oSGDRvq/LwlS5ao3PNff/21uM/d3T1Lnchuzh991llN9u3bh/DwcMyZM0f8u6QrR0dHledUqVJFZZ+zs7PafYpeXx/Lbn6eSZMmoWTJkgCAmzdv6hzn0KFDsXz58iy9DC0sLMRFPYDMIb+aXLp0Cb6+vgCApk2bYtmyZWIsyoyNjTF06FCV+/ljUm8rgMxetQp5WU2wQoUK4vC6wMBAsbeaOhcuXACQea9omnMsP65dft13Cg8ePMDp06fh5OSEH3/8MUdzloWEhIjbvXv31nhco0aNsHz5cr2s/KhcRmRkZJ7LI6K8Y+KKiKgI8vX1RXJyMoD/n99KoWLFimjRogWAzMmM5XK5xnKUPxBqm0tDeWjDxxMbK/P390d8fDwA4LPPPtP64VSRxHn37l2ukxI5ER4ejsDAQABAixYtskxIrWzEiBHi9sfzhxRF48aN0zj8p1mzZuJQntjYWJU5iZSdPn0aAFC5cmX06tVL42vVq1dPvP+yS5xmp2rVquJ2dHR0jp+/e/dubNiwQSxr9+7dOg2tyk/a5mBSToB8PH+QgkwmE+fe6d69u8o1+tjAgQPFL6Te3t45ijMpKQmjR48Wh/wUhoKqs0lJSWjcuDHGjh2b4xg/TgQpJ3K07VM3n5AuzMzMxERlTurEr7/+qnGf8lC+xMREjccpJ6K//vrrPE2YLuW2QkF5PjYLC4s8ldWnTx9xWzFk+WMvXrzAkydPAGQmaDQNEyyMa5fb+04hKSkJpUqVwoIFC3L8XOXFKgrq/Vee+1BbnSCigsM5roiIiiDFB18LCwu1E2r36NEDt2/fRkpKCi5fvqxxvgfFaj4AtE5SrdxTR1NPAQDi6nUAsszf8rHGjRuL2w8ePECbNm20Hp9XijlGAKBVq1Zaj61duzYqVaqE6OhoPHnyRPzQXVw1b94cL1++BJDZI+Dj1dkiIiLEHmWNGzfW+IVKoVGjRrhz506WCci1iYmJQVhYGD58+IDk5GQIgqAyl1JOJswGMnssKVZSs7Kywu7du1GjRo0clVHQqlatiipVqiAyMhLv3r1TO0edn5+fOBl7dnXMwsICNjY2ePr0aY7eCyCzB8akSZOyPL5q1SokJyer7WmjbwVZZ7/88sss9/WECRMwZMiQnAWtR2lpaXjx4gViYmLw4cMHsQ4okl45qRPa5oYqXbq0uK2px2V6err4910xl2JeSLmtUFBe9CCvqxo6OTnhl19+QWpqKs6fP4+JEydmOUbR2wqA1vkB8/va6fO+UzZo0KAsPxy0aNFCPG9NKxb26NEDAQEBADITptOmTcPw4cPzdbJ+5R5oBdnLj4g0Y+KKiKiISUlJET+4du7cWe1qXN27d8fy5csBZPa00JS4Uv6lPTAwUOOksc+ePRO3tfVYUR4C8fjxY62/zCp/KXj79q3G4/QlIiJC3NY2UbVCzZo1ER0djfT0dISHh2c7KX1RprzMu7rEpPL7mpSUpHbFRGUxMTEAModtffjwQeWLsbJ3795h586d4mTO+uLt7Y0FCxZAEASUL18eO3fuzJKMk6rq1auLQ1NiYmKyfDlTfi8iIiKyfS8UiQjl+18X7du3V9ubS9OXy/xQUHXW0tISTk5OWR4vW7YsypYtq3vAeuLt7Y3Dhw/jxo0bue6ZlRPaVnRUiI6OFld0q1evXp4nSZdyW6GgfF3kcnme7v3y5cujffv28PPzQ0BAgNqktCKBU7VqVa2J2vy6dvl936lLApcsWTLbHxTGjx+Pf//9F5cvX0ZCQgJWrlyJNWvWoFWrVujatSscHR1hY2Oj11iVe6oXRJKeiLLHxBURURFz7do18UOVYjXBj9WrVw82NjYIDQ2Fr68vUlJS1H45GThwINzc3ABkrizWv39/tcdt2bJF3HZwcNAYm/IHaOW5k7KjGPaQn2Qymbity2pyyscURHyFSTmxpO5cled6+ffff7UOF/2YXC5Xm7i6ePEivv/+e5XhOPpy8eJF8QubtbW1SmJO6rJ7L5Tr2N69e7F3716dytU2ZFgdOzu7HB2fHwqqzjZq1Ein5E1+S0hIwMyZM8V5pKREsdIdoDp0K7ek3FYoKCct9fG6ffv2FXtM+vj4qKx+KZPJcOfOHQCZwwS1reyo72tXUPedYgh5TpUsWRJbtmzBkSNHsGPHDrx48QJpaWliW7R8+XI0bdoUEyZMwIABA7ReO10pX6vCSF4TUVZMXBERFTHKc9VERETgwIEDao+rWLEiQkNDkZCQAH9/f7VJrqZNm+KLL77Arl27EBoaivHjx2PGjBmws7NDyZIlERoaih07dogTKFeoUAEjR47U+zkp/yqcX3L6GspDZvI6TETqlM81u2GAOaVumEVQUBC++eYbcaiqvb09xo4di6ZNm6JSpUriL9yenp6YN29ejl/z119/xcuXL3H79m0EBQXh22+/xebNm7OdgFgK8uu9yOlwF318+curgqqzUjhXAJg/f76YPChdujRcXFzQrVs31K5dG6VLlxbvhx49eui1h6Iu9DlsTl9x5DflHoeKXqR54eTkhJ9//lkcLqicuLp06ZJ4btqGCeaFpmtXUPddXuqZsbExPv/8c3z++ee4e/cufH194efnhwcPHiAjIwMPHjzA7NmzceLECWzYsCFPQ/sFQcD79+8BZA6xrVy5cq7LIiL9kf4nOCIiEqWnp6uswvXXX3/p9Lxz585p7J01Z84cVK5cGatXr8adO3fg4uKi9jgLCwusXbtW66+PlSpVEieX9fX11TpxdEFTjlsx5EUb5WMKcxW6gqB8rup6Uyh/cB8+fDj++OOPPL3eli1bxKTVgAEDxJUI9cXMzAwbNmzAyJEjERoaCj8/PyxatAi///673l4jvyi/F+pWx1K+F5ctW4ZBgwYVSFyFwZDqbEhICE6dOgUgs4fJ/v37c7SaY35T/hugj95HUm4rFD799FNxOzAwEF27ds1TeWXLlkXHjh3h6+uLq1evIjExUZxbUjFMsFq1atn2TNLntZP6faeOnZ0d7Ozs8M033yA6OhoeHh7YsmUL5HI5/P398eeff+KXX37JdfmKH/wAoE6dOpJJbBMZOq4qSERUhNy6dUtl+IyulIdOfczY2BjJyclIS0uDqalplg9ppqam6NWrFzw8PNCuXTutr1OtWjVxW3loiRQoz5ETFhaW7fGKycoN4RdX5V/Rq1SpkmX/J598Im4rDxvMLeWhht99912+fDGoUKECtm3bJiZ/jhw5go0bN+r9dfRN8V4YGxurTb4o1zF9vBdSZkh1VrlO9O/fX3LJg8qVK4vzWj1//jzP5Um5rVBQnvj83r17eilT0ZsqKSkJfn5+4vaVK1cAZD9MENDvtZP6fZedSpUqYfLkydi7d6/YM8zT0xNJSUm5LlP5vW7evHmeYyQi/WDiioioCDl37py4ff78eQQFBWn9T7EUdmxsrMZ5ic6fP4+1a9dCEARs2bIFfn5+2L17N7Zt24YjR47g5s2bWLduHerWrZttfJ07dxa3b926lcez1S/lD6C3b9/WemxoaKiYIGzbtq0k5r/JT4olxk1MTNCyZcss+6tXry5OdP3ff/+prEaZG4oJ4E1NTVW+hOlbrVq1sHHjRnHo4Zo1a3D8+PF8e728CgsLE7+INmrUCBYWFlmO6dSpk/jF9ubNmwUaX0EzpDqrvCiCLhPRFzQzMzPY29sDAOLi4nD37t08lSfltkLB3t5eHHIWEBCQ5797AODo6CgmABWrA1+5cgWJiYkAdBsmqM9rJ/X7TleNGjUSk24pKSl4/fp1rstS/qzUpUuXPMdGRPrBxBURUREhCIL4Qbd+/fqoWbNmts9RHh6onPRSduLECQCZc2I5ODjAysoKHTp0QJcuXdC8eXNxKIMuunTpIh6/b98+8cO4FDRs2FAl+fL06VONxx45ckTcdnR0zPfY8pu2Vadu3Lgh9vJp1qwZypQpo/a43r17A8j8onP06NE8xaMYApaamqq1x8CjR4/EbeX5i3KiVatWWLJkiZjsmT9/Pq5du5arsvRB23uhnFTTtAiClZUVWrduDQC4fPmyOGSoODKkOqs8LPLNmzcaj3v9+rU431Ju60RuKa9Oq7xgR25Iua1QKFWqlHjOMplMHM6XF2XKlEGnTp0AZA7zS0tLE8utXr26Tosi6PPaFYX7TtcVDpV7WeW2F69cLsfp06cBZPbm6tatW67KISL9Y+KKiKiIuH//vvjBUtcPUx07dhR7Hpw/f17tB86MjAwAmR/MDx06lKf5SywtLfH1118DyOw9MmPGDI3lPXv2DPPnz8+XVeU0mTRpEoDMc547d67aldauX78Od3d3AECNGjUwfPjwAosvv/z6669iryplMpkMixYtEv+tuD7quLi4iMvB//nnn2IS9WOpqanYt2+f1p5NisQLAPFaK0tPT8f69euxZ88e8bHIyEiN5WWnX79++O6778T4ZsyYgeDg4FyXlxdTpkxRey737t3Djh07AGTONTN27FiNZcyePRvGxsZIT0/HtGnT8OzZM7XHxcbGYvHixQgKCtJP8IXAUOqscp04c+aM2oTu06dPMWnSJPFvZkxMjF56Aelq0KBBaNSoEYDMOZlWrFihcQj6+fPnsXXrVo1lSb2tUHBxcRGTIAcPHtRLmX369AHw/z2hL126pPJ4dvR57aR+33348AEjR47E//73P7x9+1bjcYcOHUJISAiAzIRT7dq1c/V6J06cEM9zzJgxYm9dIip8nJydiKiIUF5NsHv37jo9p3Tp0mjXrh38/f3x9u1b3Lt3L8svuoMGDRKTEAsXLsyyvLZivpgWLVpgyJAh2U5QO3HiRPj6+uLff/+Fn58fnJycMHToUDRt2hTGxsZ48+YNrly5An9/fwiCgIyMDCxevFin88mroUOH4vTp0/D398eDBw/Qv39/jBgxAp9++imSkpJw48YNnDhxAunp6TA1NcWiRYuKxQfXmJgYjBkzBr1790bHjh1haWmJp0+f4uDBg+IXFXt7ezg5OWkso0yZMvjjjz8wffp0JCcnY/r06XBwcEDPnj1hbW0NuVyOhw8f4syZM4iMjIS5uTmaN2+udojphAkTcO7cOQiCgK1bt+L58+fo3LkzypYti9DQUJw8eRIhISFo3LgxXr16hbi4OOzbtw9t27ZFmzZtcnUNJk+ejLCwMBw+fBjx8fFwdXXF4cOHYW1tnavycuv+/fvo378/hgwZgmbNmsHIyAi3b9/G0aNHxZ4FkydP1hpXixYtMGXKFGzatAlhYWEYNGgQnJ2dYW9vD0tLS0RHRyMgIADe3t5ITEzE1atX4eHhofFe9vHxAQCVZF5oaKj4OKD73xx903edvXPnjsrwKCAzgaB8ri1atFA7MX5+atCgATp27IirV6/i/fv3GDx4MEaPHo06dergw4cPuHHjBs6ePYvU1FS0a9cO//77LxITE/H7779jzpw5KF26dL7HWKJECSxZsgTjxo1DXFwctm3bBh8fHwwcOBA2NjZITU1FSEgIzp07J95L9erVQ8+ePdWWJ+W2QqF+/fro1q0bfHx8cO3aNfj6+uZ5knZHR0eYmZkhJSUFK1euFHth5mQ1QX1du/y4754/f47Q0FAAqkMRleuYjY0N6tSpk+15Llu2DA8fPsTDhw/h5eWFLl26oF27drC2tkZaWhrevHkDb29v3L9/X3zOrFmzcrUia1xcnDgPYunSpTF69Ogcl0FE+cdIKOj+nkRElCu9e/dGaGgoKlSogKtXr+r8wWzfvn349ddfAQBffvklZs+eneWY3bt3Y926dWp7M3ysV69eWLlypdY5ZFJSUjB37lyxy70mNWvWxC+//KJxWFR+SEhIwMyZM8Xlv9WxsLDA6tWrc/wFpUGDBgCAdu3aqfQWKgzr1q3D+vXrAQDTpk2Du7u7xpXZmjVrht27d8PS0jLbcq9fv45vvvlGXC5cHRMTEwwfPhxz5szRWObOnTuxbNkyjcNOWrZsiY0bN8LDwwMrVqwAkPkL+MeJVQVdrn1aWhqmTJkCf39/AJlD0fbt26fTeefFuHHjxHlTvv/+e6xatUrjeY8cOVLnFbF27typtdcLkNk749tvv8W4ceM0Dp9RXDttcttrS/k+dHd3F+dJygl91lnl90ITXeLs0aMHwsPDMWTIECxZskRln+J6atv39ddfY8aMGSr7IiMjMX78eI2Tn5cqVQo//fQTevXqhYEDB+Lt27cwNjaGv7+/2on8lc9V2/vn6emJefPmAcjsTamYG1GTkJAQTJs2TUxOaNKuXTv8/vvvWnu/SLmtUHj16hUGDhyIDx8+oEaNGjh16pQ491VuTZs2TWWF4Jo1a2rsxaqJvq6dvu875Tqvibr7Xx25XI6lS5fC09MTaWlpWo+1sLDAzz//jMGDB2dbrjoLFy7EoUOHAAC///47RowYkatyiCh/sMcVEVER8OTJE/FLQpcuXXL0a2L37t3FxNX58+fVJq4mTpyIUaNGISgoCDExMeLwQUEQEBMTg8DAQPz999+IiYmBt7c3FixYgKVLl2p8TTMzM/z1118YPnw4PD09cefOHbx79w7GxsawsrKCnZ0dnJyc4OTkBBMTkxxcibyzsLDA1q1bceHCBZw8eRJ3795FdHQ0TExMULNmTXTu3Bnjx4+X5PLsudWhQweMGjUK27dvx+XLl/HmzRuYmJigbt26cHZ2xpgxY3SezLp9+/Y4e/YsDh48CF9fXzx79gwJCQkoU6YMbGxs0KFDBwwfPhzVq1fXWo6LiwuaN28ONzc3BAQE4P379yhXrhwaNmyIAQMGYODAgTA2NoarqyssLS2xZ88erT3CdFGiRAmsWbMGo0ePRlBQEAIDA/HNN99gy5Yt4oTJ+W3y5Mlo3749du/ejZs3byImJgYWFhZo1qwZPv/8c/Tq1UvnslxcXNC1a1ccOHAA169fx6tXr5CWloYKFSqgUaNG6NKlCwYPHpzvibn8Zih1tkqVKjh69Cjc3Nzg7e2NFy9ewMjICFWrVkWXLl0wZswYcQLtffv2YdWqVYiPj1ebPMhPdevWxd9//43jx4/D29sbgYGBiImJQcmSJVG9enW0bdsWzs7OaNWqVbZlSbmtUKhRowbmzZuH+fPn49WrV/jpp5+wcuXKPJXZt29flcSVrsMElenr2kn5vrO0tMRvv/0GV1dXnDx5ElevXkVYWBhiY2NhbGyMihUrokGDBujQoQOGDh2qcY7G7Jw+fRqHDx8GkPmZiUkrIulhjysiItJJXFwcxo4di6CgIBgZGeHMmTOwsbEp7LBIA330dCH90LXnCxFJ17x58+Dp6QkAmDFjhjjPVG5t3bpVTICdOnUKn376aZ5jpJy7d+8exo0bh6SkJNjY2ODAgQOoWLFiYYdFRB/h5OxERAYqOTkZPj4+8PHx0bqakELZsmXx2WefAcjsiRUYGJjfIRIREUnC77//Ls7XtX79euzduzfXZaWkpIiTvbdu3ZpJq0ISFBSEKVOmICkpCVWqVMHOnTuZtCKSKCauiIgMVHp6OqZOnYqpU6fi5MmTOj1HeaJVCwuLfIqMiIhIWkxMTPDXX3+hU6dOEAQBv/32G3bt2pWrsrZv347w8HAAyHPPLcqdx48fY/z48ZDJZKhcuTJ27NiR7RB3Iio8TFwRERkoCwsLVKtWDUDm5LxxcXFajw8MDBQnvTY3N9dp/hIiIqLiomTJkti8eTOcnZ0BAJcuXdK6OMLHBEEQF0MBMhc76dixY77EStoFBAQgNjYWtWvXxsGDB2Fra1vYIRGRFpycnYjIgA0fPhxr165FaGgo+vTpg379+qFBgwYoW7YsTExMkJSUhNevXyMgIAB+fn7iqj4zZ84s8hM+ExER5ZSpqSlWrFgBOzs7DBs2TKdJ4x89egR/f38cO3YMISEhAAAbGxv88ccf+R0uaTBmzBiYmprC0dGRwwOJigAmroiIDNjUqVPx9OlTnD59GtHR0WKPKk3KlCmDH374ASNHjiygCImIiKTFyMgI48eP1/n4rVu34p9//hH/3a5dO6xduxZly5bNj/BIR4p5O4lI+pi4IiIyYIo5O0aOHInjx4/j4cOHiIiIgFwuB5A5JLBKlSqoX78+HBwc0LdvX37QLiLq1auHMWPGoHr16qhbt25hh2PQ7O3t0bRpU86fQmSgGjdujFu3bqFZs2YYOXIkunbtWtghEREVKUaCIAiFHQQREREREVFxlJaWhhIl2F+AiCi3mLgiIiIiIiIiIiJJ4qqCREREREREREQkSUxcERERERERERGRJDFxRUREREREREREksTEFRERERERERERSRITV0REREREREREJElMXBERERERERERkSQxcUVERERERERERJLExBUREREREREREUkSE1dERERERERERCRJTFwREREREREREZEkMXFFRERERERERESSxMQVERERERERERFJEhNXREREREREREQkSUxcERERERERERGRJDFxRUREREREREREksTEFRERERERERERSdL/AZBgH0sxR6QVAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 10,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: spline-peak\n",
- "def find_peaks(samples):\n",
- " peak_ages = samples.posterior.curve.argmax(axis=2).to_numpy().flatten() + x_min\n",
- " peaks = pl.DataFrame({\"age\": peak_ages})\n",
- " return peaks\n",
- "\n",
- "\n",
- "peaks = find_peaks(samples)\n",
- "plot_bars(peaks, \"Posterior distribution (penalized spline model)\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9165edfa-dee4-4a8f-95e0-82ab1180ba66",
- "metadata": {},
- "source": [
- "Twin peaks!"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "db558d0d",
- "metadata": {},
- "source": [
- "## Additive function\n",
- "\n",
- "$$\n",
- "\\begin{align}\n",
- "g_1(x) &= \\alpha + \\beta_1 \\exp(-\\lambda_1 x) \\\\\n",
- "g_2(x) &= \\beta_2 \\exp(\\lambda_2 x) \\\\\n",
- "\\\\\n",
- "g(x) &= g_1(x) + g_2(x) \\\\\n",
- "&= \\alpha + \\beta_1 \\exp(-\\lambda_1 x) + \\beta_2 \\exp(\\lambda_2 x) \\\\\n",
- "\\\\\n",
- "y &\\sim \\mathrm{Normal}(g(x), \\sigma) \\\\\n",
- "\\alpha &\\sim \\mathrm{Normal}(0, 2) \\\\\n",
- "\\lambda &\\sim \\mathrm{Exponential}(0.01) \\\\\n",
- "\\sigma &\\sim \\mathrm{Exponential}(1) \\\\\n",
- "\\end{align}\n",
- "$$"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "decomposable-models-additive",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | label: additive-model\n",
- "# | echo: true\n",
- "import pymc as pm\n",
- "\n",
- "\n",
- "def g_1(x):\n",
- " return α + β[0] * pm.math.exp(-λ[0] * x)\n",
- "\n",
- "\n",
- "def g_2(x):\n",
- " return β[1] * pm.math.exp(λ[1] * x)\n",
- "\n",
- "\n",
- "def g(x):\n",
- " return g_1(x) + g_2(x)\n",
- "\n",
- "\n",
- "with pm.Model() as additive:\n",
- " x = pm.ConstantData(\"x\", x)\n",
- " α = pm.Normal(\"α\", 0, 1)\n",
- " β = pm.Normal(\"β\", 0, 1, size=2)\n",
- " λ = pm.HalfNormal(\"λ\", 0.004, size=2)\n",
- " μ = pm.Deterministic(\"μ\", g(x))\n",
- " σ = pm.HalfNormal(\"σ\", 1)\n",
- " pm.Normal(\"y\", mu=μ, sigma=σ, observed=y)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "cc8dd46f-4f7d-406a-bf6f-1dd4962315ab",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Auto-assigning NUTS sampler...\n",
- "Initializing NUTS using jitter+adapt_diag...\n",
- "Multiprocess sampling (4 chains in 4 jobs)\n",
- "NUTS: [α, β, λ, σ]\n",
- "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 112 seconds.\n"
- ]
- }
- ],
- "source": [
- "# | label: additive-sample\n",
- "# | warning: false\n",
- "with additive:\n",
- " curve_1 = pm.Deterministic(\"curve_1\", g_1(x_range))\n",
- " curve_2 = pm.Deterministic(\"curve_2\", g_2(x_range))\n",
- " curve = pm.Deterministic(\"curve\", g(x_range))\n",
- " # traces = pm.sample_prior_predictive(samples=2000, random_seed=seed)\n",
- " samples = pm.sample(progressbar=False, random_seed=seed)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "3a62a5ed-bf00-4ae8-b391-edd9983e7590",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3xUVeI28OdOn8mkV0IgoRdpAZEONsSCBUFE7LoW3LWtrqtucXdfdd1ddtcu+tNV7A0VRESRohQBpUiVDiG9Z5Lp5bx/xAwZJmUmmbkzkzzfzyc63Ln33JPk5N6ZZ06RhBACREREREREREREUUYR6QoQERERERERERG1hMEVERERERERERFFJQZXREREREREREQUlRhcERERERERERFRVGJwRUREREREREREUYnBFRERERERERERRSUGV0REREREREREFJUYXBERERERERERUVRicEVERERERERERFGJwRUREREREREREUUlBldERERERERERBSVGFwREREREREREVFUYnBFRERERERERERRicEVERERERERERFFJQZXREREREREREQUlRhcERERERERERFRVGJwRURERERRx+VyRboKRES8FhFFAQZXRERERBRVfv75ZwwdOhRff/11pKtCRN3Yli1bMGjQIGzbti3SVSHq1iQhhIh0JYiIiIiIAOD777/HzJkzUV1djaFDh2LXrl1QKpWRrhYRdUPTpk3Dd999B6PRiE8++QTTp0+PdJWIuiX2uCIiIpJZWVkZpkyZgvj4eNx8883gZ0hEjTZt2oTzzz8f1dXVGDhwIL766quoDq0cDkfIyvJ4PB0ekvTiiy8iJSUF/fv3x8aNG0NWp1Dg9a57cTqdsv6O9+3bh+XLl7f6dfDgwU6Vv2TJEuTn56OhoQGXXHIJvvrqqxDVnIiCweCKiIhIZk8//TQ2bNiAhoYGvPHGGxwORQRgz549mDlzJiwWC/Ly8rBmzRrk5OREulptGjRoELKysnDFFVd0uqyCggLodDrk5eXhiSeeCPg4s9mMe++9FzU1NThy5AgefPDBTtcllHi9617eeecdGAwGDB48GCtXrgz7+V555RVceumlrX69++67nSo/LS0N33zzDYYMGQKn04nZs2djy5YtIao9EQWKwRUREZHMJEny+bdCwdsxdW/l5eWYMWMGampqkJKSgq+//ho9e/aMdLXaJYRAWVkZdu7cGZLy3G43Tpw4gUOHDgV1XPNrSrRdT3i9635sNhsOHDiA0tLSSFclJJquSdnZ2TCbzbjkkktQUFAQ6WoRdSu8cxARRYl169ZBkiS/L4VCgcTERPTr1w+XX345/vvf/3aZF4NNysvL8cMPP4TszV+0u/feezFp0iTExcXhpptuwvnnnx/pKhFF1B133IHi4mJIkoQ333wTAwYMiHSVYkZcXByeeeYZJCcno2/fvvjXv/7V4bJsNhsOHjyIb775BhaLJST14/WOwunpp5+GEMLna+3atSE/T05ODt5//32oVCpUVVXhpptu4rBXIhkxuCIiinJCCJhMJhw9ehTLli3Db3/7W+Tl5eGRRx6B0+mMdPU67fjx48jMzMRZZ52Fp59+OtLVkUVmZqZ36Mzrr7/u1yOBqDt566238NlnnwFoDLAuueSSyFYoBi1YsADV1dU4cuQIJk6c2OFy7rzzTgwaNAjTp09HeXl5SOrG6x11FVOmTMHvfvc7AMDatWvx7LPPRrhGRN0Hgysioih03nnn4fPPP/d+vffee/jnP//p/aTabrfjqaeewqxZs+B2uyNcWyKijnG5XHj00UcBAMnJyXj88ccjXCMiotY9+uijyM7OBgD89a9/hdlsjnCNiLoHBldERFEoJycHM2fO9H7NmzcPv/vd77Bq1SqsW7cOCQkJAIAvvvgCL774YoRrS0TUMe+//z4KCwsBNPa2Sk1NjXCNiIhaZzQacc899wAAampq8Oqrr0a4RkTdA4MrIqIYM23aNLzwwgvefz///PMRrA0RUcc1DQ+WJAl33nlnZCtDRBSA2267DRqNBgDwzDPPcK4rIhkwuCIiikHz5s1DYmIiAODgwYMoLi5udV+Xy4X//e9/mD59OjIyMqBWq5Geno4JEybgySefRG1tbVDn3rVrF+655x6MGjUKiYmJ3vJGjRqFe+65Bxs2bGjz+OPHj/tMPt+nTx/vc4sXL25xgvo//OEPAdevoqICf/rTn5Cfnw+j0QiDwYABAwbgrrvuws8//xxQGWeffbZfHQ4cOOB9fvPmzZg7dy6ys7OhUqm8+7Tm/fffb/H7avq66aabAv7+mvv555/xm9/8BkOGDIHBYIDBYEDfvn1x/fXXY/Xq1QGV8Ze//MWvPi+//LL3+cLCQtx9990YMGAAtFqtd59169Z1qM6dUV9fj//+9784++yzkZaWBrVajZSUFJx55pl46KGHcPDgwTaPb/69tlX/5m20rd9NqH52xcXFUCqVkCQJI0eODORHgQceeMBb3ldffdXu/l988QWuvPJKZGdnQ6PRICMjA+eeey7+7//+L2LDjY8fP45t27YBAEaMGIHc3NwOl+VwOLB8+XLce++9mDhxIjIzM6HRaKDX65GXl4errroKy5cvD7rcjRs34qqrrkJWVhY0Gg2ys7Mxd+5cbNy4MeiyhBB4++23cc455yApKQk6nQ79+/fHb37zm6BXKBs8eHCb15Tjx48HVM5NN93kc9zixYu9z/Xp08evXKVSCbvd3maZobre3Xnnnd5jPv3003b3r66uhlqthiRJmDBhQrv7h+JeESp5eXmQJAkrV66EzWbDww8/jF69esFoNOL888/H3r17ATR+j7fffjt69OiBuLg4XHrppQG1nVDcK5qYzWY8+eSTGDVqFAwGA+Lj45Gfn48nn3yywxP67969G7fffjv69+8PnU6HpKQkjB49Gn/961+Dfo0ih5SUFEyaNAkAcOzYMWzfvj3CNSLqBgQREUWFtWvXCgACgLjxxhvb3X/kyJHe/X/44YcW9ykvLxdnnnmmd7+WvjIyMsS6devaPZ/b7RYPPPCAUCgUbZYHQIwfP15s27atxXKOHTvW7vGnf73++uvt1k8IIdasWSOSkpJaLUej0YhFixa1W860adP8jv3666+FEEK8+uqrrf4MWvPee++1+f0F8vs+3SuvvCJUKlWb5V533XXC6XS2Wc5jjz3md9yjjz4qhBBi+/btrf48165dG3SdO2Pz5s0iKyurze9XkiRx++23C5PJ1GIZzb/XturfvI229bsJ5c/u7LPP9j5/6NChdn8eeXl53r9fl8vV6n42m03MnTu3zZ/bmWeeKcrLy9s9Z6i99tpr3jo88MADnSrr4YcfDuhactVVVwmHwxFQmQsXLhSSJLXa1v72t7+J3NxcAUDk5ua2WZbT6RRXXnllq/WKi4sTL730UsDXhEGDBrX5fR47diyg7/HGG28M6lrc3vcpROiud+vWrfMec+2117a7/+uvv+7d/9lnn21z31DdK0KlqR298cYb4rzzzvOrT2ZmpigpKRHDhg3ze2706NHC4/G0Wnao7hVCCFFSUtJm2+vXr5/PdTGQe/e//vUvoVQqWy0zIyNDbN68OZgfp8/rqcceeyyoYwP15JNPes/xr3/9KyznIKJTVCAiopikVqu9j10ul9/zJpMJU6ZM8fYUys/Px/XXX4/c3FxUVFTg448/xjfffIPy8nLMnDkTmzZtwvDhw1s939///nf8+9//BgCkpaXh1ltvxYgRI2AwGFBXV4dDhw7h888/x65du7B582bs3LkTo0eP9isnMzMTn3/+ufff5eXluPXWWwE0Tkp/3333+R0zbty4dn8eq1atwqWXXgq73Q61Wo1rr70W55xzDgwGA/bu3YuXX34ZJSUlWLBgAVJSUnDVVVe1+b1WVVUBAC699FIAQEFBAb788kvcfvvt8Hg8uPDCCzFr1iysXbsW77//fpt1mzp1qs/3fPr3HayXX37ZO6xKp9Ph5ptvxqRJk6BSqbBz50688sorqK6uxttvvw2lUok33nij1bLmz5+PM888EwDwyCOPYM+ePSgoKEBhYSFmzJiB2tpaDBs2DDfeeCOsViv+/Oc/d6jOnbFq1SpcfvnlsFqtAIAJEybg6quvRq9evVBTU4Pvv/8eH330EUwmEz755BM89thjiI+PD3u9Qvmzu+aaa7w9sZYsWYLf//73re67fft2b4+aq666CkqlssX9PB4PLr30UqxatQoAMGTIENx0003o168famtr8fnnn2Pp0qX48ccfMWPGDGzZssXnuhJuO3bs8D4+44wzOlXWvHnz8Oyzz2LChAmYPHky+vfvD6PRiPLycuzcuRPvvPMOTCYTPvroI/Tu3RsLFy5ss7zFixfjwQcfBNA4jHHu3Lm46KKLoNfr8dNPP+F///sf/vznPwe8Qt7tt9+OTz75BEDjHDm33XYbzjrrLDgcDqxfvx5vv/027rrrroC/30WLFqGhocFn29NPPx1075n7778fc+bMabGM1157DRkZGT77Jycnt1tmqK53U6ZMQc+ePVFUVITly5fD4XB4h2e1pOnnq1QqMXfu3Fb3C+W9ItT++Mc/ori4GLfddhvOPfdcLFmyBB9//DHKyspw1llnobCwELfccgumT5/ufW779u3Ytm2b91rUXCjvFRaLBeeff773NUVeXh5uu+02DBw4ENXV1Vi6dClWrFiBv/3tbwF/v//v//0/73UxNTUVv/rVrzB69Gi43W6sX78er7/+OsrLyzFjxgxs27YN/fr1C+KnGV7Nr1lNPUeJKIwinZwREVGjYHtcNe99cvToUb/nH3jgAe/zt956a4u9Mp544gnvPhMmTGj1XG63W6SmpgoAQqvViv3797e672effSYWLFjQbv2bBNq7pS0NDQ2id+/eAoBIS0trsbdXdXW1GDNmjAAg0tPTRW1tbUBlN9Xtd7/7ncjLyxNqtVq899573uebf7ocjI5+38XFxcJoNAoAIikpSezYscNvn8LCQm+PHADiq6++Cqjspp5mU6ZMEVdffbUAIO677z5v22neRuXqcVVbWyt69Ojh7eXy9NNPt7ifyWQSDz/8sFixYkWrZYW6x1Vznf3ZVVZWCrVaLQCIsWPHtnmuRx991FvWhg0bWt3v2Wef9e532223tdijYvHixd59nnzyyYC+11C56KKLAvo+AtVWj5GSkhLRq1cvb2+atv7+6+rqRFpamgAglEql+OSTT/z2qa6uFtOnTw+oJ9LGjRt9es4cPHjQb589e/Z4e9109FrYvPdUoD2uwlFGSzp6vbv//vu9x33xxRet7ldfXy+0Wq0AIM4///xW9wvnvaIzmn73kiT53F+OHj3q/f4lSRLvvvtui8+9/PLLfmWG+l7R/PXClClTRENDg98+S5YsERqNJqAeVzt27PD2tDrrrLNERUWF3z47d+4UycnJAoC44IILWi3rdHL0uNq/f7/3HOPGjQvLOYjoFAZXRERRIpjg6vvvv/fpRn/6MIGysjLvm+CcnBxhtVpbLWv8+PHesjZu3NjiPqWlpd59xowZE/T31pZQBFfNX1B/9NFHre63b98+79CfF154IaCym8rV6/UCgHjmmWd8npc7uLr33nu9xz3//POt7vfll19695s+fXpAZTeFL03f66xZs3yej0Rw9eCDD3rPed9993WqLDmCq8787C6++GLvPidOnGj1XIMHD/aGJa0NETKbzSIxMVEAECNHjmxzOOG8efMEANGjR4+AhguFSn5+vvf7/fnnn8N+vr/85S/e861cubLV/Z566invfnfddVer+9XX14uUlJR2g6sLL7zQW96HH37Y6n6bNm1icHWarVu3eo+75ZZbWt3v/fff9+73v//9r9X9wnmv6Iym4Or064bVavXWt63nWgqdQ3mvsNls3qGVOp1OFBQUtFpe8yF0bQVXTcGvVqsVJ0+ebHW/RYsWecvbu3dvq/s1J0dwVVFR4T1H7969w3IOIjqFk7MTEcWYhoYG71LMAHDzzTf7DVf58ssv4XQ6AQDXX389dDpdq+U1H77x4YcftrhPcnIyFIrGW8bhw4dRWVnZ4fqHwwcffACgcRjilVde2ep+Q4YMwfjx4wGcGlYSKKvVivz8fPzmN7/peEVDYOnSpQAAjUaDG264odX9LrzwQuTk5AAAVq9ejerq6oDPYbVaodfrI75ipRAC7777LoDG7/ePf/xjROsTiM787K655hrv4yVLlrS4z/79+70TR8+bN6/VoWpfffUV6urqADSugNXacEKg8RoCACUlJdi8eXPQ9e4os9nsfRwXFxf28/Xq1cv7uLy8vNX9mk/i3tbwPaPR2O6QVIvFgrVr1wIAMjIyMHv27Fb37dGjR5tldUdjx471Dg9bunRpi8PigVPXc61W2+Y9QI57RWckJCT4/Lv5vbut51qaMD+U94oNGzZ4J0mfOXOmz9/S6QJpx5WVlVizZg2AxuH4TedvyXXXXQeVqnF2Gzl/F+1pfs1qfi0jovBgcEVEFAMaGhqwf/9+vPjiixgxYgR++OEHAMCoUaPw6KOP+u3/zTffeB9Pnjy5zbKbVsYBgK1bt7a4j0ajwYwZMwAAdXV1GD9+PN59913vnEORVFhYiF27dgEARo8e7Q3YWpOfnw8A+PHHH4M+10MPPeRX/n333Ydjx47h2LFjQZcXrCNHjnjnNho5cmS7b5onTpwIoHGuo2C/3xtuuAHZ2dk+28aPH+/9Xpve1IXTjz/+6F0xc/LkyUhNTQ37OUOhoz+7yy+/HHq9HkDrwVXz7c2DrtN98cUX3sdjx45ts75NfxNAx/4uOqp5CNH0xjRUqqqqsHXrVqxevRpffPEFli9fjt27d3ufb20lRavV6g3vUlNTOz331qZNm7yhwpQpU9q9PpG/efPmAWj8nba0GqjNZsOKFSsAABdddJF3xd3TyXmviLRQ3yuawlcAmDZtWqfrt3LlSu/fYHvXp7i4OAwcOBBAdP0ums8H2PRBIRGFDydnJyKKQosXL/ZZlrwlEydOxNKlS/0+hQWAkydPeh+3N5lp3759vY+PHj3a6n4vvvgizj33XBw7dgxHjhzBtddeC6PRiAsuuACXXHIJLrvsMqSlpbV5rnBoHhhZLJZ2l7xv6i1WV1eHhoYGGI3GgM6TkJCAWbNm+W1PSkpCUlJS4BXuhGB+r0Dgv9uW3HjjjX7bdDod8vLygiqnMw4fPux9PGLECNnO21kd/dnFx8fjkksuwccff4xNmzahpKTEr/dCU4+DoUOHYuTIka2W1fzvYufOnW32MGoe4hQWFrZZx1DSarXexyaTCVlZWZ0qr7S0FP/+97/x8ccfe9+0d6SMpkBtwIABnaoP4Ps3G4ryuqNrrrkGTzzxBIDG4Pb888/3ef7rr7/2TlQ/f/78VsuR614RDUJ9rwh1O27+uzh58mS7vwshBAB5r0/taerRCsD7gQMRhQ+DKyKiGGI0GjF58mT86le/anPISUVFhfdxS8FWc1qtFhqNBg6HwzsUoCV5eXnYuXMnnnzySfzf//0fqqur0dDQgE8++QSffPIJlEolLrnkEjz88MOYMGFC0N9bR5WVlXkff/vtt/j2228DPrauri7gNyOjRo3yeaMdCcH8Xk/fp63fbUvk6FHVnpKSEu/jWOltBXTuZ3fNNdfg448/hhACn376qc9QtWPHjnlX4murtxXg+3dxxx13BHz+5m/Gwq35CnWdPe/nn3+O+fPn+620F6xg/8bkLq87OuOMMzB8+HDs3r0bn376KV544QWf3lJNvRCNRiNmzpzZajly3SuiQajvFaFux81/F88//3zAQ6vlvD61p3ld5Prwiqg7Y39lIqIodN555+Hzzz/H559/jhUrVmDTpk04cOAAampq8OWXX7YZWgGtD4NpTdOnme0N10lISMBTTz2FkpISfPHFF7j77rvRv39/7zmXLVuGSZMmxcRcRABanS+lJYEuex9OHf29AsEPxYq277etOZqiTWd+dhdffLH3jeHpwwWbz+/SXnDVUcH8TXRW83ltOjNv3u7duzFnzhxvaHXOOedgyZIlOHHiBKxWK0TjYkR4/fXX2y2r+d9MKP4GQl1ed9U0XLCsrAwbN270bne5XPj8888BAFdccUXYer7I+XcRCqG+V0RLO46m30NVVZX3cVtzdBFRaDC4IiKKQjk5OZg5cyZmzpyJiy66CBMmTMDAgQMDDh+af/pXX1/f5r52u907P0NGRkZA5Ws0Glx88cV49tlncejQIezbtw933HEHFAoFhBB44oknvJPghltmZqb38a233up9kxrIV25urix1DJVgfq+n7xPo7zaaNP/dRtMn7eGk0+lwxRVXAGjsFdI80GkKrs4666x2h/80/9mdPHky4L+JQMKdUBk6dKj38c6dOztczpNPPgmHwwEAuPbaa7F69WpceeWV6N27d5sLU7SkeS+wQP7G5C6vu2oKrgDfQHft2rWoqakB0PYwQYD3ira0d68IdTtu/rt46623Av49yDGXZKCaer8CvtcyIgoPBldERF1Q8ze17c1tdOTIEe/j3r17d+h8Q4YMwaJFi/D00097t7344osdKitYzetcWloqyzkjJZjfKxCa320kNa/z/v37I1gTeTX1pnK73fjss88ANA6b/P77732eb0ss/F2cddZZ3setLQwRiOYTdj/55JOd6hHS/A11R+fJaq75vF2hKK+76tu3L8aNGwegMcBt6gHUFGKlpaVh+vTpbZYRC38ToRLqe0Wo23FX+F00v2Y1v5YRUXgwuCIi6oKaXuADjctYt6X58+298G9P80mpDx48GNAxzd9kNh+OEKjc3FwMGTIEALB58+YuvbpP//79kZKSAqCxh0pbS3ALIbBp0yYAjXO/yDnvWKhMnDjRO2xu/fr1sNlsnSqveVsLdiiNnM4//3zvQgdNb8w//fRTCCGgUChw9dVXt1vGRRdd5H383XffhaeinXT22Wd7h3Zt3Lixw3+7TUN21Gp1pwPaxMREDB48GABQXFyMgoKCTpXX/FrctFphNOvs9TicmnpdnTx5Elu3boXH4/EGu3PmzGm3RzLvFS0L5F7RvB03BeidMWPGDG9bi9brU3ua5khTKBTeVZeJKHwYXBERdUFz5szxzgn01ltveYfRtOR///uf9/Hll1/e6n5NS7q3xWKxeB8H2uuh+RCE5isXBWPOnDkAGt/Avvbaax0qIxZIkoS5c+cCaPx9vPXWW63uu3LlShQVFQEALrzwwohPLN8RGo3GO2yupqYGL730UqfKi4uL8z5u+tm0pHnPwUhQqVTeNr169WrU1tZ6A6yzzz7bb6XBllx00UUwGAwAgBdeeMHnbzNa6PV6bwhXUVGBpUuXdqicpmuI0+lss/fG9u3bvY/bCmXOPvts7+O2/sZWr17d7ipnmZmZ3iDs6NGjPvMzne6NN95osyw5hOJ6HC5z5871Tsq+ZMkSbNy40TvJd3vDBJvwXuEvkHvF1KlTvT/7zz77rNXhgm63u81zNcnKysLkyZMBACtWrMDevXvbPSYYzec6ayu066i1a9d6V72dOXMm0tPTQ34OIvLF4IqIqAvKzs7GtddeCwAoKCjAvffeC4/H47ffk08+iS1btgBo/DR72LBhLZa3b98+5OXl4amnnmr1DbDL5cJDDz3k/fekSZMCqmtCQoL3jd2mTZta7anV1qfjDzzwgPfN/P3339/qG2Cn04kXXngBb775ZkB1i0b33XcfNBoNAODRRx9t8QV/UVGRdzU6lUqFv/zlL3JWMaT++te/elfzeuSRR/wmLG/icDiwcOHCNpdVHzRokPfxRx995Pe80+nEfffdh2eeeaaTte68puGATqcTb7zxhrdXQqCTssfHx3t/70ePHsXs2bNbnSds//79uO2228LyBq89Dz74oDfkXrRoUYfKaHoDDKDF353b7cZf//pXPPfcc95txcXFrZb3m9/8xlunp556Crt37/bbZ+3atZg9e3ZAPffuuece7+O77roLJpPJb59///vf+Nvf/tZuWeHWvGdNa/OdtfVBSDhlZ2dj2rRpABqDq6Y533r16uXTBtrCe4WvQO8VPXr08IZ+NTU1uOeee/zCX5vNhvnz52PNmjUB1e+f//wnFAoF3G43LrvsslaHg1dXV+P+++9v8e+wNf369fP+Da9evTrkk7o3/xDlwQcfDGnZRNSy4JYYIiKimLFw4UKsXr0aRUVFWLRoEbZt24brrrsOvXr1Qnl5OT766COsXr0aQOMbgn/9618tluPxeDB37lyUlpbikUcewcKFC3HZZZdh3LhxSE9PR11dHQ4dOoR33nnHO6zGYDDgz3/+c8B1/e1vf4vbb78ddrsdEyZMwK9//WsMGTIELpcLR44cwccff4wpU6a02uMmMTERr776KmbNmgWbzYYrrrgC06dPxxVXXIHs7GyYTCZs374dH330EYqLi2EwGDBu3DifIKO577//3mfFIKDxE/rmociECROQmpoa0Pd38OBBv0CuvLzc+7iwsNAvcBk4cCAGDhzoV9agQYPw2GOP4Q9/+ANqamowduxY3HrrrZg4cSKUSiW2b9+OV155xTth8aOPPoozzjgjoLo1/56b16e1usghLy8Pzz33HG699VbY7XbMmTPH+7vt0aMHTCYTtm3bho8++gilpaVITk7Gjh07WpxM+bzzzkNycjJqamqwfPlyzJkzB7Nnz4bRaMSePXvw8ssv48SJE5gyZQr27Nnj/Rm2Jpw/uylTpqBnz54oKirCn/70J7hcLmg0mnZXFG3u/vvvx4oVK7Bu3TqsXLkS/fv3x80334wxY8ZAqVSioKAAq1atwldffQUhBDwej+y9UM444wxccsklWL58OVavXo0VK1bg4osvDqqM+++/3zuU8qmnnsKBAwdw4YUXIjk5GQcPHsTbb7+Nn3/+Gfn5+Th27Bhqa2vx/PPPY9q0aS0GHmeccQZuvvlm/O9//0NDQwMmTJiABQsW4KyzzkJdXR1Wr16NDz74AFlZWcjIyMChQ4farN+tt96K5557Dvv378euXbswcuRI3Hnnnejfvz+Ki4vx3nvv4fvvv8eUKVOwfv36gL7nlgLa5r2/1qxZ4zfJ9syZM9std9asWejTpw+OHTuGN954AyUlJbj88suRkZGB4uJibN26FV988UWrf2NAaK93p5s3bx7Wrl2Lo0eP4tVXXwUAXH311QH38A31vSKahfpe8Ze//AVffPEFzGYz3njjDRw8eBA33HADUlJScPDgQbzyyisoKCjA1KlTAxr+N378eDz66KN4/PHHcfToUYwaNQrXXHMNzjnnHCQkJKC8vBwbN27EkiVLYLFYsGrVKvz4448BLbiQlpaGiy++2NtWzz77bFx//fVIS0tDUVERvv32W1xyySW45ZZbAv+B/mLTpk34+OOPATQOZ58yZUrQZRBRBwgiIooKa9euFQAEAHHjjTeGpMwDBw6IAQMGeMtt6atfv37iyJEjbZZz8OBBcc4557RZTtNXnz59xLZt24Ku6+23395muSqVSpw8ebLNMtasWSOSk5PbLEepVIo77rhDmEymVsuZNm1au9/n2rVrA/7eHnvssYB+ds2/HnvssTbL/OMf/ygUCkWrx0uS1G4ZgdYtkHLC7bPPPhPx8fHt/m5vv/32Nn+37777bps/tyuvvFKYTCYxePDgdv8Ww/2z++1vf+tT1mWXXRZ0GTabTVx99dXt1rNv377i66+/7nBdO+PYsWPe322fPn2ExWIJuoyFCxcKSZJa/f4mTJggysvLxT/+8Q/vtl//+tetludwOMRFF13Uank9evQQ27ZtE7NmzRIARG5ubpv1O3nypMjLy2u1vPHjx4vq6mrv9au9e0Cw1xMg8Jf8O3bsEBkZGW2Wdeedd7Z6fDiud02qqqqEWq32OXb79u0Bf29NQnWvCJXc3NxWf+9N9WnrubZ+fqG6VwghxKpVq4ROp2uzXezcudP779dff73dMhcuXCiUSmWbv4uEhATxzDPPCI/HE1A9hQjsby5YTqdTDBs2TAAQWq1W7NmzJ+gyiKhjGFwREUWJcARXQghht9vFCy+8IM4991yRmZkpVCqVSExMFJMmTRL/+c9/hNlsDris9evXi3vvvVeMGjVKpKenC5VKJRISEsTAgQPFtddeK95//33hdDo7XNdly5aJSy+91FvP+Ph4MXr0aHH//feLn376KaAyKisrxeOPPy4mTJggkpKShEqlEmlpaWLixIniT3/6kzh+/Hi7ZcRCcCVE4xvMO++8UwwcOFAYjUah0WhEnz59xI033ii2bNkSsrpFQ3AlhBBlZWXib3/7m8/vNjU11fu7PXbsWEDlfPvtt2LmzJkiNTVVqNVqkZOTI+bNm+cT3EyZMqXdv8Vw/+x++OEHn7Lee++9Dpf19ddfi/nz54u8vDyh1WqFXq8Xffv2FfPnzxcfffSRcLlcHS47FF599VXv9zl//vwOlfHdd9+JK6+8UmRmZgq1Wi0yMzPFjBkzxJtvvincbrd3v5deekkMGTJEfPPNN22W53K5xCuvvCImT54sEhIShFarFYMGDRIPP/ywqKysFEIIcddddwUUXAkhRE1NjfjTn/4khg8fLnQ6nYiPjxdjx44Vzz33nPe6OXTo0IgHV0IIUVpaKh5++GExfPhwERcX5/07ufTSS8Vrr70mrFZrq8eGM7gSQohLLrnEe9ygQYOC+r6aC8W9IlTCGVwJEZp7RZMDBw6IX/3qVyIvL0+o1WqRlpYmLrzwQrF8+XIhhBDl5eVBBVdCCLFv3z5xzz33iDPOOEMYDAahVqtFdna2uPjii8Vzzz0n6urqgqpjk+rqavHII4+IwYMHC61WK7RarejTp4+YN2+e+PTTT4Mur+nvHYBYuHBhh+pERB0jCRFlS4YQERERUbdzyy23eOdV+utf/xrUcGMionB6/vnncffddwMAZs+ejQ8//NA7YT0RhR+DKyIiIiKKOLfbjdmzZ2Pp0qWQJAnPPvssfvOb30S6WkTUzb3zzju48cYb4Xa7cc455+DLL7+MyZV6iWIZY2IiIiIiijilUon3338fF1xwAYQQuPvuu/Gf//wn0tUiom5s8eLFuOGGG+B2uzFhwgQsXbqUoRVRBDC4IiIiIqKooNPpsHz5csyfPx8A8MUXX8Dtdke4VkTUXX3xxRfweDyYOXMmVq9ejfj4+EhXiahb4lBBIiIiIooqQgg899xzuOWWW2A0GiNdHSLqphwOB1544QXcc889UCqVka4OUbfF4IqIiIiIiIiIiKIShwoSEREREREREVFUYnBFRERERERERERRicEVERERERERERFFJQZXREREREREREQUlRhcERERERERERFRVGJwRUREREREREREUYnBFRERERERERERRSUGV0REREREREREFJUYXBERERERERERUVRicEVERERERERERFFJFekKEAGA02aGEJ5IVyMgKq0BCoUSHo8bLrsl0tWhLoxtjeTAdkZyYDsjubCtkRzYzkgusdjWJEkBtS4upGUyuKKoIIQnZoKr5mKxzhSb2NZIDmxnJAe2M5IL2xrJge2M5NKd2xqHChIRERERERERUVRicEVERERERERERFGJwRUREREREREREUUlBldERERERERERBSVGFwREREREREREVFUYnBFRERERERERERRicEVERERERERERFFJQZXREREREREREQUlRhcERERERERERFRVGJwRUREREREREREUYnBFRERERERERERRSUGV0REREREREREFJUYXBERERERERERUVRicEVERERERERERFGJwRUREREREREREUUlBldERERERERERBSVGFwREREREREREVFUYnBFRERERERERERRicEVERERERERERFFJQZXREREREREREQUlRhcERERERERERFRVGJwRUREREREREREUYnBFRERERERERERRSUGV0REREREREREFJUYXBERERERERERUVRicEVERERERERERFGJwRUREREREREREUUlBldERERERERERBSVVJGuABERERG1TggBt0fA4xHwCA8AQKVUQqXk549ERETU9TG4IiIiIgqj5sGT2+P55f+NIZTHI+B2e+AWvwRTvzzXfD8hRIvlKhQS1EoF1CrlL18KqJRKaNQKBltERETUZTC4IiIiIgqQEAIOpxt2pxse4YHbLeDx+AZPrl9Cp/aCp87yeATsnsa6tESSJGhUjcGWSqWARqWESqmEJHX8nGqVAjqNuuMFEBEREQWJwRURERFRC9weD2wOF+wON+wOJ+xON+xOF8KUQ4WcEOKXOrccbHWUQiHBoFXDoGv8YpBFRERE4cTgioiIiLo9p8vdGFI5Xb+EVS44XZ5IVysqeTwCDVYHGqwOAP5BllatgtSZbl1EREREzTC4IiIiom7F5XbDYnPCaj8VVHk8MdKNKgoFEmQRERERdRRfSRAREVGX5nS5YbU7YbY5YbE54XSFdugc+WopyEpIcCFOr4NGrYDS4+HE8URERBQwBldERETUpThdjT2qLHYGVdGgMciyw2JzwSPccNmtUCkV0GlU0KqV0GrU0GqU7JlFRERELeIrBCIiIoppDKpij8vt+aVXFgBYATSugqjVKH8JtFTe/ysUnC+LiIioO2NwRURERDHF4xEw2xqHojGo6jqEELDZXbDZXT7bNerG3lhxejWMeg1USmWEakhERESRwOCKiIiIop7L7YHZ6kC91Q6z1QkhOJl6d+FwuuFwulFvsQMA9NrGACveoIVGzRCLiIioq2NwRURERFHJ4XSjwWpHvcUBm8MJZlUEAFa7E1a7ExW1ZmjUSsTrNTAatNBr1ZGuGhEREYUBgysiIiKKGjaHE/UWBxosdtidHAJIbXM43ahyWlFlapzw3WjQIF6vhUGnhiRxbiwiIqKugMEVERERRYwQAha7Ew0WBxqsdjhdnkhXiWKUy+1Bbb0NtfU2KBQSjHoNjHot4vRqKBWKSFePiIiIOojBFREREcnO7nShpt4Kk9kOj4djACm0PB4Bk9kOk9kOSQLi9Bokx+sRp9NEumpEREQUJAZXREREJBuz1YGaeisarI5IV4W6CSHQ2KPP4oBWrURygh4JBh0UCg4lJCIiigUMroiIiCisPB4Bk8WGGpOV81ZRRNmdbpRWNaCi1owkox7J8TqolFyZkIiIKJoxuCIiIqKwcLndqDFZUWu2we3mcECKHm63QFWdBdUmC+INWqQk6KHTcFVCIiKiaMTgioiIiELKaneipt6KeosdgnkVRTEh4J0LS69VIzlej3iDhisSEhERRREGV0RERNRpQgjUW+yorrfCZndFujpEQbPanbDanVCrFEgy6pEUr+NqhERERFGAwRURERF1mMvtQV2DDbUNVjhdnkhXh6jTnC4PKmrNqKyzINGoRXK8Hlo1XzITERFFCu/CREREFDS704VqkxUmsx2C4wGpCxJCoLbehtp6G+J0aqQkGBCn10S6WkRERN0OgysiIiIKWIPVjhqTFWabM9JVIZKN2eaE2VYHjVqJ5Hg9EuN0UCg4DxYREZEcGFwRERFRmzwegTqzDTX1Vjic7khXhyhiHE43yqobUFFrRrJRh6R4PdQqZaSrRURE1KUxuCIiIqIWOV1u1NRbUdtgg8fD4YCd5XJ7UG2yoKbeCpe74/OBKRUKGHRqGLRqGHRq6LRqKLgKnqw8HoEqkxXV9VYY9Y3zYBl06khXi4iIqEticEVEREQ+LDYnqustMFsd4PRVgWsKpirrLKisM6Oy1oKqpsd1FtTWWxGOH6cEQPdLiGXw+b8G+mb/1vs8rzm1XavmsLcOEgKot9hRb7FDp1UhJV6PeIMWEoNEIiKikGFwRURERBBCoK6hcTigzeGKdHWiktPlRrXJiso68y+B1KlQqiqMwVR7BACr3Qmr3YmqDpah16pg0GpOC7dOhVx6XePziUYdemUkIsmoYzhzGpvdhWJ7PVRKM5LidUgy6qFSKiJdLSIiopjH4IqIiKgbc3s8jUOe6hpgszREujoR1RhMNQVSjaFUVW3j4ypT5IIpOVjtLljtLsAU2P7xBi16ZySiV2YSemc2/j8rxQilgkGNy+35pbedFQlxWqQk6KFV8yU3ERFRR/EuSkRE1A0JIVBTb0OdzQIhJHhE95h0XQiB0uoGHC6sQnltgzeYqqwzo7bBFvbzJxp1SEswQKPp+ITeLpcHVrsTFrsTFpszIj3k6i127D1ejr3Hy73b1CoFctIT0atZoJWTngi9tnvO/dTUi7GuwYZ4gxZpSQYGWERERB3AuycREVE302C1o7zGDIfTDZVWD4XUdVdFawyq6vHziUocKKjAgYJK1JnDF1AlGXVIS4xDWqIBqUkG7+O0RANSEgxhWYHO7fHAanfBYnM0Blq2U6GWxe5o/L/N6fuc3QnrL89b7aEJvpwuD46V1OBYSY3P9ozkOOT2SEVeVir69UpFXroRGnXXbXMtaZoHiwEWERFR8HjXJCIi6iZsDifKa8yw2JyRrkrYnB5U/VxQAZPZHpKyJQBJ8XqkJhiQmmhAmkzBVHuUCgWMeg2Mek2Hjvd4hE8PLm/Y1RRu/bLNbHWitLoehRV1cLoCXxWxvMaM8hozfthXAABQKRXom52CQb3TMLh3Ovr1TO02QZZPgJVogFbDl+JERETtkYTgekEUeQ5rPYTo+NLgclLrjFAolPB43HDauvd8MBRebGsUKi63GxU1ZtS1EOA09bjyCDdcdmsEatc5QgiUVNX/ElI1hlUdDaqagqm0xF+CqaaeU788TknQRySYijZujwdl1Q0oKKvDyfJanCyrQ0FZLUyWjv3cVUoF+vRIxqDe6Ricm45+PVO6TY8kBlihx3snyYHtjOQSi21NkhTQ6ONDWyaDK4oGDK6I/LGtUWd5PALV9Y2TRLd2u4/F4KrObMNPh0qw93g5DpyoCDow0aqVGJCThrweyT69plISDFwFrhPqGmwoKKtFQXkdTpbV4mR5HUqr6oOe0F6pkNAnOwWDe6djUO809M9J7fJBFgOs0OG9k+TAdkZyicW2xuCKuiwGV0T+2NaoM+oabKioNcPlbvvaGivBVVl1PbYfLMaOgyU4UlQVVBjSFFQNyk3H4N5pyM1KZkAlE7vDhcIKE4qqzThSWIWfj5ehoja461lTkDUkNx35A7KRm5UESZLCVOPIYoDVebx3khzYzkgusdjWGFxRl8Xgisgf2xp1hNnmQEWNOeCV5qI1uPIIgeMlNdhxsBg7DhWjuLI+4GO1GhUG5KT+0mMnHblZSQyqIqx5Oystr8SBglOT5VfUmoMqKzlej/wBPZA/MBuDeqd3yd8tA6yO472T5MB2RnKJxbbG4Iq6LAZXRP7Y1igYdqcLFbVmNFgcQR0XTcGVy+3BzycqvGFVbUNgq/9pNSoMzEnF4NxTQZVS0fXCjFjWVjurqrP4zFEWTJBl0Kkxol8WRg/Mxhl9MqHXqkNd9YiKN2iRnhTXbSavDwXeO0kObGckl1hsawyuqMticEXkj22NAuFye1BVZ0FtgxUduaNHOriy2p3YfaQU2w8WY/fRUljtgfUUy81KQv6AbAzrm8mgKgYE086qTRYcKKjEzwUVOHCiAuUBBlkqpQJD8zKQPzAbo/r3QKJRF4qqR5wkAUlGPdKSDGznAeC9k+TAdkZyicW2xuCKuiwGV0T+2NaoLUII1NRbUVlngcfT8Vt5JIIru9OF7QeK8f3eAuw/Xg53APVXKiQM6p2O/AE9MGpANlITDTLUlEKlM+2s2mTBvuPl2HmoBHuOlsHhcrd7jASgX89U5A/sgfwB2chKDe0L6EhQKiWkJsQhOV7XZef4CgXeO0kObGckl1hsawyuqMticEXkj22NWmMy21FRa4YzgDfw7ZEruBJC4FBhFTbuPoEf9hcGNAeXVq3E8H5ZyB+QjRH9shCn14StfhReoWpndqcL+46XY8fBEuw8VIwGa2BDY3ukxmPc0F6YOKw30pLiOnz+aKBWKZGRHId4gzbSVYlKvHeSHNjOSC6x2NYYXFGXxeCKyB/bGp3OaneivMYMq90ZsjLDHVxV1pnx/Z4CbNx1IqAhXwkGLUYN7IHRA7IxJC8DahXn9ukKwtHOPB6Bw0VVv6w2WRzw3FiDc9MxaXguxgzqCV0MT36u16qRmRIHnaZrzevVWbx3khzYzkgusdjWGFxRl8Xgisgf2xo1cbrcqKg1w2S2h7zscAQKdocL2w4UYePuE9h/oqLd/TOTjRg9KBv5A7LRNzsFCgWHQXU14Q5IhRAoqjRhx8FibD9YjBOlte0eo1UrcebgHEwekYsBvdKgiNHhd4lxWqQlxTHk/QXvnSQHtjOSSyy2NQZX1GUxuCLyx7ZGbo8H1XUWVNfbEK7bdagCBSEEDp6sbBwK+HMR7O0MBUyM02HCsN6YOLw3eqYlcM6eLk7uudSqTRbsOFSCHQeLcaCgot151NISDZg4PBcTh/VGRrIx7PULNUmSkJKgR2qCodsHv7x3khzYzkgusdjWGFxRl8Xgisgf21r3JYRAndmGyloLXO7wXhs7GyhU1JqxafcJbNpT0O5QLZVSgfyB2Zg0rDfO6JvJFdK6kUiuXtlgdeCH/YXYuPsEjhZXt7v/wF5pmDQiF2cO6gm9NraG4amUCqQlGZBk1Ee6KhHDeyfJge2M5BKLbY3BFXVZDK6I/LGtdU9mqwPlNQ2wOzs/8XogOhIoeITA7iOlWPXDYew7Xt7u/n16JGPyiFyMHdILRk6w3i1FMrhqrqTKhI27C7Bp9wnUNtja3FejVmLMoJ6YPDwXg3LTY2oooVatREaysVsuaMB7J8mB7YzkEottjcEVdVkMroj8sa11L3aHC+U1DTDbQjfxeiCCCRRsDhc27jqOb348grKatttkolGHicN6Y9LwXGSnJYSyyhSDoiW4auLxCOw7XoaNuwuw/WARnK62X4OkJRpw7ph+mDoyDwZd7IRBRoMGmcnGbjX/Fe+dJAe2M5JLLLY1BlfUZTG4IvLHttZ9VNVZUFlnRiTuyIEEChW1ZqzedgTrfzre5oqGKqUCowdmY9LwXAztk8GhgOQVbcFVcxabA1t/GUp4pKjtoYRatRKTR+Th/DP7ITMltC/Kw0WhkJCWGIfkeF23mEuO906SA9sZySUW2xqDK+qyGFwR+WNb6/pcbg9Kq+rRYHVErA6tBQpCCBwqrMKqHw5h+8HiNkO1vtkpmDwiF2cNyYmp3igkn2gOrporqarHpj0nsGl3AWrq267niH5ZmD62P4bmZcREIKTTqJCVaoROE1vzdgWL906SA9sZySUW2xqDK+qyGFwR+WNb69osNidKqkztDlEKt9MDBafLja37C7Hqh8MoKKtt9TilQsJZQ3th+pn9kdcjWb4KU0yKleCqiccjsP9EOTbuPoEffy5qc5GEnmkJOH9sf0w4ozc06ugekidJQJJRj7QkQ5ftEcl7J8mB7YzkEottjcEVdVkMroj8sa11XZEcGni6pkChpr4B32zeh7U7jsJktre6f7xBi7Pz++Cc0X279cplFJxYC66aM1ns+HbHUazZfhR1bUzobtRrMC2/D84d3Q/J8dH9t6FSKpCZYkS8QRvpqoQc750kB7YzkksstjUGVzGkoaEBixcvxqpVq3Dy5El4PB707NkT5513Hm688UakpKTIXqeSkhI89dRTWLlyJQDgzTffxLhx42SvR0sYXBH5Y1vrelxuD0oqTbJPwN6Womorvt5yAN/vPtZmr5KcjERMH9sf44f26lYTPVNoxHJw1cTl9uCHX3ojHi+taXU/pULCmYNzMH1sf/TNlv/1XjC64uTtvHeSHNjOSC6x2NYYXMWII0eO4LbbbkNRUVGLz6elpeGll17CiBEjZKmPw+HA66+/jkWLFsFisXi3M7jqmFi8eFBsYlvrWiw2J4orTW2GQ3I6VlyNpRv2Y9eR0lb3kQCMGtAD54/tj8G902NiHp+uSpIkqJQSFL/8DhwuD2LpJVxXCK6aCCFwpKgaX/9wCNsPFMPTxu+hX3YKpo/tjzGDe0bt0DxJkpCeZEByvL5L/I3z3klyYDsjucRiWwtHcKUKaWmEhoYG3H777SgqKoJarcZ9992HmTNnQqfT4ccff8Q//vEPFBQUYMGCBfjss8+Qnp4e1vqsX78ejz/+OI4fPw4AyMrKQmlp629SiIgo9CrrzKiqs0TF0MCjxdVY1k5gpdOovCunZSQbZaxd16VQSFAqGoMnhULR+FghQalQnHpOIUEhKaBUNu176rmWAgWX2wOX2w2H85f/u9xwuTxwutwxF2zFEkmS0D8nFf1zUlFVZ8Ga7Ufw7c5jsLTQk/JIcTWOLN2KjG/jMHPSYEwY1jvqAiwhBMprzDCZ7chMMUKv7dqTtxMRUexhcBVir732GgoLCwEA//znP3HxxRd7nzv//PPR0NCA3//+96isrMSLL76Ixx57LCz1cLlcuO+++7Bq1SoAQHp6Oh588EFkZWXhxhtvDMs5iYjIVzQNDTxSVI1lG/Zh99GyVvdJT4rD+Wf2w+QReXzz2gqFQoJGpYRK2RQ++QZPPkFUO8FTZ6mUCqiUCrS2kOPpwZbT5YHT7YbbLeDxeOD2CLg9ggFXJ6QmGnDVOcNx2aQh2LSnAKt+OITSav9PxMtrzfjfF9vw+cafGwOsM3pDpYyuAMvmcOFEaS2S4nVIT4qLuoCNiIi6LwZXIeR2u/Hee+8BAPLz831Cq6bnX375Ze+/P/nkEzz00EPQ60M/gadKpUJCQgLUajVuuukmLFiwAHFxcdiyZUvIz0VERP7MNgdKKusjPjQwkMBqQK90XDxpKIbnpkKhiP2hQp2hVEpQK5VQqRS/BFRKaNQK77ZYejPfXrDVRIjGAMvjEfAID9zuX/4tPPB4Tj3n9njgcLphd7qiovdgNNFqVDhndF9My++DvUfLsOqHw9hzzP9vrqLWjNe/2IblG3/GzImNPbCiLcCqrbehweJARrIRCXFdb/J2IiKKPQyuQmj79u2oqWmcrPOiiy7ye37JkiU4evQoZs+ejSVLlsBms2HDhg2YPn16WOrz+9//HnfeeSd69+4dlvKJiKhl0TA08EhRFZZu2I89bQRW/XNSceU5ozC8X08IeGJ+7qFAKRQS9BoVtBpVTAdTodI0fxaUwC//aZPb44HV7oTF1vjFIOsUhSRheL8sDO+XheJKE77eeggbd5+A2+P7A6qoNeP1Fdvw+ab9uHTikKgLsFxuD4orTTCZNchM6VqTtxMRUexhcBVCe/bs8T7Oz8/3ec5qteK5557DyJEjce+992LJkiXeY8IVXCUmJiIxMTEsZRMRkT+X243iyvoW57qRy+HCKizbsL/F3h5N+uek4oopQzEkNx1qnQGSJHXp4EGhkGDQqqHXqmHQqaHTqLrEJNSRolQoYNRrYdQ39sbxCbLsTtgdDLIAIDstATddPAYzJw7GF98fwIZdx/0CrMpaizfAmjlxMCYOy42qAKvB6oC5uAZpiQakJHSNyduJiCj2MLgKoaNHj3of5+Tk+Dy3ePFilJeXY+HChcjMzIRKpYLL5fI5hoiIYlekhwYeLqzC0g37sPdYeav7DMhJxeW/BFZd+Q1oU1Bl0DWGVQyqwiuQIKs7S0uKw40XjcYlEwdhxfcHsP6nlgOsN1Zs9w4hnDg8egIsIQQqas0wmW3ISo3n/HdERCQ7BlchVF1d7X2cnJzsfVxTU4NXX30VU6dOxbhx4wAACQkJqK6u9g4t7O5UWkOkqxAwSVJ4/6/WcbUtCh+2tdhRUdOAyjoHoNJCJfOd9UhhJZas/Ql7jpS0us+g3hmYdfYIDOmT6RfgSFB4/6/Shn7ORTkoJAUMOjUMOs0vParUDKoiSA1AZwCaXgm5PR7Y7G5Y7U5Y7Q7YlEq43O5IVjEisjL0uOXyNFw2bRSWb9iDb7cfgdvjG3RX1lnwxpfbsfz7A7h0yjBMGdkXqigZpucGUFRjR3K8EunJxqgdVst7J8mB7YzkwrbWiMFVCFmtjXODaDQanxfMixYtQkNDAx544AHvNo2mcaZUi8UibyWjlEIRHS/KgiFJEiQp9upNsYdtLXo5XW4UV9TBYnNAIfPvqKKmAR98sw2b9xxvdZ9BuRmYfc4oDMnLajfIkSQJUgDzG0UDhUL6JaRq/GKPquimUCihVqkRH6fzbnO6Gid5t9md3v87nN0jzMpITsAtl07EZVNG4PP1u7Fux2G4T+upWVlrxuufb8Hn6/fg8qkjMHVUfyijpAdWXYMdZqsTGSnxSDRGb9jNeyfJge2M5NLd2xqDqzBQNPsEqqioCO+++y5mzpyJwYMHe7d7PJFdZSraeDyx82JVkhS/zAcjIAR/jxQ+bGvRzWx1oLiyTvaeIxabA5+v34uvN++Hs5VhiYNyf+lhldfYw0rA0+qcQxKatTNEZztr3qMqTqeB7rShSkK0/v1RdDj9eqZUAAatCgbtqZeiHo+A3dk4tNDmOBVqebroLzclUY8bZ56FSyafgeUb9uLb7Yf9e2DVmvHasu+x8vt9uGbGGIzonx2h2vpyuNwoLK9GjUmLrNR4aNTR85aC906SA9sZySVW21qoO6ZEz12mCzAYGoe7OZ2nJuV9+umnIYTAvffe67Ov3W73Oaa7c9ktMfOHqNYZIUlKCOGB09YQ6epQF8a2Fp2EEKiss6CqTt4es26PB9/tPI7P1u9DvcXe4j6Deqfh8slDMTg3vfEYh63dclVaPSQoo2pVweZzVDUN/WskAGGH09by90/RK9DrmQqASg3EqRVAnBaAFg6nGzaH65ehhk7YuticWUl6Ba6bPhwXj+uHL36ZA+v0ufKKKuqw8O01GNYnE3PPG46c9OhYfKfOboXJVBdVk7fz3klyYDsjucRiW5MkBTT6+JCWyeAqhFJSUgAAbrcb9fX1KCoqwvLly3HttdeiV69e3v2cTifq6+t9jiEiougXiVUDhRDYfaQUH67djeLK+hb36Z2ZiLnnjsDQvAzZ6hVKjUP/1N6w6lRQRQRo1Epo1EokxJ2a/N1ic3ongO8qQVZKggHXz8jHJRMaJ3H/roUAa8+xMux9rQxTR/bBFVOHIrHZ8MtIaZq8vc5sQ1ZKPAw6/v0SEVFoMbgKob59+3ofFxUVYeHChdDr9bjrrrt89ispKfEOFezTp4+sdSQioo4xWx0orjLB7ZZv2FJheR0+WL0Le4+3vFJgklGHK6edgYnDcqFQRL6nQzB0WhXi9VrE6RlUUXCUCgXiDVrEG7pmkJWSYMB1M/Jx8YRB+PS7fdi4+4TP80IA3+48hs37TuKSCYNwwdgB0KgjP++Jw+lGQVktEo06ZCTHRe3k7UREFHsYXIXQsGHDvI8XL16M9evX4+677/brVbV9+3bv4+HDh8tWPyIiCl4khgbWNdjw6Xd7sX7X8RbnbtKolbho3EBcOG4gtJrYuJVLEmDQqmE0aBFv0ECljPwbbeoaumqQlZJgwK0zz8R5Y/rhgzW7cKCg0ud5u8OFT77di3U7jmLO2cNw1tBeUETBUL26BhsarHZkpyYgTq+JdHWIiKgLiI1XuzEiPz8fycnJqKmpwSeffILU1FTcfPPNfvutXLkSAKDT6TBp0qQ2yxRC4JlnnsGHH34ISZIwb9483H333WGpPxER+XK53SiqqIfVLs/QQLvTha+3HsKK7w/A3sIKaxKASSNyMWvqGUiOj97VvJooFBKMeg2Mv/SsYg8MkkNLQZbZ6kBNvU22v+VQyuuRjIfmT8XOQyX4cM1ulNX4znFSbbLilWU/YNUPh3H1eSMwsFdahGp6itstUFhRh/SkOKQkcD5XIiLqHAZXIaRUKnHNNdfgxRdfBADcdNNNiIuL89ln06ZNWLduHQBg9uzZ0OvbfuOxdOlSvPTSS95/P//888jNzcVll10W2soTEZEPOYcGeoTA5j0FWPLtXtTUtzxB+uDcdMw7bwR6ZyaFvT6doVIqYDRoEK/XwqBTR8VkzdS9KRUKJMTpkBCng9XuRE29FfUWe0ytRClJEvIHZmN4vyys3X4Eyzbsh/m0ufaOldTgqbe/xZhBPXHVOcOQkWyMUG0bCQGU15hhd7iQmRIfc8OZiYgoejC4CrFbb70Vy5YtQ2FhId555x3k5ORg/Pjx8Hg8WLVqFf75z39CCIG0tDQsWLCg3fJ2797tt+2nn34KKLhyu91wuXy7xzdf8dDpdHpXNwQAhUIBtZrzjBBR9yaEQGWtGVUmeVbYO1Zcjbe+2onjpTUtPp+ZYsTV5w7HyP49ojYE0qiViNdrYDRoodfyPkLRS69VQ69Vw+V2o6behtoGq6zz1nWWSqnA9LEDMGFYLpZv3I/V247A7fGt/7YDRdh5qBjnndkfl04cHPHhenVmO+xON3qmJ0Ct4hBhIiIKniRELH3eFBuOHDmC2267DUVFRS0+n5aWhpdeegkjRoxot6ylS5fioYce8tm2cOFCXHrppe0e+8knn+CRRx4JrNIAZs2ahaeeeirg/UPJYa2HEJ72d4wCap0RCoUSHo87ZpYkpdjEtiY/OYcGWmxOfPrdXqzZdgQt3YiNeg0unzwE0/L7QqUM3xA7lVYPhaSER7jhsgce1qlVCiQYtEgw6qBV83Mwalu0Xs88HgGTxYYak7XF4bnRrqy6AR+v241tB4pbfD5Op8Hss8/A1FF9Ij7/lUqpQHZaQthXHYzWtkZdC9sZySUW25okKaDRx4e0TL7SDIN+/fph2bJlWLx4Mb7++mucPHkSQghkZ2fjvPPOw0033eQ3YXtrLrvsMhw7dgwffPABJEnCNddcE1BoRUREwbE5nCgsN/ktPx9qQghsO1CEd1b9hLoGm9/zKqUC55/ZDzMnDoZBF10TG0uShHiDBolxuoj34iAKBYVCQpJRjySjHmabAzUmKxqsjkhXK2CZKUb8+soJOHiyEu9/s8uv56bZ5sCbK3dg4+4TuPHC0cjJSIxQTQGX24OT5bXITDEiyRj9c/QREVH0YI8rigrscUXkj21NPhabE4UVdfB4wntLrKw14+2vd2LXkdIWnz9zcE/MOVveuWkC6XGl16qRaGyc7JoTrFNHxNL1zOF0o6beitoGG2LpZbJHCGzZexIfr9vT4lx5SoWEC84agMsmD4l4L8mkeB0yk41hGf4cS22NYhfbGcklFttaOHpcMbiiqMDgisgf25o8zFYHCitMYX2D6nJ7sOqHQ1i6YT8cLQxHSk+Kw/Uz8jGsb2bY6tCa1oIrtapxQuvEOB00as5LQ50Ti9czt8eDugYbauptcLpiZxhh4+qkh7Hi+59bHP6YlmjAdTPyMaJfVgRqd4peq0bP9ISQD4WOxbZGsYftjOQSi22NwRV1WQyuiPyxrYWfyWxHSZUprKuLHS6swpsrt6OwwuT3nFIh4aLxgzBz4uCIhUPNgyu3w4YEgwYJRh3iomyYIsW2WL+e1VvsqKm3wmIL//x3oVJVZ8E7X+/EzsMlLT4/dkgOrjl/RESH7alVCvRMT4BOE7p5r2K9rVFsYDsjucRiW2NwRV0Wgysif2xr4VXbYEVpVfh+rhabAx+v24NvdxxrcfL1ATmpuOHC0eiZnhC2OgRCpdUjTq9DQpwWeoWLS9ZTWHSV65nN4USNyQqTxR7WwDtUhBDYfrAY7676qcXhg3qtCrOnDcPZ+X0j9rcvSRJ6pBqREKcLSXldpa1RdGM7I7nEYltjcEVdFoMrIn9sa+FTbbKgvMYclrKFEPhhfyHe/eYnmMx2v+fjdGpcde5wTB6RF9FVviRJQkKcFpnp6dDrtGxnFFZd7XrmcntQ22BFbb0t7As6hILV7sSn3+3D6m2HWwzc+man4IYL89E7M0n2ujVJTdAjPQTz+3W1tkbRie2M5BKLbY3BFXVZDK6I/LGthUdFTQOqTC1PQt5Z5TUNePurndhzrKzF5ycM642rzx0esp4FHaFSKpAcr0eiUQeVUsF2RrLoqu1MCAGTuXEYoc3hinR12nW8pAaLV27HidJav+cUkoQLzuqPyycPhVYTmcnbjXoNeqTFd2oRiK7a1ii6sJ2RXGKxrTG4oi6LwRWRP7a10CutrkdtvS3k5brcHny15SCWbdwPp8v/WpaZbMT1F+ZjaF5GyM8dKJ1WhZR4PeINWp+VvNjOSA7doZ1ZbE5U11tgtjqiehih2+PBmm1H8Ml3+2BvIWxLTTDg2gtGYdSAHhGoHaBRK9EzPaHDKx92h7ZGkcd2RnKJxbbG4Iq6LAZXRP7Y1kJHCIGSqvoWh+51Vll1A176bAsKymr9nlMqJFwyYTAumTgIapX8k69LEhBv0CI5Xg+9tuXJj9nOSA7dqZ05XW7U1FtR22CDxxO9L7OrTRa8u+onbD9Y3OLzYwb1xPzpI5EcL//k7ZIkISvFiERj8L1Tu1Nbo8hhOyO5xGJbY3BFXRaDKyJ/bGuh4fEIFFea0GB1hLzsrftO4o0vt7c4RGhQ7zTccGE+eqTKP/m6UikhKU6HpHh9u4EZ2xnJoTu2M49HoLbBhpp6K5wud6Sr06qdh4rxztc/ocpk8XtOr1Vh/vmjMHF4b5+emnJJjNMiMyU+qInju2NbI/mxnZFcYrGtMbiiLovBFZE/trXOc3s8KKowhXwJe6fLjfe++Qnrdhzze86o12DuucMxaXiu7G/0NGolUhL0SDDoAn6jx3ZGcujO7axpHqzKOkvUBlg2hwtL1+/Dqh8Ow9PCW4P8gdm48cL8iMzPp1UrkR3E0MHu3NZIPmxnJJdYbGsMrqjLYnBF5I9trXNcbg8KK+pgs4d2wuTSqnq89NkWnCyv83tuzKCeuOHCfMQbtCE9Z3vidGqkJBgQp9cEfSzbGcmB7Sw2AqyCslos/nI7jpXU+D0Xb9DihgvzMWZQT9nrFczQQbY1kgPbGcklFtsagyvqshhcEfljW+s4l9uNgrI6OJyhfXO4ee9JLF653W9CY5VSgavPG4FzR/eVtZdVnE6NtKS4VuevCgTbGcmB7eyUaA+wPB6B1duOYMm6PXC0UL+Jw3pj/vSRMOiCD8o7K5Chg2xrJAe2M5JLLLa1cARXkVnrloiIKEwcTjdOlteF9A2hw9k4NPDbnf5DAzOS4rBg1jjkZiWH7HztMeo1SE00dCqwIqLIkCQJiUYdEuK0URlgKRQSpo/tj+F9M/Hq8h9xtLja5/lNewqw/0QFbrlkDM7okylr3erMdlgdrk6tOkhERLGHPa4oKrDHFZE/trXg2Z0unCyrg8sduutJyS9DAwtbGBo4dkgObrpotGwBUjgCK7YzkgPbWeuaemBVmSwh7yXaWW6PByu+P4hlG/bB3cIKieeN6Yc55wyTPURqa+gg2xrJge2M5BKLbY1DBanLYnBF5I9tLTh2hwsF5bVwu0N3W/t+TwHeXLkd9tPeTKqUClxz/kicnd9HlqGB4exhxXZGcmA7a58QAvWWxh5Y0RZgnSitxavLf0BRhcnvucwUI341cyz69UyRvV4tDR1kWyM5sJ2RXGKxrTG4oi6LwRWRP7a1wIU6tLI7XXh31U9Y/9Nxv+cyk41YMGscemcmheRcbZFjSCDbGcmB7Sxw0RpgOV1ufLZ+H1ZuPojTr7SSBFwyYTAumzwEKqVC1npp1Er0TEuAVtPY64ttjeTAdkZyicW2xuCKuiwGV0T+2NYCE+rQqqTKhBc/3dJiz4KzhuTgRhmGBhr1GqQlGaDThH8IItsZyYHtrGNMZhsqas1wuqLnNdLBk5V4bfmPqKg1+z3XOzMRv5o5FjkZibLWSZIkZKbEIcmoZ1sjWbCdkVxisa0xuKIui8EVkT+2tfaFOrTauPsE3vpqh18vB5VSgfnTR2LaqPAODZQzsGrCdkZyYDvrOI9HoKbeiiqTBZ4W5pmKBJvDhQ/X7MK6Hf4LVqiUCsyaOhQzzhrY5up/4ZAQp0Wv7B5QqVRsaxRWvKaRXGKxrTG4oi6LwRWRP7a1toUytHI43Xj7653YsOu433OZKUYsuCK8QwN1WhWyUoyyBlZN2M5IDmxnnedye1BZZ0Zdgw3R8up915FSvL5iG+oabH7P9c9JxW2XjkV6UpysdTIY45GblQqVUmJbo7DhNY3kEottjcEVdVkMroj8sa21LpShVbXJgueWfI8TpbV+z40f2gvXX5gftqGBCoWE9KQ4JMfrw1J+INjOSA5sZ6Fjd7pQUWNGg9UR6aoAABqsDrzz9U5s2XfS7zm9Vo1bLhmDMYN6ylYflVYPtUqNnunxUIno+BlR18NrGsklFtsagyvqshhcEfljW2tZKEOrgycr8eInm2Gy2H22q1UKXDt9FKaMzAvb0MCEOC0ykuOgUirDUn6g2M5IDmxnoWe2OlBe0+C36mmkbN1fiLdW7oDZ5h8WnTemH+aeOxxqVfivdyqtHgpJCcCD9HgV4g3asJ+Tuh9e00gusdjWwhFcqUJaGhERURiFMrRat+Mo3vl6J9ynzRmTlWLEglnj0StMkwurVUpkpRgRp9eEpXwi6h7i9Brk6ZJRZ7ahstYClzuyHwCeNSQHA3ul4o0V27HrSKnPc6u3HcHhoiosuGIcMpKNstTHIwSKKkzISI5DSoJBlnMSEVF4sMcVRQX2uCLyx7bmK1ShlcvtwburdrY4qfCo/j1w22VjwzI0UJKAlHg9UhPjZJ+wuC1sZyQHtrPw8ngEqkwWVJusiPRLeyEEVv1wGB+t3e33wYBeq8LNF4/BmYNzwnb+ph5XHuGGy24FACTH65GZIk9gRt0Dr2kkl1hsaxwqSF0Wgysif2xrp4QqtDKZbXjx0y04eLLS77mZEwfjiqlDoQjD0EC9Vo2sVCO06ujr6Mx2RnJgO5OH0+VGRa0ZJrO9/Z3D7FhxNV76bAsq6yx+z507ui+uPm9EWIYOthRcAYDRoEF2akJUfXBAsYvXNJJLLLY1BlfUZTG4IvLHttbI5nDiZHldp0OrE6U1eG7J96g2WX22a9VK3DpzLM4cHPrJg5XKxsnXk4yRm3y9PWxnJAe2M3nZHE6UVZthtTsjWg+LzYH/fbEN2w8W+z3XOzMJC64YF/KeUK0FV0DjCq456YlQKRUhPSd1P7ymkVxisa0xuKIui8EVkT+2tdCFVpv3nsTrK36E0+V7nUlLMuCe2RORE4b5rBLjtEhPNkb9GyS2M5ID21lk1FvsKK8xw+mK3ATuQgh88+MRfLhml9/QQZ1GhZsuHoOzhoRu6GBbwRXQOM9gTkZCVPaApdjBaxrJJRbbGidnJyKibiMUoZXHI/Dxuj1YueWg33NDctOx4IpxMIZ4xSm1SomsVCPidJx8nYgiK96ghVGvQU29FZV1Fng88n9eLUkSpo/tj/49U/DS0i2orD01dNDmcGHRZ1tw4EQF5p0fnqGDp3O63Cgoq0XPtEQYdKGfz5CIiEKPPa4oKrDHFZG/7tzWQhFama0OvLxsK/YcLfN7bvrY/ph77nAoFaHrDSVJQEqCAWmJBkhhmCcrXLpzOyP5sJ1FnsvtQVWdBbUNVkTq1b/F5sDrK7Zj24Eiv+d6Zyb+MnSwc5/St9fjqokkAT1SE5AQF9oPL6h74DWN5BKLbY1DBanLYnBF5K+7trVQhFZFlSY89/EmlNeYfbarlArceOFoTBqR29lq+tBpVOiRGg+tJvY6MnfXdkbyYjuLHg6nG+W1DWiwOCJyfiEE1mw/ig9W74LL7fvaT6tR4aaLRmPc0F4dLj/Q4KpJelIcUhMNHT4fdU+8ppFcYrGtcaggERF1aRabE4UVdZ0azrLjUDH+b9kPsDlcPtuTjDr8ZvYE9M1O6Ww1vWK1lxURdV8atRI56Ykw2xyoqDH7XSvDTZIknDemH/plp2DRZ1tQXnvqAwa7w4WXl27FzycqcM35I6FRh3/oYEWtGU63G5nJRl7HiYiiFHtcUVRgjysif92trZmtDhRWmNDR25JHCCzf+DM+W7/P77l+2Sn49ezxIV3dT6NWokdqPPTa2J4jpbu1M4oMtrPoVddgQ0Wt2a/3kxwsNife+HIbfvzZf+hgr4xE3D17AtKS4oIqM9geV02Meg2y0xKgUDC8ovbxmkZyicW2Fo4eV9G91BEREXULJrMdhRV1HQ6tnC43Xl66tcXQasrIPDx07dSQhlbJ8XrkZSXHfGhFRJRo1KFvdgrSkuTvOWrQqbHginG4fsYovxVYT5bX4W9vrMHPJypkqUuD1YGCslq43JFbgZGIiFrG4IqIiCKqtsGKkipThycLbrDY8a/31uOH/YU+2xWShGunj8RNF40O2UpVapUCvTITkZli5KfyRNRlKBQS0hLj0K9nMhKNOlnPLUkSzhndD3+44RxkJPv2rmqwOrDwvfX45sfDHf5gIxg2hwvHS2phtTvDfi4iIgocgysiIoqYapMFpVUNHQ6tymsa8MSb63C4sMpnu1GvwYPXTMF5Z/YPWQ+CxDgt8nokI06nCUl5RETRRqVsHALdp0cyDDp5e5TmZiXhsZvPw5hB2T7bPULg3VU/4fUV2+F0hb83lMvtQUFZHeoabGE/FxERBYbBFRERRURFrdlv1b9gHCmqwhNvrkNZje94/+y0ePz5pnMxODe9s1UEACiVEnqmJ6BHWgKUCt42iajr02pU6J2Z9MvwQfnOq9eqsWDWeFwxZajfcxt2Hcc/3/kOtQ2Bz1vVUUIIlFTVo7ymQZaeXkRE1Da+AiciItmVVTegqs7S4eO3HSjCP9/9DvUWu8/2wbnpePT6s4OezLc1RoMGfXqkIN6gDUl5RESxJC0xDr0ykvzmnwonhSThsslDcPecCdBpfBdAP1Jcjb+9vgZHiqplqUu1yYrC8rqITFxPRESnMLgiIiLZCCFQUmlCTX3HPzH/eushvPjJZjhdvm8kJpzRG7+9ejIMIRjKp1BI6JEaj5z0RFnfsBERRRuDTv3LMGl5hw7mD8jGH270n/eqtsGGf7zzLTbsOi5LPcw2J06U1sLucMlyPiIi8sdX40REJAshBIoqTagz29vfuQUeT+M8J++v3oXTB27MnDgYv7r0zJCETAadGn16yD9BMRFRtFIpFeiVmYT0pDhZhw72TEvAn248F8P6ZPpsd7k9+N8X2/Duqp/g9oS/N5TT5cbx0lq/Xr5ERCQPBldERBR2Ho/AyfI6NFgcHTre7nThxU8345sfD/tsV0gSbrp4NK6cdkanJ2GXJCAj2YjemUkhW4WQiKgrSU00yD50ME6vwX1zJ+HCcQP9nvvmx8P4z/sb0CBDoCSEQFGFCRW1HZ+bkYiIOobBFRERhZXL7UFBeS0sto4tL24y2/Cvd9dj+8Fin+1ajQr3zZ2IqSP7dLqOSqWEXhlJSEnQd7osIqKurGnooFEv3wqrCoWEuecOx+2XjYVa5fv2Zf+JCvxt8RqcLK+TpS5VdRYUVtTJ0tOLiIgaMbgiIqKwcbndOFlWC5u9Y3ODlFbV44k31+Fose9EvElGHR65bhqG9c3qdB11GhXysuRf+p2IKFaplArkZCTKPnRw/Bm98ch1ZyM53vdDhspaC554cy1+/LlQlno0WBw4UVoLh9Mty/mIiLo7BldERBQWDqcbJ0rrYO/gC/uDJyvxxJvr/IZl5KQn4I83noPemUmdrmNCnJZDA4mIOqhp6ODpvaDCKa9HMv5887kYkJPqs93hdOPFT7fg4zU74fGcPhNi6DmcbhwvrYHZ2rEh8EREFDgGV0REFHJ2hwsFZbVwujoWWv2wvxAL31sPs833DcHQvAw8fN3ZSEkwdLqOGclxyE5LgEIhY3cBIqIuxqBTIzdL3qGDiXE6/G7+VJyd7z9UfNl3e/Df99fAagt/oOTxCBRW1KHaZAn7uYiIujMGV0REFFJ2hwsF5bVwuYOf/0MIgS83H8BLn23xO37S8FzcN3dSp4f0KRQSemUkhiT8IiKiU0MHM5LlGzqoUipww4WjccOF+VCe9gHEjgOFePz1r2UJlIQAymvMKK40ydLTi4ioO2JwRUREIeN0uXGyvA5ud/Av3j0egbe/3omP1u7xe+6KKUNxyyVjOr2SlUatRF5WMuJk7BlARNRdpCQYfhl+Ld9bjLPz++J386ciwaD12X6yrBZPvLlOtknbTWY7Cso47xURUTgwuCIiopBwezwoLK/rUE8rl9uDRUu3YO32oz7blQoJt15yJi6bPARSJz/GNxo0yM1KgkbN+ayIiMJFr20cOhgn44IXA3ul4c83n4vcrCSf7TX1Vvz9rXXYe6xMlnrYHC4cL62ByWyX5XxERN0FgysiIuo0IQQKy00dmojd7nTh2Y834cefi3y267Uq3H/1ZEwakdvp+qUmGpCTngilgrc9IqJwaxo6mJKgb3/nEElJMODha6chf2BPn+02hwtPf7gR63cdl6UeHo9AcaUJpdX1EIJDB4mIQoGv4ImIqNOKK+thtTuDPs5ic+Df72/AnqO+n4Ynx+vxyHVnY2heRqfqJUkSeqYnID0prlPlEBFRcCRJQkayEdlp8Z3uMRsorUaFe+dNw/SzBvtsd3sEXv9iGz77bp9sYVJtvQ0nSjl0kIgoFBhcERFRp5RVN6DeEvywCJPZhn+++x0OF1b5bM9MNuKR66chJyOxU/VSq5TIy0pC/GnznhARkXwS4nTIzUqUbd4rhUKBGy4+C9dcMNrvuWUb9+O15T92aEh7R3DoIBFRaDC4IiKiDquqs6Cm3tqh4/7+9rcoKPOdNLdXRiIevn4a0hI710OqcXn2JGg1qk6VQ0REnafTNF6T9Vp55r2SJAkXTRyKu2aN81vUY9OeAvz3gw2w2Byy1IVDB4mIOo/BFRERdYjJbENFrTno40qq6vH3t9ehrLrBZ3v/nFT8/tqpSIzTdapeyfF69MpI7PQKhEREFDoqpRK9MxORFN+5a3wwzhycg4fmT4XxtJVk95+owN/f+hZVdRbZ6sKhg0REHcdX9UREFDSz1YGSqvqgjztRWoun3v4W1SbfXlrD+mTigasnw6DTtHJk+yQJyEo1IjPFKNt8KkREFDhJkpCVEv/LdVqec/bPScUfbjgbGafNdVhUacLjb67FidJaeSoCDh0kIuooBldERBQUm8OJokoTgh3xcPBkJf757rd+82GdObgn7rlqYqeG9SkUEnLSE5FklG8FKyIi6pjGnrFJUCrlSa8yU+Lx6I3noF92is/2ugYbnnp7HXYdKZWlHoDv0EGPh0MHiYgCIQkZB1t7PB7s378fe/fuRWFhISoqKmCxWOByuaDT6RAfH4+srCz0798fw4cPR2ZmplxVowhzWOshhDwTZXaWWmeEQqGEx+OG09bQ/gFEHRSNbc3pcuNEaW3QE9vuPlKKFz7ZDIfLd4jElJF5uPHC0VAoOv7mpXHZ9QToNPLMndLVRGM7o66H7Yxa4nS5UVRhgs3hClmZKq0eCkkJj3DDZfft3etwuvF/n/+AbQeKfLYrJAnXzRiFs/P7hqwegdCqlchOT4BWzfkYYw2vaSSXWGxrkqSARh8f0jJluUoeOHAAb7zxBtasWQOTyRTwcQMGDMCcOXMwZ84cGAyGMNaQiIja43J7cLK8LujQauv+Qvzfsq1wn/bJ8oyzBmDuucM7NaxPq1YiJyMRapWyw2UQEVFkqFVK9M5MQml1vSzD5zRqJRbMGocP1+zG11sPebd7hMCbK3egqs6CWdPOgEKmcYx2Z+OHQVkpRiR0cn5HIqKuLKw9rvbu3Yv//Oc/2LRpEwAEvZJG05uZ+Ph4XHvttbjzzjuh1XJZ866IPa6I/EVTW/N4BE6W18FqdwZ13Lc7j+HNL7fj9Kv/rKlnYObEQZ0KrQw6NXqmJ0Cp4Kj3zoimdkZdF9sZtafaZEF5TfALfpyurR5XzX3z42G8t+onv/vTuKG9cMslY2T/QCTRqEMW52iMGbymkVxisa2Fo8dVWIIrj8eDF198EYsWLYLb7fYGVjqdDmPGjMGAAQOQl5eH5ORk6PV6qNVq1NfXo76+HrW1tdi3bx92796NgoKCUxWVJPTp0wf/+Mc/MHz48FBXmSKMwRWRv2hpa0IIFFWa0GAJbunwLzcfwEdr9/htv/aCUThvTL9O1SkxTous1Hi+wA+BaGln1LWxnVEgzFYHiipNnZr7KdDgCgB2HCzGy0u3+g1jH9w7HXfPmQC9Vt4h6EaDBjnpibKekzqG1zSSSyy2tZgIrmpra7FgwQLs3LkTQghIkoTJkyfj2muvxcSJE6HRBL5iVGlpKT788EMsWbIEZWVlAACVSoVHHnkE1157bSirTRHG4IrIX7S0tdLqetTW2wLeXwiBT77biy82HfDZrpAk3DrzTEwY1rtT9UlNNCD9tNWhqOOipZ1R18Z2RoFyON0orKiDw+luf+cWBBNcAcDR4mo8+9EmmE5bOCQ3Kwm/vXoy4g3yjvZIitchKyW0b/go9HhNI7nEYluL+uCqtLQUt956K44ePQohBPLz8/HHP/4RZ5xxRqfKdblceO211/DSSy/BZrNBkiTceeeduPfee0NUc4o0BldE/qKhrVXWmVFZawl4f48QeOfrnVi7/ajPdpVSgQWzxiF/QHaH6yJJQFZKPBKNnAcklKKhnVHXx3ZGwXB7PCipqg+6py8QfHAFAOU1DXj6w40orfZtmz1S4/HAvMlISZB3rt30pDikJnJ+32jGaxrJJRbbWjiCq5BNDFJcXIxrrrkGR44cgUKhwG9/+1u89957nQ6tgMZeVnfccQc+//xznHHGGRBCYNGiRXjiiSdCUHMiImpJXYMtuNDKI/C/5T/6hVZajQr3Xz2pU6GVQiEhJyORoRURUTegVCiQk54oW3iTkWzEozecg37ZKT7bS6rq8fe3v0VZtbxvFitqzahrCLynMxFRVxeS4Kq2tha/+tWvUFJSAoPBgFdeeQW33357KIr20atXL7z77ruYMWMGhBB4++23sWjRopCfh4iou2uw2lFaXR/w/h6PwGtf/IhNewp8tsfpNHjomikYkpvR4bqoVQrkZiYhThf4UHMiIop96Ulx6JmeIMt8hka9Bg9cMwVD8tJ9tlfVWfD3t9fhZHld2OvQXGl1PczW4HucERF1RZ0OrtxuN+644w4cPXoUSUlJWLx4MSZNmhSKurVIq9XimWeewbx58yCEwDPPPINly5aF7XxERN2N2epAUYUJgQ4k93gEXlv+I74/LbRKNOrw8HXT0Oe0T7CDodOokJuVBK1G1eEyiIgodsUbtMjLSpJllT+dRoX7rpqE0QN9ewibzHb8451vcbiwKux1aCIEUFhhgs0R3Gq+RERdUaeDK6VSicsuuwwJCQl47bXXZFvx7y9/+QvmzJmD3NxcnHXWWbKck4ioqzNbHSisqAs+tNrrG1qlJOjxyHXT0DM9ocN1idOp0SszESqlvEuSExFRdNH+8iGGQRf+Vf7UKiUWzBqHScNzfbZbbE4sfH899h4rC3sdmgghUFhu6vBE9UREXUXIJmevq6tDYqL8y7fW19cjPp4rb8Q6Ts5O5E/uttZgtQfd0+rV5T9g896TPttTEvR4aP5UZCQbO1yXRKMOWSlGWYaHdHe8ppEc2M4oFIQQKK8xo6a+9UnXOzI5e0s8QuD9b3bhmx8P+5avVOCOy8/CmEE9O1x2sNQqJXKzkqBShmx6YuokXtNILrHY1qJ6cvZIhFYAGFoREYVAsKGV2+PBq5/7h1apCYZOh1ZpSQb0SI1naEVERD4kSUJmilGWe4RCknDN+SNw+eQhPttdbg9e/HQzNuw6HtbzN+d0uVFYUQePJ2SLwRMRxRTG9kRE3VxHQqvXPv8Rm/f5h1a/mz+lU6FVZooRaYlxHT6eiIi6vkSjDr0zE8PeA0mSJFw+ZSiuOX+Ez3YhgP99sQ1fbz0U1vM3Z7O7UFxpQogGyxARxRQGV0RE3VjHelq1HFo9dG3He1pJEpCdFo/keH2Hjiciou5Fr1Ujr0cSdNrwL94xfewA3HLJGJzeyev91bvw2Xf7ZAuTGqwOlFbHxlAhIqJQYnBFRNRNdSS0+r9lP2DL6aFVYmNolZ7UsZ5SkiShZ3oCEuJ0HTqeiIi6J5VSidzMJCQaw3//mDwiD3fNGu/Xy2vZxv14d9VP8MgUXtU12FBZZ5blXERE0YLBFRFRN9TR0Grr/kKf7amJBvx+fsdDK4VCQk5GAox6bYeOJyKi7k2SJPRIjUdmitGvR1SojRnUE/deNRFate9qt6u3HcH/lv8It0eehYYqay2obej4xPNERLGGwRURUTcT6tAqrYOhlVIpoXdmIuJ0mg4dT0RE1CQ5Xo+cjEQoFeF9e3NGn0w8MG8KDDq1z/ZNewrw4qdb4HS5w3r+JmXVDWiw2mU5FxFRpDG4IiLqRkIVWqV1MrRSKRXonZkEnUbd/s5EREQBiNNp0Cc7FZrTekSFWv+cVPz+2mlIiPPtLbzjYDGe/mgjbA5XWM8PNE4QX1RRD6vdGfZzERFFWsSDK7fbjZ9//hnffvstli9fjs8++yzSVSIi6pLqLcGHVq+0Elo9dG3HQyu1SoncrCRo1eGfUJeIiLoXtUqJ3B6pYf9gpFdGIh657mykJhp8tu8/XoGnP5QrvBIorKiDwylPLy8iokiRRITWVN2xYwfefPNNrF27Fna7bzfX/fv3++2/bNky5Ofno1evXnJVkWTksNZDCHnmBegstc4IhUIJj8cNp40ru1D4hLKt1VvsvyyjHdj+bo8HLy/dih9/LvLZ7g2tEjsWWmnVSvTKTIRKGd5PwylwvKaRHNjOSC5Nbc3pcuJYQXHYeyTV1Fux8L31KKmq99k+sFca7ps7CTpN+D+kafxAiPdWOfGaRnKJxbYmSQpo9PEhLVP2HldCCDz++OO49tprsXLlSthsNgghvF8t+e9//4vf//73+POf/yxzbYmIYl+woZXL3UpoldS50EqnVaF3VhJfWBMRUdgpFQr0ykhEnC68Pa+S4/V4+LppyM1K8tl+8GQl/vvBBlmG8jldbhSWm+Byx8aHwEREwZI9uPrTn/6Ed955Bx6PBz169MAdd9yBp59+Gvfee2+rx4wZMwZCCGzevBm7du2SsbZERLGtIz2tXlnWcmj1+/nTOhxaxenU6J2RFPZJc4mIiJo0rlybiHhDeFeujTdo8eC8KX7h1aHCKjz94UZZwiubw4XC8jqGV0TUJcn6DmLTpk34+OOPAQBz587FypUrcf/99+PCCy/EkCFDWj1u6tSp3ueXLVsmS12JiGJdsKGVEAJvf7Wz1dDq9Hk8AmU0aJCTkQiFIszrlBMREZ1GkiT0TE9AolEX1vPE6TV4cN4U5GUl+2w/VFiF/8oYXp0sq2V4RURdjqzB1YcffggAGDJkCP72t79Bowl8CfTzzjsPQgj88MMP4aoeEVGXYbY5ggqtAODzjT/j253HfLalJ8V1KrRKjNOiZ1oCJImhFRERRU6P1HikJOjDeo44vQYPXjPZL7w6LGN4ZXe6GV4RUZcja3C1c+dOSJKEWbNmBX1snz59AADFxcWhrlZYNDQ04IUXXsAVV1yBMWPGID8/HzNnzsR///tfVFdXd9u6EFH4OZzuoEOr9T8dx2fr9/lsS00w4KH5UzscWiXH69GDoRUREUWJjGQj0ju4Im6gDLrG8KpPjxbCqw8YXhERdYSswVVVVRUAoEePHkEf29Q7y2q1hrRO4XDkyBFcdtllePbZZ7F//340NDTAYrHg0KFDWLRoES699FLZ5uqKproQUfi5PR4UVtTB7Q48tdp1uASLv9zusy1Op8b9V0/qcGiVmmhAZoqxQ8cSERGFixz3J4NOgwfmtRBeFTG8IiLqCFmDK72+sXtuU4AVjGPHGoevJCUlhbJKIdfQ0IDbb78dRUVFUKvV+N3vfodvv/0WW7ZswQsvvIDevXujsrISCxYsQEVFRbepCxGFnxACRRUmOJzugI85VlyNFz/bAk+z7llqlQJ3z5mI7LSEDtUjPSku7J9oExERdVRyvB7ZafEIZ4dghldERKEja3A1aNAgAMCqVauCOk4IgWXLlkGSJAwdOjQcVQuZ1157DYWFhQCAf/7zn/jVr36FrKwsJCUl4fzzz8evf/1rAEBlZSVefPHFblMXIgq/0uoGWGyBvxAuq27A0x9t8gm6JAC3X3YWBvZK61Ad0pPiOtxLi4iISC4JcTpkh3k4e2N4NaXF8Oo/H2xgeEVEFCBZg6uLL74YQghs3LgRn332WcDHPfvsszh8+DAA4KKLLgpT7TrP7XbjvffeAwDk5+fj4osv9nv+5Zdf9v77k08+CdvQx2iqCxGFX7XJgroGW8D7m8w2/PeDDai32H22z79gFMYM6tmhOjC0IiKiWBJv0CInIyGsq94adOoWw6sjRdUMr4iIAiRrcDVnzhz0798fQgg8+uijePzxx3HkyJFW99+/fz8eeOABLFq0CJIkYeDAgbjssstkrHFwtm/fjpqaGgAtB2xLlizB0aNHMXv2bACAzWbDhg0bunxdiCi8Gqx2lNeYA97f5nDh6Q83obzW95hLJgzCeWP6dagODK2IiCgWxek06JWRCKUy/OFV3+wUn+1Hiqrxn/cZXhERtUfW4EqtVuPVV19FVlYWPB4P3nnnHcycORP5+fl4+OGHvfvNmDEDZ555Jq688kqsWLECQghkZGTglVdegVKplLPKQdmzZ4/3cX5+vs9zVqsVzz33HEaOHIl77723xWO6al2IKHzsDheKKuoD3t/l9uClTzfjeGmNz/aJw3rjymlndKgOGckMrYiIKHbptWr0zkyCShm+t0YGnRq/vXoy+p0eXhU3hlfBDPXvKIZXRBSrVHKfMCsrCx988AEef/xx71xXVqsVNpvNO8a8oKAAotlEwdOmTcNf/vIXZGZmyl3doBw9etT7OCcnx+e5xYsXo7y8HAsXLkRmZiZUKhVcLpfPMV21LoFQaWPnTa8kKbz/V+u4ahqFT3ttzeVyo7SiGkqNLqDyhBB4felm7D5a5rN9WL8e+NWsyR16wZ6RHI/URE7EHst4TSM5sJ2RXDra1tQ6oJ/OiIKyGjhdgS9yEowErR4P3XA+/vn2GhwprPRuP1Jcjf9+uAm/u/5cGHSasJy7iRtASa0DvbNSwhrUdXW8ppFc2NYayR5cAUBmZiaee+457NixAytWrMC3336L4uJiuFyuxkqpVMjMzMTUqVMxY8YMjB8/PhLVDFp1dbX3cXLyqXHsNTU1ePXVVzF16lSMGzcOAJCQkIDq6mrvcL6uXJdAKBTR25OuNZIkQZJir94Ue1pqax6PQFFlLdweQBFgO/x47Q6s3+k7PDuvRwruvfocaFTqoOuVkcLQqivhNY3kwHZGculIW9NpleiTnY4TpdVwBrFCbzDi9Hr8/vrp+Odb3+Bw4alVvY8UVeJfb6/B76+fHvbwyukSKCyvY3gVArymkVy6e1uLSHDVJD8/H/n5+fjDH/4AAN7gpHnQEkuaJjfXaDQ+K5QsWrQIDQ0NeOCBB7zbNJrGG5LFYunydQmExxOeFwfhIEkKSJIEIQSEYFdrCp+22lpheS0stsAnY1/z40F89u0un23pSUb8dv450GoU8Ijg/gYzkuORHK+Lqb9dahmvaSQHtjOSS2fbmlIB9MpIbAyvwtTzSqdV4nfXnYN/vb0Gh5v3vCqsxD/eWoXfX38edNrgP1AKhtXuxvHiCoZXHcRrGsklVttaqDumRDS4Ol2sBlanUyhOXfyLiorw7rvvYubMmRg8eLB3u8cjT6OLprq0xWW3xMwfolpnhCQpIYQHTltDpKtDXVhrba2i1oyausCD5h0Hi7H4i60+24x6De6fOxFGDeCyB7eiaEZyHBK0gu2/i+A1jeTAdkZyCVVby07SoKCsLmzhlVoC7p87Ef/9YCMOF1V5tx8prMR/312D++ZOgloV3t4VLjtw9IQFvcI8v1dXxGsaySUW25okKaDRx4e0TF6hQshgaJynyek8Nbni008/DSGEzyToAGC3232O6cp1IaLQMZltqAoitDpcWIVFS7eg2bSB0KiUuPeqichKDf6GkpEch5QEXiuIiKhrU6uUyM1KDGt4pNeqcf/Vk9C/Z6rP9v0nKvDSp1tkmUTd7nSjgBO2E1GUY3AVQikpjauEuN1u1NfX4+eff8by5csxb9489OrVy7uf0+lEfX29zzFduS5EFBoWmxMlVYGvIFhSVY9nPtoEp+vUi1FJAu684iz0O+1FciAYWhERUXeiUsoXXuVl+Y482Xm4BK8t/xEej2jlyNBxON0oLK+DOwpGYRARtYTBVQj17dvX+7ioqAgLFy6EXq/HXXfd5bNfSUmJd3henz59unxdiKjzHE43iirrfHpOtaW2wYr/fLABZpvDZ/sNF47GqAHZQZ8/I9nI0IqIiLoducKr3149CT3TEny2b9l3Em99tcNntfVwsTlcKCw3yRKUEREFS9Y5rm644Qa/bZIk4T//+Q9SU4P/9D/aDBs2zPt48eLFWL9+Pe6++26/nkzbt2/3Ph4+fHiXrwsRdY7b40FhRR3c7sBeTFrtTjz94Ua/IYWXTR6CaaOCD6gbQyt90McRERF1BU3h1YnS8M15ZTRo8cA1k/HUW9+ivNbs3f7tzmPQa1W46pzhPgsuhYPV7kRRRR1yMhLDfi4iomDIGlxt3brVOyN+E0mSvHMsxbr8/HwkJyejpqYGn3zyCVJTU3HzzTf77bdy5UoAgE6nw6RJk9osUwiBZ555Bh9++CEkScK8efNw9913R6QuRCQ/IQSKyuvgCHBZbrfHg5c+3YKCsjqf7VNG5uHyyUOCPj9DKyIiInnCqySjHg9eMwV/f/tb1NSfWjhl5ZZD0GvVuHRS8PfxYJltThRVmtAzLYHhFRFFDVmHCjZd/AYMGICxY8di7NixOPPMM6HVauWsRtgolUpcc8013n/fdNNNiIuL89ln06ZNWLduHQBg9uzZ0OvbfkO4dOlSvPTSS6iqqkJlZSWef/55LFu2LCJ1ISL5lVbVw2wLPNx//5td2HOszGfbiH5ZuOHC/KBfgDK0IiIiOqUpvNKowzdsMC0pDg9eMxlGvcZn+6ff7cOqHw6F7bzNNVgcQc2pSUQUbrIGVwkJjeO2b7/9drz11lver64wTLDJrbfeipycHADAO++8gxUrVqC6uhqVlZV477338Otf/xpCCKSlpWHBggXtlrd7926/bT/99FNE6kJE8qo2mVFbH/gKgqt/PIzV2474bOvTIxkLrhgHpSK4yz1DKyIiIn8qpRK9M8MbXvVITcAD86ZAr1X7bH/vm11Y/9PxsJ23OZPZjtJqhldEFB1kHSo4ePBgbN26FVu3bsWll14q56llYzQa8corr+C2225DUVER7r//fr990tLS8NJLLyE9Pb3d8kaMGOG3bdSoURGpCxHJx2S2o7zeCYUU2Avj3UdK8e43vqF2SoIe98yZCK0muEt9WpKBoRUREVErmsKrgrLAh/IHKzcrCffNnYh/v7/B5xxvfLkNOo0KY4fkhOW8zdXW26CUJKQnG8N+LiKitsja4+qqq66CEAJLly7FoUPBdXVdt24dhgwZgqFDh4apdqHTr18/LFu2DPfccw8GDx6MuLg4GAwG9O/fH3fccQc+//zzFgOpllx22WVYsGABUlJSkJqait/85jdBhX6hrAsRycNic6KkyhTw/oUVdXjpsy0+Kw5qNSrce9UkJBp1QZ07JUGPtMS49nckIiLqxuToeTUgJw13z54AlfLUWzYhgFeWbcWuI6VhO29zVSYrKuvM7e9IRBRGkpBjfdVmHnnkEXz66afIysrCSy+9hCFDAptkcN26dbjzzjshSRL2798f5lqS3BzWegjhiXQ1AqLWGaFQKOHxuOG0NUS6OtTF2B0unCirhccjoNLqoZCU8Ag3XHZri/ubzDY8vngtKputICgBuHvORIwa0COocycadeiRGt+Z6lMM4jWN5MB2RnKRu6253O6w9rwCgG0HivDSp1vgafa2Ta1S4LdXT8ag3vKMmuAUAr54TSO5xGJbkyQFNPrQvqeQtccVAPz973/HbbfdhsrKSlx11VV46qmnUFZW1v6BRERdnNPlRmFFHTyewD5PcLrceH7JZp/QCgCuPm9E0KFVQpyWoRUREVGQ5Oh5NWZQT9w680yfbU6XB898tAnHiqvDdt7mymsaUNdgk+VcRESnk3WOKwBwuVyYO3cuMjIy8O9//xuLFy/G22+/jfHjx7c5d9Px48dlqyMRkdzcHg8Ky+vgdAXW81AIgddXbMPhoiqf7dNG9cH0sf2DOrdRr2FoRURE1EFyzHk1YVhvWO1OvP31Tu82m8OF/3ywEb+/bipy0hPDct7mSqvrIUkSEuK6xorwRBQ7ZA2upkyZgqqqKpw+OtHlcmHjxo3YuHGjnNUhIooKQggUVZhgD+LF7ucbf8bmvSd9tg3JS8e1F4yCJEkBl2PQqZGdlhDUMUREROSrKbw6WVYX1P08GOeO6Qebw4WP1+3xbjPbHPj3exvw8HXTkJkS3knUhQBKqkxQKhIRp9eE9VxERM3JOlSwoqICHo8HQgifLwB+21r6IiLqioor62GxOQPef+u+k/hs/T6fbVkpRtx1xXifCVzbo9OqkJOeCIWCoRUREVFnqZRK9M5Kgl6rDts5Lp4wCJdMGOSzrc5sw8L316PaZGnlqNARAiisMAX1uoWIqLNkHyooSRLuv//+NocFtmTnzp34z3/+E55KERFFSFl1A+ot9oD3P1JUjde++NFnW5xOg3uvmhTUp59atRK9MhhaERERhZJSoUCvjEQUVdTBHKZw58ppZ8Bqd2LN9qPebVV1Fix8bz0evv5sJBjCO5RPCIHCijr0zkyEThO+kI6IqInswRUADBo0CGeddVZQx1gs4f8EgYhITtUmC2rqW14tsCVVdRY8t2STzzxYSoWE38weH9TwAI1aiV6ZiVAqZF+fg4iIqMtTKCTkZCSiuLI+qA+nAiVJEuZfMAo2hwub9hR4t5dWN+CZDzfioflTodWE922exyNwsrwOvTOToFVH5C0lEXUjsr9r4ZA/IiLAZLahvMYc8P5WuxPPfLwJJrPvC+AbLxod1FLYalXjJ8EqZfhWPyIiIuruJElCdlo8Eo26sJSvkCTcfMkYjBmU7bP9WEkNFi3dArcnsMVeOsPtFjgZxgnpiYiaSIJJEkUBh7UeQoT/BhsKap0RCoUSHo8bTltDpKtDMchsc6CwvA7tXX1VWj0UkhIutxP/eWcNdh0p9Xn+4gmDMOfsYQGfV6VUoHdmUliX7KbYw2sayYHtjOQSjW2tvKYB1abAe1gHw+ly4+mPNmL/8Qqf7VNH5uHGi0bLsviKWqVEblb3+lAsGtsZdU2x2NYkSQGNPrQrlnOcCBGRjOwOF4oqTO2GVs299/V2v9Bq9MBsXDntjIDLUCgk9MpIZGhFREQks4xkI9KSDGEpW61S4jdXTkCvjESf7d/9dBzLNuwPyzlP53S5UVBWB5c7Nj6EJqLYw+CKiEgmTpcbJ8vr4PEEnlqt/uEAvtr8s8+23Kwk3HbpWCgC/BRVkhpDq3DPd0FEREQtS0uMQ0Zy4PNRBkOvVeO+uZOQmugbji3dsB/f7TwWlnOezuF0o7C8TpYhikTU/TC4IiKSgcvtwcny4D6N3HOkBItXbPHZlmTU4Z45EwMOoSRJQk5GQliX5iYiIqL2pSTo0SM1HuEYvZccr8dvr56EOJ3vCsNvrtyBnYdKQn/CFtgcLhSWm4L6gI6IKBAMroiIwszjESiqMAU1eWlJlQnPf/idz4s/jVqJe6+aiOR4fUBlSBLQMz3e70UsERERRUaiUYfstISwhFc9UhNw71UToVadeovnEQKLPtuCI0XVoT9hC6x2J4oq6rggFxGFFIMrIqIwK64ywWp3Brx/g9WBZz7cBEuzYyQAt182FrlZyQGX0yM1Hka9NpiqEhERUZjFG7TIyUgMy8Tp/XNSccflZ/kEYw6XG898tBGlVfUhP19LzDYniipNDK+IKGQiOuHJzp078eWXX2LXrl04efIk6uvroVQqkZqaih49emDSpEk477zz0L9//0hWk4iow0qr69FgcQS8v8cj8PLSLSivNftsn3POMIwe2DPgclITDUiIC88S3ERERNQ5cToNemcmorCiDm53aAOe0QN74roL8vHWVzu82xqsDvznww34ww3nIFGG1wcNFgdKq+rRIy0h7Ocioq5PEhGIwg8dOoQ///nP2Llzp8/2pqqc/unDJZdcgt/97nfIzMyUq4okM4e1HkLExmSOsbgkKUVGTb0VZdXBtZGP1u7Gl5sP+mybMqofbrpwZMCfzBoNGuSkJ7a/IxF4TSN5sJ2RXGKtrdkdrqDnwAzUJ9/uxfJN/gu8PDR/qmxzXybF65CVEi/LueQUa+2MYlcstjVJUkCjD+3fvexDBX/44QfMmzcPO3fuhBDC50utVkOlUvlt/+KLL3D11VejqKhI7uoSEXWIxeZEeU1wN5et+076hVYDeqXjpplnBRxaadRK9Ejtei8QiYiIuiKtRoXemUlQq5QhL3vW1KGYNDzXZ9uJ0lq89OmWsARlLamtt6EiyNdDRESnk3WoYH19Pe677z6YzY1DYEaNGoXZs2dj9OjR6NWrFzSaxgmEHQ4HTp48iW3btmHJkiX46aefUFpailtuuQXLli2DVss5W4goerncbhRXmhBMf9aCslr8b8U2n21JRj3uufpsqFVKuAKY112hkNAzPQFKBacvJCIiihUatRK5WYk4UVoHZyA3/ABJkoQbLxqNOrMNe46WebfvOVaGN1Zsw60zzwzLPFunqzJZoVAokJpoCPu5iKhrkvXdzbvvvouqqipIkoTf/va3eP/993HVVVehX79+3tAKADQaDfr164e5c+figw8+wH333QcAKCgowAcffCBnlYmIgiKEQGGFKahPMhssdjy/5HufVQdVSgXuuXoqkuMDf5GXnRYPrTqiUxcSERFRB6iUSuSkJ4Q8SFIpFbhr1njkZiX5bN+0pwCffLc3pOdqS0WtGTX1VtnOR0Rdi6zB1dq1ayFJEiZOnIjbb7894OPuvPNOTJgwAUIIfPXVV2GsIRFR55RWN8BmdwW8v9vjwaKlW1FZZ/HZft0Fo9C/V3rA5aQlGbiCIBERUQzTalTITIkLebk6jQr3zZ2E9CTfsr/YdABrth0J+flaU1bdgLoGm2znI6KuQ9bg6sSJEwCAGTNmBH3shRdeCKBxYnciomhUU28N+gXZknV7sO94uc+2s/P7YOqoPgGXYTRokJYY+he6REREJK8kox6JcaH/ICoxToffXj0JRr3GZ/s7X+/EtgPyzSNcWl2PeotdtvMRUdcga3BVX18PAEhJSQn62NTUVACAxWJpZ08iIvl1ZDL2zXsLsHKLbxjfPycV86ePCrgMjVqJ7FQuNU1ERNRVZKbEQ6sO/WTtmSnxuG/uJGialS0AvLx0Kw6erAz5+VoiBFBcaYLZ6pDlfETUNcgaXCUkNL656sjqgCUlJQCApKSkUFaJiKjTnC43iirrgpqM/URpLd5Ysd1nW3K8Hr+eNR4qZWCXZoVCQk56IhSK8E+sSkRERPJoXGwlPPf3vtkpWHDFOCiazaXlcnvw3MebUFxpCvn5WiIEUFhhgsXmlOV8RBT7ZA2uBg8eDCEEli5dChHEOzwhBJYtWwZJkjBgwIAw1pCIKDgej0BRpQlud+DXtHqLHc9/8j0cLt/J2O+aNR6JRl3A5WSnxft8akpERERdg0atRFZKfFjKHtm/B264KN9nm9nmxNMfboTJLM8cVI2L2dTB5mB4RUTtkzW4uvjiiwEA+/fvx2OPPQaHo/0uoi6XC3/729+we/duAMAFF1wQ1joSEQWjrLo++MnYP9uCqtMmY7/+wnz06xn4MOr0pDhOxk5ERNSFJcRpkRyvD0vZU0f2wRVThvpsq6yz4Pklm+Fs9sFaOHk8AifL63xWVSYiaokkgun61Elutxtz587F3r17IUkSsrKycNlll2HMmDHo3bs3jEYjAMBsNuPkyZPYtm0bli5dipKSEgghkJeXh+XLl0Ol4nLvXY3DWg8hPJGuRkDUOiMUCiU8HjectuDmNKKupdpkDXpeq/e/+Qlf/3DYZ9u5o/viuhn5fvuqtHooJCU8wg2X/dQS0vEGLXqmc14rCg1e00gObGckl67W1oQQOFFWG9SHZMGUvXjldny387jP9vFn9MJtl46FJMkzFYFapURuViJUytjpRd7V2hlFr1hsa5KkgEYf2h6jsgZXAFBdXY358+fj+PHjAV8MhRDIzMzEm2++idzc3DDXkCKBwRXFGrPNgcLy4Oa12rT7BF5d/qPPtoG90vDgNVNanNeqpeBKq1YiNyuZ81pRyPCaRnJgOyO5dMW25nS5cby0JqhpCQLlcnvw3w83YP/xCp/ts6YOxaWThoT8fK3RaVTonZkUM69vumI7o+gUi20tHMGVrEMFgcYVBT/++GPcfPPNUCqVEEK0+aVQKHDFFVfg008/ZWhFRFHB6XKjuNIU5GTsNVi80n8y9gWzxgU1GXu4JmslIiKi6KRWhW8FYZVSgbuuGI+sFKPP9k+/24et+wvDcs6W2BwuFFXUBTUPMhF1H7L3uGquuroa3333HTZt2oSSkhLU1NTA7XYjISEBvXr1wsiRIzFjxgxkZGREqookE/a4oljh8QgUlNXC5gi8y77JbMPf3liDatOp4X4qpQKPXH82+vRIbvW403tc9cpIRJxe06n6E52O1zSSA9sZyaUrt7WKWrPfHJmhUlbdgMcXr4XZdmoOYrVKgYfmTwtqDs7OSozTokda9E+H0JXbGUWXWGxrXWKoIFFLGFxRrCipNKHObA94f5fbg3+/vx4HCip9tt8680xMGt52L9LmwVWyXoHUREOH6kzUFl7TSA5sZySXrt7WCspqYbGFZyW+AwUVWPjeerg9p94eJsRp8acbz5X1NUhqgh7pycb2d4ygrt7OKHrEYlvrEkMFiYhiVbXJGlRoBQAfrtnlF1qdf2a/dkOr5uINOoZWREREhOy0hICnGAjWoN7puPGi0T7bTGY7nvl4E6z28IRlLakyWVFTb21/RyLqNhhcEREFwGxzoKI2uE85Nuw6jm9+POKzbVDvNMw9d0TAZWg1KmSnJQZ1XiIiIuqaVEoFstMSEK4F/yaPyMPFEwb5bCssr8Mry7bC45FvoE5ZdQPqLcF9WEhEXReDKyKidnRkMvZjJTV4c+UOn22pCQYsmDU+4E9KlQoFcjJiZ4UdIiIiCj+DTo30pLiwlX/ltDMwemC2z7afDpfiw7W7w3bOlhRX1odtWCQRxRYGV0REbfB4BIoqTEEtQW21O7Hosy1wuU/N26ZWKfCb2eORYNAGVIYkAdnpidCoVUHXmYiIiLq2lAQDjIbwLNiikCTcdulY5GYl+Wz/eushrNtxNCznbIkQAkWVdbA7A18Qh4i6JtmDq++//x5PP/00PJ7AJ+J2u934xz/+ge+//z6MNSMi8ldSVR/UCoJCCLy1cgcqas0+22+6aAxys1pfQfB06UlxMOoDC7mIiIio++mRGg+1ShmWsrUaFe6ZMxFJRp3P9re/2om9x8rCcs6WuN0CheV1cLndsp2TiKKPrMGVy+XCH/7wB7z88st47LHHAj7uiSeewOuvv47HHnsMXASRiORSUWsOen6FjbtPYPO+kz7bzsnviwnDegdcRkKcFikJnIydiIiIWqdUKNAzPR5SmCa8So7X496rJkKjPhWOeYTAi59uQUmVKSznbInT5cHJsjq4g+j4QERdi6zB1YoVK1BcXAwAuOKKKwI+7uqrr4YkSTh58iRWrVoVptoREZ1S12BDVZ0lqGNKqurx9tc7fbblpCfg6vMCn4xdp1EhKyW0y8cSERFR16TTqJGZEr75rnKzknH7ZWPRPBqz2p145sNNaJBx8nS7042iChM7MRB1U7IGV9988w0AYOTIkRgzZkzAxw0aNAgTJ04EAAZXRBR2FpsTpdX1QR3jdLnx8tItcDhPdWXXqJS444pxPp9UtkWplNAzPYGTsRMREVHAkox6JMaFb3qB0QN7Ys45w3y2ldea8fwnm33m8ww3i82JkqrgXp8RUdcga3C1e/duSJKEc845J+hjJ0+eDCEEfvrppzDUjIiokcPpRlFlXVArCALAR2v3oKCszmfbNdNHomdaQkDHSxKQnZYQtrkqiIiIqOvKTImHThu+BV0uHDcQk0fk+mw7eLISb67cLmsvKJPZjvKaBtnOR0TRQdbgqqqqCgCQl5cX9LHZ2Y1LslZUVISySkREXm6PB4UVdUGtIAgAOw+V4JsfD/tsO3NwT0wdmRdwGelJcYjThWd1ICIiIuraFAoJOemJUKvC8/ZOkiTccOFoDOqd5rN9w64TWLnlYFjO2ZpqkxXVJqus5ySiyPr/7N13fFvlvT/wz9FelvfK3nH2ImSRRUIgk0BIgQIFWkZToLSl9P56e3tvF23hcgstm0IgjKSMJCQkrJA9yN57J47jJctLsrbO7w83Sk7ixJKsc45lf96vl1+1Hus8z5dysKWvvs/3UTRxpdHULxcIBGK+NvTvkyRiOY2QiChaoijifHmNZKtfNCprPZi7fLtkLDPVggcmD466WSqbsRMREVFT6bQatMtOla3lgE6rwWO3DUdOurSn1qer92PHkSJZ1ryaskoXatzK9dgiInUpmrjKy8sDgLi2++3fvx8AkJOTk9CYiIgAoLTSBbc3tqR6OCzin59vg8vjj4xpBAGPzrgeliirp9iMnYiIiBLFaNChTVYKZDpoEDaLEU/OHgWLSR8ZEwH8c+k2nC2tkmfRqyiuqEFdjK/diCg5KZq4GjJkCERRxOLFi2Pa8ldbW4vFixdDEAQMGDBAxgiJqDVy1nhQVeuN+brl3x3B4TPS32Uzx/RGt3aZUV3PZuxERESUaDazEdlpNtnmz89MwU9uGw7tJa9f/MEQXl74HWoVPGlQFIEiRzUCwdiq5Yko+SiauLrjjjsAAG63Gw8//DBKS0sbvcbtduNnP/sZKisrAQAzZsyQNUYial1cHh/Kq2Jv8nn8XAWWrD8oGSvomI0pw3tGdT2bsRMREZFcMuxmpKWYZJu/d6cc3HvzIMmYo7oOr3+2BSEFW7uEQiKKymsQDivXIJ6IlKdo4mrQoEG44447IIoijhw5gqlTp+J///d/sWPHDrhcF984+v1+HD58GG+99RamT5+OTZs2QRAEjB07FmPGjFEyZCJqwXz+IM47amM+QbDO68cbS7YifMmFNrMBD08fGnX1VHaajc3YiYiISDa56TZYL9nSl2hjB3bGjYO7SMYOnSnHJ6v3y7ZmQ7z+IEqdtYquSUTKEkQlzy9FfZP1Rx55BBs3bryicbFWq4VGo7miebsoiujZsyfmz58Pq1XaDJBaBr+nFqKYHI339SYbNBotwuEQAl4ex5usgqEwzpRUIhCM7b4TRRGvfbYF2w9Lm5A+OXskBnTLj2qOVKsR+Vn2Rp/He42UwPuMlMD7jJTCe00qFA7jTElVzIfPRCsYCuP5BetxtNAhGX94+lCM6NtBljWvJifdhgy7WZG1eJ+RUpLxXhMEDQzmxPbwVbTiCqhPTv3zn//EU089BaPRCFEUI1/BYBB+v18yBgD33HMPFixYwKQVESWEKIo4V14dc9IKANbuPnVF0uqmod2iTlqZDDrkshk7ERERKUCrqT9pUKuV76TBObcNQ3qKNGH07pc7cKakUpY1r6a8ygW319/4E4ko6ShecXUpp9OJFStWYNWqVThz5gzKy8sRDoeRmZmJ/Px8jB49GpMnT0b79u3VCpEUwoorUtJ5R01cRygXldfgD++ulCS8OuSm4Tc/GBdVryqtVkCnvPSo+1rxXiMl8D4jJfA+I6XwXmtYnTeAwrKqmNsjROtUcSX+8v4aBEMXXyNl2i347YM3wm4xyrNoA2J9rRUv3meklGS81+SouFI1cUV0ARNXpBRHtRuOqrqYr/MHQvjjvFUoKq+JjBn1WvzPgxOQl9n4L2ZBANrnpEmOj24M7zVSAu8zUgLvM1IK77Wrq3Z5UVwhXy+ojfvO4O1l2yVjBR2y8Yu7boBOq9xGH5NBhw65abKe2sz7jJSSjPdai9gqSESklhq3N66kFQB8tHKvJGkFAPdOGhRV0gqob8YeS9KKiIiIKJFSbSZkytgDalS/jph4XVfJ2OGz5fh41T7Z1myI1x9ECZu1E7UoTFwRUavg8QVQXBHfpxQ7jhRh9a6TkrHhvdtjZL/omo6mWo2KNQslIiIiuprsdBtSZNy6970b+6NnhyzJ2Lfbj2PjvjOyrdmQGrcPzpr4PqwkouaHiSsiavECwRCKymsQz87oiuo6vPPFDslYTpoV990y6IqTURtiMuqirsoiIiIiklt+ZgpMBp0sc9c3ax+OTLtFMj7vy504Vax0s3Y3m7UTtRBMXBFRixYOiygqr5E0C41WKBzGm0u3os4biIxpNQIevfV6mI2Nb/vTaAS0zbJHleAiIiIiUoJGI6Bdjh16nTxvBe0WIx6fNVwyfzAUxssLv0O12yvLmg0RxfoDeQLBkGJrEpE8mLgiohattNIFrz8Y17WfbziMY+cqJGOzxvVF5zYZUV2fk26V/VQbIiIioljptFq0y06V7cO1jnnpeGDyEMlYZa0Hry3eEteHifEKhUScK6tGOMzzyIiSmTw1otdQUVGB6upqdOnS5arPKS4uxsKFC3Hq1CkIgoDBgwfj9ttvh8lkUjBSIkp21S4vql3xfbJ35Gw5Pt90SDLWt3MuJl3fParrrSY90mzsa0VERETNk9GgQ5uslCsOn0mUEX074ExJJb7ZdjwydrTQgY9W7sU9kwbKsmZDfIEQiitq0TbbrtiaRJRYildc/fWvf8XMmTPxwQcfNPjzlStXYvLkyXjllVfwxRdfYPny5fjjH/+IWbNmoaqqStlgiShp+fxBlDjja8buqvPhzaXbcGlLLLvViB9Nvw6aKD6Z1GgE5GexrxURERE1bykWI3LSrbLNP/vGfujVMVsytnLHCazfe1q2NRtSW8dm7UTJTNHEVWFhIZYvX45AINBgk+Ti4mI8/fTT8Hq9EEVR8nXy5Ek89dRTSoZLREkqFA6jyBFfM3ZRFDH3ix2orPVIxh+aNhSp1uiqPnPTbdBpuUWQiIiImr8Mu0W2kwa1Gg1+PHMYMlOlzdrf/2oXThQ5ZVnzasqr3HB72KydKBkpmrhasmQJwuEwsrOzceedd17x8zfffBN1dXUQBAGTJk3Cq6++ir/97W/o2bMnRFHEpk2bsHPnTiVDJqIkVFLhgj8QXyPOVTtOYPexYsnYLcN6oG+X3Kiut5kNSLVxWzMRERElj7xMm2zN2lMsRjwxawQMl/T9DIbCeGXRd3G3dIiHKAJFjpq4XyMSkXoUTVxt3rwZgiDgpptugsFgkPzM7/djyZIlEAQBI0eOxD/+8Q/ceOONmDJlCt555x1YrfUlrMuXL1cyZCJKMs4aD2rrfHFde7a0Ch+t2icZ65yfjtvH9onqeo1GQF6mLa61iYiIiNSi1WjQJssOuQ5C7pCbhgemSJu1V7m8eGXxZkWbtdefNs1m7UTJRtHE1ZkzZwAAvXv3vuJnGzZsQF1d/b7jRx55RPKzjIwMTJs2DaIoYvfu3bLHSUTJyeMLoLwqvr5WPn8QbyzZKnnxZDLo8Oit10Onje5XJbcIEhERUbIyG/XISpWv39XwPu1xyzDpITfHz1Vg/ordsq3ZkAvN2okoeSiauLrQXD01NfWKn61evRoAkJ6ejmHDhl3x8wvJrvPnz8sXIBElrWAojPOOGsTR1goAMP/bPVe8iPnBLYORkx5dBRW3CBIREVGyy0y1wGLSyzb/rHF90btTjmRsza5TWLf7lGxrNqS2zoeKajZrJ0oWiiaudDodACAUunJf8dq1ayEIAkaNGtXgtZmZmQCA2lpmx4noSsWOGgSC8ZWabz1YiPV7TkvGRvXriOF92kd1PbcIEhERUUvRJisFWq08ewa1Gg1+fOv1yEqTNmv/4JvdOFNSJcuaV+OodsPjCyi6JhHFR9HEVU5OfXb9wpbBC7Zu3YqysjIAwOjRoxu89kLC6kKvKyKiCxzVbri98b3wKK9yY95X0kMf8jJsuGfSwKjn4BZBIiIiail0Wi3yM1Nkm99mMeKJWSNh0Eubtb+6eDPqvMqd+ieKwHlHLftdESUBRRNX/fr1gyiK+Pzzz+Hz1TdPFkURr7zyCgBAr9dj3LhxDV579OhRAPX9roiILnB7/XBUxVfqHQyF8caSrfD4gpExnVaDR28dBpNBF9Uc3CJIRERELY3NbESG3Szb/O1zUvHA5MGSsfIqN95evgNivH0f4hAIhlBaGV9/VCJSjqKJqxkzZgAAjh8/jjvuuAPPPfccfvCDH2DLli2R0wbtdnuD165atQqCIGDgwIEKRkxEzVkwFMJ5R03c1y9ZfxAnzzslY7PH90XHvLSorucWQSIiImqpstOsUX+QF4/hfTpg/KAukrFdR8/j663HZFuzIdUuL1ye+E6kJiJlKJq4GjNmDEaOHAlRFHH8+HG888472L59OwDAZDLhZz/7WYPXffPNN5HthVeryCKi1kUURRSV1yIUiu9TuYOny/DFd0ckYwO65WHidd2inoNbBImIiKilEgQBbbLsEAR5+l0BwF0T+1/xgeGnq/fjaKFDtjUbUlxRKzlZmoiaF0UTVwDw4osvRpJXF74yMjLw0ksvoX37Kxsh+/1+PPPMMxAEAR06dMCkSZOUDpmImqHyqvgbata4vfjn0m24NOWVZjPhh1Ovi/rFGbcIEhERUUtn0GuRlyFfdblep8VPbhsuOckwLIp4/bMtqHF7ZVv3cqGQiBInDwEjaq4UT1zZ7XbMnTsXn332Gf72t7/hnXfewcqVK3HDDTc0+HyDwYCnnnoKer0ev/3tb2XN+BNRcqit88FZ44nr2rAo4u1l21F9yYshAcDDM4YixWKMag6tllsEiYiIqHVItZlgt0b3Gike2WlWPDTtOslYlcuLN5ZuVbRxuqvOjypXfK8viUhe8m1abkRBQQEKCgqieu6MGTMwdOhQ5OfnyxwVETV3/kAIxRXxfyL27bbj2HeyVDI2dWQBenXMiXoObhEkIiKi1iQvIwUeXxCBYEiW+Qd2b4PJw3vgy81HI2OHTpdj6YZDmDmmtyxrNqTU6YbFaJCceEhE6lO84ipeTFoRUTgs4ryjJu5P304XV+KT1fskY93aZuLW0b2insNmMcBu5RZBIiIiaj00GgFts1Mg5+aX28f2QY/2WZKxzzcewv6TJfItehlRFHG+okbRkw2JqHFJk7giIiqtdMHrD8Z1rccXwOtLtiB0SdLLbNTjkVuHQquJ7lehVivI2ueBiIiIqLkyGfTITrPKNr9Wo8GPZ14v2ZYoAnhz6TY4a+pkW/dyXl8QFQquR0SNY+KKiJJCtcuLalf8TTo//GY3yirdkrEHpwxGVmr0L8C4RZCIiIhaswy7BdZLGqknWprNjEdvvV5S2eXy+PHa4i2KnvpXUV0Hrz++Q4CIKPGYuCKiZs8XCKLE6Yr7+u/2n8Wm/WclY2MHdsZ1Be2inoNbBImIiIiA/Cw7dFr53kb26piD28b0kYydOO/Ex6v2XeWKxBNF4LyjVtHm8ER0dUxcEVGzFg6LOF8ef6+BUmct3vt6l2SsbZYdd03sH/Uc3CJIREREVE+n1SA/M0XWNaaM6In+XfMkY99uP47th8/Juu6l/IEQyqvcjT+RiGTXLBJXmzdvxoQJEzBx4kS1QyGiZqasygVfIL4TbIKhMF5fshW+S/pi6XUaPDrzehj10R+qyi2CRERERBdZzQZk2s2yza8RBDw07Tpk2i2S8bnLd6CkCadLx6qy1gO3x6/YekTUsGaRuPJ6vSgqKkJRUZHaoRBRM1Jb50NVbfx9rZasP4gzJVWSsbsm9Ee77NSo5+AWQSIiIqIrZaVZYTJG/0FgrGwWI+bcNgxazcWGV15/EK9+tgW+QHyH9cSjuKJW0f5aRHSlZpG4amlcLhdeeeUVzJw5E0OGDMGgQYMwbdo0vPDCC3A6narFVVxcjCeffBI9e/ZEz549sWXLFtViIWpMIBhCcRM+UTt13okvNh+RjA3u0QbjBnWJeo76LYLylsITERERJSNBENAm0w7NJYmlROvSJgN3TZC2dzhXVo0Pv9kt25qXC4bCKG1Cr1Uiajr5UuSt1IkTJ/Dwww9fUT127NgxHDt2DJ9++ilee+019O8ffX+dpvL7/XjnnXfw+uuvo66OR7tS8yeKYpMaYgaCIby9fDsubYuVZjPhgSlDIAjRv7jKTU+RtfkoERERUTIz6LXIy7DhvEO+7Xs3DumKY+cqsPXQxf5WG/aeQfd2WRg9oJNs616qts6HapcXqTZW4ROpge/IEsjlcuGRRx5BUVER9Ho9nn76aaxduxZbtmzBK6+8gg4dOsDhcGDOnDkoLy9XJKb169dj+vTp+Nvf/oa6ujrk5eU1fhGRyhzVdfD44j+C+LP1B694AfXA5MGwmQ1Rz5FiMcJuNcYdAxEREVFrYLeaZE3oCIKA+ycPvuKgnA++2YWzpVWyrXu50koXAsH4+q4SUdMwcZVAb7/9Ns6dq/8k4LnnnsNDDz2EvLw8pKWlYeLEiXjssccAAA6HA6+++qqssQSDQTz++ON46KGHcPr0aWRnZ+PZZ5/Fs88+K+u6RE1V5w3AWRN/ZeCJIie+2nJUMjaqX0f075Yf9RxarYBcniJIREREFJXcdBsMevkOsjEb9fjJ7cNh0F1cIxAM49XFm1Hnjf/DzliEw6KslWVEdHVMXCVIKBTCggULAACDBg3ClClTrvj5G2+8EXm8aNEieDwe2eLR6XSw2+3Q6/V4+OGH8fXXX2PmzJkxbZMiUlowFEZxRY1ki18sAsEQ5l62RTA9xYy7J8a2NZdbBImIiIiip9EIaJtlh5xvNdplp+IHtwySjJVVuvHOFzsgxvviMUYeXwAV1Wy9QqQ0vjNLkJ07d6KyshIAMHny5Ct+vnDhQpw8eRKzZs0CUH+S4oYNG2SN6T/+4z/wxRdf4Je//CWsVqusaxElQomzFoFg/Ke2fLb+4BUN3e+fPBgWE7cIEhEREcnJaNAhO03eivWR/TpizMBOkrEdR4qweudJWde9lKPaDa9fmSovIqrHxFWC7N+/P/L9oEHSTwI8Hg9eeuklDBgwAE8++WSD18ghNTUVHTp0kHUNokSprPXAVeeP+/oTRRVXbBG8oX8n9O8afV83bhEkIiIiil+G3RxTT9F43HPTQHTITZOM/WvlXhSWVcu67gWiCJwvr1asyouIeKpgwpw8eTHL365dO8nP5s2bh7KyMjz//PPIzc2FTqdDMBiUXNPa6YwWtUOImiBoIv+rNzHJkQhefwCVdW7ojOa4rvcHQpj7xU7JFsEMuwX3TrkeOmP0L57aZqfBbG0+p8XwXiMl8D4jJfA+I6XwXlNf+7YWnDpfgWBInkbmOiPwxJ1j8dvXv4hUPgVDYbyxZBt+/8hkGA3yv8X1B8IoqahBXqad9xnJir/T6jFxlSBOpzPyfXp6euT7yspKvPXWWxgzZgyGDRsGALDb7XA6nZGthQRoNPI1c5SLIAgQhOSLu7kJh0UUO2oBaKCJsy/C4jW7UOyokYw9dOtI2MzRJ8JSrCakpTTPLbW810gJvM9ICbzPSCm819Rj0GjRLicdZ0vke6+Tn5mGB6cPx2sL10fGzjuqMf/rHfjRjJGyrXupqloPTAY90u3J8wE8Ja/W/juNiat/iyWRZLfbkZ2dLRm70GjdYDBIGqC//vrrcLlceOqppyJjBkN9BUhdHRv7XRAOJ8/RsoKggSAIEEURohh/PyaqV+yohtcf/xbBY4Xl+GLjAcnY2EFd0bdrHsJidPeVVqNBTrq12d2HvNdICbzPSAm8z0gpvNeaB7NRhwy7GY5ql2xrjOjXEfuOF2HDnou7WFbvOIY+XfJwfZ+Osq0LAALq77OSimrodUJM/VSJYpGsv9MSXZjCxNW/ffjhh3j55Zejeu4dd9yBZ555psGfaTQX24YVFRVh/vz5mDZtGgoKCiLj4XDy3HBKCfrqkuY/RL3JBkHQQhTDCHjl+2PcGtS4fXBU1DT+xKvwB0J4c/FGXNphID3FjNnj+iDoi/7UzpwsO8RAHQLNrM8m7zVSAu8zUgLvM1IK77XmI9Ukoro6CI9PvhdY35/YD8cKy1DqvPjv+u2lm9Ehy4qsNPkq6XVGMwRoERbDOHOuGJ3y06DTtt5qGJJPMv5OEwQNDOaUhM7ZLJqzDxw4EO+99x7mzZundihxs1jqS0QDl7zzffHFFyGKoqQhOwD4fD7JNUStUSAYQomztvEnXsPidQckL1QA4MEpQ2Ax6aOeg6cIEhERESWeIAhok5UCTby9IKJgMujw41uHQae9+LbW4wvgjSVbEQwp86F4MBTGufIaNmsnklGzqLhKS0vD9ddfr2oMTzzxBJ544om4r8/IyAAAhEIh1NbWoqioCMuWLcM999yD9u3bR54XCARQW1sruYaotRFFEUWOGoTD8f+BP36uAt9sPSYZGzOwE/p2yY16Dp1Ww1MEiYiIiGSi12mRl5GC8474K+wb0zEvDXeM64t/rdwbGTtx3oklGw5i1ti+sq17Ka8viJKKWuRn2RVZj6i1aRYVVy1Bly5dIt8XFRXh+eefh9lsxk9+8hPJ84qLiyNbBTt37qxojETNhaPKDa8vGPf1/kAIby/fLtkimGm34M4b+8c0T26GTfIJHREREREllt1qRFqKvKc23zS0G/p3zZOMfbHpCA6dLpN13UtVu32orI2+VQURRY/v2BKkb9+L2fx58+Zh/fr1+OEPf3hFVdXOnTsj3/fr10+x+IiaC7fXj4qapv1RX9TAFsEHpgyG2Rj9FkG71YgUC7cIEhEREcktJ80Go16+HlCCIOCH065Dqu1igkwE8Obn21BT55Nt3cuVVbpQ521mTVOJWgAmrhJk0KBBSE9PBwAsWrQImZmZePDBB6943ldffQUAMJlMGDVqVKPziqKIF198ESNHjsSoUaPw0ksvJTZwIgUFQ2EUO5rW1+rYOQdWXLZFcOzAzujTObYtgjnp3CJIREREpASNRkCbLLvk9PVEs1uMeGT6UFy6QrXLi7nLtivWf0oUgSJHNQLB5nVSNVGyY+IqQbRaLe6+++7I4wceeABWq/Qki02bNmHNmjUAgFmzZsFsNjc675IlS/Daa6+hoqICDocDL7/8MpYuXZrQ2ImUUlJR26RGmb5AEG8vu3KL4PdujK16kVsEiYiIiJRlNOiQky7fSX8A0KtTDqaM7CkZ23uiBCu2HZd13UuFQiKKypvWy5WIpJLmnVso1Pyz1j/60Y/Qrl07AMCHH36IL774Ak6nEw6HAwsWLMBjjz0GURSRlZWFOXPmRDXnvn37rhjbs2dPVNeGQiH4fD7J16WnHgYCgav+jCjRnDUeuDz+Js2xaO0BlFW6JWPcIkhERESUHNJTzLBZDLKucesNvdG1rbRdyyer9+FMSaWs617K6w+itImnZxPRRYqeKlhQUABBEHDTTTfhD3/4A9LS0qK+dv369fj5z3+Ozp07Y9GiRfIF2QQ2mw1vvvkmHn74YRQVFeHnP//5Fc/JysrCa6+9huzs7Kjm7N//ymbTAwcOjOraJUuW4Ne//vVVf/6jH/1I8vi2227DX//616jmJoqFLxBEeZW78Sdew9FCB7697NOycYO4RZCIiIgomeRnpuC0vxKBYPxV+Nei02rw6Izr8T9zV8Ljq/9gPhQW8fpnW/E/P5wAk0GZt8DVbh+MBg8y7I3vsiGia1O84koURaxYsQLTpk3DunXrYrrW4/Hg0KFDMkWWGF27dsXSpUvx05/+FAUFBbBarbBYLOjWrRseffRRfP755w0mo65mxowZmDNnDjIyMpCZmYnHH38c06dPl/GfgCjxSipcTeot4AsEMffyUwRTLZg9nlsEiYiIiJKJVqNBfqYdMra7QlaaFQ9OGSwZK6104cNvdsu3aAPKq1xwe5u244CIAEFUqlMdLlZcXVhSEATceeed+H//7//BZLr2Ealr1qzBj3/8YwiC0OyTVxQ7v6cWoijPpy6JpjfZoNFoEQ6HEPC6Gr+glXPW1F2xvS9W81fswbfbpdVWT989Gr065UQ9h91qRJsse5PiUBrvNVIC7zNSAu8zUgrvteThqHbDUVUn6xrzvtyJtbtPScYenj4UI/p2aNK8OqMZGkGLsBhC0Hft07K1WgGd8tKh18l3qiK1XMn4O00QNDCYUxI6pyqlBxMmTIBer4coivjoo48wc+bMBns5EVFyq98i2LQXJEcLHVh5WdJq/KAuMSWtdFoNcjO4RZCIiIiouchKtcJiir5PaTzumtgfbbKkb6Df+3oXSp3KJQDYrJ2o6VRJXH3ve9/DJ598gu7du0MURZw5cwZ33303Xn75ZYTDyVF1Q0TXJooiiitqm7RFMBAMXbFFMCvVgtlxnCKo1XCLIBEREVFz0iYrBVqtfHsGjXodfnzrMOh1F18H+vxBvLFka5NOuo6V1x9ECZu1E8VNtXdyBQUFWLhwIe6//34AQDAYxCuvvIK77roLZ86cUSssIkqQyloPvL5gk+ZYvunIFdsMH5w6JKammlaTnqcIEhERETVDOq0WuemJ3VJ0uXY5qbhrgrTH8OmSSixau1/WdS9X4/bBWSPv1kiilkrVEgSDwYBf//rXmDt3LvLy8iCKIvbt24eZM2di/vz5aoZGRE2QiC2CxRW1+GLzEcnYuEGd0atj9FsEBQHI4RZBIiIiombLbjXCbpX3Q8Zxg7pgcI82krGvthzDvhMlsq57ufIqN5u1E8WhWeydGTFiBJYuXYrJkydDFEV4PB788Y9/xMMPP4zy8nK1wyOiGCRii6Aoivjg612SEm671Yg7xvWNaZ6MFDOMemWOPCYiIiKi+ORm2CTb+RJNEAQ8MGUIMuxmyfjby7aj2uWVbd3LiSJw3lGDQDCk2JpELUGzSFwBgN1uxwsvvIDnnnsOKSkpEEURGzZswPTp0/H111+rHR4RRclZ0/QtgpsPFOLQGWnS+q4JA2AxGaKeQ6/TIDPV2qQ4iIiIiEh+Wo0GeZnybhm0mQ14ZMb1EC5pqVVT58Pby7c36QPXWLFZO1Hsmk3i6oIZM2ZgyZIlGDp0KERRRFVVFX72s5/hxRdfVDs0ImqELxCEo9rd+BOvwe3x46OVeyVjvTvlYFjvdjHNk51mg0YjX7NPIiIiIkocq8lwRUVUovVon4Vbb+gtGdt/shSrd56Udd3LsVk7UWyaXeIKANq0aYP33nsPv/zlL6HX6yGKIo4cOdL4hUSkmotbBJs2z8K1+1FT54s81mk1uO/mgRCE6JNQFpNe9l4JRERERJRY2WlWGPVaWdeYNrIAPdpnScY+XrUPxRXKJpLYrJ0oes0ycQXU70N+6KGH8Mknn6B79+6Klm8SUewSsUXwRJETa3edkoxNHdETuRnRl44LApCbzobsRERERMlGEAS0ybIjhs8rY6bRCHho2nWSU6r9wRD+uXSbpL+qEsqr3HB72KydqDGKJq5WrlyJb7/9FsOHD4/6moKCAixcuBD3338/2rRpg/z8fBkjJKJ4+PxN3yIYCofx/tc7cWmKOjfdhikjesY0T5rNDKOBDdmJiIiIkpHRoEN2mrx9SrPSrLjnpoGSsdMllVi28bCs615OFIHzFTXwB9isnehaFE1ctW3bFm3btoXRGNsWHoPBgF//+tdYtWoVVq1aJVN0RBQPURRR7Gz6FsGV20/gbGm1ZOzemwdCr4u+XFyn1SArzdK0QIiIiIhIVRl2CywmvaxrjOzXAUN6tpGMLdt0GCeKKmRd93L1zdqr2ayd6Bqa7VZBIkoOidgi6Kypw+L1ByVjw3u3R5/OuTHNk51mhVbDX2tEREREyS4/M0XWg3YEQcAPbhmMVKspMhYWRfxz6TZ4/U17bRsrXyCkeI8tomTCd3hEFLdEbBEEgAXf7oXvkhcIZqMed07oH9McZqMeqTZT408kIiIiomZPr9MiL0PevqUpFiMenDpEMlZW5b7ihGsl1Nb5UFHNZu1EDWHiiojikqhTBPccL8aOI0WSsTvG9Yk5CZWbIW8vBCIiIiJSlt1qQopF3pOi+3fNw/jBXSRja3efwu5j52VdtyFs1k7UMCauiCguFTV1TS6j9gWC+PCb3ZKxzvnpGDuwS8MXXEVaigkmg7x9EIiIiIhIeXmZNui08r5t/d6N/ZB7WXXXu1/sRI3bK+u6DSlysFk70eWYuCKimPn8wYSUMi/beBiOS+YRBOAHtwyOqZ+BVivIfvIMEREREalDq9EgPzNF1jWMeh0emT4U2kteg9bU+fDulzshNnV7QYzCYTZrJ7ocE1dEFJNEbREsKq/BV1uOSsYmXtcNHfPSYpqHDdmJiIiIWjar2YD0FLOsa3Ruk4Hpo3pJxnYfK8b6vadlXbchbNZOJMV3e0QUk0RsERRFEe9/vQuhSz5JSk8xY+bo3jHNYzLokGaT90UMEREREakvO80Kg14r6xpTR/ZE1zYZkrEFK/agrNIl67oNYbN2oosSlrhSuoRS7XWJWqNEbRHcuO8MjhY6JGN3TxwAszG2PlWX9yIgIiIiopZJoxHQJisFQvQdJWKm1Wjw0PShkgSZLxDCPz/fhlA4LN/CV1Fe5YbL41N8XaLmJiGJq40bN2LGjBkoKytLxHRRe/fdd/HDH/4QHo9H0XWJWqNEbRF01fnw8ap9krH+XfMwpGebmOZJtRpjTnQRERERUfIyGfTISpW3t2luhg13TegvGTtR5MQX3x29yhXyOu+oZbN2avWanLgKhUL4wx/+gGPHjuGBBx5AeXl5IuJq1Icffoi//vWv2Lx5MxYuXKjImkStWWWtt8lbBAHgkzX74brkmF+9ToN7Jg2EEMPHZxqNgOx0VlsRERERtTYZdrPsH16OHdgZA7rlScaWbjiIU8WVsq7bkHBYxLnyalUqvoiaiyYnrrRaLV599VWkpqbi1KlT+P73v4/CwsJExHZVr776Kp555hkIgoCpU6fi3nvvlXU9otYuGArDUe1u8jxHCx1Yv+e0ZGzGqF4xnwqYlWqV/VhkIiIiImp+BEFAfmZKTKdQx7PGA1OGIMVijIyFwiLe+nwbfIGmf5AbKz+btVMrl5B3fl27dsXrr78Ok8mEc+fOYfbs2Vi3bl0ippbw+/14+umn8dJLLyEcDmPUqFF49tlnE74OEUmVV7qafCRvMBTG+1/tkozlZ6bg5mE9YprHqNciPcXUpFiIiIiIKHkZ9FrkpMu7ZTDVasIDUwZLxooravHp6v2yrns1rjp/Qj5IJkpGCStZGDRoEN5++23Y7XZUVVXhxz/+Mf7whz+guro6IfOvW7cOU6dOxbJlyyCKIiZOnIhXX30VWq28J0sQtXYeXwDV7qY3hVyx7RiKHDWSsR/cMijmyqncjJSYthUSERERUcuTZjPDZjbIusag7m0wZkAnydjKHSew9/h5Wde9GkdVHZu1U6uU0L02gwcPxvvvv4/s7GyEw2EsWLAAkyZNwgsvvIDi4uKY5wuFQvjmm2/wwx/+EI8++igKCwshiiJmzZqFf/zjHzAY5P1FRURAqbPpx/86qtxYsv6QZGxUv47o2SE7pnnsViMsJjZkJyIiIqL6Rupyf6B554T+V7S1eOuz71Bb55V13aths3ZqjQRRbOoZYVdyOp347W9/i5UrV9YvIggQBAE9e/bEiBEj0L17d3Tq1Anp6ekwm83Q6XRwuVyora1FZWUlDh06hH379mHnzp1wOp0A6k80s1qt+PWvf4077rgj0SGTyvyeWohicjQc1Jts0Gi0CIdDCHibntRpzqpcHpRUNO2fURRF/OPTTdhzvCQyZjUZ8Myjk2C/pG9AYzQaAV3apEPXiqosW9O9RurhfUZK4H1GSuG91vo4qt1wVNXJusbxcxX4ywdrJKdrX9+7Ix6bfQNCfuUTWCajDh1z07gLoRVIxt9pgqCBwZyS0Dl1CZ3t3zIyMvDKK6/gs88+w4svvoiSkhKIoojDhw/j8OHDMc0liiIEQcC4cePw29/+Fm3btpUjZCK6TDAURnlV0/fR7z5WLElaAcDsG/vGlLQCgKxUS6tKWhERERFR4zJSLKh2+RAIyleF1K1dJqaOKMCyTRffy249eAaD9rbFsIJ82da9Gq8viIqaOmSlytvni6i5kPVYrpkzZ2LlypV49tln0adPH4iiGNOX0WjEbbfdhs8//xyvv/46k1ZECnJUuxEKNa0g0x8IYcG3eyRj3dpl4ob+nWKax6DXIj3F3KRYiIiIiKjl0WgE2Ru1A8CMG3qhY16aZOy9L7bBWSNvtdfVVFTXwesPqLI2kdJk2Sp4NUVFRdi8eTMOHTqEs2fPwuFwoK6uDqFQCAaDAXa7HXl5eejatSv69++PYcOGwWiMrSqDkhO3CjYvXn8Ap4urmjzPkvUHsWTDxd5WGkHA7344Ae1yUmOap222XXIccWvRGu41Uh/vM1IC7zNSCu+11utcWTVcHr+sa5x31OD376xEIHjxfUvfzrn4+Z2jVNm2Z9Br0SkvHRoNtwy2VMn4Oy1ptgpeTdu2bTFr1iwllySiOJQ6m75FsLzKjS82H5GM3Tika8xJK7NR3yqTVkREREQUvZx0G9xeJ+Qsy2iTZcfs8f0wf8XFHQX7T5Vi/Z7TGDOws3wLX4U/EEJZlQt5GYlNEhA1N7JuFSSi5FPt8sLja3rZ8b9W7pV8GmW3GDFzdK+Y51Gi9JuIiIiIkptBr0WGAq0lbhzSFQUdcyRj/1q5FxXV6mwZrKr1wi1zpRmR2pi4IqKIUDgxDdn3nSjBrqPnJWN3jO8Li8kQ0zx2qxFmo77J8RARERFRy5eZaoVeJ+9bXI0g4KFbR8BouLh5yesP4t0vdkDBLjwSxRW1CIaSo+0KUTyYuCKiCEdVXZP/6AWCIUn5NAB0bZuBkf06xjSPIADZaay2IiIiIqLoaDQCstNssq+Tk5GCuyYOkYwdOF2GdXtOy752Q4KhMEqdydH/iCgeTFwREQDA5w+iyuVp8jzfbDuO0sqLfzgFAPdOGghNjA0r01PM0Ou0TY6HiIiIiFoPu9UIi0n+iv0JQ3uiV6dcydhHKm4ZrK3zodrlVWVtIrkxcUVEAIDSSleTm1k6a+rw+cZDkrGxgzqjY156TPNotQIyUy1NC4aIiIiIWqXcDBvkPuRPo/n3lkH9xQ9avf4g3lFxy2BppQuBYEiVtYnkxMQVEaHG7UWdt+kN2T9etQ/+wMU/llaTAbeP6RPzPJl2C7Qa/noiIiIiotgZ9TqkK9CoPTvdhtnj+0nGDp4uw9rdp2RfuyHhsIjzjlpV1iaSE98ZErVy4bCIssqmN2Q/dKYMWw+dk4zNGtcHNosxpnn0Oq0iLzSIiIiIqOXKTLVAp5X/7e64wV1Q0DFbMvbRqn1wJODAo3h4fAHVtisSyYWJK6JWrqLa3eSG7MFQGPO/kTZk75iXhjEDOsc8V3aaFYLctd1ERERE1KJpNRpFDvrRCAJ+OGWI5JRBnz+Id75Ub8ugo9oNnz+oytpEcmDiiqgV8wWCcNY2vSH7qh0nUOSokYzdO2kgNJrYElAmow52a2wVWkREREREDUm1mWA2yt+oPSvNiu9dtmXw0OlyrNmlzpZBUQTOO2pUS5wRJRoTV0StWJmz6Q3Zq11eLNlwUDJ2Q/+O6No2M+a5chQ4vpiIiIiIWo/cDKvsjdoBYNygzujVSbpl8OPV6m0Z9AVCKFdpbaJEY+KKqJWqrfPBnYCG7J+s3geP72Ipstmox6xxfWOex2YxKHJ0MRERERG1HiaDHqk2k+zrCIKABxvaMvjFDoRVqnxy1njg9vpVWZsokZi4ImqF6huyu5o8z7FzDmzaf1YyNnN0b6RaY3txIAistiIiIiIieWSnWaHVyl92lZVqxZ03XrZl8Ew51u46KfvaV1NSUYtQuGn9bInUxsQVUStUUVOHQLBpf8DCYREffrNbMtY2244bh3SJea40mxkGvbZJ8RARERERNUSpRu0AMHZgZ/TulCMZ+3jVPtW27QWCYZQ6m/6BNZGamLgiamX8gRCcNU1vyL5290mcLa2WjN07aSC0mth+rWg0AjJTLU2Oh4iIiIjoatJsZpiMusaf2ESCIOCBKYNhunTLYCCEd5art2Wwxu1DjdurytpEicDEFVErU1blavIJI7V1Pixae0AyNqx3e/TskH2VK64u026BTstfRUREREQkr9x0ZVpTZKVaceeE/pKxw2fLsXqnilsGnS4EgiHV1idqCr5bJGpFXB4fXHVNb9C4aO0BSWN3o0GH7122nz8aep0GGXZzk+MhIiIiImqM2ahMo3YAGDOgE/p0lm4Z/GT1voT0mY1HOCyiuKJWlbWJmoqJK6JWIhgKo6Si6X8oTxVXYt3uU5KxGaMKkJ4SewIqO80KQYnziYmIiIiIUP/6U6OR//WnIAh4YPIQyZZBfyCk6imDdd5AQlqGECmNiSuiVqLU6UIw1MSG7KKID77ehUv/1OZl2HDT0O4xz2Uy6GCP8fRBIiIiIqKm0Gk1yEpVplF7ZqoFd122ZfDIWQdW7zihyPoNKa9yw+cPqrY+UTyYuCJqBapdXtTW+Zo8z8a9Z3CquFIy9v2bBsbVoyo7XZkXDEREREREl0pPMcGo0InWowd0Qt/OuZKxT9bsV23LoCjWbxlsas9bIiUxcUXUwgWCIZQm4A+j2+PHp2v2S8aG9GyDvl1yr3LF1dnMBlhNhibHREREREQUK0EQkJuRothaD0wZDLNRumVwroqnDHr9QTiq3KqsTRQPJq6IWrjiilqEw03/o/jZ+oOSqi29TnPFaSnREARWWxERERGRuiwmPVIsRkXWyrBbrnjdfLTQgZXb1dsyWFHjQd0lhy0RNWdMXBG1YM6auoT8QSosq8aqndI/rFNHFMTVHyDVZoJRr2v8iUREREREMspJV+6goNH9O12xU2Hhmv0odaqzZRAAiitqEAo3rQcukRKYuCJqoXz+IMoTUAIsiiI+/GY3Lq1kzk6zYvLwHjHPpdEIijXDJCIiIiK6Fr1Oiwx77Cdjx6P+lMHBMBv1kTF/UN1TBgPBMMpUTJwRRYuJK6IWSBRFnHfUIBF/A3ccKcLRQodk7O6JA6DXxd7QMsNujquROxERERGRHDLtFsVen2bYLbhrYkNbBo8rsn5Dqt2+hBziRCQnvoMkaoHKq9zwBUJNnicQDOHjVfskY/265GJg9/yY59JpNchIsTQ5JiIiIiKiRNFoBGSnKbcj4IZ+HdG/a55kbOGaAyh11ioWw+VKnLUIhpr+3oFILqo2mgmHw9i9ezf279+PkpISuFwuhEIhPPPMM2qGRZTU3F4/nDWehMz19dZjcFTXRR5rNcIVnxJFKyvNAo1GmR4CRERERETRSrWZUOnywOsLyr6WIAi4f/Jg/Nc/V8Djq+9F6w+G8PbyHfh/94xV5fVyKCSipMKFdjmpiq9NFA1VElehUAhvv/02PvjgA5SXl0fGRVGEIAhXJK48Hg+eeeYZTJ06FSNGjFA6XKKkEQqHUVKRmE9rqlweLN90WDI2fnBX5GfaY55Lr9Mi1WpKSFxERERERImWk2bD2dIqRdZKTzHj7on9MXf5jsjY8XMV+Hb7cUy6vrsiMVzO5fGjstaD9BRlen4RxULxrYJOpxOzZ8/GCy+8gLKyMoiiGPm6mj//+c/49NNP8bvf/e6azyNq7UqdLgSCiTkZZOGaA5LthlaTAbfe0CuuubLTLIqd2EJEREREFCuLSQ+71ajYeqMa2jK4dn/CPoSOR1mlG76A/FVnRLFSNHEVDofxyCOP4ODBgxBFEVOnTsXbb7+NTZs24eWXX77qdQ888AAEQcDZs2exYsUKBSMmSh41bh9q3IlprHiquBIb952RjM0c0xtWsyHmuYx6LeystiIiIiKiZi47zarYh60XtgxaTBdPGQwEw5i7fAfCYXWKNURRRHFFLYtFqNlRNHG1cOFC7N+/H4Ig4Nlnn8X//d//YdSoUcjIyIBOd/Vdi127dsUNN9wAAExcETUgGAqhJEENHUVRxIJv90jG2mbZMW5Q57jmy1Kw2SURERERUbz0Oi0y7MptlavfMjhAMna8qAIrth9TLIbLeX1BSY9bouZA0cTVsmXLIAgCJkyYgFtvvTWma0eNGgVRFLFnz57Gn0zUyhQ7ahP2ycy2Q+dw/FyFZOyuif2h1cT+68Jk0CHFolzJNRERERFRU2TaLdDrlHubPLJvBwzoJt0yuGjtARSruGXQWVMXaRxP1Bwomrg6dqw+czx+/PiYr83PzwcASTN3IgKcNR64vYn5w+IPhPDJ6v2SsQHd8tCnc25c8yl5tDARERERUVNpNIKir2EFQcAPbmloy+B2FbcMAucT+ME4UVMpmriqqakBANjtsZ9KFgrVN4kOhxPTeJqoJfAFgiivcidsvq+2HEVFzcXSYK1GwJ039o9rLrNRH1dPLCIiIiIiNdmtJpiMV29lk2jpKWZ8/7ItgyeKnPhmm3pbBgPBEEorXaqtT3QpRRNX6enpAICzZ8/GfO2BAwcAANnZ2QmNiShZiaKIYkfimidW1nrwxeYjkrEJ13VDXmZKXPOx2oqIiIiIklVuuk3R9Ub07YCB3fMlY/VbBmsUjeNS1S4vXJ7EHP5E1BSKJq4GDhwIURSxePHimCqnXC4XFi1aBEEQMGjQIBkjJEoejio3vP7EHVf76Zr98AdCkcc2swEzRhXENZfVpJeUOxMRERERJROzUQ+7VblerfVbBgfBeslr6GAojLnL1DtlEABKKlwIhrjridSlaOJq1qxZAIATJ07g97//fVSVIj6fD7/4xS9QWVkJALj99ttljZEoGdR5A6io8SRsvhNFTny3X1oJeduYPrCY4tvqx5MEiYiIiCjZ5aRbIQiCYuul2cz4/k0DJWMnzjvx9dajisVwuWAonLDTy4nipWjiaty4cbjlllsgiiI+/vhj3H777Zg/fz727duHsrKyyPPKyspw4MABvPvuu5g+fTrWr18PQRAwZcoUjBgxQsmQiZqdUDic0FNGRFHEv76VntbZLtuOMQM7xTWfzWKA2chqKyIiIiJKbjqtFpmpZkXXHN6nPQZdtmVw8bqDOO9Qb8ugq86PKlfiPjQnipUgJqpBTpT8fj9+/OMfY9OmTVFnr0VRxLBhw/DWW29Br+cb4pbI76mFKCZHCareZINGo0U4HELAq3zDwuKKWlS7vAmbb/OBs3hz6TbJ2NN3j0avTjlxzdc5Px1Gg3LNLFsyte81ah14n5ESeJ+RUnivUaKFwyJOFTsRCF58r6IzmqERtAiLIQR9iU/oVLu8+K9/roDb64+MdWmTgf+8bxw0GuUqwC4lCAI656fDoNeqsn5rlYy/0wRBA4M5vj7JV6NoxRUAGAwGvP322/jNb34Dm80GURQjXxdcOmYymfD0009j7ty5TFpRq+f2+BOatPL5g/hk9X7J2KDu+XEnrVIsRiatiIiIiKjF0GgExQ8dSrWZcM+kgZKxkypvGRRFEecrahJ2MBRRLFR5hykIAu677z7Mnj0bGzZswJo1a3Du3DlUVFQAADIzM5Gfn48xY8ZgzJgxsFrZL4coHBYTvr/8yy1HUVl78VMirUbA927sH9dcggBkpVkSFRoRERERUbNgt5pQWeuFxxdQbM1hvdth++Fz2Hn0fGRs8bqD6N8tH22z7IrFcSmvL4iySjdyM5Q9cZFI1dIIk8mEiRMnYuLEiWqGQZQUyqvckhLlpnLW1OGrzdJPbW4a2j3uP0R2ixFGPautiIiIiKjlyc2w4nRxlWLrCYKA+24ZhKOFDrg89VsG608Z3I7//ME4aDWKb54CAFTWemAy6JBqM6myPrVO6tztRBQTjy8gqYxKhE9X74c/GIo8TrEYMW1kQVxz1VdbsTKSiIiIiFomk0GPVKtR0TVTrVduGTxVXImvthxTNI7LlThd8PqVqz4jYuKKqJkTRRElCTxFEACOn6vA5oOFkrHbx/aBxRRfH7lUmwl6HRs1EhEREVHLlZ1ujfqAsUS5vlc7DOnZRjK2ZP1BFJWrd8qgKIooKq9BMJQch2tR8mPiiqiZq6ipgy8QavyJUQqLIhZ8u0cy1j4nFaP7d4prPkEQkJXK3lZERERE1LLptFpkppoVXVMQBNx78yDYzIbIWDAUxtzl2xEOq9coPRAMo6iczdpJGUxcETVjvkAQFdV1CZ1z8/6zOFVcKRm7e+KAuI/WTU8xQadltRURERERtXwZKRboFX7tm2o14d6bB0nGThVXYvWuk4rGcTmPL4CySreqMVDroHgn5cLCQpw9exajRo2K6brVq1ejW7duaN++vUyRJY7L5cK8efOwYsUKFBYWIhwOo23btpgwYQLuv/9+ZGRkKBbLjh07sHTpUmzduhUOhwM+nw/Z2dkYOHAgbr/99pj/PZCySipcSOSHGF5/EJ+u2S8ZG9KzDQo6Zsc1nyAIyLCz2oqIiIiIWgeNRkBORgqKHYlt5dGY63u1w7ZD57DjSFFkbNHa/RjSsw3SbMpWgV2KzdpJCYKocG3ffffdhx07duBnP/sZHnnkkaiuefPNN/HCCy9g2LBhePfdd+UNsIlOnDiBhx9+GEVFRQ3+PCsrC6+99hr69+8vaxwejwf//d//jaVLl17zebfffjv+9Kc/QatyxYzfUwtRTI490nqTDRqNFuFwCAGvS7Z1Kms9KHUmdv5Faw9g2abDkcc6rQZ/evgm5KTHd5JgZqoF2WzKLhul7jVq3XifkRJ4n5FSeK+REvQmGwpLq+HyeBD0JfYApWuprPXgN29+A68/GBm7vlc7/HjmMMViaIggAB1y02A2xtcvl64uGX+nCYIGBnNKQudUdKvgli1bsG3bNoiiiJycnKiv69q1K0RRxJYtW7B79275Amwil8uFRx55BEVFRdDr9Xj66aexdu1abNmyBa+88go6dOgAh8OBOXPmoLy8XLY4/H4/HnroISxduhQajQZ33303/vWvf+G7777DunXr8MYbb6Bnz54AgEWLFuGFF16QLRaKTzAUQnlVYstuHdVufL31qGTspqHd4k5aaTQCMuzqfbpDRERERKSWvEw7BCjbqD09xYzbxvSRjG09dA77T5YqGsflRBH/btaeuL68RJdSNHF1ofqnbdu2mDlzZtTXTZgwAT169AAALFu2TI7QEuLtt9/GuXPnAADPPfccHnroIeTl5SEtLQ0TJ07EY489BgBwOBx49dVXZYvDYDDgnnvuQU5ODt566y387ne/w6BBg5CRkYHc3FyMGzcOH330UWTb5XvvvYfKyspGZiUllVS4Et5s8dPV+xEIXqxqs1uNmDayIO75Mu0WaDVsk0dERERErY/RoEOGCgcU3TikCzrmpUnGPvh6F/wJPMwpHsFQGEXltWzWTrJQ9F3nzp07IQgCbr755pivvemmmyCKIrZu3SpDZE0XCoWwYMECAMCgQYMwZcqUK37+xhtvRB4vWrQIHo98ZaVTpkzB6tWrr9rDymw249577wUA+Hy+Zvv/a2tU4/bB5fEndM7j5yqw9dA5ydissX3jLufVagWkp7DaioiIiIhar6xUG/Q6ZVuuaDUa/ODmQZJar7IqN7747oiicTTE4wugtDI5trNRclE0cVVaWl/C2KtXr5iv7dKlCwDg/PnzCY0pUXbu3BmpWpo8efIVP1+4cCFOnjyJWbNmAQC8Xi82bNgga0w63bV773fu3DnyvZxbFyl6oXAYZQn+ZS+KIj5auVcy1iE3DaP6d4x7zky7Je5TCImIiIiIWgKNRkBuhvL9Xju3ycD4wV0kY19sPoLiCmUbxjekqtaLKpdyfb+odVA0cRUIBAAAen3sVR4XrvF6vQmNKVH27794UtugQdKjSj0eD1566SUMGDAATz75ZIPXqKGuri7yfWpqqoqR0AVlTheCocQ2qd9+uAgnzjslY3dP7A+NEF/iSafVqHpyCRERERFRc2EzG5FiMSq+7u1j+yLVevEkv2AojA++3tUstuqVOl3w+AJqh0EtyLVLchIsMzMTpaWlOH78eMzbBU+fPg0ASE9PlyGypjt58mTk+3bt2kl+Nm/ePJSVleH5559Hbm4udDodgsGg5Bo17N17sQpn4MCB6gUCQGdUfn94vARBE/lfvSm+xuYNcXv8cAc10BkTlxQKBkNYuPaAZGxwz3bo071D3HPmZdhhtCTPv69kJte9RnQp3mekBN5npBTea6SEy++zdvlmnCiqQFjBU9LtRjPuueU6vLrw4i6eQ2fKse1oKUb273yNK5VRWhNE53w7dApvpWxp+DutnqKJqz59+qCkpASLFy/Gww8/DIPBENV14XAYS5cuhSAIcW0zVILTebGi5dLkWmVlJd566y2MGTMGw4bVH1Nqt9vhdDpVbYju9/vx+eefA6ivELvQqF0tGk3y/UITBAGCkJi4w2ERpZUuaBI03wWrth+RbD3UaATcNem6uNfR67XISLVBiLNai+KTyHuN6Gp4n5ESeJ+RUnivkRIu3GcGgxa5mXaUKrxVb0S/Lli3+wT2nyiOjM3/egcG9WgPq1n5KrBLhcPA+YpadMzL4HuHBGjtv9MUTVxNnToVK1euRFFREf7rv/4Lzz77bFQ38Ysvvojjx49DEATcdNNNssQWSyLJbrcjOztbMnah0brBYJD8M73++utwuVx46qmnImMXEnaXbtVT2ptvvhnpa/XTn/5UtTguCIeT5+hUQdBAEASIoggxQZ+qlDpr4fMntiG72+PD4jV7JGPjh3RHXqYNYTG+/78z7DaIYhjNoAK5VZDjXiO6HO8zUgLvM1IK7zVSQkP3WarViMoaN7x+ZbfI/WDKUPzm1WUI/LvdSI3bi4++3YEHpg1TNI6GuD0hnC+vRH4W29LEK1l/pyW6MEXRxNXkyZPx7rvvYu/evfj8889x+vRpPPbYY7jhhhug1V75D7Z37168+eabWLlyJQRBQMeOHTFz5kxZYvvwww/x8ssvR/XcO+64A88880yDP9NoLrYNKyoqwvz58zFt2jQUFBRExsNhdW+4nTt34vXXXwcAzJ49GyNHjlQ1HgAI+uqS5j9EvckGQdBCFMMIeJveSN3rD6DcUZXwZNCSNXvh9l5MhpkMOkwf0R1BX3zNEvU6DSzaYEL+mSk6ib7XiBrC+4yUwPuMlMJ7jZRwtfss06rBmVplG5Nn2fSYOrIAn60/GBlbvf0YRvRui65tMxWNpSEOnwc6+NkjN07J+DtNEDQwmFMSOqeiiStBEPDaa6/he9/7HoqKirBv3z78+Mc/hsFgQNeuXZGWlgaNRgOXy4VTp06hpqYGQP2paKmpqXj99dfjauyuBMu/e/5caEAP1FeKiaIoacgOAD6fT3KNks6dO4fHHnsMgUAAffv2xX/9138pHgNdJIoiSipcCU9alVe58e32E5KxKSN6wn5JA8dYpaeYWeZLRERERHQVZqMeaSkmVNUqe6DY5OE98N2Bsyh11ic2RADvfbUL//3gjdBqFD2PrUGlThcMOh0spub5Xp6aP0UTV0B9g/YPP/wQ//3f/41169YBqE/kHDp0SPK8S09D6NWrF/7yl7+gU6dOssX1xBNP4Iknnoj7+oyMDABAKBRCbW0tioqKsGzZMtxzzz2S/lGBQAC1tbWSa5RSWlqKBx98EE6nE+3bt8drr70Gkyn+RAY1nbPGA68/mPB5F67ZLzmdMD3FjJuGdot7Po1GQKqN9woRERER0bVkp1nhqvMn/KTwa9HrtLjv5kF4fsH6yFhhWTVWbj+BSdd3VyyOqxFF4LyjBp3y06BrYKcVUWNUSb/m5eXhzTffxBtvvIGpU6fCarX+e8/mxS+dTocbbrgBf/7zn/Hpp59Ktto1R126dIl8X1RUhOeffx5msxk/+clPJM8rLi6ObBXs3Fm50x4cDgcefPBBnD17Fm3btsW8efOQk5Oj2Pp0JX8gBEd14vucnTzvxNZD5yRjt4/tA6M+/jx1ms3ULD6tISIiIiJqzrQaDXLSrYqv27tTDob3kR64tXjdAThr1OurfKlgKIxz5TWSAhWiaClecXWpsWPHYuzYsQiHw6ioqEB5eTlCoRCysrKQlZXVbLcFNqRv376R7+fNm4f169fjiSeeuKKqaufOnZHv+/Xrp0hspaWluP/++3Hq1Cl07NgRc+fORdu2bRVZm66uxFmb8F/coiji41X7JGMdclMxom+HuOcUhPqKLSIiIiIiapzdakK1ywu3V9lG7XdO6I89x0vg8dWv6wuEsODbPXjs9hGKxnE1Xl8QJU4X8jMT2/+IWr5mUUKh0WiQnZ2N3r17o1+/fsjPz0+qpBUADBo0COnp6QCARYsWITMzEw8++OAVz/vqq68AACaTCaNGjWp0XlEU8eKLL2LkyJEYNWoUXnrppZjiKiwsxN13341Tp06hoKAA8+fPR7t27WKagxKvyuVBnQx/yHYfK8bRQodk7Hs39oemCb2pbGYj9DqW9BIRERERRSs3IwVKt4dNtZpwx7i+krEdR85j97FiZQO5hmqXF5UKN7Cn5NcsElctgVarxd133x15/MADD8BqlZaIbtq0CWvWrAEAzJo1C2Zz41UsS5YswWuvvYaKigo4HA68/PLLWLp0aVQxHT16FHfffTeKioowcuRIfPjhh8jKyor+H4pkEQyFUFbplmHeMD5eLa226t81D707NW1LaIad1VZERERERLEw6LXIsCt/GNfYQZ3RpY1018+HK3bDF0h8X914lVW6ZPkQn1ouJq4S6Ec/+lGkmunDDz/EF198AafTCYfDgQULFuCxxx6DKIrIysrCnDlzoppz3759V4zt2bOn0et27dqFe++9F+Xl5Zg8eTJeeukl6PV6+Hy+Br/8fn9s/7AUt1KnG+Fw4vd2r919KnKSCFC/xW/2+KZtRzUb9TAbk6v6kYiIiIioOchKtSi+c0EjCPjBLYMk1V4V1XX4fONhReO4lgvN2oOhkNqhUJJQtcdVS2Oz2fDmm2/i4YcfRlFREX7+859f8ZysrCy89tpryM7OjmrO/v37XzE2cODARq/729/+hurqagDAl19+iS+//PKaz+/UqRO+/vrrqGKi+Lk9ftTW+RI+b503gCXrD0rGRg/ohLbZ9ibNy2orIiIiIqL4CIKAvAwbCsuqFV23Q24abrquG77Zdjwy9vWWoxjRp0OT3x8kyoVm7R1z0yAovaeSkg4rrhKsa9euWLp0KX7605+ioKAAVqsVFosF3bp1w6OPPorPP/+8wWTU1cyYMQNz5sxBRkYGMjMz8fjjj2P69OkJj1vJEw5bq3BYRMklFVGJ9OXmI3B5LlbNGfVazBzdu0lz6nVapFiMTQ2NiIiIiKjVspoNsFuVf0196+jekgOWQmER7321E+FmdKqf1xdESUWt2mFQEhBElc6jPHz4MM6ePYu6utiP55w5c2biAyJV+T21EMWw2mFERW+yQaPRIhwOIeCNPhFVXuVGRXXij6N11tTh1298jUDw4v9/t97QC7c2MXGVk25jxZXK4r3XiGLB+4yUwPuMlMJ7jZQQ630WDIVw8nylLO1CrmXHkSK8smizZOzBqUMwun8nReNoDN93XF0y/k4TBA0M5sSeHKn4VsH169fjj3/8IwoLC+O6XhAEJq4o6fgCQThrEp+0AoBFaw9IklapNhNuGdajSXNqNALSbKamhkZERERE1OrptFpkp1kl/WiVMLhHG/Tvmoe9J0oiY5+s2oeB3fKb1c6K8ioXTAYdLCb21qWGKbpVcOfOnZgzZw4KCwshimLcX0TJptTpghy37pmSKny3/6xk7LYxvWE0NC0nnWYzQaPhXnMiIiIiokRITzHDZFS2bkQQBNwzaSAMlzSId3n8+GT1fkXjaIwoAkWOagSCbNZODVP0v5w333wTwWD9MZx5eXkYN24cOnToAKvVCoPBoGQoRIqpdnllOe5VFEV8vGovLs2Htc2244Z+nZo0ryBAsh+eiIiIiIiaLi/DhjMlVbJ8oH012WlWTL+hFxauuZis2rD3NG7o3xE92mcpF0gjQiERReU16JCbxg/Q6QqKJq727NkDQRDQp08fvP/++zCb+eaYWrZQOIyyKnlKgvedKMGhM+WSse+N79fkX/QpFqPix/YSEREREbV0JoMeaTYzKms9iq578/Xd8d3+MzjvuNgI/YNvduN/HrwRWk3zOa/N6w+i1FmL/KzmcfIhNR+K3qUuV/0b+DvvvJNJK2oVyirdCIUS/5FKKBzGx6v3Scb6dMpB3y65TZ6bjRGJiIiIiOSRlWaBTqtsskin1eC+mwdJxs6VVWPNrlOKxhGNarcPzhplE3vU/Cn6X0xOTg4AIDU1VclliVTh8QVQ7fLKMveGvdJPTAQAs2/sB0FoWrWV2aiHycCmiEREREREctBqNMhJtym+bs8O2Rjep71kbPG6A6ip8ykeS2PKq1xwe/1qh0HNiKKJq8GDBwMATpw4oeSyRIoTRRElFbWNPzEOXn8Qi9cdkIyN7NcRHXLTmjw3q62IiIiIiORltxphNir/YfHs8f0khzjVeQOS3lfNhSgC5x01bNZOEYomru644w6IoohPP/0UbrdbyaWJFFVZ64EvIM8v2q+2HEWN++InIwadFreN6d3kefU6bbM6FpeIiIiIqKXKzbAqvmZ6ihm33tBLMrZ+z2mcPO9UPJbGXGjWHg4r2Mmemi1FE1fDhg3DzTffjKKiIvzxj39UcmkixQSCIZRX1ckyd2WtB19tOSoZm3R9d2TYLU2em9VWRERERETKMBn0SLWZFF934nXdkJ+ZIhn74OvdCCt51GGUvP4gSpzy7GKh5KL4EQLPPPMMBg4ciCVLluA3v/kNQiGW/1HLUlrpgijTL/7P1h+E/5JKLrvFiMnDezR5Xo1GQKpV+T+cREREREStVXaapckngsdKp9Xg+zcNkIydLqnEhj2nFY0jWjVuH5w18hQFUPLQNf6UxPn1r3+N6upq+P1+iKKIRYsWYdGiRTHNIQgCDh48KFOERE3j8vjgqpOnkeC5smps2HtaMnbr6N4J2R+fbjMp/keTiIiIiKg102m1yLRbUF6lbBudPp1zMaRnW+w4UhQZ+3TNfgzu2RY2s0HRWKJRXuWG0aCD1dT8YiNlKFpxtXjxYqxevRqHDh0CUN/AOp4vouYoHBZR6nTJNv+na/bj0ts/PzMFYwZ2avK8ggCkc5sgEREREZHiMuxm6HVaxde9a0J/GC5Z1+Xx47PLDoBqLi40aw+GwmqHQipRtOJq6NChSi5HpKiKajcCQXl+mR4/V4G9J0okY7PH94VW0/Tcs91ihE6r/B9LIiIiIqLWThAE5KRbUVReo+i6makWTB1ZIDmtfPWukxgzsHNCTitPtFBIRFmlC22y7GqHQipQNHH1/vvvK7kckWJ8/iCctR7Z5l902acf3dplYkC3/ITMzWorIiIiIiL1pFiMsJj0qPMGFF33lmHdsXHvaZT9e6uiKAIffLMbv753LASh+bURqXH7kGr1w9oMtzOSvBRvzk7UEpU4XZBrF+uh02U4fKZcMjZrbJ+E/DGxmPQwGZreI4uIiIiIiOKXm25TfE29Tou7L2vUfvxcBTYfKFQ8lmiVOGsRDrN9UGvDxBVRE1W5PPD45Pl0RBRFLForrbbq0ykHPTtkJ2T+DFZbERERERGpzmjQIdWm/CnfA7rlY0C3PMnYx6v2yfb+pqkCwbDizexJfUxcETVBMCTvL869J0pw4rxTMnbb2D4Jmdug18JmNiZkLiIiIiIiaprsNKsqJ33fPXEAdNqLqYFqtxdLNhxSPI5oVdbKVzhAzRMTV0RNUF7pQigkT6lqWBQlzRIBYGD3fHRpk5GQ+dNTWG1FRERERNRc6LQaZKVaFF83J92GW4b1kIx9u+244g3jY1FSUQtRrl4t1OwkTeLK4/HA6XQ2/kQihdR5/ah2+2Sbf+eRIpwtrZaMzRzdOyFza7UCUq3KlyITEREREdHVpaeYodcpf+L31JE9kWm/mDQLiyLmr9jdbJNDvkAIFTV1aodBCkmKxFUoFMKzzz6L0aNH49FHH1U7HCKIoojiCvk+gQiHRSxed1Aydn2vdgk7mjbNZlalDJmIiIiIiK5OEATkpFsVX9eo1+HOCf0lY4fOlGP74SLFY4lWRXUdfIGg2mGQAnRqLFpeXo73338fW7duhdPpRCgUuupzRVFEZWUlvF4vAMBmU/60BaLLVVS74Zfxl+TmA2dRXFEbeSwIwK2jeyVkbkEA0lNYbUVERERE1BylWIywmPSo8yrbx2lIzzbo3SkHB0+XRcb+tXIv+nfNg9GgSurgmkQRKKlwoWNemtqhkMwUv/u2bNmCxx9/HC6XCwAaLT0UBCHynNzcXPziF7+QPUaixsjZDDAYCl/RDHFk347Iz7QnZH67xQidVvnyYyIiIiIiik5uug2nSyqh5E49QRBwz6QB+O+3vkUoXL9wZa0Hy747jFlj+yoXSAw8vgAqaz3s39vCKbpV0OFw4Kc//Slqa+sbqRkMBuTn5yMzMxNA/X8obdq0kXyZzWYIgoBhw4bh888/R9u2bZUMmUhxG/aelpxUqNUImHFDYqqtACDDrnzDRyIiIiIiip7RoEOqTfldEvmZdtw0tLtk7Ostx1DqrL3KFeorr3IjELz6Li5KfoomrubPn4/q6moIgoCf/exn2LZtG1avXo1nnnkm8pxVq1ZJvpYtW4ZOnTph27Zt+Oabb5QMl0hxgWAIn288LBkbM6AzstMSs8/datI3yzJfIiIiIiKSykq1qtKXdvqoAknSLBgKY/6KPc22UXs4LKLU6VI7DJKRoomrjRs3AgD69++PH//4xzAYDI1e06ZNG7z00kvQ6XR45plnUFhYKHeYRKpZs+skKms9kcd6nQbTRhUkbP7MVOUbPRIRERERUex0Wg2yUpXfLWE26nHnjf0kY/tOlmLP8WLFY4mWy+NHjdurdhgkE0UTV6dPn4YgCLj55pulQWiuHUa3bt0wadIkeDwezJ8/X84QiVTj8wexfNMRydj4wV0Ttl/bYtLDYtInZC4iIiIiIpJfeooZBr3y/WmH9W6PHu2zJGPzv90Df6D5bskrrXQhGAqrHQbJQNHE1YWG7Hl5eZJxi8VyxXMuN3z4cADAunXrZIqOSF3fbj+Omjpf5LFRr8WU4T0SNn8Wq62IiIiIiJKKIAjISVf+dXx9o/aBEC7ZqeioqsNXW44qHku0QiER5ZXcMtgSKZq4MhqNAAC9Xlr1kZGREfn+7NmzDV5rtdb/x1pc3HzLE4niVef148vL/gjcNLQ77NbENGRktRURERERUXKymY2wqvBavn1OKm4c3FUytvy7w3BccpBUc1Pt9sHt8asdBiWYoomrnJwcAEBZWZlkvGPHjpF+V2vWrGnw2lOnTgFAs20IR9QUX289hjpvIPLYbNTj5uu7X+OK2LDaioiIiIgoeeWk2yTVT0q5bUxvpFiMkceBYBj/WrlX+UBiUOJ0IRxm3qAlUTRx1b17/Rvxw4elp6ZptVoMGzYMoihi7ty5OHbsmOTnFRUVmD9/PgRBQKdOnZQKl0gRtXU+fLPtuGTslmE9YDU3fnhBNFhtRURERESU3IwGneSkP6VYTAbcMa6vZGzn0fM4dKbsKleoLxAMwVHdfKvCKHaKJq6GDBkCURSxdevWK342e/ZsAIDb7cbs2bPxm9/8Bm+88QZ+97vfYcqUKXA4HACASZMmKRkykey+3HwEPn8w8thmNmDidV2vcUVsWG1FRERERJT8slKt0GiUL7sa1b8jOuenS8YWfLu3WVc1VdZ64PEFGn8iJQVFE1cTJkyAwWBAz549EQ5Lu/1PmjQJY8aMgSiK8Pl8WLRoEV588UV89NFHqKmpAQB07twZ999/v5IhE8mqyuXByh0nJGNTR/aE2ZiYCilWWxERERERtQw6rUaVD6U1goDv3zRAMnaurBrr9pxSPJZoiSJQUlHLVkMthKKJq/bt22PTpk34xz/+AY3myqX//ve/Y8qUKRBF8YqvkSNHYt68eZITCImS3bKNhxEIXkziptlMGD+I1VZERERERHSl9BQT9Dqt4ut2bZuJ4X3aS8YWrzso6dPb3PgCIVTU1KkdBiWATukFbTbbVX9mNpvxt7/9DU888QS2bt2Kqqoq2O12DBkyBD169FAwSiL5OardWLtb+inF9FEFMOgT84fIymorIiIiIqIWRRAEZKdZcN5Rq/jad4zri51HzsMfDAGo79X7+cZDuHNCf8VjiVZFdR1SLEYY9YqnPiiBmuW/vc6dO6Nz585qh0Ekq6UbDiN0yb7wrFQLRg9I3H2fyWorIiIiIqIWx241oaK6Dr5ASNF1M+wWTB7eA0s2HIqMfbv9OMYN6ozcjBRFY4lW/ZZBFzrmpakdCjWBolsFiaheSUUtNu07IxmbcUMv6LSJ+U+S1VZERERERC1XVpo6H1LfMrwH0lPMkcehsIiPVu1TJZZoeXwBVLk8aodBTcDEFZEKlmw4hPAljQLzMmwY0bdDwuZntRURERERUcuVYjHCZFB+A5VRr8Ps8X0lY7uPFePAqVLFY4lFWaUbwVC48SdSs6TKVsEDBw7g4MGDqKyshN/vj/n6xx9/XIaoiJRxrqwaWw8WSsZmju4NbQMHFsSD1VZERERERC1fdpoVhWXViq87rHd7rNxxAieKnJGxf327F7/70YSEvadJtHBYRHmlC/lZdrVDoTgomrgqLi7G448/joMHDzZpHiauKJktXn8Qlx7K2i4nFdf1apew+dUqGyYiIiIiIuVYzQaYjXp4fMqe7CcIAr4/cQD+OG91ZKzIUYN1u09h/ODEnZCeaNVuH+w2P6wmg9qhUIwUTYf+/ve/x4EDByCKYpO+iJLVqfNO7Dp6XjJ225je0AhCQua3mvQwG1ltRURERETUGmSr9KF15zYZGHlZq5PF6w7C7Yl9R5WSSp0u5hSSkKIVV1u2bIEgCLj55pvxy1/+Ejk5OTAYmO2k1mPxOmm1Yef8dAzslp+w+VltRURERETUelhMelhNeri9ylZdAcCscX2x/UgR/P8+3dDl8WPpxkO4e+IAxWOJlj8QQkVNHbLYEzipKFpxZbXW3xyTJk1Cu3btmLSiVuX4uQrsv6xp4e1j+0BgtRUREREREcVJrQ+v01PMmDqip2Rs1Y4TKK6oVSWeaFVUeyLJNkoOiiauxo8fD1EU8d133ym5LFGz8PnGQ5LHPdpnoXennITNz2orIiIiIqLWx2zUw2ZRpyjk5ut7INNuiTwOhUV8tHKvKrFESxRFlDqbd3KNpBRNXP3yl79E9+7dsXDhQnzxxRdKLk2kqtPFldh3UlptdevoXqy2IiIiIiKiJstWaeubQa/F7PF9JWN7T5Rg/8kSVeKJltsbQI3bp3YYFCVFe1ylpqbinXfewezZs/HLX/4SX331VWT7YLQEQcCf//xnmSIkksfnmw5LHndrm4mCDtkJm5/VVkRERERErZfRoEOKxYjaOuWTMUN7tcPKHSdw7FxFZGzBt3vxh4dyoNUoWisTk7JKF6xmfbOOkeopmrg6fvw4HnjgAVRU1N/QK1asiGseJq4omZwrq77iJMHpowpYbUVERERERAmTlWaBy+OD0ofmCYKAuycOwB/fXYULSxdX1GLNzpOYcF03ZYOJQTAUhqOqDrkZNrVDoUYomlp85pln4HA4IIpik76Iksmyy6qtOuWlo2+X3ITNz2orIiIiIiIy6nWwW4yqrN0pPx2j+neUjH22/hBcHr8q8USryuWB16/8iYwUG0Urrnbv3g1BEHDzzTfjl7/8JXJycniyILVoxRW12HbonGQskdVWNrOB1VZERERERASg/kPtmjrlq66A+hPTtx0ugs8fBAC4vX4sWX8Q90waqHwwURJFoKTChU756WqHQtegaMVVamoqAGDSpElo164dk1bU4n3x3RFc+jejXbYdA7rnJ2z+zFRL408iIiIiIqJWQa/TItVmUmXtNJsZ00b0lIyt3nkS5x01qsQTLa8/CGeNR+0w6BoUTVxNmzYNoihiy5YtSi5LpIqyShe+239WMjZtZAE0rLYiIiIiIiKZZKVaErbDI1aTru+OrEs+XA+LIv61cq8qscTCUe1GMBRSOwy6CkUTVz/96U8xfPhwfPrpp/jyyy+VXJpIcV9uPorwJTW6eRk2XFfQLmHzs9qKiIiIiIgup9NqkZ6iTtWVXqfF927sJxnbf7IUe48XqxJPtMJhEaVOt9ph0FUo2uNq69atmDlzJk6fPo2nnnoKX375JazW2BpLC4LAUwWp2XPW1GHD3tOSsakjC6DRsNqKiIiIiIjklWG3oLLWq8rhZkN6tkWP9lk4WuiIjP1r5V707pwLnVbR2pmY1Nb54Pb4YTWzpVFzo2ji6qGHHoqULIqiiBUrVsR0vSiKTFxRUvhy81GEwhf/SGSlWTC8T/uEzZ+VxmorIiIiIiJqmE6rQYbdjIrqOsXXFgQBd08cgD+8szLS77fE6cLqnSdw09DuiscTixKnC53z0xNWcECJoWjiqk2bNkouR6SKapcX6/ackoxNHVEArSYxny7YzAaYDKy2IiIiIiKiq8uwm1FZ60E4rHzVVce8NNwwoBPW7zkdGVuy4RCG9+mAFItR8XiiFQiGUFFTh+y02HaGkbwUTVytWrVKyeWIVPH11qMIBMORx+kpZozq1zFh87O3FRERERERNUarqa+6clQpX3UFALeP7YNth87B6w8CAOq8AXy2/iDuu3mQKvFEy1lTB7vVCKNe0XQJXUPz3WBKlIRq63xYvfOkZGzK8B4J28ttMenZ24qIiIiIiKKSkWKBVqvOtrdUqwnTRxVIxtbsOomi8hpV4omWKAKlTpfaYdAlmLgiSqAV247DF7h4jGqq1YTRAzonbP5MO6utiIiIiIgoOhqNoOp7iInXdZNsuxNF4JPV+1SLJ1p13gBq3F61w6B/Y+KKKEHqvH6s3HFcMnbzsO4w6LUJmd+o1/KECyIiIiIiikmazazaaX56nRbfu7GfZGzviRIcPF2mSjyxKK10IRQON/5Ekp2id2+vXr2u+OrduzfOnz+vZBhEsvh2+wl4fMHIY5vZgPGDuiRs/gxWWxERERERUYw0GkHVPrmDe7RB93aZkrGPV+1DWFS+aXwsQiER5VVutcMgKJy4EkWxwS+iZOfxBbBim7TaatL13WE0JKahn16ngd3afE/fICIiIiKi5ivNZoJel5idILESBAHfu7G/ZOxsaRU27z+rSjyxqKr1wuMLqB1Gq6dom3ytVotwOIwpU6agc+eLfX/sdruSYRAl3JpdJ+H2+iOPLSY9JgzpmrD501PMEAR1mioSEREREVFyEwQBWakWFFfUqrJ+17YZuL5XO2w9dC4ytnDtAVxX0C5hrVXkUlJRi0756Xw/piJFE1cZGRlwOBwYPnw4Zs+ereTSRLLxBYL4essxydjEId0SdvqfRiMg1WZKyFxERERERNQ62a1GVNTUwX/JYVJKmjWuL3YePY9gqL5vVGWtByu2HcPUkQWNXKkuXyAEZ41H1e2WrZ2iWwUHDx4MAPj2229jvra6uhrbtm3Dtm3bEh0WUZOs230KNXW+yGOjQYeJQ7slbP50mwlaDc9RICIiIiKi+NVXXVkbf6JMstOsuPGyXSnLvzsieS/VXDmq6+ALBBt/IslC0XfDP/zhDyEIAtatW4cvv/wypmt37dqF++67D/fff79M0RHFLhAM4cvNRyVjNw7uAluCTv8TBCDdbk7IXERERERE1LrZrUYYVdyaN21kAaymiztTvP4glq4/qFo80RJFESUVLrXDaLUUTVwNGDAAv//97yEIAn71q1/hww8/jHkONnOn5mTD3jOocnkjjw06LW6+vnvC5rdbTdBpm/eebyIiIiIiSh5ZaepVXdnMBkwf1UsytmbXKdV6b8XC4wugyuVRO4xWSfH9R7Nnz8brr7+OnJwc/OlPf8Ltt9+OL7/8EoEAO/VTcgmGwvhi8xHJ2NhBnWG3Jq4fVQarrYiIiIiIKIFSLEaYjIq2u5YYP7gLstIu9osKiyI+XbNftXhiUVbpRjCkTo+w1kzRu/X06dMoLi5GeXk5brnlFnz44Yc4dOgQfvGLX8Bms6GgoOCqnfqrqqqUDJWoUd/tPYWK6rrIY51Wg1uG9UjY/DazAUa9en9QiIiIiIioZcpOtaKwrFqVtfU6Le4Y1w+vf7YlMrbr6HkcLXSgR/ssVWKKVjgsosTpQrvsVLVDaVUUfVd8yy23XDUx5XK5sH37diXDIYpbKBzG0vXSTwVG9++E9JTEVUhl2HlqBRERERERJZ7VbIDFpEedV52dT0ML2uKbNhk4ed4ZGfto5V785v7x0FwlZ9BcuOr8qHH7YLca1Q6l1VDlqDJRFOP6ImouNu45iVLnxX3YWo2AySMSV21lMupguaRpIRERERERUSKpecKgIAi4c0I/ydip4kpsO3ROpYhiU1bpQigcVjuMVkOVfUhvvPEGxo4dG9M1q1evxpw5c2SKiCh64bCIT1fukoyN6Nsxob/4M1JYbUVERERERPKxmPSwmvRwq1R11b1dFob0bIMdR85Hxhau2Y/BPdpAr2veB1QFQ2GUVbqRn5midiitgioVV/G42hZDIqWt2XkMZ0srI48FAZg6omfC5tfrtCw7JSIiIiIi2WWnq1d1BQB3jOsLrebie31HdR1W7jihYkTRq3Z54fb61Q6jVVA0cTV06FBcd911SEtLi/natLS0yPVEahFFEXM/3ywZG9a7PXIzbAlbgycJEhERERGREkwGPWwWg2rr52akYNygLpKxZZsOw1XnUymi2JRUuBAOs62R3BTdKvj+++/Hfe3AgQObdD1RImzafxZHzpRFHgsApo4sSNj8Wq2AVKspYfMRERERERFdS3aqFa469SqHZtzQC5v2n4HHFwQA1HkD+HzTYdw9cYBqMUUrEAyhotqN7PTEFTLQlZJmqyBRc3B5s8AhBW3RNsuesPnTU8zQaLgtloiIiIiIlGE06FRtVZJiMWLqCGkxwKodJ1BW6VIpotg4az3w+tXpE9ZaMHFFFIM2lySpdFoNpo/qlbC5BUFAmo3bBImIiIiISFlZqVao2VZ64nXdkGm/eEBVKCzi0zX71QsoBqJYv2VQFLllUC6qnCrY0rlcLsybNw8rVqxAYWEhwuEw2rZtiwkTJuD+++9HRkaGYrHs27cPixYtwpYtW1BcXAxRFJGZmYmBAwdi+vTpGDdunGKxtAS3jemNELTYfbQII/p1Qvuc1ITNnWYzQadlLpmIiIiIiJRl0Gtht5pQ7fKqtv7tY/vgn59vi4xtP1yE4+cq0K1dpioxxcLrD6Ky1oMMO0+Hl4MgMi2YUCdOnMDDDz+MoqKiBn+elZWF1157Df3795c1jpqaGvz2t7/FV199dc3njRkzBn//+99hsaj7H5jfUwtRDKsaQ7T0JhuKymtQ465D0OdJyJyCAHTOz4BB37yPfSVl6U02aDRahMMhBLzJUSpNyYf3GSmB9xkphfcaKaGl3meBYAgnzzuhVoYgLIr447urcKakKjLWrW0mfn3fWAhqloNFSRAEdM5PT+h7umS81wRBA4M5JaFzNovyDr/fj1OnTmHv3r04cOAASkpKEAgk3x5Rl8uFRx55BEVFRdDr9Xj66aexdu1abNmyBa+88go6dOgAh8OBOXPmoLy8XNZY5s6di6+++gppaWl4/PHHsWjRImzduhXr1q3D3LlzI5VW69atw69+9StZY6HG2cxGJq2IiIiIiEg1ep1W1dYlGkHA927sJxk7XlSBHUfOqxRRbERRRImzVu0wWiTVtgo6nU58+umn+PLLL3Hs2DGEQiHJz/V6PYYOHYqJEydi1qxZMBjUO6IzWm+//TbOnatv3v3cc89hypQpkZ9NnDgRLpcL//Ef/wGHw4FXX30V//M//yNbLE8++SRycnJwyy23SLYmpqamIjc3F6NGjcLvfvc7LFiwACtWrMDRo0fRo0cP2eKha8tMZW8rIiIiIiJSV2aqGVUur2r9mnp1zMHAbvnYfbw4Mvbpmn0Y2D0/Kdqq1HkDqHJ52Ls4wVT5N7948WLccssteOGFF3D48GEEg0GIoij58vv92LRpE/7whz9g2rRp2LRpkxqhRi0UCmHBggUAgEGDBkmSVhd+/sYbb0QeL1q0CB5PYraZNUQQBHz/+9+/Zj+tu+66K/L9iRMnZIuFrs1i0sNk0KsdBhERERERtXI6rRbpKSZVY7hjfF9oLtkaWFbpxuqdJ1WMKDZllW4ELyvMoaZRPHH13nvv4T//8z9RW1sbSVJdaBY+atQojBo1CgMHDkRGRkbk52fPnsWjjz6K9evXKx1u1Hbu3InKykoAwOTJk6/4+cKFC3Hy5EnMmjULAOD1erFhwwZFY7yc3++PfJ+Tk6NiJK1bJhv4ERERERFRM5Fht0CjUa+nVJssO8YM7CQZW7rhEOq8/oYvaGbCYRGlTrfaYbQoim4VPH36NP73f/8XoijCYDDg/vvvx+zZs9GhQ4cGn3/mzBl8/PHHeP/99+H3+/Hkk0/iyy+/RG5urpJhR2X//otHdQ4aNEjyM4/Hg5deegkDBgzAk08+iYULF0auuemmmxSN81Lz5s0DAHTv3h2DBw9WLY7WzKjXwmpu/ttgiYiIiIioddBpNUhPMaOiuk61GG4d3RvfHSiEzx8EALi9fiz/7ghmj+/XyJXNQ22dD7V1PqRYjGqH0iIomrhasGABAoEAdDod3nrrLVx//fXXfH7Hjh3x9NNPY/To0fjRj34Ej8eDDz74AE899ZRCEUfv5MmLpYvt2rWT/GzevHkoKyvD888/j9zcXOh0OgSDQck1cguHwwgEAnC73Th48CDeffddrF+/Hm3atMHf//531U9p0BmTp+pIEOoLFQVooDM2be9yTlYq9Cbuf6aGRe41QQO9yaZyNNRS8T4jJfA+I6XwXiMltIb7LDfHApffgVBYnZPfM41mTBvVBwtX74mMfbvtOG4a3htZacnx/3mFO4zUNAu0mvg3urWGey0aiiauNm7cCEEQcOuttzaatLrU8OHDMWPGDCxevBhr165tlokrp9MZ+T49PT3yfWVlJd566y2MGTMGw4YNAwDY7XY4nc7I1kIlLF26FP/xH/8ReZyZmYknnngCP/jBD2C32xWL42o0muQ7UU8QBAiIP26dTov0FKvqSUNq/gRBgCAk338jlFx4n5ESeJ+RUnivkRJa8n2m0WiRlZaC8kqXajFMGdkXq7YfRWVtfW/oQCiMT1ftxU9mjVYtpliEw4CjyoP8rKa/327J91o0FE1clZaWAkAkgROL4cOHY/HixSgsLEx0WAAQUyLJbrcjOztbMnah0brBYJAkIl5//XW4XC5Jsu3CCYl1dcqVXp46dUryuKKiAu+//z7cbjeeeOIJWCzqVjyFw8nTvO5C1lsURYiI/xOINJsFohiGSgd2UBIQBA0EQfh3vz91Pu2ilo/3GSmB9xkphfcaKaG13GdpNhMqql2qNRrX6wXcceNA/HPJd5Gx7/aexJSRvdAhL/0aVzYfzppapFj0sJjiaw+TrPdaogtTFE1ceb1eAIDRGPs+T5Op/mSDsEylih9++CFefvnlqJ57xx134JlnnmnwZ5pLygCLioowf/58TJs2DQUFBZFxuf4ZruXnP/85fv7zn8PtduPcuXNYtmwZPvjgA8ydOxcbNmzAggULYLOpV3oY9NUlzX+IF0o0RYQR9MV3MqRGI8CqtyDgVe8TDGr+9CYbBEELUQzzXiHZ8D4jJfA+I6XwXiMltKb7zG4Eyirje8+TCMMK8vHlJjvOldcAAEQAH32zHT+/8wbVYorVufMl6JSfHtdOm2S81wRBA4M5JaFzKnqq4IUqpWPHjsV87fHjxwHUb3Frji5ULAUCgcjYiy++CFEU8eSTT0qe6/P5JNcoyWq1omfPnnjqqacwd+5caDQaHD16FC+++KLisbRm6TZTk/Y6ExERERERyS09xQS9Tr33LRqNgFnj+krG9p0sxZGz5SpFFDtfIARnjXrJv5ZA0TtwwIABEEURn3zyCVyu6LOFLpcLn3zyCQRBwIABA2SJ7YknnsCRI0ei+mqo2iojIwMAEAqFUFtbi8OHD2PZsmW466670L59+8jzAoEAamtrJdeoZdCgQRgyZAgAYPHixarG0poIApBuZ0N2IiIiIiJq3gRBQGaqum1l+nfNQ4/2WZKxT1bvh5hEPVcc1XUIBJOnPU5zo2jiavbs2QCAsrIy3H///ZEqqms5ceIEHnzwQZSUlAAAZsyYIWuM8erSpUvk+6KiIjz//PMwm834yU9+InlecXFxZKtg586dFY2xIZ06dQJQnxy8tME8ycduMUKnbb2N9YiIiIiIKHmkWk3Q69R7/yIIAu64rOrq5Hkndh49r1JEsRNFEaXO5Njq1xwp2uNq5MiRuP3227Fo0SIcPHgQM2bMwIABAzBkyBB06NAh0mPJ7XajsLAQO3bswO7duyOJnrFjx2L8+PFKhhy1vn0v/oc0b948rF+/Hk888cQVVVU7d+6MfN+vXz/F4ruaC33HBEGA1WpVOZrWgdVWRERERESULARBQFaqBcUVtarF0K1dJgZ1z8euY8WRsUVrD2Bg9/ykacHi8vhRW+dDiiX2nt+tnaKJKwD405/+BJ/Ph+XLl0MURezevRu7d+++6vMvlP+NGjWqWfdhGjRoENLT01FZWYlFixYhMzMTDz744BXP++qrrwDUN5sfNWpUo/OKooi///3v+PjjjyEIAu666y488cQTCYk5FAphx44dAICOHTvG1TSfYmMy6mAy6NUOg4iIiIiIKGqpNhMqaurgD6i33e32sX2x+3hx5FT24opabNx3BmMGqL+TKVpllS5YTQZoNLE3am/NFE9NajQa/N///R9ee+01FBQU/PtYx6t/de3aFX/+85/x9ttvR04WbI60Wi3uvvvuyOMHHnjgigqmTZs2Yc2aNQCAWbNmwWxuvPJmyZIleO2111BRUQGHw4GXX34ZS5cubfS6f/7zn7jvvvtQVVV11ee89tprOH++vrzynnvuaXROarqMFFZbERERERFR8slKVXeHTttsO0b27SgZW7L+kKrJtFgFgmE4qt1qh5F0FK+4umD8+PEYP348zp8/j02bNqGkpAROpxOhUAh2ux0dOnRA//790bNnT7VCjNmPfvQjLF26FOfOncOHH36Idu3aYfjw4QiHw1ixYgWee+45iKKIrKwszJkzJ6o59+3bd8XYnj17rtnr6/Dhw3j55Zfh9Xpx880347777sP48ePRvn17hEIhHDlyBPPnz8fXX38NABg+fLgk6Uby0Gk1LAslIiIiIqKkZLca4azRwesPqhbDzNG9seVgIYKh+nZClbUerNp5ArcM66FaTLGqrPUg1WqC0aBaOibpCGIyteJPAidOnMDDDz+MoqKiBn+elZWF1157Df37949qviVLluBXv/qVZOz555/H9OnTr3ndjh078J//+Z84ffr0NZ83bdo0/P73v4/0F1OL31MLUQyrGkO09CYbisprUOOuQ9AX/bGmmakWZKexjxhFT2+yQaPRIhwOIeBlM0eSB+8zUgLvM1IK7zVSQmu+z9wePwrLqlWN4V8r9+Kbrccij60mPZ6dcwssJoOKUcXG1OhVTAAAVfVJREFUZNShU156o89LxntNEDQwmFMSOidTfAnWtWtXLF26FPPmzcM333yDwsJCiKKINm3aYMKECXjggQeuaNh+LTNmzMCpU6fw0UcfQRAE3H333Y0mrQBgyJAh+OKLL/DFF19g1apV2Lt3LxwOB3Q6HXJzczFkyBDceuutuO6665ryj0tREgQgPaX5bnUlIiIiIiJqjNVsgNWkh9sbUC2GaSN6Yv2eU/D46iu/3N4Avtx8FLMuO3mwOfP6gqis9SCdrWSiwoorahZaesVVisWIttl2mSOjliYZP2Gh5MP7jJTA+4yUwnuNlNDa7zOvP4DTxVWqxvD5xsNYvO5A5LFBp8VffnxzUiWCNBoBXdpkQKe9euvxZLzX5Ki4SnhzdpfLhZ07dyZ6WqKklsZqKyIiIiIiagFMBr3qvXsnDe2GVOvF91j+YAifbzykYkSxC4dFlFUmRzJKbQlPXK1atQr33HMP7r333kRPTZSUjHotrEm035qIiIiIiOhastOsEAT11jcadJhxQ4FkbN3u0yipqFUpovjUuH1we/1qh9HsJTxx9e2330IURdjtDW+LCgaDCIeTY0sYUSKkJVG5KhERERERUWMMei1SberuKhk9oDNy0i8efhUWRSy6ZPtgsih1usAOTteW8MTV/v37IQgChgwZ0uDPN2zYgP79+2PixImJXpqo2dFoBEkJKxERERERUUuQlWqBoGLZlU6rwe1j+kjGth8uwqniSpUiio8/EEJFTZ3aYTRrCU9cVVRUAABycnKu+pxgMIiioqJEL03U7KRaTdBoVKyhJSIiIiIikoFOq0WGyr18r+vVDh3z0iRjn67Zp04wTVBR7YE/EFI7jGYr4YmrC3Q6nVxTEyWNZDrVgoiIiIiIKBYZqRZotep9UK8RBNwxrq9k7NDpchw4VapSRPERRRGlzuTqz6WkhCeusrKyAADnzp1L9NREScVq0sOg16odBhERERERkSy0Gg0y7RZVY+jdKQe9OmZLxj5dsx/hJOsb5fYGUOP2qR1Gs5TwxNXAgQMhiiIWL17MJuzUqqXbWW1FREREREQtW5rNDL1Ots1cjRIaqLo6U1KF7YeSr5imrNKFEPMoV0j4fr5bb70Vy5cvx6lTp3DvvffizjvvRJs2bSI/P3r0aOT77du3x9U9f+jQoQmJlUguep0WNrNR7TCIiIiIiIhkpdEIyEy1oKTCpVoMndtk4LqCtth++GIv7UXrDmBwz7bQadVLqsUqGArDUVWH3Ayb2qE0KwlPXI0ZMwbjx4/H6tWrsWvXLuzatavB54miiPvuuy/m+QVBwMGDB5saJpGs0lVuUkhERERERKSUVKsJzhp1G4zfPqYPdh45H9kiWFbpxvo9pzB+cFfVYopHZa0HqTYjTAa92qE0G7KkHl988UVMnjwZoig2+HXB1X7e2BdRcyYIAlJtTFwREREREVHrIAgCstOsqsaQl5mC0QM6ScaWbjgMnz+oTkBNoGb1WnMky9F/RqMRL7zwAn7yk59g165dKCsri/zs1KlTWL58OQRBwGOPPSbH8kSqsluN0GqSpxyViIiIiIioqVIsRpiMOnh96iWKZtzQC9/tPwt/sL7yq9rtxYrtxzFtZIFqMcXD6w/CWeNBrolbBgGZElcXdO/eHd27d5eMrVmzBsuXLwcAPP7443IuT6SKjBQ2ZSciIiIiotYnO82KwtJq1dZPTzFj4tBu+OK7I5GxLzcfwbiBnWGzJFcPYke1G5kZGTAYeFI9y0KIEshs1MNokDUfTERERERE1CxZTQbYzAZVY5gyvAespov9oTy+IJZfkshKFuGwCGdtndphNAtMXBElUDqrrYiIiIiIqBVTu9eVxWTAlBE9JWMrd5xARXXyJYHCYfb4BlRIXOXl5eG2227DzJkzlV6aSFY6rQYpFnU/XSAiIiIiIlKT0aCD3arutrwJQ7pJigqCoTCWbDioYkTUFIonrgoKCvCXv/wFf/nLX5RemkhWaSkmCIKgdhhERERERESqykq1Qs23Rga9FreO7iUZ27jvDM47alSKiJqCWwWJEkAQgDSbSe0wiIiIiIiIVGfQa5FmU7eNyqh+HZGfmRJ5LIrAZ+tZdZWMmLgiSoAUixE6LU97ICIiIiIiAoDMVIuqO1K0Gg1uG9NHMrb9cBHOlFSpExDFjYkrogRgU3YiIiIiIqKLdFoNMuzqvk8a3LMNOuSmScY+W39AnWAobkxcETWRyaCD2ahv/IlEREREREStSIbdDK1WvaorjSDg9jG9JWN7jpfgRFGFShFRPHRKLvaDH/zgijFBEPC3v/0NmZmZSoZClDCstiIiIiIiIrqSVqNBpt2KskqXajH065qHrm0zcKLIGRlbtO4Anr57jGoxUWwUTVxt3boVgiBAFMXImCAI8Pl8SoZBlDBarYAUi7pHvRIRERERETVX6SkmVNZ6EAiGVFlfEATcPrYP/nf++sjYodPlOHSmDL065qgSE8VG0cTVhcZs3bt3R1paWmTcaOQbf0pOaVYTNBoVz3klIiIiIiJqxgRBQHaaBecdtarF0KtjDnp1zMahM+WRscVrD6LgvmxVG8hTdBRNXNntdtTU1OCRRx7B9OnTlVyaSBZp3CZIRERERER0TXarCRXVdfAF1Km6AoDbx/bBM++tiTw+XlSBfSdK0L9bvmoxUXQUbc5eUFAAoH7LIFGyS7GYoNdp1Q6DiIiIiIio2ctJt6m6fte2mRjQLU8ytmjdQUkrI2qeFE1czZ49G6IoYsmSJTh27FhM165Zswa9evVC7969G38ykQJYbUVERERERBQdq9kAq0nd09hvG9NH8vhsaRV2HDmvUjQULUUTV9OmTcNtt90Gv9+Phx9+GIcOHYrpelEUmQ2lZsFk0MFmZm82IiIiIiKiaKldddUhNw3XFbSVjH22/gDCYeYZmjNFE1cA8Je//AUPP/wwHA4HZs+ejb/+9a8oLS1VOgyiJklLsagdAhERERERUVIxGnRItapbADBzdG9c2o/9vKMWWw4WqhcQNUrR5uwAEAwG8b3vfQ85OTn4v//7P8ybNw8ffPABhg8fjoEDB171utOnTysWI1Fj9DotwmH1GgsSERERERElo+x0K2rq/KrtpmqTZceIPh2waf/ZyNiS9QcxtFc76LSK1/ZQFBRNXI0ePRoVFRVX3KDBYBAbN27Exo0blQyHiIiIiIiIiBSk02qRYTejorpOtRhm3NALWw4WIvTvLYJlVW5s3HcGYwd2Vi0mujpF04nl5eUIh8ORXlWX9qy6fKyhLyIiIiIiIiJKbhl2M7RaofEnyiQn3YbRAzpJxpZuOIRAkLtqmiPFtwoKgoCf//zn19wW2JDdu3fjb3/7mzxBEREREREREZEitBoNslKtKHW6VIth2sgCbNh7BsFQGABQWevBml2ncNPQbqrFRA1TPHEFAD179sT1118f0zV1deqVERIRERERERFR4qTZTKis9cAfUKfKKcNuwfjBXbBi2/HI2PLvDmPMgE4wGlRJldBVKN55jFv+iIiIiIiIiFo3QRCQnWZVNYYpI3rCoNdGHte4fVi544SKEVFDFE0jHj58OO5rx40b16TriYiIiIiIiKj5SLEYYTHpUecNqLJ+qtWEm67rhuXfHYmMfbn5CMYN6gKLSa9KTHQlnvVIRERERERERKrISVe36urmYT1gNl6s6XF7A/hm2zEVI6LLMXFFRERERERERKowGfSwW42qrW8zG3Dz9T0kY99sPQZXnU+liOhyTFwRERERERERkWqy06wQBPXWv2loN9jMhshjrz+IL7ccVS8gkmDiioiIiIiIiIhUo9dpkZ5iVm19s1GPKSN6SsZWbj+BapdXpYjoUkxcEREREREREZGqMlMt0GrVK7saP7gLUq2myGN/MIRlm3hAXHOg6KmClztx4gRWrFiB/fv3o6SkBLW1tQiHw1ixYsUVz/X7/TAYDA3MQkRERERERETJTKvRINNuRVmlS5X1jXodpo0qwIff7I6Mrd19CrcM64HMVIsqMVE9VRJXhYWF+P3vf4+NGzdGxkRRBAAIDWxsPXr0KJ566incdddduOeeexSLk4iIiIiIiIiUkZ5iQmWtB4FgSJX1xwzohK82H0VFTR0AIBgK4/ONh/DAlCGqxEP1FN8quHfvXsyaNQsbN26EKIrQarXo2rUrunbtetVrFi5ciGPHjuHFF1+E2+1WMFoiIiIiIiIiUoIgCMhOs6q2vl6nxYwbeknGNuw9g1KnOlVgVE/RxFVtbS3mzJmDmpoa2O12/P73v8e2bduwbNkyPP3001e9bs6cOTCbzXC5XFiyZImCERMRERERERGRUuxWI8xGvWrrj+zXAbnptsjjsChiyYaDqsVDCieu5s2bh4qKCphMJrz33nu48847YTY3fnJAWloaJk2aBFEUsW7dOgUiJSIiIiIiIiI15KSrV3Wl1Whw6+jekrEtBwpRVF6jUkSkaOJq1apVEAQBt99+O3r27Nn4BZcYPHgwAODQoUNyhEZEREREREREzYDZqEeKxaja+tf3boe22fbIYxHAZ+sPqBZPa6do4qqwsBAAcN1118V8bWZmJgDA6XQmNCYiIiIiIiIial6y06xo4Ow2RWgEAbeNkVZd7ThyHqeLK9UJqJVTNHHl8/nqF9XEvqzLVd8MTadT5SBEIiIiIiIiIlKIQa9Fmq3x1kJyGdS9DTrlpUvGFq9j1ZUaFE1c5eXlAQAOHoy9sdmWLVsAAO3atUtoTERERERERETU/GSmWqDRqFN2JQgCbh8rrbrad7IUx845VImnNVM0cTV8+HCIoohPPvkE1dXVUV934sQJLFu2DIIgYMSIETJGSERERERERETNgU6rQVaqRbX1+3TORfd2mZKxxWsPQhRFlSJqnRRNXN17773QarWoqqrCo48+irKyskavOXHiBObMmYNAIACtVou77rpLgUiJiIiIiIiISG3pKWbodYqmLiLqq676SMYOny3HoTPlqsTTWinaMKpHjx74xS9+gf/93//Fnj17cNNNN2H8+PHo168fiouLI8/7/PPP4XA4sG3bNqxbtw6hUAiCIOCXv/wlunTpomTIRERERERERKQSQRCQnWbFeUetKuv37JCNPp1ycOD0xcKbRWsPoFfHbAhqdY9vZRTvdP6jH/0IXq8Xr776Knw+H77++mt8/fXXABD5l/6rX/0q8nxRFKHRaPDoo4/igQceUDpcIiIiIiIiIlKR3WpCeVUdAsGQKuvfNraPJHF18rwTe46XYGD3fFXiaW1Uqbd77LHH8Omnn2LkyJHQaDQQRbHBLwC47rrrsGDBAjz55JNqhEpEREREREREKktPUe+EwS5tMq5IUi1edwBh9rpShOIVVxf06tULc+fORWVlJdavX49z586hoqICAJCZmYk2bdrghhtuQFZWllohEhEREREREVEzkGYzwVHtRjisTrLotjF9sPvYxRZHhWXV2HG4CEN7tVMlntZEtcTVBenp6ZgxY4baYRARERERERFRM6XRCEi3mVBR41Fl/fY5qbi+VztsPXQuMvbZ+oMY0rMtNBr2upKTOq35iYiIiIiIiIhikG43Q81+6LeO7i1Zv7iiFt8dOKteQK0EE1dERERERERE1OzptFqkWIyqrZ+fmYKRfTtKxpZsOIhgKKxSRK2Doomr8vJyHDhwAHv37kVRUZGSSxMRERERERFRksuwq9ekHQBuvaEXtJdsDXRU1WHD3tPqBdQKyN7jShRFzJ8/Hx988AFOnz4t+VlmZiZmzZqFRx55BFarVe5QiIiIiIiIiCiJmQx6WEx61HkDqqyflWbFmAGdsXrXycjY5xsPY1S/jtDrtKrE1NLJWnEVDAYxZ84c/OlPf8Lp06chiqLky+Fw4M0338R9992HqqoqOUMhIiIiIiIiohYgPUXdqqtpowqg111Mp1TWerB658lrXEFNIWvi6h//+AfWrFkDoL7yKiUlBQUFBejbty+ysrIi44cOHcJjjz0mZyhERERERERE1AKkWIyqVjelp5gxfnBXydjy747A6w+qFFHLJlviyuFw4N1334UgCLBarXjuueewefNmfPbZZ/j000+xYcMG/Otf/0K/fv0giiJ27tyJb7/9Vq5wiIiIiIiIiKiFULvX1ZQRPWHUX0ye1db5sHL7cRUjarlkS1wtW7YMfr8fAPD6669jxowZ0GqlGdGBAwdi3rx5aNeuHQDg448/liscIiIiIiIiImohUq0maLVC40+Uid1ixE1Du0vGvtxyFHVev0oRtVyyJa62bt0KABg5ciSuu+66qz7PYrHgwQcfhCiK2LFjB8JhHiNJRERERERERFen0QhIs5pUjeGWYd1hMekjj+u8AXy99ZiKEbVMsiWujh07BkEQMGrUqEafO3z4cABAXV0dCgsL5QqJiIiIiIiIiFqIdLsZgnpFV7CYDLhlWA/J2DfbjqOmzqdSRC2TbImryspKAEBeXl6jz83Pz498z9MFiYiIiIiIiKgxOq0WdotR1RgmXtcNKZfE4PMH8dXmIypG1PLIlrhyu90AAKvV2uhzLRZL5Puamhq5QiIiIiIiIiKiFiTDbmn8STIyGXSYOqKnZGzljhOorPWoFFHLI1viShTFuK5jjysiIiIiIiIiiobRoJP0mVLDuEFdkGa72G8rEAxj+abDKkbUssiWuCIiIiIiIiIikluG3azq+ga9FtNH9ZKMrd19Co4qt0oRtSw6uReYN28evvrqq4Q9XxAE/PnPf05EaERERERERESU5GxmIwx6LfyBkGoxjB7QCV9uPgJHdR0AIBQWsXTjYfxw6hDVYmopZE9cfffdd1E9T/j3UQDRPJ+JKyIiIiIiIiK6ID3FjFKnS7X1dVoNbr2hN95evj0ytmnfGUwZ3gN5mSmqxdUSyLpVUBTFhH8REREREREREV0q1WqCViuoGsPwvu2Rl2GLPA6LIpZsOKRiRC2DbBVX7733nlxTU5xcLhfuuusuTJ06Fffccw/sdrvaIRERERERERE1mUYjIM1mRsW/t+qpQavRYOaYPnj9sy2Rsa0HCzF1RE+0y0lVLa5kJ1vi6vrrr5dr6mbP5XJh3rx5WLFiBQoLCxEOh9G2bVtMmDAB999/PzIyMlSJa+HChTh27BheffVV3HnnnarEQERERERERCSH9BQTnDV1UHOz1nUFbdE+JxWFZdUAABHA4nUH8MQdI9ULKsnxVMEEO3HiBGbMmIF//OMfOHToEFwuF+rq6nDs2DG8/vrrmD59Ovbu3at4XKIo4sMPPwQA3HLLLaolz4iIiIiIiIjkoNNqYbcYVY1BIwi4bUxvydiuY8U4U1KlTkAtABNXCeRyufDII4+gqKgIer0eTz/9NNauXYstW7bglVdeQYcOHeBwODBnzhyUl5crGtvatWtx5swZAMC9996r6NpERERERERESsiwW9QOAQO65aNzfrpkbNmmwypFk/yYuEqgt99+G+fOnQMAPPfcc3jooYeQl5eHtLQ0TJw4EY899hgAwOFw4NVXX1U0tvfffx8A0KdPHwwYMEDRtYmIiIiIiIiUYDToYDXpVY1BEATcekMvydiOI0UoKq9RKaLkxsRVgoRCISxYsAAAMGjQIEyZMuWKn7/xxhuRx4sWLYLH41EktpMnT2Ljxo0AgHvuuUeRNYmIiIiIiIjU0Byqrvp1zUOH3DTJ2HJWXcWFiasE2blzJyorKwEAkydPvuLnCxcuxMmTJzFr1iwAgNfrxYYNGxSJ7YMPPoAoikhLS8O0adMUWZOIiIiIiIhIDVaz4f+3d+fhUZX3+8fvmWSykYQkJIIEBEQCVgigBYRQqCwCGmVrKyooAXFpxGpFqf1Zrf1a64IWhBZE0YZVUCIgILIjEAQRqiKrUCCENQQkQ/bk/P6IOSZkmySTmQl5v66Ly5NznvPkk+FjhbvPeY58bV5urcFiseiumHYlzm3fl6wzaeluqqjuIrhykj179pjHnTt3LnEtMzNTU6dOVceOHfWHP/yhzHtqi91u1yeffCJJGj58uHx93btRHQAAAAAAtS002N/dJahzVFNFhgebXxuGtGLbATdWVDcRXDnJkSNHzONmzZqVuJaQkKCzZ8/q6aefVuPGjeXt7V3qntry8ccfKyMjQ1arVffdd1+Ja23btlXbtm21ffv2Wq8DAAAAAABXCQ7wk5eXxa01WC0W3dmj5KqrbXuOK/XiZTdVVDd5u7uAq0VaWpp5HBr689sDLly4oPfee0+9evVSt27dJEnBwcFKS0szHy2sLYZhaP78+ZKk3r17lwrUPIm3r/ufQXaUxWI1/2nzC3RzNbia0WtwBfoMrkCfwVXoNbgCfVZ3RDSyKPVHu1tr6NHpBi3dss98RDC/wNCqrw5rdGy3Su+l1woRXP2kKkFScHCwIiIiSpwr2mjdx8dHFsvPqe6MGTNkt9v19NNPm+d8fHwkSRkZGTUtu0KbNm3SsWPHJHn+puxWq3ufP64Oi8Uii6Xu1Y26h16DK9BncAX6DK5Cr8EV6DPP1ygkSBfSs2QYhttqsHp5aXCvaM1cstU898XuwxrSu6PCghtUeG9RtlDfe43g6ifz5s3TtGnTHBr7m9/8Rn//+9/LvGa1/vz0ZUpKiubPn6/Y2Fi1a/fz8sCCgoKaFeugOXPmSJJatmypnj17uuR7VldBQb67S3CYxWKVxWKRYRgyDNf8XqJ+otfgCvQZXIE+g6vQa3AF+qzusFqkoACbLtoz3VrHrR1aKHHjf81HBPPyC7R8yx6NHPTLCu8rCtzqWq85e2EKwZWTBAQUPuqWm5trnps8ebIMwyixIbskZWdnl7inNhw+fFhbtxYmuvfee2+JVWCeKC87o878i2jzC5TF4iXDKFBulnuXneLqRq/BFegzuAJ9Bleh1+AK9FndEuRrKPW8e4MrSbrj1ijNXrXb/Hrj14c0qFtrNWzgV+49hhHw0z/rTq9ZLFb5+Ac5dU6Cq5+MHz9e48ePr/b9YWFhkqT8/Hylp6crJSVFy5cv1/3336/mzZub43Jzc5Wenl7intowd+5cGYYhf39/DRs2rNa+DwAAAAAAnsrX5q1Afx/ZM3PcWkdMhxb6dOt+XUgvDNFy8vK1esch/fa2Dm6tqy4guHKS66+/3jxOSUnRpEmT5O/vr9///vclxp06dcp8VLBVq1a1Vs8XX3whqXDvrS5dulQ49oEHHpAkRUZGav369bVWEwAAAAAArhYa7O/24Mrm7aWB3aK0YO035rn1u45oULcoBQb4urEyz2etfAgc0b59e/M4ISFBmzdv1pgxY0qtqtq1a5d53KFD7SWr7tx8DgAAAAAAT9HAz0d+Pu5ft9O7UysFFwupsnPytHbnYTdWVDe4/3fuKtG5c2eFhobqwoULSkxMVKNGjRQXF1dq3KpVqyRJfn5+iomJqXRewzA0ZcoULVq0SBaLRSNGjHDokcZVq1ZVGF599dVXGjt2rCRp1qxZ6tKli8fvgwUAAAAAQHWEBQfoZOolt9bgY/PSgG5t9NGGPea5NTt/0O1d2yjAz+bGyjwbK66cxMvLS/fee6/59ejRo9WgQclXWyYlJWnjxo2SpOHDh8vf37/SeZcuXarp06fr/PnzSk1N1bRp07Rs2bJK7/Px8ZGvr2+5v2y2n/+lsNls8vX1lY+Pj4M/LQAAAAAAdUdQgI9s3s592111/Lrz9Wrg9/PfvTOzc7V+F6uuKkJw5URjx45Vs2bNJEnz5s3TypUrlZaWptTUVC1YsEDx8fEyDEPh4eF67LHHHJrzu+++K3Xum2++KWMkAAAAAAAoi8ViUWhQ5YtHapu/r023d72hxLnVOw4pKyfPTRV5Ph4VdKLAwEDNnDlT48aNU0pKip566qlSY8LDwzV9+nRFREQ4NGd0dHSpc506dappqQAAAAAA1CshgX46f+my8vPduyd031taa9X2g8rMLgyr7Jk52rj7iAZ2i3JrXZ6KFVdO1rp1ay1btkxPPPGE2rVrpwYNGiggIEA33HCDHnnkEX366adlhlHlufvuu/XYY48pLCxMjRo10uOPP6677rqrFn8CAAAAAACuPlarRSGB7l91FeDno763lFx1tWr7QeXk5rupIs9mMXj9HDxATma6DKPA3WU4xOYXKKvVSwUF+crNsru7HFzF6DW4An0GV6DP4Cr0GlyBPqvb8vILdDglrcKXmblCeka2nv33Z8ouFlbd37+j+v7y50ArIryRmkaE1qles1is8vEPcuqcrLgCAAAAAAD1greXVQ0Dfd1dhoICfHXbza1LnFv55UHl5rHq6koEVwAAAAAAoN4ICwpwdwmSpAFd28jm/XMscyE9U0l7jruxIs9EcAUAAAAAAOoNH5uXggLcv+qqYaCfendqVeLcim37lZdfN7bRcRWCKwAAAAAAUK+EBbt/k3ZJGtgtSt5eP0czqRcztH1vshsr8jwEVwAAAAAAoF7x97XJ39fm7jIUFhygntEtSpxbnrRfBQW8R68IwRUAAAAAAKh3GjX0jFVXg25tK6vFYn59Js2unftPuLEiz0JwBQAAAAAA6p1Af1/52LzcXYYiQhqoe/vrSpz7lFVXJoIrAAAAAABQLzUK9ow3DN7Zva0sxb5OOXdJ278/5rZ6PAnBFQAAAAAAqJeCG/iW2BzdXZo0ClKXG5uVOLdw7S4ZBquu3P+7AwAAAAAA4AYWi0WhQZ6x11VsTLsSXx8+kaqkb4+4qRrPQXAFAAAAAADqrZAgP1mtlsoH1rJmEQ11c1TTEufeW5pU71ddEVwBAAAAAIB6y8tqVUign7vLkCTddcWqq29/OKldB+r3GwYJrgAAAAAAQL0WGuQvi/sXXalFk1BFt25S4ty3P5x0UzWegeAKAAAAAADUazZvLwUH+Lq7DEnS0F43ycfby/y6U5tIN1bjft7uLgAAAAAAAMDdwoID9OPlbHeXoRZNQvTs/b106OSP+vUtUerctplys+zuLsttCK4AAAAAAEC95+vjrUB/H9kzc9xdiq5vGqZu0W3UNCJUBQX57i7HrXhUEAAAAAAAQFJosL+7S8AVCK4AAAAAAAAkNfDzkZ8PD6d5EoIrAAAAAACAn4QFB7i7BBRDcAUAAAAAAPCToAAf2Yq91Q/uRXAFAAAAAADwE4vFotAg9rryFARXAAAAAAAAxYQE+snLy+LuMiCCKwAAAAAAgBKsVotCAll15QkIrgAAAAAAAK4QGuQvi4VVV+5GcAUAAAAAAHAFby+rGgb6uruMeo/gCgAAAAAAoAxhQQHuLqHeI7gCAAAAAAAog4/NS4EBPu4uo14juAIAAAAAACgHq67ci+AKAAAAAACgHAF+Nvn5eLu7jHqL4AoAAAAAAKACYcH+7i6h3iK4AgAAAAAAqEBQgK9s3kQo7sCnDgAAAAAAUAGLxaKQQFZduQPBFQAAAAAAQCVCgvxksVjcXUa9Q3AFAAAAAABQCS+rVSGBfu4uo94huAIAAAAAAHBAaBCPC7oawRUAAAAAAIADfGxeCgzwcXcZ9QrBFQAAAAAAgIPCggLcXUK9QnAFAAAAAADgoAA/m/x8vd1dRr1BcAUAAAAAAFAFrLpyHYIrAAAAAACAKggK8JHNm0jFFfiUAQAAAAAAqsBisfCGQRchuAIAAAAAAKiihoF+slot7i7jqkdwBQAAAAAAUEVeVqsaNvBzdxlXPYIrAAAAAACAaggL9peFRVe1iuAKAAAAAACgGmzeXgr093V3GVc1gisAAAAAAIBqCgtmk/baRHAFAAAAAABQTf6+Nvn5eru7jKsWwRUAAAAAAEANhAUFuLuEqxbBFQAAAAAAQA0EBfjI5u3l7jKuSgRXAAAAAAAANWCxWBQaxF5XtYHgCgAAAAAAoIYaBvrKarW4u4yrDsEVAAAAAABADXlZrQoJ9HN3GVcdgisAAAAAAAAnCA3yl4VFV05FcAUAAAAAAOAENm8vBfr7uruMqwrBFQAAAAAAgJOEBbNJuzMRXAEAAAAAADiJv69N/r42d5dx1SC4AgAAAAAAcCJWXTkPwRUAAAAAAIATBQX4yubt5e4yrgoEVwAAAAAAAE4WGsSqK2cguAIAAAAAAHCykEA/Wa0Wd5dR5xFcAQAAAAAAOJnValFIoJ+7y6jzCK4AAAAAAABqQUggjwvWFMEVAAAAAABALfCxeSnQ38fdZdRpBFcAAAAAAAC1JCSIxwVrguAKAAAAAACglgT6+8rm7eXuMuosgisAAAAAAIBaFMqqq2ojuAIAAAAAAKhFDQP9ZLFY3F1GnURwBQAAAAAAUIu8rFYFN/B1dxl1EsEVAAAAAABALQsL8nd3CXUSwRUAAAAAAEAt8/Xxlr+vzd1l1DkEVwAAAAAAAC4QyqqrKiO4AgAAAAAAcIGgAB/ZvIliqoJPCwAAAAAAwAUsFosaBvq5u4w6heAKAAAAAADARUIC/WWxuLuKuoPgCgAAAAAAwEW8vawKCvB1dxl1BsEVAAAAAACAC7FJu+O83V3A1chutyshIUFr1qxRcnKyCgoKFBkZqb59++rBBx9UWFiYS+pITEzUc88959DYMWPGaOLEibVcEQAAAAAA8Pe1yc/HW1k5ee4uxeMRXDnZ4cOHNW7cOKWkpJQ4f+jQIR06dEgff/yxpk+frujoaDdVWLabbrrJ3SUAAAAAAFBvhAb569T5dHeX4fEIrpzIbrfr4YcfVkpKimw2m5588knFxsbKz89PO3fu1Guvvabjx4/rscce05IlSxQREeGy2r799tsKr9tsNhdVAgAAAAAAggJ8dfaiXfn5hrtL8WjsceVEs2bN0okTJyRJr7/+uh566CE1adJEISEh6tevn+Lj4yVJqamp+ve//+3S2nx9fSv8ZbXSCgAAAAAAuIrValFIAz93l+HxSCucJD8/XwsWLJAkde7cWXfccUep6++88475dWJiojIzM11aIwAAAAAA8BwhQf6yWNxdhWcjuHKSXbt26cKFC5KkQYMGlbq+ePFiHTlyRMOHD5ckZWVlacuWLS6tEQAAAAAAeA6bt5ca+Pu4uwyPRnDlJHv27DGPO3fuXOJaZmampk6dqo4dO+oPf/hDmfe4UkFBgVu+LwAAAAAAKCk0yN/dJXg0Nmd3kiNHjpjHzZo1K3EtISFBZ8+e1aRJk9S4cWN5e3srLy+vxD21bdmyZVqyZIkOHjyo1NRU+fv7q2PHjho5cqT69evnsjrK4+0b4O4SHGaxWM1/2vwC3VwNrmb0GlyBPoMr0GdwFXoNrkCfwdlC/KTzlwuUk5tX4jy9VojgyknS0tLM49DQUPP4woULeu+999SrVy9169ZNkhQcHKy0tDTz0UJXeOaZZ0p8nZGRoW3btmnbtm0aNWqUnn/+eZfVUhar1cut3786LBaLLJa6VzfqHnoNrkCfwRXoM7gKvQZXoM/gTOENg3T6/KUS5yw/bX5V33uN4OonVQmSgoODFRERUeJc0UbrPj4+ZnNJ0owZM2S32/X000+b53x8Cp9fzcjIqGnZFYqMjNSAAQNks9nUpUsXdevWTU2aNFFOTo6+/PJLvfHGG0pOTtacOXP0i1/8QsOGDavVeipSUJDvtu9dVRaLVRaLRYZhyDB47BK1h16DK9BncAX6DK5Cr8EV6DPUhqAAH50+b6igWE8ZhmH+sy71mrMXphBc/WTevHmaNm2aQ2N/85vf6O9//3uZ16zWn7cNS0lJ0fz58xUbG6t27dqZ5121x1S3bt3MVV7F+fv7a8CAAYqOjlZsbKzsdrumT5/u1uAqLzujzvyLaPMLlMXiJcMoUG6W3d3l4CpGr8EV6DO4An0GV6HX4Ar0GWpLA1uBLqRnml8bRsBP/6w7vWaxWOXjH+TUOdmc3UkCAgobKjc31zw3efJkGYZRYkN2ScrOzi5xj7tce+21GjhwoCTp+PHjSk5Odms9AAAAAADUVyFBfu4uwSOx4uon48eP1/jx46t9f1hYmCQpPz9f6enpSklJ0fLly3X//ferefPm5rjc3Fylp6eXuMed2rRpYx4fP368RK0AAAAAAMA1fG3eauBn0+Ws3MoH1yOsuHKS66+/3jxOSUnRpEmT5O/vr9///vclxp06dcp8VLBVq1YurbEs/v4/v3az+GoxAAAAAADgWiFB/pUPqmcIrpykffv25nFCQoI2b96sMWPGlFpVtWvXLvO4Q4cOLquvPOfOnTOPGzdu7MZKAAAAAACo34ICfGXzJqopjk/DSTp37qzQ0FBJUmJioho1aqS4uLhS41atWiVJ8vPzU0xMTKXzGoahyZMnq0ePHoqJidHUqVOdWndSUpIkKSgoyCNWgAEAAAAAUJ+FBLLqqjiCKyfx8vLSvffea349evRoNWjQoMSYpKQkbdy4UZI0fPjwEo/plWfp0qWaPn26zp8/r9TUVE2bNk3Lli2r9D7DMPTqq69q7dq15Y757LPP9PXXX0uShgwZIj8/NoIDAAAAAMCdGgb6yWKxuLsMj0Fw5URjx45Vs2bNJEnz5s3TypUrlZaWptTUVC1YsEDx8fEyDEPh4eF67LHHHJrzu+++K3Xum2++qfS+WbNm6YMPPlB8fLzi4+O1fv16nT17Vna7XQcPHtSkSZM0YcIESVKLFi1KvfkQAAAAAAC4nreXVcEBPu4uw2PwVkEnCgwM1MyZMzVu3DilpKToqaeeKjUmPDxc06dPV0REhENzRkdHlzrXqVOnSu8bPXq0zp8/rzlz5mjt2rXlrryKjo7WW2+9paCgIIfqAQAAAAAAtSs02F+XeX+aJMliGIbh7iKuNna7XQkJCVq9erWSk5NlGIaaNm2qvn37avTo0aU2bK+IYRiaMmWKFi5cKIvFonvvvVfjx493+P5jx47po48+0pYtW3Ty5EllZmYqIiJCUVFRio2N1cCBA+Xt7f78MiczXYZR4O4yHGLzC5TV6qWCgnzlZtndXQ6uYvQaXIE+gyvQZ3AVeg2uQJ/BVTLzvRUS1KBO9ZrFYpWPv3MXxhBcwSMQXAGl0WtwBfoMrkCfwVXoNbgCfQZX8fZtIC8v7zrVa7URXLHHFQAAAAAAgIdhg/ZCBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8EgEVwAAAAAAAPBIBFcAAAAAAADwSARXAAAAAAAA8Eje7i4AkCSLpW5mqHW1btQ99BpcgT6DK9BncBV6Da5An8FV6kqv1UadFsMwDKfPCgAAAAAAANRQ3YjsAAAAAAAAUO8QXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAoNrsdrtiY2M1ffp0Xbp0yd3lAACAq4zFMAzD3UUAnuLUqVN69dVXtWrVKknS7Nmz1a1bN4futdvtSkhI0Jo1a5ScnKyCggJFRkaqb9++evDBBxUWFlabpaMO+Prrr7Vs2TLt2LFDqampys7OVkREhDp16qRhw4YpJibGoXnoNVTku+++U2JiorZv365Tp07JMAw1atRInTp10l133aVf//rXDs1Dn8FRCQkJeuWVV+Tj46NNmzZVqTfoM5QnMTFRzz33nENjx4wZo4kTJ5Z7nT6Do06dOqXZs2dr8+bNSk5OlmEYuvbaa9W9e3fdd999ioqKqvB+eg2oHQRXgKScnBx98MEHmjFjhjIyMszzjgZXhw8f1rhx45SSklLm9fDwcE2fPl3R0dFOqxl1R2Zmpl544QUtW7aswnHDhg3Tyy+/LC8vr3LH0Gsoz6VLl/SXv/zFDN7L06tXL02ZMkUBAQHljqHP4CjDMDRgwAAdO3ZMd999t9544w2H76XPUJGqBFdvvvmmYmNjy7xGn8FRy5cv11/+8pcSfxco7rrrrtNnn30mb2/vMq/TayjPiRMn1Ldv3yrds27dOjVr1qzMa/UxICW4Qr23efNmvfzyyzp69KgkqUmTJjp9+rQkx4Iru92uwYMH68SJE7LZbHryyScVGxsrPz8/7dy5U6+99pqOHz+u8PBwLVmyRBEREbX9I8GD5OTkKC4uTjt37pTVatU999yjwYMHq0WLFsrNzdW+ffv01ltv6cCBA5KkcePGacKECWXORa+hIpMnT9b06dMVEhKikSNHqk+fPmrWrJmysrL0ww8/aPbs2dq4caMkqX///po2bVqZ89BnqIqNGzfqkUcekSQtWrRIHTt2dOg++gyVKR5cffvttxWOtdlsslpL74BCn8FRa9as0fjx42UYhrp27apx48apffv2kqQzZ85oy5YtuuWWW3TzzTeXeT+9hopUJ7hav369IiMjS52vtwGpAdRTubm5Rnx8vBEVFWVERUUZMTExxieffGJs27bNPPfll19WOs/kyZPN8StWrCh1/ZNPPjGv//Wvf62NHwUebsWKFUbPnj2NLVu2lHk9IyPD6Nu3rxEVFWV06NDBSEtLK3McvYaKFBQUGPPmzTPOnz9f7pgXX3zR7JEDBw6UOYY+Q1WMGTPGiIqKMoYOHVql++gzVGbx4sVmD1QXfQZHnD9/3ujatasRFRVlTJgwwSgoKKjyHPQaKlJQUGBkZWVV+uuPf/yjERUVZQwcOLDMPkxPTzf69OljREVFGTfddJPx7rvvGqdOnTIuXLhgrFmzxujXr58RFRVl9OjRwzh79qwbftLaw+bsqLe8vb0VHBwsm82mcePG6fPPP9eQIUNksVgcniM/P18LFiyQJHXu3Fl33HFHqevvvPOO+XViYqIyMzOd8wOgzrjjjju0YcOGcvew8vf318iRIyVJ2dnZ2rFjR6kx9BoqY7FYdN9991W4PHzEiBHm8eHDh0tdp89QFUeOHNHWrVslSffff7/D99FncAX6DI6aPXu2Ll68qGuuuUYvvfRSlf4uINFrqJzFYpGvr2+Fvy5evKjPP/9ckjRq1Kgy+3DWrFk6ceKEJOn111/XQw89pCZNmigkJET9+vVTfHy8JCk1NVX//ve/XfcDugDBFeq1iRMnauXKlZowYYIaNGhQ5ft37dqlCxcuSJIGDRpU6vrixYt15MgRDR8+XJKUlZWlLVu21Kxo1Enl7YdQpFWrVubxuXPnSl2n1+AMOTk55vE111xT6jp9hqqYO3euDMNQSEhIufsLlYU+gyvQZ3DU8uXLJUm//e1vK9z/sTz0Gpxhzpw5ys3NVcOGDTV06NBS1+t7QEpwhXqtYcOGuu6666p9/549e8zjzp07l7iWmZmpqVOnqmPHjvrDH/5Q5j1AkeIbgTZs2LDUdXoNzpCQkCBJatOmTZn7dNBncJTdbtcnn3wiSRo+fLh8fX0dvpc+Q00UFBQ4NI4+gyNOnDih5ORkSVJMTIz5wqZhw4bp5ptvVteuXTVixAgtWLBAeXl5Zc5Br6GmMjIytHDhQkmFAaq/v3+pMfU9IK14CQCACh05csQ8vvKtDwkJCTp79qwmTZqkxo0by9vbW3l5eSXuAYoU33i2U6dOpa7Ta6iqgoIC5ebm6vLly9q7d6/+85//aPPmzWratKmmTJlS5hJ0+gyO+vjjj5WRkSGr1ar77ruvxLW2bdtKKv8FJ/QZqmrZsmVasmSJDh48qNTUVPn7+6tjx44aOXKk+vXrV+Y99Bkc8dVXX5nHoaGhGjFihL7//vsSY3bv3q3du3fr008/1YwZMxQcHFziOr2Gmlq8eLEuXbokb29vc/uQK1UlIF28eLF5T//+/WuvcBdixRVQA2lpaeZxaGioeXzhwgW999576tWrl/mH9qL/yBUl5UCRnJwcffrpp5IK/0PUvHnzUmPoNVTVsmXLFB0dre7du2vs2LHau3evxo8fr6VLl6p169Zl3kOfwRGGYWj+/PmSpN69e5f7uu7y0GeoqmeeeUZbt27VuXPnZBiGMjIytG3bNsXHx+vll18u8x76DI44e/asefznP/9Zhw4dUlxcnJYuXaqdO3dqxYoVZjj/9ddf68UXXyw1B72GmigoKDBXxPfv31/XXnttmeMcCUiffvppMyC98p66jhVXQA0UPTfs4+NTYvXCjBkzZLfb9fTTT5vnfHx8JJV8JAyQpJkzZ5r7Wj3xxBNljqHXUFX/+9//Snx9/vx5zZkzR5cvX9b48ePL3MeDPoMjNm3apGPHjkmq2qbsRegzOCIyMlIDBgyQzWZTly5d1K1bNzVp0kQ5OTn68ssv9cYbbyg5OVlz5szRL37xCw0bNqzE/fQZHFE8QDpw4IBmzZqlrl27mueCgoL04osvysvLS3PmzNHKlSsVHx+vG264wRxDr6Em1qxZYz6u+uCDD5Y7rqoBaVpa2lUVkLLiCnACq/Xnf5VSUlI0f/58xcbGql27duZ5R/dkQP2ya9cuzZgxQ1LhM+09evSocDy9Bkc99dRTOnDggHbt2qVly5bp4YcfVk5Ojt5//33dc889stvt5d5Ln6Eic+bMkSS1bNlSPXv2rPY89Bkq0q1bN7399tt68803NWLECLVq1Ur+/v5q2LChBgwYoDlz5igwMFCSNH369HLnoc9QkeL/LXzxxRdLhFbFFQ8UVq5cWeYYeg3V8cEHH0iSoqOjSz0CWFx9D0gJroAaKFqxkJuba56bPHmyDMMosQGjJGVnZ5e4Bzhx4oTi4+OVm5ur9u3b6/nnny93LL2G6mrQoIHatm2rp59+Wu+//76sVqsOHjyoyZMnlxpLn6Eyhw8f1tatWyVJ9957b5VfGy/RZ3COa6+9VgMHDpQkHT9+3FyxUIQ+gyP8/PzM44rejtq8eXPzDeTHjx8vcY1eQ3UV7Z8mVbzaqrj6GpASXAE1EBYWJqnw9aPp6enav3+/li9frhEjRpTYpyg3N1fp6ekl7kH9dubMGcXFxSktLU3NmzfX9OnTS/zh6Ur0Gpyhc+fOuuWWWyTJfCNccfQZKjN37lwZhiF/f/9Sj2Y5ij6Ds7Rp08Y8vjJMoM/giOIbrWdlZVU4NigoSFLp/anoNVRX0Wqrxo0bm0F8eep7QMoeV0ANXH/99eZxSkqKJk2aJH9/f/3+978vMe7UqVNm8t2qVSuX1gjPk5qaqri4OB0/flyRkZFKSEjQNddcU+E99BqcpWXLlvrqq69kt9uVlpZW4g/P9Bkq88UXX0gqfGShS5cuFY594IEHJBXuVbR+/XrzPH0GZyn+yvjif5mT6DM4pvhG2KdPny6xd9WVioKtK98qSK+hOpKTk7VmzRpJhftFFm2oXp4rA9KUlBQtX75c999/f70ISFlxBdRA+/btzeOEhARt3rxZY8aMKfU/Ert27TKPO3To4LL64HnOnDmjkSNH6vDhw2rRooVmz56tyMjISu+j1+AsRX/wtlgs5mMPRegzVMYwjBrPQZ/BWYpebCIVrlgojj6DI6Kjo83jAwcOlDsuPT1dFy9elCQ1adKkxDV6DdWRkJCggoIC+fn56Z577ql0fH0PSFlxBdRA586dFRoaqgsXLigxMVGNGjVSXFxcqXGrVq2SVPgcfUxMjKvLhIdITk7Wgw8+qJSUFLVr106zZs1SeHi4Q/fSa3CG/Px8ff3115KkFi1ayNfXt8R1+gyVWbVqVYXh1VdffaWxY8dKkmbNmqUuXbqU2geLPoOzJCUlSSp8hOvKv6DRZ3BEmzZtFBISoosXL2r9+vW68847yxy3efNm87hXr14lrtFrqKpLly5p8eLFkqTBgwcrJCSk0nvKCkjHjx9fbwJSVlwBNeDl5aV7773X/Hr06NGlVjAkJSVp48aNkqThw4eXWNaO+uPgwYO69957lZKSoh49emjevHkOh1YSvYbKvfvuuxo1apT5/wiXZfr06Tp58qSkwmXpV6LPUBkfHx/5+vqW+8tms5ljbTabfH19zbcbFaHPUBnDMPTqq69q7dq15Y757LPPzCB+yJAhpfaJpM/gCKvVav738PPPP9fevXtLjcnKytK///1vSdJ1112nbt26lbhOr6GqPvzwQ2VkZMhisTi8KXtRQCqpXgakBFeo1/Lz85WdnV3iV/E9EnJzc8u9VmTs2LFq1qyZJGnevHlauXKl0tLSlJqaqgULFig+Pl6GYSg8PFyPPfaYy342eI7du3dr5MiROnfunAYNGqSpU6fKZrOV6r2iXzk5OWXOQ6+hPPv379e0adO0Y8cODRgwQNOmTdP333+vS5cu6cKFC/ryyy/1xBNPaOrUqZKkW2+9tcQfsoujz+AK9BkqMmvWLH3wwQeKj49XfHy81q9fr7Nnz8put+vgwYOaNGmSJkyYIKlw9eiVGxMXoc/giFGjRqlx48bKzc1VXFycFi1apDNnzujSpUvasWOH4uLidOjQIXl5eenVV18t8Va3IvQaHJWbm6u5c+dKkmJiYtS6dWuH7qvvAanFcMZmBUAdlZiYqOeee87h8UOHDtWrr75a6vzhw4c1btw4paSklHlfeHi4pk+fXuI5etQfo0aN0o4dOxwe37JlS33++edlXqPXUJ6vv/5af/7zn3X06NEKx8XGxuqll15SYGBguWPoM1TX9u3bzU3ZZ8+eXWplQnH0GcqTl5enN998U3PmzCnz/zQsEh0drbfeeqvExsRXos/giB9++EEjR44s9cbAIgEBAXr99dfVv3//cueg1+CIJUuWaOLEiZIKV8tf+ehpRex2uwYPHqwTJ06oSZMmmjhxom699VYVFBRozZo1ev3115WRkaHw8HAtWbJEERERtfVjuBzBFeo1ZwVXUuH/kCQkJGj16tVKTk6WYRhq2rSp+vbtq9GjR19Vb3VA1VQ1uLrttts0Y8aMcq/TayhPfn6+Vq5cqfXr1+vbb79VamqqvL291bhxY91yyy0aPHiwfvnLXzo0F32G6qhKcCXRZ6jYsWPH9NFHH2nLli06efKkMjMzFRERoaioKMXGxmrgwIGVvolLos/gmPPnzyshIUEbN27U8ePHZRiGIiMj1bt3b40aNUpNmzatdA56DZUZPHiw9u/fr9atW2vFihWl9oGsTH0NSAmuAAAAAAAAatG2bds0evRoSdJf//rXcrdtqEx9DEgJrgAAAAAAAGpRVlaWkpKStHnzZj377LNX1R5UtY3gCgAAAAAAAB6JtwoCAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAAAAAwCMRXAEAAAAAAMAjEVwBAAAAAADAIxFcAQAAoEJ5eXnuLgE1xO8hAKCuIrgCAABAuQ4fPqw777xTW7ZscXcpqKa0tDQNHTpUiYmJ7i4FAIAqI7gCAABAmXbv3q377rtPR48e1T/+8Q/l5+e7uyRUw9y5c3Xw4EE999xzeuedd9xdDgAAVUJwBQAAgFJ27dqluLg4Xbx4US1bttSsWbPk5eXl7rJQDY8//riGDRsmSXrrrbf09ttvu7kiAAAcR3AFAACAEg4ePKhHH31UmZmZioyM1OzZs9WkSRN3l4VqslqteuWVVxQbGytJ+te//qW5c+e6uSoAABxjMQzDcHcRAAAA8Aznz5/XkCFDdPbsWYWEhGjhwoVq2bKlu8uCE+Tm5mrcuHHatm2brFar/vWvf6lPnz7uLgsAgAoRXAEAgKtOcnKy+vXrZ37dpk0bLV++3I0V1R3x8fFau3atLBaLZsyYoV//+tfuLglOlJaWpiFDhujMmTMKCwvT8uXL1ahRI3eXBQBAuXhUEAAAXHXWrFlT4utDhw7p6NGj7immDlmyZInWrl0rSbrnnnsIra5CYWFh+vvf/y6pMMR64YUX3FwRAAAVI7gCAABXndWrV0uSrrnmmlLnULa8vDz985//lCQ1bNhQTz75pHsLQq351a9+ZT4iuHbtWu3atcvNFQEAUD6CKwAAcFU5d+6cvvnmG0lSXFycuan4lauwnKmgoEBffPGFMjIyau171LYVK1bo9OnTkgpXW4WGhrq5ItSmRx991DyeNWuWGysBAKBiBFcAAOCqsmbNGhUUFEiS+vXrZz7u9t1335nBTHUVFBQoOztbaWlpOnjwoFatWqVXXnlFffr00bhx47R169aalu82CQkJkiSLxaIRI0a4uRrUto4dO+qmm26SJK1fv17JyclurggAgLJ5u7sAAAAAZypaWdWmTRtdd9116tOnjz788EMZhqE1a9Zo1KhRDs916NAhJSYmasuWLTp9+rQuXbpU4fh169apf//+FY7ZuHGjPv74Y/33v//VxYsXFRQUpDZt2ig2NlbDhw+Xl5eXw/U5y4kTJ/T9999Lktq2bavIyMgqz5GWlqaePXsqPz9fkZGRWr9+faX3vPDCC1q4cKEkafbs2erWrVuF453x2SUnJ2vdunXauXOnDh06pLNnzyo7O1uBgYFq2bKlYmJidN999ykiIqLSuaZOnapp06aVOPfSSy+Zwd/p06f17rvvavPmzTp58qRyc3Md+llTU1O1aNEibd68WUeOHJHdbpe/v78aNWqkjh076rbbblP//v3l7V2zP8r36dNH33//vQoKCrRmzRqNGTOmRvMBAFAbCK4AAMBV48cff9SOHTskSX379pUkde/eXQEBAcrIyNDq1asdCq4Mw9CUKVP07rvvKi8vr8wxFotFN910k7y8vGS1WhUREaFbb7213DlzcnL07LPP6rPPPitxPi0tTdu3b9f27du1cOFCvfvuuwoLC3P0R3aKL7/80jzu0aNHteYICwtTt27dlJSUpJSUFO3bt0833nhjueMNwzDDrYiICHXp0qXcsc767Ox2u+644w7l5OSUuvbjjz/qm2++0TfffKP58+drypQpFf5+lufUqVOSpL179+rBBx+sNOy80vLly/XCCy/o8uXLJc6np6crPT1dR48e1dKlS3Xttdfq2Wef1R133FHlGovExMRo6tSpkqTt27cTXAEAPBLBFQAAuGqsX7/eDJqKNp/28fFRz549tXr1an399ddKS0urNBiaPHmyZsyYIUkKDAzU8OHD1aFDB1mtVh09elQff/yxTp48qYKCAr3++utq3bp1hfMVFBTo0UcfNR8lbN26tYYOHarrrrtOly5d0oYNG7Ru3Trt2bNHY8eO1aJFi2Sz2Wr6cThs37595vENN9xQ7XkGDRqkpKQkSYWbflcUXH333Xc6d+6cJOn222+X1Vr2DhbO/OwCAwPVu3dvHTx4UF26dNGNN96oiIgI5eXl6dSpU/r888/17bff6uLFi4qPj9fKlSvVuHHjcn+G2NhYtW/fXpL01ltv6eDBgzp58qROnz6tsWPH6tKlS4qKitKQIUOUlZWlt99+u8LPb+fOnXrmmWdUUFAgm82mu+66S7/85S/VsGFDZWZm6vTp09q2bZuSkpJ06tQpbdy4sUbBVZs2bczjohV3AAB4GoIrAABw1Sh6c2BERISio6PN83369NHq1auVn5+v9evX6ze/+U25cxw9elTvvPOOpMKgIzExUS1atCgxZsyYMRo5cqT27NmjuLg4JSYmKjw8vNw5582bZwYvv/vd7/Tiiy+WeMzrt7/9rZYsWaKJEydq7969ev/99/XII49U/QOopuPHj5vHLVu2rPY8/fv310svvaS8vDytXbtW48ePL3fsunXrzONBgwaVO87Zn93kyZPLfcTuoYce0vTp0zV58mTZ7XbNmTNHEyZMKHeuVq1aqVWrVpKk999/X5J08uRJvfbaa0pLS9ODDz6oiRMnysvLS9u3by93niIffPCBuT/b3/72Nw0bNqzUmHHjxmnfvn16//339dxzz1U6Z0UCAwMVHh6u1NRUnTt3TtnZ2fL19a3RnAAAOBubswMAgKtCRkaGGXD06dNHFovFvNa7d29z/6PK3i74ySefyDAMSdLDDz9cKrSSJH9/fz311FOSpDNnzmj27NnlzpeZmakpU6ZIktq1a6e//vWvZQYnQ4YM0Z133ilJmjNnTrmPKNaG1NRU87gmbxMMDQ01H6/bv3+/Tpw4Ue7YouDqmmuu0S233FLmmNr47CrbF2rs2LFmePPVV19VOLYse/bs0cqVK9W/f3/9+c9/rtKeZUeOHDGPBwwYUO64G2+8UW+88YZT3vxYfI6zZ8/WeD4AAJyN4AoAAFwVNm3apOzsbEk/729VJCwsTJ06dZIkJSUlyW63lztP8fCgon2Xij8GV7SvVlm2bNmi9PR0SYUrhioKMopW2Jw7d07//e9/yx3nbBkZGeZxQEBAjeYaOHCgebx27doyxxw7dkyHDh2SVBjQlPeYoDs+Ox8fH/NR0vPnz1f5/qysLPn5+ekvf/lLle8NCQkxj131++/v728eZ2ZmuuR7AgBQFQRXAADgqlAUkgQEBKh79+6lrhfteZWTk6Mvvvii3HmK3vwmlfxL/ZV8fHzM44sXL5Y7buPGjeZxhw4dyh0nSb/4xS/M4z179lQ41pny8/PN45q+1bB///7mHlPlBVeOPiZY259dXl6eDh8+rJ07d2rTpk3asGGDNmzYYG7eXvTYXlUNHjy41N5YnTp10rp167Ru3TozRL1SUY9K0uOPP66ZM2cqLS2tWjU4qvgKNFeu8gMAwFHscQUAAOq8nJwcM+T41a9+VSJUKnLbbbfpjTfekFS4F1Z5m1pfd9115vH+/fvL3WD88OHD5nFFG3gXf1xu3759Fa7iKR4gnTlzptxxzlb887Lb7YqIiKj2XCEhIbr11lu1efNm7dq1q8zN8IuCqyZNmujmm28ud67a+uxWr16tRYsWafv27WW+YbCmhg4dWuqcr6+vmjVrVuF9DzzwgHbs2KEvvvhCGRkZevPNNzVlyhTdfPPN6t27t/r161ejPcjKUnz1IftbAQA8EcEVAACo87Zt22b+Bbz4qpXiWrdurZYtW+ro0aPatGmTcnJyygy47r77biUkJEiSZsyYoTvvvLPMcUUbuEtSTExMubUVD1teeOEFx34gyXxEzhWCg4Od+n0HDRqkzZs3Kz8/Xxs2bNDw4cPNa2lpadq9e7ekwscEi+9FdiVnf3YZGRl68skntWnTJofnqo7yVlRVxtfXV++8844++ugjzZo1S8eOHVNeXp527NihHTt26I033lD79u314IMP6q677qrws3NU8c+qeB8AAOApeFQQAADUeUVvE5Sk06dPa8GCBWX+Klr5k5GRoS1btpQ5V/v27RUXFyep8A2DDzzwgLZu3Sq73a7c3FwdOnRIf/rTn7R+/XpJhZtbjxgxwuk/U/EVRLWtSZMm5vGFCxdqPF9Fjwtu3LjR/NkqekywJsr77J5//nkztGrQoIHGjx+vxYsXa+fOndq3b58OHDigAwcOKDIyskbfvyaBktVq1T333GOuCouPj1d0dLS5D9iePXv0zDPP6KGHHlJWVlaN6jQMQz/++KMkyWazVfhmTAAA3IUVVwAAoE7Lz883QyRJ+uc//+nQfWvWrCl3ddazzz6r8PBwTZ48Wbt379aYMWPKHBcQEKC33367wpUqjRo1Mjci37RpU4mQyFPccMMN5vH+/fvVu3fvGs0XHBysHj16aNOmTUpKSlJmZqa5X1jRY4JNmzatdGWSMz+7I0eOaMWKFZIKVzbNnz9f7dq1q/Z8rtCxY0d17NhRTzzxhM6fP6/FixfrnXfekd1u15YtW/SPf/xDL730UrXnP3r0qLkxf6tWrZyyggsAAGdjxRUAAKjTdu7cWa0NrNevX1/uyhyr1ars7Gzl5eXJZrOV+gu9zWbT7bffrsWLF6tr164Vfp+mTZuax+fOnatyna5QfOPzb7/91ilzFq2mysrK0ubNm83jrVu3Sqr8MUHJuZ9d8Tc/3nnnnR4fWl2pUaNGevjhhzV37lxz9VViYmKNVl0V/72Ojo6ucY0AANQGVlwBAIA6bc2aNebx2rVr1bx58wrHP/fcc0pMTNTFixe1Y8eOMt9AuHbtWr399tuSCveyioqK0g8//KDc3FyFhISoTZs2Fb5xsLhf/epXSkxMlFQYslX2djx36Natm/z8/JSVlaVdu3YpNzfXfNSvuvr16yebzabc3FytXbtWt99+u7Zu3arMzExJjj0m6MzPrvibH4tvwF/X3HjjjWrXrp327t2rnJwcnTx5Utdff3215ioe5vXq1ctZJQIA4FSsuAIAAHWWYRjmHkpt2rSpNLSSSm7eXjz0Km7p0qWSpLCwMMXExCgiIkLdu3dXr169FB0d7XBoJRUGAkXj582bZwY3nsTPz898y2JaWpr5OF9NBAUFqWfPnpIKH/PLy8sz542MjFTHjh0rncOZn13xxzlPnTpV7riTJ0+a+3wZhlHt71cdjr7hsPgqq+o+3me327Vy5UpJhau5fv3rX1drHgAAahvBFQAAqLO+++47M4Rw9C/ePXr0MN8SuHbt2jLDiYKCAkmFIc7ChQtr9Ka9wMBAPf7445Kk5ORkjR8/vtz5Dh8+rOeff97cd8iVxowZY4YgH374oVPmHDhwoCSZq9s2btxY4nxlnPnZ3XLLLebxqlWrynz08IcfftDYsWPNOS5cuKDc3FyHaq2py5cva8SIEfrTn/6kM2fOlDtu4cKFOnLkiKTCwKlFixbV+n5Lly41f877779fvr6+1ZoHAIDaZjFc/X8lAQAAOMmkSZP07rvvSpLmz59fIpyoyNixY823Ci5atKjU6p/Vq1dr/Pjx5d5f9Aa2Tp06aejQoZVuZp6Xl6e4uDjz0azQ0FANGzZM7du3l9Vq1alTp7R161Zt2bJFhmFo+PDheuWVVxz6WZzp0Ucf1YYNGyRJM2fOrPEm7Xa7Xd27d1dOTo7at2+vPXv2SJI+/vhjhx/7c+ZnFxcXp6SkJElSeHi47rvvPrVq1UqXL1/W9u3b9fnnnys3N1ddunQxv9+IESP07LPPqkGDBqXm+9///qejR49Kkt566y0dPHhQkjRjxgxzTMuWLdWqVatKf84XX3zRDAxtNpt69eqlrl27qnHjxsrLy9OpU6e0evVqfffdd+Y9L7/8sn77299WOveVLl26pEGDBik1NVUNGjTQunXrFBoaWuV5AABwBYIrAABQZw0YMEBHjx5VaGiokpKSzE2rKzNv3jz97W9/kyQ99NBDeuaZZ0qN+c9//qOpU6fKbrdXOt/tt9+uN99801zJVZacnBxNnDjRfDyrPM2bN9dLL72kmJiYSr+vs504cUJ33323Ll++rGbNmmnFihXy8/Or0ZyPPfZYibc+Nm/e3Hy801HO+uzOnj2rBx54QP/73//KvO7n56f/9//+n26//XbdfffdOnPmjKxWq7Zs2aJGjRqVGj916lRNmzatwpoef/zxCkPQIna7Xa+99poSExOVl5dX4diAgAC9+OKLGjJkSKXzluWFF17QwoULJVU//AIAwFUIrgAAQJ106NAhxcbGSpIGDx6s119/3eF7T548qdtuu01S4YqYzz//vMxx2dnZOnDggC5cuGA+PmgYhi5cuKD9+/fr008/NfdDGjJkiF577bVKv/fWrVuVmJio3bt369y5c7JarYqIiFDHjh3Vv39/9e/fX15eXg7/LM720Ucf6fnnn5ckxcbG6s0336zRfMuWLSsRDI4bN04TJkyo1lzO+OzsdrsSEhK0evVqHTt2TBaLRU2aNFGvXr10//33mxu3Jycn66233lJ6erree++9MudyZnBV5Pjx41q2bJmSkpKUnJysixcvymq1KiwsTG3btlX37t01bNgwBQUFOTxncStXrtQf//hHGYah2267rcTqMAAAPBHBFQAAQDVdunRJI0eO1IEDB2SxWLRq1Sq1bNnS3WXVWNGbFyVp/Pjx5j5T1TVz5kwzAFuxYoVuuOGGGteIqvv22281atQoZWVlqWXLllqwYIHCwsLcXRYAABVic3YAAICfZGdna8OGDdqwYUOFb54rEhwcrN/97neSCldi7d+/v7ZLdImXX35Zffv2lSRNmzZNc+fOrfZcOTk55t5Nt9xyC6GVmxw4cECPPPKIsrKydM011+j9998ntAIA1AkEVwAAAD/Jz8/Xo48+qkcffVTLli1z6J6LFy+axwEBAbVUmWt5eXnpn//8p3r27CnDMPR///d/+uCDD6o113vvvaeUlBRJqvHKLVTPvn379MADDygtLU3h4eGaNWuWIiMj3V0WAAAOIbgCAAD4SUBAgJo2bSpJSkxM1KVLlyocv3//fs2ZM0eS5O/vr5tvvrnWa3QVX19fzZgxw9xHbOPGjcrPz3f4fsMwzA3upcIN7Hv06FErtaJiu3bt0sWLF9WiRQt9+OGHioqKcndJAAA4jD2uAAAAivnXv/6lt99+W5LUqFEj3XHHHWrbtq2Cg4Pl5eWlrKwsnTx5Urt27dLmzZvNN8A999xzGj16tBsrrx2GYWjOnDkaPny4GjRoUOn4vXv3asuWLfrkk0905MgRSYUb4H/00UcKDg6u7XJRjkWLFqlfv348HggAqHMIrgAAAIrJz8/XhAkTtHLlSofGBwUFacKECRoxYkQtV1Y3PPnkk/rss8/Mr7t27aq3335boaGhbqwKAADUVQRXAAAAZdi+fbuWLFmi77//XqdPn5bdbpdU+EjgNddcozZt2igmJkaDBg1iJVExM2fO1OzZs9WhQweNGDFCvXv3dndJAACgDiO4AgAAgNPk5eXJ29vb3WUAAICrBMEVAAAAAAAAPBJvFQQAAAAAAIBHIrgCAAAAAACARyK4AgAAAAAAgEciuAIAAAAAAIBHIrgCAAAAAACARyK4AgAAAAAAgEciuAIAAAAAAIBHIrgCAAAAAACARyK4AgAAAAAAgEciuAIAAAAAAIBHIrgCAAAAAACARyK4AgAAAAAAgEciuAIAAAAAAIBHIrgCAAAAAACARyK4AgAAAAAAgEciuAIAAAAAAIBH+v/Psd/51duQ9AAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 13,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: additive-curve\n",
- "curve = summarize_curve(samples.posterior.curve)\n",
- "plot_bands(curve, \"Posterior curve (additive model)\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "e4302ea1-f99a-4fe9-817b-eb408890a598",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3xUVf7/8fedPukFQofQwUIRFQE7dkSx17WubZvuuu73p6urW1y3Wtay9rq2tYJYkFVBBUEFUektQgKBJKSX6ff3R2AESULKzJ1J8no+HnkwZO4985mbO8mZ95x7jmGapikAAAAAAAAgydgSXQAAAAAAAADQFIIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAYigUCiW6hE4rWY5drOtIlucFAOja+HvTfsly7OiDNI3gCgCAGFm9erX2228/vf/++4kupdNJlmNXVlamgw46SE8//XRM2lu8eLFGjhypJUuWxKQ9AACakix/RzujZDl29EGaR3AFAEAMfPbZZ5oyZYrWrVunX/7ylwqHw4kuqdNIpmN3//3369tvv9Xll1+uu+66q8Pt/eY3v9HGjRt19NFHa+7cuTGoEACAPSXT39HOJpmOHX2Q5hFcAWi17du364gjjlB6erouv/xymaaZ6JKApLBw4UIdd9xxKi8v14gRIzRnzhzZ7fZEl9UpJNuxu/3223XZZZdJkm655RbdfvvtHWrvtdde0/jx41VbW6tp06Zpzpw5MagS6H7ogwBNS7a/o51Jsh07+iDNM0x+6wNopZtvvll/+ctfov9/7733dOKJJyawIiDxli9friOPPFIVFRXKz8/Xp59+qn79+iW6rE4hWY+daZq66KKL9OKLL0pq/AT0Zz/7WbvbKy8v1+GHH65Vq1YpNTVVH3zwgSZOnBircoFugT4IsLdk/TvaGSTrsaMP0jRGXAFoNcMw9vi/zcavEHRvJSUlOvHEE1VRUaGcnBy9//77SdHp6QyS+dgZhqFnnnlGU6dOlSRdf/31euutt9rd3q7n17dvX9XV1WnatGnavHlzrMoFugX6IMCekvnvaLJL5mNHH6Rp/MZHh82bN0+GYez1ZbPZlJmZqaFDh+r000/XPffco23btiW63JgqKSnRF198oWXLliW6FEtcf/31mjJlilJTU3XZZZfpuOOOS3RJQEJdc8012rp1qwzD0LPPPqvhw4cnuqS4Kisr06WXXhr9PX/HHXe0u61kP3ZOp1Mvvvii+vXrp0gkoiuvvFIlJSXtbq9///566aWX5HA4tGPHDl122WVc6hQD9EHogwDdVbL/He2oSCSimTNn6qKLLtLIkSOVmZmp1NRUjRgxQhdffLH+97//tbvtZD929EGaYAId9NFHH5mSWvXldrvN//f//p8ZCAQSXXaHFRQURJ/XpZdemuhyAFjs2Wefjf4OuPbaaxNdTtw9+eSTZm5u7h6/02+//fZ2tdWZjt17770XrXXGjBkdbu/mm2+OtnfvvffGoMLujT4IfRCgO+pMf0fbY/Xq1ebkyZP3+Xv9/PPPN2tqatrUdmc6dvRBvsccV+iwefPm6ZhjjpEkTZ06VTfccEP0vtraWhUWFur999/fIxWfNm2aZs6c2aknDvzuu+80ePBgSdKll14as2VLASS/UCikwYMHq6ioSNnZ2Vq3bp1yc3MTXVZcrF69Wtdee63mz5+/13233357m0dddcZjd/rpp2vWrFmSpAULFmjy5Mntbqu2tlYjR47U1q1blZ2drcLCQqWmpsaq1G6HPgh9EKC76Yx/R9vim2++0dSpU1VWViZJmjRpks444wwNHDhQkvT555/r8ccfV3V1tSTprLPO0quvvtqqtjvjsaMP0ohLBRFT/fv316mnnhr9Ov/883XTTTdp7ty5mjdvnjIyMiRJb7/9th566KEEVwsA7fPSSy+pqKhIUuNwc6s6PZFIRO+9957q6uri/lh+v1+33367xo4dGw2tDj30UP3zn//sULuJOnYdccstt0Rv//3vf+9QW2lpafrFL34hSaqoqNDjjz/eofbwPfogALqDrt4H+eijj1ReXi6Xy6WnnnpKCxcu1E033aTzzjtP5513nv75z3/qq6++Uu/evSU1rpzX2jmg6IN03j4IwRUsc9RRR+nBBx+M/v+BBx5IYDUA0H733nuvpMYJNK+99tqYtx+JROTz+VRWVqbly5fr1Vdf1S9/+Uvl5+fr5JNP1vvvvx/zx/yhe+65R3/4wx8UCASUlZWlhx56SJ999pkOOuigDrUb72MXDxMnTtSECRMkSbNmzdLGjRs71N5VV10ll8slSbrvvvs63zwTnRB9EABdRVfvg1x//fV655139Oqrr+qyyy5rcpshQ4boz3/+c/T/Tz31VKvapg/Sifsgib1SEV3B7vNL7GuehWAwaGZmZka337JlS4vbPvHEE+Zxxx1n9uzZ03Q4HGaPHj3Mww47zLzzzjvNioqKNtX59ddfmz//+c/NsWPHmhkZGdH2xo4da/785z83P/nkkxb3330+idZ+3XLLLa2ur6SkxLz11lvNcePGmampqabX6zWHDRtmXnfddeaqVata1cZRRx21Vw2rV6+O3v/ZZ5+Z55xzjtmnTx/TbrdHt2nOiy++2OLza++8GqtWrTJ/+tOfmqNGjTK9Xq/p9XrNwYMHmxdffLH5v//9r1Vt3H777XvV8/DDD0fvLywsNH/2s5+Zw4YNM10uV3Sbjz76qF01d0R1dbV59913m0cddZSZm5trOhwOMzs725wwYYJ50003mWvWrGlx/92fa0v1t3bOk1gduy1btpg2m82UZI4ZM6Y1h8L81a9+FW3vvffe2+f2s2fPNs844wyzT58+ptPpNHv27Gkec8wx5qOPPmqGQqFWPWas7X6cx44dG5M2ly9fbt54443mAQccYGZlZe3zd4sVc9rU1NSY/fr1My+++GJz+/bt0e/v/ju/rXNcxerYvfHGG9F2Bg4caNbV1TW77eWXXx7d9ve//327H/P3v/99tJ1//OMf7W5nl2OOOSba3pdfftnh9ror+iD0QdqKPgh9EPoge0rGPkhrFBcXR2saPnz4PrenD/K9ztgHIbhCh7Wl02iapjl27Njo9l988UWT25SUlJgHH3xwi7808/LyzHnz5u3z8cLhsHnjjTdG/7i19HXYYYeZS5YsabKd9nQan3rqqX3WZ5qm+eGHH7b4h8Llcu3xR705TXUa33//fdM0TfPxxx9v9hg0Jx6dxkcffdR0OBwttnvxxRebwWCwxXaa6vjs6qQvXbq02eNpdadx0aJFZu/evVt8voZhmFdffbVZXV3dZBtWdBrbe+yOPvro6P3r1q3b5/HIz8+Pvn5b6vT5fD7z3HPPbfG4HXzwwWZJSck+HzPWnnjiiWgNN954Y4faikQi5q233tria8IwDPPggw82J06caE6ePNk888wzzWeeeSZGz6Zl5eXle32vI8FVLI/deeedF23rt7/9bZPbLFiwwDQMw5Rkjh8/fp+/V1qycOHC6ONNmzat3e3s8uc//zna3t///vcOt9dd0QehD9IW9EHog9AH+V6y90H2JRAIROvMzc3d5/b0Qb7XGfsgDgEWczqd0duhUGiv+6urq3XEEUdozZo1kqTx48frRz/6kQYNGqTS0lK9+uqr+t///qeSkhKdeuqpWrhwoQ488MBmH++uu+6KzsnSo0cPXXnllRozZoxSUlJUVVWldevW6a233tI333yjRYsWadmyZU1eCtOrV689rp8uKSnRlVdeKWnvCWF3mThx4j6Px9y5czV9+nT5/X45nU5ddNFFOuaYY5SSkqIVK1bokUceUXFxsa677jrl5OTonHPOafG57tixQ5I0ffp0SdLmzZv17rvv6uqrr1YkEtFJJ52kM844Qx999JFeeumlFms78sgj97pmfPfn3VaPPPJIdFiux+PR5ZdfrilTpsjhcGjZsmV69NFHVV5erv/85z+y2+0tTjZ74YUX6uCDD5Yk3XzzzVq+fLk2b96soqIinXjiiaqsrNQBBxygSy+9VA0NDfrd737Xrpo7Yu7cuTr99NPV0NAgqXFyyfPOO08DBgxQRUWFPvvsM73yyiuqrq7W66+/rttvv13p6elxryuWx+6CCy7QvHnzJDXOMfB///d/zW67dOlSfffdd5Kkc845p9mJkSORiKZPn665c+dKkkaPHq3LLrtMQ4cOVWVlpd566y3NnDlTX375pU488UQtXrx4j98r8fbVV19Fb++///4dauu2227TnXfeKUnKyMjQFVdcoUMOOUQ2m03r1q3T448/rs2bNyscDuu5557TqFGjOvR4bZWdnR3T9mJ57O6//359+OGHKi0t1T/+8Q9ddtllGjZsWPT+cDisn/zkJzJNU06nU08//bQcjvZ3e3avd8mSJR2qPR7toXXog+yJPgh9EPoge6IPkjx9kH0pLy+P3u7Ro8c+t6cPEr/2LJHo5AydX1s/7dz9k5+NGzfudf+NN94Yvf/KK69s8hORO++8M7rNpEmTmn2scDgcXb7d7Xa3ONz9zTffNK+77rp91r9LLJairq2tNQcOHGhKMnv06NHkJ63l5eXmhAkTTElmz549zcrKyla1vau2m266yczPzzedTqf54osvRu/f/ROvtmjv8966dauZlpZmSjKzsrLMr776aq9tioqKop+GSTLnzJnTqrZ3fcp7xBFHRD8BueGGG6Lnzu7nqFWfdlZWVpp9+vSJflrV3JKz1dXV5v/7f//PfOedd5ptK9afdu6uo8eurKzMdDqdpiTzkEMOafGxbrnllmhbn376abPb/etf/4pud9VVVzX5CdUzzzwT3ebPf/5zq55rrJx88smteh77snbt2ugncRkZGU1+WlxXVxcd+dGvXz9z27ZtHSk9Jjoy4ipWx26Xl156KdreySefvMd99957b/S+jgzP312vXr2ibTY0NHSorVWrVkXbmjhxYkzq647og9AHaQ36IPRB6IPsqbP2QXb39ttvR4/FhRdeuM/t6YN8rzP2QQiu0GFt6TR+9tln0W3z8vLMSCSyx/3bt2+P/gHq379/iy/Kww47LNrWggULmtxm27Zt0W0mTJjQ5ufWklh0Gnfv/L7yyivNbrdy5croH5cHH3ywVW3vatfr9ZqSzPvuu2+P+63uNF5//fXR/R544IFmt3v33Xej2x1//PGtantXx2fXcz3jjDP2uD8RncZf//rX0ce84YYbOtSWFZ3Gjhy7U045JbrNpk2bmn2sUaNGmZLMQYMG7fXa36Wuri46B83YsWNbHMp//vnnm5LMPn36dGj4dVuNHz8++nx3n7+lrXbvRLfU8Z0zZ050u5tvvrndjxcrHQmuYnXsdnfGGWdE23zzzTdN02yc9yIjI8OUZI4bNy5m58f+++/fYujRFqWlpdG2Bg4cGJP6uiP6IPRBWoM+SPvRB2kafZDEu+yyy6K1vfTSS/vcnj7I9zpjH4RVBWGZ2tra6PKbknT55ZfLMIw9tnn33XcVDAYlST/60Y/k8XiabW/3oeL//e9/m9wmOztbNlvjab5+/XqVlZW1u/54ePnllyU1XgJw5plnNrvd6NGjddhhh0mSXn/99TY9RkNDg8aPH6+f/exn7S80BmbOnClJcrlcuuSSS5rd7qSTTlL//v0lSR988MEew4D3paGhQV6vN+GrRZmmqRdeeEFS4/O99dZbE1pPa3Tk2F1wwQXR26+99lqT26xatUqrV6+WJJ1//vl7vfZ3mTNnjqqqqiQ1rnrS3FB+qfF3iCQVFxdr0aJFba67vXZfBjo1NbXd7ew6HlLjimfNGTduXPT2/Pnz2/14ySBWx253Dz30UPSSxl/+8pfy+Xy68cYbVV1dHZPh+bvbveaOLgcey7awb/RB9kYfZG/0QRKDPkjr0QdpVFBQED3P8/PzddZZZ+1zH/og8WnLKgRXiKva2lqtWrVKDz30kMaMGaMvvvhCUuMvwVtuuWWv7f/3v/9Fbx9++OEttj1lypTo7c8//7zJbVwul0488URJUlVVlQ477DC98MIL0ev9E6moqEjffPONJOmggw6Kdm6bM378eEnSl19+2ebH+s1vfrNX+zfccIMKCgpUUFDQ5vbaasOGDdF5BcaOHbvPORQmT54sqXGegbY+30suuUR9+/bd43uHHXZY9Lnu6nzH05dffqmtW7dKajyPc3Nz4/6YsdDeY3f66afL6/VKar7TuPv3d+9k/tDbb78dvX3IIYe0WO+u14TUvtdFe+0+L05HOiOBQCB6OyUlpdnt3G539Pau+WM6q1gdu9317t1b9913n6TGjuzZZ58d7cz+9re/1dixY2PyONKe8yPtCjiSoS00jT5I8+iDNI8+SGLQB2kd+iCNrrnmmuhzuOeee1p1LOiDxKctqzA5O2LqmWee0TPPPNPiNpMnT9bMmTOVkZGx132FhYXR20OHDm2xnSFDhkRvb9y4sdntHnroIR177LEqKCjQhg0bdNFFFyktLU0nnHCCpk2bptNOO61VE/rF2u6dtfr6es2ePbvF7Xd9UltVVaXa2lqlpaW16nEyMjJ0xhln7PX9rKwsZWVltb7gDmjLz1Vq/c+2KZdeeule3/N4PMrPz29TOx2xfv366O0xY8ZY9rgd1d5jl56ermnTpunVV1/VwoULVVxcrD59+uyxza5P6ffbb78W/4jv/rpYtmyZSkpKmt02HA5HbxcVFbVYYyzt3omrrq5W796929XO7pN4fv3113t8qrm7VatWRW/369evXY+VLGJ17H7oRz/6kV5++WW9/fbb0TcezYUTHbHrk3hJ0TdKydAWGtEHaT36IM2jD5IY9EFahz6I9Le//S06ef6FF16oGTNmtGo/+iDxacsqBFewRFpamg4//HD9+Mc/bnEoZ2lpafR2U53K3bndbrlcLgUCAVVWVja7XX5+vpYtW6Y///nPeuyxx1ReXq7a2lq9/vrrev3112W32zVt2jT9v//3/zRp0qQ2P7f22r59e/T2/Pnz2zT8tqqqqtWdxnHjxu3xizoR2vJz/eE2Lf1sm2LFp5n7UlxcHL3dWT7plDp27C644AK9+uqrMk1Tb7zxhn7yk59E7ysoKIiu5NLSJ53Snq+La665ptWPv/sf4HjbfaW9jjzuxRdfrHvvvVeS9Oc//1nnn39+k6/Vu+66K3r7+OOPb/fjJYNYHbum/O53v9vj0/Irr7wy5is97V5zR990x7IttIw+yN7ogzSPPkhi0Adpne7eB3n//fejgdABBxygRx99tNX70geJT1tW4VJBxNTUqVP11ltv6a233tI777yjhQsXas2aNaqoqNC77767z+uPd//0ojVM05S07+GeGRkZ+stf/qLi4mK9/fbb+vnPfx79pCEcDmvWrFmaMmVKp5gHQGp6Ce/mNHcdv5Xa+3OV2j6UN9meb0vzIySbjhy7U045JdrZ/+FQ/d3nRNlXp7G92vKa6Khd859I6tCcNRMmTNCvfvUrSdLatWt17LHHau7cuaqurlYwGNSKFSt02WWXadasWZIal3retZR7ZxWrY9eU22+/fY////GPf4zpY5imGZ3vxul0qlevXh1qb/dLLnY/Lmg/+iDWoA/SvGR7vvRB6IM0pzP2QZYsWaKzzjpL4XBYvXv31syZM9s0VxV9kO91xj4IwRViqn///jr11FN16qmn6uSTT9akSZM0YsSIVv/h3z3xrampaXFbv98fvSY3Ly+vVe27XC6dcsop+te//qV169Zp5cqVuuaaa2Sz2WSapu68887oZKXxtvsvnCuvvFJm4yqfrfoaNGiQJTXGSlt+rj/cprU/22Sy+8/Wyk/hEsnj8USHas+fP3+PP9a7Oo2HHnroPi/T2P3YFRYWtvo18dRTT8X+STVjv/32i95etmxZh9r6+9//rr/97W9yuVxauHChTjjhBGVmZsrlcumAAw6IXvaUlpamV199tdN8KtacWB673T3++ON67733JCl6WVJJSUlMJ4Ret25ddALTUaNGdfgN6q4RANKexwXtRx+k9eiDNI8+SOdDH6R9OlMfZN26dTrllFNUW1urrKwszZkzZ4/LeluDPsj3OmMfhOAKSWX3Pyj7mldgw4YN0dsDBw5s1+ONHj1aDz/8cHSorNQ4H4UVdq9527ZtljxmorTl5yrF5mebSLvXvPvcAF3drk8yw+Gw3nzzTUmNlyx89tlne9zfks7wujj00EOjt5ublLm1bDabfD6fgsGgnE7nXh0Rp9OpM888U19++WWLq/50FrE8drts3rxZN954o6TGlZFee+01HXvssZIaV0174403YvI4u9e7+/NIlvbQcfRBuib6IN0DfZC26yx9kIKCAh177LEqKSlRRkaG3nnnnXbN30YfJH7tWYHgCkll4sSJ0duffvppi9vufn9Hr7nefULItWvXtmqf3X+57z6svLUGDRqk0aNHS5IWLVrUaVZ0aI9hw4YpJydHUuMnHC0tu2qaphYuXCip8RMeK+f8iJXJkydHh6x/8skn8vl8HWpv93OtrZc8WOm4446LTjK8a6j+G2+8IdM0ZbPZdN555+2zjZNPPjl6++OPP45PoR109NFHRyeyXLBgQYdeu2+++aZ+97vfyTRNvf3229q6das++OADvfvuu1q8eLEqKyv12muvaeTIkbEqP6Fieex2+fGPf6zq6mq5XC49/PDDMgxDDz74oFwulyTpuuuua9OS9s2ZN29e9Pbu52l77ZpTyGazRVeeQ2LRB+ma6IPQB6EP0rTO0AcpKCjQ0UcfraKiImVmZmrOnDntfl3SB/leZ+yDEFwhqZx99tnR6/Gfe+65PZZq/aEnn3wyevv0009vdju/37/Px62vr4/ebu3Qy90n+Nt9xZq2OPvssyU1Xmf8xBNPtKuNzsAwDJ177rmSGn8ezz33XLPbvvfee9qyZYsk6aSTTkr4pK7t4XK5okPWKyoq9O9//7tD7e1+/f6uY9OU3T+1TwSHwxE9pz/44INoh0dq7Cz8cJWfppx88snRZZkffPDBPV6bycLr9UY7wKWlpZo5c2a729r1WujZs6eOP/549e7dW8cee6xOOukkHXrooS0uUd0ZxfLYSdIjjzwSXVnoN7/5jUaNGiWpcRj9r3/9a0mNk+3+4he/6NDj1NTURC/hysvL07Rp0zrU3kcffRRd+evUU09Vz549O9QeYoM+SNdEH4Q+CH2QpiV7H2Tjxo06+uijtXnzZuXm5mru3LkdmsSfPkijTtsHMYEO+uijj0xJpiTz0ksv7XB7l1xySbS9a6+91gyHw3ttc+edd0a3Of/885tta8WKFWbv3r3Nu+66y6yrq2tym2AwaP7oRz+Ktnf22We3utZRo0aZkky3222uWbOmyW0CgUCz+1dWVpp9+vQxJZkej8d88803m23jgQceMJ955plW17br+Rx11FGt3qc1CgoK2vXzXr16telyuUxJZnZ2trl8+fK9tikqKjLz8/NNSabD4Whym6YcddRR0ZqSRUFBgZmWlhY9P1599dUmt/P7/ebf//5386233mq2rVmzZkWf36mnnrrX/YFAwLz++uuj27TlZxPrYzd//vxoe/fcc4/pcDhMSeZjjz3W6jb+9re/Rds46aSTzMrKyia3W7lypfnjH//YrK2tjUntbbF8+XLTMAxTkjl16tR2tzNjxozoc33kkUeafa7JZPff+bfffnub94/Vsfvuu+/M9PR0U5I5dOhQs6GhYY/76+vrzcGDB0drnTVrVrsf68EHH4y284c//KHd7exyzjnnRNv7+OOPO9xed0YfhD5Ia9AHoQ/SWvRBksPatWvN/v37m5LMfv36mStWrIhJu/RBOm8fxDDNdowvBnYzb948HXPMMZIah7s//fTTHWqvtLRU48ePj36qc8ghh+jiiy/WgAEDVFJSoldeeUUffPCBJKlv375avHhxk6shRCIRjRkzRitWrJDUuCTwaaedpokTJ6pnz56qqqrSunXr9Pzzz2vz5s2SpJSUFC1atEgHHnhgq2p97LHHdPXVV0uScnJy9NOf/lSjR49WKBTShg0b9Oqrr+qII45o8dOud955R2eccUb0k93jjz9eM2bMUN++fVVdXa2lS5fqlVde0datW5WSkqKlS5c2O2T3s88+i64SMX36dEmNS8XuvpTtpEmTWr088tq1a/e6bKGkpERXXnmlpMYVnG644YY97h8xYoRGjBjRZHt//vOf9dvf/lZS46ceV155pSZPniy73a6lS5fq0UcfVUVFhaTGZWV///vft6q2m2++WcuXL5ckvfXWW62qxQpPP/20rrzySkUiEUnf/2z79Omj6upqLVmyRK+88oq2bdum7OxsffXVV01OeltfX6/+/ftHj81ZZ52ls846S2lpaVq+fLkeeeQRbdq0SUcccYSWL1+uioqKFl+L8Tx2pmlqwIAB2rJli9LS0lRbWyuXyxV9jq0RCoV0/PHHR4dF9+jRQ5dffrkmTJggu92uzZs3a+7cuZozZ45M09QVV1yRkNEC06dP1+zZsyVJb7/9tk455ZQ2t/H666+3uNKZy+VSr169NGnSJF122WUxGR7eFh9++OFenzh/++230aWoL7jgAl144YV73D916tToUPzmdPTYmaap4447Th9++KGkxuWxm7pca/bs2dHfhX369NGKFStafR7uUllZqVGjRmn79u1KT09XQUFBh5aYX7hwoQ4//HCZpqnJkydrwYIF7W4L9EHog9ywx/30Qb5HH4Q+yL4kax9k/fr1OvLII1VcXCyXy6V//vOfys/P3+d+o0eP3ucE/BJ9kE7bB0lUYoauI9afdpqmaa5Zs8YcPnz4Hp/e/PBr6NCh5oYNG1psZ+3ateYxxxzTYju7vgYPHmwuWbKkzbVeffXVLbbrcDjMwsLCFtv48MMPzezs7Bbbsdvt5jXXXGNWV1c3287un1w19/XRRx+1+rndfvvtrTp2u3/tawTGrbfeatpstmb3NwyjVaM4WlNbe0aDxNqbb74Z/USmpZ/t1Vdf3eLP9oUXXmjxuJ155plmdXV19BP4ll6L8T52v/rVr/Zo67TTTmtzGz6fzzzvvPP2WeeQIUPM999/v921dkRBQUH0Zzt48GCzvr6+Xe3cc889ZkZGRqteX2eeeabp8/li/EyaN2jQoDb/DigoKNhnux09dg888ED08S644IIWt939E+VLLrmkTY9jmqZ5zTXXRPd//PHH27z/7oLBoHnAAQeYUuMoiNaO6EDz6IPQB2nL3y76IPRBWoM+SGL7IE899VSbX/uSzGeffbZV7dMH6Zx9EIIrdFg8Oo2m2Th8+cEHHzSPPfZYs1evXqbD4TAzMzPNKVOmmHfffXezw+6b8sknn5jXX3+9OW7cOLNnz56mw+EwMzIyzBEjRpgXXXSR+dJLL5nBYLDdtc6aNcucPn16tM709HTzoIMOMn/5y1+aX3/9davaKCsrM//0pz+ZkyZNMrOyskyHw2H26NHDnDx5snnbbbeZ33333T7b6AydRtM0za+++sq89tprzREjRphpaWmmy+UyBw8ebF566aXm4sWLY1ZbMnQaTdM0t2/fbv7hD3/Y42ebm5sb/dm25o2+aTYOgT/11FPN3Nxc0+l0mv379zfPP//8PTpNRxxxRMI7jV988cUebb344ovtbuv99983L7zwQjM/P990u92m1+s1hwwZYl544YXmK6+8YoZCoXa3HQuPP/549HleeOGF7W6noaHBXLx4sfnOO++Yb731lvnWW2+Zs2bNMp988knz+uuvN3v06NGhjk97xSu4Ms32H7uNGzeaqamppiQzKyvL3LZtW4vbb9q0Kbq9JHP27NmtfqyXX345eknB9OnTW71fc37yk59E6/jHP/7R4fZAH8Q06YPQB2kZfRD6IPuSbH2Q9gZXixYtavVj0AfpfH0QgisAADrg8ssvj3YEfv/738flMSoqKswxY8aYUuOIgLVr18blcaxmxbFrr88//9z0er2mJHPEiBFmaWlph9q7//77o8/1rLPOanLuJAAA2oI+SPvRB+lcWFUQAIAOeOyxx6Krit1xxx164IEH9rmPz+fT7NmzNXv27FatCJaVlaWrrrpKkmSapr7++uuOFZ0k2nPsrPDtt99q2rRpamhoUN++ffX+++9Hl1lvj+effz46F88xxxyj559/XjYbXTAAQMfQB2k/+iCdS+erGACAJGK32/XSSy/phBNOkGma+vnPf6677767xX3C4bCmT5+u6dOn6z//+U+rHmfXpMeSlJaW1qGak0V7jl28LVu2TMccc4xKS0vVq1cvzZkzp8kJi1vrmWee0SWXXKJwOKxJkyZp5syZcrvdMawYANBd0QdpP/ognQurCgIAEAPBYFCXXXaZXnjhBR177LF6//33Zbfbm91+0KBB2rx5s0aMGKHFixcrKyur2W2/+eYbHXvssdqxY4dSUlJUXFysjIyM6P1Nrf7XFole/aqtxy6eHnroIf30pz/VsGHDNGfOHA0ZMqRD7Z177rl65ZVXdOqpp+q///3vPldcBACgreiDtB99kM6B4AoAgBgxTVP333+/rrjiin1+IvnHP/5Rv/vd7yRJeXl5Ov/88zVmzBhlZWXJ4XCovr5emzZt0oIFC/Tee+8pFApJku655569loDPz8/Xpk2b2l337bffrjvuuKPd+8dCW45dvD322GOaMWOGevbs2eG2AoGAHnzwQf3iF79IWEcYAND10QdpP/ogyY/gCgCABAiHw7rooov08ssvt2r7zMxM/fWvf9U111yz131dodMIAACsQR8EnQ3BFQAACTRv3jw9++yzWrJkiQoLC1VdXS1JSk1NVd++fbX//vvrhBNO0LnnntviUH4AAIC2oA+CzoLgCgAAAAAAAEmJVQUBAAAAAACQlAiuAAAAAAAAkJQIrgAAAAAAAJCUCK4AAAAAAACQlAiuAAAAAAAAkJQIrgAAAAAAAJCUCK4AAAAAAACQlAiuAAAAAAAAkJQIrgAAAAAAAJCUHIkuAIkR9NXJNCOJLqNbc7hTZLPZFYmEFfLXJ7ocdGGca7AK51ryMAybnJ7URJfRJPogicdrFVbhXIMVOM+SSzz6IARX3ZRpRug0JhF+FrAK5xqswrmG5tAHSS78LGAVzjVYgfOsa+JSQQAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAAAAAAAkJYIrAAAAAAAAJCWCKwAAAAAAACQlgisAAIAECEciavAHE10GAABAUnMkugAAAICuLhQOyxcIyRcIyR9ovB0MhWUY0siBPRNdHgAAQNIiuAIAAGgn0zQVCIUVCkUUjkQUCkcUDu/8N2IqFI4oGA4rHDYTXSoAAECnRHAFAADQCsFQWP5g44ipxn9DCoTCMsmkAAAA4obgCgAAoAmmaarOF1BlrU/1vqAiERIqAAAAqxFcAQAA7CYYCquy1qfqOp+CoUiiywEAAOjWCK4AAEC3Z5qmahsCqqr1qbYhkOhyAAAAsBPBFQAA6HZC4XB0dT9/MKR6X1ChMKOrAAAAkg3BFQAA6LIiEbNxIvWdk6r7AiEFQiFW+QMAAOgkCK4AAECnZ5qmAqHw9yv+7QyqgqFwoksDAABABxBcAQCATmNXQBUINgZUgWBY/kBIgVBEpskoKgAAgK6G4AoAACSlcCSy8/K+YONcVIGQAqGwyKcAAAC6D4IrAACQcOFIJBpO+XZ+BYJc5gcAANDdEVwBAABLmWbjhOkN/pB8/qAaCKkAAADQDIIrAAAQV40TpTcGVQ2BoPyBEJf7AQAAoFUIrgAAQMwEQ2HVN/hUU10rXyCkhkBIkQgpFQAAANqH4AoAALRLKByOzkflC4QUUoMiESlihhXyNyS6PAAAAHQBBFcAAGCf9gip/DuDqnBkj20cbrtshj1BFQIAAKArIrgCAAB72BVSNfi/X+XvhyEVAAAAYAWCKwAAurFAsDGk8geC8u+8TUgFAACAZEFwBQBANxAKRxQIhhUIhXYGVY0hlcnyfgAAAEhiBFcAAHQhoXBYDf5QY0gVDMkfCisYCiscJqACAABA50NwBQBAJxcKh1VdF1BNvV8N/mCiywEAAABihuAKAIBOKByJqKber+q6xrCKK/4AAADQFRFcAQDQSfgDIdX7g6prCKjOFyCsAgAAQJdHcAUAQJLyBYKq9wVV7w+qwR9knioAAAB0OwRXAAAkCX8gpDpfIBpWRSIEVQAAAOjeCK4AAEiQYCgcDarqfAFGVAEAAAA/QHAFAIBFQuFwdDRVXUNQwVA40SUBAAAASY3gCgCAOAkEw2rwB1XvC6jeHyKoAgAAANqI4AoAgBgxTVP1vqCq6/2q9wUUDEUSXRIAAADQqRFcAQDQQY1hlU819X7mqQIAAABiiOAKANDthMIR1fuCcjvtcrva96ewwR9UTb1fNfV+RlYBAAAAcUJwBQDoFvyBkGobAqpp8MvnD0W/73TYleZ1Kc3rUorHKcMwmt4/GGqcWN0XVL2fFQABAAAAKxBcAQC6pF3zTdU0+FXX0Px8U8FQWBU1DaqoaZDNZijV0xhieVwONQSC0bAqFGZUFQAAAGA1gisAQJcRjkRU1xBQTX1AtQ0BmWbbRkVFImb08j8AAAAAiUdwBQDo1IKh8M6gyq8Gf1BtzKoAAAAAJDGCKwBAp+MLBFVTH1BdQ0C+QGjfOwAAAADolAiu4uDbb7/V66+/rsWLF6u4uFimaSo3N1fjxo3T9OnTdfTRRye6RADoVEzTVL0/qNqdI6tYxQ8AAADoHgiuYqi6ulq33Xab3nvvvb3uKyoqUlFRkWbPnq0jjzxS9913n1JSUhJQJQB0Do3zVQVV2+BXbUNAkQjXAAIAAADdDcFVDD355JN67733lJWVpYsvvljHHnus+vfvL5/Pp/Xr1+vZZ5/VvHnz9PHHH+s3v/mNHnjggUSXDABJwzRN+QIh1TYEVOcLyB8IMV8VAAAA0M0RXMXQ9ddfr7y8PJ100knKycmJfj8zM1O9evXSlClTdMcdd+jFF1/U3LlztXbtWo0YMSKBFQNAYgVDYdX5AqprCKrOx6gqAAAAAHuyJbqArsQwDF144YV7hFY/dP7550dvb9iwwYqyACBpmKapOl9AJRW1Ktharg1byrVtR61q6v2EVgAAAAD2wogriwUCgejtvLy8BFYCANYIhcOqbQiotiGgel+QgAoAAABAqxFcWeyZZ56RJA0fPlwHHXRQgqsBgPjwB0OqrQ+opt4vXyCU6HIAAAAAdFIEV3EUiUQUDAZVV1enlStX6umnn9Ynn3yivn376r777pNhGIkuEQBixhcIqmZnWBUIhhNdDgAAAIAuwDBN1myKlzfffFP/93//F/1/bm6uLrzwQl1yySXKyMhIYGVSJMKbykQzDJsMw5BpmjLNSKLLQRcWz3PN5w+qqs6nmnqfgiF+r3R3hnY718TvtdYwZGhUfq+4tG2z2ePSbkfRB0k8+iCwCucarMB5lnxi3QdhxFUcFRQU7PH/HTt26LnnnlNdXZ1+/vOfKyUlJUGVJW9ntjsyDEOGwc8D8Rercy0QDKmqzqfq2oY9RlbZOI+xk2EYMsT50CpG9/ub3N2ebzKjDwKrcK7BCpxnXRcjrixQV1enoqIizZ49W//5z39UX1+vESNG6MUXX1RaWlpCauLTzsTjkwFYJRbnWigUVnW9T9W1PjUEgjGuEF0FI67ajhFXSAT6ILAK5xqswHmWfGLdByG4sthXX32lCy+8UJFIRD/60Y906623JqSOQEMNL+oEc3rSZLPZFYmEFfTVJrocdGFtPddM01QgGJY/GJIv0PjV4A+KvxbYF4fbK5thV8QMK+RvSHQ5nYJhSCMH9oxDuza5vOkxbzcW6IMkHn0QWIVzDVbgPEsu8eiD2GLaGvZp/PjxmjBhgiTpjTfeSHA1ACAFQ2FV1DSoeEeNvttWobWFO1RQXKGtZTUqr25QvY/QCgAAAEBiEFwlQH5+viSptrZW5eXliS0GQLcVCkdUUlGrjVvLtb28VlW1Pvn8ITEQFwAAAECyYHL2BPD5fJIaJ49LTU1NcDUAuhvTNFVR06CyqnpFIoRUAAAAAJIXwZXFwuGwlixZIkkaNGiQ3G53gisC0J1U1/lUWlmvYIjJkYFE8AVCKi6r1tayGm0pq1ZJRa0G9srSj6cfrJyMxK02DAAAkKwIrmLoscce08cff6z7779fWVlZTW7z73//W1u3bpUkXXTRRRZWB6A7q/cFtK2sUjU1NYkuBegWdgVUW3aGVFt33t5RVb/XtkvXblVhSZXu/+X0BFQKAACQ3AiuYmT16tV64IEH5PP5dOKJJ+pHP/qRjjnmGA0YMEDhcFhr1qzRCy+8oDlz5kiSDjvsMF1wwQUJrhpAVxYMhVVd51dDuV+BYEQRk1FWQKw1+IONwdSOam0trdbWnUHVjuq9A6qWFJVUxalCAACAzs0wmYU3ZpYsWaJbbrlF3333XYvbnXrqqfr973+vtLQ0awprAktRJx7LtiIeQuGwqusCqq5vnGhdkhxur2yGXREzrJC/IcEVoivryudaY0D1/SV+W3d+lVd3/HnabTb98rwpOvOo/WNQaaN4LEUdK/RBEo8+CKzCuQYrcJ4ll3j0QRhxFUMTJkzQO++8o3feeUcffvihvvnmG5WVlcnhcKhXr16aMGGCTj/9dB188MGJLhVAFxEKRxQIhuUPhhpHV/mDiS4J6NTqfTsDqugIqsbRVLEIqCTJMKS8rDT17Zmhvj3S1a9nhk48dIT65CZnyAQAAJBoBFcxZrfbNX36dE2fzjwVAGInGGoMpxpDqrACwbACoZDCYQbNAu3hD4a0taxGRaVVKiqpagypdtSooiaGAVV2mvr1yFDf6Fe6+uSmy+mw77EdoRUAAEDzCK4AIEnV+4Kqa/CrtiEgf5D5qYD2iJimSivqogFVUWm1ikqrVFJeq1jEvjbDUF52qvr1zFCf3Az169kYUvXOSdsjoAIAAED7EFwBQJIIRyKqa9gZVvkCjKYC2qim3r8zoKqOBlVbyqoViEHwazMM9cpJi46c2jWSqhcBFQAAQFwRXAFAAkUipmob/Kqu86vOFxDLZQD7FgyFGy/zK6lqDKhKG0dSVdX6Oty23WY0XuLXM0N9czOic1H1yiagAgAASASCKwCwmGmaqvMFVF3nV019QCzuCjTNNE1V1DRo8/YqFZZUqrCkSltKq7W9vFaRGLxuemalqn/PDPXrman+eZnqt3MElcNui0H1AAAAiAWCKwCwSL0vqOp6n2rq/VwGCPxAOBLRth212ry9UoUlldq8vUqbt1eqtiHQ4bZTPS71z8tQ/50BVf+d81B53c4YVA4AAIB4IrgCgDjyBYI7R1b5FQxFEl0OkBR8gZCKShqDqc0lldq8rUpbyqo6/Bpx2G3qk5seDad2BVVZaR4ZhhGj6gEAAGAlgisAiDF/MKTqusZ5q4IhVgNE91Zb79em7ZX6bltlY1C1vTImK/r1yExR/56Z6rdrJFXPTC7zAwAA6IIIrgAgBoKh8M6wyid/DFYwAzqjmjqfNm2r1MYtZSrYUqpN2ypUVlXfoTZdTrsG9MzUgF6ZGpCXpQF5merXk8v8AAAAuguCKwBop3Akopp6v6pq/WrwBxNdDmCpmnq/Nm2rUEFxpTZtq9CmbZXaUd2xkCoj1a2BvbIav/IyNaBXlnplp8lm4zI/AACA7orgCgDaYNeKgFW1ftU2sCIguofqer82FVfou22xCakMSb1y0jSwV5YG7AypBvbKUmaaJ3ZFAwAAoEsguAKAVvAHQqqs9am63seKgOjSqnZe7rdp2/dBVXl1Q7vbs9sM9e2RoUG9s5Xfu3E01YC8TLlddEEAAACwb/QaAaAZoXAkOm+VLxBKdDlAzDX4g/puW4UKtlaooLhCBcXlHQ6p+udlK79PtgbmpWtQ72wNyMuU02GPYdUAAADoTgiuAGA3pmmqtiGgqjqf6hoC4kpAdBWhcERFJVUqKC7Xxq2NIVVxWU27V/ez2wz165mp/N5Z0dFUg/r3lsflUsQMK+RvfwAGAAAA7EJwBQCSfIHgztFVfoXCkUSXA3RIxDS1vbxW3xVXaOPWchUUV2jz9sp2n9uNI6kyNah3lvJ7Z2tQ72z175mx10gqh5ORVQAAAIgtgisA3VYoHFZVbeOlgP5gONHlAO1WW+/Xhq3l2rClPBpUtXelS4fdpv49M5Xfp3Ek1aBeWerXREgFAAAAWIHgCkC3EomYqqlvDKvqfO17Yw8kUiRiqqi0KhpSrd+yQ9vLa9vVliGpd266hvTN0eA+2RrcN0cD8jLlsNtiWzQAAADQTgRXALqFel9QVbUNqq4PyGTiKnQiNfV+bdhSrg1bd2jjlnJtLK6Qv52LBWSnezWkb7YG92kMqgb1zlaKxxnjigEAAIDYIbgC0GWFwmFV1/lVWetTgEsB0QmEIxEVlVRrw5YdOy/926GSirp2tZXicWpw78ZRVIP7Zmtwn2xlpXljXDEAAAAQXwRXALoU0zRV5wuospZVAZH8qut80bmpNmzZoYLiinaFrIYhDcjL1NC+uRrSL0dD++YoLydNNsOIQ9UAAACAdQiuAHQJoXBYlbU+Vdb4WBUQSWnX3FTri3ZofVHjiKrSyvaNpkrzujSsX66G9svRkH45GtwnRx4Xf9IBAADQ9dDLBdCp1fuCqqxtUE29n9FVSCr+QEgbi8u1vmiH1hXu0IatO9Tgb/vcVDbD0IBemRrSNycaVvXMSpXBaCoAAAB0AwRXADqdSMRUdX3j6CpfOyepBmKtriGgdUVlWrO5TGsLy7R5e6XCkbanqRkpbg3tl6OhO0Oq/N7ZcjOaCgAAAN0UPWEAnUa9L6iaer+q630KhxlehcSqqvNpXWFjULWmsExbSqrU1rPSbjM0IC9rZ1DVGFb1yExhNBUAAACwE8EVgKS2K6yqqfczdxUSxjRNlVTUau3O+anWFZZpW3ltm9tJ9bg0vH+uhg/I1dB+uRrUO0tuJ3+KAQAAgObQWwaQdOp8AdXU+1VbHyCsQkKEwhFt2lahdUU7tG5nWFVT729zO3nZqRrev4eG98/VsP656p2bzkp/AAAAQBsQXAFIGuFIRMU7alRbH0h0KehmwpGIviuu1OrNpVq9qUTrinYoEAy3qQ1DUr+8TI0c0EMjB/bQ8P49lJnmiU/BAAAAQDdBcAUgKTT4g9paVq1giBFWiL9IxFRhSaVWbSrV6k2lWltY1uaJ/m2GoUG9szRiZ1A1rH8PpXldcaoYAAAA6J4IrgAk3I6qepVV1clkvnXEScQ0tbW0emdQVaI1hWWq9wXb1Ibb5dDQvjnRy/6G9M2R1+2MU8UAAAAAJIIrAAkUCkdUXFatujYGCMC+mKap4h01Wr2pdOflf6WqbWjbJaiZqR6NGNg4P9Xw/rnqn5cpu80Wp4oBAAAANIXgCkBC1PkCKi6rYfJ1xETjqn910ZBq9aZSVdX52tRGeopbIwf20OhBPTVqUJ5656TJYCJ1AAAAIKEIrgBYKhyJqLy6QeXV9VwaiA7ZUVWvlZtKokFVRU1Dm/ZP9Tg1YmBPjRrYU6MH9VTfnhms+AcAAAAkGYIrAJbwB0OqqGlQVa1fJokV2qG2IaDVm0q16rsSrfyuRNsratu0v9ft0IgBPTRqUE+NGpinAXmZstkIqgAAAIBkRnAFIK5qG/yqqG5gHiu0WTAU1rqiHVr5XYlWFpRo07YKtSXydDvtGt6/MagaPainBvbOYo4qAAAAoJMhuAIQc5GIqcpanyprGxQIhhNdDjqJSMTU5u2VjUHVdyVaV1SmYKj1c6A5HTYN65+rUQPzNHpQT+X3yZbDTlAFAAAAdGYEVwBixh8MqbLGp6o6nyIRLgfEvpVU1EaDqlXflarO1/qV/+w2Q0P75UZHVA3pmyOnwx7HagEAAABYjeAKQIeYpqnahoAqa7gcEPvW4A9q1aYSLd+4XSsKSlRaWdem/fvnZWq//Dztl5+nEQN6yOPizxgAAADQldHjB9AuoXBEVTsvB2zL5VzoXiKmqU3bKncGVdu1YcsOhdswGi8nw6v98ntpv/w8jc7vqcxUTxyrBQAAAJBsCK4AtEkgGNaO6npV1/nE4oBoSmVtg1ZsLNHygsawqrah9Zf/pXicGj2oZ3RUVV52mgyDlf8AAACA7orgCkCr+AMhlVXVq7bBT2CFPQRDYa0tLNOKgu1avnG7ikqrW72vw944ofr+O4OqQb2zZbMRVAEAAABoRHAFoEX1vqDKq+vbNGoGXV9JRa2+3bBN32zYpjWbyxQItX71yN45aTpgSC8dMLiXRg7sKTfzVAEAAABoBu8WADSpriGgsqp6NfiZcB2No6rWbC7TNxu26duN27S9vLbV+3rdTu2Xn6cDhvTS/oPz1CMzNY6VAgAAAOhKCK4ARJmmqeo6v8qr6+UPtn4EDbqm8up6fb1+m77ZUKxVm0oVaOU5YRjSkD452n/nqKrBfbNlt9niXC0AAACArojgCoBC4YgqaxtUWeNTKMwKgd1VxDT1XXGFvl5frK/XF2vz9qpW75ud7o1e/jc6P09pXlccKwUAAADQXRBcAd2YPxBSeU2Dquv8MplxvVvyBUJa+d12LVvXOLKqus7fqv3sNkPDB/TQmKG9deCQ3urbI53V/wAAAADEHMEV0A01+IMqq6xTnY/5q7qjsqo6fb1+m75eX6zVm0pbPcouO92rA4f20oFDemu//Dx53c44VwoAAACguyO4AroRfyCk0qo61dazQmB3EolEtGHrDi1dU6ivVm9WUWl1q/YzJA3pl6Nxw/rowKG9NSAvk1FVAAAAACxFcAV0A4FgWGVVda2+DAydXyAY1orvtuurtY3zVdXUt+5n73E5dMCQXhq7M6zKSHHHuVIAAAAAaB7BFdCFBUNhlVXVq7rOJ6aw6vpq6v36en2xvlpXrBUF21u9CmDPrFSNHdZbY4f10ciBPeWwswIgAAAAgORAcAV0QaFwWDuqGlRZ20Bg1cWVVNTqq3Vb9dXaYq0rKmvVz9swpOH9e0TDqj65TKwOAAAAIDkRXAFdSCjcOMKqqpYRVl2VaZr6rrhCX60r1lfrtmpLK+er8rqdGjOsr8YMydOBQ3opjUsAAQAAAHQCBFdAFxAMhbWjmsCqqwqFI1q9qVRfrd2qZeuLVVHT0Kr9stO9Gj+8jw7ef7D2y+8jm10K+Vu3LwAAAAAkA4IroBMjsOq6/MGQlm/crqVrGsOqBn+wVfv1z8vU+OF9NH54Xw3qnSXDMORwe2Uz7IqYrZvzCgAAAACSBcEV0EmVVzeotLKWwKoLqfcF9PX6bVq6dou+3bBdgdC+gyabYWjEgB4aN7yPxo/oq55ZqRZUCgAAAADWILgCOqHt5bWtvlwMya223q+l67bqy9VbtOq7EoUj+04i3U67DhjSS+OG99XYob2ZrwoAAABAl0VwBXQikYiprTuqVVsfSHQp6IDaer+Wrt2qL1YXafWm0laFVRkp7uioqv3y8+R02C2oFAAAAAASi+AK6CRC4bCKSqrlC4QSXQraoWZnWPXlqiKt2lSqSCuu8czJ8OqgEf00YWRfDe/fQzabYUGlAKxgtxtyORxyuwihAQAAWkJwBXQC/kBIRaVVCoYiiS4FbVBd79fSNVv05eotWt3KsKpXdpomjOqnCSP7KX/n5OoAOh/DkGw2Q3abTXabTW6XPRpUuZ12OewEVgAAAK1BcAUkubqGgLaUVSvSisvJkHi7wqovVhdpzaayVoVVfXLTdcio/jp4dD/165FBWAUkMbvdkNNul8Nhk9Nul9Nhl9Nhk81myGGzRcMqRkgCAADEBsEVkMQqaxu0vZyVA5NdTb1fS3aGVas3lbbq59W3R7oOHtVfh4zqr349M+JfJIA2Mwwpxe1URqpHHrdDTrudQAoAAMBiBFdAEqr3BVVaWacGfzDRpaAZ9b6gvlq7VYtXFWplQUmrRlb165Ghg0f108Gj+6tfD8IqIFm5nXZlpnmUkermkj4AAIAEI7gCkog/EFJpZZ1qG1g1MBn5AyEtW1+sz1cV6dsN2xQK73vOsX49MxovAxzVT30Jq4Ck5bDblJHqVmaqR24X3SMAAIBkQc8MSAKBYFhlVXWqrvMnuhT8QCgc0fKN27VoxWYtW1+sQDC8z33652XqkFH9dPCofuqTS1gFJAubzZDTbpPTaZfL8f38VE5H4/+ZXw4AACD5WBpcRSIRrVq1SitWrFBRUZFKS0tVX1+vUCgkj8ej9PR09e7dW8OGDdOBBx6oXr16WVkeYLlQOKKS8mqV7ShnHqskEjFNrS/aoUUrNuvL1VtaNQKub490HTp6gA4Z3V99ctMtqBJAU2w2Qy6HXS6nPRpI7brtsNsSXR4AAADayJLgas2aNXr66af14Ycfqrq6utX7DR8+XGeffbbOPvtspaSkxLFCwFqBYFg76qpVXRdQOBIitEoSRaVVWryiUItWFmpHVf0+t8/LStWh+w3Qofv1V/+emRZUCEBqvKyvMZT6fvSUw94YUBFOAQAAdC2GacbvLfOKFSt09913a+HChZKktj7UriH76enpuuiii3TttdfK7XbHvM7uKNBQI9Pc9/w8iK16X1DlNfWqrQ/I4fbKZtgVMcMK+RsSXVq3taOqXotXNoZVRSVV+9w+O92rifv116GjB2hQ76xOcWkR5xqsEstzzW435HI45HLa5XbuOYKqM7zuEs0wbHJ5k3P0J32QxHN60mSz2RWJhBX01Sa6HHRhnGuwAudZcolHHyQuI64ikYgeeughPfzwwwqHw9HAyuPxaMKECRo+fLjy8/OVnZ0tr9crp9Opmpoa1dTUqLKyUitXrtS3336rzZs3S5Kqq6v18MMPa86cOfrrX/+qAw88MB5lx9SSJUs0a9Ysff755yorK5Pf71fPnj01btw4nXnmmZoyZUqiS4SFquv8Kq+pl88fSnQpkFTbENCXq4u0aEWh1haW7XP7VI9Lh4zup8P2H6hh/XNl400zEDMOu01up11uV2NItSusYuQUAAAApDiMuKqsrNR1112nZcuWyTRNGYahww8/XBdddJEmT54sl8vV6ra2bdum//73v3rttde0fft2SZLD4dDNN9+siy66KJZlx0xDQ4N+97vfadasWS1ud+aZZ+pPf/qT7AlaZptPO61RVetTWVW9gqG9J/RmFIy1AsGwlq3bqkUrCvXtxm0KR1r+1edy2DVueB8dtv8AHTCkd6d+E825Bqu0dK4ZhiG3yy6309H4tfN2Z35tJTNGXKEljE6AVTjXYAXOs+QSjz5ITIOrbdu26corr9TGjRtlmqbGjx+vW2+9Vfvvv3+H2g2FQnriiSf073//Wz6fT4Zh6Nprr9X1118fo8pjIxAI6PLLL9eXX34pm82m8847T6effroGDRqkYDCoVatW6e6779aaNWskSVdddZV+/etfJ6ZWOo1x1eAPantFbYsjrAgT4i9imlpXWKaFyzfry9VFatjHiDfDkPbLz9Nh+w/UQSP6yut2WlRpfHGuwSoOt1cOu0NOuyFbxB8dReV2OuR0JOaDmu6K4Aot4U0erMK5BitwniWXpA6utm7dqosuukjFxcWy2+26/vrrdfXVV8ei6ajCwkLdcMMNWrFihQzD0MUXX6zf/va3MX2MjnrnnXd011136S9/+UuTlwM2NDRo+vTpKiwslNvt1vz585WdnW15nXQa4yMUDqu0ok5Vdf59bkuYED/FO2r02fLN+mzF5lZNsj6kb44m7pxkPTPVY0GF1uJcQzw47LbGS/t2Xt7ndtqVmp4pt8tFxzEJEFyhJbzJg1U412AFzrPkkrTBVWVlpS688EJt3LhRKSkpuv/+++M2h5Pf79dvfvMbzZkzR4Zh6Prrr9e1114bl8dqr1AoJIej+enDnn76ad11112SpH/961868cQTrSotik5jbJmmqYqaBpVV1Suyj0vQdiFMiK3ahoA+X1moBd9uUkFxxT6375WTpkn7D9TE/QaoV06aBRUmDucaOsJmM+RxNV7e53E1XuLndNhlt+19iR8dx+RBcIWW8FqFVTjXYAXOs+SSlJOzh8NhXXPNNdq4caOysrL02GOPxXXydLfbrfvuu0933HGHXnrpJd13333q27evTjvttLg9Zlu1FFpJ0uDBg6O3S0tL410O4qyuIaDtFbUKBPeexwrxFY5EtKKgRAu+3aSv1m5VKNzyG6GMFLcm7j9Ak/Yf2GlWBASs5HTYo3NPeVyNX1ziBwAAgETqcHBlt9t12mmnqaCgQE888USH57NqrTvuuEOhUEhffvmlDj30UEseM1bq67+/dCkzMzOBlaAj/IGQSivrVNsQSHQp3U7xjmp9+s0mfbZ8syprfS1u63TYNH54X00+cJD2H5zX5CgRoLuJBlSOPVfzs9kIcwEAAJBcYjbHVVVVVUJCmJqaGqWnJ+dQ+Ob89a9/1ZNPPilJ+t///qcBAwZYXkMkwuig9gqGwiqtqFVVXccuuTJkk2EYMk1TprhkYl8afAEtWrFJH3+1QRuKyva5/ej8Xpo8ZrAO3W+gvJ7Wr2baFXGudS+GDDnsNjmddjntjZf1OR02ORx2uRyN/4/XaEPD2O1c41KwhLPZknO0HH2QxOO1CqtwrsEKnGfJJ9Z9kA6PuNolUSOHOltoFQgE9NZbb0mSxo8fn5DQSkrezmwyC0ciKqusVUV1g0zTlM2IzTE0DEOG+Hk0xTRNrd1conlL1+nzFZvkD7a8KmBeTrqOHDdUh48dqh5ZXXveqvbgXOu6HHab0lLcSvW6lep1JXxkoWEYMmL0OxJdD32Q5MFrFVbhXIMVOM+6rpgFV2idRx99NDqv1S9+8YuE1cGnna0XiZiqqKlXWWWdIjFM8BkF07zKmgYt+HqjPv5qg4p3VLe4rcfl0KH7D9IR44ZqxMCe0ZEkEZNzfBfOta7HkCGP26k0r0tpXrc8budu95oJ+x3PJ57JJVkDIvogicdrFVbhXIMVOM+ST9KOuMK+LV26VA8//LAk6ZxzztHkyZMTVkvIX8+Leh9M01RVnU87quoVDMX+WDncXhmyy1SEld7UOKLt2w3b9cnXBfp6/TZF9nEV86hBPXX4gYM0YWQ/uV2Nv8rCgZbnu+quONc6P4fdJo/7+wnTPS6nHPado6pMv4I+f2IL3MnpSZNh2GWaEVb1SbBkXlWQPkji8VqFVTjXYAXOs+SSlKsKonWKior005/+VMFgUAcccIBuvfXWRJeEFtTU+1VaWcdKgRbYXl6rT7/5Tp9+u0lV+5hoPTvdq8PHDNLhY/LVMyvVogoBazkdNrldu4dUDjnsyTlyBgAAAIg3gisLbN++XZdffrnKy8s1YMAA/fvf/5bH40l0WWhCnS+g0so6+fwtz6WEjvEHQ1qyeos++eY7rdnc8kTrdpuh8SP66ogx+dp/cC9WPUOXsndItdtIKgAAAAAEV/FWVlamyy+/XJs3b1a/fv30zDPPKC8vL9Fl4Qd8gaBKK+pU5wsmupQubfP2Ss3/qkCLVm5Wwz7Cwb490nXE2HxNOmCQMlLcFlUIxI9hGPK6HfK6nfK6CakAAACA1iC4iqPt27fr0ksvVUFBgQYNGqQnn3xS/fr1S3RZ2I0/GFJZZb1q6pNjfpiuyBcI6fOVhZq/rEAFxRUtbut2OTRxdH8dMTZfQ/rmRCdaBzoju92Q1+1Uitspr9spj8vBOQ0AAAC0UcKDq3A4rHXr1mn79u2qqalRKBTSjBkzEl1WhxUWFurSSy/Vli1bNGrUKD3xxBPq0aNHosvCTsFQWGWVdaqu92sfc4CjnTZtq9D8ZQVatKJQvkDLo6uG9c/VEWPzdcio/vK4Ev5rCWg3t9Ou9FS30r3u6KIBAAAAANovYb3qr776Ss8++6w++ugj+f17jnZpKriaNWuWxo8frwEDBlhUYfutXbtWV1xxhUpLSzV58mTdf//9SktLS3RZkBQKh1VWVa+qWh+BVRz4AiEtWrFZ85cVaNO2yha3zUhxa/KBA3XE2Hz1yc2wpkB0e4bROLIvxe2Ux+VUgz+o6nqfwuH2/0LwuB3KSHErzeuWy8kk6gAAAEAsWR5cmaapO++8Uy+88IJM05T5g/Sgqcso7rnnHj366KM67LDD9NRTT1lVart89dVXuuaaa1RVVaWTTz5Zf/rTn+R0OvcK53YxDEMul8viKrufUDii8up6VdT49jrn0HFFpVWat3SjPlvR8txVhqT9B/fSUeMHa+ywPszvg7gzDMnjcirF8/0le7tP8J+R6lZedqrqfAFV1fpV2xDY5+8Ip8Muj8uhFI9T6SkuVvwDAAAA4sjy4Oq2227Ta6+9JtM01bdvX02fPl2jR49WQUGB7rvvvib3mTBhgkzT1KJFi/TNN99ozJgxFlfdenfffbeqqqokSe+++67efffdFrfPz8/XnDlzrCitWwqFI6qoaVBFTYMiEQKrWAqGwlqyZos+WrpR64p2tLhtZppHR4zJ1xFj89UzK9WiCtFduZx2pXldSvW49gqqmmIYhtK8jSOmwpGIaur9qqr1q8EfjIZUHpdDHnfjv3YbgSsAAABgFUuDq4ULF+rVV1+VYRg699xzdeutt0ZHG82bN6/Z/Y488kiNHj1aq1ev1qxZs5I6uGqrwYMHJ7qELikUDqu8uoERVnFQVlmnj77aqE+/2dTipPaGpAOH9taR4/I1ZiijqxA/hmEo1eNUqtelNK9LTkf7R0DZbTZlpXmVleaVaZpMpg4AAAAkmKXB1X//+19J0ujRo/WHP/yhTftOnTpVq1at0hdffBGP0mLmueeeS3QJ3Vow1BhYVdYSWMVSxDS1sqBEHy7ZoK/XF6ulI5uR6taRYwfryHH56pHJ6CrE3q55qlLdTqV4XErxOOMSMBFaAQAAAIlnaXC1bNkyGYahM844o8377hqZtHXr1liXhS4gGAprRzWTrsdavS+oBd9+pw+XbtT28toWtx01sKeOPmiIDhrRl9FViCnDMOR1O+R1Nz1PFQAAAICuy9LgaseOxnlw+vTp0+Z9d11S2NDQENOa0LmZpqmyqnqVV9cTWMVQUWmVPlyyQZ8t3yx/MNzsdl63U1MOHKijxw9R3x6sDIjYcDps8ric8rod0X8Z/QQAAAB0T5YGV16vVzU1NdEAqy0KCgokSVlZWTGuCp2VLxBUcVlNi8EKWi8UjmjZuq36YMkGrdlc1uK2A3tl6tgJQzVx9AC5XZav8YAuxG435HU55XY5okEVI/YAAAAA7GLpO86RI0fqyy+/1Ny5c3Xeeee1ej/TNDVr1iwZhqH99tsvjhWiMzBNU2WVdSqvaWCUVQxU1fo0f1mB5n21UZW1vma3s9sMHTyqv6ZOGKqh/XIYAYN2sdkMpbidSvE0fnlczkSXBAAAACCJWRpcnXLKKfriiy+0YMECvfnmm5oxY0ar9vvXv/6l9evXyzAMnXzyyfEtEkmNUVaxYZqmNmwp1wdLNujL1UUKR5pPALPSPDp6/BAdNW6wMtM8FlaJrsAwDKW4HdFJ1D0uLvsDAAAA0HqWBldnn322nn/+ea1fv1633HKLli9frgsuuEBDhw5tcvtVq1bp8ccf1zvvvCPDMDRixAiddtppVpaMJMEoq9gIhSP6YlWR3v9inTZtq2xx25EDe2jqhKEaN5zJ1tF60RX/PC6lelzMTwUAAACgQwzTtDYG2LZtm84//3xt27Yt+mbG4/HI7XarsrJShmFo4MCB2rFjh+rq6iQ1hha9evXSf//7X/Xq1cvKcrusQEONTDOS6DJapaber9LKOgW62Cgrh9srm2FXxAwr5I/vogO19X7NW1agD5ZsUFULlwO6nXZNOmCgjp0wVP17Zsa1Jlgn3ueay2lvDKq8jSv+2W0End2V05Mmm82uSCSsoK/llUgRX4Zhk8ubnugymtSZ+iBdFa9VWIVzDVbgPEsu8eiDWD6rcu/evfXyyy/rT3/6k+bOnSupcaVAn88XDbI2b96s3fO0o446SnfccQehVTfT4A+qpKJODf5gokvptIp31GjuF+u08NvNCoSaD/565aTp2IOGasqBg5TiYc4h7JvbaVd6qlvpKW65nUzQDwAAACA+EvJuo1evXrr//vv11Vdf6Z133tH8+fO1detWhUKhxqIcDvXq1UtHHnmkTjzxRB122GGJKBMJ4g+GVFpZp9r6QKJL6ZRM09TK70o094v1+mbDtma3MySNHdZHUw8eqtH5ebJxORf2weNyKD2lMaxyOe2JLgcAAABAN2D5pYItqaiokCRlZ2cnuJKuLxmH6YfCYZVW1qu6ztct5rGK9eVbwVBYi1YWau7n61RUWt3sdm6nXYePyddxBw9Tr5y0Dj8ukl9bzzWH3db45bDJabfL6bApzUtYhX1jqH7y4FJBtITXKqzCuQYrcJ4lly5xqWBLCKy6p0jE1I7qepVXNyiJctROo7rOp4+WbtRHSzequt7f7HY5GV5NnTBUR40brBSPy8IKkczsdkPZ6V6luF1y2G1yOmxMpg4AAAAgaSRVcIXup7rOp5KKOoXCfPLaVkWlVZr7xXp9tnxzi8dvcJ9snXDocE0Y2Y/VARFltxvKSU9RdrpXNhtBFQAAAIDkRHCFhGjwB7W9olY+fyjRpXQqu+avmrN4nZYXbG92O8OQDhrRTyccOkzD+uUyggZRBFYAAAAAOhOCK1gqFA6rtKJOVXXNX9KGvYXCEX2xqkhzPl+rzdurmt3O43LoyLH5mnrwMPXMSrWwQiQ7u92mHukpSnOmElgBAAAA6DQsDa4uueSSvb5nGIbuvvtu5ebmWlkKLGaajfNY7ahiHqu2aPAHNX9ZgeZ+sV4VNc1Pqt0jM0XHHTxMR4zNl9fttLBCJDOH3aZUj1NZ2VnKSE2RFGHCSgAAAACdiqXB1eeffy7DMPYILgzDkN/P6JuuLBSOaEtptRr8wUSX0mlU1jbo/c/Xa/6yjWpo4XLKof1ydOKhwzV+RF/Zbcxf1d0ZhuRxOZXqdSrN65LH1RhiOj0e2WyGIkwlBwAAAKCTsTS42jXPzvDhw5WVlRX9vtvttrIMWMgfDKmopFrBUDjRpXQKJRW1em/xWn36zaZmJ1w3JB00sq9OPHSEhvVnpGJ3YxiGHHbbXl9Oh12pXicBJgAAAIAuxdLgKiMjQ9XV1br66qs1ffp0Kx8aCVDXENCWsmpFIlwauC9FpVV657M1+nxlkSLNXErpdNh0+IH5OuHQYeqVk25xhUgEm81QitupFE/jl9NhJ5gCAAAA0K1YGlyNGjVKn3/+uT7//HOCqy6uvLpBpZW1Yjqrlq0vKtWsj7/R0jVFzW6TnuLW1AlDdfRBQ5SRwujErswwDKW4HUrxuJTqdcrtdLAiJAAAAIBuzdLg6pxzztHixYs1c+ZMXXLJJRo+fHir9503b56uu+46GYahlStXxrFKdIRpmtpeUavKGl+iS0lapmlq1aZSvbNonVYWbGt2u9zMFJ08cYQOH5Mvl9NuYYWwksftUKrHpVSPS143QRUAAAAA7M7S4OrUU0/VggUL9MYbb+iqq67Sv//9b40ePbrV+7MaXXILRyLaWlqtOh+TsDclYpr6el2xZi9crYLiima365ObrmmTRurQ/QbIYeeysK7GYbcp1dsYVKV4nPyMAQAAAKAFlgZXknTXXXepR48eeuqpp3TOOefo4osv1uWXX65evXpZXQpijNCqaeFIRJ+vLNI7n63RlrLqZrfL752taZNHavyIvrIx6qbLMAzJ625c5S/V45LbZfmvXQAAAADotCx/BxUKhXTuuecqLy9P//znP/XMM8/oP//5jw477DCNGzeu2f2+++47y2pE+4SZhH0PwVBYn36zSe8uXqOyyvpmtxud30unHDZc++XncZlYF7FrVFWat3FUFROqAwAAAED7WBpcHXHEEdqxY8del/yFQiEtWLBACxYssLIcIC78wZDmf1WgdxevVVVt83N9jR/RT6cdOUZD++cq5G+wsELEw65RVWleRlUBAAAAQKxY+u6qtLS02fuYvwqdXYM/qA+XbtT7n69TTb2/yW0MQzp09ACdMmmkBg/oLZthV8QMW1wpYsFmM5TqaQyqUr0u5qoCAAAAgDiwfFiAYRj65S9/2eJlgU1ZtmyZ7r777vgUBXRAXUNAHyzZoLlfrGt2ji+H3aYpBw7SSRNHqFdOmsUVIlacDnvjqKoUl1LcTi7tBAAAAIA4S8j1LCNHjtShhx7apn3q65ufIwhIhJp6v97/Yp0+XLJBDf5Qk9u4HHYdPX6wTpw4QtnpXosrRCy4nXalpbiVkeLmEkAAAAAAsJjl78K4JBCdXU29X3M+X6cPlmyQP9B0YOV2OTR1wlCdcOhwZaS4La4QHeVxO5TudSs9xS2X057ocgAAAACg27I0uFq9enW79z366KM7tD/QUdX1fs1ZvFYfLtkgf7DpealSPE4dd/AwHXfwMKV5XRZXiPYyDEOpHmd0JUCng7AKAAAAAJIB170A+9CawCrN69KJhw7XsROGyut2Wlwh2iM6X5XXpRQP81UBAAAAQDIiuAKaUVPv13uL1+qDJRsUaCawykhx66TDRuiY8UOY/6gT8LqdSk9xK83r4hJAAAAAAOgEeKcN/EBtQ0BzPl+r/33Z/BxWGalunXzYCB09fojcTl5Gyczjdigjxa2MVLccdsIqAAAAAOhMeMcN7FTvC+j9L9Zr7hfrml0lMCPVrVMOG6mjxg8msEpibqddGakeJlcHAAAAgE6Od97o9hr8Qf3vy/Wa8/k61fuCTW6TmerRyYeNILBKYi6nXek7R1bxMwIAAACAriGh7+6WLVumd999V998840KCwtVU1Mju92u3Nxc9enTR1OmTNHUqVM1bNiwRJaJLsofCOmDJRv07qK1qvMFmtwmI8WtUyaN1NHjhzByJwk5HTZlpLiVnuqWx8Wk+AAAAADQ1RimaZpWP+i6dev0u9/9TsuWLdvj+7tK+eHqXtOmTdNNN92kXr16WVVilxdoqJFpRmLa5nfFFfI1MydUMgmGwpq/rECzF65WdZ2/yW3SvC6dfNgIHXvQ0LhNuu5we2Uz7IqYYYX8DXF5jK7I6bApzds4sooVHFvH6UmTzWZXJBJW0Feb6HLQhXGuJQ/DsMnlTU90GU2KRx8EbcNrFVbhXIMVOM+SSzz6IJaPuPriiy907bXXqr6+Xj/MzJxOp0zTVCi0Z/jx9ttv68svv9Tzzz+vfv36WVkuupBwJKIF327SW5+u1o7q+ia3SfU4deLEEZo6YSihSJIwjMbVAFM9LqV5XazeCAAAAADdiKXvAGtqanTDDTeorq5OkjRu3DidddZZOuiggzRgwAC5XC5JUiAQUGFhoZYsWaLXXntNX3/9tbZt26YrrrhCs2bNktvttrJsdHIR09TnK4s085OV2l7RdALvdTt14qHDddzBw5TiIbBKNIfdplSvS6kel1K9TtlttkSXBAAAAABIAEuDqxdeeEE7duyQYRj65S9/qauvvrrJ7Vwul4YOHaqhQ4fq3HPP1cMPP6x7771Xmzdv1ssvv6xLLrnEyrLRSZmmqa/XF+v1j1eqqKSqyW1cTruOP3iYTpo4Qqlel8UV4ocMw1Bedqqy072JLgUAAAAAkAQsDa4++ugjGYahyZMnNxtaNeXaa6/V4sWL9dlnn2nOnDkEV9intYVlevWj5Vq/ZUeT9zvsNh09foimTR6pzFSPxdWhKV63U31y05kEHwAAAAAQZWlwtWnTJknSiSee2OZ9TzrpJH322Wdat25drMtCF7J5e6Ven79C32zY1uT9NsPQ4WMH6bQpo5WTkWJxdWiKYUg9MlOVm8nPAwAAAACwJ8vnuJKknJycNu+bm5srSaqvb3pSbXRvJRW1evPjlVq0srDJ+w1JE/cboNOPGK1eOcm5ylJ35Hba1bdHBhOuAwAAAACaZOm7xYyMDFVUVGjLli1t3re4uFiSlJWVFeOq0JlV1fk069NV+nhZgcIRs8ltxg7rrTOPOkAD8jItrg7NMQwpJ92rHlmpMgwj0eUAAAAAAJKUpcHVqFGjtHDhQs2cOVOXXHJJq9+wmqapWbNmyTAMDR8+PM5VojNo8Ac1Z/E6zfl8rfzBcJPbDO+fq7OPOUDD+/ewuDo0x2YzlO51KSvdK6+b1RsBAAAAAC2zNLg65ZRTtHDhQq1atUq33367br31VrlcLa/kFgqFdOedd+rbb7+VYRg64YQTLKoWySgUjmj+sgK99ekqVdf7m9ymf16mzj5qfx04tDejeZKAYUipXpcyUjxK87pks/EzAQAAAAC0jmGaZtPXV8VBOBzWueeeqxUrVsgwDPXu3VunnXaaJkyYoIEDByotLU2SVFdXp8LCQi1ZskQzZ85UcXGxTNNUfn6+Zs+eLYeD+XA6KtBQI9OMxLTN74or5AuEYtrmLqZp6ovVW/T6/OUqqahrcpueWak648j9dOh+A2TrBIGVw+2VzbArYoYV8jckupyYS/E4lZHqVnqKW3abLdHldGtOT5psNrsikbCCvtpEl4MujHMteRiGTS5vcs7pGI8+CNqG1yqswrkGK3CeJZd49EEsTYDsdrsee+wxXXjhhfruu++0bds2Pfroo/vczzRN9erVS4888gihVTe0ZnOp/vvhtyoormjy/vQUt06bMkpHjR8ih52AJJE8Lkc0rHI67IkuBwAAAADQyVmeAuXk5OjVV1/Vgw8+qOeee06hUMsjdOx2u6ZPn67f/OY37VqNEJ3X1rJqvfrRci1bX9zk/S6nXSceOlwnTRzBfEkJ5HTYlZHqVkaqW24nwTIAAAAAIHYsvVTwh8rLy/Xxxx9r4cKFKi4uVkVFhcLhsDIyMjRgwACNHTtWJ554ovLy8hJVYpeVzJcKVtX5NPOTlfp42XeKNHF62gxDR47L12mHj1ZWmrfDj5conflSQbvdUHqKWxkpHqV4CA2THcOnYRXOteTBpYJoCa9VWIVzDVbgPEsunf5SwR/KycnRjBkzNGPGjESWgSThD4b0/ufr9M6itfI3E4BNGNlXZx51gPrkJmdnvKvzuB3KTvMqPcXNJOsAAAAAgLjjuh4kXCRiasHyTXpj/gpV1vqa3GZYv1yde+yBGtY/1+LqYBiGMtPcyk7zyu3iVwYAAAAAwDq8C0VCrdlcqhf/97U2b69q8v68rFSdfcyBmjCyr4xOsFJgV+J22pWV7lVGKqsCAgAAAAASg+AKCVFWWaf/fvStvly9pcn7Uz0unXb4aB1zECsFWslmM5SR6lZmqocJ7wEAAAAACUdwBUv5AiG9/dlqzVm8TqHw3hOzOuw2HX/IME2bNFIpHlcCKux+DKMxKMxI9Sg9xcXINgAAAABA0rA8uPrss8+0ePFi/eIXv5CtlZcfhcNh/eMf/9CRRx6pSZMmxblCxEPENPXZ8s16dd5yVTUzj9Who/vr7KMPUI+sVIur655cTrsyUz3KTHPLYbcnuhwAAAAAAPZiaXAVCoX029/+VsXFxdqxY4f++Mc/tmq/O++8Uy+88II++OADzZkzhxEhncyGLTv0wtyvVVBc0eT9+b2zdeHxY5l43QKGIaV6XcpO9yqVEW0AAAAAgCRnaXD1zjvvaOvWrTIMQzNmzGj1fuedd55efPFFFRYWau7cuTrhhBPiVyRipry6Xq/OW65FKwqbvD8z1aOzjz5Akw4cKBthZFzZ7YayUj3KSvfK6WB0FQAAAACgc7A0uPrf//4nSRo7dqwmTJjQ6v1GjhypyZMna+HChQRXnYA/GNKcxev0zqI1CgTDe93vsNt04qHDdcqkkUwAHmcet0M56V6lp7gZqQgAAAAA6HQsDa6+/fZbGYahY445ps37Hn744VqwYIG+/vrrOFSGWDBNU5+vLNQrHy3Xjur6JreZMLKfzj32QPVkHqu4MYzGlQGz0z3yuAgGAQAAAACdl6XB1Y4dOyRJ+fn5bd63b9++kqTS0tJYloQYWb2pVH99fr7WbC5r8v7+eZm64LgxGj0oz+LKug+X066sNK8y09yyt3LhAwAAAAAAkpmlwdWuVQSDwWCb9w2HGy85i0QiMa0JHbdoxWbd9OC7CkfMve5L87p05lH768ixg2WzcalarBmGlJ7iVmaah8nWAQAAAABdjqXBVe/evbVp0yZ9/fXXOvXUU9u07/LlyyVJeXmM2Ek2r89fuVdoZbcZmnrwMJ02ZZRSCFTiIiPVrbzsNDnsjK4CAAAAAHRNlr7jnTBhgkzT1BtvvNGmS/5qamr0xhtvyDAMjR07No4Voj0G9crc4/9jhvbWH358vM6fOobQKg4MQ8rLTlPfHhmEVgAAAACALs3SEVdnn322XnvtNdXV1emqq67SI488ol69erW4T11dnW644QZVVFTIMAyddtppFlWL1rp82sHyepzauKVc44b31QFDWv6Zov0cdpv69shQiodJ1wEAAAAAXZ+lwzXGjx+vs88+W6Zpas2aNZo2bZr+/ve/a8mSJaqtrY1uFwgEtHr1aj3++OOaPn26Fi5cKMMwdNRRR+nII4+0suSYKC4u1vXXX6+RI0dq5MiRWrx4caJLiqkUj1NXTDtYP55+CKFVHHndTuX3ySK0AgAAAAB0G5aOuJKk3//+9youLtaCBQtUV1enJ598Uk8++aQkyW63y2az7TV5u2maGjlypP75z39aXW6HBAIBPfXUU3r44YdVX1+f6HLQiWWne5WXnSrDYIJ7AAAAAED3YfkEOXa7XY899phuvPFGud1umaYZ/QqFQgoEAnt8T5Iuuugivfjii0pNTbW63Hb75JNPNH36dN19992qr69X7969E10SOiHDMNS3R7p65aQRWgEAAAAAuh3LR1xJks1m01VXXaWzzjpLc+fO1YcffqhNmzaptLRUkUhEubm56tOnj4444gidfPLJGjBgQCLKbJdQKKQbbrhBc+fOlST17NlTv/71r9W7d29deumlCa4OnYVhSGlet3pkpsjtSsjLFAAAAACAhEvoO+KcnBydd955Ou+88xJZRkw5HA5lZGTI6XTqsssu03XXXafU1NQuN68V4sNhtykzzaPsdI8cdnuiywEAAAAAIKEYyhEH//d//6drr71WAwcOTHQp6CS8bqey0z1KT3FzSSAAAAAAADsRXMVBZmamMjMzE10GkpzNsCkr3avMVLfspj/R5QAAAAAAkHQIrgAL7Zq7KiPVrezsHNntDkUiYQV9BFcAAAAAAPwQwVU35XCnxKFNvxxGMObtdgUpHpcy07xKT3HLbmtczNMwvv/X6UlLZHno4jjXYBXONbRGPPogaBteq7AK5xqswHnW9RFcdVM2W+wn/rYZNtkMJhTfxW63KTsjRVlpXjkdzR8XwzBkcNxgAc41WIVzDS2JRx8E7cNrFVbhXIMVOM+6LsuDqx07dqiqqkpDhgxpdpvi4mK99tprKigokGEYOuigg3TmmWfK4/FYWGnXFomEY9+mGVHEjH27nY3TbldOZoqy0lJkszVOtN7U8TYMmwzDkGmaMs2I1WWiG+Fcg1U415JLsgZE8eiDoG14rcIqnGuwAudZ8ol1H8Ty4Oovf/mL5syZo9/85je6+OKL97r/gw8+0I033ii///s5f95++209//zzev7555WVlWVhtV1XyF8f8xd1yF+vUCAU0zY7E5fTrtyMFGWkumUYpsKBOrXUNXd60mQYdplmREFfrWV1ovvhXINVONeSh2HY5PKmJ7qMJsWjD4K24bUKq3CuwQqcZ8klHn0QW0xb24fCwkK9/fbbCgaDMk1zr/uLi4t10003yefz7UxLv//auHGjbrzxRivLBVrF43Kob48MDembo8w0jwzDSHRJAAAAAAB0CZaOuJo5c6YikYjy8vJ03nnn7XX/o48+qvr6ehmGoeOPP14zZsyQz+fTI488ojVr1mjhwoVaunSpDjroICvLBpqU5nUpO8OrVI8r0aUAAAAAANAlWRpcLVq0KBpKuVx7vtkPBAKaOXOmDMPQ5MmT9a9//St632GHHabjjz9e9fX1evvttwmukDCGYSgzza3sdK/cTtY2AAAAAAAgniy9VHDTpk2SpP3222+v+z799FPV19dLkq6++uo97svJydGpp54q0zS1bNmyuNcJ/JDDblPPrFQN7Zej3jnphFYAAAAAAFjA0nfflZWVkqTMzMy97vvoo48kSdnZ2Zo4ceJe9+8Ku7Zu3Rq/AoEf8LgcysnwKj3FzdxVAAAAAABYzNLgyuFwKBQKKRzee621+fPnyzAMTZkypcl9c3NzJUk1NTVxrTEWwuGwQqE9V9cLBoN73N591USbzSan02lZfWiZYUhp3sbLAVM8/FwAAAAAAEgUS4OrvLw8bd68OXrJ4C6ff/65SkpKZBiGjjjiiCb33RVYpaamxr3Ojpo5c6ZuvvnmZu+/8sor9/j/GWecob/85S/xLgv7YLcbykr1KDvDK4fdnuhyAAAAAADo9iyd4+rAAw+UaZp66623oiOOTNPUgw8+KElyOp06+uijm9x37dq1khrnuwJiye20q3dumob2zVXP7DRCKwAAAAAAkoSlI65OO+00zZ49W+vXr9fZZ5+tI444Qt9++62++OKL6GqDGRkZTe774YcfyjAMjRs3zsqS2+XMM8/UmWeemegysA9pXpeyM7xK9bj2vTEAAAAAALCcpcHVkUceqcmTJ2vhwoVav3691q9fH73P4/HohhtuaHK/999/X5s2bZJhGM2OyAJawzAMZaY1zl/FyoAAAAAAACQ3Sy8VlKR7771XkydPlmma0a+cnBzdf//9GjBgwF7bBwIB3XnnnTIMQwMHDtQJJ5xgdcnoAhx2m3pmpWpovxz1zkkntAIAAAAAoBOw/N17RkaGnnzySa1evVobN25Udna2xo0bJ6/X2+T2LpdLN954o2699VbddtttMgzD4orRmaV4nMpK8yg9xc25AwAAAABAJ5OwYSejRo3SqFGjWrXtaaedpkMOOUR9+vSJc1XoCux2Q5mpHmWleeVyMtE6AAAAAACdVae5XorQCvvSOLrKq/QUF6OrAAAAAADoAjpNcAU0JyPVrR6ZqYyuAgAAAACgiyG4QqflcTvUKztNXrcz0aUAAAAAAIA4ILhCp7NrhcDMNE+iSwEAAAAAAHFEcIVOwzAM5WR4lZuRIpuNOawAAAAAAOjqbIkuQJIWLVqkqVOn6rjjjkt0KUhS6SluDembrZ5ZqYRWAAAAAAB0E0kx4srn82nLli2sBIc9GIaUkepRToZXbmdSnKoAAAAAAMBCpAFIOjaboew0j7IzvHLYWSkQAAAAAIDuiuAKScNhtyk73ausdI/stqS4ihUAAAAAACQQwRUSzumwKyfDq6w0D5eLAgAAAACAKIIrJIzLaVduRooyUt0EVgAAAAAAYC8EV7Cc22lXbmaKMlI9iS4FAAAAAAAkMYIrWMbjcig3M0XpKe5ElwIAAAAAADoBgivEnWEY6pWTqqw0b6JLAQAAAAAAnQjBFeLK43KoT490uZ2cagAAAAAAoG1IExA3ORle9cxKZeJ1AAAAAADQLgRXiDmH3aY+uelK9boSXQoAAAAAAOjECK4QU2lel3rnpsthtyW6FAAAAAAA0MklRXA1btw4Pfvss4kuAx3UIytFaV5WDAQAAAAAALGRFMFVVlaWDj300ESXgQ4itAIAAAAAALHE9VwAAAAAAABISgRXAAAAAAAASEoEVwAAAAAAAEhKBFcAAAAAAABISp0muAqHw4kuAQAAAAAAABayNLgaNWqURo8erV/84heqrKxs076ffPKJxo8frzPPPDM+xQEAAAAAACCpWD7iyjRNzZ07V6eeeqo+/vjjNu3b0NCgVatWxakyAAAAAAAAJBPLgyvDMGSapsrKynTNNdfojjvukM/ns7oMAAAAAAAAJLmEzHE1depUOZ1Omaapl19+WTNmzNC3336biFIAAAAAAACQpBISXJ177rl65ZVXNHz4cJmmqU2bNumCCy7QAw88oEgkkoiSAAAAAAAAkGQStqrgqFGj9Nprr+nSSy+VJIVCIT344IM6//zztWnTpkSVBQAAAAAAgCSRsOBKklwul26++WY9+eST6t27t0zT1LfffqsZM2bohRdeSGRpAAAAAAAASLCEBle7TJo0SbNmzdLJJ58s0zTV0NCgP/7xj7rqqqtUWlqa6PIAAAAAAACQAEkRXElSRkaG7rnnHv3tb39Tenq6TNPUp59+qunTp2vOnDmJLg8AAAAAAAAWS5rgapfTTjtNM2fO1CGHHCLTNFVZWakbbrhB9957b6JLAwAAAAAAgIWSLriSpL59++rZZ5/Vr3/9azmdTpmmqTVr1iS6LAAAAAAAAFgoKYMrSTIMQz/+8Y/1yiuvaPjw4TJNM9ElAQAAAAAAwEIOKx/sgw8+kCT16NGj1fuMGjVKr732mv75z39q7ty58SoNAAAAAAAAScYwGcrULQUaamSakUSX0a05PWmy2eyKRMIK+moTXQ66MM41WIVzLXkYhk0ub3qiy2gSfZDE47UKq3CuwQqcZ8klHn2QpL1UEAAAAAAAAN0bwRUAAAAAAACSEsEVAAAAAAAAkhLBFQAAAAAAAJISwRUAAAAAAACSEsEVAAAAAAAAkhLBFQAAAAAAAJJSzIIr0zRj1VSneFwAAAAAAADEV0yCqwULFui0005TSUlJLJprtaefflpXXHGFGhoaLH1cAAAAAAAAxF+Hg6twOKw//OEPWrdunS677DKVlpbGoq59ev755/WXv/xFixYt0muvvWbJYwIAAAAAAMA6HQ6u7Ha7HnroIWVmZqqgoEAXXnihCgsLY1Fbsx566CHdeeedMgxD06ZN08UXXxzXxwMAAAAAAID1YnKp4NChQ/Xwww/L4/GoqKhI55xzjj7++ONYNL2HQCCgm266Sffff78ikYimTJmiv/71rzF/HAAAAAAAACRezCZnHz9+vJ544gllZGSosrJS1157rf7whz+oqqoqJu1//PHHmjZtmmbPni3TNHXcccfpoYcekt1uj0n7AAAAAAAASC4xC64k6aCDDtJzzz2nnj17KhKJ6MUXX9QJJ5yge+65R8XFxW1uLxwO6/3339cVV1yha665RoWFhTJNU2eddZb+9a9/yeVyxbJ8AAAAAAAAJBHDNE0z1o2Wl5frtttu0wcffND4IIYhwzA0cuRITZo0ScOHD1d+fr6ys7Pl9XrlcDhUW1urmpoaVVRUaNWqVfr222+1dOlSlZeXS5JM01RqaqpuvvlmnX322bEuudsJNNTINCOJLqNbc3rSZLPZFYmEFfTVJrocdGGca7AK51ryMAybXN70RJfRJPogicdrFVbhXIMVOM+SSzz6IHEJrnZ58803de+992rbtm2ND2YYbW7DNE0ZhqGjjjpKt912m/r16xfrMrslOo2Jxy9YWIVzDVbhXEseBFdoCa9VWIVzDVbgPEsu8eiDOGLa2g/MmDFD06dP1+zZs/Xss89qxYoVbdrf4/Ho5JNP1pVXXqlhw4bFqUoAAAAAAAAko7gGV5Jkt9t1+umn6/TTT9eWLVu0aNEirVq1Sps3b1ZZWZnq6+sVDoflcrmUkZGh3r17a+jQoRozZowmTpwot9sd7xIBAAAAAACQhOIeXO2uX79+Ouuss6x8SAAAAAAAAHRSMV1VEAAAAAAAAIgVgisAAAAAAAAkJYIrAAAAAAAAJCVL57jqTmpra/XMM89o7ty5KiwsVCQSUb9+/TR16lRdeumlysnJSXSJAAAAAAAASY3gKg42bNigq666Slu2bNnj++vWrdO6dev06quv6t///rfGjBmToAoBAAAAAACSH5cKxlhtba2uvvpqbdmyRU6nUzfddJPmz5+vxYsX68EHH9TAgQNVVlam6667TqWlpYkuFwAAAAAAIGkRXMXYE088oaKiIknS3/72N/34xz9W7969lZWVpeOOO04//elPJUllZWV66KGHElkqAAAAAABAUiO4iqFwOKwXX3xRkjR+/Hidcsope93/yCOPRP//+uuvq6GhwdIaAQAAAAAAOguCqxhaunSpKioqJEknn3zyXve/9tpr2rhxo8466yxJks/n06effmppjQAAAAAAAJ0FwVUMLV++PHp7/Pjxe9zX0NCg+++/X2PHjtX111/f5D4AAAAAAAD4HqsKxtDGjRujt/v377/Hfc8884xKSkr0j3/8Q7169ZLD4VAoFNpjHys53CkJeVx8zzBs0X+dnrQEV4OujHMNVuFcQ2vQB0k8XquwCucarMB51vURXMVQeXl59HZ2dnb0dkVFhR5//HEdeeSRmjhxoiQpIyND5eXl0UsLrWaz2RPyuNibYRgyDH4eiD/ONViFcw0toQ+SPHitwiqca7AC51nXRXAVQ7smWne5XDIMI/r9hx9+WLW1tbrxxhuj33O5XJKk+vp6a4vcKRIJJ+Rx8T3DsMkwDJmmKdOMJLocdGGca7AK51pySdaAiD5I4vFahVU412AFzrPkE+s+CMFVHNhs308dtmXLFr3wwgs69dRTNWrUqOj3I5HEvqBC/npe1Anm9KTJMOwyzYiCvtpEl4MujHMNVuFcSx6GYZPLm57oMppEHyTxeK3CKpxrsALnWXKJRx+EydljKCWlcc6GYDAY/d69994r0zT3mJBdkvx+/x77AAAAAAAAYE+MuIqhnJwcSVI4HFZNTY22bNmi2bNn66KLLtKAAQOi2wWDQdXU1OyxDwAAAAAAAPbEiKsYGjJkSPT2li1b9I9//ENer1c/+clP9tiuuLg4eqng4MGDLa0RAAAAAACgsyC4iqEDDjggevuZZ57RJ598oiuuuGKvUVVLly6N3j7wwAMtqw8AAAAAAKAzIbiKofHjxys7O1uS9Prrrys3N1eXX375Xtu99957kiSPx6MpU6ZYWiMAAAAAAEBnQXAVQ3a7XRdccEH0/5dddplSU1P32GbhwoWaN2+eJOmss86S1+u1skQAAAAAAIBOg+Aqxq688kr1799fkvT888/rnXfeUXl5ucrKyvTiiy/qpz/9qUzTVI8ePXTdddcluFoAAAAAAIDkxaqCMZaWlqZHH31UV111lbZs2aJf/vKXe23To0cP/fvf/1bPnj0TUCEAAAAAAEDnQHAVB0OHDtWsWbP0zDPP6P3331dhYaFM01Tfvn01depUXXbZZXtN2A4AAAAAAIA9GaZpmokuAtYLNNTINCOJLqNbc3rSZLPZFYmEFfTVJrocdGGca7AK51ryMAybXN70RJfRJPogicdrFVbhXIMVOM+SSzz6IMxxBQAAAAAAgKSU0EsFI5GIli1bpuXLl2vbtm2qra1VOBzWnXfemciyAAAAAAAAkAQSElyFw2E98cQT+s9//qPS0tLo903TlGEYewVXDQ0NuvPOOzVt2jRNmjTJ6nIBAAAAAACQAJYHV+Xl5frxj3+sVatWqbXTa/35z3/Wq6++qi+++ELvvfeeDMOIc5UAAAAAAABINEvnuIpEIrr66qu1cuVKmaapadOm6YknntDChQv1wAMPNLvfZZddJsMwtHnzZs2dO9fCigEAAAAAAJAolgZXr732mpYvXy7DMPTXv/5V//znPzVlyhTl5OTI4Wh+8NfQoUN1+OGHSxLBFQAAAAAAQDdhaXA1e/ZsGYahqVOn6vTTT2/TvlOmTJFpmvr666/jVB0AAAAAAACSiaXB1bp16yRJxxxzTJv37dOnjyTtMZk7AAAAAAAAui5Lg6vq6mpJUkZGRpv3DYfDkhrnyQIAAAAAAEDXZ2lwlZ2dLUnavHlzm/ddsWKFJKlnz54xrQkAAAAAAADJydLgaty4cTJNU2+88UabRk7V1tbq9ddfl2EYGj9+fBwrBAAAAAAAQLKwNLg666yzJEkbNmzQ73//e5mmuc99/H6/fvWrX6miokKSdOaZZ8a1RgAAAAAAACQHh5UPdvTRR+ukk07Se++9p//+97/65ptvdM455+jAAw9USUlJdLuSkhKVlpbqiy++0AsvvKDCwkIZhqFTTjlFkyZNsrJkAAAAAAAAJIhhtmbYUwwFAgFde+21WrhwoQzDaNU+pmlq4sSJevzxx+V0OuNcYfcQaKiRaTLRfSI5PWmy2eyKRMIK+moTXQ66MM41WIVzLXkYhk0ub3qiy2gSfZDE47UKq3CuwQqcZ8klHn0QSy8VlCSXy6UnnnhCv/3tb5WWlibTNKNfu+z+PY/Ho5tuuklPPvkkoRUAAAAAAEA3YumlgrsYhqEf/ehHOuecc/Tpp59q3rx5Kioq0o4dOyRJubm56tOnj4488kgdeeSRSk1NTUSZAAAAAAAASKCEBFe7eDweHXfccTruuOMSWQYAAAAAAACSkOWXCgIAAAAAAACtQXAFAAAAAACApERwBQAAAAAAgKREcAUAAAAAAICkZHlwVVhYqAULFrR5v48++kiFhYVxqAgAAAAAAADJyPLg6pZbbtFVV12lRx99tNX7PProo/rJT36i2267LY6VAQAAAAAAIJlYGlwtXrxYX3zxhUzTVF5eXqv3Gzp0qEzT1OLFi7Vs2bL4FQgAAAAAAICkYWlwNWvWLElSv379NGPGjFbvN3XqVI0YMUKSNHv27HiUBgAAAAAAgCRjaXC1dOlSGYahE088sc37Hn/88TJNU59//nkcKgMAAAAAAECysTS42r59uyRp9OjRbd53yJAhkqStW7fGtCYAAAAAAAAkJ0uDq2AwKElyOp1t3nfXPj6fL6Y1AQAAAAAAIDlZGlzl5uZKktavX9/mfb/77jtJUnZ2dixLAgAAAAAAQJKyNLjaf//9ZZqm3njjDQUCgVbvF4lENGvWLBmG0a7LDAEAAAAAAND5WBpcTZs2TZK0ZcsW3XrrrTJNs1X73XvvvdFRWscff3zc6gMAAAAAAEDysDS4OvnkkzVmzBiZpqm33npL5513nubPn69wONzk9t98841+9rOf6bHHHpNhGBo0aJBmzJhhZckAAAAAAABIEMNs7bCnGNmxY4fOPfdcbdmyRYZhSJJcLpeGDh2qrKws2Ww21dbWqqCgQNXV1ZIk0zSVmZmpl19+Wfn5+VaW22UFGmpkmpFEl9GtOT1pstnsikTCCvpqE10OujDONViFcy15GIZNLm96ostoEn2QxOO1CqtwrsEKnGfJJR59EEdMW2uF3NxcPf/88/rd736njz/+WJLk9/u1atWqPbbbPU8bPXq07rrrLkIrAAAAAACAbsTy4EqSevfurUcffVTz58/XrFmzNG/ePNXV1e1ZmMOhww47TKeccopOP/102e32RJQKAAAAAACABElIcLXLUUcdpaOOOkqRSEQ7duxQaWmpwuGwevTooR49esjpdCayPAAAAAAAACRQQoOrXWw2m3r27KmePXsmuhQAAAAAAAAkCUtXFQQAAAAAAABai+AKAAAAAAAASYngCgAAAAAAAEmJ4AoAAAAAAABJKWGTs69evVqbN29WfX19m/edMWNG7AsCAAAAAABAUrE8uPrkk0/0xz/+UYWFhe3a3zAMgisAAAAAAIBuwNLgaunSpbruuusUDodlmqaVDw0AAAAAAIBOxtLg6tFHH1UoFJIk9e7dW0cffbQGDhyo1NRUuVwuK0sBAAAAAABAkrM0uPr6669lGIb2339/Pffcc/J6vVY+PAAAAAAAADoRS1cVrK2tlSSdd955hFYAAAAAAABokaXBVV5eniQpMzPTyocFAAAAAABAJ2RpcHXQQQdJkjZs2GDlwwIAAAAAAKATsjS4Ovvss2Wapl599VXV1dVZ+dAAAAAAAADoZCwNriZOnKgTTzxRW7Zs0R//+EcrHxoAAAAAAACdjKWrCkrSnXfeqe3bt2vmzJmy2+36wx/+ILvdbnUZAAAAAAAASHKWBlc333yzqqqqFAgEZJqmXn/9db3++uttasMwDK1cuTJOFQIAAAAAAPz/9u47PK7yTv//faaPerHlIvduY2Nj44JNDx0CxIQNoYaQbMgGstkNSTb7TVl+G0JINqRAElJIQk9IgEDo1bgANsYG3Lts2ZatXkbTZ87vD1mDjaWxLI3OHEnv13VxMZbOnHksf4700T3PeR7YhaXB1VNPPSXDMFJ/Nk3TypcHAAAAAABAH2JpcDV37lwrXw4AAAAAAAB9mKXB1UMPPWTlywEAAAAAAKAPs3RXQQAAAAAAAKCrCK4AAAAAAABgSwRXAAAAAAAAsCWCKwAAAAAAANhSnwmuQqGQ6uvrsz0MAAAAAAAAWKRPBFeJREJ33XWXTjvtNH3pS1/K9nAAAAAAAABgAVc2XrSmpkYPPfSQVq1apfr6eiUSiU6PNU1TDQ0NCofDkqS8vDyrhgkAAIA+wDRNGYaR7WEAAIBeYHlwtXLlSt1yyy0KBAKS2hqNdAzDSB0zZMgQ/ed//mevjxEAAAB9QzyR1I59dfK4nPJ5XPIe+s/nccnp6BM3FwAAgDQsDa5qa2v11a9+VS0tLZIkr9erkpISRaNR1dXVyTAMDRs27IjnNDY2KhQKad68ebrnnntUUFBg5ZABAABgc6YpRWIJRWIJqTWS+rjb5WgLslxOeT0uedxOeVwuORzMzgIAoK+wNLh69NFH1dTUJMMw9O///u/6/Oc/L4/HoyVLlujmm2+WJL3++utHPGf//v266aab9O677+rll1/Wpz/9aSuH3CNVVVX60Y9+pBdffFGS9OCDD2r+/PlZHhUAAMDAEIsnFYtHFTjsY4YhuZxOeT3OVKDldbeFWtxuCACA/VgaXK1YsUKSdOKJJ6aCqmMZPny47rnnHi1evFh33HGH5s+fr5EjR/bmMHssGo3qT3/6k+677z4Fg8FsDwcAAACHmKYUiycUiyeOCrQ8hwVZXo9TXrdLbpcza2MFAAAWB1cVFRUyDEPnn3/+ER93HGP9gQkTJui8887Ts88+q0cffVTf+ta3enOYPbJs2TL94Ac/UEVFhSRp6NChOnDgQHYHBQAAgLSOuN1QkaM+/9FkLCP1Z8OQ3M6Pwq62NbacrK0FAEAGWfpTtX1B9qFDhx7x8ZycnKOO+bgFCxZIkpYuXdpLo+uZeDyuW265RV/4whdUUVGhwYMH66677tJdd92V7aEBAACgh0yz/T9TpmkqmTSVSJgKR+NqCoRV3RDQnoON2lZZpx376rWvplm1Ta1qCUYUi3e+gzYAAEjP0hlXXq9XoVBIbrf7iI+XlJSkHu/Zs0fTpk076rm5ubmS2taNsiOXy6WCggK53W597nOf05e//GXl5uZq5cqV2R4aAAAALNR+K2LLYStGOByGPG7nRzOz3MzOAgCgKywNrsrKyrR7925VV1cf8fHRo0fL4/EoFotpyZIlHQZXu3btktT2Lpddfetb39LNN9+sUaNGZXsoAAAAsJFk0lQ4Elc4ElfTYR/3uJ3ye93ye13ye9zyeixtzwEAsD1L3+KZOHGiJGnz5s1HfNzpdGr+/PkyTVN//OMftW3btiM+X1dXp0cffVSGYWjMmDFWDfe4FRYWEloBAACgy6KxhJoCYR2oC2hXVYO2Vtaq8mCjahpbFQhFlEgmsz1EAACyytK3dObMmaNXXnlFq1atOupzV155pZYtW6bW1lZdeeWVuvjiizVq1ChVVVXphRdeUFNTkwzD0HnnnWflkPstlzfn2AehVxmGI/V/ty8vy6NBf0atwSrUGroi0z2IkUjK5e1fuzhHTCkSNtUUjkmKyeNum42V43PL53XL53Ef8xzpcK3CKtQarECd9X+WBlef+MQndPfdd2vy5MlKJpNH7CZ43nnn6fTTT9fSpUsViUT05JNPHvX8sWPH6oYbbrByyP2Ww8HWznZhGIYMg38P9D5qDVah1pBOpnsQh2nI0c/rLR431RKPqiUYldS2XpbP45bP65LX3XZ7oc/jkvHR1oddwrUKq1BrsAJ11n9ZGlyNHDlSb731lvLyOk5Bf/GLX+j//b//p+eff/6ozy1cuFB33XXXETsQZlJ9fb0aGhq6dGxBQYEGDx7cK+OwSjLJ7jbZZhgOGYZxaHcibgNA76HWYBVqzV7s+iZVpnuQZDKppDmw+ppkQgqE4gqEPvqYIUPuoxZ/d8njPrrd51qFVag1WIE6s59M9yCWr/7YWWglSX6/X3fffbduvfVWrVq1So2NjSooKNCcOXM0adKkXh3XI488onvvvbdLx37605/WHXfc0avj6W3xSJCLOsvcvjwZhlOmmVQsHMj2cNCPUWuwCrVmH4bhkMefn+1hdCjTPUg8kVQ8Ejr2gQNALCJ9/KZJwzDk9bQFWu07GeYXFMntcnOtotfxcwFWoM7spTd6EFtuWzJ27FiNHTs228MAAAAA+jTT/Gg3w3auxqg8bo+8bofcisnv7d6thgAAWMGWwVU23Hrrrbr11luzPQwAAACg18XjCUVj0dRsNcMw5PO4DoVYbuXneAiyAAC2QHAFAAAADHCmaSoUiSkUiUkKqTDPp2Gl9rzdFAAwsGQluNqwYYM2btyohoYGRaPR437+Lbfc0gujAgAAACBJTYGwXA5Dg4vZWh4AkF2WBldVVVW65ZZbtHHjxh6dh+AKAAAA6F11zSE5nQ6VFPTOrt4AAHSFpcHV7bffrg0bNlj5kgAAAAC6qbqhVQ6HoaI8f7aHAgAYoCwNrlauXCnDMHT++efrtttuU1lZmTwej5VD6FWJRELxePyIj8VisSMeRyKR1J8dDofcbrdl4wMAAACO18H6gJwOh/JzvNkeCgBgALI0uMrNzVU4HNZ5552nESNGWPnSlnj66af17W9/u9PP33TTTUf8+VOf+pR+9KMf9fawAAAAgG4zTWl/bbNGlBUq19d/3nQGAPQNDitf7KyzzpJpmnr77betfFkAAAAAPWCa0r6aZoWjsWMfDABABhmmaZpWvVhTU5OuvfZa7dixQ//3f/+niy66yKqXxsdEQy0yzWS2hzGguX15cjicSiYTioUD2R4O+jFqDVah1uzDMBzy+POzPYwOZboHiSeS2r63LmPnGwhcXr8chlNJM6F4JHRcz3U6DY0aUiSv26V4IqFoLNn2/3hCsVhC0Xjbv21Zca78XpbEGOj4uQArUGf20hs9iKXBlSTV1tbqyiuv1MGDB3XOOecoNzf3uJ5vGIZ++MMf9tLoBg6Cq+zjGyysQq3BKtSafRBcIZ2eBFeS5HAYMk3pWL9GFOZ6Nbg4Ty6npTd5wEb4uQArUGf20hs9iKVrXG3fvl2f+9znVFfX1ly88sor3ToPwRUAAACQHclk1973bmqNqCUU1aDCXBXn+2QYRi+PDADQH1kaXN1xxx2qra218iUBAAAAZEkyaaq6IaCmQEhDSvKV40t/+2AimZTTwQwtAMBHLA2u3n//fRmGofPPP1+33XabysrK5PGwMwkAAADQn0ViCe052KjCXK/ycryKJ5KKxxOKJ5KKJZKKxZOKJ5IyTVNOp6Ecr0e5frfy/B65nM5sDx8AkEWWBleFhYUKh8M677zzNGLECCtfGgAAAECWNbVG1NQaSXtMImGqJRhRS7DtOI/bqTy/R7k+j/xetxwObjkEgIHE0nm4l1xyiUzT1MqVK618WQAAAAB9VDSWUH1zSJXVTdq2t1YVBxpU3RBQc2tEsXgi28MDAPQyS2dcffWrX9X69ev197//XQsWLNCFF15o5csDAAAA6MNMUwpH4gpH4pLadkR0OR3ye93ye13ye93yeVwsBA8A/YilwdWqVat0+eWXq6KiQl//+tf1wgsvKDc397jOYRgGuwoCAAAAkCTFE8kjbi00DEM+j0s5Xpf8Prf8XjcLvgNAH2aYptm1/WwzYMqUKal3P0zTPO53Qtqfs2nTpt4Y3oASDbXINJPZHsaA5vblyeFwKplMKBYOZHs46MeoNViFWrMPw3DI48/P9jA6lOkeJJ5IavveuoydbyBwef1yGE4lzYTikVC2h2MJr9spn9etHG9bkOVxs+C7Ffi5ACtQZ/bSGz2IpTOuhg8fbuXLAQAAAIAisYQisYSaAmFJh99e6FaOzyWvm9sLAcCuLA2uXn/9dStfDgAAAACO0tHthTlelwYV5crvdWd5dACAw3GzNwAAAIABzTRNtYZj2nOwUdUNASWTlq2mAgA4BoIrAAAAAFDbroX1zSHtqmpQMBzL9nAAACK4AgAAAIAjxOIJ7TnYqAP1LUok2dAIALLJ0jWupk6detTHDMPQq6++ysLtAAAAAGylsSWs1lBUQ0vylev3ZHs4ADAgWRpcmSb3igMAAADoO2LxpCqrm5SX41G+36tcv1supzPbwwKAAcPS4MrpdCqZTOqiiy7S2LFjUx8vKCiwchgAAAAAcFwCwagCwagkyeN2KtfnUa7fLb/XLaeDFVgAoLdYGlyVlJSotrZWCxYs0JVXXmnlSwMAAABARkRjCUVjITW0hGQYktfjUq7PoxyvWz6viyALADLI0u+os2fPliS9+uqrx/3cpqYmvfvuu3r33XczPSwAAAAA6BbTlMKRuOqagqqsbtK2yjrt2l+vA/Utam4NKxZPZHuIANCnWRpcff7zn5dhGFq6dKleeOGF43ru2rVrdd111+mGG27opdEBAAAAQM9FYgk1toS1v7ZFO/bVa8e+Ou2raVZ9c1Ct4aiSSdb+BYCusvRWwZkzZ+r222/X97//fX3zm99UfX29rrnmmuM6Bwu8AwAAQJJ2H2jUH/75rhpaQho7vEQTR5Rq7LBiuV0snA17icWTisUjaglGJEmGIXlcTvm8bvk8Lvm9Lvk87iyPEgDsydLgSpKuvPJKDRkyRLfffrt+8IMf6IknntAXv/hFnXPOOXK7+WYNAACArrntV89rX02zJGnN1v2SJJfTodFDizRxRKkmjhik8SNKVZDjzeYwgaOYZtusrEgsoaZDH3M4jLZ1snxu5fo88rgJYAFAsji4qqioUFVVlWpqanTBBRfokUce0aZNm/Sf//mfysvL05QpU2QYRofPbWxstHKoAAAAsLFYPKGaxtajPh5PJA/dmlWvF1dukyQNKcnT+OElGl9eqvHlJSofXMDi2bCdZNJUS/CjWVlul0M5Po9yfW7l+DxyOalZAAOTpcHVBRdc0GkwFQgEtHr1aiuHAwAAgD7K7XLqhgtn6w//fFfHWkniYH1AB+sDemv9HkmS1+3U2OElGl9eovHDSzShvFR5zMqCzcTiSTUFwmoKhCW11W2uv21GVo7XI4ej49+rAKC/sfxWQYl1qgAAANBzN140R2fOGqsXV27T9r112ra3VrVNwWM+LxJLaPPuGm3eXZP62LDSfE0cUaoJh24xLCvO7fQNVyAb2m4tDKm+OSTDkHwet3L9bbcV+jwu6hVAv5WV4Oq3v/2tzjjjjON6zhtvvKEvf/nLvTQiAAAA9EUjhxTprNnjdNbscZKkhpaQtu2t0/a9tdq2t057DjYec0aWJFXVtaiqrkVLP6iQJBXkeDVx5EdB1qghRdyqBdswTSkUiSkUialWQTkchnK87rbZWD43C70D6FeyElx1B+8gAAAA4FiK8/2aN3WE5k0dIUkKR+OqqGrQjn112rG/be2r9jWE0mkORvTelv16b0vbou8el1PjhpccCrJKNb68VDk+wgHYQzJpKhCKKhCKSmpb6L39lsJcn1teT5/5tQ8AjmLpd7C5c+dKkoqKio77uUVFRannAwAAAF3h87g0ZfRgTRk9WFLbkhU1ja2HFnBvC7O6MisrGk9o854abd7TdnuhIam8rFATyw/NyhpZqtKCHN5shS0kk6YCwagCwbYgy+k8csdCt4sdCwH0HYbJglMDUjTUItNMZnsYA5rblyeHw6lkMqFYOJDt4aAfo9ZgFWrNPgzDIY8/P9vD6FCme5B4Iqnte+t6dI5QJKad++u17dA6WTv31SsSSxz3eYrz/Yetk1WqEWWFtty90OX1y2E4lTQTikdC2R4OssDtcirXf2hGlt/da3XKzwVYgTqzl97oQZgzCgAAgAHN73XrhLFDdMLYIZKkRDKpyoNN2nZonaxte+tSO7ul09AS0qpNe7Vq015Jktfj0oTyEk0aOViTRw3S2GHFzHSBLcTiCTW2JNTYEk4t9J6f41Ge3yuPmxoFYC/MuBqgmHGVfbwzAKtQa7AKtWYfzLjKLNM0VdsUTO1cuG1vnfbVNB/3edwuh8YPL9WkkYM0adQgjS8vkddt/fvIzLhCOl63U3k5XuXneHq8yDs/F2AF6sxemHEFAAAAWMwwDA0uytXgolydMn2UJKk1FNX2fXWHwqw67aqqVyyePpCLxZMfrZO1QnI6DI0ZVqxJIwdp8qjBmsCC77CBSCyhSFNQdU1BuZwO5eV4lJ/jVY7XzRpuALKCGVcDFDOuso93BmAVag1WodbsgxlX1osnktp9oCF1a+G2ytrUDm9dZRjSqCFFbTOyDv2Xn+PN+FiZcYXucDoN5fk8ys/1Ktfn6VKIxc8FWIE6s5fe6EFsEVxFo1Ht27dPLS0tcjqdKi0tVWlpqdxu3nHqLQRX2cc3WFiFWoNVqDX7ILjKPtM0daC+RVv21GprZa227KlVQ8vxh0TlgwoOzchqu72wKM/f47ERXKGnHI62XQrzc7xpF3fn5wKsQJ3ZS78Krurr6/X3v/9dL7zwgrZt26ZE4sidW9xut+bOnatzzjlHV1xxhTweTzaG2W8RXGUf32BhFWoNVqHW7IPgyn5M01RdU1Bb9tRqS2WttlbWqLqh9bjPM6Q4T5NGDUqFWYMKc4/7HARXyDSfxyW/160cn1t+r1suZ1uQxc8FWIE6s5d+E1w99dRTuvPOO9XS0iKp7Qd5R9qnn44cOVL/8z//o4ULF1o2xv6O4Cr7+AYLq1BrsAq1Zh8EV31DQ0tIWytrtfXQrKx9tce/4HtpQc5HM7JGDtKQkrxj3sJFcIXe5nE7leNzq7CwWAW5OZKS/FxAr6H/sJd+EVw9+OCDuvPOOyV9FFiVlpZq5MiRys1te8eotbVVe/bsUX19fep5brdbv/71r3XaaadZOdx+i+Aq+/gGC6tQa7AKtWYfBFd9U3Mwom2VH91aWHmwUcfbqBfm+o6YkVU+qOCoIIvgClZxef1yOV3Kz/Eo32PK43Zme0joh+g/7KXPB1cVFRX65Cc/qVgsJo/HoxtuuEFXXnmlRo0a1eHxu3fv1uOPP66HHnpI0WhUOTk5euGFFzRkyBCrhtxvEVxlH99gYRVqDVah1uyD4Kp/CIaj2r63ru3Wwj21qjjQoETy+Fr3/ByvJo8apKmjyzRl9GANLcmT25dDcAVLfDwkzfW5VVzgV54/85sOYOCi/7CXPh9c3XnnnXrggQfkcrn0xz/+UfPmzevS89555x3ddNNNSiaT+sIXvqCvf/3rvTzS/o/gKvv4BgurUGuwCrVmHwRX/VMkGtf2fXWpGVk799crnji+r2Vhnk/Txg7VtLHDNG3sEBXnMAMGvaez2X1ul1PF+T4V5PpS62EB3UX/YS+90YO4Mnq2Y1ixYoUMw9Bll13W5dBKkhYsWKBLL71UTz31lN58802CKwAAAAw4Xo9LJ4wdohPGtt19EIsntKuqQVv21Gjrnlpt31enSCyR9hxNgbDeXleht9dVSJLKinI1bWyZpo0p05RRg5WXw0wY9L5YPKHqhlbVNLYq1+dRXo5HeX4vIRaADlkaXB08eFCSNH/+/ON+7oIFC/TUU0+psrIy08MCAAAA+hy3y6lJI9vWs9Kittlnew42asueGm05tOB7OBpPe47qxlZVr92lJWt3yZA0amiRpo1pC7ImjCiV123prwsYYExTCoSiCoSiMoyA/F638vxe5ed45HYxGxBAG0t/EoXDYUmS13v87+T4fD5JUjLJ7W0AAADAx7mcDo0bXqJxw0t04YLJSiSTqqhq1OY9Ndq8u1rb9tYpmmZGlilp94FG7T7QqBfe2Sqnw9D48lJNGTVYU0YP1vjyEsIE9BrTlILhmILhmKobJJ/XpTy/R7k+j3we1zF3ywTQf1kaXA0ePFhVVVXatm2bzj///ON67vbt2yW17UAIAAAAID2nw6Hx5SUaX16ii0+ZrHgiqV1V9dqyt0Ebdx3Utj01SqR5UziRNLX10C6Hz6zYJLfLkQqypo0p05hhxdzahV4TjsQVjsRVq6AMw1CO16Ucn0c5PjdBFjDAWBpczZw5U/v379ff/vY3fe5zn1NeXl6XnhcIBPS3v/1NhmFo5syZvTxKAAAAoP9xOR2aOGKQpo4fqcVnOhWKRLRxe6U2VlRrY0W1Kqub0j4/Fk9q8+4abd5do38s2yifx6UpowZr6pgyTRtbpuGl+YQJ6BWmaao1HFNrOCZJcjgM5XjdKszzKZ912YB+z9Lg6sorr9QLL7yg6upq3XDDDbrrrrs0YcKEtM/ZsWOH/uu//ksHDhyQYRi69NJLLRotAAAA0H95PS7NGD9UM8YPlSQ1t4a1aXeNNlZUa/PuGtU0tqZ9fjga1/vbq/T+9ipJh3YsPLQ+1rQxZSrO9/f63wEDUzJpptbG8nlcGlSUozw/ARbQXxmmaZpWvuB///d/68knn5RhGKkZVHPmzNGoUaNSM7BaW1tVWVmp9957T++//76SyaRM09SZZ56p++67z8rh9luZ3ooax49tW2EVag1Wodbsoze2os6UTPcg8URS2/fWZex8A4HL65fDcCppJhSPhDo9rq4p2DbDak/bLKu65uBxvc6w0vy2EGtsmSaPHKwcn7unQ0cf09VaywSf16XBhbnK9Xt69XVgP/Qf9tIbPYjlwVUymdQ3vvENPffcc20DOMZ04vbhLVq0SL/61a9Si7SjZwiuso9vsLAKtQarUGv2QXCFdLoTJpimqZrGVm3eXaNNu2u0qaJazcFIl1/TYRgaO7w4NRtrfHkp62MNAFYGV+38XrcGFeUo10eANVDQf9hLvwiu2r3xxhv6xS9+oc2bN6c9bvz48brpppu0ePFii0Y2MBBcZR/fYGEVag1Wodbsg+AK6WQiTDBNU/tqmlPrY23ZU6NImh0LP87rcWnq6MGaPnaIpo8borLirq19i74lG8FVO7/XraI8n/JyPHI6CEn7M/oPe+lXwVW7/fv366233tKBAwdUX1+vRCKhgoICjRo1SieeeKImT56czeH1WwRX2cc3WFiFWoNVqDX7ILhCOr0RJsQTSe3cX68Nuw5qU0WNdu6vV/I4fs0oK8rVCYdCrCmjB8vv5bbC/iCbwVU7w5ByvG7l53qV5/cy068fov+wl34ZXCE7CK6yj2+wsAq1BqtQa/ZBcIV0rAgTQpGYtuxpW+h9w65qVdW1dPm5Toeh8eWlqSBr9NAiOditsE+yQ3B1OEKs/on+w14IrpAxBFfZxzdYWIVag1WoNfsguEI62QgTGlpC2lRRrQ0V1dqw66CaW7u+Plae39MWYo0domlj2a2wL7FbcPVxPq9LuT6Pcn0e+b2uY66/DHui/7AXgitkDMFV9vENFlah1mAVas0+CK6QTrbDBNM0VVndpA27Dmr9zoPatrdO8UTXa2LE4AJNHzdEJ4wdokkjB8ntcvbiaNET2a614+FwGMrxuZXnbwuyqKu+g/7DXvpEcBUIBLR161bNnj07k6dFhhFcZR/fYGEVag1Wodbsg+AK6dgtTIhE49q8p0brdx7U+l0HdbC+698/PC6nJo0alFrkfVhpPrNmbMRutXY8nE5DhgwZhiGHIRmOtj+3P87xulWQ65XLScCVbfQf9tIbPYgro2eT9Prrr+tb3/qW5syZo4cffjjTpwcAAADQj3g9Ls2cMEwzJwyTJNU2tmr9roPasOugNlbUKBSJdfrcaDzRFnjtPCi9JpUU+DV93BCdOH6opo4uY5F3dFsiYUrqfI5HIBhVTWOrcn0eFeT6lJ/jITQFeknGg6tXX31VpmmqoKCgw8/H43E5HA452JIUAAAAwMcMKsrVmSeN05knjVMimdSu/Q2p2Vi7quqV7n6R+uaQlr5foaXvV8jpMDRp5CDNGD9UJ44fymwsZJxpSoFQVIFQVE6noYIcnwrzvPJ5CEyBTMp4cLV+/XoZhqE5c+Z0+Pnly5frlltu0dChQ/Xqq69m+uUBAAAA9BNOh0MTRpRqwohSXX76NAVCUW2qqNb6Q+tjNbR0fvtZImlq0+4abdpdo8dfX6fSwhydOG6oZowfqqmjB8vryfivQhjAEglTDS0hNbSE5HU7lZ/rVb7fS50BGZDxq6iurm2NgbKysk6Picfj2rdvX6ZfGgAAAEA/luf3aO7UEZo7dYRM09T+uhZtOHSr4JbKGsXina+fVtcU1Btrd+qNtTvlcjo0edQgnXhoNtaQEnuuCYe+KRJLKNIYVG1jUB63U/l+j/JyvNy6CnRTr8W/LhfJMgAAAIDeYRiGygcVqHxQgc6bN1HRWEJbK2v04Y4DWrfjoA42dL5IczyR1IZd1dqwq1qPvfqhyopyU7cUTh41WB43C24jM6KxhOpiIdU1h+R2OZTn9yovp23nQgBdk/F0adCgQdq/f7/27t2b6VMDAAAAQIc8bqemjxuq6eOGSudKB+sDWrfzgD7ccUCbd9conuh8NlZ1Y6tee2+HXntvhzwup6aMHqwZ44dqxrghKivOs/Bvgf4sFk+mbid0OR3Ky/EoP8dLiAUcQ8aDq1mzZmnfvn166qmndNNNN7EIOwAAAADLDSnJ05CSCTrn5AmKxOLavLtG63Yc0Ic7D6i2Mdjp86LxhD7c0RZ4SdLQkjydOL5tbaxJIwfJ7WI2FnounkiqsSWsxpbwESFWjtfNJgLAx2Q8uLrsssv03HPPadeuXbr22mv1mc98RsOHD099fuvWranHq1evlpluW5BOzJ07NyNjBQAAAND/ed0uzZwwTDMnDJNpmjpQH2gLsXYc0JY9NUokO/+d5EB9QAfqt+vld7fL63Fp+tgynThhmE4cP1SFuT4L/xborw4PsdidEDiaYXYnOTqGL3/5y3rjjTc6TYrbX7I7SbJhGNq4cWOPxgcpGmqRaXY+XRq9z+3Lk8PhVDKZUCzc+RoMQE9Ra7AKtWYfhuGQx2/PxaYz3YPEE0lt31uXsfMNBC6vXw7DqaSZUDzS+a58A0U4Gtem3dX6cPsBrdt5QPXNXfuaGJLGDi/RzAlDNXPCMI0sK2SmzMdQaz3jdTtVmOdTQa5PLid3MnWG/sNeeqMH6ZXgKhKJ6L/+67/0wgsvZPrUMgxDmzZtyvh5BxqCq+zjGyysQq3BKtSafRBcIR3ChM6Zpqn9tS36cEeV1u04qG17a9POxjpcSYFfMycM0+xJwzV51GCCBlFrmWIYUq7fo8Jcn/L8HgLSj6H/sJc+E1y127Ztm9auXavq6urUx3bt2qXnnntOhmHoK1/5SrfOe8stt2RqiAMWwVX28Q0WVqHWYBVqzT4IrpAOYULXhSIxbayoTq151RQId+l5fq9LM8YN1exJwzVj/FD5vQPzli9qLfOcTkPF+X4V5/vlZD1pSfQfdtPngquOLFmyRDfffHO/nTn13nvv6ZlnntGqVatUW1urSCSiwYMHa9asWVq8eLEWLVqU7SFKIriyA77BwirUGqxCrdnHQAuuduyrk7Udbd9GmNA9SdPUngON+mB7ld7fXqXdBxq79Dynw9CU0YN10sThmjlhmEoLc3p3oDZCrfUeh+OjAGugz+6j/7AXgisbC4VC+t73vqdnnnkm7XGLFy/WD37wAzmd2d2NhOAq+/gGC6tQa7AKtWYfAym4kqREMqlQJKZguO2/cDSe0fP3N4QJmdHQEtKHOw7og+1V2rirWtF4okvPG1lWmFoofuzwYjn68W1f1FrvMwxDxfk+lRT45cry75jZQv9hL73Rg2R8V8GBKBqN6gtf+IJWr14th8Ohz3zmM7rssss0evRoxWIxbdq0SXfffbe2bNmiJ598UqWlpbrtttuyPWwAAIB+welwKM/vVZ7fK6ktyGoPsYLhqCKxrgUKwPEozvfrjFljdcassYrGEtpYcVBrt1Xp/W1VaglGOn1eZXWTKqub9Oxbm1WQ49WM8UM1a+IwTRtTNmBvKUT3maap+uaQGlrCKsrzqbRw4AZY6L8sn3G1efNmPfDAA5KkO++808qX7lXPP/+87rzzTv3oRz/q8HbAUCikT37yk6qsrJTX69Wbb76p4uLiLIy0DTOuso93BmAVag1WodbsY6DNuDqWRDKpcCSuUDSmUDimUDSuZBcX3O6PmAXTu5JJUzv212nt1iqt3bpfBxu69v3Q5XRo6ujBOmnScM2aOExFef5eHmnvo9asZxhSnt+ronyfcn2ebA/HEvQf9tIvbhXsz+LxuFyuziex/fnPf06Fdb/85S91/vnnWzW0oxBcZR/fYGEVag1Wodbsg+Dq2CKxuMKRuIKRtllZsXj2x2QVwgTrmKapqroWrd1WpQ+2Vx3Xemzjh5do1qThOmniMA0rze+TO8lRa9nlcTtVlOdXYZ63Xy/kTv9hL9wqaHPpQitJGjt2bOpxTU1Nbw8HAAAAnfC6XfK6XSrM80mSorGEWsPRttsLI1ElEry3i54zDEPDBxVo+KACXXzKZLUEI1q344De316lDbsOKhTpfD22HfvrtWN/vZ5Ysl5DivM0e/JwzZ5U3u/XxULmRGMJVTcEVNPYqoIcj4ry/anbUeOJpBKJpOLJQ/9PmEokEirI9cnrISaAvVCRFgoGg6nHhYWFWRwJAAAADudxO+Vxt+3QJUnhaEytoZgisbgSiaQSSVOJZNsvd9ywgO7Kz/Fq4YzRWjhjtOKJpLZV1ur97W3rYtU0tnb6vIMNAb3wzla98M5WFef7NXvScM2ZXK6JI0v79UwaZIZpmmpqjaipNSKn01AyaXY686+xNawRgwtZbw22wq2CFrrrrrv0xz/+UZL06quvauTIkVkbSzLJIqXZZhgOGYYh0zRtccsE+i9qDVah1uzF4bDn4rz9oQdJHgqxEomkwtGYAqGoguGoEsm+UfeGDrtW1TfG3N+Zpql91U1as6VS722u1K799V16Xn6OV7Mnj9DJU0dp2rihcrvsdd1Ta32Tw3Bo5JAi5fSRNbLoP+wn0z0IwZVFotGozj77bNXU1Oikk07SX/7yl2wPCQAAABkUisTUGoooeOiWQ9psdFddU6vWbKnUms2V2lhxQInEsX8Z93lcOnFiueZMGaVZE8uVe2iXTaA7DMPQiCFFqd1agWyyNLi6/vrrjx6AYejuu+9WaWmpVcPoUH19vRoaGrp0bEFBgQYPHnxc57/33nt1zz33SJL+9Kc/aeHChcc9xkzqD+929nW8MwCrUGuwCrVmL8y4yi7TNNvWywpHFYxEFY7ElLRJkMUsmL4lGI7qg237tHpTpT7Ytk/R2LGvIafD0OTRQzR7ygjNnjxSg4pyLRjp0ai1vs2QofLBhcrP9WV7KGnRf9hPn55xNWXKlFRBpQZgGHrttdc0fPhwq4bRoXvuuUf33ntvl4799Kc/rTvuuKPL516zZo2uv/56xWIxXXnllfrBD37Q3WFmjF129BnI2P0CVqHWYBVqzT7YVdB+TNNUKBJXKNIeZsWzNiOLnd76rkgsrg27Duq9Lfv1/rYqhSKxLj1v1JAinTylXHOnlGtIiXXfG6i1vs8wpGGl+SqwcXhF/2EvfX5XwfYtXCdOnKiioqLUx73e/jv9cO/evfrKV76iWCym6dOn6zvf+U62hwQAAACLGYahHJ9bOT63SgtzZJqmwtG4AqGoWkNRhaOd7y4HtPO6XZo9qVyzJ5Urnkhq8+4avbdln97fVqWm1nCnz9tzsFF7DjbqyTc3aNSQQp08ZYTlIRb6JtOU9te2KGmaKsrzZ3s4GKAsnXE1f/58NTc368c//rE++clPWvWyWXPw4EFde+212rNnj0aOHKlHH31UZWVl2R6WpIH7bqed8M4ArEKtwSrUmn0w46rviSeSag1F24KscFTJZO+16MyC6X+Spqld+xu0dtt+rd26X1V1LV163siythDr5CnlGlaa+e8Z1Fr/MrgoV8X5fjkcRraHcgT6D3vp8zOupkyZolWrVmnVqlX9Priqra3VjTfeqD179qi8vFwPPPCAbUIrAAAA2IvL6VBhnk+Feb7UbYWtoYgCoagiXVjTCAObwzA0vrxE48tL9Okzp+tgfYvWbqvSmq37tWNvnTqLQSurm1RZ3aSnlm7Q8EH5mjO5XHMml2tkWWHqbhmgXU1jq2qbgsr1u5Xn9yjP75HL2bW1jOKHNhhwOR29OUT0U5bOuHr22Wd12223yePx6IknntDEiRO7/NwlS5boy1/+sgzD0MaNG3txlD138OBB3XDDDdq1a5dGjx6tP/7xjxoxYkS2h3UE3u3MPt4ZgFWoNViFWrMPZlz1L7F4QoFQVIFgRMFITD3t3pkFM7A0tYa1Zss+vbt5n7bsqelS/QwqytGcSW0h1rjyEjm6GWJRa/2fz+NSXk5biOXzuBVPJBWNJRSJxRWJxVOPEwlThiHl+j0qzvMr1+/J2BjoP+ylN3oQS4MrSfr2t7+tp556SkOHDtVvfvMbTZ06tUvPW7JkiW6++WYZhqFNmzb18ii7r7KyUjfccIP27dunKVOm6P7779egQYOyPayj0DRmH99gYRVqDVah1uyD4Kr/SiZNtYbbbikMhqOKxY//a0mYMHC1hVj7tXrzXm3uYohVmOvTyVPKNW/aCI0vLz2uEItaG1g+vhFbOm5X2yzTojxfl2dtdXou+g9b6RfBlST99Kc/1Z/+9CdJ0rXXXqsbb7xRQ4YMSfucvhBcbd26VZ///OdVU1OjhQsX6p577lFeXl62h9Uhmsbs4xssrEKtwSrUmn0QXA0ckVhcwXBMreGoguFYl9bGIkyAJDW3hrVm6369t3mfNu2uUbILvxaWFPg1d8oIzZs2UmOGFh3zdkJqDceSiVlY9B/20i+Cq3g8rqqqKi1ZskQ//elPFYlE5HQ6tWDBAs2aNavT51VUVOjZZ5+1bXC1du1afelLX1JTU5MuvPBC/eAHP5Db7e70eMMw5PFkbnrk8aJpzD6+wcIq1BqsQq3ZB8HVwNS+U2F7iBWKxDuc/UCYgI8LhKL6YFuV3tu6T+t3HkytR5ROWVGu5k0bqXlTR6h8cEGHIRa1huPhdTtVWpijglzfcT2P/sNe+nxwddppp6muru6oH6CmaXZp8b/24+wYXF133XVatWpVl48fM2aMXnrppV4cUXo0jdnHN1hYhVqDVag1+yC4gtR2W2EoGlMw3PZfONq2PhZhAtIJR+Nat+OA3tuyTx/sOKBINH7M5wwrzdfJU8o1d8qRIRa1hu7wuJ0qLchRQa63SzkB/Ye99PldBWtqajr9XBbuWMyqsWPHZnsIAAAA6MccDkO5Po9yfW2z/JNJU6FITFG5FQrHFYywWyGO5vO4NHfqCM2dOkKxeELrdh7Qqo179f72KkU72eGyqq5F/1yxWf9csVlDS/J08pS2548Z4ZPYnBDHKRpLqKquRbVNQZUW+lWY62OXywHO0hlXU6ZMkWEY+o//+I+0twV25P3339fdd99t2xlXfQ3vdmYf7wzAKtQarEKt2QczrpBO+7UajUbV0FivQCiq1lBswL2RjOMTicb1wfYqrdy0V+t2HOjS7YRDS/M1/4Sxmj99lIYWei0YJfojt8uhkoIcFeV1HGDRf9hLn59x1W7y5MmaN2/ecT0nGAz20mgAAACAgcflcqooz6+iPL+SSVPBSPRQiNW93QrRv3k9rrY1raaNVDAc09qt+7VyU6U2VVQr0cmmAAfqWvT00g/19NIPVT6oQPOmjdC8qSM0pMSewTrsKRZP6mB9QE2BsIaW5snn6XwtafRPlgdXvJMDAAAA2IvDYSjP71Wev21WzP7aZjW3RrI8KthVjs+tRSeO1qITRysQimrttv1avWmvNqYJsfbVNuuppRv11NKNGj20SPMO3Y44qDDX4tGjrwpH49p9oFFFeX4NLsqVw8HtgwOF5bsKwh6Ypp99TGmFVag1WIVasw9uFUQ6XblWTdNUZXWTguGYxaNDX9baHmJt3qcNuw52GmIdbkJ5qRacMFJzp45Qfg63E6Jr3C6HhpTkKc/vpf+wmT6/qyDsg6Yx+/gGC6tQa7AKtWYfBFdIp6vXaiKZ1O4DjZ0uyA2kEwxH9cHOWq3csEfrd+xX8hi/djodhk4YO0QLThipkyYOl9eTlVVt0Mfk53g1YtgQeTwe+g+bILhCxtA0Zh+/4MEq1BqsQq3ZB8EV0jmeazUWT2j3gcYuLcQNfJzL65fDcKop0KqV63Zo1aa92rK7Rsf6BdTjdmr2xOFacMJITRs7RC6nw5Lxom/y+HJVVlKgglyPklHWxs42gitkDE1j9vELHqxCrcEq1Jp9EFwhneO9VsPRmHYfaGKtWhy39uAqaSYUj4QkSQ0tIa3evE+rNlVqx776Y54jz+/R3KkjdMoJozS+vKTDXeUwsLXXmZSUz5lQUZ5fOT4WcM8WgitkDE1j9vELHqxCrcEq1Jp9EFwhne5cqy3BiPbVNPfyyNDfdBRcHa6msVUrN1bqnQ17tL+25ZjnG1SYo/knjNSCE0apfFBBbwwZfVBHdeZxO1WU51NBro8ZexYjuELG0DRmH7/gwSrUGqxCrdkHwRXS6e61Wt8cUnUD1za67ljBVbv2zQDe2bBHKzfuVUNL58e2G1lWqAUnjNT8aSNVUpCTyWGjj0lXZ4bRtg4Ws7Cs0++Cqx07duiVV17R+vXrdeDAAbW0tCiZTOqVV1456thoNCqPx5OFUfZPNI3Zxy94sAq1BqtQa/ZBcIV0enKtHqwPdClUAKSuB1eHS5qmtu6p1Tsb9mj1ln3H3NnSkDRp1CAtOGGUTp5crlw/vzMONF2tM5/XpZJ8v/JzvNxy2ov6TXBVWVmp22+/XStWrEh9rH0YhmFo06ZNRxy/detWff3rX9dVV12la665xtKx9lc0jdnHL3iwCrUGq1Br9kFwhXR6eq3ur21WKBKXw5AcDoecDkOOQ/85DUPxpKmmQLgXRo6+pjvB1eFi8YTW7TygdzZU6v1tVcfcJMDpMHTi+KFacMIozZwwTB63s7tDRx9yvHXmdjlUnO9XYZ5PTge3EWZavwiuPvzwQ33hC19QS0uLTNOUy+XSmDFjZJqmduzY0WFwdeedd+qBBx5Qfn6+lixZotzcXCuH3C/RNGYfv+DBKtQarEKt2QfBFdKx4loNhmOqqmtRLJ7olfOjb+hpcHW4YDimNVv3aeWGSm3cXa1j/Rbr87g0Z3K5Fk4fpcmjB8vBDJt+q7t1ZhiGivJ8Ks73E3JmUJ8PrlpaWnTBBReorq5OhYWF+s///E9deuml8vv9WrJkiW6++eYOg6vGxkadddZZCofD+u53v6urr77aqiH3WzSN2ccveLAKtQarUGv2QXCFdKy6VpNJU9WNATW2MPtqoMpkcHW4xkBI727aq3c2VGpXVcMxjy8p8GvBCaN0ynQWde+PMlFneTkeFef7levjVtOe6o0exJXRsx3DAw88oLq6Ovl8Pj344IOaPHlyl55XVFSk8847T08//bSWLl1KcAUAAADYnMNhaGhJvvJzvDpQ16JYnMASmVGU59e5cyfq3LkTdaCu5dDOhJU62MnmAfXNIT3/9hY9//YWjR5apIXTR2n+tJEqyPVZPHLYVSAYVSAYlc/jUkkB62DZjaXB1euvvy7DMLR48eIuh1btZs+eraeffvqo2VgAAAAA7CvX59GYYcWqbmhl7Stk3NDSfF122jRdeupUVVQ16J2NlVq1ca+aWjuutd0HGrX7QKP++to6TR83RAtnjNZJE4fJ7eJWMUjhaFz7a1vkcram1sFyOVkHK9ssDa4qKyslSSeffPJxP7e0tFSSVF9fn9ExAQAAAOhdTodDw0rzVZDjVWMgnFrY3eEw5DAOLex+aIH3UCSu5tYI62PhuBiGobHDSzR2eIk+c/aJ2lhRrbfX79F7W/cpGju6lpKmqQ93HNCHOw7I73Vr7pRyLZwxWhNGlLIeFhRPJFXT2KrapqAK87wqyc9hHawssjS4ikQiktp+SB2vQKBt2qfLZemQAQAAAGRIrt+jXH/6NWTy/F4NLspVKBJTc2tELcHIMXeTAw7ncBiaPm6Ipo8bouuiJ+m9Lfv09vo92lRRrY4WeA5FYlr6QYWWflChQYU5OmX6KC2cPkpDSuy5ViCsY5qmGlvCagqElef3qrTQL5/Hne1hDTiWpkBDhw5VZWWlNm7cqAsuuOC4nrty5UpJ0ogRI3pjaAAAAABsxO91y+91q6w4V8FwTM2tYbWEokomLd0UHX2cz+PSohmjtWjGaNU3B7VyY6XeWrdH+2qbOzy+timof67YrH+u2KwJ5aVadOJozZ0yQjk+woqBzDSllmBbkJ7rc6ukIOeYITwyx9LgasGCBdqzZ4/+9re/6aabblJhYWGXnrdjxw49++yzMgxDp5xySi+PEgAAAIBdGIaRmqk11DQVDMfUGo6qNRRVpINbwIDOlBTk6MIFk3XB/Enac7BJb63frZUbKtUcjHR4/PZ9ddq+r06PvvK+5kwq16ITR2vq6DI5HNxKOJC1hmNqDTcdWsg9R/k5HhZy72WWBlfXXnutnnjiCTU2NupLX/qSfvnLX6qsrCztc3bs2KEvf/nLisVicrlcuuqqqywaLQAAAAA7OTzEUrEUTyTUGjoUZIWjSiSYjYVjMwxDo4cWafTQIl151gxt3HVQb63fo7Xb9ne4+2UsntQ7Gyv1zsZKlRT4tXD6aC2awa2EA13bQu7NcrucKi30qzDXR4DVSwzTNC397n7//ffrJz/5iQzDkMfj0VlnnaUZM2aoqqpKDz/8sAzD0I9//GPV1tbq3Xff1dKlS5VItL2T8q1vfUuf+9znrBxuvxUNtcg0WSsgm9y+PDkcTiWTCcXCHW/dC2QCtQarUGv2YRgOefz2/IWKHiT7+vO1GorEFAhFFQhGmI1lAy6vXw7DqaSZUDwSyvZwjikYjmn1lr16a90eba2sPebxE0d8dCuh38uthNlilzpzuxwqKchRUd7ADrB6owexPLiSpF/96lf69a9/rUQiccx/UNM05XA49KUvfUn//u//btEI+z+axuzrz00j7IVag1WoNfsguEI6A+VajcYSCoQiaglGFY7GZP1vPbBLoNAd1Q0BvbVuj1as3626pmDaYz1up+ZMLtepM0Zr8ujB7EpoMbvVmcv5UYA1EG8r7TfBlSRt2rRJP/nJT7Ry5crUjKqPMwxDc+bM0Te+8Q3NnDnT4hH2bzSN2TdQmkZkH7UGq1Br9kFwhXQG4rUaTyTVGoqqJRRRayimLP0KNODYLVDojqRpasueGq34cLdWb9mn6DFm8pUW5GjhjFFaNGO0yorzLBrlwGbXOnM6DZXk56go3yenw5Ht4VimXwVX7RoaGrRs2TLt3btXdXV1kqTS0lINHz5cp556qgYNGpTN4fVbNI3ZNxCbRmQHtQarUGv2QXCFdAb6tWoeWuA9EIoqEIp0uKYRMsOugUJ3hSIxrd68T8s/rNC2vXXHPH7K6ME67cQxmjO5XB6304IRDkx2rzPDMFSQ41Fhnn9A7E7ZL4MrZAdNY/YN9KYR1qHWYBVqzT4IrpAO1+qRItG4AodmY4Uj8WwPp1+xe6DQEwfrA1qxbrfeWr9b9c3p/245PrfmTxup02eO0eihxRaNcODoS3XmdjlVlOdTYZ5XLmf/DDMJrpAxNI3ZR9MIq1BrsAq1Zh8EV0iHa7VzTYGwDtQHuJUwQ/pSoNBdSdPUpopqrVi3W+9t2XfMGXyjhhTqtBPHaMEJo9p2x0SP9cU6Mwwp1+dRYZ5P+TnebA8nowiukDE0jdlH0wirUGuwCrVmHwRXSIdrNb1oLKH9dc3MvsqAvhgo9EQwHNO7m/dq+QcV2rG/Pu2xbpdDc6eM0BknjdWE8tIBvQtdT/X1OvO4nRpUmKOCXF+2h5IRfT64qqmpUXV1tRKJhEpLS1VeXm7VS+NjaBqzj6YRVqHWYBVqzT4IrpAO1+qxmaap2sZW1R3jFjCk19cDhZ7YV9OsZR9W6K11uxUIRdMeO3xQvs6YNVanTB+tPGZhHbf+Umf9JcDqk8GVaZp69NFH9fDDD6uiouKIz5WWluqKK67Qv/7rvyo3N7c3h4GPoWnMPppGWIVag1WoNfsguEI6XKtd1xqOqqq2RfEENdsd/SVQ6Il4Iqn3t+3X0g8qtGHnQaX75dvlbJuFdfqsMZo0chCzsLqov9VZXw+w+lxwFY/Hdcstt+jNN9+UpA7vFTcMQ1OnTtUf//hHFRUV9dZQ8DE0jdlH0wirUGuwCrVmHwRXSIdr9fjEE0kdqG9RIJh+1gyO1t8ChZ6qbw5q+Ye7teyDCtU1B9MeO6QkT6fPHKOF00erMK9vBhhW6a911hZg5aogt2+tgdXngqu7775bv/vd72QYhkzTVH5+vsrLy+VyuXTgwAHV1ta2DcIwNHv2bD3yyCO9NRR8DE1j9tE0wirUGqxCrdkHwRXS4VrtnubWsJoCYQUjMbFKcNf010Chp5JJUxt2HdSb7+/S+9uqlExTUA7D0MwJQ3XazLGaMX6InA6HhSPtG/p7nRXkejWkJK/P/Nv3qeCqtrZWZ599tmKxmHJzc/W9731PF198sZyHbfn4/vvv64477tC6detkGIbuuecenXPOOb0xHHwMTWP20TTCKtQarEKt2QfBFdLhWu2ZeCKp1lBULaGIWkMxdiBMo78HCpnQGAhp+Ye7tfT9XaptSj8LqzDPp1NnjNapJ47RkJI8i0ZofwOhztwup4YPypff6872UI6pTwVXf/7zn/WjH/1IhmHooYce0sknn9zhccFgUJdeeqn27dun0047Tb/73e96Yzj4GJrG7KNphFWoNViFWrMPgiukw7WaOcmkqUAoqpZgRK3hqJJJQqzDDYRAIVOSpqmNu6oPzcLar8QxaumEMWU6c/Y4zZo4rM/MxOktA6XODEMqLczRoEJ7rw/eGz2IK6NnO8yqVaskSQsXLuw0tJKknJwc3Xjjjfrf//1fvffee0omk3IM8AsPAAAAgP05HIYKcr0qyPXKNE21hqMKhKIKBKMs6I7j4jAMTR83RNPHDVFzMKK317ethbW/tqXD4zdUVGtDRbWK8nw6fdZYnTFrrIrz/RaPGlYyTam2MahgOKZhpflyu5zHflI/0WvB1bZt22QYhhYtWnTMYxcsWCCpbfZVZWWlRo8e3VvDAgAAAICMMwxDeX6v8vxeqUQKRWIKBCNqCUUVjSWyPTz0IQU5Xp0/b5LOmztRO/fXa+kHFVq1aa8i0fhRxzYGwnpm+SY9u2KzZk0cprNmj9PUMWVysCNhvxUMx1RxoEFDS/KVn9O3Fm7vrl4LrhoaGiRJQ4cOPeaxw4YNSz1ubGwkuAIAAADQp/m9bvm9bg0uliKxuFpDMQXDUQUjMW4pRJcYhqHx5aUaX16qz54zU+9u2qul7+/Sjv31Rx2bNE2t2bpfa7buV1lxrs48aZxOnTFaeQMk2BhoEglT+2qalZ/jVWmhXz6P/de+6oleC65aW1slSbm5x77/MicnJ/W4ubm5t4YEAAAAAJbzul3yul0qKfDLNE2FInEFI1G1hmIKR9mlEMfm87h02swxOm3mGO052Kg31uzUOxv2KNLBbL7qhlY9/vo6PfnmBs2dOkJnnTRO48tLZDALq99pCUbUEowox+dWaUGOcv2ebA+pV/RacGWaZrcujGSSe8EBAAAA9E+GYSjH51aOz61BhW0LvAcjUbUEowqEIkokSLGQ3qghRbrhwtn6l7Nn6O31e/TG2p3aV3P0BJB4Iqm31+/R2+v3aGRZoc48aZwWnDCyT+xMh+MTDMcUDDfJ52kLyPNzvP0qqOy14AoAAAAAkJ7D8dHaWKaZp2A4puZghBALx+T3unX2nPE6a/Y4bdtbpyVrdmr1ln0dbgxQWd2kh15aq7+9sU6nnDBKZ84ep5FlhVkYNXpTOBrX/toWuV1BlRT4VZjrk8PR9wMswzR7Z2LqlClTZBiGTjnlFA0ZMuSYxz/11FNdOt4wDP3whz/M5FAHJLaizj62ooZVqDVYhVqzj97YijpT6EGyj2u1bzBNs8+HWC6vXw7DqaSZUDwSyvZwBoTmYEQrPqzQkrW7VNPYmvbYCeWlOmv2OJ08pbxP71BHnXXO4TBUlOdTcb7fsn/j3uhBej246g2bNm3qlfMOJDSN2UfTCKtQa7AKtWYfBFdIh2u17zFNU8FITIFgVC3BSIczauyIQCF7kqapDTsPasnanXp/e1XaddTy/B6deuIYnXnSWJUV51k3yAyhzo7NMKRcv0cl+TnK8fXuraJ9LrjqDYZhEFxlAE1j9tE0wirUGqxCrdkHwRXS4Vrt+0KRmALBiJqDUcXiRy/ObRcECvZQ3xzUm+/v0tL3K9TUGk577Aljy3T2nPGaOX5Yn7nFjDo7Pj6PS0X5PhXk9M5thH0quFq1alVvnFaSNG/evF4790BB05h9NI2wCrUGq1Br9kFwhXS4VvuXSDSullBEgWBU4Wg828M5AoGCvcQTSb2/bb/eWLNTm3bXpD22tDBHZ88ep9NOHKO8HK9FI+we6qx78nO8Kh9ckPHz9qngCvZG05h9NI2wCrUGq1Br9kFwhXS4VvuvWDyR2p0wFImlvT3MCgQK9lVV16Ila3dqxbrdCoZjnR7ndjk0b+pIfWLOeI0ZVmzhCLuOOuuevByPRgzO/AL9BFfIGJrG7KNphFWoNViFWrMPgiukw7U6MCSSSbWGooeCrKiy8WsfgYL9RWJxrdq0V0vW7NSuqoa0x44bXqJPzBmvuVNHyOV0WDTCY6POuofgCrZH05h9NI2wCrUGq1Br9kFwhXS4VgeeZNJUMBJVS2tEgXDUsh0KCRT6loqqBr2+Zofe2VCZdgOAwlyfzjxprM48aZwK83wWjrBj1Fn3EFzB9mgas4+mEVah1mAVas0+CK6QDtfqwGaapoLhWGpdrN7coZBAoW8KBCNa9mGF3lizU7VNwU6PczoMzZs2UuecPEFjs3gbIXXWPQRXsD2axuyjaYRVqDVYhVqzD4IrpMO1isMFwzE1BUJqDmb+dkIChb4tmTT14Y4qvf7eTq3fdTDtsRPKS3XOyeM1e3K55bcRUmfd05eCK1dGzwYAAAAA6DNyfG7l+NwqSybV3BpRY0tIkVgi28OCDTgchmZNHK5ZE4frQF2LXl+zQ8s/3N3h7pXb99Vp+746Fef7ddbscTpj1ljl23w3QvQdzLgaoHi3M/t4txNWodZgFWrNPphxhXS4VnEsoUhMjYGwmlsjPZqFxUyY/icUiWn5h7v12nvbVd3Q2ulxLqdDC04YpXNOHq9RQ4p6dUzUWff0pRlXBFcDFE1j9tE0wirUGqxCrdkHwRXS4VpFVyWSSbUEI2pujSgYjh338wkU+q+kaWrdjgN6dfV2bdhVnfbYyaMG6ZyTJ+ikicPlcBgZHwt11j19KbjiVkEAAAAAwFGcDoeK8vwqyvMrFk+ouTWi5tYwtxJCDsPQzAnDNHPCMO2rbdbrq3doxfrdinZQG1v21GrLnlqVFubo7NnjdPrMscr1e7IwavRVzLgaoHi3M/t4txNWodZgFWrNPphxhXS4VtFTkWhcza1hNQcjisU7v56ZCTOwtIaiWvZhhV5/b0fa3Qg9bqcWTh+lT5w8QeWDCnr8utRZ9/SlGVcEVwMUTWP20TTCKtQarEKt2QfBFdLhWkUmhSIxtQQjaukgxCJQGJiSSVPvb9+vV9/doc17atIeO21Mmc45ebxOnDBMDqN7txFSZ93Tl4IrbhUEAAAAAHSL3+uW3+tWWXFe2hALA4fDYWj2pHLNnlSuyuomvbp6u97ZsKfDmthYUa2NFdUqK8rV2XPG67SZY+T3urMwatgZM64GKN7tzD7e7YRVqDVYhVqzD2ZcIR2uVVghFIkplHCpJRhVLB5jJswA1xKMaOn7u/T6mp1qaOm8Fvxet848aazOOXmCivP9XTo3M666py/NuCK4GqBoGrOPphFWodZgFWrNPgiukA7XKqzi9uVJcqi+uUXVNbXMwoLiiaTWbN2vV9/dru376jo9zukwtOCEUTp/3kSNKEsfrhBcdU9fCq64VRAAAAAA0CscDkMlBbnKcyfV3BpRfXOQXQkHMJfToXlTR2je1BHaVdWg11Zv16pNexVPHBlqJpKmVqzbrRXrdmv62CE6f/5ETRtTJqOb62Chb2PG1QDFu53Zx7udsAq1BqtQa/bBjCukw7UKq3RWa4FQRHVNIYUisSyODnbR1BrWG+/t1OtrdigQinZ63KghhTp/3iTNnTpCLqcj9XFmXHVPX5pxRXA1QNE0Zh9NI6xCrcEq1Jp9EFwhHa5VWOVYtRaKxNQYCKu5NSJ+LUUkFtdb6/bopVVbVd3Q2ulxxfl+nTt3gs6YNVZ+r5vgqpsIrmB7NI3ZR9MIq1BrsAq1Zh8EV0iHaxVW6WqtJZOmmoNhNQbCCkfiFo4QdpRMmnp/+369uHKbtu/tfB0sv9elM2aN1QULp2tQUQHB1XEiuILt0TRmH00jrEKtwSrUmn0QXCEdrlVYpTu1FonF1RQIq6k1rESCX1UHuu176/TSqq1as2W/OqsGp8PQKTPG6oJTpmp4sc/S8fVlBFewPZrG7KNphFWoNViFWrMPgiukw7UKq/Sk1kzTVCAUVSAYUUsoqmSSX1sHsoP1Ab387jat+HC3ovHOF/c/YUyZzp8/SSeMZSH3YyG4gu3RNGYfTSOsQq3BKtSafRBcIR2uVVglU7VmmqaC4ZhaQhEFgtGjdqDDwNESjOiNNTv12ns71BKMdHrciMEFOn/+JM2fNvKIhdzxEYIr2B5NY/bRNMIq1BqsQq3ZB8EV0uFahVV6q9aC4ZgCoQi3Ew5g0VhCb2/Yo5dWbtWB+s5rqyjPl1rIPcfnsXCE9kdwBdujacw+mkZYhVqDVag1+yC4Qjpcq7BKb9daIplUbWNQjYGQ+K12YEqaptZX1OmFtzdpy+7qTo/zetoWcj9v7gSVFORYOEL7IrgawNatW6cnn3xSK1euVFVVlUzTVGlpqWbNmqVPfvKTOvPMM7M9REk0jXZA0wirUGuwCrVmHwRXSIdrFVaxqtaisYSqGwMKBKO99hqwL5fXL4fh1LbKg3pu+Tq9t2Vfp0Gm02HolOmjdMH8SRo+qMDagdoMwdUA1NzcrO9+97t68cUX0x53+umn6xe/+IVycrKb8tI0Zh9NI6xCrcEq1Jp9EFwhHa5VWMXqWmsNR1XT0KpwNN7rrwX7aA+ukmZC8UhI1Q0BvfLudi37sELRWOcLuZ80cZguXDBZE0aUWjha+yC4GoB+/vOf6ze/+Y2Kiop07bXX6uyzz9aIESMUDoe1fft2Pfjgg1qyZIkk6dxzz9W9996b1fHSNGYfTSOsQq3BKtSafRBcIR2uVVglW7XWGAiptjHIIu4DxMeDq3aBYERvrN2l11ZvV3OahdwnjRykCxdM0onjhw6onQgJrgYg0zT12GOP6YILLlBJSUmHx/zP//yPHnvsMUnSP//5T02aNMnKIR6BpjH7aBphFWoNVqHW7IPgCulwrcIq2ay1ZNJUczCsxkBY4QgzsPqzzoKrdrF4QivW7daL72xVdWNrp+cZUVaoi0+ZrLlTRsjh6P8BFsEVOrR582ZddtllktpmaF144YVZGwtNY/bRNMIq1BqsQq3ZB8EV0uFahVXsUmuRaFwNgZCaWyNKJvn1t785VnDVLpk09d6WfXr+nS3afaCx0+PKinN14YLJWjh9lNwuZy+M2B76UnDlyujZkFY0+tFigWVlZVkcCQAAAAAMDF6PS0NL8lVWlKeWYEQNgRCzsAYgh8PQ3KkjdPKUcm3aXaMX3t6iDRVH70RY3dCqB15Yo6eXbdQF8yfpjFlj5fUQnWQTX30LPfDAA5KkiRMnavbs2VkeDQAAAAAMHA6HocI8nwrzfIrE4moOhNUcjCgWZxboQGIYhqaNKdO0MWXafaBBz729Re9t3qePz8VrDIT1l9c+1LNvbdY5J0/QJ+aMV67fk5UxD3TcKthLksmkYrGYWltbtXHjRv35z3/WsmXLNHz4cP3hD3/Q+PHjszy+zndXgDUMwyHDMGSaJrdMoFdRa7AKtWYvDoc9b2+gB8k+rlVYpa/UWjAcVXNrWM2tYSWS9h0nOmbosDpT9/79qmqb9dyKDVrxwa5Oa8DncenskyfpglOmqCg/pydDtoX8HJ9GlBX1yrkz3YMQXPWSf/zjH/rWt76V+nNpaamuvvpqXX/99SooKMjiyAAAAAAAH2eapgKhqJpbQwqGokqaJmtiDTB1Ta16/q0NeuO9rYrGOn6jxe1y6PSTJuriRSeorNie60l2RV6OVyOHFGd7GF1CcHVIfX29GhoaunRsQUGBBg8enPaYn/3sZ7rvvvuO+FhRUZEWL16sW2+9VTk52U1oebcz+/rKO1Do+6g1WIVasxdmXKEzXKuwSn+ptWTSVNI0ZZqmEsmkTNNUayiqhpaQ4gm+p2VbJmZcfVxza1gvr9ysV1duUTAS6/AYh2HolBljdMmpJ6i8l2Yu9SZmXPVB99xzj+69994uHfvpT39ad9xxR5eObW1t1d69e/Xss8/q4YcfVjAY1KRJk/TYY48pLy+vJ0PuEXb0yT677LKC/o9ag1WoNftgV0Gkw7UKq/T3WjNNUy3BiOpbWOw9m7q6q2B3hCIxvbFmp15etU3NwUinx82eNFyfXDRFo4f2jRlMUt/aVdCR0bPhKLm5uZo8ebK+/vWv649//KMcDoe2bt2qn//859keGgAAAACgmwzDUEGuT2OGFmv00CIV5HplGNkeFTLJ73XrolMm68f/dqGuOW+WSgs6vnNqzdb9uv1Pr+vnj6/Qjn11Fo+y/2PGlcWuvfZavfvuu8rLy9N7772XtXHwbmf29fd3oGAf1BqsQq3ZBzOukA7XKqwyEGstnkiooaVtoXd2K7RGb864+rh4IqmVGyr1/DtbVFXX0ulx08aU6ZOLpmjyqPRLDGVTX5px5cro2XBMY8aM0bvvvqtAIKD6+nqVlJRke0gAAAAAgAxwOZ0aXJSrwUW5CoQiagpEFAhFxHSR/sHldGjRiaN1yoxRWrt1v559a7N2H2g86riNFdXaWFGtSSMH6ZKFU3TC2DIZTMfrNoIri4XDYUlt00pzc3OzPBoAAAAAQG/I83uV5/cqnkiquTWsxkC4053q0Lc4DENzJpdr9qThWrfzoP65YpN27Ks/6ritlbW6+6/LNX54iS47bapOGDuEAKsbCK4slEgkUrcHjh49Wl6vN8sjAgAAAAD0JpfToZKCHJUU5CgUiakxEFZza0Ss2tP3GYahE8cP1YxxQ7R5d43+uWKzNu+pOeq4HfvrdfdfV2jc8BJddupUTR9HgHU8CK4y5Pe//72WLl2qe+65R0VFRR0e85vf/Eb79++XJF1zzTUWjg4AAAAAkG1+r1t+r1tDivPUHAyrKRBRKBLL9rDQQ4ZhaOqYMk0dU6atlbV6dsVmrd918Kjjdu6v188eX6Gxw4p12WnTNIMAq0tYnD0DNm/erM985jMKh8MqKirSddddp7POOksjR45UIpHQli1b9Oijj+qll16SJC1YsEB/+MMf5Ha7szZmFkbNvoG4WCWyg1qDVag1+2BxdqTDtQqrUGtdE4nF1RQIq6k1rESCX8+Pl5WLsx+Pnfvr9c8Vm/TB9gOdHjN2WLEuO3WqZowfanmA1ZcWZye4ypD33ntP//3f/62Kioq0x11yySW6/fbblZeXZ83AOkHTmH38IIdVqDVYhVqzD4IrpMO1CqtQa8fHNE0FQlE1tIQUDDMLq6vsGly1q6hq0DMrNun9bVWdHjNmaLEuO22qTrQwwCK4GqASiYSef/55vf766/rwww9VW1srl8ulIUOGaM6cObrssst08sknZ3uYkmga7YAf5LAKtQarUGv2QXCFdLhWYRVqrfvC0ZjqmkJqCUayPRTbs3tw1W73gQY9s3yT1h4jwLr01CmaOWFYrwdYBFewPZrG7OMHOaxCrcEq1Jp9EFwhHa5VWIVa67loLKG65qCaW8PiN/eO9ZXgqt3uA416ZsUmrd26v9NjRg8t0qWnTtWsXgywCK5gezSN2ccPcliFWoNVqDX7ILhCOlyrsAq1ljnxREINzSE1BMJKJvkV/nB9Lbhqt+dgo55Zvklr0gRYo4YU6bJTp2rWxMwHWARXsD2axuzjBzmsQq3BKtSafRBcIR2uVViFWsu8RDKp+uaQ6ptD4lf5Nn01uGq352Cj/rlik97bkn4G1qdOm5bRRdwJrmB7NI3Zxw9yWIVag1WoNfsguEI6XKuwCrXWe+KJpOqagmoMhAb8LYR9PbhqV1ndpGeWb9J7W/Z1esy44SW6/LRpOmFsWY8DLIIr2B5NY/bxgxxWodZgFWrNPgiukA7XKqxCrfW+WDyh2sZWNbUO3EXc+0tw1a6yukn/XLFJqzd3HmBNHFGqy0+fpqmjy7r9OgRXsD2axuzjBzmsQq3BKtSafRBcIR2uVViFWrNOJBpXTVOrAsFotodiuf4WXLXbW92kp5dvTHsL4ZRRg3X56dM0aeSg4z4/wRVsj6Yx+/hBDqtQa7AKtWYfBFdIh2sVVqHWrBeKxFTXHBxQAVZ/Da7a7T7QqKeXb9T726o6PeaEMWW67LRpmjCitMvnJbiC7dE0Zh8/yGEVag1Wodbsg+AK6XCtwirUWvZEYwnVtwTVFIj0+0Xc+3tw1W7X/nr9Y9lGrdt5sNNjZowbostPP0FjhxUf83wEV7A9msbs4wc5rEKtwSrUmn0QXCEdrlVYhVrLvngiqcZASA0tISUS/fNX/4ESXLXbvrdOTy/bqA0V1Z0eM2viMF1+2jSNGlLU6TEEV7A9msbs4wc5rEKtwSrUmn0QXCEdrlVYhVqzj2TSVHMwrJZDi7gbDkMOw5DxscfNwYhi8b71PXqgBVfttlbW6qmlG7RlT22nx8yZXK7LT5+m8kEFR32O4Aq2R9OYffwgh1WoNViFWrMPgiukw7UKq1BrfU8sntCeg419KrwaqMFVu027q/XU0o3avreuw88bhrRoxmhdduo0lRbmpD7el4IrV0bPBgAAAAAA+iS3y6mRZUWqrO5b4dVANnV0maZcO1gbdlXrH8s2auf++iM+b5rS8g93650NlTp79jhdtHCKCnK8WRpt9xBcAQAAAAAASZLH3RZe7TnYqHiC8KovMAxD08cN0Qljy7RuxwE9tWyjdh9oPOKYeCKpl9/drqUfVOj8eRO1+MwTsjPYbuBWwQGKafrZx9RpWIVag1WoNfvgVkGkw7UKq1BrfVskFlflwSbbh1cD/VbBjpimqTVb9+vJNzeoqq6lw2Pyc7z68qfm6/LTpmX0tblVEAAAAAAA9Dqv26WRQwq152Bjv92RsL8yDENzJpdr1sRhemv9Hj29bKPqm48M9VqCEf34kaXyuJy66JTJWRpp1ziyPQAAAAAAAGA/XrdLo8qK5HQa2R4KusHpcOi0E8fozi+dr6s+caLy/J6jjvlge1UWRnZ8CK4AAAAAAECHvB7Cq77O7XLqvHkTddeXL9Cli6bK63ZKkhyGoXPnTsjy6I6NWwUBAAAAAECn2sOruuagWoJRsVR23+T3unX56dP0iZPHa19Nk06eMkIjygqzPaxjIrgCAAAAAABpeT0uDR9UoEQyqUAwqqbWsILhWLaHhW7Iz/Hq5KkjNGKw/UMrieAKAAAAAAB0kdPhUGGeT4V5PsXiCTW3RtTUGlY0lpDUtjC4y+mQ2+Vo+7/TIZfLqUQyqcaWsO13KYT9EFwBAAAAAIDj5nY5VVqYo9LCHEVjCTkcbaFVZ0oLctTcGlF9c1CRQ0EXcCwEVwAAAAAAoEc8hxb8TscwjNRsrUAoovrmELcb4pgIrgAAAAAAgKXy/F7l+b0KR2Oqbw6pJRgRa76jIwRXAAAAAAAgK3wet4YPcisSi6umsVWBYDTbQ4LNdH7zKQAAAAAAgAW8bpdGDC7UqCFF8nmZY4OPEFwBAAAAAABbyPG5NWZoscoHF3Rp3Sz0f8SYAAAAAADAVvJzvMrze9QYCKuuKah4IpntISFLmHEFAAAAAABsxzAMFef7NXZ4sQpzvdkeDrKE4AoAAAAAANiW0+HQsEEFKh9cIKfTyPZwYDGCKwAAAAAAYHv5OV6NHVasPL8n20OBhQiuAAAAAABAn+ByOjWirFBDSvJkGMy+GghYnB0AAAAAAPQpxfl+5fo8qmmJKxJj4fb+jBlXAAAAAACgz/G4nRo9rERlJflyOZ3ZHg56CTOuAAAAAABAn2QYhkoLc1WU51VdnaH65qAisUS2h4UMIrgCAAAAAAB9mmEYKszzqTDPp0AoovrmkILhWLaHhQwguAIAAAAAAP1Gnt+rPL9X4WhM9c0htQQjMs1sjwrdRXAFAAAAAAD6HZ/HreGD3IrFE6prDqopEJFJgtXnsDg7AAAAAADot9wup4aW5Gt8ebFKC/xyOIxsDwnHgRlXAAAAAACg33M5nRpcnKeSwhw1tITU0BJSIsEMLLsjuAIAAAAAAAOG0+HQoMJcleTnqDEQVn1zUPFEMtvDQicIrgAAAAAAwIDjcBgqKfCrON+XCrBicQIsuyG4AgAAAAAAA5ZhGCrO96soz6em1rDqmkKKxRPZHhYOIbgCAAAAAAADnmEYKsrzqzDXp5ZgRLVNQUVjBFjZRnAFAAAAAABwiGEYKsj1qSDXp+bWiGqbWgmwsojgCgAAAAAAoAMFuV7l53jUGAirrolF3LOB4AoAAAAAAKAT7WtgFeb6VN8SVF1TSKZpZntYA4Yj2wMAAAAAAACwO4fD0KDCXI0vL1FRvk+Gke0RDQwEVwAAAAAAAF3kcjo0tCRfY4eVKD/Hm+3h9HsEVwAAAAAAAMfJ43aqfHCBRg8tkt/rzvZw+i2CKwAAAAAAgG7ye90aPbRIwwcVyO1yZns4/Q6LswMAAAAAAPRQ+w6EDS1h1TW3KpFgAfdMILgCAAAAAADIAMMwVFLgV2GeV/VNQdW3hNmBsIcIrgAAAAAAADLI6XBocHGeigty1BgIqbElrHgime1h9UkEVwAAAAAAAL3A5XRoUGGuSgty1NwaUUNLSOFoPNvD6lMIrgAAAAAAAHqRYRgqzPOpMM+n1nBUDc0hBULRbA+rTyC4AgAAAAAAsEiuz6Ncn0eRWFw1ja0KBAmw0nFkewAAAAAAAAADjdft0ojBhRpZViiP25nt4dgWwRUAAAAAAECW5Po9GjusWGXFuXI4jGwPx3YIrgAAAAAAALLIMAyVFORo3PBiFeZ6sz0cWyG4AgAAAAAAsAGX06lhgwo0emiRfB6WJZcIrgAAAAAAAGzF73Vr9NAilRT4sz2UrCO4AgAAAAAAsBnDMFRWnKfywQUDeu0rgisAAAAAAACbys/xaszQYnkH6M6DBFcAAAAAAAA25nE7NXposQrzfNkeiuUIrnpRIBDQJZdcot/85jdqbm7O9nAAAAAAAEAf5XAYGlaar2Gl+TKMgXPrIMFVL3riiSe0bds2/frXv1Y8Hs/2cAAAAAAAQB9XmOfTmKFFA+bWQYKrXmKaph555BFJ0gUXXKCSkpIsjwgAAAAAAPQHXo9LY4eXaPiggn4fYLmyPYD+6s0339Tu3bslSddee22WRwMAAAAAAPqbglyvCnK9aglGVNvYqkgske0hZRzBVS956KGHJEknnHCCZs6cmeXRAAAAAACA/io/x6v8nLYAq64pqHC0/yxXRHDVC3bu3KkVK1ZIkq655posjwYAAAAAAAwE/THAIrjqBQ8//LBM01RRUZEuueSSbA8HAAAAAAAMIP0pwCK4yrBAIKCnnnpKknTFFVfI6/VmeUQAAAAAAGAgag+wAqGIahv7ZoBFcJVhf//73xUMBuVwOHT11Vcf8bnJkydLkh588EHNnz8/G8NLcXlzsvr6kAzDkfq/25eX5dGgP6PWYBVqDV1BD5J9XKuwCrUGK1BnXVPsy1NxcakCwYhqGgNyu5x95utFcJVBpmnq0UcflSSdccYZGjFiRJZH1DmHo39vl9mXGIYhw+DfA72PWoNVqDWkQw9iH1yrsAq1BitQZ11TkJejgrwcRaLxPvMzmeDqkPr6ejU0NHTp2IKCAg0ePPioj7/55pvavXu3JPsvyp5M9r8tMvsaw3DIMAyZpinTTGZ7OOjHqDVYhVqzF7s2o/Qg2ce1CqtQa7ACddY9bpfRaz+TM92DEFwd8sgjj+jee+/t0rGf/vSndccddxz18YceekiSNGbMGJ166qkZHV+mxSNBLuosc/vyZBhOmWZSsXAg28NBP0atwSrUmn0YhkMef362h9EhepDs41qFVag1WIE6s5fe6EEcGT3bALZjxw6tWLFCkvTZz35WhmFkeUQAAAAAAAB9GzOuDrn11lt16623dvv5Dz/8sEzTlN/v1+LFizM4MgAAAAAAgIGJ4CpDli5dKkkKhUKaO3du2mOvv/56SVJ5eblef/31Xh8bAAAAAABAX8Stghlimma2hwAAAAAAANCvMOMqQ1588cW04dW7776rm266SZJ0//33a+7cuayDBQAAAAAAkAbBVYZ4PJ60n3e73Uc89nq9vT0kAAAAAACAPo1bBQEAAAAAAGBLBFcAAAAAAACwJYIrAAAAAAAA2BJrXFlk/vz52rJlS7aHAQAAAAAA0Gcw4woAAAAAAAC2RHAFAAAAAAAAWyK4AgAAAAAAgC0RXAEAAAAAAMCWCK4AAAAAAABgSwRXAAAAAAAAsCWCKwAAAAAAANgSwRUAAAAAAABsieAKAAAAAAAAtkRwBQAAAAAAAFsiuAIAAAAAAIAtEVwBAAAAAADAlgiuAAAAAAAAYEsEVwAAAAAAALAlgisAAAAAAADYEsEVAAAAAAAAbIngCgAAAAAAALZEcAUAAAAAAABbcmV7AMgOwyCztBP+PWAVag1Wodayy85ffzuPbSDi3wNWodZgBeos+3rj38AwTdPM+FkBAAAAAACAHiKOBAAAAAAAgC0RXAEAAAAAAMCWCK4AAAAAAABgSwRXAAAAAAAAsCWCKwAAAAAAANgSwRUAAAAAAABsieAKAAAAAAAAtkRwBQAAAAAAAFsiuAIAAAAAAIAtEVwBAAAAAADAlgiuAAAAAAAAYEsEVwAAAAAAALAlgisAAAAAAADYEsEVAAAAAAAAbIngCgAAAAAAALZEcAUAAAAAAABbIrgCAAAAAACALRFcAQAAAAAAwJYIrgAAAAAAAGBLBFcAAAAAAACwJYIrAAAAAAAA2BLBFQAAAAAAAGyJ4AoAAAAAAAC2RHAFAAAAAAAAWyK4AgAAAAAAgC0RXAEAAAAAAMCWCK4AAAAAAABgSwRXANBHBQIBXXLJJfrNb36j5ubmbA8HAAAMEPQgAKxkmKZpZnsQQH/w3nvv6ZlnntGqVatUW1urSCSiwYMHa9asWVq8eLEWLVrUpfMEAgE98MADeuWVV1RZWalkMqny8nJ94hOf0A033KCSkpJe/pugr3jggQf0wx/+UB6PR2+++eZx1QZ1hq6qqqrSgw8+qGXLlqmyslKmaWrYsGE65ZRTdPXVV2vSpElpn0+tAb2PHgRWoweBFehB0I7gCuihUCik733ve3rmmWfSHrd48WL94Ac/kNPp7PSYHTt26Itf/KL27dvX4ecHDRqk3/zmNzrxxBN7NGb0faZp6vzzz9fu3bt16aWX6ic/+UmXn0udoaueffZZffe731UwGOzw86NGjdILL7wgl8vV4eepNaB30YMgG+hBYAV6EByO4ArogWg0qhtvvFGrV6+Ww+HQZz7zGV122WUaPXq0YrGYNm3apLvvvltbtmyRJH3xi1/Ubbfd1uG5AoGALrvsMu3du1dut1tf+9rXdMkll8jn82n16tW66667tGfPHg0aNEj/+Mc/NHjwYCv/qrCZJUuW6Etf+pIk6fHHH9fMmTO79DzqDF31yiuv6NZbb5Vpmpo3b56++MUvavr06ZKkgwcPavny5ZozZ45mz57d4fOpNaB30YMgW+hB0NvoQXAUE0CPPPfcc+app55qLl++vMPPB4NB8xOf+IQ5adIkc8aMGWZ9fX2Hx/385z83J02aZE6aNMl87rnnjvr8U089lfr8//zP/2T074C+5/Of/7w5adIk81Of+tRxPY86Q1fU1dWZ8+bNMydNmmTedtttZjKZPO5zUGtA76MHQTbQg6A30YOgIyzODvTQRRddpDfeeKPT9SP8fr+uvfZaSVIkEtGqVauOOiaRSOixxx6TJJ100km66KKLjvr8b3/729Sfn3zySYVCoUz9FdDH7Ny5UytWrJAkXXPNNV1+HnWGrnrwwQfV2NiosrIy3X777TIM47ieT60B1qAHgdXoQdDb6EHQEYIrIAM6u7e63dixY1OPa2pqjvr8mjVr1NDQIEm68MILj/r8E088oZ07d+qKK66QJIXDYS1fvrwnQ0Yf9vDDD8s0TRUVFemSSy7p8vOoM3TVs88+K0m68sorlZOTc9zPp9YA69CDwEr0IOht9CDoCMEVYIHDFxUsLCw86vPr169PPT7ppJOO+FwoFNI999yjmTNn6t///d87fA4GjkAgoKeeekqSdMUVV8jr9Xb5udQZumLv3r2qrKyUJC1atEjRaFR/+tOftHjxYs2ePVvz5s3TVVddpccee0zxeLzDc1BrgH3QgyBT6EHQ2+hB0Jn0b9EAyIgPP/ww9XjWrFlHfX7nzp2pxyNGjDjicw888ICqq6v1f//3fxoyZIhcLpfi8fgRz8HA8fe//13BYFAOh0NXX331EZ+bPHmypLYp1vPnzz/qudQZuuLdd99NPS4uLtZVV12lDRs2HHHM2rVrtXbtWv3zn//Ufffdp4KCgiM+T60B9kEPgkyhB0FvowdBZ5hxBfSyaDSqf/7zn5LaUv+RI0cedUx9fX3qcXFxcepxQ0OD/vCHP+j0009PNQHt35zbp8Bi4DBNU48++qgk6Ywzzjjqh/GxUGfoiurq6tTj//7v/9a2bdt044036umnn9bq1av13HPPpX5hee+99/T973//qHNQa4A90IMgU+hBYAV6EHSGGVdAL/vd736XWlPiq1/9aofHtC8I6PF4jliA8L777lMgENDXv/711Mc8Ho+kI6f+Y2B48803tXv3bknHtyBqO+oMXXF487Zlyxbdf//9mjdvXupj+fn5+v73vy+n06mHHnpIzz//vL7yla9owoQJqWOoNcAe6EGQKfQgsAI9CDrDjCugF61Zs0b33XefpLYFBhcuXJj2eIfjo0ty3759evTRR3XJJZdoypQpqY8nk8neGSxs76GHHpIkjRkzRqeeemq3z0OdIZ1AIJB6/P3vf/+IhvFwN9xwQ+rx888/3+Ex1BqQPfQgyCR6EFiBHgSdIbgCesnevXv1la98RbFYTNOnT9d3vvOdTo9t3zEjFoulPvbzn/9cpmkesXCg1Lad9eHPwcCwY8eO1PbTn/3sZ497a2CJOkPX+Hy+1ON0O0aNHDlSubm5kqQ9e/Yc8TlqDcguehBkEj0IrEIPgs5wqyDQCw4ePKgbb7xR9fX1GjlypH7zm98c8Y3440pKSiRJiURCLS0t2rdvn5599lldc801R6xHEYvF1NLScsRzMDC0bz/t9/u1ePHibp2DOkNXHL7IaTgcVl5eXqfH5ufnq7W19ai1Iag1IHvoQZBp9CCwCj0IOkNwBWRYbW2tbrzxRu3Zs0fl5eV64IEHVFZWlvY548aNSz3et2+f/u///k9+v1//9m//dsRxVVVVqSmtY8eOzfzgYVtLly6V1Hbf/ty5c9Mee/3110uSysvL9frrr6c+Tp2hK4YNG5Z6fODAgSPWjfi4cDgsSUft6EOtAdlBD4LeQA8Cq9CDoDPcKghk0MGDB3Xttddqx44dGj16tB588EGVl5cf83nTp09PPX7ggQe0bNkyff7znz8q/V+zZk3q8YwZMzI3cNieaZo9Pgd1hq448cQTU4+3bNnS6XEtLS1qbGyUJA0dOvSIz1FrgPXoQdBb6EFgFXoQdIYZV0CGVFZW6oYbbtC+ffs0ZcoU3X///Ro0aFCXnnvSSSepuLhYDQ0NevLJJ1VaWqobb7zxqONefPFFSW33fy9atCij44e9vfjii2kbx3fffVc33XSTJOn+++/X3Llzj1qDgjpDV0ycOFFFRUVqbGzU66+/rosvvrjD45YtW5Z6fPrppx/xOWoNsBY9CHoTPQisQg+CzjDjCsiArVu36rOf/az27dunhQsX6pFHHulywyhJTqdTn/3sZ1N//tznPpdacLDdW2+9pSVLlkiSrrjiCvn9/oyMHX2Dx+OR1+vt9D+325061u12y+v1prb4bUedoSscDkdqq/OXXnpJGzduPOqYcDisX//615KkUaNGaf78+Ud8nloDrEMPgt5GDwKr0IOgMwRXQA+tXbtW1157rWpqanThhRfqnnvukdvtViQS6fC/aDTa4XluuukmjRgxQpL0yCOP6Pnnn1d9fb1qa2v12GOP6Stf+YpM09SgQYP05S9/2cq/IvoR6gxdcd1112nIkCGKxWK68cYb9fjjj+vgwYNqbm7WqlWrdOONN2rbtm1yOp360Y9+dMSW0+2oNaD30YOgL6HO0BX0IOiIYWbipmVgALvuuuu0atWqLh8/ZswYvfTSSx1+bseOHfriF7+offv2dfj5QYMG6Te/+c0R938DkrRy5crUgqgPPvjgUe8+HY46Q1ds375d11577VG79bTLycnRj3/8Y5177rmdnoNaA3oXPQjsgB4EmUYPgo9jjSvAYul2rRg/fryeeeYZPfDAA3r55ZdVWVkp0zQ1fPhwfeITn9DnPvc5tmtFj1Fn6IoJEyboueee0wMPPKAlS5Zoz549Mk1T5eXlOuOMM3Tddddp+PDhac9BrQH2Qg+CbKPO0BX0IPg4ZlwBAAAAAADAlljjCgAAAAAAALZEcAUAAAAAAABbIrgCAAAAAACALRFcAQAAAAAAwJYIrgAAAAAAAGBLBFcAAAAAAACwJYIrAAAAAAAA2BLBFQAAAAAAAGyJ4AoAAAAAAAC2RHAFAAAAAAAAWyK4AgAAAAAAgC0RXAEAAAAAAMCWCK4AAAAAAABgSwRXAAAAAAAAsCWCKwAAAAAAANgSwRUA2Fg8Hs/2ENBD/BsCAPoifn71ffwbor8guAIAm9qxY4cuvvhiLV++PNtDQTfV19frU5/6lJ588slsDwUAgC6jB+n76EHQnxBcAYANrV27VldffbUqKip05513KpFIZHtI6IaHH35YW7du1be//W399re/zfZwAAA4JnqQ/oEeBP0JwRUA2MyaNWt04403qrGxUWPGjNH9998vp9OZ7WGhG2655RYtXrxYknT33Xfrl7/8ZZZHBABA5+hB+g96EPQnhmmaZrYHAQBos3XrVl177bVqampSeXm5HnvsMQ0ZMiTbw0IPmKap2267Tc8++6wk6bvf/a6uvfbaLI8KAIAj0YP0P/Qg6C8IrgDAJurq6nT55ZerurpaRUVF+utf/6oxY8Zke1jIgFgspi9+8Yt6++235XA49Ktf/Upnn312tocFAIAkepD+jB4E/QHBFYCMqqys1DnnnJP688SJE1Pv8iC9r3zlK3r11VdlGIbuu+8+nXnmmdkeEjKovr5el19+uQ4ePKiSkhI9++yzKi0tzfawAKDfoAfpPnqQ/o0eBH0da1wByKhXXnnliD9v27ZNFRUV2RlMH/KPf/xDr776qiTpM5/5DA1jP1RSUqI77rhDUlsD+b3vfS/LIwKA/oUepHvoQfo/ehD0dQRXADLq5ZdfliSVlZUd9TF0LB6P62c/+5kkqbCwUF/72teyOyD0mtNOOy01Pf/VV1/VmjVrsjwiAOg/6EGOHz3IwEEPgr6M4ApAxtTU1OiDDz6QJN14440aOnSopKPfAc2kZDKppUuXKhgM9tpr9LbnnntOBw4ckNT2TmdxcXGWR4TedPPNN6ce33///VkcCQD0H/Qg3UMPMrDQg6CvIrgCkDGvvPKKksmkJOmcc85JTTVft25dqinqrmQyqUgkovr6em3dulUvvviifvjDH+rss8/WF7/4Ra1YsaKnw8+aBx54QJJkGIauuuqqLI8GvW3mzJk64YQTJEmvv/66KisrszwiAOj76EG6hx5kYKEHQV/lyvYAAPQf7e9qTpw4UaNGjdLZZ5+tv/zlLzJNU6+88oquu+66Lp9r27ZtevLJJ7V8+XIdOHBAzc3NaY9/7bXXdO6556Y9ZsmSJfr73/+u999/X42NjcrPz9fEiRN1ySWX6IorrpDT6ezy+DJl79692rBhgyRp8uTJKi8vP+5z1NfX69RTT1UikVB5eblef/31Yz7ne9/7nv76179Kkh588EHNnz8/7fGZ+NpVVlbqtdde0+rVq7Vt2zZVV1crEokoLy9PY8aM0aJFi3T11Vdr8ODBxzzXPffco3vvvfeIj91+++2ppvvAgQP6/e9/r2XLlmn//v2KxWJd+rvW1tbq8ccf17Jly7Rz504FAgH5/X6VlpZq5syZOuuss3TuuefK5erZj8+zzz5bGzZsUDKZ1CuvvKLPf/7zPTofAAx09CDHjx6EHoQeBH0FwRWAjGhqatKqVaskSZ/4xCckSaeccopycnIUDAb18ssvd6lpNE1Tv/jFL/T73/9e8Xi8w2MMw9AJJ5wgp9Mph8OhwYMHa8GCBZ2eMxqN6pvf/KZeeOGFIz5eX1+vlStXauXKlfrrX/+q3//+9yopKenqXzkj3nnnndTjhQsXduscJSUlmj9/vt566y3t27dPmzZt0tSpUzs93jTNVGM5ePBgzZ07t9NjM/W1CwQCuuiiixSNRo/6XFNTkz744AN98MEHevTRR/WLX/wi7b9nZ6qqqiRJGzdu1A033HDMXzQ+7tlnn9X3vvc9tba2HvHxlpYWtbS0qKKiQk8//bSGDRumb37zm7rooouOe4ztFi1apHvuuUeStHLlSppGAOgBepDuoQehB6EHQV9BcAUgI15//fVUk9e+8KPH49Gpp56ql19+We+9957q6+uP2ZT9/Oc/13333SdJysvL0xVXXKEZM2bI4XCooqJCf//737V//34lk0n9+Mc/1vjx49OeL5lM6uabb05N4x8/frw+9alPadSoUWpubtYbb7yh1157TevXr9dNN92kxx9/XG63u6dfji7btGlT6vGECRO6fZ4LL7xQb731lqS2BTfTNY3r1q1TTU2NJOm8886Tw9HxXeOZ/Nrl5eXpjDPO0NatWzV37lxNnTpVgwcPVjweV1VVlV566SV9+OGHamxs1Fe+8hU9//zzGjJkSKd/h0suuUTTp0+XJN19993aunWr9u/frwMHDuimm25Sc3OzJk2apMsvv1zhcFi//OUv0379Vq9erW984xtKJpNyu9365Cc/qZNPPlmFhYUKhUI6cOCA3n77bb311luqqqrSkiVLetQ0Tpw4MfW4/d1uAED30IN0Dz0IPQg9CPoMEwAy4OabbzYnTZpkLlq0yEwmk6mPP/nkk+akSZPMSZMmmX/729/SnmPXrl3m5MmTzUmTJpmzZ882KyoqjjomGAyaixcvNidNmmSedtppZk1NTdpzPvjgg6nX/853vmPGYrGjjnnqqadSx9x3331d/Btnxhe+8IXUa69evbrb56mvrzenTZtmTpo0ybz00kvTHnv33XenXnPVqlWdHpfpr11Hzz/cr3/969S5fvKTn6Q99nDXXnutOWnSJPPqq682v/a1r5mTJk0y77jjDjMej5umaZrvvPNO6rzvvPNOh+f4t3/7t9QxTzzxRKevtXHjRvO2224z6+vruzy+zixcuDD1muFwuMfnA4CBih6ke+hBPkIPAtgbi7MD6LFgMJh6R+zss8+WYRipz51xxhmptQeOtbPPU089JdM0JUn/+q//qtGjRx91jN/v13/8x39Ikg4ePKgHH3yw0/OFQiH94he/kCRNmTJF//M//9PhugCXX365Lr74YknSQw891OntAb2htrY29bgnO/kUFxenprZv3rxZe/fu7fTY1157TVLbduFz5szp8Jje+Noda02Gm266SV6vV5L07rvvpj22I+vXr9fzzz+vc889V//93/99XOuF7Ny5M/X4/PPP7/S4qVOn6ic/+UlGdl06/BzV1dU9Ph8ADET0IN1HD/IRehDA3giuAPTYm2++qUgkIumjtSXalZSUaNasWZKkt956S4FAoNPzHP6DO92aB4dPQW9f06Ijy5cvV0tLiyTpX/7lX9I2EYsXL5bUtp32+++/3+lxmXb4Fto5OTk9OtcFF1yQevzqq692eMzu3bu1bds2SW3NUWdT9LPxtfN4PKnbOOrq6o77+eFwWD6fT9/97neP+7lFRUWpx1b9+/v9/tTjUChkyWsCQH9DD9J99CAfoQcB7I3gCkCPtTcoOTk5OuWUU476fPt6E9FoVEuXLu30PO27rkhH/kD9OI/Hk3rc2NjY6XFLlixJPZ4xY0anx0nStGnTUo/Xr1+f9thMSiQSqcc93VHo3HPPTa3v0FnT2P5Op9S2JkVnevtrF4/HtWPHDq1evVpvvvmm3njjDb3xxhuphVPbtzQ/XpdddtlR61LMmjVLr732ml577bXULzAf116jknTLLbfod7/7nerr67s1hq46/N1fK99hB4D+hB6k++hB6EEkehD0DSzODqBHotFoqsE47bTTjmjo2p111ln6yU9+Ikl6+eWXO11QctSoUanHmzdv7nRxzx07dqQep1s88/Cp6ps2bUr7DtrhzdvBgwc7PS7TDv96BQKBLm3D3JmioiItWLBAy5Yt05o1azpciLa9aRw6dKhmz57d6bl662v38ssv6/HHH9fKlSs73N2npz71qU8d9TGv16sRI0akfd7111+vVatWaenSpQoGg/rpT3+qX/ziF5o9e7bOOOMMnXPOORozZkxGx3r4O//ttycAALqOHqRn6EEyix4E6D0EVwB65O2330798Dv8HaPDjR8/XmPGjFFFRYXefPNNRaPRDpvLSy+9VA888IAk6b777tPFF1/c4XG//e1vU48XLVrU6dgOb3S+973vde0vJKWmp1uhoKAgo6974YUXatmyZUokEnrjjTd0xRVXpD5XX1+vtWvXSmqbon/4OiAfl+mvXTAY1Ne+9jW9+eabXT5Xd3T2buaxeL1e/fa3v9Xf/vY33X///dq9e7fi8bhWrVqlVatW6Sc/+YmmT5+uG264QZ/85CfTfu266vCv1eF1AADoGnqQnqEHySx6EKD3cKsggB55+eWXU48PHDigxx57rMP/2t91CwaDWr58eYfnmj59um688UZJUkVFha6//nqtWLFCgUBAsVhM27Zt03/913/p9ddfl9S2sORVV12V8b/T4e/e9bahQ4emHjc0NPT4fOmm6i9ZsiT1d0s3Rb8nOvvafec730k1jLm5ubr11lv1xBNPaPXq1dq0aZO2bNmiLVu2qLy8vEev35NmzuFw6DOf+UzqHdmvfOUrOvHEE1NrcKxfv17f+MY39IUvfEHhcLhH4zRNU01NTZIkt9utQYMG9eh8ADAQ0YP0DD0IPQg9CPoKZlwB6LZEIpFq4CTpZz/7WZee98orr3T6zug3v/lNDRo0SD//+c+1du1aff7zn+/wuJycHP3yl79M+y5RaWlpahHQN99884gGzS4mTJiQerx582adccYZPTpfQUGBFi5cqDfffFNvvfWWQqFQaq2O9in6w4cPP+a7gpn82u3cuVPPPfecpLZ3FR999FFNmTKl2+ezwsyZMzVz5kx99atfVV1dnZ544gn99re/VSAQ0PLly3XnnXfq9ttv7/b5KyoqUovijh07NiPvngLAQEIP0nP0IPZEDwIcjRlXALpt9erV3Vo88vXXX+/0XTGHw6FIJKJ4PC63233UD1O3263zzjtPTzzxhObNm5f2dYYPH556XFNTc9zjtMLhi45++OGHGTln+zuZ4XBYy5YtSz1u3y78WFP0pcx+7Q7fdeniiy+2fcP4caWlpfrXf/1XPfzww6l3Pp988skeveN5+L/1iSee2OMxAsBAQw/Sc/Qg9kcPArRhxhWAbnvllVdSj1999VWNHDky7fHf/va39eSTT6qxsVGrVq3qcPefV199Vb/85S8lta0jMWnSJG3fvl2xWExFRUWaOHFi2t1+DnfaaafpySeflNTW4B5rZ5psmD9/vnw+n8LhsNasWaNYLJaaZt9d55xzjtxut2KxmF599VWdd955WrFiRWq7465M0c/k1+7wXZcOX/y2r5k6daqmTJmijRs3KhqNav/+/Ro3bly3znV4I3366adnaogAMGDQg/QcPUjfQQ+CgY4ZVwC6xTTN1PoFEydOPGbDKB25cOrhDefhnn76aUlSSUmJFi1apMGDB+uUU07R6aefrhNPPLHLDaPU9sO4/fhHHnkk1TTZic/nS+1wVF9ff8RW0d2Vn5+vU089VVLbFPt4PJ46b3l5uWbOnHnMc2Tya3f4rRRVVVWdHrd///7UGhumaXb79bqjq7sLHf4OZ3en1gcCAT3//POS2t5JPfPMM7t1HgAYqOhBMoMe5CP0IIC9EVwB6JZ169alGoCu/tBbuHBhaoeeV199tcPGIJlMSmproP7617/2aJebvLw83XLLLZKkyspK3XrrrZ2eb8eOHfrOd76TuuffSp///OdTDchf/vKXjJzzggsukKTUO8vt24W3f/xYMvm1mzNnTurxiy++2OG0/+3bt+umm25KnaOhoUGxWKxLY+2p1tZWXXXVVfqv//qvtFtp//Wvf9XOnTsltTV7o0eP7tbrPf3006m/5zXXXMM21ABwnOhBMocehB4E6AsM0+pIGUC/8H//93/6/e9/L0l69NFHj2gM0rnppptSO/o8/vjjR73z9vLLL+vWW2/t9Pntu5/MmjVLn/rUp465kGg8HteNN96YmhZdXFysxYsXa/r06XI4HKqqqtKKFSu0fPlymaapK664Qj/84Q+79HfJpJtvvllvvPGGJOl3v/tdjxdIDQQCOuWUUxSNRjV9+nStX79ekvT3v/+9y1PuM/m1u/HGG/XWW29JkgYNGqSrr75aY8eOVWtrq1auXKmXXnpJsVhMc+fOTb3eVVddpW9+85vKzc096ny7du1SRUWFJOnuu+/W1q1bJbVtYd5uzJgxGjt27DH/nt///vdTzbrb7dbpp5+uefPmaciQIYrH46qqqtLLL7+sdevWpZ7zgx/8QFdeeeUxz/1xzc3NuvDCC1VbW6vc3Fy99tprKi4uPu7zAMBARg+SWfQg9CCA3RFcAeiWT4lFJQAABclJREFU888/XxUVFSouLtZbb72VWjDyWB555BH9f//f/ydJ+sIXvqBvfOMbRx3z5z//Wffcc48CgcAxz3feeefppz/9aepd1I5Eo1F961vfSk2N7szIkSN1++23a9GiRcd83Uzbu3evLr30UrW2tmrEiBF67rnn5PP5enTOL3/5y0fsuDRy5Mijtqc+lkx97aqrq3X99ddr165dHX7e5/Pp//2//6fzzjtPl156qQ4ePCiHw6Hly5ertLT0qOPvuece3XvvvWnHdMstt6T9BaRdIBDQXXfdpSeffFLxeDztsTk5Ofr+97+vyy+//Jjn7cj3vvc9/fWvf5XU/cYTAAY6epDMogehBwHsjuAKwHHbtm2bLrnkEknSZZddph//+Mddfu7+/ft11llnSWp7N+qll17q8LhIJKItW7aooaEhNXXfNE01NDRo8+bN+uc//5lai+Dyyy/XXXfddczXXrFihZ588kmtXbtWNTU1cjgcGjx4sGbOnKlzzz1X5557rpxOZ5f/Lpn2t7/9Td/5znckSZdccol++tOf9uh8zzzzzBFN+Re/+EXddttt3TpXJr52gUBADzzwgF5++WXt3r1bhmFo6NChOv3003XNNdekFk2trKzU3XffrZaWFv3hD3/o8FyZbBrb7dmzR88884zeeustVVZWqrGxUQ6HQyUlJZo8ebJOOeUULV68WPn5+V0+5+Gef/55/ed//qdM09RZZ511xDuzAICuoQfpHfQg9CCAnRFcAeiTmpubde2112rLli0yDEMvvviixowZk+1h9Vj7rkeSdOutt6bWeOiu3/3ud6nm87nnntOECRN6PEYcvw8//FDXXXedwuGwxowZo8cee0wlJSXZHhYAoBvoQbqGHsQe6EHQH7A4OwBbiEQieuONN/TGG2+k3fWlXUFBgf7lX/5FUtu7oJs3b+7tIVriBz/4gT7xiU9Iku699149/PDD3T5XNBpNrZswZ84cGsYs2bJli770pS8pHA6rrKxMf/zjH2kYAcBG6EHa0IP0P/Qg6C8IrgDYQiKR0M0336ybb75ZzzzzTJee09jYmHqck5PTSyOzltPp1M9+9jOdeuqpMk1T//u//6s//elP3TrXH/7wB+3bt0+SevyuKbpn06ZNuv7661VfX69Bgwbp/vvvV3l5ebaHBQA4DD1IG3qQ/oUeBP0JwRUAW8jJydHw4cMlSU8++aSam5vTHr9582Y99NBDkiS/36/Zs2f3+hit4vV6dd9996XW8FiyZIkSiUSXn2+aZmpxWalt8diFCxf2yliR3po1a9TY2KjRo0frL3/5iyZNmpTtIQEAPoYe5CP0IP0HPQj6E9a4AmAbv/rVr/TLX/5SklRaWqqLLrpIkydPVkFBgZxOp8LhsPbv3681a9Zo2bJlqd1Xvv3tb+tzn/tcFkfeO0zT1EMPPaQrrriiw+2YP27jxo1avny5nnrqKe3cuVNS2+Kzf/vb31RQUNDbw0UnHn/8cZ1zzjlMzQcAG6MHORI9SP9AD4L+guAKgG0kEgnddtttx9z2uF1+fr5uu+02XXXVVb08sr7ha1/7ml544YXUn+fNm6df/vKXKi4uzuKoAACwP3qQnqEHAdCbCK4A2M7KlSv1j3/8Qxs2bNCBAwcUCAQktU3HLysr08SJE7Vo0SJdeOGFvIt3mN/97nd68MEHNWPGDF111VU644wzsj0kAAD6FHqQ7qEHAdCbCK4AoJ+Ix+NyuVzZHgYAABhg6EEA9CaCKwAAAAAAANgSuwoCAAAAAADAlgiuAAAAAAAAYEsEVwAAAAAAALAlgisAAAAAAADYEsEVAAAAAAAAbIngCgAAAAAAALZEcAUAAAAAAABbIrgCAAAAAACALRFcAQAAAAAAwJYIrgAAAAAAAGBLBFcAAAAAAACwJYIrAAAAAAAA2BLBFQAAAAAAAGyJ4AoAAAAAAAC2RHAFAAAAAAAAWyK4AgAAAAAAgC39/5vgQoKNeiboAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 14,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: additive-curve-facet\n",
- "curve_1 = summarize_curve(samples.posterior.curve_1, \"g_1(x)\")\n",
- "curve_2 = summarize_curve(samples.posterior.curve_2, \"g_2(x)\")\n",
- "curve = pl.concat([curve_1, curve_2])\n",
- "plot_bands(curve, \"Posterior curve ({})\".format).facet(\"name\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "decomposable-models-peak",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAN6CAYAAACnkgHIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAC0FElEQVR4nOzdeXwU9f0/8PeGJJxyHwooqK0nImitCvU+qghe9JB6AFVskbZqrT381tr6s621tsWiotaLeqCt0oL3rVXxBMGrKgVUiCi3ErmT+f1Bs00MhBCS3cE8n49HHpnsznz2vbOzs5PXfuYzmSRJkgAAAACAlCnIdwEAAAAAsD6CKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAQJ6tXbs23yUA2BeRSoIrAADIo2XLlsVRRx0Vv/rVr/JdCtCILVy4MPbaa6+4+eab810KVCG4AgCAPPnoo4/ioIMOisceeywuvfTSmD17dr5LAhqpMWPGxGuvvRbDhw+P3/72t/kuB7IEVwDU2UcffRQHHHBAbLXVVjF8+PBIkiTfJW3xVq9eXaflnn322dhxxx2jQ4cOMXbs2Hqu6vOtPtZdXV+3LZ3tbvMsWLAgDjzwwHjllVeiZcuWcd9998X222+f77I2qL6388/j/q68vDyGDx8eW221VRxwwAHx0Ucf5bskGlB5eXlOT6376KOP4t57793gz3PPPbdZ7V900UUxbNiwiIi44IIL4qKLLqqHqqEeJABQRz/96U+TiMj+PPjgg/kuaYvXs2fPpEuXLslxxx23Scvtt99+2dehsLAwKS0tbZgCP4c2Z92NHDky6datW1JQUNCAFaaX7a7uPvnkk2SvvfZKIiJp2rRp8thjj+W7pI0aOnRo0qZNm2TPPfdMPvzww81u7/O4v3vwwQerfC7+9Kc/zXdJNKDZs2cnTZo0SXr06JFccsklDf54//jHP6psX5/9Oeiggzb7McrLy5MhQ4Zk2xwzZszmFw6bSY8rAOosk8lU+bugwMfK5kqSJD766KOYNm3aJi1X+bXIZDLVXhs2bHPW3ZtvvhklJSVRXl7eEKWlnu2ubpIkia997WsxderUyGQycdttt8Whhx6a77Jq5eOPP47p06fHihUrNrutz+P+zudi41NWVhbvvfdezJgxI9+l1ItMJhPjxo2Lww47LCIizj777LjnnnvyXBWNnT0pUO+efPLJ7IFk5Z+CgoJo06ZN7LjjjnHcccfFn/70p/jwww/zXW69mj9/frz00kubfBC+pTr77LOjf//+0bJlyxg2bFgcfvjh+S6p0fr9738fO+ywQ7Rv3z6uuOKKaNGiRb5LioiIlStXxjvvvBOPPvpoLF++PN/lrFda1119++STT+K1116LJ554ot7abCzrrr79+c9/jocffjgiIn70ox/F4MGD81zRlqW+truysrJ4//334+mnn47333+/Xmo74ogjYtiwYdGyZcvo379//OAHP6iXdiEi4vjjj48kSar91LeioqIYP358dOvWLcrLy+P000+P+fPn1/vjQG1lkobY0oFG7cknn4xDDjmkVvM2bdo0zj333Lj44oujqKiogStrWO+++252bJKhQ4e6Igt10rNnz3jvvfeiR48e8e677+a7nM02bNiwGDduXEREzJ49O3r27JnfgurZwQcfHE899VREROrHePu8bVtbqrfffjv69u0bK1asiF69esUrr7wShYWF+S6rVur7/ZzvbfLmm2+O4cOHR0TETTfdlB3bB2orLcd+FT39DjrooHjyySfrrd2HHnoojjrqqIhYF5r94x//qLe2YVNsGZ+SwBbrsMMOi3POOSf7d2lpacyZMycefvjhePTRR2PVqlVx6aWXxmuvvRYTJ06MJk2a5K9YAGhgF110UfY0uz//+c9bTGgFND5f/epX49hjj41JkybFP//5z5g8eXL069cv32XRCDlVEGhQ3bt3j4EDB2Z/TjrppDj//PPjkUceiSeffDJat24dERH33XdfXH311XmuFgAaznvvvRd33XVXRETst99+te6dDJAvF1xwQXb697//fR4roTETXAF5c9BBB8VVV12V/fvKK6/MYzUA0LDGjBkTZWVlERExcuTIPFcDsHH77rtv7L333hERMWnSpJg1a1aeK6IxElwBeXXSSSdFmzZtIiLinXfeiQ8++GCD865duzZuvPHGOOKII6Jz585RVFQUnTp1iv333z9+85vfxNKlSzfpsV999dX4wQ9+EH369Ik2bdpk2+vTp0/84Ac/iGeeeabG5d99990qg89XjHEQETFu3Lj1DlD/f//3f7Wub8GCBXHhhRdG3759o1WrVtGiRYv44he/GGeddVa89dZbtWrj4IMPrlbD22+/nb3/+eefj2984xvRtWvXKCws3OjVme644471Pq+Kn7qOD/LWW2/F9773vdh1112jRYsW0aJFi9hhhx3i1FNPjccee6xWbfzyl7+sVs+1116bvX/u3Lnx/e9/P774xS9G06ZNs/PU51gQtfHss8/G17/+9dh6662juLg4unbtGt/4xjfi2Wef3aR2vvvd79b4WtRlnI1Vq1bF9ddfHwMGDIju3btHs2bNomXLlrHddtvFoEGD4sorr9zo+2zYsGFV6qgYDyciYvvtt69WZ5MmTWLVqlU1tvnZZbbZZpsq948fPz4OPfTQaN++fRQUFEQmk4mDDz54g+01xLqrsHbt2rj66qvjy1/+crRu3TpatGgRvXv3jgsvvDA+/vjjjS5fUUNN9UdUXc8bGhuoZ8+eVZ7Xe++9FxHrev2s73n3799/o/U11Lp79NFH45vf/Gb06NEjmjZtGm3bto3dd989zj333HjnnXdq1cZna1i7dm3ccsstcdRRR8U222wTTZs2jR49esSIESPqbSDuTVXR26qgoCCOOeaYOreTJEm88MIL8Ytf/CKOOOKI6NGjRzRv3jyKi4tj6623jiOPPDKuueaaWLly5Sa1+95778WoUaNixx13jKZNm0aHDh3i0EMPjVtvvbVOY7ilbX938803V1muYnyriIjhw4evt+1HHnmkxjY//PDDGmur7ThglT9fzz777Fots/fee0cmk4nmzZtvdP+yevXquOaaa+Lggw+Odu3aRdOmTWPbbbeNb3zjGxt9jvWtYv/105/+NCLWjS+22267RYsWLWLPPffMjqNUXl4ev/vd72LHHXeM5s2bx5e+9KVafWYvWbIkLrnkkth3332jTZs2UVxcHN26dYsBAwbETTfdlA2PayNJkrj11lvjkEMOibZt20azZs3iC1/4Qnzve9+r836kPo7vcu3YY4+NiHWviXGuyIsEoJ498cQTSUQkEZEMHTp0o/Pvueee2flfeuml9c4zf/785Etf+lJ2vvX9dO7cOXnyySc3+nhlZWXJeeedlxQUFNTYXkQk++23XzJlypT1tjN79uyNLv/Zn5tuummj9SVJkjz++ONJ27ZtN9hOcXFxcs0112y0nYMOOqjasg8//HCSJEly/fXXb3AdbMj48eNrfH61eb0/67rrrksKCwtrbPeUU05J1qxZU2M7F110UbXlLrjggiRJkmTq1KkbXJ9PPPHEJtdcV5dffnmSyWTWW0cmk0kuvvjipEePHklEJD169Kixre985zv1sq1VmD59erLDDjtsdBtu2bJl8qtf/SpZtWrVetsZOnToJr0nNvY8kyRZ77patWpVUl5engwbNmy97R500EE5WXeV32Pz589P9t133w2227Nnz2Tu3Lm1eq411Z8kVdfz7Nmz1ztPxbZU25/avH/re7tbu3Zt8u1vf7vGNouLi5PRo0dvtK2K+f/whz8kr7/+etKnT58NttmlS5dkzpw5m1Tr5po5c2b28ffee+/NauvBBx+s1Wvaq1evWj/Pp556KmnVqtUG2zrmmGOSb37zmxvd7iqkcX930003bdJ7ojbPc968eZu9j0uSJPn000+Tli1bJhGRdO/ePSkvL69x/srHICeeeGKN886ZMyfZfffda6zz29/+drJ27dpa1bq5KvZfZ555ZnLhhRdWq6WgoCB58cUXk1NPPbXafa1atapxP/rCCy8kHTt2rPG59u3bN/nggw82WueaNWuSE088cYPttGzZMhk7duwm7UPr6/jus2r72VFXkydPrrIvgFwzGiSQd5WvJrh27dpq93/yySdxwAEHZHsK9e3bN0499dTo0aNHLFiwIO6666549NFHY/78+TFw4MCYPHly7LHHHht8vN/+9rfxhz/8ISIiOnbsGKeffnr07t07WrRoER9//HHMmDEj7rnnnnj11Vfj+eefj2nTpsVee+1VrZ0uXbrEPffck/17/vz5cfrpp0dE9UHpK+y7774bXR+PPPJIDBo0KFatWhVFRUVx8sknxyGHHBItWrSIN954I6699tqYN29ejBw5Mtq3bx9f//rXa3yuixYtioiIQYMGRUTE+++/Hw888ECceeaZUV5eHkcddVSccMIJ8cQTT8Qdd9xRY20HHnhglef82ee9qa699tr47ne/GxERzZo1i+HDh0f//v2jsLAwpk2bFtddd10sXrw4br311mjSpEmN36p/61vfii996UsREfGzn/0sXn/99Xj//fdj7ty58dWvfjWWLl0avXr1iqFDh8aKFSviF7/4RZ1qrqtx48bFj370o4hY1zPkG9/4Rhx99NHRvHnzmD59etx4443xi1/8osYeb5WNGjUqBg4cWOW2xx57LEaPHr3JtS1evDiOPPLI+OijjyIi4sgjj4xBgwZFt27dYu3atfHRRx/Fc889F//4xz/i008/jdtuuy1+/OMfr7etc889N772ta9l/x49enS219wNN9wQnTt3rjJ/u3btNlpfxTb32muvxQUXXBBJksScOXPi+uuvj5tvvjmKi4vjlFNOiUMOOSR+97vfxeuvv15je/W57io75phj4qWXXooDDjggvva1r0XXrl3j3//+d1x11VXx0UcfxbvvvhtHHXVUzq4id+ONN8by5cuzf1dczrxz585xww03VJv/C1/4wkbbrO91d+qpp8b48eMjIqJr165xxhlnRK9evWLlypXxxBNPxF//+tdYvXp1nHPOOdG6desqPWQ2ZPLkyXHppZfGggUL4stf/nKccsop0bVr15g5c2aMHj065s2bFx999FFceOGFcdNNN9Wp7rp45ZVXstO77777ZrV12GGHxTbbbBPdunWLAw88MHbdddfo2LFjLF26NGbOnBm33HJLvPfee/H666/HiSeeGC+88EKN+5bXX389Bg4cGKWlpRER0a9fv/jWt74VW2+9dbz77rvx17/+Ne67775a75/Sur87/PDDq3yGVW7jnHPOicMOO6zaMtttt12NbbZr167a52LE/95vtdWiRYs49thjY/z48TF37tx48cUXazxmmDBhQnZ6yJAhG5yvpKQk+vXrF3PmzImIiCOOOCJOPPHE6Ny5c8yZMyfGjRsXr7zyStx4443RvHnznA7bcP/998fcuXPj0EMPjWHDhsV//vOfuPjii6O8vDwGDx4cc+bMiYMPPjiGDx8eM2fOjIsvvjhKS0tj/Pjx2e2rsilTpsRhhx2W3Y6PPfbYGDRoULRr1y5mzZoVN954Y7z11lvxyiuvxGGHHRYvv/xytGjRYoP1nXnmmdn13KpVqxgxYkR8+ctfjtWrV8fTTz8dt956a5x11lm1fr71eXyXa5X3WVOmTMljJTRa+U7OgM+fTe1xtfXWW2fnnzVrVrX7zzvvvOz9p59++nq/Efz1r3+dnWf//fff4GOVlZUlHTp0SCIiadq0afLvf/97g/P+85//TEaOHLnR+itU/vazLj2PkiRJSktLk+222y6JiKRjx47r7e21ePHiZO+9904iIunUqVOydOnSWrVdUdv555+f9OzZMykqKkrGjx+fvb9yj6VNUdfn/cEHH2S/3W/btm3yyiuvVJtn7ty5Sc+ePbPtP/TQQ7Vqu6IXzAEHHJDtIXDOOedkt53K22guelx9/PHH2W+AmzRpkkyYMKHaPIsXL06OOOKITf6WvrLKvQk2pefL6NGja/Uazps3Lzn77LOTp556qtZt16ZnUG1Vft2uuOKKpLCwMOnatWsyffr07DwVr/2mfutc13VXucdVkyZN1vtN+QcffJBsu+222fluueWWDbZXMU999Lj6rNr2btlUdV1399xzT5UeEIsXL642z+OPP540bdo0iYikTZs2yUcffbTB9iraioikqKgoueyyy6r1Wpk2bVp2nnbt2m20V0t9+t3vfpd97EsuuWSz26upF+rq1auTo48+Ovt4DzzwQI1tVd73/PCHP6y2XsrKypKf/OQnteqJlPb9XX23sSF1eb9NnDixymd1Tfr165dERLLVVlslK1as2OB8FT2GMpnMep9jWVlZcsYZZ2TneeaZZ2pdb11V3n+NHDmyyvZWcQxU031Dhgyp1mZ5eXmyzz771Ph6rlq1Khk4cGB2np/97GcbrPHZZ5/NztelS5fknXfeqTbP66+/XqVna02fnw15fJckDd/jKkmSpEuXLtnHqWmbg4ZgjCsgr55//vn48MMPIyKic+fO1caCmD9/fvz5z3+OiHVXKLzyyiujSZMm1dq54IILYr/99ouIiOeeey4mT5683sdbsGBBtgdSr169Ypdddtlgbccdd1zOr3R4xRVXZMdMGDt27Hp7erVr1y5uueWWyGQysWDBgrjttts26TGuvPLKePfdd+Pyyy+Pk046qV7qrovf/e532W9FL7nkkujTp0+1ebp16xZjx47N/n355Zdv0mO8/PLLceedd8YJJ5wQf/rTn9a77eTC2LFjY+HChRER8Z3vfCdOOOGEavO0a9cuJkyYEO3bt891eVXG1KjcW+qztt566xg9enQceOCBuSirRhVjo0yaNCl69+6d52rWueKKK+I73/lOtdu32Wab+N3vfpf9+5prrsllWan185//PCIiOxba+nrfHXLIIdneqx9//HFcf/31tWr7uuuui/PPP79aj54999wzu99fsmRJ9vMgFyo+6yLW9fbdXDX12isqKoqf/OQn2b+feuqpDc77wgsvZMc42mOPPeL3v/99tfVWUFAQl156aRx55JEbrSvt+7s0O+qoo6Jt27YREXH33XdvcL4PP/wwnn/++YiIOOGEE6JZs2brnW/y5MnZHkNnnXXWesehLCgoiCuvvDJ69OgRSZLEFVdcsXlPYhN07tw5/vznP1fZ3irGMKzpvvW9bydOnBgvvfRSRKz7HFvfcy0uLo4bb7wxWrVqFRERV199daxYsWK9tf2///f/stNjxoyJL37xi9Xm2X333bM9RjcmF8d3Da3yfmvevHl5rITGSHAF5E1paWn84Ac/yP5dMTBqZQ888ECsWbMmItadUrKhg7OIqHK62t/+9rf1ztOuXbsoKFi36/vPf/6TPbhOizvvvDMi1p2GeOKJJ25wvl133TUb1FU+XaA2VqxYEX379o3vfe97dS+0HkycODEi1h1InnbaaRuc76ijjoru3btHxLrTOhYvXlzrx1ixYkXOT31Yn3vvvTc7XdNpBa1atYqtttoqFyVV0aFDh+z0c889l/PHr4sVK1bEqFGjslc6SoNRo0Zt8L4TTjghe0rKyy+/HKtXr85VWan03nvvxfTp0yMiYr/99qvx9O4zzjgjO72hfXtl/fr1q/FCETvuuGN2+tNPP61FtfWj8mO1bNmywR9v2223zU7XdMpa5f3Td77znexn5Pp89sIIG2svjfu7NCsuLo7BgwdHRMSsWbOqnF5a2T/+8Y8oLy+PiJpPE6w4poio+SqWTZs2jW9961sRse7U7IrjrobWvHnzagFsxXFeTfet74IeFccUEREjRozY4GN26tQpjjvuuIhYF4Y/9NBD1eZZvnx5PPHEExGxLkCreE3WpzbviYjcHN81tMr7rVzuOyFCcAXkWGlpafz73/+Oq6++Onr37p39dqxPnz5xwQUXVJv/0UcfzU5/5StfqbHtylfEevHFF9c7T3FxcXz1q1+NiHUHLPvtt1/cfvvtG/zGLZfmzp0br776akRE7LXXXjX+8xCxbqyviHX/BG+qH//4x9XaP+ecc2L27Nkxe/bsTW5vU82cOTN7JbQ999xzo/+89OvXLyLWXc1mU5/vaaedFl27dq1y23777Zd9rhUHiA1lxYoV2W/GO3TosNlj2zSEiqsFRawbF+073/lOaq9sVKGwsHC9Y5zccccdMXv27I2O15ZrzZo1y/YqXLVq1UbH4fq825R9+xe+8IXs2Givv/76RvfXlcdNXJ/K+5ukDlfKq6vKYzjW9xhny5cvj2nTpsWTTz4Z9913X9x7771Vrr5W01XUKv5Bj4g46KCDNquOLWF/l3aVe0JvqNdVxe2dOnWKww8/fINt3XfffRGxbvys3XbbrcbHrTimWLlyZbzxxhubVHMaVOxTanOF1I0dL06ePDkbjh1wwAEbPR7bmFwe3zWkyvvWXIWbUMHg7ECDGjduXIwbN67Gefr16xcTJ06M1q1bV7uvYjDRiKrfkq/PDjvskJ2eNWvWBue7+uqr49BDD43Zs2fHzJkz4+STT45WrVrFkUceGcccc0wce+yx9XIax6aqHBgtX768yrfW61PRW+zjjz+O0tLSbNf3jWnduvV6T91o27Zt9hSFhrYpr2tE7V/b9Rk6dGi125o1a1brS5Rvrg8//DD7D+v6TjVIgy9/+cvxq1/9Ki666KJIkiSuu+66uO6666JXr14xYMCAOO6442L//fev9UDKuXDooYdme+JVtvXWW+ehmtrp0aNH9jTmBQsW5Lma/KrLPmD+/PlRVlYW7733Xo2neW9M06ZN67zs5qj8uJ988slmt7dy5cq45ppr4tZbb41XXnkl2wNnU1V+LTZ3H7Ul7O/S7pBDDokuXbrERx99FHfffXdccsklVe5fvHhx9tTPr3/96xsMQZMkiffeey8i1n3mVYRYG1JxAZyIdUHL+k7fT6vy8vL44IMPImJdj6aN9Wjc2DFFfb4nInJ3fNfQPv744+x08+bN81gJjZHgCsiLVq1axVe+8pU444wzauyCXfmfu/UFW5U1bdo0iouLY/Xq1bF06dINztezZ8+YNm1a/OY3v4m//OUvsXjx4igtLY0JEybEhAkTokmTJnHMMcfET3/609h///03+bnVVcUV3SLWjUdS05gkn/Xxxx/X+sCmT58+efvHrcKmvK6fnaem13Z9GrpH1cZs6nPNl1/84hdxwAEHxEUXXRRPP/10RKzr3fL666/HZZddFttuu21897vfjXPOOafGqzDlSr5f17qo3NNnU7fjz5tc7gPSovIYXpX/AayLGTNmxIABA+I///nP5paVfS2Ki4s3+7NhS9nfpVmTJk3iG9/4RowZMybeeuutePPNN6v0lpo4cWI2HKzpNMFFixZl51u8eHH2ysK1sbnbZ64tWrQoG9zWx/6kvrfjXB3fNbTK20WuvuiECk4VBBrUYYcdFvfcc0/cc889cf/998fkyZPj7bffjiVLlsQDDzxQY2gVUfPpDetTcdrHxk7DaN26dVx66aUxb968uO++++L73/9+9lLwZWVlMWnSpOjfv3928OC0q3wKysakoddMXV/XiE0/xSbfz7dy7fmuZWMOOeSQ+Ne//hUzZ86M0aNHx1FHHZX9VnXOnDnxf//3f9GrV696+Wd5c6V9Xa5P5R4xm3vqyZYul/uAtKjcQ3Bzxldcvnx5HH300dn34Y477hjXXntt/Pvf/45PP/00kiSJJElqfdp3xbqtj/fUlrS/S7OaThesGPdou+222+gpcXW1KccUaVDf+5M0bcdpeS2SJMmOMVpUVBRdunTJc0U0No37qAlocN27d4+BAwfGwIED4+ijj479998/dtppp1r/41H5G51ly5bVOO+qVauy59xXjIeyMcXFxTFgwID485//HDNmzIg333wzOzhtkiTx61//usrgpg2p8kHA6aefnv3nozY/PXr0yEmN9WVTXtfPzlPb1zYtKveyqM1zTYMddtghzj777HjggQdi0aJFccstt2RPl5g9e3Ycd9xxdT4tqTGrfHpYPk5HTpPGtA+oULnXzLRp0+rczi233BIzZ86MiHUDOU+ZMiXOPPPM2GWXXerUG7JiH1X5M7SutsT9XRrtv//+2c/1ysHVsmXLsleAPOmkk2oMVTp06JA91tpxxx036ZhifafYp1l970/qezv+PBzfzZgxIzsg+y677JL3QI/GR3AFpFrlsU82NrZRxYF8xLpvIuti1113jWuuuSZGjx6dve3qq6+uU1ubqnLNlS+b/nm0Ka9rRP28tvlS+YC1YkD6LUnz5s3jlFNOiZdffjk7Ltibb765Sac6sE7lnmrrG5+rManrPqC4uHiL/aZ/r732ygYJFRcmqYvKg67/9Kc/jTZt2mxWXZXHhdvcfdSWvr9Li0wmk+11NX369Oy+47777ssOGl7TaYIVbVTsZ+bPn5/TCxHkWrNmzbIXYfnwww9j+fLlNc6/sWOK+nxPfPYxttTju8qD2H/5y1/OYyU0VoIrINX23Xff7PQzzzxT47yV7z/iiCM263Erf9v4zjvv1GqZyt8+1eUAsUePHrHrrrtGRMTzzz//ub5iyxe+8IVo3759RKzreVDTZZWTJMkOaN2qVaucjjtWH9q0aZMdSPqDDz6I999/P88V1c1nB/XP1fvi82LJkiXZq0p17dp1owP+buqpL7VR8Vqk4XXYlH37jBkzsmPOHHjggXkfo6+uttpqq+wVFJcsWVLnXleLFi3KTtdmYPuNqfxaPPfcc5vV1pa2v0vz/ml9pwtWnCa4yy671Grw9KOPPjoi1vUaeuWVV+q/yBSp2I4rHzNsyMaOFyu/Jyqukrk5Pg/Hd5UD84rtCnJJcAWk2te+9rVo0qRJRKw7PWL16tUbnPfGG2/MTh933HEbnK/i28qaVP62rrbdoSt3La98RZpN8bWvfS0i1v1jcsMNN9SpjS1BJpOJb3zjGxGx7vW45ZZbNjjvgw8+GCUlJRERcdRRR22R/7QefPDB2emanutjjz0Wc+fOzUFFVZWVldUqKMnX+2JLUXFVq/W54YYbsmOVDBgwYIPzVVwNq2KbX59Zs2bFPffcs8n1VbwW8+bNa5BgbFP07t07+4/cc889F2+++eYG573++uuz08cff3xDl9aghg0blp2u/Lw2RW3fU1OnTs1O1xTK1Hb/NG/evHjooYc2Wl/a93eVpXn/1KdPn2wIePfdd8fKlSvj/vvvj4iIb33rW7Vqo+KYIiLisssuq/8iU+Sb3/xmdrqm99aCBQuy+88uXbqs98uwLl26ZNf9rFmz4tlnn91gezfffHOt6mvo47tmzZpFRNT4RWBdLVu2LDtsRufOneOYY46p98eAjRFcAanWtWvXOPnkkyMi4v3334+zzz57vWPr/OY3v4kXXnghItZ9S9mrV6/1tvfmm29Gz54949JLL91gV/K1a9fGj3/84+zftR38tHXr1tkDncmTJ2+wR0pN37Sdd955sc0220RExLnnnhsTJ07cYBtXXXVV/PWvf61VbWl0zjnnRHFxcUREXHDBBfHGG29Um6ekpCTOOuusiFg3gOovf/nLXJZYb773ve9lg55LL700XnvttWrzPPHEEzF48OC8BAojR46Mr3zlKzFlypQNzjNlypS47bbbsn/X9n1R+Zvrm266ab3z1BRIb0kGDRq03sDphRdeiF/96lcRsW47rrx/+aydd945ItaNJfbyyy9Xu3/KlClxyCGHZAfJ3RQVr8WaNWvi1ltvXe88uXwtzj///IhYN2j90KFDq4wBVuGJJ56IK664IiIitt9++zj99NNzVl9D+Na3vhXdunWLiIhbb701SktLN7mNil5bERFXXnnlej8TJ06cWKXncE2h6gknnBDbbrttREQ8+uij632fzpkzJ4444ohaneaU9v1dZfvss0+21ttvv329X2zls3dMxemAL730UvzlL3/JhhIbO02wwqGHHpoNyu+88874+c9/vsHxCR988MG44IIL6qHq/DjhhBOyF9n529/+VuXzqsKqVavi29/+dvZ996tf/WqDF8r4wQ9+kJ0+66yz1rt/+sMf/hAXX3xxrepr6OO7il68b7zxRr0Hwrfcckt2nX3ve9/LhmSQS1vmZVmARuXyyy+Pxx57LEpKSuKaa66JKVOmxCmnnBLbbrttzJ8/P/7+97/HY489FhHrgq7f//73622nvLw8vvGNb8SHH34YP/vZz+Lyyy+PY489Nvbdd9/o1KlTfPzxxzFjxoy47bbbsqc3tGjRIn7xi1/UutYf/vCHceaZZ8aqVati//33j1GjRsWuu+4aa9eujZkzZ8Zdd90VBxxwQIwdO3a9y7dp0yauv/76OOGEE2LlypVx/PHHxxFHHBHHH398dO3aNT755JOYOnVq/P3vf48PPvggWrRoEfvuu2/2n93Peu6556qcVhKx7tu+e++9N/v3/vvvHx06dKjV83vnnXeqBXLz58/PTs+dO7dK2xERO+20U+y0007V2tp5553joosuiv/7v/+LJUuWxD777BOnn3569OvXL5o0aRJTp06N6667LpYsWRIR68Kt3XffvVa1VX7OlevZUC0Nbffdd4/hw4fHjTfeGKWlpbH//vvHyJEj48tf/nJ8/PHH8dhjj8Wdd94ZW2+9dXTu3DlmzJix0TbX99pOnz69yvRnX4v1vdZ33nln/OUvf4mIiC996UvRv3//OOqoo2L77bePpk2bxgcffBCPP/543Hvvvdl/Mk855ZQaX4vKTjjhhNh+++1j9uzZcfPNN8e8efPiuOOOi86dO8cHH3wQL774Ytx3333xyiuvbHAQ2ornUfkf4HfeeafK8xs4cGCt6omov3VXWVFRUUydOjV69eoVw4YNiy9/+cuRJEn861//iptuuikbCP3whz+s8TTBr33ta9meMsccc0ycf/75sdtuu8WCBQvigQceiLvuuisymUwMGDAg2/uitr7//e/HDTfcEGvWrIkzzjgjJk+eHPvtt1+0aNEi3n///Xj44Yfjo48+ildeeSXb0/Wz6nPdDRs2LO644454+OGH4+WXX47dd989RowYEbvttlusWLEiHn/88bjllluirKwsioqKYuzYsVv8P0xFRUVx7rnnxo9+9KP4+OOP4+KLL97knjCnnXZaXHzxxbFw4cJ49tlnY++9945hw4ZFt27dYt68efHPf/4zHn/88Wjbtm306dMnpk2bFk888URcd911ceaZZ1Zrr7i4OH7961/HaaedFhHrBo9+5JFHYsCAAVFQUBAvv/xyXHfddbFy5cro16/fRk/DSvP+7rO22WabGDJkSNx+++3x9ttvR58+fWLEiBGx3XbbxZIlS+LNN9+M8ePHxxVXXFGlR09lixYtWu8plitWrMj+/mxtHTp0qNVp7yeddFJcdNFFERHZUOlLX/pSNqCpjbFjx8b+++8fH3zwQfz617+Of/zjH3HqqafGTjvtFKtWrYq33347Jk6cmD11ddddd41TTz211u2nRXFxcfzlL3+JI488MtasWROnnHJKTJgwIQYOHBht2rSJ//znP3HjjTfG22+/HRHregaOGDFig+2dfvrpMWbMmPj3v/8dr776auy5557x3e9+N77whS/EBx98EOPHj4/nnnsuDjjggHj66ac3Wl99H9991mmnnRbnn39+rFixIg444IAYOXJk7LjjjrFo0aKYMmVKNGnSpE5jti5dujQbzm211VbZLxMh5xKAevbEE08kEZFERDJ06NB6afPtt99OvvjFL2bbXd/PjjvumMycObPGdt55553kkEMOqbGdip/tt98+mTJlyibXeuaZZ9bYbmFhYTJnzpwa23j88ceTdu3a1dhOkyZNku985zvJJ598ssF2DjrooI0+zyeeeKLWz+2iiy6q1bqr/HPRRRfV2ObPf/7zpKCgYIPLZzKZjbZR29pq005DWb16dXL00UdvsLZtttkmmTJlSnLCCSckEZH06NGjxvZq89rW5rUuLy9P/vCHPyRt27bd6PIFBQXJOeeck6xZs2aTnvsrr7ySdO7cuca2v/vd725w+do8t01RX+uuclv77LNP8oc//KHGbfnMM89MysvLa6xt+fLlyV577bXBNjp27Jj885//TO64447sbbNnz671c7/55puToqKiGp/rHXfckZN1lyRJUlpamgwYMKDG5Vu2bJncd999G31uFfMfdNBBNc43dOjQOq27+rJ69ersa1xYWJi89tprm9zGE088kWy11VYbXGfdu3dPnnvuueSZZ57Jvt677757jW3+v//3/zbYXtOmTZObb745ueKKK2q17tK6v1ufpUuXJvvss0+Nbe26664bfO9WPuap7c/GttHKPrs/+OMf/1jrZSu8//77yR577LHRug455JBkxowZm9z+pqp4D67vda94rWu6r6b1989//jNp06ZNjc9zwIAByfLlyzda55w5c5KePXtusJ399tsvWbx4cfZ4rTbHvPV1fPdZG3vPNWvWLFm6dGmt26vwne98J9vG9ddfv8nLQ30RXAH1riGCqyRJklWrViVXXXVVcuihhyZdunRJCgsLkzZt2iT9+/dP/vjHPyaffvpprdt6+umnk7PPPjvp06dP0qlTp6SwsDBp3bp1stNOOyUnn3xycscdd2zyP+eVTZo0KRk0aFC2zq222irZa6+9knPPPTeZPn16rdpYuHBhcskllyT7779/0rZt26SwsDDp2LFj0q9fv+TCCy9M3n333Y22sSUEV0myLtj47ne/m+y0005Jq1atkuLi4mT77bdPhg4dmrzwwgv1Vls+g6skSZK1a9cm1113XfKVr3wlad26ddK0adNk5513Tn76058mCxcuTJIkSc4666y8/CO3dOnS5Morr0wGDhyY9OjRI/s6bL311smBBx6Y/N///d9Gg+GafPjhh8lPf/rTZI899khatmyZFBUVJd27d08GDRqU3HDDDcmKFSs2uGxtntumaIjgauDAgUmSJMkLL7yQnHTSSUnXrl2ToqKipH379slRRx2V/POf/6x1fcuWLUsuvPDCZLfddkuaNWuWtG7dOtl7772TSy65JLudPPbYY9naNjV8mT59ejJ8+PBk++23T5o2bZo0b9482WmnnZLTTjstuf/++2tctqEChIkTJyZf//rXk2233TZp2rRp0qJFi6RXr17J+eefv9Ggv0JtQ4F8B1dJkiSvv/560rRp0yRiXShSl38oZ82alXz3u99Ntt9++6S4uDhp165d8uUvfzn57W9/W+Uf3ieeeCI58MADk1/+8pcbbfPRRx9NjjvuuKRz587Z9+jQoUOz4drf/va3Wq+7NO/vPmvlypXJmDFjkq985SvZz9sOHTokBx10UPKb3/wmmTdv3gaXbejg6ve//312uYKCgqSkpKTWy1a2evXq5MYbb0yOOuqo7LFJ69atkz322CMZNWpU8txzz9Wp3bpoyOAqSdZ93lx44YXJXnvtlbRr1y4pLCxMunTpkhxzzDHJ3//+941+gVDZkiVLkgsvvDDZY489kmbNmiVbbbVVss8++yRjxozJHifutttum3TMWx/Hd+uzdu3aZOzYscm+++6btGzZMvu8v/rVryZXX311rcK6yu68884kk8kkEZEMGjSoTjVBfckkScouoQEAAJ9z48aNi+HDh0eSJHHkkUfGfffdF4WFRvEA8u+ll16Kgw46KFasWBE77bRTPPvss9GxY8d8l0UjZnB2AADIsaFDh2bHt3r44Yfj1FNPzV55EiBfXnvttTjmmGNixYoV0bVr13j44YeFVuSd4AoAAPLgRz/6UVx44YUREXHHHXfESSedlNer2AGN27Rp0+KQQw6JBQsWRJcuXeKhhx7a4IVTIJcEVwAAkCcXX3xxjBkzJgoKCuL555+vcqVWgFyaPHlyLFq0KL7whS/E5MmTo1evXvkuCSIiwhhXAACQZxMmTIhdd901dt1113yXAjRif/nLX+L444+PTp065bsUyBJcAQAAAJBKThUEAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApFJhvgtgy7Vm5aeRJOX5LoMcKGzaIgoKmkR5eVmsXbU83+XQCNjmyDXbHPlguyPXbHPkmm2u8clkCqKoWct6bVNwRZ0lSbngqhHympNrtjlyzTZHPtjuyDXbHLlmm6OunCoIAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKRSYb4LAADqT6agMAqLmkZkMvkuZYuSyRRkfxc1a5XnarZASRJr16yKpHxtvisBAD5nBFcA8DlSWNQ0Cpr4eK+rTCYTmUyTfJexRSqMiDWrBFcAQP1yZAsAnyf/7Wm1dm1ZLFhamudiaAw6tW0VhYVN9PIDABqE4AoAPocWLC2N3970QL7L2GJkCppEJpOJJEkiKS/LdzlblJ8NPzq26dgm32UAAJ9TBmcHAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKhXmu4A0KS0tjXHjxsUjjzwSc+bMifLy8ujWrVscdthhMXTo0Gjfvn2D1zBhwoT42c9+Vqt5v/3tb8dPfvKTBq4IAAAAID8EV/81c+bMGDFiRJSUlFS5fcaMGTFjxoy46667YuzYsdG7d+88VVjd7rvvnu8SAAAAABqM4CrW9bQ688wzo6SkJIqKiuKcc86JgQMHRrNmzeLll1+O3/3ud/H+++/HyJEj45///Gd06tQpJ3W9+uqrNd5fVFSUkzoAAAAA8sEYVxFxww03xNy5cyMi4rLLLoszzjgjtt5662jbtm0cfvjhMWrUqIiIWLhwYVx99dU5q6tp06Y1/hQUePkAAACAz69Gn3yUlZXF+PHjIyKib9++MWDAgGr3X3vttdm/J0yYECtWrMhpjQAAAACNUaMPrqZOnRpLliyJiIijjz662v133313zJo1KwYPHhwREStXroxnnnkmpzUCAAAANEaNPrh6/fXXs9N9+/atct+KFStizJgxseeee8bZZ5+93mVypby8POePCQAAAJBPjX5w9lmzZmWnu3fvXuW+cePGxfz58+Pyyy+PLl26RGFhYaxdu7bKMg1p0qRJ8c9//jPeeeedWLhwYTRv3jz23HPPOOWUU+Lwww/PSQ01KWzaIt8lkCOZTEH2d1GzVnmuhsbANld3FesuIiJT0CSPlWxZMpnM/35bb3Xi/brp7OvINdscuWaboz40+uBq8eLF2el27dplp5csWRLXX399HHjggbHvvvtGRETr1q1j8eLF2VMLG9r5559f5e/ly5fHc889F88991yceuqp8fOf/zwndWxIgQP7RieTyUQm43Und2xzm6cijGHTWG914/1ad9YduWabI9dsc2yORh9cVQy0XlxcXOVA9ZprronS0tI477zzsrcVFxdHxLoAqaF069YtvvrVr0ZRUVHss88+se+++8bWW28dq1evjueffz5+//vfx5w5c+KWW26J3XbbLU488cQGq2VjysvL8vbY5FYmUxCZTCaSJIkkcdoqDc82V3cV6y4iIkmSPFez5ah8DGC91Y3366azryPXbHPkmm2ucarvTi6NPriqUFDwv1MrSkpK4vbbb4+BAwfGLrvskr09F+NM7bvvvtkeXpU1b948vvrVr0bv3r1j4MCBUVpaGmPHjs1rcLV21XI7n0aiqFmryGSaRJKUx5qVpfkuh0bANld3FesuIiLxBUPtFTT534G19VYn3q+bzr6OXLPNkWu2ucYnkymI4uZb1WubjX5w9hYt1o3TtGbNmuxto0ePjiRJqgzIHhGxatWqKsvkwzbbbBNHHXVURES8//77MWfOnLzVAgAAANCQGn1w1b59+4iIKCsri2XLlsVbb70V9957b5x00kmx7bbbZudbs2ZNLFu2rMoy+fLFL34xO/3+++/nsRIAAACAhtPog6sddtghO11SUhKXX355NG/ePM4666wq882bNy97quD222+f0xo/q3nz5tnpyj3FAAAAAD5PGn1w1atXr+z0uHHj4umnn45vf/vb1XpVTZ06NTu9xx575Ky+9VmwYEF2ukuXLnmsBAAAAKDhNPrgqm/fvtGuXbuIiJgwYUJ06NAhhg8fXm2+Bx98MCIimjVrFv3796+xzSRJYvTo0dGvX7/o379/jBkzpl5rnjx5ckREbLXVVnnv/QUAAADQUBp9cNWkSZMYMmRI9u9hw4ZFy5Ytq8wzefLkePLJJyMiYvDgwVVO1VufiRMnxtixY2PRokWxcOHCuPLKK2PSpEkbrSVJkrj00kvj0Ucf3eA8DzzwQEyZMiUiIo4//vho1qzZRtsFAAAA2BI1+uAqIuL000+P7t27R0TEbbfdFvfff38sXrw4Fi5cGOPHj49Ro0ZFkiTRsWPHGDly5Ebbe+2116rdNn369I0ud8MNN8RNN90Uo0aNilGjRsXjjz8e8+fPj9LS0njnnXfi8ssvjx/96EcREdGjR49qVz0EAAAA+DwpzHcBadCqVau47rrrYsSIEVFSUhLnnntutXk6duwYY8eOjU6dOm20vd69e1e7rU+fPhtdbtiwYbFo0aK45ZZb4tFHH91gz6vevXvHH//4x9hqq6022iYAAADAlkpw9V877rhjTJo0KcaNGxcPP/xwzJkzJ5Ikia5du8Zhhx0Ww4YNqzZg+4Yce+yxMXv27Ljzzjsjk8nEkCFDYtCgQRtdrrCwMH7yk5/ESSedFH//+9/jmWeeiQ8++CBWrFgRnTp1ip122ikGDhwYRx11VBQWeukAAACAz7dMkiRJvotgy7R6xbJIkvJ8l0EOFDVrFQUFTaK8vCzWrCzNdzk0Ara5uqtYd/MWfhy/vemBfJezxcgUNIlMJhNJkkRSXpbvcrYoPxt+dGzTsY33ax3Y15FrtjlyzTbX+GQyBVHcvH7PDjPGFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4SrnS0tIYOHBgjB07Nj755JN8lwMAAACQM4X5LiBNSktLY9y4cfHII4/EnDlzory8PLp16xaHHXZYDB06NNq3b5/zmu6+++6YMWNGXH311fHNb34z548PAAAAkC+Cq/+aOXNmjBgxIkpKSqrcPmPGjJgxY0bcddddMXbs2Ojdu3fOakqSJG677baIiDjqqKPyEpwBAAAA5ItTBWNdT6szzzwzSkpKoqioKM4///x46qmn4oUXXoirrroqtttuu1i4cGGMHDkyFixYkLO6nnrqqXjvvfciIuKUU07J2eMCAAAApIHgKiJuuOGGmDt3bkREXHbZZXHGGWfE1ltvHW3bto3DDz88Ro0aFRERCxcujKuvvjpndd1yyy0REbH77rvHnnvumbPHBQAAAEiDRh9clZWVxfjx4yMiom/fvjFgwIBq91977bXZvydMmBArVqxo8LpmzZoVzz77bEREnHzyyQ3+eAAAAABp0+iDq6lTp8aSJUsiIuLoo4+udv/dd98ds2bNisGDB0dExMqVK+OZZ55p8LpuvfXWSJIk2rZtGwMHDmzwxwMAAABIm0YfXL3++uvZ6b59+1a5b8WKFTFmzJjYc8894+yzz17vMg2htLQ0/vGPf0RExODBg6Np06YN+ngAAAAAadToryo4a9as7HT37t2r3Ddu3LiYP39+XH755dGlS5coLCyMtWvXVlmmIdx1112xfPnyKCgoiG9961tV7tt5550jIuKvf/1r7Lvvvg1ax8YUNm2R18cndzKZguzvomat8lwNjYFtru4q1l1ERKagSR4r2bJkMpn//bbe6sT7ddPZ15FrtjlyzTZHfWj0wdXixYuz0+3atctOL1myJK6//vo48MADswFR69atY/HixdlTCxtCkiRx++23R0TEQQcdVC1MS5MCB/aNTiaTiUzG607u2OY2T0UYw6ax3urG+7XurDtyzTZHrtnm2ByNPriqGGi9uLi4yoHqNddcE6WlpXHeeedlbysuLo6IiOXLlzdYPU899VS89957EZH+QdnLy8vyXQI5kskURCaTiSRJIknK810OjYBtru4q1l3Eui9DqJ3KxwDWW914v246+zpyzTZHrtnmGqf67uTS6IOrCgUF/zu1oqSkJG6//fYYOHBg7LLLLtnby8sb/o12yy23REREz5494ytf+UqDP97mWLtquZ1PI1HUrFVkMk0iScpjzcrSfJdDI2Cbq7uKdRcRkfiCofYKmvzvwNp6qxPv101nX0eu2ebINdtc45PJFERx863qtc1GPzh7ixbrxmlas2ZN9rbRo0dHkiRVBmSPiFi1alWVZerbzJkz49lnn42IiCFDhjhVAQAAAGjUGn2Pq/bt20dERFlZWSxbtixKSkri3nvvjZNPPjm23Xbb7Hxr1qyJZcuWVVmmvt16662RJEk0b948TjzxxAZ5DAAAAIAtRaMPrnbYYYfsdElJSVx++eXRvHnzOOuss6rMN2/evOypgttvv32D1PKvf/0rItaNu7XPPvvUOO9pp50WERHdunWLxx9/vEHqAQAAAMinRn+qYK9evbLT48aNi6effjq+/e1vV+tVNXXq1Oz0Hnvs0SC1GAwWAAAA4H8afY+rvn37Rrt27WLJkiUxYcKE6NChQwwfPrzafA8++GBERDRr1iz69+9fY5tJksQVV1wRf/vb3yKTycRJJ50U3//+9zday4MPPlhjePXSSy/F6aefHhERN9xwQ+yzzz7GwQIAAAA+txp9j6smTZrEkCFDsn8PGzYsWrZsWWWeyZMnx5NPPhkREYMHD47mzZvX2ObEiRNj7NixsWjRoli4cGFceeWVMWnSpI3WUlxcHE2bNt3gT1FRUXbeoqKiaNq0aRQXF2/CswUAAADYcjT64Coi4vTTT4/u3btHRMRtt90W999/fyxevDgWLlwY48ePj1GjRkWSJNGxY8cYOXLkRtt77bXXqt02ffr0eq8bAAAA4POs0Z8qGBHRqlWruO6662LEiBFRUlIS5557brV5OnbsGGPHjo1OnTpttL3evXtXu61Pnz71USoAAABAoyG4+q8dd9wxJk2aFOPGjYuHH3445syZE0mSRNeuXeOwww6LYcOGVRuwfUOOPfbYmD17dtx5552RyWRiyJAhMWjQoAZ+BgAAAACfL5nEpeyoo9UrlkWSlOe7DHKgqFmrKChoEuXlZbFmZWm+y6ERsM3VXcW6m7fw4/jtTQ/ku5wtRqagSWQymUiSJJLysnyXs0X52fCjY5uObbxf68C+jlyzzZFrtrnGJ5MpiOLmW9Vrm8a4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVCrMdwFpUlpaGuPGjYtHHnkk5syZE+Xl5dGtW7c47LDDYujQodG+ffuc1PHaa6/FhAkT4oUXXoh58+ZFkiTRoUOH6NOnTwwaNCgOPvjgnNQBAAAAkE85D64WLVoUH3/8ceywww4bnGfevHlx9913x+zZsyOTycRee+0VJ554YjRr1qzB6po5c2aMGDEiSkpKqtw+Y8aMmDFjRtx1110xduzY6N27d4PV8Mknn8SFF14YDz74YLX75s6dG3Pnzo177703DjzwwLjiiiuiRYsWDVYLAAAAQL7l/FTBSy+9NI4//vi49dZb13v/Y489FkcffXRcddVVcf/998d9990X/+///b8YPHhwLF26tEFqKi0tjTPPPDNKSkqiqKgozj///HjqqafihRdeiKuuuiq22267WLhwYYwcOTIWLFjQIDVERNx4443x4IMPRtu2beN73/teTJgwIV588cX417/+FTfeeGO2p9W//vWv+PGPf9xgdQAAAACkQU57XM2ZMyfuu+++SJIkkiSpdv+8efPi/PPPj5UrV1a7b9asWXHeeefFDTfcUO913XDDDTF37tyIiLjssstiwIAB2fsOP/zwKC0tjZ/85CexcOHCuPrqq+Oiiy6q9xoiIs4+++zo3LlzHHXUUVVOS2zTpk106dIl+vfvH7/85S9j/Pjx8cgjj8Q777wTO+20U4PUAgAAAJBvOe1xNXHixCgvL49OnTrFN7/5zWr3X3fddbF8+fLIZDJx5JFHxtVXXx1//OMfY+edd44kSWLy5MkxderUeq2prKwsxo8fHxERffv2rRJaVdx/7bXXZv+eMGFCrFixol5rqJDJZOJb3/pWjWNpnXTSSdnpmTNnNkgdAAAAAGmQ0+Dq+eefj0wmE0cccUQUFxdXuW/16tUxceLEyGQy0a9fv/jzn/8chx56aAwYMCBuuummaNmyZURE3HffffVa09SpU2PJkiUREXH00UdXu//uu++OWbNmxeDBgyMiYuXKlfHMM8/Uaw2bYvXq1dnpzp07560OAAAAgIaW0+Dqvffei4iI3Xbbrdp9zzzzTCxfvjwiIs4888wq97Vv3z4GDhwYSZLEtGnT6rWm119/PTvdt2/fKvetWLEixowZE3vuuWecffbZ610m18aNGxcREV/84hdjr732ylsdAAAAAA0tp2NcVQyu3qZNm2r3PfHEExER0a5du9h3332r3V8Rdn3wwQf1WtOsWbOy0927d69y37hx42L+/Plx+eWXR5cuXaKwsDDWrl1bZZmGVF5eHmvWrIlPP/003nzzzbj55pvj6aefjq5du8YVV1wRmUwmJ3VsSGFTVzVsLDKZguzvomat8lwNjYFtru4q1l1ERKagSR4r2bJUfKZmMpkI661OvF83nX0duWabI9dsc9SHnAZXFcFPWVlZtfueeuqpyGQy0b9///Uu26FDh4iIWLZsWb3WtHjx4ux0u3btstNLliyJ66+/Pg488MBskNa6detYvHhx9tTChjZp0qT4yU9+kv27Q4cO8f3vfz9OO+20aN26dU5qqEmBA/tGJ5PJRCbjdSd3bHObJ99fcGyprLe68X6tO+uOXLPNkWu2OTZHToOrzp07x/vvv589ZbDCiy++GPPnz49MJhMHHHDAepetCKwqxrqqLxUDrRcXF1c5UL3mmmuitLQ0zjvvvOxtFeNyVZzS2NBmz55d5e9FixbFLbfcEp9++ml8//vfjxYt8tvjqby8egDJ51MmUxCZTOa/VwQtz3c5NAK2ubqrWHcRsd4r+LJ+lY8BrLe68X7ddPZ15JptjlyzzTVO9d3JJafB1R577BHvvfde3HPPPTF06NBo2rRpJEkSV111VUREFBUVxcEHH7zeZd95552IiBqvuLc5Cgr+d2pFSUlJ3H777TFw4MDYZZddsreXl+f2jXbuuefGueeeG59++mnMnTs37r333rj11lvjxhtvjGeeeSbGjx8frVrlr7vl2lXL7XwaiaJmrSKTaRJJUh5rVpbmuxwaAdtc3VWsu4iIxBcMtVfQ5H8H1tZbnXi/bjr7OnLNNkeu2eYan0ymIIqbb1WvbeZ0cPZjjz02IiL+85//xNe+9rW47LLL4rTTTosXXnghe7XBDZ0C9/jjj0cmk4k+ffrUa00VvZbWrFmTvW306NGRJEmVAdkjIlatWlVlmVxp2bJl7LzzznHeeefFjTfeGAUFBfHOO+/E6NGjc1oHAAAAQC7lNLg68MADo1+/fpEkSfznP/+Jm266KV5++eWIiGjWrFmcc845613u4Ycfzp5euKEeWXVV0YOrrKwsli1bFm+99Vbce++9cdJJJ8W2226bnW/NmjXZ0xUbqtdXbfTt2zf23nvviIj4xz/+kbc6AAAAABpaToOriHW9mSrCq4qf9u3bx5gxY6oERRVWr14dv/71ryOTycR2220XRx55ZL3Ws8MOO2SnS0pK4vLLL4/mzZvHWWedVWW+efPmZU8V3H777eu1hk3Vs2fPiIgoLS2tMrg8AAAAwOdJTse4ilh3Zb4bb7wx3nrrrZg1a1a0a9cu+vTpE82bN1/v/MXFxXHeeefFz3/+87jwwgvr/Uo/vXr1yk6PGzcunn766fj+979frVfV1KlTs9N77LFHvdawqVauXBkR6waSre/B6gEAAADSIufBVYVddtmlysDnNTn22GNjn332iW222abe6+jbt2+0a9culixZEhMmTIgOHTrE8OHDq8334IMPRsS6Uxr79+9fY5tJksQVV1wRf/vb3yKTycRJJ50U3//+9+ul3rKyspgyZUpERPTo0SOaNm1aL+0CAAAApE3OTxWsq4YIrSIimjRpEkOGDMn+PWzYsGq9mCZPnhxPPvlkREQMHjx4g73DKkycODHGjh0bixYtioULF8aVV14ZkyZN2mgtf/nLX+LUU0+NpUuXbnCesWPHxgcffBARESeffPJG2wQAAADYUm0xwVVDOv3006N79+4REXHbbbfF/fffH4sXL46FCxfG+PHjY9SoUZEkSXTs2DFGjhy50fZee+21ardNnz69xmXeeuutuPLKK+PFF1+Mr371q3HllVfGG2+8EZ988kksWbIknn/++fjBD34QY8aMiYiI/fbbr0rgBgAAAPB5k7dTBdOkVatWcd1118WIESOipKQkzj333GrzdOzYMcaOHRudOnXaaHu9e/eudlufPn1qXGaXXXaJG2+8MS644IJ49913Y8yYMdmQ6rMGDhwYv/rVr6KoqGijtQAAAABsqQRX/7XjjjvGpEmTYty4cfHwww/HnDlzIkmS6Nq1axx22GExbNiwagO2b8ixxx4bs2fPjjvvvDMymUwMGTIkBg0atNHl9t5777j//vvj/vvvj8cffzxeffXVWLhwYRQWFkaXLl1i7733juOOOy6+9KUvbe7TBQAAAEi9TJIkSb6LYMu0esWySJLyfJdBDhQ1axUFBU2ivLws1qwszXc5NAK2ubqrWHfzFn4cv73pgXyXs8XIFDSJTCYTSZJEUl6W73K2KD8bfnRs07GN92sd2NeRa7Y5cs021/hkMgVR3Hyrem0z5z2u/v3vf8e///3vOPHEEzc4zwMPPBC33357vPvuu5HJZGLvvfeOs846K774xS/msFIAAAAA8innwdWvfvWrmD59erz++uvxi1/8otr9o0ePjmuvvbbKbQ8++GA8+eSTMX78+Nhll11yVSoAAAAAeZTTqwpOmTIlpk2bFhERX/nKV6rdP23atGxolSRJlZ8VK1bED37wgygvd2oaAAAAQGOQ0+DqgQfWjbWx8847x6GHHlrt/uuuuy6SJImCgoL4+c9/Hi+//HI888wzceyxx0ZExJw5c+Khhx7KZckAAAAA5ElOg6uXX345MplMHHLIIdXuW7JkSTz11FORyWTi61//epxyyinRqlWr6NixY/z2t7+Nrl27RkTEE088kcuSAQAAAMiTnAZXH330UURE9OjRo9p9jz/+eJSVrbuKz2mnnVblviZNmsSgQYMiSZJ47bXXGr5QAAAAAPIup4OzL1u2LCIittqq+qURn3rqqYiI2G677WKHHXaodn9F2LVw4cIGrBCgfmUKCqOwqGlEJpPvUrYomUxB9ndRs1Z5rmbLUrHuiotyfv0VAACodzk9qm3WrFl8+umnsXLlyiq3r1q1Kp555pnIZDJx4IEHrnfZirBrxYoVDV4nQH0pLGoaBU0ECHWVyWQik2mS7zK2SFu1aJrvEgAAYLPl9L+p7t27x9tvvx1vv/12HHPMMdnbH3nkkVi+fHlkMpk44IAD1rvs4sWLIyKiTZs2OakVoF78t6fV2rVlsWBpaZ6LoTHo1LZVFBY2iYxefgAAfA7kNLj60pe+FG+99VbcddddceKJJ0bPnj1j6dKl8ec//zki1oVS/fr1W++y06dPj4iILl265KxegPqyYGlp/PamB/JdxhYjU7AueEmSJJLysnyXs0X52fCjY5uOvuQBAODzIafB1de//vW4/fbbY8mSJXHcccfFF7/4xXj//ffjk08+iUwmE9/4xjeisLB6SStXrozHH388MplM7LPPPrksGQAAAIA8yelVBXfeeecYOnRoJEkSq1evjjfeeCM7YHv37t3jO9/5znqXu+WWW2Lp0qUREfHVr341V+UCAAAAkEc5Da4iIn784x/H2WefHW3atIkkSbIDst98883RsmXLavOvXr06xo0bF5lMJvbdd9/Ya6+9cl0yAAAAAHmQ80tdZTKZGDlyZHz3u9+NxYsXR+vWraOoqGiD8xcXF8fNN98c5557blx88cU5rBQAAACAfMrbNdozmUx06NChVvN+4QtfiEmTJrlCEgAAAEAjkvNTBetKaAUAAADQuGwxwRUAAAAAjYvgCgAAAIBUElwBAAAAkEpbTHA1derUuOSSS+L555/PdykAAAAA5EDeripYWloa06dPj0WLFkV5efkG50uSJObPnx+33nprLFy4MJ5//vm49957c1gpAAAAAPmQ8+CqrKws/vCHP8Stt94aa9asqfVySZJERMSpp57aUKUBAAAAkCI5D67OO++8eOihh7JBVG21adMmRowYEd/85jcbqDIAAAAA0iSnwdWTTz4ZDz74YGQymdhmm21i8ODBsc0228Q777wT48aNi0wmE7/5zW+qLPPGG2/ErbfeGt26dYvBgwfnslwAAAAA8iinwdU//vGPiIho1apV3HXXXdGhQ4eIWBdojRs3LiIiTjjhhCrLnHDCCdG2bdu48sorY9SoUXH77bfnsmQAAAAA8iSnVxV87bXXIpPJxKBBg7KhVUREJpOpcbmzzjortt9++3jllVfinnvuaegyAQAAAEiBnAZXixYtioiIXXfdtcrtxcXF2enVq1dXW66goCCOO+64SJIkJk2a1LBFAgAAAJAKOQ2uysrKIiKiffv2VW5v2bJldnrx4sXrXbZnz54REfHvf/+7YYoDAAAAIFVyGly1adMmIiKWL19e5fbtttsuO/3666+vd9lPPvkkIiI+/vjjBqoOAAAAgDTJaXC17bbbRkTEe++9V+X2tm3bRrdu3SIi4rbbblvvsk8//XRE/C/8AgAAAODzLafB1R577BFJksQrr7xS7b4jjzwykiSJ559/Pn7yk5/Ehx9+GBHrxsX605/+FI888khkMpnYa6+9clkyAAAAAHlSmMsH69+/f9xyyy0xderUKC8vj4KC/+Vmp59+etx5552xYsWKmDRpUkyaNCkKCwtj7dq12XkymUwMHTo0lyUDAAAAkCc57XHVv3//OPPMM2P8+PFVQquIiI4dO8bll18ehYWFkSRJJEkSa9asyU5nMpk4//zzY++9985lyQAAAADkSU57XBUVFcUPf/jDDd5/6KGHxt133x3XXHNNvPjii7F06dJo06ZN7L333jF06FChFQAAAEAjktPgqjZ22mmn+OMf/5jvMgAAAADIs5yeKggAAAAAtSW4AgAAACCVGuxUwV133bVB2s1kMvHmm282SNsAAAAApEeDBVdJkjRU0wAAAAA0Ag06OHsmk4kmTZrEHnvsEXvvvXc0a9asIR8OAAAAgM+RBr+qYFlZWUybNi3eeOON6NOnT+y///6x//77R+/evaOgwBBbAAAAAKxfgwVXBx10UEyfPj2WLl0aERGrV6+Ol156KV566aX485//HC1btox99tkn9ttvv9h///1jp512aqhSAAAAANgCNVhwde2110ZExLvvvhvTpk2LV155JaZNmxYzZsyI8vLyKC0tjSeeeCKefPLJiIho37597LfffrHffvtFv379olu3bg1VGgAAAABbgAY/VbBnz57Rs2fPOP744yMi4tNPP41XX301pk2bFtOnT49p06bF0qVLY9GiRXHffffF/fffHxER3bt3j/333z8OPPDAOPzwwxu6TAAAAABSpsGDq89q2bJldpyrCuvrlTVnzpyYO3duPPvss4IrAAAAgEYo58HV+vTs2TMKCgoiSZJYu3ZtfPLJJ/Hhhx9GkiT5Lg0AAACAPMlLcFVWVhZvvPFGTJ06NfuzaNGi7P0VgVXz5s3jS1/6Uj5KBAAAACDPchJcffrpp/HKK6/ElClTYurUqfHqq6/GypUrs/dXBFUFBQWx2267Rf/+/aNfv36x1157RVFRUS5KBAAAACBlGiy4uv/++2PKlCkxZcqU7JUEK1Q+BbBr167ZoGr//fePtm3bNlRJAAAAAGxBGiy4+uEPfxiZTKbaOFWtWrWKfffdN/r16xf9+/ePnj17NlQJAAAAAGzBGvxUwcLCwthjjz2if//+0b9//9hzzz2joKCgoR8WAAAAgC1cgwdXZWVlMW3atJg2bVpcddVVm91eJpOJN998sx4qAwAAACDNGjS4+uxpggAAAABQWw0WXP32t79tqKYBAAAAaAQaLLg64YQTGqppAAAAABoBo6QDAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoV5ruANCktLY1x48bFI488EnPmzIny8vLo1q1bHHbYYTF06NBo3759TuqYMmVKTJo0KV588cVYuHBhrFq1Kjp16hR9+vSJE088Mfr375+TOgAAAADySXD1XzNnzowRI0ZESUlJldtnzJgRM2bMiLvuuivGjh0bvXv3brAaVqxYEb/4xS9i0qRJ1e6bO3duzJ07N+6999448cQT45JLLokmTZo0WC0AAAAA+eZUwVjX0+rMM8+MkpKSKCoqivPPPz+eeuqpeOGFF+Kqq66K7bbbLhYuXBgjR46MBQsWNEgNq1evjjPOOCMmTZoUBQUFMWTIkLjjjjviueeei3/9619x7bXXxs477xwRERMmTIg//elPDVIHAAAAQFoIriLihhtuiLlz50ZExGWXXRZnnHFGbL311tG2bds4/PDDY9SoURERsXDhwrj66qsbpIbi4uI4+eSTo3PnznH99dfHL3/5y+jbt2+0b98+unTpEgcffHDceeedse2220ZExF//+tdYsmRJg9QCAAAAkAaNPrgqKyuL8ePHR0RE3759Y8CAAdXuv/baa7N/T5gwIVasWNEgtQwYMCCeeOKJDY5h1bx58zjllFMiImLVqlXx4osvNkgdAAAAAGnQ6IOrqVOnZnsuHX300dXuv/vuu2PWrFkxePDgiIhYuXJlPPPMMw1WT2FhzcOObb/99tnphjptEQAAACANGn1w9frrr2en+/btW+W+FStWxJgxY2LPPfeMs88+e73L5Nry5cuz023atMlbHQAAAAANrdFfVXDWrFnZ6e7du1e5b9y4cTF//vy4/PLLo0uXLlFYWBhr166tskyuvfrqq9npPn365K2OiIjCpi3y+vjkTiZTkP1d1KxVnqvZslSsu4iITIErgdZWJpP532/rrc5sc7Vnm9t8PiM2nc9Xcs02R67Z5qgPjT64Wrx4cXa6Xbt22eklS5bE9ddfHwceeGDsu+++ERHRunXrWLx4cd4GRV+9enXcc889EbGud1jFQO35UuDAvtHJZDKRyXjd66riH2M2jfVWd9Zd3VhvdeMzou6sO3LNNkeu2ebYHI0+uKoYaL24uLjKgeo111wTpaWlcd5552VvKy4ujoiqp+vl0nXXXZcd1+oHP/hBXmqorLy8LN8lkCOZTEFkMplIkiSSpDzf5WxRKtZdRESSJHmuZstReX9svdWddVd7trnN5zNi0/l8Jddsc+Saba5xqu9OLo0+uKpQUPC/03lKSkri9ttvj4EDB8Yuu+ySvb28PH9vtKlTp8Y111wTERFf//rXo1+/fnmrpcLaVcvtfBqJomatIpNpEklSHmtWlua7nC1KxbqLiEiEvbVX0OR/BznWW51Zd5vANrfZfEZsOp+v5JptjlyzzTU+mUxBFDffql7bbPSDs7dosW6cpjVr1mRvGz16dCRJUmVA9oiIVatWVVkmV+bOnRujRo2KNWvWRK9eveLnP/95Th8fAAAAIB8afY+r9u3bR0REWVlZLFu2LEpKSuLee++Nk08+ucoYUmvWrIlly5ZVWSYXPvrooxg+fHgsXrw4tt122xg7dmw0a9YsZ48PAAAAkC+NvsfVDjvskJ0uKSmJyy+/PJo3bx5nnXVWlfnmzZuXPVVw++23z0ltCxcujOHDh8f7778f3bp1i3HjxkXnzp1z8tgAAAAA+dbog6tevXplp8eNGxdPP/10fPvb367Wq2rq1KnZ6T322KPB6/roo4/ilFNOiZkzZ0aPHj3ir3/9a3Tr1q3BHxcAAAAgLRp9cNW3b99o165dRERMmDAhOnToEMOHD68234MPPhgREc2aNYv+/fvX2GaSJDF69Ojo169f9O/fP8aMGbNJNc2ZMyeGDBkSs2fPjl122SVuv/326N69+ya1AQAAALCla/TBVZMmTWLIkCHZv4cNGxYtW7asMs/kyZPjySefjIiIwYMHR/PmzWtsc+LEiTF27NhYtGhRLFy4MK688sqYNGlSrep55513YsiQIVFSUhL9+vWL2267LTp27LhpTwoAAADgc6DRB1cREaeffnq2R9Ntt90W999/fyxevDgWLlwY48ePj1GjRkWSJNGxY8cYOXLkRtt77bXXqt02ffr0jS73yiuvxCmnnBILFiyIo48+OsaMGRNFRUWxatWq9f6sXr16058sAAAAwBai0V9VMCKiVatWcd1118WIESOipKQkzj333GrzdOzYMcaOHRudOnXaaHu9e/eudlufPn02utwf//jH+PjjjyMi4oEHHogHHnigxvl79uwZDz300EbbBQAAANgSCa7+a8cdd4xJkybFuHHj4uGHH445c+ZEkiTRtWvXOOyww2LYsGHVBmzfkGOPPTZmz54dd955Z2QymRgyZEgMGjSo3mvO1dUNAQAAAPJBcFVJq1atYtSoUTFq1KjNaieTycQ555wT55xzziYtd8stt2zW4wIAAAB8nhjjCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUK810AAABbruKidYeTmUxBFDVrledqtiyZTEH2t3W3iZIk1q5ZFUn52nxXAkADE1wBAFBnW7VoGhERmUwmMpkmea5my2Td1U1hRKxZJbgC+LwTXAEAUGeZTCYiItauLYsFS0vzXA2NQae2raKwsEnEf7c9AD7fBFcAAGy2BUtL47c3PZDvMrYomYImkclkIkmSSMrL8l3OFuNnw4+ObTq2yXcZAOSIwdkBAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXBVSWlpaVx11VVx/PHHx9577x19+/aNgQMHxp/+9KdYvHhxXmqaN29enH322bHzzjvHzjvvHC+88EJe6gAAAADItcJ8F5AWM2fOjBEjRkRJSUmV22fMmBEzZsyIu+66K8aOHRu9e/fOST2rV6+Om266Ka655ppYvnx5Th4TAAAAIE30uIp1Pa3OPPPMKCkpiaKiojj//PPjqaeeihdeeCGuuuqq2G677WLhwoUxcuTIWLBgQYPX8/TTT8egQYPij3/8Yyxfvjy23nrrBn9MAAAAgLQRXEXEDTfcEHPnzo2IiMsuuyzOOOOM2HrrraNt27Zx+OGHx6hRoyIiYuHChXH11Vc3WB1r166N733ve3HGGWfEu+++G506dYrf/e538bvf/a7BHhMAAAAgrRp9cFVWVhbjx4+PiIi+ffvGgAEDqt1/7bXXZv+eMGFCrFixokFqKSwsjNatW0dRUVGMGDEiHnrooTj++OMjk8k0yOMBAAAApFmjD66mTp0aS5YsiYiIo48+utr9d999d8yaNSsGDx4cERErV66MZ555psHq+clPfhL3339//OhHP4qWLVs22OMAAAAApF2jD65ef/317HTfvn2r3LdixYoYM2ZM7LnnnnH22Wevd5n61qZNm9huu+0arH0AAACALUWjv6rgrFmzstPdu3evct+4ceNi/vz5cfnll0eXLl2isLAw1q5dW2WZxqywaYt8l0COZDIF2d9FzVrluZotS8W6i4jIFDTJYyVblopTpDOZTIT1Vme2udqzzdUP29ymsd1tHsclm84xHblmm6M+NPrgavHixdnpdu3aZaeXLFkS119/fRx44IGx7777RkRE69atY/HixdlTCxu7AgdYjU4mk4lMxuteV8arqxvrre6su7qx3urOuqs7627TOS6pO+uOXLPNsTkafXBVMdB6cXFxlQOGa665JkpLS+O8887L3lZcXBwREcuXL89tkSlVXl6W7xLIkUymIDKZTCRJEklSnu9ytigV6y4iIkmSPFez5ai8P7be6s66qz3bXP2w7jaN7W7zOC7ZdI7pyDXbXONU351cGn1wVaGg4H+n85SUlMTtt98eAwcOjF122SV7e3m5N1pla1ctt/NpJIqatYpMpkkkSXmsWVma73K2KBXrLiIiEfbWXkGT/x3kWG91Zt1tAttcvbDuNpHtbrM4Ltl0junINdtc45PJFERx863qtc1GPzh7ixbrxmlas2ZN9rbRo0dHkiRVBmSPiFi1alWVZQAAAABoOI2+x1X79u0jIqKsrCyWLVsWJSUlce+998bJJ58c2267bXa+NWvWxLJly6osAwAAAEDDafQ9rnbYYYfsdElJSVx++eXRvHnzOOuss6rMN2/evOypgttvv31OawQAAABojBp9cNWrV6/s9Lhx4+Lpp5+Ob3/729V6VU2dOjU7vccee+SsPgAAAIDGqtEHV3379o127dpFRMSECROiQ4cOMXz48GrzPfjggxER0axZs+jfv3+NbSZJEqNHj45+/fpF//79Y8yYMfVfOAAAAMDnXKMPrpo0aRJDhgzJ/j1s2LBo2bJllXkmT54cTz75ZEREDB48OJo3b15jmxMnToyxY8fGokWLYuHChXHllVfGpEmT6r12AAAAgM+zRh9cRUScfvrp0b1794iIuO222+L++++PxYsXx8KFC2P8+PExatSoSJIkOnbsGCNHjtxoe6+99lq126ZPn16rWsrKymLVqlVVfipf8XDNmjUbvA8AAADg86TRX1UwIqJVq1Zx3XXXxYgRI6KkpCTOPffcavN07Ngxxo4dG506ddpoe7179652W58+fWpVy8SJE+NnP/vZBu8//fTTq/x9wgknxKWXXlqrtgEAAAC2JIKr/9pxxx1j0qRJMW7cuHj44Ydjzpw5kSRJdO3aNQ477LAYNmxYtQHbN+TYY4+N2bNnx5133hmZTCaGDBkSgwYNauBnAAAAAPD5IriqpFWrVjFq1KgYNWrUZrWTyWTinHPOiXPOOWeTlz3xxBPjxBNP3KzHBwAAAPg8MMYVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqCKwAAAABSSXAFAAAAQCoJrgAAAABIJcEVAAAAAKkkuAIAAAAglQRXAAAAAKSS4AoAAACAVBJcAQAAAJBKgisAAAAAUklwBQAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUEVwAAAACkkuAKAAAAgFQSXAEAAACQSoIrAAAAAFJJcAUAAABAKgmuAAAAAEglwRUAAAAAqSS4AgAAACCVBFcAAAAApJLgCgAAAIBUElwBAAAAkEqF+S4AciVTUBiFRU0jMpl8l7LFyWQKsr+LmrXKczVblop1BwAAwKYTXNFoFBY1jYImNvnNkclkIpNpku8yAAAAaCT8F0/j8d+eVmvXlsWCpaV5LobGYusOrSOjlx8AAECdCK5odBYsLY3f3vRAvsvYomQKmkQmk4kkSSIpL8t3OVuUP5z79Sgq1EsNAACgLgy+AgAAAEAqCa4AAAAASCXBFQAAAACpJLgCAAAAIJUMzg4AAGwxiovW/QuTyRREUbNWea5my5LJFGR/W3ebKEli7ZpVkZSvzXcl0OgIrgAAgC3GVi2aRkREJpOJTMaVe+vCuqubwohYs0pwBbkmuAIAALYYmUwmIiLWri2LBUtL81wNjUGntq2isLBJxH+3PSC3BFcAAMAWZ8HS0vjtTQ/ku4wtSqagSWQymUiSJJLysnyXs8X42fCjY5uObfJdBjRaBmcHAAAAIJUEVwAAAACkklMFKyktLY1x48bFI488EnPmzIny8vLo1q1bHHbYYTF06NBo3759o6wFAAAAIB8EV/81c+bMGDFiRJSUlFS5fcaMGTFjxoy46667YuzYsdG7d+9GVQsAAABAvjhVMNb1bjrzzDOjpKQkioqK4vzzz4+nnnoqXnjhhbjqqqtiu+22i4ULF8bIkSNjwYIFjaYWAAAAgHwSXEXEDTfcEHPnzo2IiMsuuyzOOOOM2HrrraNt27Zx+OGHx6hRoyIiYuHChXH11Vc3mloAAAAA8qnRB1dlZWUxfvz4iIjo27dvDBgwoNr91157bfbvCRMmxIoVKz73tQAAAADkW6MPrqZOnRpLliyJiIijjz662v133313zJo1KwYPHhwREStXroxnnnnmc18LAAAAQL41+sHZX3/99ex03759q9y3YsWKGDNmTOy5555x9tlnx913351d5ogjjvj/7d13WBTX+zbwGxAURGwgKhbUCBbsCip2xIpdI3aDwRqMJpaviTXV3hO7EewFLEFUsIAgaqIYO2BDEUGUIqxIn/cP3p3fIrvLAgsscH+ui+sadmbPnpk9Mzv77DnPKdV1UYWWVsmMe5bT0UbN6kbFXY0SRUtbB1paWhAEAUJmRnFXp0Riu8sbtrn8K6fzf9dmtjnVsc0VHK9zecd2VzBsc3nHNpc/0s9WLS1t6FYwLObalCzS74w8dvkkCMhITy1R52thxAnKfODq+fPn4nKdOnWyrXN1dUV0dDTWrl0LU1NTlCtXDunp6dmeU1rrogrdChWL7bULwqRqJfzgNCD3DYnUiO2OippuOR22OSpSvM5RUWObo6KmpaUFLS2d4q5GicRjl3/aOmU+bMOhgrGxseJy1apVxeW4uDjs3r0b3bp1g42NDQDAyMhIXFfa60JEREREREREVNzKfOBKmtxcT08PWlpa4uPbt2+HRCLB999/Lz6mp6cHAEhKSir1dSEiIiIiIiIiKm5lPnAlpa39f4ciIiIChw4dgoODA5o0aSI+npmZWebqQkRERERERERUXMp84MrAwAAAkJaWJj62ceNGCIKAb7/9Ntu2KSkp2Z5TmutCRERERERERFTcynyWr2rVqgEAMjIykJiYiIiICHh6emLcuHGoW7euuF1aWhoSExOzPac014WIiIiIiIiIqLiV+R5XDRs2FJcjIiKwdu1a6OvrY+bMmdm2i4yMFIfnNWjQoNTXhYiIiIiIiIiouJX5wJWVlZW47OrqCn9/fzg5OeXoyRQUFCQut2jRotTXhYiIiIiIiIiouJX5wFWbNm1QtWpVAICHhweqV6+Or776Ksd258+fBwBUqFABtra2SssUBAEbN25E586dYWtriy1bthRbXYiIiIiIiIiISqoyH7jS0dHBmDFjxP8nT56MihUrZtsmMDAQvr6+AIARI0ZAX19faZmnT5/Gtm3bEBMTg/fv32Pr1q04c+ZMsdSFiIiIiIiIiKikKvOBKwCYMmUK6tSpAwA4ePAgvLy8EBsbi/fv3+Pw4cOYNWsWBEGAsbExZsyYkWt59+/fz/HY3bt3i6UuREREREREREQllZYgCEJxV0ITPHv2DM7OzoiIiJC73tjYGNu2bUPLli1zLev06dNYsGBBtsfWrl2LQYMGFXldiIiIiIiIiIhKKgauZEgkEri6usLb2xvh4eEQBAG1a9eGnZ0dJk+enCNJuiKCIGDTpk04evQotLS0MGbMGLi4uBRLXYiIiIiIiIiISioGroiIiIiIiIiISCMxxxUREREREREREWkkBq6IiIiIiIiIiEgjMXBFREREREREREQaiYErIiIiIiIiIiLSSAxcERERERERERGRRmLgioiIiIiIiIiINBIDV0REREREREREpJEYuCIiIiIiIiIiIo3EwBUREREREREREWkkBq6IiIiIiIiIiEgjMXBFREREREREREQaiYErIiIiIiIiIiLSSAxcERERERERERGRRmLgioiIiIiIiIiINBIDV0RERERERESkMolEAgcHB2zbtg0JCQnFXR0q5bQEQRCKuxJEVLTu378PDw8P3Lx5E5GRkRAEAdWrV0fr1q0xaNAg9OjRQ+nzPTw8sGjRIpVey8nJCQsXLlRDrakkK2ibkxUZGQk3Nzf4+/sjPDwcgiCgVq1a6NSpE8aOHQsLC4vC2xEiIgXUdZ0LDw/H4cOHce3aNbx8+RKCIKBmzZpo3749Ro0ahdatWxfqflDJoa425+fnh9OnT+Pu3bt49+4dKlSogLp168LOzg4TJ06EoaFh4e4IlUiurq747bffoKenBz8/P1SrVk3l50okEri6usLHxwfh4eHIzMyEmZkZ7OzsMGnSpDyVRWUDA1dEZUhCQgKWLFmC8+fPK92uW7du2LRpEwwMDOSuz0vgat26dXBwcMhzXal0UFebk/L09MSSJUuQlJQkd329evVw7tw5lCtXLt91ptKhIF/oXr9+DTs7uzy93qVLl1CnTp0C1ppKInVe5w4ePIiVK1ciNTVV4TajR4/GsmXLoKOjk+86U8mmrjYnkUjwv//9Dz4+PgrLqFGjBvbs2cMfhSgbQRDQt29fvHz5EoMHD8aaNWtUfu6zZ8/g7OyMiIgIueuNjY2xbds2tGzZUl3VpVKAgSuiMmTjxo3Ytm0bqlSpgvHjx6NXr16oU6cOkpOT8fTpU7i5ucHX1xcAYG9vj61bt8otRzZwde/ePaWvqaurC21tjkouq9TV5gDAx8cHLi4uEAQB1tbWcHZ2hpWVFQDg7du3CAgIQLt27dC2bdui2DXSUOr4QpefwNXly5dhZmaWp+dQ6aCu69y5c+cwZ84cAICVlRVcXFzQpEkTlCtXDk+fPsXOnTtx7do1AMD06dMxd+7cotg90kDqaHOCIGDmzJm4fPkytLS0MHnyZAwdOhR16tRBQkICLl68iE2bNkEikcDExATnzp1DpUqVinhPSVP5+vpi2rRpAIBjx46hVatWKj1PIpFgyJAheP36NXR1dTFnzhw4ODigQoUKuHXrFlatWoVXr17B2NgYp06dgomJSWHuBpUkAhGVGZmZmcLBgweFmJgYhdssW7ZMsLCwECwsLISQkBC527i7u4vbECmjrjYXExMjWFtbCxYWFsK8efOEzMzMwqoylXAbNmwQLCwsBGtra2Hz5s3CgwcPhPj4eCEqKkoICAgQpk6dKra3WbNmyS0jMzNTSE5OzvXvu+++EywsLIR+/fqxTZZh6rrO9e3bV7CwsBD69OkjfPz4Mcf6jIwMYdy4cYKFhYXQsmVLISkpSW37QCWLOtqcj4+PuH7Pnj1yy7h+/bq4zcqVK9VWfyr5nJycBAsLC2HYsGF5et7GjRvFNnX27Nkc60+ePCmuX758ubqqS6UAu0EQlSFaWloYO3as0nHjjo6O4vKzZ8+KolpUiqmrzbm5uSE+Ph41atTAihUroKWlpfa6Uunw7bffYtmyZTh37hxcXFzQvHlzVK5cGaamprC1tcWOHTswZswYAFm9+EJDQ3OUoaWlhfLlyyv9i4+Px4ULFwAAEyZMYJssw9RxnUtMTMSLFy8AAAMHDpTbE1BbWxvDhw8HACQnJ+Ply5cFrTqVUOpocydOnAAAsdeWPB07doSNjQ0A4OTJk0hLSytItamUeP78udj7c9y4cSo/LyMjA4cPHwYAtGnTBgMGDMixfseOHeL/Hh4e+PTpkxpqTKUBA1dElI1sXo0aNWoUY02orFClzXl6egIARo0alWseLCrbiipAv3//fqSlpaFy5coYNmxYvsqgsiO365wgk7lDWdutXLmyuFy+fHk11Y5Ko9zanDRo36JFC+jp6Sksp2vXrgCAuLg4hISEqLmWVBIdOHAAgiCgSpUqecpjGxQUhLi4OABA//79c6x3d3fH8+fPMWLECABZAfqAgAD1VJpKPAauiCgbV1dXAEDjxo3znCsoMzOzMKpEpVxube7169cIDw8HANja2iI1NRV//fUXhg8fjrZt28La2hqOjo44fPgw0tPTi7TuVDIVNECflJSEo0ePAsgKpurr66utblQ65XadMzIyQs2aNQEAgYGBCsv5999/AQDm5uaoX79+IdSUSovc2ty7d+8AZPW4UqZBgwbiMgNXJJFIcPLkSQDAiBEj8hRAf/Dggbjcpk2bbOs+ffqELVu2oFWrVvj222/lPofKNk67RFSGZWZmIi0tDR8/fsSjR4+wb98++Pv7o3bt2ti0aZNKQ1/OnDmDU6dOITQ0FO/fv4e+vj5atWqF8ePHo3fv3kWwF1SS5KfNSb+oAUDVqlXh6OiIhw8fZtvmzp07uHPnDv7++29s374dRkZGhb4vVHIVJEAPZP0qnJCQgHLlyikcYkNlV34/W6dNm4YVK1bg0qVLWLp0KebOnYuqVauK6y9duoQDBw6gYsWK+P333znxCYny0+YqVaqEmJgYpTNYAtl7+X348EHtdaeS5cSJE0hKSoK2tjbGjh2bbZ2lpSWArPQO0iGmsp4/fy4ufz4Lr6urK6Kjo7F27VqYmpqiXLlySE9Pz/YcKtsYuCIqw86cOYOFCxeK/1evXh0uLi6YOHGiyl/858+fn+3/pKQkXL9+HdevX8eECROwePFitdaZSrb8tLno6Ghx+YcffsCTJ0/w1VdfYejQoTAzM8Pbt29x8OBBHDp0CLdv38ayZcuwYcOGQt8XKhnUEaD/vDxp4Mve3h61atUqjGpTCZbfz9axY8ciMTERmzdvxtGjR3Hq1Cn06NEDdnZ2uH37No4fP47GjRtj9erVaNKkSVHsCpUQ+Wlz9erVQ0xMTK69qCIjI8XllJQU9VSYSiRBEHDo0CEAQPfu3XMEn3ITGxsrLssG5ePi4rB7925069ZNDHgZGRkhNjZWHFpIxMAVURkmTQQrFRMTg/379+Pjx49wcXFRmEvIzMwMffv2ha6uLjp06AAbGxvUrFkTqampuHHjBtasWYPw8HDs378fzZo1E5PJEuWnzcnetISEhGDPnj2wtrYWH6tUqRKWLVsGHR0d7N+/H15eXpg1axa++OKLwtsRKjHUEaCX5ePjIw5dnTRpktrqSaVHfj9bgaxeV02aNMHMmTORkpKCCxcuiJMAGBkZYcmSJQxaUQ75aXP9+vXDnTt3EBYWBn9/fzGXlawbN25g2bJl4v8VK1ZUf+WpxPDz8xMnhchLUnYpaaJ1PT29bD8abd++HRKJBN9//734mDTvWlJSUkGqTKWIliCbDZKIyqSPHz/i9evX8PT0xIEDB5CUlAQLCwscPnwYhoaGeS4vMjISDg4OkEgkqFevHnx8fAqh1lSS5aXNLV68GMePHwcArFq1CkOHDpVbZnh4uDg8ddasWZg9e3ah7gOVDBs2bMD27duzPValShUMHz481yCCPI6Ojrhz5w5atmwptksiefL62ZqRkYENGzZg3759qFSpElxcXFC+fHmcP38e165dQ0ZGBoCsnn4rV67M1+czlW55aXMSiQRDhgzB69evYWhoiHnz5sHe3h5GRkZ49eoV3N3d4ebmhsqVKyMmJgYAsHLlSk5GUYZNmTIFAQEBMDc3x/nz53P0WM5tqKCTkxOuXbuGChUq4O7duwCAiIgI9OvXD3379sXatWvFbbt27Yro6Gg0b94cHh4ehbhXVFJwcDwRoWLFirC0tMT333+PvXv3QltbG6Ghodi4cWO+yqtVqxb69esHAHj16pXYO4FIKi9trkKFCuKystlr6tatK/4a/OrVK7XXmUqmuXPnIiQkBEFBQThz5gymTp2K1NRU7N27F6NHj4ZEIlG5LGkuNYC9rSh3ebnOpaamYurUqdi1axfq1asHDw8PjB07FiNGjMCuXbvg6+uLyZMnQ0dHBz4+PnB0dER8fHyR7xNptry0OUNDQ2zZsgU1atSARCLB8uXLYWtrixYtWmDgwIHYu3cvunbtChcXF/E50gkEqOx59uwZrl27BgAYM2ZMnofZAxB/KEpLSxMf27hxIwRByJaQHfi/YamcSZqkGLgiomzatGmDdu3aAYA4a0h+NG7cWFxmEIGUya3NyQ7nSk5OVlpWpUqVAIA5ESgHdQTo//rrLwCAqampGJwnUkVu17kdO3YgICAA2traWL16dY7caTVq1MCiRYuwZcsWAMCTJ0+watWqwq84lViq3M81a9YMJ0+ehLOzM+rXrw9dXV3o6+ujdevWWLVqFbZv346oqCgAgJaWFpo3b15k9SfNcuDAAQiCAH19/XynAKlWrRqArN6liYmJCA4OhqenJxwdHVG3bl1xu7S0NCQmJmZ7DhEDV0SUg7m5OYCsbuSyiRTzQnZ6eNlfVojkUdbmZL/ASW+gFZEGtjirICmTnwB9eHi4OOx53LhxKFeOaUIpb5Rd506dOgUgK2G2lZWVwjLs7OzEHH9eXl65zghHZZsq93PGxsaYN28evL29cf/+ffz33384evSoOCz/6tWrALJ+kORna9klbQefPn1Chw4dYGlpmeNPauLEibC0tESvXr2yldGwYUNxOSIiAmvXroW+vj5mzpyZbbvIyEhkZmYCABo0aFBYu0QlDANXRJSD9Mu/lpZWvhNxvnv3Tlw2NTVVS72o9FLW5lq2bCkuK5v9KDExURw6w+EMlJu8BuhdXV2RmZmJChUqYPTo0YVcOyqNlF3n3r59CwCoXbt2ruXUq1dPLO/Dhw9qriWVJnm9n/t8+NfVq1fx6NEjAMCoUaPUX0EqMdSRFls2KO/q6gp/f384OTnl6FUVFBQkLrdo0aLAr0ulA38uJKJsMjIycPv2bQBA/fr1Ub58+XyVExgYCCBr6BZ/LSFlcmtzjRs3RpUqVRAfH4/Lly9j4MCBcsvx9/cXl7t161Z4FaZSIS9f6BISEuDu7g4AGDJkCKpUqVLY1aNSJrfrnKmpKV6/fo03b97kWlZYWBiArFm3qlevrva6UulQ0Pu58PBwLFiwAABgYmLCGaLLuPPnzysNXv3777+YMmUKAGDPnj3o0KFDjkBomzZtULVqVcTFxcHDwwPVq1fHV199Jfe1gKwcp7a2tmrcCyrJ2OOKqAzZtWsXJkyYoDSh67Zt28QbZ3lT3QqCgJUrV+LixYsKyzh37px4szR06NBsybWpbFFHm9PW1hYfv3Dhgvjrr6zk5GT8+eefALJ6I8ibzYZIKq9f6I4cOYKkpCRoaWkxKTvloI7rnHRITVhYGC5cuKCwnIsXL+LWrVsAgN69e0Nbm7fyZZE62pwyd+/exeTJkxEXFwctLS2sXr2as1iWcXp6eihfvrzCP11dXXFbXV1dlC9fHnp6etnK0NHRwZgxY8T/J0+enOOHo8DAQPj6+gIARowYkS31CJVtWoI6+v0RkcYLDg7G6NGjkZycjCpVqmDChAno2bMn6tati4yMDISEhODQoUPiDXPHjh2xe/fubB9EALB7926sWbMGQNZN84gRI2BlZQUDAwO8efMGZ86cwV9//YX09HTUr18f7u7uYsJsKlvU1eaArGTrQ4YMwdu3b1GlShV8//336N69O/T19REcHIwNGzYgKCgIOjo62L9/v5i/iMqeXbt24erVq9iyZYvCnlFbt24Vk1z/+OOPmDhxosLy0tLSYGdnh7dv36JLly7Ys2dPYVSbSih1Xeeio6MxcuRIvH37Fnp6enByckL//v1Rp04dZGZm4tWrVzh79izc3NyQnp6OqlWr4ujRo6hfv35x7DYVI3V+tn7u/fv32Lt3L1xdXZGeng49PT38+uuvGDx4cGHvFpVwN2/eFD9L3dzcFP6AKJFIMGTIELx+/Ro1a9bEwoUL0bFjR2RmZsLHxwerV69GUlISjI2NcerUKZiYmBTlbpAGY+CKqAy5ffs2fvjhB3GYgSIODg5YsWKF3F/X0tPTsW7dOuzfv19p0vWWLVti/fr12WYJobJHHW1O6unTpxg/frzCGQMNDAywevVq2NvbF6TKVIIVxhe6U6dOYeHChQCygmIchkqfU9d17tmzZ5gzZw5CQ0OVltOwYUOsW7cOzZo1y2+VqYRT52dreno6bt68CS8vL5w5c0ZM+G9paYmffvoJrVu3VmPNqbRSNXAFZF3rnJ2dERERIXe9sbExtm3bli3HKREDV0RlTEZGBry8vHD58mXcu3cP79+/R7ly5WBqaop27dphyJAhaN++fa7lvHz5EsePH0dAQADevHmDT58+wcTEBBYWFnBwcEC/fv046xYBUF+bA4CYmBi4urrC19cXr169giAIMDMzQ/fu3TFhwgSVEhtT6abOL3RAVk6r4OBgNGrUCGfPns2Rs4MIUN91Lj09HWfPnoWPjw8ePXokThxQrVo1NG3aFHZ2dhg0aJBKvWeodFNHm0tKSkKvXr2y/SDUtGlTjB8/HsOHD+dQVFJZXgJXQFbPK1dXV3h7eyM8PByCIKB27dqws7PD5MmTcyRsJ2LgioiIiEoVdQURrl+/jsmTJwMAli9fni03BxFRaeDo6Ii4uDj07NkTAwYMYC8XItJIDFwRERERyZGcnIzAwED4+/tjwYIFTBJLRKWORCJh4nUi0ngMXBERERERERERkUbiwGUiIiIiIiIiItJIDFwREREREREREZFGYuCKiIiIiIiIiIg0EgNXRERERERERESkkRi4IiIiIiIiIiIijcTAFRERERERERERaSQGroiIiIiIiIiISCMxcEVERERERERERBqJgSsiIiIiIiIiItJIDFwREREREREREZFGYuCKiIiIiIiIiIg0EgNXRERERERERESkkRi4IiIiIiIiIiIijcTAFRERERER0f+Xnp5e3FWgAuJ7SFS6MHBFREREREQE4NmzZxg4cCACAgKKuyqUT7GxsRg2bBg8PDyKuypEpCYMXBERERERUZl3584djB07FmFhYfj999+RkZFR3FWifDhw4ABCQ0OxaNEi7Nixo7irQ0RqoCUIglDclSAiIiJSJDQ0FBEREcjMzISdnV1xV4eISqGgoCA4OTnh06dPMDc3h6urK2rWrFnc1aJ8yMzMxI8//ij2uJo1axZmz55dzLUiooJg4IqIiCgPYmNjcfjwYVy5cgXh4eGQSCQwMDBAvXr1YGtri759+6J58+bFXc1SxdLSEgBgbW2N/fv3F3NtSB4/Pz+cOXMGd+7cwfv37wEAxsbGaN68OXr37g07OzsYGhoWcy2J5AsNDcX48ePx4cMHmJmZ4fDhwzA1NS3ualEBCIKAefPmwdPTEwCwZMkSjB8/vphrRUT5xcAVERGRiq5cuYKFCxfiw4cPCrfp1KkT9u3bV3SVKgMYuNJcycnJmDt3Li5fvqx0u4MHD6J9+/ZFVCsi1cXExGDo0KGIjo5GlSpVcPToUZibmxd3tUgN0tLS4OzsjOvXr0NbWxt//PEHevXqVdzVIqJ8KFfcFSAiIsXCw8PRu3dv8f/GjRuLvx5S0Xr8+DFmz56N1NRU6OrqYtCgQWjTpg0qV66M2NhYvHz5Er6+vvxFl8qURYsWiUGrBg0aYPjw4ahTpw7S0tIQHR2N27dv48OHDwxakcZaunQpoqOjoaWlhVWrVjFoVYro6upi/fr1GDp0KN6+fYsff/wRnp6eqF69enFXjYjyiIErIiIN5uPjk+3/J0+eICwsjDfWxWDbtm1ITU0FAGzduhU9evTIsc3//ve/Iq4VUfEJDQ2Fl5cXAKBNmzY4cOAAypXLfmvp7OxcHFUjUsmpU6dw8eJFAMDo0aPlXtepZKtWrRp+/fVXfP3114iNjcXSpUvxxx9/FHe1iCiPOKsgEZEG8/b2BgDUqFEjx2NUtIKCggAAderU4ZcbImTNwCbl6OiYI2hFpMnS09OxYcMGAEDlypUxZ86c4q0QFZquXbuKQwQvXrwofp4TUcnBwBURkYZ69+4d7t69CwD46quvxNmNPu+FpU6ZmZm4evUqkpKSCu01Sqp3794BAGrXrl3MNSHSDNJzAgBq1apVjDUhyruzZ88iKioKQFZvq6pVqxZzjagwTZ8+XVzes2dPMdaEiPKDgSsiIg3l4+ODzMxMAEDv3r3FXj73798Xb7bzKzMzEykpKYiNjUVoaCjOnz+P3377Db169YKzszOuXbtW0OoTUSnH+X2oJHN1dQUAaGlpwdHRsZhrQ4WtVatW4oy/ly9fRnh4eDHXiIjygn26iYg0lLRnVePGjVGvXj306tULR44cgSAI8PHxwYQJE1Qu68mTJ/Dw8EBAQACioqKQkJCgdPtLly7B3t5e6Ta+vr44ceIE/vvvP8THx6NSpUpo3LgxHBwcMGLECOjo6KhcP3ULDAzEsWPHcPfuXbx79w4VKlSAqakpbG1tMWbMGDRo0KDY6qYOW7ZswdatW1GrVi34+voCyHo/Dh06hIcPH+LDhw8wMTGBjY0Nvv76a3zxxRcqlx0bGws3Nzf4+vri5cuXyMzMhKmpKTp37owJEyagUaNGuZaRmpqKa9eu4dq1a3jw4AFevXqFhIQEaGtrw9jYGFZWVhg2bBh69uyZ30Mg9zWnTp2K69evAwDat2+P3bt3Q19fX22vIc+ECRPwzz//YMiQIVi9ejXS0tJw/PhxnDp1Cs+fP0dqairq1q2Lnj174uuvv0aVKlVULjskJAQHDhzAjRs3EBUVhfLly6Nu3bqws7PDxIkTYWRklGsZ0hkZpUxMTBAQECD+7+npiWPHjiE4OBgJCQkQBKFYZm9UxzkrfS9knTt3Dg0bNgQA/Pfff/jrr79w+/ZtxMbGIiMjA0DWcZbVq1cvREREYNeuXbCxscGWLVvw999/IyEhAa1atcKPP/6Ixo0bIz4+HuvWrcOVK1cgkUjQsWNHLF26VGGvzPDwcFy6dAm3bt3CkydPEB0djZSUFBgaGsLc3By2trYYO3YsTExMVN7XYcOGYeXKlQCAGzduwN3dHbdv30Z0dDQMDQ3RunVrODs7o127drmWKZWZmYnz58/D09MTDx8+RExMDHR1dWFqaoq2bdti8ODB6Nixo8rlaeJnxevXr/Hw4UMAWeeImZlZnsuIjY1Fly5dkJGRATMzs1xn1gSyEsEfPXoUAODm5gYbGxul26vj2Kmz3Uk/e2StWLFCDPxFRUVh165d8Pf3x5s3b5CWlqbSvr5//x7Hjh2Dv78/nj9/DolEAn19fVSvXh2tWrVCz549YW9vX+DhyL169cLDhw+RmZkJHx8fODk5Fag8Iio6DFwREWmgDx8+iF/A7OzsAACdOnWCgYEBkpKS4O3trVLgShAEbNq0Cbt27UJ6errcbbS0tNC8eXPo6OhAW1sbJiYmSr+UpKamYsGCBTh37ly2x2NjY3Hz5k3cvHkTR48exa5du1CtWjVVd1ktMjIysGTJEri7u2d7PC0tDYmJiXj69CkOHTqE+fPnY9KkSQrLSU5OFgMgn4uPj8eVK1dyPG5mZgYLC4uC7UAexcbGIi0tDYsXL8apU6eyrXvz5g1OnjyJs2fPYufOnejUqVOu5d24cQMuLi45ApsvX77Ey5cvceLECSxevDjX3glbtmzBzp075a6LiIhAREQELly4gH79+mHt2rXQ1dXNtW7KZGRkYO7cueJ71rJlS+zYsaPQg1ayYmNj8fbtW8ycORMPHjzItu7p06d4+vQpvLy8cPjwYZiamuZa3p49e7Bu3ToxuAJknXuPHj3Co0ePcOjQIWzbtg2tWrXKUz3fv38vzoz5ww8/wMPDQ+XnBgcHIzIyUvw/LCxMXP7vv//kDjG2tbWFnp6ewjLVdc4qEhkZiYYNG+L48eNYunSp2ItVFTExMZg2bVq2a8H169cxefJknDp1Ck5OTggNDRXXXblyBdHR0XB3d4eWlla2siQSCQYMGCBO8CDrw4cPuHv3Lu7evYtDhw5h06ZNKgeG4uPjkZiYiMWLF+P8+fPZ1sXFxeHKlSvw9/fHn3/+ie7du+da3vv37zFz5kxxmLpUWloaXrx4gRcvXsDd3R0dOnTAb7/9hnr16iksS5M/K27cuCEud+7cOV9lVKtWDTY2NggMDERERAQeP36Mpk2bKtxeEAQxuGViYoIOHToo3FZdx66w2p0s6TXh0aNHmDRpUq4/jH3O09MTS5cuxcePH7M9npiYiMTERISFheH06dOoVasWFixYgAEDBuS5jlK2trbYsmULAODmzZsMXBGVIAxcERFpoMuXL4uBJmlCUT09PXTp0gXe3t5ij4HcbvY3btyI7du3AwAMDQ0xYsQItGjRAtra2ggLC8OJEyfw5s0bZGZmYvXq1bn2psnMzMT06dPFoYSNGjXCsGHDUK9ePSQkJODKlSu4dOkSHjx4gClTpuDYsWMFDkrkxYIFC+Dp6QkgK6H9qFGj0LhxY6SkpODmzZs4ffo00tLS8Ntvv4nHQ573799ny4chKzQ0VO66WbNmFXngKiUlBfPnz8e5c+dQu3ZtfPnllzA3N0d0dDSOHDki9vj55ptv4OnpqTQP0bVr1zB9+nQxqDFo0CDY2NigQoUKePr0KY4cOYJ3795h+fLlqFy5Mvr376+wrIEDB2L//v1o3bo12rVrh3r16qFixYqIiYnB48eP8ffff0MikeD8+fOoXbs2Fi5cmO9jIAgCfvjhB3FmMEtLS+zevRuGhob5LjM/IiIi4OzsjJCQELRp0wYDBgyAiYkJnjx5ggMHDuDDhw+IiIjAjBkz5AY2ZP3xxx/YvHkzAKBKlSoYNWoUmjVrhszMTNy6dQseHh6IiYnBlClT4OHhoTR4ID3/Q0NDsX79egiCgKioKBw/fhweHh7Q1dXF4MGDYWNjg927d2cLxHxu3759OHnypNx169evz/GYjo4O7t27p7A8QH3nLAB89913iI+PB/B/+WzevHkDPz8/MWjVtWtX2Nvb4+bNmzh79qzSum3cuBHR0dH48ssv0bFjR1y4cAEXLlzA+/fvMWrUKERFRWHEiBGwtbUV1z18+BAPHjxAixYtspVlaGiI7t27IzQ0FB06dEDTpk1hYmKC9PR0REZG4sKFC7h37x7i4+Mxa9YseHl5qRTgjIqKgrOzM+7cuYPatWtj5MiRaNSoET58+ICjR4/i4cOHSE9Px88//4xu3bopbXeRkZEYP348Xr9+DSArGD98+HA0atQIaWlpePz4MS5cuICIiAjcunULL1++VNj2NP2z4vHjx+JyXnqkfq5///4IDAwEkJX0W1ng6v79+2JeuD59+kBbW37GFnUeO3W3OwcHB1hZWQHIOudDQ0Px5s0bREVFYcqUKUhISICFhQWGDh2K5ORk8TqmyK1btzB//nxkZmaKnzvt27dH5cqV8enTJ0RFReH69esIDAxEZGQkfH19CxS4aty4sbgs7XFHRCWEQEREGmf69OmChYWFYGtrK2RmZoqPe3h4CBYWFoKFhYVw/PhxpWW8ePFCsLS0FCwsLIS2bdsKYWFhObZJSkoShg8fLlhYWAhdu3YV3r17p7RMNzc38fUXL14spKWl5djm5MmT4jbbt29XcY8L7vLly+LrDh06VIiPj8+xzfXr1wUrKyvBwsJCaNeunfD+/Xu5ZYWHh4tlqfrn7u5e2Lso2rx5c7bXnjdvnpCSkpJtm6SkJGHkyJHiNr///rvC8j5+/Cj06NFDsLCwEGxsbIQHDx7k2CY+Pl4YNmyYYGFhIXTs2FFISEhQWkd5bUMqOjpa6N69u2BhYSE0b94817Kk+zB+/Pgc637++Wdxfb9+/RS+p4Vl/Pjx4us3adJEcHNzy7FNWFiY0KFDB3G7S5cuKSzv0aNHQtOmTQULCwth5MiRQkxMTI5tHj9+LJbn5OSkUj1v3Lghvr6rq6vQrFkzoUuXLsLjx49z7Iu84ywIgrBw4cI8nRM9e/ZUWid1nrOfk5a7atUqoWfPnkLz5s0FT09Pcb3sOfS5nj17ChYWFoKlpWW257x69Up8jqWlpfD333/LXXfkyBG5dVJ2TgiCIPz5559iGWvWrFG6rWy7k14DEhMTs23z8eNHoVu3buI2jx49Ulqms7OzuO13330nJCcn59gmIyNDcHd3z/XarsmfFYIgCF9//bX42rdu3cp3ObGxsUKzZs0ECwsLYfDgwUq3Xb9+vfia//zzj8Lt1H3s1NnuZEnb4NixY4U5c+YIFhYWwq+//iqkp6cLgpD9mnPjxg25ZcycOVOlz9BHjx4J8+bNE2JjY1WunyKdO3cWX1NeGycizcTk7EREGiYpKUn8pbVXr17ZfiHv3r27mNMit9kFT548KSZPnjp1KurXr59jG319fcydOxcA8PbtW7i5uSks79OnT9i0aRMAoEmTJli+fLncfBNDhw7FwIEDAQD79+9XOERR3TZu3Agga+jjypUrUbly5RzbdOzYURxulJiYiOPHj8stq06dOggJCcn2J2VtbZ1jXUhICIYPH67+nVKBvb09Vq9enWM4lr6+PpYuXSr+L9sePufm5oY3b94AAJYvXy4msJVVuXJlrFmzBlpaWoiNjcWZM2eU1ktZLhITExOMHDkSQNYQpP/++09pWYps3rxZzMVUt25d7Nu3D9WrV89XWerwv//9T+4Q3vr162PatGni/58Pi5O1Zs0aZGRkQE9PD1u2bJHbq7JJkyb47rvvAAABAQF4+vRpnuq5bt06AMC2bdvQpEkTlZ+3cuXKbG3+m2++Ede5ubnlOCdyy/mjznNWkYMHDyIiIgILFiwQr0uq6t27d7bn1KhRI9s6BwcHueukvb4+l1t+nilTpqB8+fIAgH///Vfleg4fPhxr1qzJ0cvQwMBAnNQDyBryq4ivry/8/PwAAFZWVli9erVYF1na2toYPnx4tvb8OU3/rACyetVKFWQ2wapVq4rD64KDg8XeavJcunQJQFZbUZRzrDCOXWG1O6kHDx7Ay8sL9vb2+OGHH/KUs+z58+fict++fRVu17RpU6xZs0YtMz/KlhEdHV3g8oioaDBwRUSkYfz8/JCSkgLg//JbSVWrVg2tW7cGkJXMWCKRKCxH9oZQWS4N2aENnyc2lhUQEIDExEQAwJdffqn05lQaxHn37l2+gxJ5ERERgeDgYABA69atcySkljVq1Chx+fP8ISXRhAkTFA7/adGihTiUJz4+PltOIlleXl4AAGNjY/Tp00fhazVq1Ehsf7kFTnNTs2ZNcTkmJibPz9+3bx/++OMPsax9+/apNLSqMCnLwSQbAPk8f5BUbGysmHunZ8+e2Y7R5wYPHix+IfX29s5TPZOTkzF27FhxyE9xKKpzNjk5Gc2aNcP48ePzXMfPA0GygRxl6+TlE1KFnp6eGKjMyznx008/KVwnO5Tv06dPCreTDUR/8803BUqYrsmfFVKy+dgMDAwKVFa/fv3EZemQ5c+9fPkST548AZAVoFE0TLA4jl1+251UcnIyKlSogCVLluT5ubKTVRTV+y+b+1DZOUFEmoU5roiINIz0xtfAwEBuQu1evXrh9u3bSE1NxdWrVxXme5DO5gNAaZJq2Z46inoKABBnrwOQI3/L55o1ayYuP3jwAO3bt1e6fUFJc4wAQNu2bZVuW79+fVSvXh0xMTF48uSJeNNdWrVs2RKvXr0CkNUj4PPZ2aKiosQeZc2aNVP4hUqqadOmuHPnTo4E5MrExcUhPDwcHz9+REpKCgRByJZLKS8Js4GsHkvSmdRMTEywb98+1KlTJ09lFLWaNWuiRo0aiI6Oxrt37+TmqPP39xeTsed2jhkYGMDc3BxPnz7N03sBZPXAmDJlSo7H169fj5SUFLk9bdStKM/Zr7/+Oke7njRpEoYNG5a3SqtReno6Xr58ibi4OHz8+FE8B6RBr7ycE8pyQ1WsWFFcVtTjMiMjQ7y+S3MpFoQmf1ZIyU56UNBZDe3t7bFixQqkpaXh4sWLmDx5co5tpL2tACjND1jYx06d7U7WkCFDcvxw0Lp1a3G/Fc1Y2KtXLwQFBQHICpjOmDEDI0eOLNRk/bI90Iqylx8RFQwDV0REGiQ1NVW8ce3atavc2bh69uyJNWvWAMjqaaEocCX7S3twcLDCpLHPnj0Tl5X1WJEdAvH48WOlv8zKfil4+/atwu3UJSoqSlxWlqhaqm7duoiJiUFGRgYiIiJyTUpfkslO8y4vMCn7viYnJ8udMVFWXFwcgKxhWx8/fsz2xVjWu3fvsHfvXjGZs7p4e3tjyZIlEAQBVapUwd69e3ME4zSVmZmZODQlLi4ux5cz2fciKioq1/dCGoiQbf+q6Nixo9zeXIq+XBaGojpnDQ0NYW9vn+NxIyMjGBkZqV5hNfH29saxY8dw8+bNfPfMygtlMzpKxcTEiDO6NWrUqMBJ0jX5s0JK9rhIJJICtf0qVaqgY8eO8Pf3R1BQkNygtDSAU7NmTaWB2sI6doXd7uQFgcuXL5/rDwoTJ07EP//8g6tXryIpKQnr1q3Dpk2b0LZtW3Tv3h29e/eGubm5Wusq21O9KIL0RKQeDFwREWmQ69evizdV0tkEP9eoUSOYm5sjLCwMfn5+SE1NlfvlZPDgwXB1dQWQNbPYwIED5W63Y8cOcdnW1lZh3WRvoGVzJ+VGOuyhMMXGxorLqswmJ7tNUdSvOMkGluTtq2yul3/++UfpcNHPSSQSuYGry5cv4/vvv882HEddLl++LH5hMzU1zRaY03S5vRey59iBAwdw4MABlcpVNmRYnlatWuVp+8JQVOds06ZNVQreFLakpCTMmTNHzCOlSaQz3QHZh27llyZ/VkjJBi3V8br9+/cXe0xeuXIl2+yXsbGxuHPnDoCsYYLKZnZU97ErqnYnHUKeV+XLl8eOHTtw/Phx7NmzBy9fvkR6err4WbRmzRpYWVlh0qRJGDRokNJjpyrZY1UcwWsiyh8GroiINIhsrpqoqCgcPnxY7nbVqlVDWFgYkpKSEBAQIDfIZWVlha+++gp//fUXwsLCMHHiRLi4uKBVq1YoX748wsLCsGfPHjGBctWqVeHo6Kj2fZL9Vbiw5PU1ZIfMFHSYiKaT3dfchgHmlbxhFiEhIZg9e7Y4VNXGxgbjx4+HlZUVqlevLv7C7eHhgUWLFuX5NX/66Se8evUKt2/fRkhICL799lts37491wTEmqCw3ou8DndRx5e/giqqc1YT9hUAFi9eLAYPKlasCCcnJ/To0QP169dHxYoVxfbQq1cvtfZQVIU6h82pqx6FTbbHobQXaUHY29tj2bJl4nBB2cCVr6+vuG/KhgkWhKJjV1TtriDnmba2NkaPHo3Ro0fj7t278PPzg7+/Px48eIDMzEw8ePAA8+fPx+nTp/HHH38UaGi/IAj48OEDgKwhtsbGxvkui4iKlubf5RERlREZGRnZZuHasGGDSs/z8fFR2DtrwYIFMDY2xsaNG3Hnzh04OTnJ3c7AwACbN29W+utj9erVxeSyfn5+ShNHFzXZekuHvCgju01xzkJXFGT3VV5vCtkb95EjR+LXX38t0Ovt2LFDDFoNGjRInIlQXfT09PDHH3/A0dERYWFh8Pf3x/Lly/HLL7+o7TUKi+x7IW92LNm2uHr1agwZMqRI6lUcytI5+/z5c5w9exZAVg+TQ4cO5Wk2x8Imew1QR+8jTf6skPriiy/E5eDgYHTv3r1A5RkZGaFz587w8/NDYGAgPn36JOaWlA4TrF27dq49k9R57DS93cnTqlUrtGrVCrNnz0ZMTAzc3d2xY8cOSCQSBAQE4Pfff8eKFSvyXb70Bz8AaNCggcYEtokod5xVkIhIQ9y6dSvb8BlVyQ6d+py2tjZSUlKQnp4OXV3dHDdpurq66NOnD9zd3WFtba30dWrXri0uyw4t0QSyOXLCw8Nz3V6arLws/OIq+yt6jRo1cqyvVauWuCw7bDC/ZIcafvfdd4XyxaBq1arYtWuXGPw5fvw4/vzzT7W/jrpJ3wttbW25wRfZc0wd74UmK0vnrOw5MXDgQI0LHhgbG4t5rV68eFHg8jT5s0JKNvH5vXv31FKmtDdVcnIy/P39xeVr164ByH2YIKDeY6fp7S431atXx9SpU3HgwAGxZ5iHhweSk5PzXabse92yZcsC15GIig4DV0REGsLHx0dcvnjxIkJCQpT+SafCjo+PV5iX6OLFi9i8eTMEQcCOHTvg7++Pffv2YdeuXTh+/Dj+/fdfbNmyBQ0bNsy1fl27dhWXb926VcC9VS/ZG9Dbt28r3TYsLEwMEHbo0EEj8t8UJukU4zo6OmjTpk2O9WZmZmKi6//++y/bbJT5IU0Ar6urm+1LmLrVq1cPf/75pzj0cNOmTTh16lShvV5BhYeHi19EmzZtCgMDgxzbdOnSRfxi+++//xZp/YpaWTpnZSdFUCURfVHT09ODjY0NACAhIQF3794tUHma/FkhZWNjIw45CwoKKvB1DwB69+4tBgClswNfu3YNnz59AqDaMEF1HjtNb3eqatq0qRh0S01NxZs3b/Jdluy9Urdu3QpcNyIqOgxcERFpAEEQxBvdxo0bo27durk+R3Z4oGzQS9bp06cBZOXEsrW1hYmJCTp16oRu3bqhZcuW4lAGVXTr1k3c/uDBg+LNuCZo0qRJtuDL06dPFW57/Phxcbl3796FXrfCpmzWqZs3b4q9fFq0aIFKlSrJ3a5v374Asr7onDhxokD1kQ4BS0tLU9pj4NGjR+KybP6ivGjbti1WrlwpBnsWL16M69ev56ssdVD2XsgG1RRNgmBiYoJ27doBAK5evSoOGSqNytI5KzssMjIyUuF2b968EfMt5fecyC/Z2WllJ+zID03+rJCqUKGCuM+xsbHicL6CqFSpErp06QIga5hfenq6WK6ZmZlKkyKo89iVhHan6gyHsr2s8tuLVyKRwMvLC0BWb64ePXrkqxwiKh4MXBERaYD79++LN5aq3kx17txZ7Hlw8eJFuTecmZmZALJuzI8ePVqg/CWGhob45ptvAGT1HnFxcVFY3rNnz7B48eJCmVVOkSlTpgDI2ueFCxfKnWntxo0bcHNzAwDUqVMHI0eOLLL6FZaffvpJ7FUlKzY2FsuXLxf/lx4feZycnMTp4H///XcxiPq5tLQ0HDx4UGnPJmngBYB4rGVlZGRg69at2L9/v/hYdHS0wvJyM2DAAHz33Xdi/VxcXBAaGprv8gpi2rRpcvfl3r172LNnD4CsXDPjx49XWMb8+fOhra2NjIwMzJgxA8+ePZO7XXx8PH777TeEhISop/LFoKycs7LnxPnz5+UGdJ8+fYopU6aI18y4uDi19AJS1ZAhQ9C0aVMAWTmZ1q5dq3AI+sWLF7Fz506FZWn6Z4WUk5OTGAQ5cuSIWsrs168fgP/rCe3r65vt8dyo89hperv7+PEjHB0d8b///Q9v375VuN3Ro0fx/PlzAFkBp/r16+fr9U6fPi3u57hx48TeukRUMjA5OxGRBpCdTbBnz54qPadixYqwtrZGQEAA3r59i3v37uX4RXfIkCFiEGLp0qU5pteW5otp3bo1hg0blmuC2smTJ8PPzw///PMP/P39YW9vj+HDh8PKygra2tqIjIzEtWvXEBAQAEEQkJmZid9++02l/Smo4cOHw8vLCwEBAXjw4AEGDhyIUaNG4YsvvkBycjJu3ryJ06dPIyMjA7q6uli+fHmpuHGNi4vDuHHj0LdvX3Tu3BmGhoZ4+vQpjhw5In5RsbGxgb29vcIyKlWqhF9//RWzZs1CSkoKZs2aBVtbW9jZ2cHU1BQSiQQPHz7E+fPnER0dDX19fbRs2VLuENNJkybBx8cHgiBg586dePHiBbp27QojIyOEhYXhzJkzeP78OZo1a4bXr18jISEBBw8eRIcOHdC+fft8HYOpU6ciPDwcx44dQ2JiIpydnXHs2DGYmprmq7z8un//PgYOHIhhw4ahRYsW0NLSwu3bt3HixAmxZ8HUqVOV1qt169aYNm0atm3bhvDwcAwZMgQODg6wsbGBoaEhYmJiEBQUBG9vb3z69AmBgYFwd3dX2JavXLkCANmCeWFhYeLjgOrXHHVT9zl7586dbMOjgKwAguy+tm7dWm5i/MJkaWmJzp07IzAwEB8+fMDQoUMxduxYNGjQAB8/fsTNmzdx4cIFpKWlwdraGv/88w8+ffqEX375BQsWLEDFihULvY7lypXDypUrMWHCBCQkJGDXrl24cuUKBg8eDHNzc6SlpeH58+fw8fER21KjRo1gZ2cntzxN/qyQaty4MXr06IErV67g+vXr8PPzK3CS9t69e0NPTw+pqalYt26d2AszL7MJquvYFUa7e/HiBcLCwgBkH4ooe46Zm5ujQYMGue7n6tWr8fDhQzx8+BCenp7o1q0brK2tYWpqivT0dERGRsLb2xv3798XnzN37tx8zciakJAg5kGsWLEixo4dm+cyiKh4aQlF3SeUiIhy6Nu3L8LCwlC1alUEBgaqfGN28OBB/PTTTwCAr7/+GvPnz8+xzb59+7Blyxa5vRk+16dPH6xbt05pDpnU1FQsXLhQ7HKvSN26dbFixQqFw6IKQ1JSEubMmSNO/y2PgYEBNm7cmOcvKJaWlgAAa2vrbL2FisOWLVuwdetWAMCMGTPg5uamcGa2Fi1aYN++fTA0NMy13Bs3bmD27NnidOHy6OjoYOTIkViwYIHCMvfu3YvVq1crHHbSpk0b/Pnnn3B3d8fatWsBZP0C/nlgVUqVY5+eno5p06YhICAAQNZQtIMHD6q03wUxYcIEMW/K999/j/Xr1yvcb0dHR5VnxNq7d6/SXi9AVu+Mb7/9FhMmTFA4fEZ67JTJb68t2Xbo5uYm5knKC3Wes7LvhSKq1LNXr16IiIjAsGHDsHLlymzrpMdT2bpvvvkGLi4u2dZFR0dj4sSJCpOfV6hQAT/++CP69OmDwYMH4+3bt9DW1kZAQIDcRP6y+6rs/fPw8MCiRYsAZPWmlOZGVOT58+eYMWOGGJxQxNraGr/88ovS3i+a/Fkh9fr1awwePBgfP35EnTp1cPbsWTH3VX7NmDEj2wzBdevWVdiLVRF1HTt1tzvZc14Ree1fHolEglWrVsHDwwPp6elKtzUwMMCyZcswdOjQXMuVZ+nSpTh69CgA4JdffsGoUaPyVQ4RFR/2uCIiKmZPnjwRvyR069YtT78m9uzZUwxcXbx4UW7gavLkyRgzZgxCQkIQFxcnDh8UBAFxcXEIDg7G33//jbi4OHh7e2PJkiVYtWqVwtfU09PDhg0bMHLkSHh4eODOnTt49+4dtLW1YWJiglatWsHe3h729vbQ0dHJw5EoOAMDA+zcuROXLl3CmTNncPfuXcTExEBHRwd169ZF165dMXHiRI2cnj2/OnXqhDFjxmD37t24evUqIiMjoaOjg4YNG8LBwQHjxo1TOZl1x44dceHCBRw5cgR+fn549uwZkpKSUKlSJZibm6NTp04YOXIkzMzMlJbj5OSEli1bwtXVFUFBQfjw4QMqV66MJk2aYNCgQRg8eDC0tbXh7OwMQ0ND7N+/X2mPMFWUK1cOmzZtwtixYxESEoLg4GDMnj0bO3bsEBMmF7apU6eiY8eO2LdvH/7991/ExcXBwMAALVq0wOjRo9GnTx+Vy3JyckL37t1x+PBh3LhxA69fv0Z6ejqqVq2Kpk2bolu3bhg6dGihB+YKW1k5Z2vUqIETJ07A1dUV3t7eePnyJbS0tFCzZk1069YN48aNExNoHzx4EOvXr0diYqLc4EFhatiwIf7++2+cOnUK3t7eCA4ORlxcHMqXLw8zMzN06NABDg4OaNu2ba5lafJnhVSdOnWwaNEiLF68GK9fv8aPP/6IdevWFajM/v37ZwtcqTpMUJa6jp0mtztDQ0P8/PPPcHZ2xpkzZxAYGIjw8HDEx8dDW1sb1apVg6WlJTp16oThw4crzNGYGy8vLxw7dgxA1j0Tg1ZEJRN7XBERERISEjB+/HiEhIRAS0sL58+fh7m5eXFXixRQR08XUg9Ve74QkeZatGgRPDw8AAAuLi5inqn82rlzpxgAO3v2LL744osC15Hy7t69e5gwYQKSk5Nhbm6Ow4cPo1q1asVdLSLKByZnJyIqhVJSUnDlyhVcuXJF6WxCUkZGRvjyyy8BZPXECg4OLuwqEhERaYRffvlFzNe1detWHDhwIN9lpaamisne27Vrx6BVMQkJCcG0adOQnJyMGjVqYO/evQxaEZVgDFwREZVCGRkZmD59OqZPn44zZ86o9BzZRKsGBgaFVDMiIiLNoqOjgw0bNqBLly4QBAE///wz/vrrr3yVtXv3bkRERABAgXtuUf48fvwYEydORGxsLIyNjbFnz55ch7gTkWZj4IqIqBQyMDBA7dq1AWQl501ISFC6fXBwsJj0Wl9fX6X8JURERKVF+fLlsX37djg4OAAAfH19lU6O8DlBEMTJUICsyU46d+5cKHUl5YKCghAfH4/69evjyJEjsLCwKO4qEVEBMTk7EVEpNXLkSGzevBlhYWHo168fBgwYAEtLSxgZGUFHRwfJycl48+YNgoKC4O/vL87qM2fOnBKf8JmIiCivdHV1sXbtWrRq1QojRoxQKWn8o0ePEBAQgJMnT+L58+cAAHNzc/z666+FXV1SYNy4cdDV1UXv3r05PJColGDgioiolJo+fTqePn0KLy8vxMTEiD2qFKlUqRLmzZsHR0fHIqohERGRZtHS0sLEiRNV3n7nzp04d+6c+L+1tTU2b94MIyOjwqgeqUiat5OISgcGroiISilpzg5HR0ecOnUKDx8+RFRUFCQSCYCsIYE1atRA48aNYWtri/79+/NGu4Ro1KgRxo0bBzMzMzRs2LC4q1Om2djYwMrKivlTiMqoZs2a4datW2jRogUcHR3RvXv34q4SEVGpoyUIglDclSAiIiIiIipp0tPTUa4c+wIQERUmBq6IiIiIiIiIiEgjcVZBIiIiIiIiIiLSSAxcERERERERERGRRmLgioiIiIiIiIiINBIDV0REREREREREpJEYuCIiIiIiIiIiIo3EwBUREREREREREWkkBq6IiIiIiIiIiEgjMXBFREREREREREQaiYErIiIiIiIiIiLSSAxcERERERERERGRRmLgioiIiIiIiIiINBIDV0REREREREREpJEYuCIiIiIiIiIiIo3EwBUREREREREREWkkBq6IiIiIiIiIiEgjMXBFREREREREREQa6f8B0vTLCMuorJkAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 15,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 509.15
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: additive-peak\n",
- "peaks = find_peaks(samples)\n",
- "plot_bars(peaks, \"Posterior distribution (additive model)\")"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/blog/aging-curve/index.qmd b/blog/aging-curve/index.qmd
new file mode 100644
index 0000000..85b6981
--- /dev/null
+++ b/blog/aging-curve/index.qmd
@@ -0,0 +1,381 @@
+---
+title: Additive aging curve (draft)
+description: At what age does working memory peak?
+date: today
+draft: true
+jupyter:
+ jupytext:
+ text_representation:
+ extension: .qmd
+ format_name: quarto
+ format_version: '1.0'
+ jupytext_version: 1.16.2
+ kernelspec:
+ display_name: Python 3 (ipykernel)
+ language: python
+ name: python3
+---
+
+::: {.callout-warning}
+This post is a work in progress.
+:::
+
+```{python}
+#| label: black
+#| include: false
+import jupyter_black
+
+jupyter_black.load(lab=False, line_length=79)
+```
+
+Recently, I was involved in designing an experiment where each participant
+received a treatment at a random time $t$, between 5 and 30 minutes. After the
+treatment, each participant produced a binary response. Soon, we realized time
+had more than one effect over the response rate: as $t$ increased, the rate of
+positive responses 1) increased; then 2) plateaued; and finally 3) decreased.
+
+This kind of non-monotonic relationship is common in cognitive and sports research,
+particularly in the relationship between age and performance, where it's
+called an aging curve. For an interesting review of aging curves, see [@Vaci2019],
+where the authors discuss modeling strategies and study the effect of aging over
+the performance of NBA players.
+
+Andrew Gelman wrote about this topic a couple of times in his blog: see his posts
+from [2018](https://statmodeling.stat.columbia.edu/2018/09/07/bothered-non-monotonicity-heres-one-quick-trick-make-happy/)
+and [2023](https://statmodeling.stat.columbia.edu/2023/01/01/how-to-model-a-non-monotonic-relation/),
+where he suggests modeling these relationships using an additive function like
+
+$$g(t) = g_1(t) + g_2(t),$$
+
+where
+$g_1(t)$ is a monotonically increasing function with a right asymptote; and
+$g_2(t)$ is a monotonically decreasing function with a left asymptote.
+
+In this post, I'll analyze an experimental dataset by fitting and comparing
+two different models: a non-parametric bootstrap and two decomposable curves
+like $g(t)$.
+
+## The Digit Span test
+
+The motivation for Gelman's post from 2018 was a study relating age to peak
+cognitive functioning [@Hartshorne2015]. According to the study, some of their
+experiments were conducted through a large scale online experimentation platform:
+
+> Participants in Experiment 2 (N = 10,394; age range = 10–69 years old)
+> [...] were visitors to TestMyBrain.org, who took part in experiments in
+> order to contribute to scientific research and in exchange for performance-
+> related feedback. [...] We continued data collection for each experiment for
+> approximately 1 year, sufficient to obtain around 10,000 participants, which
+> allowed fine-grained age-of-peak-performance analysis.
+
+The data produced by this experiment is available online [@Germine_Hartshorne_2016].
+This dataset contains results for multiple tests, but I'll focus on the Digit Span
+test during this analysis. According to [Cambridge Cognition](https://cambridgecognition.com/digit-span-dgs/):
+
+> Digit Span (DGS) is a measure of verbal short term and working memory that can be used in two formats, Forward Digit Span and Reverse Digit Span. This is a verbal task, with stimuli presented auditorily, and responses spoken by the participant and scored automatically by the software. Participants are presented with a random series of digits, and are asked to repeat them in either the order presented (forward span) or in reverse order (backwards span). While superficially very similar tasks, forward and backwards span rely on somewhat separable cognitive capacities: the simpler forward span task requires verbal working memory and attention, while the backwards span task additionally tests cognitive control and executive function.
+
+Participants are scored according to their longest correctly repeated list of digits.
+
+```{python}
+#| label: digit-span
+#| echo: true
+import polars as pl
+
+digit_span = (
+ pl.read_csv("data/experiment-2.csv")
+ .filter(pl.col("age").is_between(10, 69))
+ .with_columns(
+ y=(pl.col("DigitSpan") - pl.col("DigitSpan").mean()) / pl.col("DigitSpan").std()
+ )
+)
+```
+
+The relationship between age and Digit Span performance for each participant is plotted below:
+
+```{python}
+#| label: digit-span-plot
+from blog import theme
+import seaborn.objects as so
+
+theme.set()
+(
+ so.Plot(digit_span, x="age", y="y")
+ .label(x="Age (years)", y="Performance (z-score)", title="Digit Span")
+ .add(so.Dots())
+)
+```
+
+Visually, it's still unclear if this relationship follows an aging curve, but
+we'll get back to this matter in the next section.
+
+## Bootstrap estimates
+
+In the original paper, the authors describe a bootstrap resampling procedure
+to estimate the distribution of ages of peak performance:
+
+> Estimates and standard errors for age of peak performance were calculated using
+> a bootstrap resampling procedure identical to the one used in Experiment 1
+> but applied to raw performance data. To dampen noise, we smoothed means for each
+> age using a moving 3-year window prior to identifying age of peak performance
+> in each sample. Other methods of dampening noise provide similar results.
+
+Let's decompose this method (as I understand it) into steps:
+
+1. Sample, with replacement, $n$ observations from the dataset;
+2. Calculate the mean performance for each age within the sample;
+3. Repeat steps 1 and 2 $m$ times;
+4. Sort each sample by age and smooth age means using a 3-year rolling average;
+5. Find the age of peak performance for each sample.
+
+```{python}
+#| label: bootstrap
+#| echo: true
+def sample_bootstrap(data: pl.DataFrame):
+ samples = (
+ data.sample(n * m, with_replacement=True, seed=seed)
+ .with_columns(sample=pl.arange(1, n * m + 1) % m)
+ .group_by("sample", "age")
+ .agg(mean=pl.col("y").mean())
+ .sort("sample", "age")
+ .with_columns(smoothed_mean=pl.col("mean").rolling_mean(3).over("sample"))
+ )
+ peak = samples.group_by("sample").agg(
+ age=pl.col("age").get(pl.col("smoothed_mean").arg_max())
+ )
+ return samples, peak
+
+
+n = digit_span.height
+m = 10000
+seed = 37
+samples, peak = sample_bootstrap(digit_span)
+```
+
+This algorithm yields the following bootstrap distribution of ages of peak performance:
+
+```{python}
+#| label: bootstrap-distribution
+def plot_bars(data: pl.DataFrame, title: str):
+ distribution = (
+ data.group_by("age")
+ .agg(count=pl.len())
+ .with_columns(p=pl.col("count") / pl.col("count").sum())
+ )
+ return (
+ so.Plot(distribution, x="age", y="p")
+ .add(so.Bars())
+ .label(
+ title=title,
+ x="Age of peak performance (years)",
+ y="Mass",
+ )
+ )
+
+
+plot_bars(peak, "Bootstrap distribution of smoothed means")
+```
+
+This distribution suggests two important things:
+
+1. The most probable age of peak performance is 33;
+2. Peak performance could happen anywhere between the early 20s and late 30s, except during the late 20s.
+
+Suggestion 2 is probably not true. In fact, this distribution seems like a mixture of two distributions, but I'll get back to this point in the next section. For now, I'll use our bootstrap estimates to replicate figure 3a from the original paper. Using the samples obtained in step 4, for each age mean, I calculated its median and 90% interquantile range, yielding a nonparametric curve:
+
+```{python}
+#| label: bootstrap-curve
+def agg_curve(samples: pl.DataFrame):
+ return samples.group_by("age").agg(
+ mean=pl.col("smoothed_mean").median(),
+ ymin=pl.col("smoothed_mean").quantile(0.05),
+ ymax=pl.col("smoothed_mean").quantile(0.9),
+ )
+
+
+def plot_bands(curve: pl.DataFrame, title: str):
+ return (
+ so.Plot(
+ data=curve,
+ x="age",
+ y="mean",
+ ymin="ymin",
+ ymax="ymax",
+ )
+ .add(so.Line())
+ .add(so.Band())
+ .label(
+ title=title,
+ x="Age (years)",
+ y="Performance (z-score)",
+ )
+ )
+
+
+curve = agg_curve(samples)
+plot_bands(curve, "Bootstrap curve of smoothed means")
+```
+
+Since this curve is empirical, there's not much more than meets the eye here. However, note that it follows the rising, plateauing and falling behavior of an aging curve. There's a steep increase during ages 10 to 20, followed by a plateau between 20 and 30, and a slow decline beginning at 40.
+
+### The language effect
+
+```{python}
+#| label: performance-language
+performance_language = (
+ digit_span.with_columns(
+ language=pl.when(pl.col("english") == 1)
+ .then(pl.lit("English"))
+ .otherwise(pl.lit("Others"))
+ )
+ .group_by("age", "language")
+ .agg(perf=pl.col("y").mean())
+)
+(
+ so.Plot(performance_language, x="age", y="perf", color="language")
+ .add(so.Line())
+ .label(
+ x="Age (years)",
+ y="Performance (z-score)",
+ color="Language",
+ title="Average performance per language",
+ )
+)
+```
+
+```{python}
+#| label: english-span
+english_span = digit_span.filter(pl.col("english") == 1)
+samples, _ = sample_bootstrap(english_span)
+curve = agg_curve(samples)
+plot_bands(curve, "Bootstrap curve of smoothed means (english)")
+```
+
+## Additive functions
+
+$$
+\begin{align}
+g(t) &= g_1(t) + g_2(t) \\
+y &\sim \mathrm{Normal}(g(t), \sigma) \\
+\end{align}
+$$
+
+### Double exponential
+
+$$
+\begin{align}
+g_1(t) &= \alpha + \beta_1 \exp(-\lambda_1 t) \\
+g_2(t) &= \beta_2 \exp(\lambda_2 t) \\
+\end{align}
+$$
+
+```{python}
+#| label: double-exponential
+#| echo: true
+import numpy as np
+import pymc as pm
+
+
+def g(x):
+ return g_1(x) + g_2(x)
+
+
+def g_1(x):
+ return α + β[0] * pm.math.exp(-λ[0] * x)
+
+
+def g_2(x):
+ return β[1] * pm.math.exp(λ[1] * x)
+
+
+age = english_span.get_column("age")
+y = english_span.get_column("y")
+age_range = np.arange(age.min(), age.max() + 1)
+with pm.Model() as double_exponential:
+ t = pm.Data("t", age)
+ α = pm.Normal("α", 0, 1)
+ β = pm.Normal("β", 0, 1, size=2)
+ λ = pm.HalfNormal("λ", 0.004, size=2)
+ μ = pm.Deterministic("μ", g(t))
+ σ = pm.HalfNormal("σ", 1)
+ pm.Normal("y", mu=μ, sigma=σ, observed=y)
+ curve = pm.Deterministic("curve", g(age_range))
+ samples = pm.sample(progressbar=False, target_accept=0.95, random_seed=seed)
+```
+
+```{python}
+#| label: double-exponential-curve
+import arviz as az
+
+
+def summarize_curve(samples: az.InferenceData, name: str = "") -> pl.DataFrame:
+ summary = az.summary(samples, hdi_prob=0.9)
+ summary = pl.DataFrame(summary).with_columns(
+ age=pl.lit(age_range),
+ ymin=pl.col("hdi_5%"),
+ ymax=pl.col("hdi_95%"),
+ name=pl.lit(name),
+ )
+ return summary
+
+
+curve = summarize_curve(samples.posterior.curve)
+plot_bands(curve, "Posterior curve (double exponential)")
+```
+
+```{python}
+#| label: double-exponential-peak
+def find_peaks(samples):
+ peak_ages = samples.posterior.curve.argmax(axis=2).to_numpy().flatten() + age.min()
+ peaks = pl.DataFrame({"age": peak_ages})
+ return peaks
+
+
+peaks = find_peaks(samples)
+plot_bars(peaks, "Posterior distribution (double exponential)")
+```
+
+### Double logistic
+
+[@Lipovetsky2010]
+
+$$
+\begin{align}
+g_1(t) &= \alpha_1 + \frac{\alpha_2 - \alpha_1}{1 + \exp(\beta_1 - \lambda_1 t)} \\
+g_2(t) &= \frac{\alpha_3 - \alpha_2}{1 + \exp(\beta_2 + \lambda_2 t)}
+\end{align}
+$$
+
+```{python}
+#| label: double-logistic
+#| echo: true
+
+
+def g_1(t):
+ return α[0] + (α[1] - α[0]) / (1 + pm.math.exp(β[0] - λ[0] * t))
+
+
+def g_2(t):
+ return (α[2] - α[1]) / (1 + pm.math.exp(β[1] + λ[1] * t))
+
+
+with pm.Model() as double_logistic:
+ t = pm.Data("t", age)
+ α = pm.Normal("α", 0, 1, size=3)
+ β = pm.Normal("β", 0, 1, size=2)
+ λ = pm.HalfNormal("λ", 1, size=2)
+ μ = pm.Deterministic("μ", g(t))
+ σ = pm.HalfNormal("σ", 1)
+ pm.Normal("y", mu=μ, sigma=σ, observed=y)
+ curve = pm.Deterministic("curve", g(age_range))
+ samples = pm.sample(progressbar=False, target_accept=0.95, random_seed=seed)
+```
+
+```{python}
+curve = summarize_curve(samples.posterior.curve)
+plot_bands(curve, "Posterior curve (double logistic)")
+```
+
+```{python}
+peaks = find_peaks(samples)
+plot_bars(peaks, "Posterior distribution (double logistic)")
+```
diff --git a/blog/aging-curve/index_files/execute-results/html.json b/blog/aging-curve/index_files/execute-results/html.json
deleted file mode 100644
index 3081991..0000000
--- a/blog/aging-curve/index_files/execute-results/html.json
+++ /dev/null
@@ -1,11 +0,0 @@
-{
- "hash": "ff455acec4a5c1e4b65cb1b849ba3ea5",
- "result": {
- "markdown": "---\ntitle: Additive aging curve\ndate: today\n---\n\n::: {.callout-warning}\nThis post is a work in progress.\n:::\n\nRecently, I helped design an experiment measuring a binary response against a\ncontinuous variable. If the user abandoned their cart at time zero, then we\ndelayed for a variable number of minutes before reminding them to finish their\npurchase. The delay has a non-monotonic relationship to the response:\nas the delay increases, so does the purchase rate; then the rate peaks; and finally it decreases.\n\nCausally, we may decompose this process into two: as the delay increases,\nthe user 1) becomes more available for and 2) loses interest in purchasing\nthe product. This is a common phenomena in different time-based scenarios. In\nsports, the \"aging curve\" refers to how a player's performance increases with\nage, then decreases. As the player gets older, they get 1) better at the sport\nand 2) physically weaker.\n\nAndrew Gelman wrote about this a couple of times in his blog: see his posts\nfrom [2018](https://statmodeling.stat.columbia.edu/2018/09/07/bothered-non-monotonicity-heres-one-quick-trick-make-happy/)\nand [2023](https://statmodeling.stat.columbia.edu/2023/01/01/how-to-model-a-non-monotonic-relation/), \nwhere Gelman suggests modeling these processes using an additive function like:\n\n$$g(x) = g_1(x) + g_2(x),$$\n\nwhere \n$g_1(x)$ is a monotonically increasing function with a right asymptote; and \n$g_2(x)$ is a monotonically decreasing function with a left asymptote.\n\nIn this post, we'll analyse an experimental dataset by fitting and comparing\nthree different models: a non-parametric bootstrap, a semi-parametric spline\nand a fully parametric decomposable curve like $g(x)$.\n\n## The Digit Span test\n\nThe motivation for Gelman's 2018 post was a study relating age to peak cognitive \nfunctioning [@Hartshorne2015]. According to the study, one of their experiments\nwas a large scale online experimentation platform:\n\n> Participants in Experiment 2 (N = 10,394; age range = 10–69 years old) [...]\n> were visitors to TestMyBrain.org, who took part in experiments in order to\n> contribute to scientific research and in exchange for performance-related\n> feedback. [...] We continued data collection for each experiment for approximately\n> 1 year, sufficient to obtain around 10,000 participants, which allowed fine-grained\n> age-of-peak-performance analysis.\n\nThe dataset for Experiment 2 is available online [@Germine_Hartshorne_2016] and \nincludes results of the Digit Span verbal working memory test, part of the Wechsler \nAdult Intelligence Scale (WAIS) and Wechsler Memory Scale (WMS) supertests. In the \nDigit Span test, subjects must repeat lists of digits, either in the same or reversed \norder.\n\n\n\nLet's plot the relationship between age and Digit Span performance:\n\n::: {#cell-digit-span-plot .cell execution_count=2}\n\n::: {.cell-output .cell-output-display execution_count=2}\n{#digit-span-plot width=599 height=445}\n:::\n:::\n\n\nVisually, it's still unclear if this relationship follows an aging curve, but we'll get back to this matter in the next section.\n\n## Bootstrap estimates\n\nIn the original paper, the authors describe a bootstrap resampling procedure\nto estimate the distribution of ages of peak performance:\n\n> Estimates and standard errors for age of peak performance were calculated using\n> a bootstrap resampling procedure identical to the one used in Experiment 1\n> but applied to raw performance data. To dampen noise, we smoothed means for each\n> age using a moving 3-year window prior to identifying age of peak performance\n> in each sample. Other methods of dampening noise provide similar results.\n\nLet's decompose this method (as I understand it) into steps:\n\n1. With replacement, sample $n$ observations from the dataset;\n2. Calculate the mean performance for each sample and age;\n3. Repeat steps 1 and 2 $m$ times to get multiple samples;\n4. Sort each sample by age and smooth age means using a 3-year rolling average;\n5. Find the age of peak performance for each sample.\n\n::: {#bootstrap .cell filename='Bootstrap Model' execution_count=3}\n``` {.python .cell-code}\nn = experiment.height\nm = 10000\nnm = n * m\nseed = 37\nsamples = (\n experiment.sample(nm, with_replacement=True, seed=seed)\n .with_columns(sample=pl.arange(1, nm + 1) % m)\n .group_by(\"sample\", \"age\")\n .agg(mean=pl.col(\"y\").mean())\n .sort(\"sample\", \"age\")\n .with_columns(smoothed_mean=pl.col(\"mean\").rolling_mean(3).over(\"sample\"))\n)\npeak_performance = samples.group_by(\"sample\").agg(\n age=pl.col(\"age\").get(pl.col(\"smoothed_mean\").arg_max())\n)\n```\n:::\n\n\nThis yields the following bootstrap distribution of ages of peak performance:\n\n::: {#cell-bootstrap-distribution .cell execution_count=4}\n\n::: {.cell-output .cell-output-display execution_count=4}\n{#bootstrap-distribution width=599 height=445}\n:::\n:::\n\n\nThis distribution suggests two important things:\n\n1. The most probable age of peak performance is, by far, 33;\n2. There is a non-negligible probability that the age of peak performance happens in the early 20s, but a negligible probability that it happens in the late 20s.\n\nThing 2 certainly deserves attention. This is possibly caused by a confound variable or some measuring error, but I won't investigate this any further. Instead, let's get back to estimating curves. We will use the samples from step 4 to summarize the distribution of mean performances. For each age, we calculate the mean and 90% interquantile range, yielding a nonparametric curve:\n\n::: {#cell-bootstrap-curve .cell execution_count=5}\n\n::: {.cell-output .cell-output-display execution_count=5}\n{#bootstrap-curve width=599 height=445}\n:::\n:::\n\n\nThis figure is analogue to figure ... in the paper. Since this is an entirely empirical curve, there isn't much to interpret here (maybe unitary changes?). However, the curve shape indicates an aging-curve-likeness.\n\n## Penalized splines\n\nSplines are wiggly curves...\n\n$$\n\\begin{align}\ng(x) &= \\alpha + Z \\bf{b} \\\\\ny &\\sim \\mathrm{Normal}(g(x), \\sigma) \\\\\n\\alpha &\\sim \\mathrm{Student}(3, 0, 0.1) \\\\\n\\sigma &\\sim \\mathrm{HalfCauchy}(1)\n\\end{align}\n$$\n\nPolynomials have runge swings...\n\nWe could make assumptions about the data generating process to help us pick the number of knots. Instead, let's pick an arbitrary large number of knots (say, 15) and let the model itself learn how wiggly the curve should be.\n\n$$\n\\begin{align}\nb &= \\tau \\bf{z} \\\\\n\\tau &\\sim \\mathrm{HalfCauchy}(1) \\\\\n\\bf{z} &\\sim \\mathrm{Normal}(0, 1)\n\\end{align}\n$$\n\nhttps://www.pymc.io/projects/examples/en/latest/howto/spline.html \nhttps://www.tjmahr.com/random-effects-penalized-splines-same-thing/ \nhttps://elevanth.org/blog/2017/09/07/metamorphosis-multilevel-model/ \n\n\n\n::: {#spline-model .cell filename='Spline Model' execution_count=7}\n``` {.python .cell-code}\nimport pymc as pm\n\nwith pm.Model() as spline:\n Z = pm.ConstantData(\"Z\", Z)\n α = pm.StudentT(\"α\", 3, 0, sigma=0.1)\n τ = pm.HalfCauchy(\"τ\", 1)\n z = pm.Normal(\"z\", 0, 1, size=Z.shape[1])\n b = pm.Deterministic(\"b\", τ * z)\n μ = pm.Deterministic(\"μ\", α + pm.math.dot(Z, b.T))\n σ = pm.HalfCauchy(\"σ\", 1)\n pm.Normal(\"y\", μ, σ, observed=y)\n```\n:::\n\n\n::: {#cell-spline-graph .cell execution_count=8}\n\n::: {.cell-output .cell-output-display execution_count=8}\n{#spline-graph}\n:::\n:::\n\n\n\n\n::: {#cell-spline-plot .cell 0='s' 1='p' 2='l' 3='i' 4='n' 5='e' 6='-' 7='p' 8='l' 9='o' 10='t' execution_count=10}\n\n::: {.cell-output .cell-output-display execution_count=10}\n{#spline-plot width=599 height=445}\n:::\n:::\n\n\n## Two component function\n\nAll intervals are 80% credibility...\n\n$$\n\\begin{align}\ng_1(x) &= \\alpha_1 + \\beta_1 \\exp(-\\lambda_1 x) \\\\\ng_2(x) &= \\alpha_2 + \\beta_2 (1 - \\exp(-\\lambda_2 x)) \\\\\ng(x) &= g_1(x) + g_2(x) \\\\\n &= \\alpha + \\beta_1 \\exp(-\\lambda_1 x) + \\beta_2 (1 - \\exp(-\\lambda_2 x))\n\\end{align}\n$$\n\n$$\n\\begin{align}\ny &\\sim \\mathrm{Normal}(g(x), \\sigma) \\\\\n\\alpha &\\sim \\mathrm{Normal}(0, 2) \\\\\n\\lambda &\\sim \\mathrm{Exponential}(0.01) \\\\\n\\sigma &\\sim \\mathrm{Exponential}(1) \\\\\n\\end{align}\n$$\n\n::: {#cell-decomposable-models-additive .cell filename='Additive Model' execution_count=11}\n``` {.python .cell-code}\ndef g(x):\n y = α[0] * pm.math.exp(-λ[0] * x) + α[1] + α[2] * (1 - pm.math.exp(-λ[1] * x))\n return y\n\n\nwith pm.Model() as model:\n x = pm.ConstantData(\"x\", x)\n α = pm.Normal(\"alpha\", 0, 2, size=3)\n λ = pm.HalfNormal(\"lambda\", 0.01, size=2)\n μ = pm.Deterministic(\"mu\", g(x))\n σ = pm.HalfNormal(\"sigma\", 1)\n pm.Normal(\"observed\", mu=μ, sigma=σ, observed=y)\n prediction = pm.Deterministic(\"prediction\", g(x_range))\n peak = pm.Deterministic(\n \"peak\", pm.math.log(α[0] * λ[0] / (α[2] * λ[1])) / (λ[0] - λ[1])\n )\n slope = pm.Deterministic(\n \"slope\",\n pm.math.log(α[0] * λ[0] ** 2 / (α[2] * λ[1] ** 2)) / (λ[0] - λ[1]),\n )\n # traces = pm.sample_prior_predictive(samples=2000, random_seed=seed)\n traces = pm.sample(progressbar=False, random_seed=seed)\n\n# add_model(fig, traces.prior.prediction, \"Prior Curves (80% Coverage)\")\nadd_model(fig, traces.posterior.prediction, \"Posterior Curves (80% Coverage)\")\n```\n\n::: {.cell-output .cell-output-display execution_count=11}\n{#decomposable-models-additive width=599 height=445}\n:::\n:::\n\n\n$$d/dx g(x) = a_2 b_2 e^(b_2 (-x)) - a_1 b_1 e^(b_1 (-x))$$\n$$x = \\frac{\\log(\\frac{a_1 b_1}{a_2 b_2})}{b_1 - b_2}$$\n\n::: {#decomposable-models-peak .cell execution_count=12}\n\n::: {#decomposable-models-peak-1 .cell-output .cell-output-display execution_count=12}\n```\narray([,\n ], dtype=object)\n```\n:::\n\n::: {.cell-output .cell-output-display}\n{#decomposable-models-peak-2 width=1217 height=496}\n:::\n:::\n\n\n",
- "supporting": [
- "index_files/figure-html"
- ],
- "filters": [],
- "includes": {}
- }
-}
diff --git a/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.css b/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.css
deleted file mode 100644
index fa6b6e6..0000000
--- a/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.css
+++ /dev/null
@@ -1,2078 +0,0 @@
-/*!
- * Bootstrap Icons v1.11.1 (https://icons.getbootstrap.com/)
- * Copyright 2019-2023 The Bootstrap Authors
- * Licensed under MIT (https://github.com/twbs/icons/blob/main/LICENSE)
- */
-
-@font-face {
- font-display: block;
- font-family: "bootstrap-icons";
- src:
-url("./bootstrap-icons.woff?2820a3852bdb9a5832199cc61cec4e65") format("woff");
-}
-
-.bi::before,
-[class^="bi-"]::before,
-[class*=" bi-"]::before {
- display: inline-block;
- font-family: bootstrap-icons !important;
- font-style: normal;
- font-weight: normal !important;
- font-variant: normal;
- text-transform: none;
- line-height: 1;
- vertical-align: -.125em;
- -webkit-font-smoothing: antialiased;
- -moz-osx-font-smoothing: grayscale;
-}
-
-.bi-123::before { content: "\f67f"; }
-.bi-alarm-fill::before { content: "\f101"; }
-.bi-alarm::before { content: "\f102"; }
-.bi-align-bottom::before { content: "\f103"; }
-.bi-align-center::before { content: "\f104"; }
-.bi-align-end::before { content: "\f105"; }
-.bi-align-middle::before { content: "\f106"; }
-.bi-align-start::before { content: "\f107"; }
-.bi-align-top::before { content: "\f108"; }
-.bi-alt::before { content: "\f109"; }
-.bi-app-indicator::before { content: "\f10a"; }
-.bi-app::before { content: "\f10b"; }
-.bi-archive-fill::before { content: "\f10c"; }
-.bi-archive::before { content: "\f10d"; }
-.bi-arrow-90deg-down::before { content: "\f10e"; }
-.bi-arrow-90deg-left::before { content: "\f10f"; }
-.bi-arrow-90deg-right::before { content: "\f110"; }
-.bi-arrow-90deg-up::before { content: "\f111"; }
-.bi-arrow-bar-down::before { content: "\f112"; }
-.bi-arrow-bar-left::before { content: "\f113"; }
-.bi-arrow-bar-right::before { content: "\f114"; }
-.bi-arrow-bar-up::before { content: "\f115"; }
-.bi-arrow-clockwise::before { content: "\f116"; }
-.bi-arrow-counterclockwise::before { content: "\f117"; }
-.bi-arrow-down-circle-fill::before { content: "\f118"; }
-.bi-arrow-down-circle::before { content: "\f119"; }
-.bi-arrow-down-left-circle-fill::before { content: "\f11a"; }
-.bi-arrow-down-left-circle::before { content: "\f11b"; }
-.bi-arrow-down-left-square-fill::before { content: "\f11c"; }
-.bi-arrow-down-left-square::before { content: "\f11d"; }
-.bi-arrow-down-left::before { content: "\f11e"; }
-.bi-arrow-down-right-circle-fill::before { content: "\f11f"; }
-.bi-arrow-down-right-circle::before { content: "\f120"; }
-.bi-arrow-down-right-square-fill::before { content: "\f121"; }
-.bi-arrow-down-right-square::before { content: "\f122"; }
-.bi-arrow-down-right::before { content: "\f123"; }
-.bi-arrow-down-short::before { content: "\f124"; }
-.bi-arrow-down-square-fill::before { content: "\f125"; }
-.bi-arrow-down-square::before { content: "\f126"; }
-.bi-arrow-down-up::before { content: "\f127"; }
-.bi-arrow-down::before { content: "\f128"; }
-.bi-arrow-left-circle-fill::before { content: "\f129"; }
-.bi-arrow-left-circle::before { content: "\f12a"; }
-.bi-arrow-left-right::before { content: "\f12b"; }
-.bi-arrow-left-short::before { content: "\f12c"; }
-.bi-arrow-left-square-fill::before { content: "\f12d"; }
-.bi-arrow-left-square::before { content: "\f12e"; }
-.bi-arrow-left::before { content: "\f12f"; }
-.bi-arrow-repeat::before { content: "\f130"; }
-.bi-arrow-return-left::before { content: "\f131"; }
-.bi-arrow-return-right::before { content: "\f132"; }
-.bi-arrow-right-circle-fill::before { content: "\f133"; }
-.bi-arrow-right-circle::before { content: "\f134"; }
-.bi-arrow-right-short::before { content: "\f135"; }
-.bi-arrow-right-square-fill::before { content: "\f136"; }
-.bi-arrow-right-square::before { content: "\f137"; }
-.bi-arrow-right::before { content: "\f138"; }
-.bi-arrow-up-circle-fill::before { content: "\f139"; }
-.bi-arrow-up-circle::before { content: "\f13a"; }
-.bi-arrow-up-left-circle-fill::before { content: "\f13b"; }
-.bi-arrow-up-left-circle::before { content: "\f13c"; }
-.bi-arrow-up-left-square-fill::before { content: "\f13d"; }
-.bi-arrow-up-left-square::before { content: "\f13e"; }
-.bi-arrow-up-left::before { content: "\f13f"; }
-.bi-arrow-up-right-circle-fill::before { content: "\f140"; }
-.bi-arrow-up-right-circle::before { content: "\f141"; }
-.bi-arrow-up-right-square-fill::before { content: "\f142"; }
-.bi-arrow-up-right-square::before { content: "\f143"; }
-.bi-arrow-up-right::before { content: "\f144"; }
-.bi-arrow-up-short::before { content: "\f145"; }
-.bi-arrow-up-square-fill::before { content: "\f146"; }
-.bi-arrow-up-square::before { content: "\f147"; }
-.bi-arrow-up::before { content: "\f148"; }
-.bi-arrows-angle-contract::before { content: "\f149"; }
-.bi-arrows-angle-expand::before { content: "\f14a"; }
-.bi-arrows-collapse::before { content: "\f14b"; }
-.bi-arrows-expand::before { content: "\f14c"; }
-.bi-arrows-fullscreen::before { content: "\f14d"; }
-.bi-arrows-move::before { content: "\f14e"; }
-.bi-aspect-ratio-fill::before { content: "\f14f"; }
-.bi-aspect-ratio::before { content: "\f150"; }
-.bi-asterisk::before { content: "\f151"; }
-.bi-at::before { content: "\f152"; }
-.bi-award-fill::before { content: "\f153"; }
-.bi-award::before { content: "\f154"; }
-.bi-back::before { content: "\f155"; }
-.bi-backspace-fill::before { content: "\f156"; }
-.bi-backspace-reverse-fill::before { content: "\f157"; }
-.bi-backspace-reverse::before { content: "\f158"; }
-.bi-backspace::before { content: "\f159"; }
-.bi-badge-3d-fill::before { content: "\f15a"; }
-.bi-badge-3d::before { content: "\f15b"; }
-.bi-badge-4k-fill::before { content: "\f15c"; }
-.bi-badge-4k::before { content: "\f15d"; }
-.bi-badge-8k-fill::before { content: "\f15e"; }
-.bi-badge-8k::before { content: "\f15f"; }
-.bi-badge-ad-fill::before { content: "\f160"; }
-.bi-badge-ad::before { content: "\f161"; }
-.bi-badge-ar-fill::before { content: "\f162"; }
-.bi-badge-ar::before { content: "\f163"; }
-.bi-badge-cc-fill::before { content: "\f164"; }
-.bi-badge-cc::before { content: "\f165"; }
-.bi-badge-hd-fill::before { content: "\f166"; }
-.bi-badge-hd::before { content: "\f167"; }
-.bi-badge-tm-fill::before { content: "\f168"; }
-.bi-badge-tm::before { content: "\f169"; }
-.bi-badge-vo-fill::before { content: "\f16a"; }
-.bi-badge-vo::before { content: "\f16b"; }
-.bi-badge-vr-fill::before { content: "\f16c"; }
-.bi-badge-vr::before { content: "\f16d"; }
-.bi-badge-wc-fill::before { content: "\f16e"; }
-.bi-badge-wc::before { content: "\f16f"; }
-.bi-bag-check-fill::before { content: "\f170"; }
-.bi-bag-check::before { content: "\f171"; }
-.bi-bag-dash-fill::before { content: "\f172"; }
-.bi-bag-dash::before { content: "\f173"; }
-.bi-bag-fill::before { content: "\f174"; }
-.bi-bag-plus-fill::before { content: "\f175"; }
-.bi-bag-plus::before { content: "\f176"; }
-.bi-bag-x-fill::before { content: "\f177"; }
-.bi-bag-x::before { content: "\f178"; }
-.bi-bag::before { content: "\f179"; }
-.bi-bar-chart-fill::before { content: "\f17a"; }
-.bi-bar-chart-line-fill::before { content: "\f17b"; }
-.bi-bar-chart-line::before { content: "\f17c"; }
-.bi-bar-chart-steps::before { content: "\f17d"; }
-.bi-bar-chart::before { content: "\f17e"; }
-.bi-basket-fill::before { content: "\f17f"; }
-.bi-basket::before { content: "\f180"; }
-.bi-basket2-fill::before { content: "\f181"; }
-.bi-basket2::before { content: "\f182"; }
-.bi-basket3-fill::before { content: "\f183"; }
-.bi-basket3::before { content: "\f184"; }
-.bi-battery-charging::before { content: "\f185"; }
-.bi-battery-full::before { content: "\f186"; }
-.bi-battery-half::before { content: "\f187"; }
-.bi-battery::before { content: "\f188"; }
-.bi-bell-fill::before { content: "\f189"; }
-.bi-bell::before { content: "\f18a"; }
-.bi-bezier::before { content: "\f18b"; }
-.bi-bezier2::before { content: "\f18c"; }
-.bi-bicycle::before { content: "\f18d"; }
-.bi-binoculars-fill::before { content: "\f18e"; }
-.bi-binoculars::before { content: "\f18f"; }
-.bi-blockquote-left::before { content: "\f190"; }
-.bi-blockquote-right::before { content: "\f191"; }
-.bi-book-fill::before { content: "\f192"; }
-.bi-book-half::before { content: "\f193"; }
-.bi-book::before { content: "\f194"; }
-.bi-bookmark-check-fill::before { content: "\f195"; }
-.bi-bookmark-check::before { content: "\f196"; }
-.bi-bookmark-dash-fill::before { content: "\f197"; }
-.bi-bookmark-dash::before { content: "\f198"; }
-.bi-bookmark-fill::before { content: "\f199"; }
-.bi-bookmark-heart-fill::before { content: "\f19a"; }
-.bi-bookmark-heart::before { content: "\f19b"; }
-.bi-bookmark-plus-fill::before { content: "\f19c"; }
-.bi-bookmark-plus::before { content: "\f19d"; }
-.bi-bookmark-star-fill::before { content: "\f19e"; }
-.bi-bookmark-star::before { content: "\f19f"; }
-.bi-bookmark-x-fill::before { content: "\f1a0"; }
-.bi-bookmark-x::before { content: "\f1a1"; }
-.bi-bookmark::before { content: "\f1a2"; }
-.bi-bookmarks-fill::before { content: "\f1a3"; }
-.bi-bookmarks::before { content: "\f1a4"; }
-.bi-bookshelf::before { content: "\f1a5"; }
-.bi-bootstrap-fill::before { content: "\f1a6"; }
-.bi-bootstrap-reboot::before { content: "\f1a7"; }
-.bi-bootstrap::before { content: "\f1a8"; }
-.bi-border-all::before { content: "\f1a9"; }
-.bi-border-bottom::before { content: "\f1aa"; }
-.bi-border-center::before { content: "\f1ab"; }
-.bi-border-inner::before { content: "\f1ac"; }
-.bi-border-left::before { content: "\f1ad"; }
-.bi-border-middle::before { content: "\f1ae"; }
-.bi-border-outer::before { content: "\f1af"; }
-.bi-border-right::before { content: "\f1b0"; }
-.bi-border-style::before { content: "\f1b1"; }
-.bi-border-top::before { content: "\f1b2"; }
-.bi-border-width::before { content: "\f1b3"; }
-.bi-border::before { content: "\f1b4"; }
-.bi-bounding-box-circles::before { content: "\f1b5"; }
-.bi-bounding-box::before { content: "\f1b6"; }
-.bi-box-arrow-down-left::before { content: "\f1b7"; }
-.bi-box-arrow-down-right::before { content: "\f1b8"; }
-.bi-box-arrow-down::before { content: "\f1b9"; }
-.bi-box-arrow-in-down-left::before { content: "\f1ba"; }
-.bi-box-arrow-in-down-right::before { content: "\f1bb"; }
-.bi-box-arrow-in-down::before { content: "\f1bc"; }
-.bi-box-arrow-in-left::before { content: "\f1bd"; }
-.bi-box-arrow-in-right::before { content: "\f1be"; }
-.bi-box-arrow-in-up-left::before { content: "\f1bf"; }
-.bi-box-arrow-in-up-right::before { content: "\f1c0"; }
-.bi-box-arrow-in-up::before { content: "\f1c1"; }
-.bi-box-arrow-left::before { content: "\f1c2"; }
-.bi-box-arrow-right::before { content: "\f1c3"; }
-.bi-box-arrow-up-left::before { content: "\f1c4"; }
-.bi-box-arrow-up-right::before { content: "\f1c5"; }
-.bi-box-arrow-up::before { content: "\f1c6"; }
-.bi-box-seam::before { content: "\f1c7"; }
-.bi-box::before { content: "\f1c8"; }
-.bi-braces::before { content: "\f1c9"; }
-.bi-bricks::before { content: "\f1ca"; }
-.bi-briefcase-fill::before { content: "\f1cb"; }
-.bi-briefcase::before { content: "\f1cc"; }
-.bi-brightness-alt-high-fill::before { content: "\f1cd"; }
-.bi-brightness-alt-high::before { content: "\f1ce"; }
-.bi-brightness-alt-low-fill::before { content: "\f1cf"; }
-.bi-brightness-alt-low::before { content: "\f1d0"; }
-.bi-brightness-high-fill::before { content: "\f1d1"; }
-.bi-brightness-high::before { content: "\f1d2"; }
-.bi-brightness-low-fill::before { content: "\f1d3"; }
-.bi-brightness-low::before { content: "\f1d4"; }
-.bi-broadcast-pin::before { content: "\f1d5"; }
-.bi-broadcast::before { content: "\f1d6"; }
-.bi-brush-fill::before { content: "\f1d7"; }
-.bi-brush::before { content: "\f1d8"; }
-.bi-bucket-fill::before { content: "\f1d9"; }
-.bi-bucket::before { content: "\f1da"; }
-.bi-bug-fill::before { content: "\f1db"; }
-.bi-bug::before { content: "\f1dc"; }
-.bi-building::before { content: "\f1dd"; }
-.bi-bullseye::before { content: "\f1de"; }
-.bi-calculator-fill::before { content: "\f1df"; }
-.bi-calculator::before { content: "\f1e0"; }
-.bi-calendar-check-fill::before { content: "\f1e1"; }
-.bi-calendar-check::before { content: "\f1e2"; }
-.bi-calendar-date-fill::before { content: "\f1e3"; }
-.bi-calendar-date::before { content: "\f1e4"; }
-.bi-calendar-day-fill::before { content: "\f1e5"; }
-.bi-calendar-day::before { content: "\f1e6"; }
-.bi-calendar-event-fill::before { content: "\f1e7"; }
-.bi-calendar-event::before { content: "\f1e8"; }
-.bi-calendar-fill::before { content: "\f1e9"; }
-.bi-calendar-minus-fill::before { content: "\f1ea"; }
-.bi-calendar-minus::before { content: "\f1eb"; }
-.bi-calendar-month-fill::before { content: "\f1ec"; }
-.bi-calendar-month::before { content: "\f1ed"; }
-.bi-calendar-plus-fill::before { content: "\f1ee"; }
-.bi-calendar-plus::before { content: "\f1ef"; }
-.bi-calendar-range-fill::before { content: "\f1f0"; }
-.bi-calendar-range::before { content: "\f1f1"; }
-.bi-calendar-week-fill::before { content: "\f1f2"; }
-.bi-calendar-week::before { content: "\f1f3"; }
-.bi-calendar-x-fill::before { content: "\f1f4"; }
-.bi-calendar-x::before { content: "\f1f5"; }
-.bi-calendar::before { content: "\f1f6"; }
-.bi-calendar2-check-fill::before { content: "\f1f7"; }
-.bi-calendar2-check::before { content: "\f1f8"; }
-.bi-calendar2-date-fill::before { content: "\f1f9"; }
-.bi-calendar2-date::before { content: "\f1fa"; }
-.bi-calendar2-day-fill::before { content: "\f1fb"; }
-.bi-calendar2-day::before { content: "\f1fc"; }
-.bi-calendar2-event-fill::before { content: "\f1fd"; }
-.bi-calendar2-event::before { content: "\f1fe"; }
-.bi-calendar2-fill::before { content: "\f1ff"; }
-.bi-calendar2-minus-fill::before { content: "\f200"; }
-.bi-calendar2-minus::before { content: "\f201"; }
-.bi-calendar2-month-fill::before { content: "\f202"; }
-.bi-calendar2-month::before { content: "\f203"; }
-.bi-calendar2-plus-fill::before { content: "\f204"; }
-.bi-calendar2-plus::before { content: "\f205"; }
-.bi-calendar2-range-fill::before { content: "\f206"; }
-.bi-calendar2-range::before { content: "\f207"; }
-.bi-calendar2-week-fill::before { content: "\f208"; }
-.bi-calendar2-week::before { content: "\f209"; }
-.bi-calendar2-x-fill::before { content: "\f20a"; }
-.bi-calendar2-x::before { content: "\f20b"; }
-.bi-calendar2::before { content: "\f20c"; }
-.bi-calendar3-event-fill::before { content: "\f20d"; }
-.bi-calendar3-event::before { content: "\f20e"; }
-.bi-calendar3-fill::before { content: "\f20f"; }
-.bi-calendar3-range-fill::before { content: "\f210"; }
-.bi-calendar3-range::before { content: "\f211"; }
-.bi-calendar3-week-fill::before { content: "\f212"; }
-.bi-calendar3-week::before { content: "\f213"; }
-.bi-calendar3::before { content: "\f214"; }
-.bi-calendar4-event::before { content: "\f215"; }
-.bi-calendar4-range::before { content: "\f216"; }
-.bi-calendar4-week::before { content: "\f217"; }
-.bi-calendar4::before { content: "\f218"; }
-.bi-camera-fill::before { content: "\f219"; }
-.bi-camera-reels-fill::before { content: "\f21a"; }
-.bi-camera-reels::before { content: "\f21b"; }
-.bi-camera-video-fill::before { content: "\f21c"; }
-.bi-camera-video-off-fill::before { content: "\f21d"; }
-.bi-camera-video-off::before { content: "\f21e"; }
-.bi-camera-video::before { content: "\f21f"; }
-.bi-camera::before { content: "\f220"; }
-.bi-camera2::before { content: "\f221"; }
-.bi-capslock-fill::before { content: "\f222"; }
-.bi-capslock::before { content: "\f223"; }
-.bi-card-checklist::before { content: "\f224"; }
-.bi-card-heading::before { content: "\f225"; }
-.bi-card-image::before { content: "\f226"; }
-.bi-card-list::before { content: "\f227"; }
-.bi-card-text::before { content: "\f228"; }
-.bi-caret-down-fill::before { content: "\f229"; }
-.bi-caret-down-square-fill::before { content: "\f22a"; }
-.bi-caret-down-square::before { content: "\f22b"; }
-.bi-caret-down::before { content: "\f22c"; }
-.bi-caret-left-fill::before { content: "\f22d"; }
-.bi-caret-left-square-fill::before { content: "\f22e"; }
-.bi-caret-left-square::before { content: "\f22f"; }
-.bi-caret-left::before { content: "\f230"; }
-.bi-caret-right-fill::before { content: "\f231"; }
-.bi-caret-right-square-fill::before { content: "\f232"; }
-.bi-caret-right-square::before { content: "\f233"; }
-.bi-caret-right::before { content: "\f234"; }
-.bi-caret-up-fill::before { content: "\f235"; }
-.bi-caret-up-square-fill::before { content: "\f236"; }
-.bi-caret-up-square::before { content: "\f237"; }
-.bi-caret-up::before { content: "\f238"; }
-.bi-cart-check-fill::before { content: "\f239"; }
-.bi-cart-check::before { content: "\f23a"; }
-.bi-cart-dash-fill::before { content: "\f23b"; }
-.bi-cart-dash::before { content: "\f23c"; }
-.bi-cart-fill::before { content: "\f23d"; }
-.bi-cart-plus-fill::before { content: "\f23e"; }
-.bi-cart-plus::before { content: "\f23f"; }
-.bi-cart-x-fill::before { content: "\f240"; }
-.bi-cart-x::before { content: "\f241"; }
-.bi-cart::before { content: "\f242"; }
-.bi-cart2::before { content: "\f243"; }
-.bi-cart3::before { content: "\f244"; }
-.bi-cart4::before { content: "\f245"; }
-.bi-cash-stack::before { content: "\f246"; }
-.bi-cash::before { content: "\f247"; }
-.bi-cast::before { content: "\f248"; }
-.bi-chat-dots-fill::before { content: "\f249"; }
-.bi-chat-dots::before { content: "\f24a"; }
-.bi-chat-fill::before { content: "\f24b"; }
-.bi-chat-left-dots-fill::before { content: "\f24c"; }
-.bi-chat-left-dots::before { content: "\f24d"; }
-.bi-chat-left-fill::before { content: "\f24e"; }
-.bi-chat-left-quote-fill::before { content: "\f24f"; }
-.bi-chat-left-quote::before { content: "\f250"; }
-.bi-chat-left-text-fill::before { content: "\f251"; }
-.bi-chat-left-text::before { content: "\f252"; }
-.bi-chat-left::before { content: "\f253"; }
-.bi-chat-quote-fill::before { content: "\f254"; }
-.bi-chat-quote::before { content: "\f255"; }
-.bi-chat-right-dots-fill::before { content: "\f256"; }
-.bi-chat-right-dots::before { content: "\f257"; }
-.bi-chat-right-fill::before { content: "\f258"; }
-.bi-chat-right-quote-fill::before { content: "\f259"; }
-.bi-chat-right-quote::before { content: "\f25a"; }
-.bi-chat-right-text-fill::before { content: "\f25b"; }
-.bi-chat-right-text::before { content: "\f25c"; }
-.bi-chat-right::before { content: "\f25d"; }
-.bi-chat-square-dots-fill::before { content: "\f25e"; }
-.bi-chat-square-dots::before { content: "\f25f"; }
-.bi-chat-square-fill::before { content: "\f260"; }
-.bi-chat-square-quote-fill::before { content: "\f261"; }
-.bi-chat-square-quote::before { content: "\f262"; }
-.bi-chat-square-text-fill::before { content: "\f263"; }
-.bi-chat-square-text::before { content: "\f264"; }
-.bi-chat-square::before { content: "\f265"; }
-.bi-chat-text-fill::before { content: "\f266"; }
-.bi-chat-text::before { content: "\f267"; }
-.bi-chat::before { content: "\f268"; }
-.bi-check-all::before { content: "\f269"; }
-.bi-check-circle-fill::before { content: "\f26a"; }
-.bi-check-circle::before { content: "\f26b"; }
-.bi-check-square-fill::before { content: "\f26c"; }
-.bi-check-square::before { content: "\f26d"; }
-.bi-check::before { content: "\f26e"; }
-.bi-check2-all::before { content: "\f26f"; }
-.bi-check2-circle::before { content: "\f270"; }
-.bi-check2-square::before { content: "\f271"; }
-.bi-check2::before { content: "\f272"; }
-.bi-chevron-bar-contract::before { content: "\f273"; }
-.bi-chevron-bar-down::before { content: "\f274"; }
-.bi-chevron-bar-expand::before { content: "\f275"; }
-.bi-chevron-bar-left::before { content: "\f276"; }
-.bi-chevron-bar-right::before { content: "\f277"; }
-.bi-chevron-bar-up::before { content: "\f278"; }
-.bi-chevron-compact-down::before { content: "\f279"; }
-.bi-chevron-compact-left::before { content: "\f27a"; }
-.bi-chevron-compact-right::before { content: "\f27b"; }
-.bi-chevron-compact-up::before { content: "\f27c"; }
-.bi-chevron-contract::before { content: "\f27d"; }
-.bi-chevron-double-down::before { content: "\f27e"; }
-.bi-chevron-double-left::before { content: "\f27f"; }
-.bi-chevron-double-right::before { content: "\f280"; }
-.bi-chevron-double-up::before { content: "\f281"; }
-.bi-chevron-down::before { content: "\f282"; }
-.bi-chevron-expand::before { content: "\f283"; }
-.bi-chevron-left::before { content: "\f284"; }
-.bi-chevron-right::before { content: "\f285"; }
-.bi-chevron-up::before { content: "\f286"; }
-.bi-circle-fill::before { content: "\f287"; }
-.bi-circle-half::before { content: "\f288"; }
-.bi-circle-square::before { content: "\f289"; }
-.bi-circle::before { content: "\f28a"; }
-.bi-clipboard-check::before { content: "\f28b"; }
-.bi-clipboard-data::before { content: "\f28c"; }
-.bi-clipboard-minus::before { content: "\f28d"; }
-.bi-clipboard-plus::before { content: "\f28e"; }
-.bi-clipboard-x::before { content: "\f28f"; }
-.bi-clipboard::before { content: "\f290"; }
-.bi-clock-fill::before { content: "\f291"; }
-.bi-clock-history::before { content: "\f292"; }
-.bi-clock::before { content: "\f293"; }
-.bi-cloud-arrow-down-fill::before { content: "\f294"; }
-.bi-cloud-arrow-down::before { content: "\f295"; }
-.bi-cloud-arrow-up-fill::before { content: "\f296"; }
-.bi-cloud-arrow-up::before { content: "\f297"; }
-.bi-cloud-check-fill::before { content: "\f298"; }
-.bi-cloud-check::before { content: "\f299"; }
-.bi-cloud-download-fill::before { content: "\f29a"; }
-.bi-cloud-download::before { content: "\f29b"; }
-.bi-cloud-drizzle-fill::before { content: "\f29c"; }
-.bi-cloud-drizzle::before { content: "\f29d"; }
-.bi-cloud-fill::before { content: "\f29e"; }
-.bi-cloud-fog-fill::before { content: "\f29f"; }
-.bi-cloud-fog::before { content: "\f2a0"; }
-.bi-cloud-fog2-fill::before { content: "\f2a1"; }
-.bi-cloud-fog2::before { content: "\f2a2"; }
-.bi-cloud-hail-fill::before { content: "\f2a3"; }
-.bi-cloud-hail::before { content: "\f2a4"; }
-.bi-cloud-haze-fill::before { content: "\f2a6"; }
-.bi-cloud-haze::before { content: "\f2a7"; }
-.bi-cloud-haze2-fill::before { content: "\f2a8"; }
-.bi-cloud-lightning-fill::before { content: "\f2a9"; }
-.bi-cloud-lightning-rain-fill::before { content: "\f2aa"; }
-.bi-cloud-lightning-rain::before { content: "\f2ab"; }
-.bi-cloud-lightning::before { content: "\f2ac"; }
-.bi-cloud-minus-fill::before { content: "\f2ad"; }
-.bi-cloud-minus::before { content: "\f2ae"; }
-.bi-cloud-moon-fill::before { content: "\f2af"; }
-.bi-cloud-moon::before { content: "\f2b0"; }
-.bi-cloud-plus-fill::before { content: "\f2b1"; }
-.bi-cloud-plus::before { content: "\f2b2"; }
-.bi-cloud-rain-fill::before { content: "\f2b3"; }
-.bi-cloud-rain-heavy-fill::before { content: "\f2b4"; }
-.bi-cloud-rain-heavy::before { content: "\f2b5"; }
-.bi-cloud-rain::before { content: "\f2b6"; }
-.bi-cloud-slash-fill::before { content: "\f2b7"; }
-.bi-cloud-slash::before { content: "\f2b8"; }
-.bi-cloud-sleet-fill::before { content: "\f2b9"; }
-.bi-cloud-sleet::before { content: "\f2ba"; }
-.bi-cloud-snow-fill::before { content: "\f2bb"; }
-.bi-cloud-snow::before { content: "\f2bc"; }
-.bi-cloud-sun-fill::before { content: "\f2bd"; }
-.bi-cloud-sun::before { content: "\f2be"; }
-.bi-cloud-upload-fill::before { content: "\f2bf"; }
-.bi-cloud-upload::before { content: "\f2c0"; }
-.bi-cloud::before { content: "\f2c1"; }
-.bi-clouds-fill::before { content: "\f2c2"; }
-.bi-clouds::before { content: "\f2c3"; }
-.bi-cloudy-fill::before { content: "\f2c4"; }
-.bi-cloudy::before { content: "\f2c5"; }
-.bi-code-slash::before { content: "\f2c6"; }
-.bi-code-square::before { content: "\f2c7"; }
-.bi-code::before { content: "\f2c8"; }
-.bi-collection-fill::before { content: "\f2c9"; }
-.bi-collection-play-fill::before { content: "\f2ca"; }
-.bi-collection-play::before { content: "\f2cb"; }
-.bi-collection::before { content: "\f2cc"; }
-.bi-columns-gap::before { content: "\f2cd"; }
-.bi-columns::before { content: "\f2ce"; }
-.bi-command::before { content: "\f2cf"; }
-.bi-compass-fill::before { content: "\f2d0"; }
-.bi-compass::before { content: "\f2d1"; }
-.bi-cone-striped::before { content: "\f2d2"; }
-.bi-cone::before { content: "\f2d3"; }
-.bi-controller::before { content: "\f2d4"; }
-.bi-cpu-fill::before { content: "\f2d5"; }
-.bi-cpu::before { content: "\f2d6"; }
-.bi-credit-card-2-back-fill::before { content: "\f2d7"; }
-.bi-credit-card-2-back::before { content: "\f2d8"; }
-.bi-credit-card-2-front-fill::before { content: "\f2d9"; }
-.bi-credit-card-2-front::before { content: "\f2da"; }
-.bi-credit-card-fill::before { content: "\f2db"; }
-.bi-credit-card::before { content: "\f2dc"; }
-.bi-crop::before { content: "\f2dd"; }
-.bi-cup-fill::before { content: "\f2de"; }
-.bi-cup-straw::before { content: "\f2df"; }
-.bi-cup::before { content: "\f2e0"; }
-.bi-cursor-fill::before { content: "\f2e1"; }
-.bi-cursor-text::before { content: "\f2e2"; }
-.bi-cursor::before { content: "\f2e3"; }
-.bi-dash-circle-dotted::before { content: "\f2e4"; }
-.bi-dash-circle-fill::before { content: "\f2e5"; }
-.bi-dash-circle::before { content: "\f2e6"; }
-.bi-dash-square-dotted::before { content: "\f2e7"; }
-.bi-dash-square-fill::before { content: "\f2e8"; }
-.bi-dash-square::before { content: "\f2e9"; }
-.bi-dash::before { content: "\f2ea"; }
-.bi-diagram-2-fill::before { content: "\f2eb"; }
-.bi-diagram-2::before { content: "\f2ec"; }
-.bi-diagram-3-fill::before { content: "\f2ed"; }
-.bi-diagram-3::before { content: "\f2ee"; }
-.bi-diamond-fill::before { content: "\f2ef"; }
-.bi-diamond-half::before { content: "\f2f0"; }
-.bi-diamond::before { content: "\f2f1"; }
-.bi-dice-1-fill::before { content: "\f2f2"; }
-.bi-dice-1::before { content: "\f2f3"; }
-.bi-dice-2-fill::before { content: "\f2f4"; }
-.bi-dice-2::before { content: "\f2f5"; }
-.bi-dice-3-fill::before { content: "\f2f6"; }
-.bi-dice-3::before { content: "\f2f7"; }
-.bi-dice-4-fill::before { content: "\f2f8"; }
-.bi-dice-4::before { content: "\f2f9"; }
-.bi-dice-5-fill::before { content: "\f2fa"; }
-.bi-dice-5::before { content: "\f2fb"; }
-.bi-dice-6-fill::before { content: "\f2fc"; }
-.bi-dice-6::before { content: "\f2fd"; }
-.bi-disc-fill::before { content: "\f2fe"; }
-.bi-disc::before { content: "\f2ff"; }
-.bi-discord::before { content: "\f300"; }
-.bi-display-fill::before { content: "\f301"; }
-.bi-display::before { content: "\f302"; }
-.bi-distribute-horizontal::before { content: "\f303"; }
-.bi-distribute-vertical::before { content: "\f304"; }
-.bi-door-closed-fill::before { content: "\f305"; }
-.bi-door-closed::before { content: "\f306"; }
-.bi-door-open-fill::before { content: "\f307"; }
-.bi-door-open::before { content: "\f308"; }
-.bi-dot::before { content: "\f309"; }
-.bi-download::before { content: "\f30a"; }
-.bi-droplet-fill::before { content: "\f30b"; }
-.bi-droplet-half::before { content: "\f30c"; }
-.bi-droplet::before { content: "\f30d"; }
-.bi-earbuds::before { content: "\f30e"; }
-.bi-easel-fill::before { content: "\f30f"; }
-.bi-easel::before { content: "\f310"; }
-.bi-egg-fill::before { content: "\f311"; }
-.bi-egg-fried::before { content: "\f312"; }
-.bi-egg::before { content: "\f313"; }
-.bi-eject-fill::before { content: "\f314"; }
-.bi-eject::before { content: "\f315"; }
-.bi-emoji-angry-fill::before { content: "\f316"; }
-.bi-emoji-angry::before { content: "\f317"; }
-.bi-emoji-dizzy-fill::before { content: "\f318"; }
-.bi-emoji-dizzy::before { content: "\f319"; }
-.bi-emoji-expressionless-fill::before { content: "\f31a"; }
-.bi-emoji-expressionless::before { content: "\f31b"; }
-.bi-emoji-frown-fill::before { content: "\f31c"; }
-.bi-emoji-frown::before { content: "\f31d"; }
-.bi-emoji-heart-eyes-fill::before { content: "\f31e"; }
-.bi-emoji-heart-eyes::before { content: "\f31f"; }
-.bi-emoji-laughing-fill::before { content: "\f320"; }
-.bi-emoji-laughing::before { content: "\f321"; }
-.bi-emoji-neutral-fill::before { content: "\f322"; }
-.bi-emoji-neutral::before { content: "\f323"; }
-.bi-emoji-smile-fill::before { content: "\f324"; }
-.bi-emoji-smile-upside-down-fill::before { content: "\f325"; }
-.bi-emoji-smile-upside-down::before { content: "\f326"; }
-.bi-emoji-smile::before { content: "\f327"; }
-.bi-emoji-sunglasses-fill::before { content: "\f328"; }
-.bi-emoji-sunglasses::before { content: "\f329"; }
-.bi-emoji-wink-fill::before { content: "\f32a"; }
-.bi-emoji-wink::before { content: "\f32b"; }
-.bi-envelope-fill::before { content: "\f32c"; }
-.bi-envelope-open-fill::before { content: "\f32d"; }
-.bi-envelope-open::before { content: "\f32e"; }
-.bi-envelope::before { content: "\f32f"; }
-.bi-eraser-fill::before { content: "\f330"; }
-.bi-eraser::before { content: "\f331"; }
-.bi-exclamation-circle-fill::before { content: "\f332"; }
-.bi-exclamation-circle::before { content: "\f333"; }
-.bi-exclamation-diamond-fill::before { content: "\f334"; }
-.bi-exclamation-diamond::before { content: "\f335"; }
-.bi-exclamation-octagon-fill::before { content: "\f336"; }
-.bi-exclamation-octagon::before { content: "\f337"; }
-.bi-exclamation-square-fill::before { content: "\f338"; }
-.bi-exclamation-square::before { content: "\f339"; }
-.bi-exclamation-triangle-fill::before { content: "\f33a"; }
-.bi-exclamation-triangle::before { content: "\f33b"; }
-.bi-exclamation::before { content: "\f33c"; }
-.bi-exclude::before { content: "\f33d"; }
-.bi-eye-fill::before { content: "\f33e"; }
-.bi-eye-slash-fill::before { content: "\f33f"; }
-.bi-eye-slash::before { content: "\f340"; }
-.bi-eye::before { content: "\f341"; }
-.bi-eyedropper::before { content: "\f342"; }
-.bi-eyeglasses::before { content: "\f343"; }
-.bi-facebook::before { content: "\f344"; }
-.bi-file-arrow-down-fill::before { content: "\f345"; }
-.bi-file-arrow-down::before { content: "\f346"; }
-.bi-file-arrow-up-fill::before { content: "\f347"; }
-.bi-file-arrow-up::before { content: "\f348"; }
-.bi-file-bar-graph-fill::before { content: "\f349"; }
-.bi-file-bar-graph::before { content: "\f34a"; }
-.bi-file-binary-fill::before { content: "\f34b"; }
-.bi-file-binary::before { content: "\f34c"; }
-.bi-file-break-fill::before { content: "\f34d"; }
-.bi-file-break::before { content: "\f34e"; }
-.bi-file-check-fill::before { content: "\f34f"; }
-.bi-file-check::before { content: "\f350"; }
-.bi-file-code-fill::before { content: "\f351"; }
-.bi-file-code::before { content: "\f352"; }
-.bi-file-diff-fill::before { content: "\f353"; }
-.bi-file-diff::before { content: "\f354"; }
-.bi-file-earmark-arrow-down-fill::before { content: "\f355"; }
-.bi-file-earmark-arrow-down::before { content: "\f356"; }
-.bi-file-earmark-arrow-up-fill::before { content: "\f357"; }
-.bi-file-earmark-arrow-up::before { content: "\f358"; }
-.bi-file-earmark-bar-graph-fill::before { content: "\f359"; }
-.bi-file-earmark-bar-graph::before { content: "\f35a"; }
-.bi-file-earmark-binary-fill::before { content: "\f35b"; }
-.bi-file-earmark-binary::before { content: "\f35c"; }
-.bi-file-earmark-break-fill::before { content: "\f35d"; }
-.bi-file-earmark-break::before { content: "\f35e"; }
-.bi-file-earmark-check-fill::before { content: "\f35f"; }
-.bi-file-earmark-check::before { content: "\f360"; }
-.bi-file-earmark-code-fill::before { content: "\f361"; }
-.bi-file-earmark-code::before { content: "\f362"; }
-.bi-file-earmark-diff-fill::before { content: "\f363"; }
-.bi-file-earmark-diff::before { content: "\f364"; }
-.bi-file-earmark-easel-fill::before { content: "\f365"; }
-.bi-file-earmark-easel::before { content: "\f366"; }
-.bi-file-earmark-excel-fill::before { content: "\f367"; }
-.bi-file-earmark-excel::before { content: "\f368"; }
-.bi-file-earmark-fill::before { content: "\f369"; }
-.bi-file-earmark-font-fill::before { content: "\f36a"; }
-.bi-file-earmark-font::before { content: "\f36b"; }
-.bi-file-earmark-image-fill::before { content: "\f36c"; }
-.bi-file-earmark-image::before { content: "\f36d"; }
-.bi-file-earmark-lock-fill::before { content: "\f36e"; }
-.bi-file-earmark-lock::before { content: "\f36f"; }
-.bi-file-earmark-lock2-fill::before { content: "\f370"; }
-.bi-file-earmark-lock2::before { content: "\f371"; }
-.bi-file-earmark-medical-fill::before { content: "\f372"; }
-.bi-file-earmark-medical::before { content: "\f373"; }
-.bi-file-earmark-minus-fill::before { content: "\f374"; }
-.bi-file-earmark-minus::before { content: "\f375"; }
-.bi-file-earmark-music-fill::before { content: "\f376"; }
-.bi-file-earmark-music::before { content: "\f377"; }
-.bi-file-earmark-person-fill::before { content: "\f378"; }
-.bi-file-earmark-person::before { content: "\f379"; }
-.bi-file-earmark-play-fill::before { content: "\f37a"; }
-.bi-file-earmark-play::before { content: "\f37b"; }
-.bi-file-earmark-plus-fill::before { content: "\f37c"; }
-.bi-file-earmark-plus::before { content: "\f37d"; }
-.bi-file-earmark-post-fill::before { content: "\f37e"; }
-.bi-file-earmark-post::before { content: "\f37f"; }
-.bi-file-earmark-ppt-fill::before { content: "\f380"; }
-.bi-file-earmark-ppt::before { content: "\f381"; }
-.bi-file-earmark-richtext-fill::before { content: "\f382"; }
-.bi-file-earmark-richtext::before { content: "\f383"; }
-.bi-file-earmark-ruled-fill::before { content: "\f384"; }
-.bi-file-earmark-ruled::before { content: "\f385"; }
-.bi-file-earmark-slides-fill::before { content: "\f386"; }
-.bi-file-earmark-slides::before { content: "\f387"; }
-.bi-file-earmark-spreadsheet-fill::before { content: "\f388"; }
-.bi-file-earmark-spreadsheet::before { content: "\f389"; }
-.bi-file-earmark-text-fill::before { content: "\f38a"; }
-.bi-file-earmark-text::before { content: "\f38b"; }
-.bi-file-earmark-word-fill::before { content: "\f38c"; }
-.bi-file-earmark-word::before { content: "\f38d"; }
-.bi-file-earmark-x-fill::before { content: "\f38e"; }
-.bi-file-earmark-x::before { content: "\f38f"; }
-.bi-file-earmark-zip-fill::before { content: "\f390"; }
-.bi-file-earmark-zip::before { content: "\f391"; }
-.bi-file-earmark::before { content: "\f392"; }
-.bi-file-easel-fill::before { content: "\f393"; }
-.bi-file-easel::before { content: "\f394"; }
-.bi-file-excel-fill::before { content: "\f395"; }
-.bi-file-excel::before { content: "\f396"; }
-.bi-file-fill::before { content: "\f397"; }
-.bi-file-font-fill::before { content: "\f398"; }
-.bi-file-font::before { content: "\f399"; }
-.bi-file-image-fill::before { content: "\f39a"; }
-.bi-file-image::before { content: "\f39b"; }
-.bi-file-lock-fill::before { content: "\f39c"; }
-.bi-file-lock::before { content: "\f39d"; }
-.bi-file-lock2-fill::before { content: "\f39e"; }
-.bi-file-lock2::before { content: "\f39f"; }
-.bi-file-medical-fill::before { content: "\f3a0"; }
-.bi-file-medical::before { content: "\f3a1"; }
-.bi-file-minus-fill::before { content: "\f3a2"; }
-.bi-file-minus::before { content: "\f3a3"; }
-.bi-file-music-fill::before { content: "\f3a4"; }
-.bi-file-music::before { content: "\f3a5"; }
-.bi-file-person-fill::before { content: "\f3a6"; }
-.bi-file-person::before { content: "\f3a7"; }
-.bi-file-play-fill::before { content: "\f3a8"; }
-.bi-file-play::before { content: "\f3a9"; }
-.bi-file-plus-fill::before { content: "\f3aa"; }
-.bi-file-plus::before { content: "\f3ab"; }
-.bi-file-post-fill::before { content: "\f3ac"; }
-.bi-file-post::before { content: "\f3ad"; }
-.bi-file-ppt-fill::before { content: "\f3ae"; }
-.bi-file-ppt::before { content: "\f3af"; }
-.bi-file-richtext-fill::before { content: "\f3b0"; }
-.bi-file-richtext::before { content: "\f3b1"; }
-.bi-file-ruled-fill::before { content: "\f3b2"; }
-.bi-file-ruled::before { content: "\f3b3"; }
-.bi-file-slides-fill::before { content: "\f3b4"; }
-.bi-file-slides::before { content: "\f3b5"; }
-.bi-file-spreadsheet-fill::before { content: "\f3b6"; }
-.bi-file-spreadsheet::before { content: "\f3b7"; }
-.bi-file-text-fill::before { content: "\f3b8"; }
-.bi-file-text::before { content: "\f3b9"; }
-.bi-file-word-fill::before { content: "\f3ba"; }
-.bi-file-word::before { content: "\f3bb"; }
-.bi-file-x-fill::before { content: "\f3bc"; }
-.bi-file-x::before { content: "\f3bd"; }
-.bi-file-zip-fill::before { content: "\f3be"; }
-.bi-file-zip::before { content: "\f3bf"; }
-.bi-file::before { content: "\f3c0"; }
-.bi-files-alt::before { content: "\f3c1"; }
-.bi-files::before { content: "\f3c2"; }
-.bi-film::before { content: "\f3c3"; }
-.bi-filter-circle-fill::before { content: "\f3c4"; }
-.bi-filter-circle::before { content: "\f3c5"; }
-.bi-filter-left::before { content: "\f3c6"; }
-.bi-filter-right::before { content: "\f3c7"; }
-.bi-filter-square-fill::before { content: "\f3c8"; }
-.bi-filter-square::before { content: "\f3c9"; }
-.bi-filter::before { content: "\f3ca"; }
-.bi-flag-fill::before { content: "\f3cb"; }
-.bi-flag::before { content: "\f3cc"; }
-.bi-flower1::before { content: "\f3cd"; }
-.bi-flower2::before { content: "\f3ce"; }
-.bi-flower3::before { content: "\f3cf"; }
-.bi-folder-check::before { content: "\f3d0"; }
-.bi-folder-fill::before { content: "\f3d1"; }
-.bi-folder-minus::before { content: "\f3d2"; }
-.bi-folder-plus::before { content: "\f3d3"; }
-.bi-folder-symlink-fill::before { content: "\f3d4"; }
-.bi-folder-symlink::before { content: "\f3d5"; }
-.bi-folder-x::before { content: "\f3d6"; }
-.bi-folder::before { content: "\f3d7"; }
-.bi-folder2-open::before { content: "\f3d8"; }
-.bi-folder2::before { content: "\f3d9"; }
-.bi-fonts::before { content: "\f3da"; }
-.bi-forward-fill::before { content: "\f3db"; }
-.bi-forward::before { content: "\f3dc"; }
-.bi-front::before { content: "\f3dd"; }
-.bi-fullscreen-exit::before { content: "\f3de"; }
-.bi-fullscreen::before { content: "\f3df"; }
-.bi-funnel-fill::before { content: "\f3e0"; }
-.bi-funnel::before { content: "\f3e1"; }
-.bi-gear-fill::before { content: "\f3e2"; }
-.bi-gear-wide-connected::before { content: "\f3e3"; }
-.bi-gear-wide::before { content: "\f3e4"; }
-.bi-gear::before { content: "\f3e5"; }
-.bi-gem::before { content: "\f3e6"; }
-.bi-geo-alt-fill::before { content: "\f3e7"; }
-.bi-geo-alt::before { content: "\f3e8"; }
-.bi-geo-fill::before { content: "\f3e9"; }
-.bi-geo::before { content: "\f3ea"; }
-.bi-gift-fill::before { content: "\f3eb"; }
-.bi-gift::before { content: "\f3ec"; }
-.bi-github::before { content: "\f3ed"; }
-.bi-globe::before { content: "\f3ee"; }
-.bi-globe2::before { content: "\f3ef"; }
-.bi-google::before { content: "\f3f0"; }
-.bi-graph-down::before { content: "\f3f1"; }
-.bi-graph-up::before { content: "\f3f2"; }
-.bi-grid-1x2-fill::before { content: "\f3f3"; }
-.bi-grid-1x2::before { content: "\f3f4"; }
-.bi-grid-3x2-gap-fill::before { content: "\f3f5"; }
-.bi-grid-3x2-gap::before { content: "\f3f6"; }
-.bi-grid-3x2::before { content: "\f3f7"; }
-.bi-grid-3x3-gap-fill::before { content: "\f3f8"; }
-.bi-grid-3x3-gap::before { content: "\f3f9"; }
-.bi-grid-3x3::before { content: "\f3fa"; }
-.bi-grid-fill::before { content: "\f3fb"; }
-.bi-grid::before { content: "\f3fc"; }
-.bi-grip-horizontal::before { content: "\f3fd"; }
-.bi-grip-vertical::before { content: "\f3fe"; }
-.bi-hammer::before { content: "\f3ff"; }
-.bi-hand-index-fill::before { content: "\f400"; }
-.bi-hand-index-thumb-fill::before { content: "\f401"; }
-.bi-hand-index-thumb::before { content: "\f402"; }
-.bi-hand-index::before { content: "\f403"; }
-.bi-hand-thumbs-down-fill::before { content: "\f404"; }
-.bi-hand-thumbs-down::before { content: "\f405"; }
-.bi-hand-thumbs-up-fill::before { content: "\f406"; }
-.bi-hand-thumbs-up::before { content: "\f407"; }
-.bi-handbag-fill::before { content: "\f408"; }
-.bi-handbag::before { content: "\f409"; }
-.bi-hash::before { content: "\f40a"; }
-.bi-hdd-fill::before { content: "\f40b"; }
-.bi-hdd-network-fill::before { content: "\f40c"; }
-.bi-hdd-network::before { content: "\f40d"; }
-.bi-hdd-rack-fill::before { content: "\f40e"; }
-.bi-hdd-rack::before { content: "\f40f"; }
-.bi-hdd-stack-fill::before { content: "\f410"; }
-.bi-hdd-stack::before { content: "\f411"; }
-.bi-hdd::before { content: "\f412"; }
-.bi-headphones::before { content: "\f413"; }
-.bi-headset::before { content: "\f414"; }
-.bi-heart-fill::before { content: "\f415"; }
-.bi-heart-half::before { content: "\f416"; }
-.bi-heart::before { content: "\f417"; }
-.bi-heptagon-fill::before { content: "\f418"; }
-.bi-heptagon-half::before { content: "\f419"; }
-.bi-heptagon::before { content: "\f41a"; }
-.bi-hexagon-fill::before { content: "\f41b"; }
-.bi-hexagon-half::before { content: "\f41c"; }
-.bi-hexagon::before { content: "\f41d"; }
-.bi-hourglass-bottom::before { content: "\f41e"; }
-.bi-hourglass-split::before { content: "\f41f"; }
-.bi-hourglass-top::before { content: "\f420"; }
-.bi-hourglass::before { content: "\f421"; }
-.bi-house-door-fill::before { content: "\f422"; }
-.bi-house-door::before { content: "\f423"; }
-.bi-house-fill::before { content: "\f424"; }
-.bi-house::before { content: "\f425"; }
-.bi-hr::before { content: "\f426"; }
-.bi-hurricane::before { content: "\f427"; }
-.bi-image-alt::before { content: "\f428"; }
-.bi-image-fill::before { content: "\f429"; }
-.bi-image::before { content: "\f42a"; }
-.bi-images::before { content: "\f42b"; }
-.bi-inbox-fill::before { content: "\f42c"; }
-.bi-inbox::before { content: "\f42d"; }
-.bi-inboxes-fill::before { content: "\f42e"; }
-.bi-inboxes::before { content: "\f42f"; }
-.bi-info-circle-fill::before { content: "\f430"; }
-.bi-info-circle::before { content: "\f431"; }
-.bi-info-square-fill::before { content: "\f432"; }
-.bi-info-square::before { content: "\f433"; }
-.bi-info::before { content: "\f434"; }
-.bi-input-cursor-text::before { content: "\f435"; }
-.bi-input-cursor::before { content: "\f436"; }
-.bi-instagram::before { content: "\f437"; }
-.bi-intersect::before { content: "\f438"; }
-.bi-journal-album::before { content: "\f439"; }
-.bi-journal-arrow-down::before { content: "\f43a"; }
-.bi-journal-arrow-up::before { content: "\f43b"; }
-.bi-journal-bookmark-fill::before { content: "\f43c"; }
-.bi-journal-bookmark::before { content: "\f43d"; }
-.bi-journal-check::before { content: "\f43e"; }
-.bi-journal-code::before { content: "\f43f"; }
-.bi-journal-medical::before { content: "\f440"; }
-.bi-journal-minus::before { content: "\f441"; }
-.bi-journal-plus::before { content: "\f442"; }
-.bi-journal-richtext::before { content: "\f443"; }
-.bi-journal-text::before { content: "\f444"; }
-.bi-journal-x::before { content: "\f445"; }
-.bi-journal::before { content: "\f446"; }
-.bi-journals::before { content: "\f447"; }
-.bi-joystick::before { content: "\f448"; }
-.bi-justify-left::before { content: "\f449"; }
-.bi-justify-right::before { content: "\f44a"; }
-.bi-justify::before { content: "\f44b"; }
-.bi-kanban-fill::before { content: "\f44c"; }
-.bi-kanban::before { content: "\f44d"; }
-.bi-key-fill::before { content: "\f44e"; }
-.bi-key::before { content: "\f44f"; }
-.bi-keyboard-fill::before { content: "\f450"; }
-.bi-keyboard::before { content: "\f451"; }
-.bi-ladder::before { content: "\f452"; }
-.bi-lamp-fill::before { content: "\f453"; }
-.bi-lamp::before { content: "\f454"; }
-.bi-laptop-fill::before { content: "\f455"; }
-.bi-laptop::before { content: "\f456"; }
-.bi-layer-backward::before { content: "\f457"; }
-.bi-layer-forward::before { content: "\f458"; }
-.bi-layers-fill::before { content: "\f459"; }
-.bi-layers-half::before { content: "\f45a"; }
-.bi-layers::before { content: "\f45b"; }
-.bi-layout-sidebar-inset-reverse::before { content: "\f45c"; }
-.bi-layout-sidebar-inset::before { content: "\f45d"; }
-.bi-layout-sidebar-reverse::before { content: "\f45e"; }
-.bi-layout-sidebar::before { content: "\f45f"; }
-.bi-layout-split::before { content: "\f460"; }
-.bi-layout-text-sidebar-reverse::before { content: "\f461"; }
-.bi-layout-text-sidebar::before { content: "\f462"; }
-.bi-layout-text-window-reverse::before { content: "\f463"; }
-.bi-layout-text-window::before { content: "\f464"; }
-.bi-layout-three-columns::before { content: "\f465"; }
-.bi-layout-wtf::before { content: "\f466"; }
-.bi-life-preserver::before { content: "\f467"; }
-.bi-lightbulb-fill::before { content: "\f468"; }
-.bi-lightbulb-off-fill::before { content: "\f469"; }
-.bi-lightbulb-off::before { content: "\f46a"; }
-.bi-lightbulb::before { content: "\f46b"; }
-.bi-lightning-charge-fill::before { content: "\f46c"; }
-.bi-lightning-charge::before { content: "\f46d"; }
-.bi-lightning-fill::before { content: "\f46e"; }
-.bi-lightning::before { content: "\f46f"; }
-.bi-link-45deg::before { content: "\f470"; }
-.bi-link::before { content: "\f471"; }
-.bi-linkedin::before { content: "\f472"; }
-.bi-list-check::before { content: "\f473"; }
-.bi-list-nested::before { content: "\f474"; }
-.bi-list-ol::before { content: "\f475"; }
-.bi-list-stars::before { content: "\f476"; }
-.bi-list-task::before { content: "\f477"; }
-.bi-list-ul::before { content: "\f478"; }
-.bi-list::before { content: "\f479"; }
-.bi-lock-fill::before { content: "\f47a"; }
-.bi-lock::before { content: "\f47b"; }
-.bi-mailbox::before { content: "\f47c"; }
-.bi-mailbox2::before { content: "\f47d"; }
-.bi-map-fill::before { content: "\f47e"; }
-.bi-map::before { content: "\f47f"; }
-.bi-markdown-fill::before { content: "\f480"; }
-.bi-markdown::before { content: "\f481"; }
-.bi-mask::before { content: "\f482"; }
-.bi-megaphone-fill::before { content: "\f483"; }
-.bi-megaphone::before { content: "\f484"; }
-.bi-menu-app-fill::before { content: "\f485"; }
-.bi-menu-app::before { content: "\f486"; }
-.bi-menu-button-fill::before { content: "\f487"; }
-.bi-menu-button-wide-fill::before { content: "\f488"; }
-.bi-menu-button-wide::before { content: "\f489"; }
-.bi-menu-button::before { content: "\f48a"; }
-.bi-menu-down::before { content: "\f48b"; }
-.bi-menu-up::before { content: "\f48c"; }
-.bi-mic-fill::before { content: "\f48d"; }
-.bi-mic-mute-fill::before { content: "\f48e"; }
-.bi-mic-mute::before { content: "\f48f"; }
-.bi-mic::before { content: "\f490"; }
-.bi-minecart-loaded::before { content: "\f491"; }
-.bi-minecart::before { content: "\f492"; }
-.bi-moisture::before { content: "\f493"; }
-.bi-moon-fill::before { content: "\f494"; }
-.bi-moon-stars-fill::before { content: "\f495"; }
-.bi-moon-stars::before { content: "\f496"; }
-.bi-moon::before { content: "\f497"; }
-.bi-mouse-fill::before { content: "\f498"; }
-.bi-mouse::before { content: "\f499"; }
-.bi-mouse2-fill::before { content: "\f49a"; }
-.bi-mouse2::before { content: "\f49b"; }
-.bi-mouse3-fill::before { content: "\f49c"; }
-.bi-mouse3::before { content: "\f49d"; }
-.bi-music-note-beamed::before { content: "\f49e"; }
-.bi-music-note-list::before { content: "\f49f"; }
-.bi-music-note::before { content: "\f4a0"; }
-.bi-music-player-fill::before { content: "\f4a1"; }
-.bi-music-player::before { content: "\f4a2"; }
-.bi-newspaper::before { content: "\f4a3"; }
-.bi-node-minus-fill::before { content: "\f4a4"; }
-.bi-node-minus::before { content: "\f4a5"; }
-.bi-node-plus-fill::before { content: "\f4a6"; }
-.bi-node-plus::before { content: "\f4a7"; }
-.bi-nut-fill::before { content: "\f4a8"; }
-.bi-nut::before { content: "\f4a9"; }
-.bi-octagon-fill::before { content: "\f4aa"; }
-.bi-octagon-half::before { content: "\f4ab"; }
-.bi-octagon::before { content: "\f4ac"; }
-.bi-option::before { content: "\f4ad"; }
-.bi-outlet::before { content: "\f4ae"; }
-.bi-paint-bucket::before { content: "\f4af"; }
-.bi-palette-fill::before { content: "\f4b0"; }
-.bi-palette::before { content: "\f4b1"; }
-.bi-palette2::before { content: "\f4b2"; }
-.bi-paperclip::before { content: "\f4b3"; }
-.bi-paragraph::before { content: "\f4b4"; }
-.bi-patch-check-fill::before { content: "\f4b5"; }
-.bi-patch-check::before { content: "\f4b6"; }
-.bi-patch-exclamation-fill::before { content: "\f4b7"; }
-.bi-patch-exclamation::before { content: "\f4b8"; }
-.bi-patch-minus-fill::before { content: "\f4b9"; }
-.bi-patch-minus::before { content: "\f4ba"; }
-.bi-patch-plus-fill::before { content: "\f4bb"; }
-.bi-patch-plus::before { content: "\f4bc"; }
-.bi-patch-question-fill::before { content: "\f4bd"; }
-.bi-patch-question::before { content: "\f4be"; }
-.bi-pause-btn-fill::before { content: "\f4bf"; }
-.bi-pause-btn::before { content: "\f4c0"; }
-.bi-pause-circle-fill::before { content: "\f4c1"; }
-.bi-pause-circle::before { content: "\f4c2"; }
-.bi-pause-fill::before { content: "\f4c3"; }
-.bi-pause::before { content: "\f4c4"; }
-.bi-peace-fill::before { content: "\f4c5"; }
-.bi-peace::before { content: "\f4c6"; }
-.bi-pen-fill::before { content: "\f4c7"; }
-.bi-pen::before { content: "\f4c8"; }
-.bi-pencil-fill::before { content: "\f4c9"; }
-.bi-pencil-square::before { content: "\f4ca"; }
-.bi-pencil::before { content: "\f4cb"; }
-.bi-pentagon-fill::before { content: "\f4cc"; }
-.bi-pentagon-half::before { content: "\f4cd"; }
-.bi-pentagon::before { content: "\f4ce"; }
-.bi-people-fill::before { content: "\f4cf"; }
-.bi-people::before { content: "\f4d0"; }
-.bi-percent::before { content: "\f4d1"; }
-.bi-person-badge-fill::before { content: "\f4d2"; }
-.bi-person-badge::before { content: "\f4d3"; }
-.bi-person-bounding-box::before { content: "\f4d4"; }
-.bi-person-check-fill::before { content: "\f4d5"; }
-.bi-person-check::before { content: "\f4d6"; }
-.bi-person-circle::before { content: "\f4d7"; }
-.bi-person-dash-fill::before { content: "\f4d8"; }
-.bi-person-dash::before { content: "\f4d9"; }
-.bi-person-fill::before { content: "\f4da"; }
-.bi-person-lines-fill::before { content: "\f4db"; }
-.bi-person-plus-fill::before { content: "\f4dc"; }
-.bi-person-plus::before { content: "\f4dd"; }
-.bi-person-square::before { content: "\f4de"; }
-.bi-person-x-fill::before { content: "\f4df"; }
-.bi-person-x::before { content: "\f4e0"; }
-.bi-person::before { content: "\f4e1"; }
-.bi-phone-fill::before { content: "\f4e2"; }
-.bi-phone-landscape-fill::before { content: "\f4e3"; }
-.bi-phone-landscape::before { content: "\f4e4"; }
-.bi-phone-vibrate-fill::before { content: "\f4e5"; }
-.bi-phone-vibrate::before { content: "\f4e6"; }
-.bi-phone::before { content: "\f4e7"; }
-.bi-pie-chart-fill::before { content: "\f4e8"; }
-.bi-pie-chart::before { content: "\f4e9"; }
-.bi-pin-angle-fill::before { content: "\f4ea"; }
-.bi-pin-angle::before { content: "\f4eb"; }
-.bi-pin-fill::before { content: "\f4ec"; }
-.bi-pin::before { content: "\f4ed"; }
-.bi-pip-fill::before { content: "\f4ee"; }
-.bi-pip::before { content: "\f4ef"; }
-.bi-play-btn-fill::before { content: "\f4f0"; }
-.bi-play-btn::before { content: "\f4f1"; }
-.bi-play-circle-fill::before { content: "\f4f2"; }
-.bi-play-circle::before { content: "\f4f3"; }
-.bi-play-fill::before { content: "\f4f4"; }
-.bi-play::before { content: "\f4f5"; }
-.bi-plug-fill::before { content: "\f4f6"; }
-.bi-plug::before { content: "\f4f7"; }
-.bi-plus-circle-dotted::before { content: "\f4f8"; }
-.bi-plus-circle-fill::before { content: "\f4f9"; }
-.bi-plus-circle::before { content: "\f4fa"; }
-.bi-plus-square-dotted::before { content: "\f4fb"; }
-.bi-plus-square-fill::before { content: "\f4fc"; }
-.bi-plus-square::before { content: "\f4fd"; }
-.bi-plus::before { content: "\f4fe"; }
-.bi-power::before { content: "\f4ff"; }
-.bi-printer-fill::before { content: "\f500"; }
-.bi-printer::before { content: "\f501"; }
-.bi-puzzle-fill::before { content: "\f502"; }
-.bi-puzzle::before { content: "\f503"; }
-.bi-question-circle-fill::before { content: "\f504"; }
-.bi-question-circle::before { content: "\f505"; }
-.bi-question-diamond-fill::before { content: "\f506"; }
-.bi-question-diamond::before { content: "\f507"; }
-.bi-question-octagon-fill::before { content: "\f508"; }
-.bi-question-octagon::before { content: "\f509"; }
-.bi-question-square-fill::before { content: "\f50a"; }
-.bi-question-square::before { content: "\f50b"; }
-.bi-question::before { content: "\f50c"; }
-.bi-rainbow::before { content: "\f50d"; }
-.bi-receipt-cutoff::before { content: "\f50e"; }
-.bi-receipt::before { content: "\f50f"; }
-.bi-reception-0::before { content: "\f510"; }
-.bi-reception-1::before { content: "\f511"; }
-.bi-reception-2::before { content: "\f512"; }
-.bi-reception-3::before { content: "\f513"; }
-.bi-reception-4::before { content: "\f514"; }
-.bi-record-btn-fill::before { content: "\f515"; }
-.bi-record-btn::before { content: "\f516"; }
-.bi-record-circle-fill::before { content: "\f517"; }
-.bi-record-circle::before { content: "\f518"; }
-.bi-record-fill::before { content: "\f519"; }
-.bi-record::before { content: "\f51a"; }
-.bi-record2-fill::before { content: "\f51b"; }
-.bi-record2::before { content: "\f51c"; }
-.bi-reply-all-fill::before { content: "\f51d"; }
-.bi-reply-all::before { content: "\f51e"; }
-.bi-reply-fill::before { content: "\f51f"; }
-.bi-reply::before { content: "\f520"; }
-.bi-rss-fill::before { content: "\f521"; }
-.bi-rss::before { content: "\f522"; }
-.bi-rulers::before { content: "\f523"; }
-.bi-save-fill::before { content: "\f524"; }
-.bi-save::before { content: "\f525"; }
-.bi-save2-fill::before { content: "\f526"; }
-.bi-save2::before { content: "\f527"; }
-.bi-scissors::before { content: "\f528"; }
-.bi-screwdriver::before { content: "\f529"; }
-.bi-search::before { content: "\f52a"; }
-.bi-segmented-nav::before { content: "\f52b"; }
-.bi-server::before { content: "\f52c"; }
-.bi-share-fill::before { content: "\f52d"; }
-.bi-share::before { content: "\f52e"; }
-.bi-shield-check::before { content: "\f52f"; }
-.bi-shield-exclamation::before { content: "\f530"; }
-.bi-shield-fill-check::before { content: "\f531"; }
-.bi-shield-fill-exclamation::before { content: "\f532"; }
-.bi-shield-fill-minus::before { content: "\f533"; }
-.bi-shield-fill-plus::before { content: "\f534"; }
-.bi-shield-fill-x::before { content: "\f535"; }
-.bi-shield-fill::before { content: "\f536"; }
-.bi-shield-lock-fill::before { content: "\f537"; }
-.bi-shield-lock::before { content: "\f538"; }
-.bi-shield-minus::before { content: "\f539"; }
-.bi-shield-plus::before { content: "\f53a"; }
-.bi-shield-shaded::before { content: "\f53b"; }
-.bi-shield-slash-fill::before { content: "\f53c"; }
-.bi-shield-slash::before { content: "\f53d"; }
-.bi-shield-x::before { content: "\f53e"; }
-.bi-shield::before { content: "\f53f"; }
-.bi-shift-fill::before { content: "\f540"; }
-.bi-shift::before { content: "\f541"; }
-.bi-shop-window::before { content: "\f542"; }
-.bi-shop::before { content: "\f543"; }
-.bi-shuffle::before { content: "\f544"; }
-.bi-signpost-2-fill::before { content: "\f545"; }
-.bi-signpost-2::before { content: "\f546"; }
-.bi-signpost-fill::before { content: "\f547"; }
-.bi-signpost-split-fill::before { content: "\f548"; }
-.bi-signpost-split::before { content: "\f549"; }
-.bi-signpost::before { content: "\f54a"; }
-.bi-sim-fill::before { content: "\f54b"; }
-.bi-sim::before { content: "\f54c"; }
-.bi-skip-backward-btn-fill::before { content: "\f54d"; }
-.bi-skip-backward-btn::before { content: "\f54e"; }
-.bi-skip-backward-circle-fill::before { content: "\f54f"; }
-.bi-skip-backward-circle::before { content: "\f550"; }
-.bi-skip-backward-fill::before { content: "\f551"; }
-.bi-skip-backward::before { content: "\f552"; }
-.bi-skip-end-btn-fill::before { content: "\f553"; }
-.bi-skip-end-btn::before { content: "\f554"; }
-.bi-skip-end-circle-fill::before { content: "\f555"; }
-.bi-skip-end-circle::before { content: "\f556"; }
-.bi-skip-end-fill::before { content: "\f557"; }
-.bi-skip-end::before { content: "\f558"; }
-.bi-skip-forward-btn-fill::before { content: "\f559"; }
-.bi-skip-forward-btn::before { content: "\f55a"; }
-.bi-skip-forward-circle-fill::before { content: "\f55b"; }
-.bi-skip-forward-circle::before { content: "\f55c"; }
-.bi-skip-forward-fill::before { content: "\f55d"; }
-.bi-skip-forward::before { content: "\f55e"; }
-.bi-skip-start-btn-fill::before { content: "\f55f"; }
-.bi-skip-start-btn::before { content: "\f560"; }
-.bi-skip-start-circle-fill::before { content: "\f561"; }
-.bi-skip-start-circle::before { content: "\f562"; }
-.bi-skip-start-fill::before { content: "\f563"; }
-.bi-skip-start::before { content: "\f564"; }
-.bi-slack::before { content: "\f565"; }
-.bi-slash-circle-fill::before { content: "\f566"; }
-.bi-slash-circle::before { content: "\f567"; }
-.bi-slash-square-fill::before { content: "\f568"; }
-.bi-slash-square::before { content: "\f569"; }
-.bi-slash::before { content: "\f56a"; }
-.bi-sliders::before { content: "\f56b"; }
-.bi-smartwatch::before { content: "\f56c"; }
-.bi-snow::before { content: "\f56d"; }
-.bi-snow2::before { content: "\f56e"; }
-.bi-snow3::before { content: "\f56f"; }
-.bi-sort-alpha-down-alt::before { content: "\f570"; }
-.bi-sort-alpha-down::before { content: "\f571"; }
-.bi-sort-alpha-up-alt::before { content: "\f572"; }
-.bi-sort-alpha-up::before { content: "\f573"; }
-.bi-sort-down-alt::before { content: "\f574"; }
-.bi-sort-down::before { content: "\f575"; }
-.bi-sort-numeric-down-alt::before { content: "\f576"; }
-.bi-sort-numeric-down::before { content: "\f577"; }
-.bi-sort-numeric-up-alt::before { content: "\f578"; }
-.bi-sort-numeric-up::before { content: "\f579"; }
-.bi-sort-up-alt::before { content: "\f57a"; }
-.bi-sort-up::before { content: "\f57b"; }
-.bi-soundwave::before { content: "\f57c"; }
-.bi-speaker-fill::before { content: "\f57d"; }
-.bi-speaker::before { content: "\f57e"; }
-.bi-speedometer::before { content: "\f57f"; }
-.bi-speedometer2::before { content: "\f580"; }
-.bi-spellcheck::before { content: "\f581"; }
-.bi-square-fill::before { content: "\f582"; }
-.bi-square-half::before { content: "\f583"; }
-.bi-square::before { content: "\f584"; }
-.bi-stack::before { content: "\f585"; }
-.bi-star-fill::before { content: "\f586"; }
-.bi-star-half::before { content: "\f587"; }
-.bi-star::before { content: "\f588"; }
-.bi-stars::before { content: "\f589"; }
-.bi-stickies-fill::before { content: "\f58a"; }
-.bi-stickies::before { content: "\f58b"; }
-.bi-sticky-fill::before { content: "\f58c"; }
-.bi-sticky::before { content: "\f58d"; }
-.bi-stop-btn-fill::before { content: "\f58e"; }
-.bi-stop-btn::before { content: "\f58f"; }
-.bi-stop-circle-fill::before { content: "\f590"; }
-.bi-stop-circle::before { content: "\f591"; }
-.bi-stop-fill::before { content: "\f592"; }
-.bi-stop::before { content: "\f593"; }
-.bi-stoplights-fill::before { content: "\f594"; }
-.bi-stoplights::before { content: "\f595"; }
-.bi-stopwatch-fill::before { content: "\f596"; }
-.bi-stopwatch::before { content: "\f597"; }
-.bi-subtract::before { content: "\f598"; }
-.bi-suit-club-fill::before { content: "\f599"; }
-.bi-suit-club::before { content: "\f59a"; }
-.bi-suit-diamond-fill::before { content: "\f59b"; }
-.bi-suit-diamond::before { content: "\f59c"; }
-.bi-suit-heart-fill::before { content: "\f59d"; }
-.bi-suit-heart::before { content: "\f59e"; }
-.bi-suit-spade-fill::before { content: "\f59f"; }
-.bi-suit-spade::before { content: "\f5a0"; }
-.bi-sun-fill::before { content: "\f5a1"; }
-.bi-sun::before { content: "\f5a2"; }
-.bi-sunglasses::before { content: "\f5a3"; }
-.bi-sunrise-fill::before { content: "\f5a4"; }
-.bi-sunrise::before { content: "\f5a5"; }
-.bi-sunset-fill::before { content: "\f5a6"; }
-.bi-sunset::before { content: "\f5a7"; }
-.bi-symmetry-horizontal::before { content: "\f5a8"; }
-.bi-symmetry-vertical::before { content: "\f5a9"; }
-.bi-table::before { content: "\f5aa"; }
-.bi-tablet-fill::before { content: "\f5ab"; }
-.bi-tablet-landscape-fill::before { content: "\f5ac"; }
-.bi-tablet-landscape::before { content: "\f5ad"; }
-.bi-tablet::before { content: "\f5ae"; }
-.bi-tag-fill::before { content: "\f5af"; }
-.bi-tag::before { content: "\f5b0"; }
-.bi-tags-fill::before { content: "\f5b1"; }
-.bi-tags::before { content: "\f5b2"; }
-.bi-telegram::before { content: "\f5b3"; }
-.bi-telephone-fill::before { content: "\f5b4"; }
-.bi-telephone-forward-fill::before { content: "\f5b5"; }
-.bi-telephone-forward::before { content: "\f5b6"; }
-.bi-telephone-inbound-fill::before { content: "\f5b7"; }
-.bi-telephone-inbound::before { content: "\f5b8"; }
-.bi-telephone-minus-fill::before { content: "\f5b9"; }
-.bi-telephone-minus::before { content: "\f5ba"; }
-.bi-telephone-outbound-fill::before { content: "\f5bb"; }
-.bi-telephone-outbound::before { content: "\f5bc"; }
-.bi-telephone-plus-fill::before { content: "\f5bd"; }
-.bi-telephone-plus::before { content: "\f5be"; }
-.bi-telephone-x-fill::before { content: "\f5bf"; }
-.bi-telephone-x::before { content: "\f5c0"; }
-.bi-telephone::before { content: "\f5c1"; }
-.bi-terminal-fill::before { content: "\f5c2"; }
-.bi-terminal::before { content: "\f5c3"; }
-.bi-text-center::before { content: "\f5c4"; }
-.bi-text-indent-left::before { content: "\f5c5"; }
-.bi-text-indent-right::before { content: "\f5c6"; }
-.bi-text-left::before { content: "\f5c7"; }
-.bi-text-paragraph::before { content: "\f5c8"; }
-.bi-text-right::before { content: "\f5c9"; }
-.bi-textarea-resize::before { content: "\f5ca"; }
-.bi-textarea-t::before { content: "\f5cb"; }
-.bi-textarea::before { content: "\f5cc"; }
-.bi-thermometer-half::before { content: "\f5cd"; }
-.bi-thermometer-high::before { content: "\f5ce"; }
-.bi-thermometer-low::before { content: "\f5cf"; }
-.bi-thermometer-snow::before { content: "\f5d0"; }
-.bi-thermometer-sun::before { content: "\f5d1"; }
-.bi-thermometer::before { content: "\f5d2"; }
-.bi-three-dots-vertical::before { content: "\f5d3"; }
-.bi-three-dots::before { content: "\f5d4"; }
-.bi-toggle-off::before { content: "\f5d5"; }
-.bi-toggle-on::before { content: "\f5d6"; }
-.bi-toggle2-off::before { content: "\f5d7"; }
-.bi-toggle2-on::before { content: "\f5d8"; }
-.bi-toggles::before { content: "\f5d9"; }
-.bi-toggles2::before { content: "\f5da"; }
-.bi-tools::before { content: "\f5db"; }
-.bi-tornado::before { content: "\f5dc"; }
-.bi-trash-fill::before { content: "\f5dd"; }
-.bi-trash::before { content: "\f5de"; }
-.bi-trash2-fill::before { content: "\f5df"; }
-.bi-trash2::before { content: "\f5e0"; }
-.bi-tree-fill::before { content: "\f5e1"; }
-.bi-tree::before { content: "\f5e2"; }
-.bi-triangle-fill::before { content: "\f5e3"; }
-.bi-triangle-half::before { content: "\f5e4"; }
-.bi-triangle::before { content: "\f5e5"; }
-.bi-trophy-fill::before { content: "\f5e6"; }
-.bi-trophy::before { content: "\f5e7"; }
-.bi-tropical-storm::before { content: "\f5e8"; }
-.bi-truck-flatbed::before { content: "\f5e9"; }
-.bi-truck::before { content: "\f5ea"; }
-.bi-tsunami::before { content: "\f5eb"; }
-.bi-tv-fill::before { content: "\f5ec"; }
-.bi-tv::before { content: "\f5ed"; }
-.bi-twitch::before { content: "\f5ee"; }
-.bi-twitter::before { content: "\f5ef"; }
-.bi-type-bold::before { content: "\f5f0"; }
-.bi-type-h1::before { content: "\f5f1"; }
-.bi-type-h2::before { content: "\f5f2"; }
-.bi-type-h3::before { content: "\f5f3"; }
-.bi-type-italic::before { content: "\f5f4"; }
-.bi-type-strikethrough::before { content: "\f5f5"; }
-.bi-type-underline::before { content: "\f5f6"; }
-.bi-type::before { content: "\f5f7"; }
-.bi-ui-checks-grid::before { content: "\f5f8"; }
-.bi-ui-checks::before { content: "\f5f9"; }
-.bi-ui-radios-grid::before { content: "\f5fa"; }
-.bi-ui-radios::before { content: "\f5fb"; }
-.bi-umbrella-fill::before { content: "\f5fc"; }
-.bi-umbrella::before { content: "\f5fd"; }
-.bi-union::before { content: "\f5fe"; }
-.bi-unlock-fill::before { content: "\f5ff"; }
-.bi-unlock::before { content: "\f600"; }
-.bi-upc-scan::before { content: "\f601"; }
-.bi-upc::before { content: "\f602"; }
-.bi-upload::before { content: "\f603"; }
-.bi-vector-pen::before { content: "\f604"; }
-.bi-view-list::before { content: "\f605"; }
-.bi-view-stacked::before { content: "\f606"; }
-.bi-vinyl-fill::before { content: "\f607"; }
-.bi-vinyl::before { content: "\f608"; }
-.bi-voicemail::before { content: "\f609"; }
-.bi-volume-down-fill::before { content: "\f60a"; }
-.bi-volume-down::before { content: "\f60b"; }
-.bi-volume-mute-fill::before { content: "\f60c"; }
-.bi-volume-mute::before { content: "\f60d"; }
-.bi-volume-off-fill::before { content: "\f60e"; }
-.bi-volume-off::before { content: "\f60f"; }
-.bi-volume-up-fill::before { content: "\f610"; }
-.bi-volume-up::before { content: "\f611"; }
-.bi-vr::before { content: "\f612"; }
-.bi-wallet-fill::before { content: "\f613"; }
-.bi-wallet::before { content: "\f614"; }
-.bi-wallet2::before { content: "\f615"; }
-.bi-watch::before { content: "\f616"; }
-.bi-water::before { content: "\f617"; }
-.bi-whatsapp::before { content: "\f618"; }
-.bi-wifi-1::before { content: "\f619"; }
-.bi-wifi-2::before { content: "\f61a"; }
-.bi-wifi-off::before { content: "\f61b"; }
-.bi-wifi::before { content: "\f61c"; }
-.bi-wind::before { content: "\f61d"; }
-.bi-window-dock::before { content: "\f61e"; }
-.bi-window-sidebar::before { content: "\f61f"; }
-.bi-window::before { content: "\f620"; }
-.bi-wrench::before { content: "\f621"; }
-.bi-x-circle-fill::before { content: "\f622"; }
-.bi-x-circle::before { content: "\f623"; }
-.bi-x-diamond-fill::before { content: "\f624"; }
-.bi-x-diamond::before { content: "\f625"; }
-.bi-x-octagon-fill::before { content: "\f626"; }
-.bi-x-octagon::before { content: "\f627"; }
-.bi-x-square-fill::before { content: "\f628"; }
-.bi-x-square::before { content: "\f629"; }
-.bi-x::before { content: "\f62a"; }
-.bi-youtube::before { content: "\f62b"; }
-.bi-zoom-in::before { content: "\f62c"; }
-.bi-zoom-out::before { content: "\f62d"; }
-.bi-bank::before { content: "\f62e"; }
-.bi-bank2::before { content: "\f62f"; }
-.bi-bell-slash-fill::before { content: "\f630"; }
-.bi-bell-slash::before { content: "\f631"; }
-.bi-cash-coin::before { content: "\f632"; }
-.bi-check-lg::before { content: "\f633"; }
-.bi-coin::before { content: "\f634"; }
-.bi-currency-bitcoin::before { content: "\f635"; }
-.bi-currency-dollar::before { content: "\f636"; }
-.bi-currency-euro::before { content: "\f637"; }
-.bi-currency-exchange::before { content: "\f638"; }
-.bi-currency-pound::before { content: "\f639"; }
-.bi-currency-yen::before { content: "\f63a"; }
-.bi-dash-lg::before { content: "\f63b"; }
-.bi-exclamation-lg::before { content: "\f63c"; }
-.bi-file-earmark-pdf-fill::before { content: "\f63d"; }
-.bi-file-earmark-pdf::before { content: "\f63e"; }
-.bi-file-pdf-fill::before { content: "\f63f"; }
-.bi-file-pdf::before { content: "\f640"; }
-.bi-gender-ambiguous::before { content: "\f641"; }
-.bi-gender-female::before { content: "\f642"; }
-.bi-gender-male::before { content: "\f643"; }
-.bi-gender-trans::before { content: "\f644"; }
-.bi-headset-vr::before { content: "\f645"; }
-.bi-info-lg::before { content: "\f646"; }
-.bi-mastodon::before { content: "\f647"; }
-.bi-messenger::before { content: "\f648"; }
-.bi-piggy-bank-fill::before { content: "\f649"; }
-.bi-piggy-bank::before { content: "\f64a"; }
-.bi-pin-map-fill::before { content: "\f64b"; }
-.bi-pin-map::before { content: "\f64c"; }
-.bi-plus-lg::before { content: "\f64d"; }
-.bi-question-lg::before { content: "\f64e"; }
-.bi-recycle::before { content: "\f64f"; }
-.bi-reddit::before { content: "\f650"; }
-.bi-safe-fill::before { content: "\f651"; }
-.bi-safe2-fill::before { content: "\f652"; }
-.bi-safe2::before { content: "\f653"; }
-.bi-sd-card-fill::before { content: "\f654"; }
-.bi-sd-card::before { content: "\f655"; }
-.bi-skype::before { content: "\f656"; }
-.bi-slash-lg::before { content: "\f657"; }
-.bi-translate::before { content: "\f658"; }
-.bi-x-lg::before { content: "\f659"; }
-.bi-safe::before { content: "\f65a"; }
-.bi-apple::before { content: "\f65b"; }
-.bi-microsoft::before { content: "\f65d"; }
-.bi-windows::before { content: "\f65e"; }
-.bi-behance::before { content: "\f65c"; }
-.bi-dribbble::before { content: "\f65f"; }
-.bi-line::before { content: "\f660"; }
-.bi-medium::before { content: "\f661"; }
-.bi-paypal::before { content: "\f662"; }
-.bi-pinterest::before { content: "\f663"; }
-.bi-signal::before { content: "\f664"; }
-.bi-snapchat::before { content: "\f665"; }
-.bi-spotify::before { content: "\f666"; }
-.bi-stack-overflow::before { content: "\f667"; }
-.bi-strava::before { content: "\f668"; }
-.bi-wordpress::before { content: "\f669"; }
-.bi-vimeo::before { content: "\f66a"; }
-.bi-activity::before { content: "\f66b"; }
-.bi-easel2-fill::before { content: "\f66c"; }
-.bi-easel2::before { content: "\f66d"; }
-.bi-easel3-fill::before { content: "\f66e"; }
-.bi-easel3::before { content: "\f66f"; }
-.bi-fan::before { content: "\f670"; }
-.bi-fingerprint::before { content: "\f671"; }
-.bi-graph-down-arrow::before { content: "\f672"; }
-.bi-graph-up-arrow::before { content: "\f673"; }
-.bi-hypnotize::before { content: "\f674"; }
-.bi-magic::before { content: "\f675"; }
-.bi-person-rolodex::before { content: "\f676"; }
-.bi-person-video::before { content: "\f677"; }
-.bi-person-video2::before { content: "\f678"; }
-.bi-person-video3::before { content: "\f679"; }
-.bi-person-workspace::before { content: "\f67a"; }
-.bi-radioactive::before { content: "\f67b"; }
-.bi-webcam-fill::before { content: "\f67c"; }
-.bi-webcam::before { content: "\f67d"; }
-.bi-yin-yang::before { content: "\f67e"; }
-.bi-bandaid-fill::before { content: "\f680"; }
-.bi-bandaid::before { content: "\f681"; }
-.bi-bluetooth::before { content: "\f682"; }
-.bi-body-text::before { content: "\f683"; }
-.bi-boombox::before { content: "\f684"; }
-.bi-boxes::before { content: "\f685"; }
-.bi-dpad-fill::before { content: "\f686"; }
-.bi-dpad::before { content: "\f687"; }
-.bi-ear-fill::before { content: "\f688"; }
-.bi-ear::before { content: "\f689"; }
-.bi-envelope-check-fill::before { content: "\f68b"; }
-.bi-envelope-check::before { content: "\f68c"; }
-.bi-envelope-dash-fill::before { content: "\f68e"; }
-.bi-envelope-dash::before { content: "\f68f"; }
-.bi-envelope-exclamation-fill::before { content: "\f691"; }
-.bi-envelope-exclamation::before { content: "\f692"; }
-.bi-envelope-plus-fill::before { content: "\f693"; }
-.bi-envelope-plus::before { content: "\f694"; }
-.bi-envelope-slash-fill::before { content: "\f696"; }
-.bi-envelope-slash::before { content: "\f697"; }
-.bi-envelope-x-fill::before { content: "\f699"; }
-.bi-envelope-x::before { content: "\f69a"; }
-.bi-explicit-fill::before { content: "\f69b"; }
-.bi-explicit::before { content: "\f69c"; }
-.bi-git::before { content: "\f69d"; }
-.bi-infinity::before { content: "\f69e"; }
-.bi-list-columns-reverse::before { content: "\f69f"; }
-.bi-list-columns::before { content: "\f6a0"; }
-.bi-meta::before { content: "\f6a1"; }
-.bi-nintendo-switch::before { content: "\f6a4"; }
-.bi-pc-display-horizontal::before { content: "\f6a5"; }
-.bi-pc-display::before { content: "\f6a6"; }
-.bi-pc-horizontal::before { content: "\f6a7"; }
-.bi-pc::before { content: "\f6a8"; }
-.bi-playstation::before { content: "\f6a9"; }
-.bi-plus-slash-minus::before { content: "\f6aa"; }
-.bi-projector-fill::before { content: "\f6ab"; }
-.bi-projector::before { content: "\f6ac"; }
-.bi-qr-code-scan::before { content: "\f6ad"; }
-.bi-qr-code::before { content: "\f6ae"; }
-.bi-quora::before { content: "\f6af"; }
-.bi-quote::before { content: "\f6b0"; }
-.bi-robot::before { content: "\f6b1"; }
-.bi-send-check-fill::before { content: "\f6b2"; }
-.bi-send-check::before { content: "\f6b3"; }
-.bi-send-dash-fill::before { content: "\f6b4"; }
-.bi-send-dash::before { content: "\f6b5"; }
-.bi-send-exclamation-fill::before { content: "\f6b7"; }
-.bi-send-exclamation::before { content: "\f6b8"; }
-.bi-send-fill::before { content: "\f6b9"; }
-.bi-send-plus-fill::before { content: "\f6ba"; }
-.bi-send-plus::before { content: "\f6bb"; }
-.bi-send-slash-fill::before { content: "\f6bc"; }
-.bi-send-slash::before { content: "\f6bd"; }
-.bi-send-x-fill::before { content: "\f6be"; }
-.bi-send-x::before { content: "\f6bf"; }
-.bi-send::before { content: "\f6c0"; }
-.bi-steam::before { content: "\f6c1"; }
-.bi-terminal-dash::before { content: "\f6c3"; }
-.bi-terminal-plus::before { content: "\f6c4"; }
-.bi-terminal-split::before { content: "\f6c5"; }
-.bi-ticket-detailed-fill::before { content: "\f6c6"; }
-.bi-ticket-detailed::before { content: "\f6c7"; }
-.bi-ticket-fill::before { content: "\f6c8"; }
-.bi-ticket-perforated-fill::before { content: "\f6c9"; }
-.bi-ticket-perforated::before { content: "\f6ca"; }
-.bi-ticket::before { content: "\f6cb"; }
-.bi-tiktok::before { content: "\f6cc"; }
-.bi-window-dash::before { content: "\f6cd"; }
-.bi-window-desktop::before { content: "\f6ce"; }
-.bi-window-fullscreen::before { content: "\f6cf"; }
-.bi-window-plus::before { content: "\f6d0"; }
-.bi-window-split::before { content: "\f6d1"; }
-.bi-window-stack::before { content: "\f6d2"; }
-.bi-window-x::before { content: "\f6d3"; }
-.bi-xbox::before { content: "\f6d4"; }
-.bi-ethernet::before { content: "\f6d5"; }
-.bi-hdmi-fill::before { content: "\f6d6"; }
-.bi-hdmi::before { content: "\f6d7"; }
-.bi-usb-c-fill::before { content: "\f6d8"; }
-.bi-usb-c::before { content: "\f6d9"; }
-.bi-usb-fill::before { content: "\f6da"; }
-.bi-usb-plug-fill::before { content: "\f6db"; }
-.bi-usb-plug::before { content: "\f6dc"; }
-.bi-usb-symbol::before { content: "\f6dd"; }
-.bi-usb::before { content: "\f6de"; }
-.bi-boombox-fill::before { content: "\f6df"; }
-.bi-displayport::before { content: "\f6e1"; }
-.bi-gpu-card::before { content: "\f6e2"; }
-.bi-memory::before { content: "\f6e3"; }
-.bi-modem-fill::before { content: "\f6e4"; }
-.bi-modem::before { content: "\f6e5"; }
-.bi-motherboard-fill::before { content: "\f6e6"; }
-.bi-motherboard::before { content: "\f6e7"; }
-.bi-optical-audio-fill::before { content: "\f6e8"; }
-.bi-optical-audio::before { content: "\f6e9"; }
-.bi-pci-card::before { content: "\f6ea"; }
-.bi-router-fill::before { content: "\f6eb"; }
-.bi-router::before { content: "\f6ec"; }
-.bi-thunderbolt-fill::before { content: "\f6ef"; }
-.bi-thunderbolt::before { content: "\f6f0"; }
-.bi-usb-drive-fill::before { content: "\f6f1"; }
-.bi-usb-drive::before { content: "\f6f2"; }
-.bi-usb-micro-fill::before { content: "\f6f3"; }
-.bi-usb-micro::before { content: "\f6f4"; }
-.bi-usb-mini-fill::before { content: "\f6f5"; }
-.bi-usb-mini::before { content: "\f6f6"; }
-.bi-cloud-haze2::before { content: "\f6f7"; }
-.bi-device-hdd-fill::before { content: "\f6f8"; }
-.bi-device-hdd::before { content: "\f6f9"; }
-.bi-device-ssd-fill::before { content: "\f6fa"; }
-.bi-device-ssd::before { content: "\f6fb"; }
-.bi-displayport-fill::before { content: "\f6fc"; }
-.bi-mortarboard-fill::before { content: "\f6fd"; }
-.bi-mortarboard::before { content: "\f6fe"; }
-.bi-terminal-x::before { content: "\f6ff"; }
-.bi-arrow-through-heart-fill::before { content: "\f700"; }
-.bi-arrow-through-heart::before { content: "\f701"; }
-.bi-badge-sd-fill::before { content: "\f702"; }
-.bi-badge-sd::before { content: "\f703"; }
-.bi-bag-heart-fill::before { content: "\f704"; }
-.bi-bag-heart::before { content: "\f705"; }
-.bi-balloon-fill::before { content: "\f706"; }
-.bi-balloon-heart-fill::before { content: "\f707"; }
-.bi-balloon-heart::before { content: "\f708"; }
-.bi-balloon::before { content: "\f709"; }
-.bi-box2-fill::before { content: "\f70a"; }
-.bi-box2-heart-fill::before { content: "\f70b"; }
-.bi-box2-heart::before { content: "\f70c"; }
-.bi-box2::before { content: "\f70d"; }
-.bi-braces-asterisk::before { content: "\f70e"; }
-.bi-calendar-heart-fill::before { content: "\f70f"; }
-.bi-calendar-heart::before { content: "\f710"; }
-.bi-calendar2-heart-fill::before { content: "\f711"; }
-.bi-calendar2-heart::before { content: "\f712"; }
-.bi-chat-heart-fill::before { content: "\f713"; }
-.bi-chat-heart::before { content: "\f714"; }
-.bi-chat-left-heart-fill::before { content: "\f715"; }
-.bi-chat-left-heart::before { content: "\f716"; }
-.bi-chat-right-heart-fill::before { content: "\f717"; }
-.bi-chat-right-heart::before { content: "\f718"; }
-.bi-chat-square-heart-fill::before { content: "\f719"; }
-.bi-chat-square-heart::before { content: "\f71a"; }
-.bi-clipboard-check-fill::before { content: "\f71b"; }
-.bi-clipboard-data-fill::before { content: "\f71c"; }
-.bi-clipboard-fill::before { content: "\f71d"; }
-.bi-clipboard-heart-fill::before { content: "\f71e"; }
-.bi-clipboard-heart::before { content: "\f71f"; }
-.bi-clipboard-minus-fill::before { content: "\f720"; }
-.bi-clipboard-plus-fill::before { content: "\f721"; }
-.bi-clipboard-pulse::before { content: "\f722"; }
-.bi-clipboard-x-fill::before { content: "\f723"; }
-.bi-clipboard2-check-fill::before { content: "\f724"; }
-.bi-clipboard2-check::before { content: "\f725"; }
-.bi-clipboard2-data-fill::before { content: "\f726"; }
-.bi-clipboard2-data::before { content: "\f727"; }
-.bi-clipboard2-fill::before { content: "\f728"; }
-.bi-clipboard2-heart-fill::before { content: "\f729"; }
-.bi-clipboard2-heart::before { content: "\f72a"; }
-.bi-clipboard2-minus-fill::before { content: "\f72b"; }
-.bi-clipboard2-minus::before { content: "\f72c"; }
-.bi-clipboard2-plus-fill::before { content: "\f72d"; }
-.bi-clipboard2-plus::before { content: "\f72e"; }
-.bi-clipboard2-pulse-fill::before { content: "\f72f"; }
-.bi-clipboard2-pulse::before { content: "\f730"; }
-.bi-clipboard2-x-fill::before { content: "\f731"; }
-.bi-clipboard2-x::before { content: "\f732"; }
-.bi-clipboard2::before { content: "\f733"; }
-.bi-emoji-kiss-fill::before { content: "\f734"; }
-.bi-emoji-kiss::before { content: "\f735"; }
-.bi-envelope-heart-fill::before { content: "\f736"; }
-.bi-envelope-heart::before { content: "\f737"; }
-.bi-envelope-open-heart-fill::before { content: "\f738"; }
-.bi-envelope-open-heart::before { content: "\f739"; }
-.bi-envelope-paper-fill::before { content: "\f73a"; }
-.bi-envelope-paper-heart-fill::before { content: "\f73b"; }
-.bi-envelope-paper-heart::before { content: "\f73c"; }
-.bi-envelope-paper::before { content: "\f73d"; }
-.bi-filetype-aac::before { content: "\f73e"; }
-.bi-filetype-ai::before { content: "\f73f"; }
-.bi-filetype-bmp::before { content: "\f740"; }
-.bi-filetype-cs::before { content: "\f741"; }
-.bi-filetype-css::before { content: "\f742"; }
-.bi-filetype-csv::before { content: "\f743"; }
-.bi-filetype-doc::before { content: "\f744"; }
-.bi-filetype-docx::before { content: "\f745"; }
-.bi-filetype-exe::before { content: "\f746"; }
-.bi-filetype-gif::before { content: "\f747"; }
-.bi-filetype-heic::before { content: "\f748"; }
-.bi-filetype-html::before { content: "\f749"; }
-.bi-filetype-java::before { content: "\f74a"; }
-.bi-filetype-jpg::before { content: "\f74b"; }
-.bi-filetype-js::before { content: "\f74c"; }
-.bi-filetype-jsx::before { content: "\f74d"; }
-.bi-filetype-key::before { content: "\f74e"; }
-.bi-filetype-m4p::before { content: "\f74f"; }
-.bi-filetype-md::before { content: "\f750"; }
-.bi-filetype-mdx::before { content: "\f751"; }
-.bi-filetype-mov::before { content: "\f752"; }
-.bi-filetype-mp3::before { content: "\f753"; }
-.bi-filetype-mp4::before { content: "\f754"; }
-.bi-filetype-otf::before { content: "\f755"; }
-.bi-filetype-pdf::before { content: "\f756"; }
-.bi-filetype-php::before { content: "\f757"; }
-.bi-filetype-png::before { content: "\f758"; }
-.bi-filetype-ppt::before { content: "\f75a"; }
-.bi-filetype-psd::before { content: "\f75b"; }
-.bi-filetype-py::before { content: "\f75c"; }
-.bi-filetype-raw::before { content: "\f75d"; }
-.bi-filetype-rb::before { content: "\f75e"; }
-.bi-filetype-sass::before { content: "\f75f"; }
-.bi-filetype-scss::before { content: "\f760"; }
-.bi-filetype-sh::before { content: "\f761"; }
-.bi-filetype-svg::before { content: "\f762"; }
-.bi-filetype-tiff::before { content: "\f763"; }
-.bi-filetype-tsx::before { content: "\f764"; }
-.bi-filetype-ttf::before { content: "\f765"; }
-.bi-filetype-txt::before { content: "\f766"; }
-.bi-filetype-wav::before { content: "\f767"; }
-.bi-filetype-woff::before { content: "\f768"; }
-.bi-filetype-xls::before { content: "\f76a"; }
-.bi-filetype-xml::before { content: "\f76b"; }
-.bi-filetype-yml::before { content: "\f76c"; }
-.bi-heart-arrow::before { content: "\f76d"; }
-.bi-heart-pulse-fill::before { content: "\f76e"; }
-.bi-heart-pulse::before { content: "\f76f"; }
-.bi-heartbreak-fill::before { content: "\f770"; }
-.bi-heartbreak::before { content: "\f771"; }
-.bi-hearts::before { content: "\f772"; }
-.bi-hospital-fill::before { content: "\f773"; }
-.bi-hospital::before { content: "\f774"; }
-.bi-house-heart-fill::before { content: "\f775"; }
-.bi-house-heart::before { content: "\f776"; }
-.bi-incognito::before { content: "\f777"; }
-.bi-magnet-fill::before { content: "\f778"; }
-.bi-magnet::before { content: "\f779"; }
-.bi-person-heart::before { content: "\f77a"; }
-.bi-person-hearts::before { content: "\f77b"; }
-.bi-phone-flip::before { content: "\f77c"; }
-.bi-plugin::before { content: "\f77d"; }
-.bi-postage-fill::before { content: "\f77e"; }
-.bi-postage-heart-fill::before { content: "\f77f"; }
-.bi-postage-heart::before { content: "\f780"; }
-.bi-postage::before { content: "\f781"; }
-.bi-postcard-fill::before { content: "\f782"; }
-.bi-postcard-heart-fill::before { content: "\f783"; }
-.bi-postcard-heart::before { content: "\f784"; }
-.bi-postcard::before { content: "\f785"; }
-.bi-search-heart-fill::before { content: "\f786"; }
-.bi-search-heart::before { content: "\f787"; }
-.bi-sliders2-vertical::before { content: "\f788"; }
-.bi-sliders2::before { content: "\f789"; }
-.bi-trash3-fill::before { content: "\f78a"; }
-.bi-trash3::before { content: "\f78b"; }
-.bi-valentine::before { content: "\f78c"; }
-.bi-valentine2::before { content: "\f78d"; }
-.bi-wrench-adjustable-circle-fill::before { content: "\f78e"; }
-.bi-wrench-adjustable-circle::before { content: "\f78f"; }
-.bi-wrench-adjustable::before { content: "\f790"; }
-.bi-filetype-json::before { content: "\f791"; }
-.bi-filetype-pptx::before { content: "\f792"; }
-.bi-filetype-xlsx::before { content: "\f793"; }
-.bi-1-circle-fill::before { content: "\f796"; }
-.bi-1-circle::before { content: "\f797"; }
-.bi-1-square-fill::before { content: "\f798"; }
-.bi-1-square::before { content: "\f799"; }
-.bi-2-circle-fill::before { content: "\f79c"; }
-.bi-2-circle::before { content: "\f79d"; }
-.bi-2-square-fill::before { content: "\f79e"; }
-.bi-2-square::before { content: "\f79f"; }
-.bi-3-circle-fill::before { content: "\f7a2"; }
-.bi-3-circle::before { content: "\f7a3"; }
-.bi-3-square-fill::before { content: "\f7a4"; }
-.bi-3-square::before { content: "\f7a5"; }
-.bi-4-circle-fill::before { content: "\f7a8"; }
-.bi-4-circle::before { content: "\f7a9"; }
-.bi-4-square-fill::before { content: "\f7aa"; }
-.bi-4-square::before { content: "\f7ab"; }
-.bi-5-circle-fill::before { content: "\f7ae"; }
-.bi-5-circle::before { content: "\f7af"; }
-.bi-5-square-fill::before { content: "\f7b0"; }
-.bi-5-square::before { content: "\f7b1"; }
-.bi-6-circle-fill::before { content: "\f7b4"; }
-.bi-6-circle::before { content: "\f7b5"; }
-.bi-6-square-fill::before { content: "\f7b6"; }
-.bi-6-square::before { content: "\f7b7"; }
-.bi-7-circle-fill::before { content: "\f7ba"; }
-.bi-7-circle::before { content: "\f7bb"; }
-.bi-7-square-fill::before { content: "\f7bc"; }
-.bi-7-square::before { content: "\f7bd"; }
-.bi-8-circle-fill::before { content: "\f7c0"; }
-.bi-8-circle::before { content: "\f7c1"; }
-.bi-8-square-fill::before { content: "\f7c2"; }
-.bi-8-square::before { content: "\f7c3"; }
-.bi-9-circle-fill::before { content: "\f7c6"; }
-.bi-9-circle::before { content: "\f7c7"; }
-.bi-9-square-fill::before { content: "\f7c8"; }
-.bi-9-square::before { content: "\f7c9"; }
-.bi-airplane-engines-fill::before { content: "\f7ca"; }
-.bi-airplane-engines::before { content: "\f7cb"; }
-.bi-airplane-fill::before { content: "\f7cc"; }
-.bi-airplane::before { content: "\f7cd"; }
-.bi-alexa::before { content: "\f7ce"; }
-.bi-alipay::before { content: "\f7cf"; }
-.bi-android::before { content: "\f7d0"; }
-.bi-android2::before { content: "\f7d1"; }
-.bi-box-fill::before { content: "\f7d2"; }
-.bi-box-seam-fill::before { content: "\f7d3"; }
-.bi-browser-chrome::before { content: "\f7d4"; }
-.bi-browser-edge::before { content: "\f7d5"; }
-.bi-browser-firefox::before { content: "\f7d6"; }
-.bi-browser-safari::before { content: "\f7d7"; }
-.bi-c-circle-fill::before { content: "\f7da"; }
-.bi-c-circle::before { content: "\f7db"; }
-.bi-c-square-fill::before { content: "\f7dc"; }
-.bi-c-square::before { content: "\f7dd"; }
-.bi-capsule-pill::before { content: "\f7de"; }
-.bi-capsule::before { content: "\f7df"; }
-.bi-car-front-fill::before { content: "\f7e0"; }
-.bi-car-front::before { content: "\f7e1"; }
-.bi-cassette-fill::before { content: "\f7e2"; }
-.bi-cassette::before { content: "\f7e3"; }
-.bi-cc-circle-fill::before { content: "\f7e6"; }
-.bi-cc-circle::before { content: "\f7e7"; }
-.bi-cc-square-fill::before { content: "\f7e8"; }
-.bi-cc-square::before { content: "\f7e9"; }
-.bi-cup-hot-fill::before { content: "\f7ea"; }
-.bi-cup-hot::before { content: "\f7eb"; }
-.bi-currency-rupee::before { content: "\f7ec"; }
-.bi-dropbox::before { content: "\f7ed"; }
-.bi-escape::before { content: "\f7ee"; }
-.bi-fast-forward-btn-fill::before { content: "\f7ef"; }
-.bi-fast-forward-btn::before { content: "\f7f0"; }
-.bi-fast-forward-circle-fill::before { content: "\f7f1"; }
-.bi-fast-forward-circle::before { content: "\f7f2"; }
-.bi-fast-forward-fill::before { content: "\f7f3"; }
-.bi-fast-forward::before { content: "\f7f4"; }
-.bi-filetype-sql::before { content: "\f7f5"; }
-.bi-fire::before { content: "\f7f6"; }
-.bi-google-play::before { content: "\f7f7"; }
-.bi-h-circle-fill::before { content: "\f7fa"; }
-.bi-h-circle::before { content: "\f7fb"; }
-.bi-h-square-fill::before { content: "\f7fc"; }
-.bi-h-square::before { content: "\f7fd"; }
-.bi-indent::before { content: "\f7fe"; }
-.bi-lungs-fill::before { content: "\f7ff"; }
-.bi-lungs::before { content: "\f800"; }
-.bi-microsoft-teams::before { content: "\f801"; }
-.bi-p-circle-fill::before { content: "\f804"; }
-.bi-p-circle::before { content: "\f805"; }
-.bi-p-square-fill::before { content: "\f806"; }
-.bi-p-square::before { content: "\f807"; }
-.bi-pass-fill::before { content: "\f808"; }
-.bi-pass::before { content: "\f809"; }
-.bi-prescription::before { content: "\f80a"; }
-.bi-prescription2::before { content: "\f80b"; }
-.bi-r-circle-fill::before { content: "\f80e"; }
-.bi-r-circle::before { content: "\f80f"; }
-.bi-r-square-fill::before { content: "\f810"; }
-.bi-r-square::before { content: "\f811"; }
-.bi-repeat-1::before { content: "\f812"; }
-.bi-repeat::before { content: "\f813"; }
-.bi-rewind-btn-fill::before { content: "\f814"; }
-.bi-rewind-btn::before { content: "\f815"; }
-.bi-rewind-circle-fill::before { content: "\f816"; }
-.bi-rewind-circle::before { content: "\f817"; }
-.bi-rewind-fill::before { content: "\f818"; }
-.bi-rewind::before { content: "\f819"; }
-.bi-train-freight-front-fill::before { content: "\f81a"; }
-.bi-train-freight-front::before { content: "\f81b"; }
-.bi-train-front-fill::before { content: "\f81c"; }
-.bi-train-front::before { content: "\f81d"; }
-.bi-train-lightrail-front-fill::before { content: "\f81e"; }
-.bi-train-lightrail-front::before { content: "\f81f"; }
-.bi-truck-front-fill::before { content: "\f820"; }
-.bi-truck-front::before { content: "\f821"; }
-.bi-ubuntu::before { content: "\f822"; }
-.bi-unindent::before { content: "\f823"; }
-.bi-unity::before { content: "\f824"; }
-.bi-universal-access-circle::before { content: "\f825"; }
-.bi-universal-access::before { content: "\f826"; }
-.bi-virus::before { content: "\f827"; }
-.bi-virus2::before { content: "\f828"; }
-.bi-wechat::before { content: "\f829"; }
-.bi-yelp::before { content: "\f82a"; }
-.bi-sign-stop-fill::before { content: "\f82b"; }
-.bi-sign-stop-lights-fill::before { content: "\f82c"; }
-.bi-sign-stop-lights::before { content: "\f82d"; }
-.bi-sign-stop::before { content: "\f82e"; }
-.bi-sign-turn-left-fill::before { content: "\f82f"; }
-.bi-sign-turn-left::before { content: "\f830"; }
-.bi-sign-turn-right-fill::before { content: "\f831"; }
-.bi-sign-turn-right::before { content: "\f832"; }
-.bi-sign-turn-slight-left-fill::before { content: "\f833"; }
-.bi-sign-turn-slight-left::before { content: "\f834"; }
-.bi-sign-turn-slight-right-fill::before { content: "\f835"; }
-.bi-sign-turn-slight-right::before { content: "\f836"; }
-.bi-sign-yield-fill::before { content: "\f837"; }
-.bi-sign-yield::before { content: "\f838"; }
-.bi-ev-station-fill::before { content: "\f839"; }
-.bi-ev-station::before { content: "\f83a"; }
-.bi-fuel-pump-diesel-fill::before { content: "\f83b"; }
-.bi-fuel-pump-diesel::before { content: "\f83c"; }
-.bi-fuel-pump-fill::before { content: "\f83d"; }
-.bi-fuel-pump::before { content: "\f83e"; }
-.bi-0-circle-fill::before { content: "\f83f"; }
-.bi-0-circle::before { content: "\f840"; }
-.bi-0-square-fill::before { content: "\f841"; }
-.bi-0-square::before { content: "\f842"; }
-.bi-rocket-fill::before { content: "\f843"; }
-.bi-rocket-takeoff-fill::before { content: "\f844"; }
-.bi-rocket-takeoff::before { content: "\f845"; }
-.bi-rocket::before { content: "\f846"; }
-.bi-stripe::before { content: "\f847"; }
-.bi-subscript::before { content: "\f848"; }
-.bi-superscript::before { content: "\f849"; }
-.bi-trello::before { content: "\f84a"; }
-.bi-envelope-at-fill::before { content: "\f84b"; }
-.bi-envelope-at::before { content: "\f84c"; }
-.bi-regex::before { content: "\f84d"; }
-.bi-text-wrap::before { content: "\f84e"; }
-.bi-sign-dead-end-fill::before { content: "\f84f"; }
-.bi-sign-dead-end::before { content: "\f850"; }
-.bi-sign-do-not-enter-fill::before { content: "\f851"; }
-.bi-sign-do-not-enter::before { content: "\f852"; }
-.bi-sign-intersection-fill::before { content: "\f853"; }
-.bi-sign-intersection-side-fill::before { content: "\f854"; }
-.bi-sign-intersection-side::before { content: "\f855"; }
-.bi-sign-intersection-t-fill::before { content: "\f856"; }
-.bi-sign-intersection-t::before { content: "\f857"; }
-.bi-sign-intersection-y-fill::before { content: "\f858"; }
-.bi-sign-intersection-y::before { content: "\f859"; }
-.bi-sign-intersection::before { content: "\f85a"; }
-.bi-sign-merge-left-fill::before { content: "\f85b"; }
-.bi-sign-merge-left::before { content: "\f85c"; }
-.bi-sign-merge-right-fill::before { content: "\f85d"; }
-.bi-sign-merge-right::before { content: "\f85e"; }
-.bi-sign-no-left-turn-fill::before { content: "\f85f"; }
-.bi-sign-no-left-turn::before { content: "\f860"; }
-.bi-sign-no-parking-fill::before { content: "\f861"; }
-.bi-sign-no-parking::before { content: "\f862"; }
-.bi-sign-no-right-turn-fill::before { content: "\f863"; }
-.bi-sign-no-right-turn::before { content: "\f864"; }
-.bi-sign-railroad-fill::before { content: "\f865"; }
-.bi-sign-railroad::before { content: "\f866"; }
-.bi-building-add::before { content: "\f867"; }
-.bi-building-check::before { content: "\f868"; }
-.bi-building-dash::before { content: "\f869"; }
-.bi-building-down::before { content: "\f86a"; }
-.bi-building-exclamation::before { content: "\f86b"; }
-.bi-building-fill-add::before { content: "\f86c"; }
-.bi-building-fill-check::before { content: "\f86d"; }
-.bi-building-fill-dash::before { content: "\f86e"; }
-.bi-building-fill-down::before { content: "\f86f"; }
-.bi-building-fill-exclamation::before { content: "\f870"; }
-.bi-building-fill-gear::before { content: "\f871"; }
-.bi-building-fill-lock::before { content: "\f872"; }
-.bi-building-fill-slash::before { content: "\f873"; }
-.bi-building-fill-up::before { content: "\f874"; }
-.bi-building-fill-x::before { content: "\f875"; }
-.bi-building-fill::before { content: "\f876"; }
-.bi-building-gear::before { content: "\f877"; }
-.bi-building-lock::before { content: "\f878"; }
-.bi-building-slash::before { content: "\f879"; }
-.bi-building-up::before { content: "\f87a"; }
-.bi-building-x::before { content: "\f87b"; }
-.bi-buildings-fill::before { content: "\f87c"; }
-.bi-buildings::before { content: "\f87d"; }
-.bi-bus-front-fill::before { content: "\f87e"; }
-.bi-bus-front::before { content: "\f87f"; }
-.bi-ev-front-fill::before { content: "\f880"; }
-.bi-ev-front::before { content: "\f881"; }
-.bi-globe-americas::before { content: "\f882"; }
-.bi-globe-asia-australia::before { content: "\f883"; }
-.bi-globe-central-south-asia::before { content: "\f884"; }
-.bi-globe-europe-africa::before { content: "\f885"; }
-.bi-house-add-fill::before { content: "\f886"; }
-.bi-house-add::before { content: "\f887"; }
-.bi-house-check-fill::before { content: "\f888"; }
-.bi-house-check::before { content: "\f889"; }
-.bi-house-dash-fill::before { content: "\f88a"; }
-.bi-house-dash::before { content: "\f88b"; }
-.bi-house-down-fill::before { content: "\f88c"; }
-.bi-house-down::before { content: "\f88d"; }
-.bi-house-exclamation-fill::before { content: "\f88e"; }
-.bi-house-exclamation::before { content: "\f88f"; }
-.bi-house-gear-fill::before { content: "\f890"; }
-.bi-house-gear::before { content: "\f891"; }
-.bi-house-lock-fill::before { content: "\f892"; }
-.bi-house-lock::before { content: "\f893"; }
-.bi-house-slash-fill::before { content: "\f894"; }
-.bi-house-slash::before { content: "\f895"; }
-.bi-house-up-fill::before { content: "\f896"; }
-.bi-house-up::before { content: "\f897"; }
-.bi-house-x-fill::before { content: "\f898"; }
-.bi-house-x::before { content: "\f899"; }
-.bi-person-add::before { content: "\f89a"; }
-.bi-person-down::before { content: "\f89b"; }
-.bi-person-exclamation::before { content: "\f89c"; }
-.bi-person-fill-add::before { content: "\f89d"; }
-.bi-person-fill-check::before { content: "\f89e"; }
-.bi-person-fill-dash::before { content: "\f89f"; }
-.bi-person-fill-down::before { content: "\f8a0"; }
-.bi-person-fill-exclamation::before { content: "\f8a1"; }
-.bi-person-fill-gear::before { content: "\f8a2"; }
-.bi-person-fill-lock::before { content: "\f8a3"; }
-.bi-person-fill-slash::before { content: "\f8a4"; }
-.bi-person-fill-up::before { content: "\f8a5"; }
-.bi-person-fill-x::before { content: "\f8a6"; }
-.bi-person-gear::before { content: "\f8a7"; }
-.bi-person-lock::before { content: "\f8a8"; }
-.bi-person-slash::before { content: "\f8a9"; }
-.bi-person-up::before { content: "\f8aa"; }
-.bi-scooter::before { content: "\f8ab"; }
-.bi-taxi-front-fill::before { content: "\f8ac"; }
-.bi-taxi-front::before { content: "\f8ad"; }
-.bi-amd::before { content: "\f8ae"; }
-.bi-database-add::before { content: "\f8af"; }
-.bi-database-check::before { content: "\f8b0"; }
-.bi-database-dash::before { content: "\f8b1"; }
-.bi-database-down::before { content: "\f8b2"; }
-.bi-database-exclamation::before { content: "\f8b3"; }
-.bi-database-fill-add::before { content: "\f8b4"; }
-.bi-database-fill-check::before { content: "\f8b5"; }
-.bi-database-fill-dash::before { content: "\f8b6"; }
-.bi-database-fill-down::before { content: "\f8b7"; }
-.bi-database-fill-exclamation::before { content: "\f8b8"; }
-.bi-database-fill-gear::before { content: "\f8b9"; }
-.bi-database-fill-lock::before { content: "\f8ba"; }
-.bi-database-fill-slash::before { content: "\f8bb"; }
-.bi-database-fill-up::before { content: "\f8bc"; }
-.bi-database-fill-x::before { content: "\f8bd"; }
-.bi-database-fill::before { content: "\f8be"; }
-.bi-database-gear::before { content: "\f8bf"; }
-.bi-database-lock::before { content: "\f8c0"; }
-.bi-database-slash::before { content: "\f8c1"; }
-.bi-database-up::before { content: "\f8c2"; }
-.bi-database-x::before { content: "\f8c3"; }
-.bi-database::before { content: "\f8c4"; }
-.bi-houses-fill::before { content: "\f8c5"; }
-.bi-houses::before { content: "\f8c6"; }
-.bi-nvidia::before { content: "\f8c7"; }
-.bi-person-vcard-fill::before { content: "\f8c8"; }
-.bi-person-vcard::before { content: "\f8c9"; }
-.bi-sina-weibo::before { content: "\f8ca"; }
-.bi-tencent-qq::before { content: "\f8cb"; }
-.bi-wikipedia::before { content: "\f8cc"; }
-.bi-alphabet-uppercase::before { content: "\f2a5"; }
-.bi-alphabet::before { content: "\f68a"; }
-.bi-amazon::before { content: "\f68d"; }
-.bi-arrows-collapse-vertical::before { content: "\f690"; }
-.bi-arrows-expand-vertical::before { content: "\f695"; }
-.bi-arrows-vertical::before { content: "\f698"; }
-.bi-arrows::before { content: "\f6a2"; }
-.bi-ban-fill::before { content: "\f6a3"; }
-.bi-ban::before { content: "\f6b6"; }
-.bi-bing::before { content: "\f6c2"; }
-.bi-cake::before { content: "\f6e0"; }
-.bi-cake2::before { content: "\f6ed"; }
-.bi-cookie::before { content: "\f6ee"; }
-.bi-copy::before { content: "\f759"; }
-.bi-crosshair::before { content: "\f769"; }
-.bi-crosshair2::before { content: "\f794"; }
-.bi-emoji-astonished-fill::before { content: "\f795"; }
-.bi-emoji-astonished::before { content: "\f79a"; }
-.bi-emoji-grimace-fill::before { content: "\f79b"; }
-.bi-emoji-grimace::before { content: "\f7a0"; }
-.bi-emoji-grin-fill::before { content: "\f7a1"; }
-.bi-emoji-grin::before { content: "\f7a6"; }
-.bi-emoji-surprise-fill::before { content: "\f7a7"; }
-.bi-emoji-surprise::before { content: "\f7ac"; }
-.bi-emoji-tear-fill::before { content: "\f7ad"; }
-.bi-emoji-tear::before { content: "\f7b2"; }
-.bi-envelope-arrow-down-fill::before { content: "\f7b3"; }
-.bi-envelope-arrow-down::before { content: "\f7b8"; }
-.bi-envelope-arrow-up-fill::before { content: "\f7b9"; }
-.bi-envelope-arrow-up::before { content: "\f7be"; }
-.bi-feather::before { content: "\f7bf"; }
-.bi-feather2::before { content: "\f7c4"; }
-.bi-floppy-fill::before { content: "\f7c5"; }
-.bi-floppy::before { content: "\f7d8"; }
-.bi-floppy2-fill::before { content: "\f7d9"; }
-.bi-floppy2::before { content: "\f7e4"; }
-.bi-gitlab::before { content: "\f7e5"; }
-.bi-highlighter::before { content: "\f7f8"; }
-.bi-marker-tip::before { content: "\f802"; }
-.bi-nvme-fill::before { content: "\f803"; }
-.bi-nvme::before { content: "\f80c"; }
-.bi-opencollective::before { content: "\f80d"; }
-.bi-pci-card-network::before { content: "\f8cd"; }
-.bi-pci-card-sound::before { content: "\f8ce"; }
-.bi-radar::before { content: "\f8cf"; }
-.bi-send-arrow-down-fill::before { content: "\f8d0"; }
-.bi-send-arrow-down::before { content: "\f8d1"; }
-.bi-send-arrow-up-fill::before { content: "\f8d2"; }
-.bi-send-arrow-up::before { content: "\f8d3"; }
-.bi-sim-slash-fill::before { content: "\f8d4"; }
-.bi-sim-slash::before { content: "\f8d5"; }
-.bi-sourceforge::before { content: "\f8d6"; }
-.bi-substack::before { content: "\f8d7"; }
-.bi-threads-fill::before { content: "\f8d8"; }
-.bi-threads::before { content: "\f8d9"; }
-.bi-transparency::before { content: "\f8da"; }
-.bi-twitter-x::before { content: "\f8db"; }
-.bi-type-h4::before { content: "\f8dc"; }
-.bi-type-h5::before { content: "\f8dd"; }
-.bi-type-h6::before { content: "\f8de"; }
-.bi-backpack-fill::before { content: "\f8df"; }
-.bi-backpack::before { content: "\f8e0"; }
-.bi-backpack2-fill::before { content: "\f8e1"; }
-.bi-backpack2::before { content: "\f8e2"; }
-.bi-backpack3-fill::before { content: "\f8e3"; }
-.bi-backpack3::before { content: "\f8e4"; }
-.bi-backpack4-fill::before { content: "\f8e5"; }
-.bi-backpack4::before { content: "\f8e6"; }
-.bi-brilliance::before { content: "\f8e7"; }
-.bi-cake-fill::before { content: "\f8e8"; }
-.bi-cake2-fill::before { content: "\f8e9"; }
-.bi-duffle-fill::before { content: "\f8ea"; }
-.bi-duffle::before { content: "\f8eb"; }
-.bi-exposure::before { content: "\f8ec"; }
-.bi-gender-neuter::before { content: "\f8ed"; }
-.bi-highlights::before { content: "\f8ee"; }
-.bi-luggage-fill::before { content: "\f8ef"; }
-.bi-luggage::before { content: "\f8f0"; }
-.bi-mailbox-flag::before { content: "\f8f1"; }
-.bi-mailbox2-flag::before { content: "\f8f2"; }
-.bi-noise-reduction::before { content: "\f8f3"; }
-.bi-passport-fill::before { content: "\f8f4"; }
-.bi-passport::before { content: "\f8f5"; }
-.bi-person-arms-up::before { content: "\f8f6"; }
-.bi-person-raised-hand::before { content: "\f8f7"; }
-.bi-person-standing-dress::before { content: "\f8f8"; }
-.bi-person-standing::before { content: "\f8f9"; }
-.bi-person-walking::before { content: "\f8fa"; }
-.bi-person-wheelchair::before { content: "\f8fb"; }
-.bi-shadows::before { content: "\f8fc"; }
-.bi-suitcase-fill::before { content: "\f8fd"; }
-.bi-suitcase-lg-fill::before { content: "\f8fe"; }
-.bi-suitcase-lg::before { content: "\f8ff"; }
-.bi-suitcase::before { content: "\f900"; }
-.bi-suitcase2-fill::before { content: "\f901"; }
-.bi-suitcase2::before { content: "\f902"; }
-.bi-vignette::before { content: "\f903"; }
diff --git a/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.woff b/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.woff
deleted file mode 100644
index dbeeb05..0000000
Binary files a/blog/aging-curve/index_files/libs/bootstrap/bootstrap-icons.woff and /dev/null differ
diff --git a/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.css b/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.css
deleted file mode 100644
index 4c4f748..0000000
--- a/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.css
+++ /dev/null
@@ -1,12 +0,0 @@
-/*!
- * Bootstrap v5.3.1 (https://getbootstrap.com/)
- * Copyright 2011-2023 The Bootstrap Authors
- * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)
- */:root,[data-bs-theme=light]{--bs-blue: #0d6efd;--bs-indigo: #6610f2;--bs-purple: #6f42c1;--bs-pink: #d63384;--bs-red: #dc3545;--bs-orange: #fd7e14;--bs-yellow: #ffc107;--bs-green: #198754;--bs-teal: #20c997;--bs-cyan: #0dcaf0;--bs-black: #000;--bs-white: #ffffff;--bs-gray: #6c757d;--bs-gray-dark: #343a40;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #343a40;--bs-gray-900: #212529;--bs-default: #dee2e6;--bs-primary: #0d6efd;--bs-secondary: #6c757d;--bs-success: #198754;--bs-info: #0dcaf0;--bs-warning: #ffc107;--bs-danger: #dc3545;--bs-light: #f8f9fa;--bs-dark: #212529;--bs-default-rgb: 222, 226, 230;--bs-primary-rgb: 13, 110, 253;--bs-secondary-rgb: 108, 117, 125;--bs-success-rgb: 25, 135, 84;--bs-info-rgb: 13, 202, 240;--bs-warning-rgb: 255, 193, 7;--bs-danger-rgb: 220, 53, 69;--bs-light-rgb: 248, 249, 250;--bs-dark-rgb: 33, 37, 41;--bs-primary-text-emphasis: #052c65;--bs-secondary-text-emphasis: #2b2f32;--bs-success-text-emphasis: #0a3622;--bs-info-text-emphasis: #055160;--bs-warning-text-emphasis: #664d03;--bs-danger-text-emphasis: #58151c;--bs-light-text-emphasis: #495057;--bs-dark-text-emphasis: #495057;--bs-primary-bg-subtle: #cfe2ff;--bs-secondary-bg-subtle: #e2e3e5;--bs-success-bg-subtle: #d1e7dd;--bs-info-bg-subtle: #cff4fc;--bs-warning-bg-subtle: #fff3cd;--bs-danger-bg-subtle: #f8d7da;--bs-light-bg-subtle: #fcfcfd;--bs-dark-bg-subtle: #ced4da;--bs-primary-border-subtle: #9ec5fe;--bs-secondary-border-subtle: #c4c8cb;--bs-success-border-subtle: #a3cfbb;--bs-info-border-subtle: #9eeaf9;--bs-warning-border-subtle: #ffe69c;--bs-danger-border-subtle: #f1aeb5;--bs-light-border-subtle: #e9ecef;--bs-dark-border-subtle: #adb5bd;--bs-white-rgb: 255, 255, 255;--bs-black-rgb: 0, 0, 0;--bs-font-sans-serif: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", "Noto Sans", "Liberation Sans", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;--bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0));--bs-root-font-size: 17px;--bs-body-font-family: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", "Noto Sans", "Liberation Sans", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--bs-body-font-size:1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #212529;--bs-body-color-rgb: 33, 37, 41;--bs-body-bg: #ffffff;--bs-body-bg-rgb: 255, 255, 255;--bs-emphasis-color: #000;--bs-emphasis-color-rgb: 0, 0, 0;--bs-secondary-color: rgba(33, 37, 41, 0.75);--bs-secondary-color-rgb: 33, 37, 41;--bs-secondary-bg: #e9ecef;--bs-secondary-bg-rgb: 233, 236, 239;--bs-tertiary-color: rgba(33, 37, 41, 0.5);--bs-tertiary-color-rgb: 33, 37, 41;--bs-tertiary-bg: #f8f9fa;--bs-tertiary-bg-rgb: 248, 249, 250;--bs-heading-color: inherit;--bs-link-color: #0d6efd;--bs-link-color-rgb: 13, 110, 253;--bs-link-decoration: underline;--bs-link-hover-color: #0a58ca;--bs-link-hover-color-rgb: 10, 88, 202;--bs-code-color: #7d12ba;--bs-highlight-bg: #fff3cd;--bs-border-width: 1px;--bs-border-style: solid;--bs-border-color: #dee2e6;--bs-border-color-translucent: rgba(0, 0, 0, 0.175);--bs-border-radius: 0.375rem;--bs-border-radius-sm: 0.25rem;--bs-border-radius-lg: 0.5rem;--bs-border-radius-xl: 1rem;--bs-border-radius-xxl: 2rem;--bs-border-radius-2xl: var(--bs-border-radius-xxl);--bs-border-radius-pill: 50rem;--bs-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-box-shadow-sm: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-box-shadow-lg: 0 1rem 3rem rgba(0, 0, 0, 0.175);--bs-box-shadow-inset: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-focus-ring-width: 0.25rem;--bs-focus-ring-opacity: 0.25;--bs-focus-ring-color: rgba(13, 110, 253, 0.25);--bs-form-valid-color: #198754;--bs-form-valid-border-color: #198754;--bs-form-invalid-color: #dc3545;--bs-form-invalid-border-color: #dc3545}[data-bs-theme=dark]{color-scheme:dark;--bs-body-color: #dee2e6;--bs-body-color-rgb: 222, 226, 230;--bs-body-bg: #212529;--bs-body-bg-rgb: 33, 37, 41;--bs-emphasis-color: #ffffff;--bs-emphasis-color-rgb: 255, 255, 255;--bs-secondary-color: rgba(222, 226, 230, 0.75);--bs-secondary-color-rgb: 222, 226, 230;--bs-secondary-bg: #343a40;--bs-secondary-bg-rgb: 52, 58, 64;--bs-tertiary-color: rgba(222, 226, 230, 0.5);--bs-tertiary-color-rgb: 222, 226, 230;--bs-tertiary-bg: #2b3035;--bs-tertiary-bg-rgb: 43, 48, 53;--bs-primary-text-emphasis: #6ea8fe;--bs-secondary-text-emphasis: #a7acb1;--bs-success-text-emphasis: #75b798;--bs-info-text-emphasis: #6edff6;--bs-warning-text-emphasis: #ffda6a;--bs-danger-text-emphasis: #ea868f;--bs-light-text-emphasis: #f8f9fa;--bs-dark-text-emphasis: #dee2e6;--bs-primary-bg-subtle: #031633;--bs-secondary-bg-subtle: #161719;--bs-success-bg-subtle: #051b11;--bs-info-bg-subtle: #032830;--bs-warning-bg-subtle: #332701;--bs-danger-bg-subtle: #2c0b0e;--bs-light-bg-subtle: #343a40;--bs-dark-bg-subtle: #1a1d20;--bs-primary-border-subtle: #084298;--bs-secondary-border-subtle: #41464b;--bs-success-border-subtle: #0f5132;--bs-info-border-subtle: #087990;--bs-warning-border-subtle: #997404;--bs-danger-border-subtle: #842029;--bs-light-border-subtle: #495057;--bs-dark-border-subtle: #343a40;--bs-heading-color: inherit;--bs-link-color: #6ea8fe;--bs-link-hover-color: #8bb9fe;--bs-link-color-rgb: 110, 168, 254;--bs-link-hover-color-rgb: 139, 185, 254;--bs-code-color: white;--bs-border-color: #495057;--bs-border-color-translucent: rgba(255, 255, 255, 0.15);--bs-form-valid-color: #75b798;--bs-form-valid-border-color: #75b798;--bs-form-invalid-color: #ea868f;--bs-form-invalid-border-color: #ea868f}*,*::before,*::after{box-sizing:border-box}:root{font-size:var(--bs-root-font-size)}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;border:0;border-top:1px solid;opacity:.25}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2;color:var(--bs-heading-color)}h1,.h1{font-size:calc(1.325rem + 0.9vw)}@media(min-width: 1200px){h1,.h1{font-size:2rem}}h2,.h2{font-size:calc(1.29rem + 0.48vw)}@media(min-width: 1200px){h2,.h2{font-size:1.65rem}}h3,.h3{font-size:calc(1.27rem + 0.24vw)}@media(min-width: 1200px){h3,.h3{font-size:1.45rem}}h4,.h4{font-size:1.25rem}h5,.h5{font-size:1.1rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:0.875em}mark,.mark{padding:.1875em;background-color:var(--bs-highlight-bg)}sub,sup{position:relative;font-size:0.75em;line-height:0;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}a{color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 1));text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{--bs-link-color-rgb: var(--bs-link-hover-color-rgb)}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:0.875em;color:#000;background-color:#f8f9fa;padding:.5rem;border:1px solid var(--bs-border-color, #dee2e6);border-radius:.375rem}pre code{background-color:rgba(0,0,0,0);font-size:inherit;color:inherit;word-break:normal}code{font-size:0.875em;color:var(--bs-code-color);background-color:#f8f9fa;border-radius:.375rem;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.4rem .4rem;font-size:0.875em;color:#fff;background-color:#212529;border-radius:.25rem}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:rgba(33,37,41,.75);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type=date]):not([type=datetime-local]):not([type=month]):not([type=week]):not([type=time])::-webkit-calendar-picker-indicator{display:none !important}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + 0.3vw);line-height:inherit}@media(min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:0.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:0.875em;color:#6c757d}.blockquote-footer::before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.375rem;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:0.875em;color:rgba(33,37,41,.75)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x)*.5);padding-left:calc(var(--bs-gutter-x)*.5);margin-right:auto;margin-left:auto}@media(min-width: 576px){.container-sm,.container{max-width:540px}}@media(min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media(min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media(min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media(min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media(min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media(min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media(min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media(min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media(min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: #212529;--bs-table-bg: #ffffff;--bs-table-border-color: #dee2e6;--bs-table-accent-bg: transparent;--bs-table-striped-color: #212529;--bs-table-striped-bg: rgba(0, 0, 0, 0.05);--bs-table-active-color: #212529;--bs-table-active-bg: rgba(0, 0, 0, 0.1);--bs-table-hover-color: #212529;--bs-table-hover-bg: rgba(0, 0, 0, 0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:1px;box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(1px*2) solid #9ba5ae}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:1px 0}.table-bordered>:not(caption)>*>*{border-width:0 1px}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #cfe2ff;--bs-table-border-color: #bacbe6;--bs-table-striped-bg: #c5d7f2;--bs-table-striped-color: #000;--bs-table-active-bg: #bacbe6;--bs-table-active-color: #000;--bs-table-hover-bg: #bfd1ec;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #e2e3e5;--bs-table-border-color: #cbccce;--bs-table-striped-bg: #d7d8da;--bs-table-striped-color: #000;--bs-table-active-bg: #cbccce;--bs-table-active-color: #000;--bs-table-hover-bg: #d1d2d4;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d1e7dd;--bs-table-border-color: #bcd0c7;--bs-table-striped-bg: #c7dbd2;--bs-table-striped-color: #000;--bs-table-active-bg: #bcd0c7;--bs-table-active-color: #000;--bs-table-hover-bg: #c1d6cc;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #cff4fc;--bs-table-border-color: #badce3;--bs-table-striped-bg: #c5e8ef;--bs-table-striped-color: #000;--bs-table-active-bg: #badce3;--bs-table-active-color: #000;--bs-table-hover-bg: #bfe2e9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #fff3cd;--bs-table-border-color: #e6dbb9;--bs-table-striped-bg: #f2e7c3;--bs-table-striped-color: #000;--bs-table-active-bg: #e6dbb9;--bs-table-active-color: #000;--bs-table-hover-bg: #ece1be;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #f8d7da;--bs-table-border-color: #dfc2c4;--bs-table-striped-bg: #eccccf;--bs-table-striped-color: #000;--bs-table-active-bg: #dfc2c4;--bs-table-active-color: #000;--bs-table-hover-bg: #e5c7ca;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #ffffff;--bs-table-bg: #212529;--bs-table-border-color: #373b3e;--bs-table-striped-bg: #2c3034;--bs-table-striped-color: #ffffff;--bs-table-active-bg: #373b3e;--bs-table-active-color: #ffffff;--bs-table-hover-bg: #323539;--bs-table-hover-color: #ffffff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media(max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(0.375rem + 1px);padding-bottom:calc(0.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(0.5rem + 1px);padding-bottom:calc(0.5rem + 1px);font-size:1.25rem}.col-form-label-sm{padding-top:calc(0.25rem + 1px);padding-bottom:calc(0.25rem + 1px);font-size:0.875rem}.form-text{margin-top:.25rem;font-size:0.875em;color:rgba(33,37,41,.75)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-clip:padding-box;border:1px solid #dee2e6;border-radius:.375rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type=file]{overflow:hidden}.form-control[type=file]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:#212529;background-color:#fff;border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:rgba(33,37,41,.75);opacity:1}.form-control:disabled{background-color:#e9ecef;opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#212529;background-color:#f8f9fa;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:#e9ecef}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:#212529;background-color:rgba(0,0,0,0);border:solid rgba(0,0,0,0);border-width:1px 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2));padding:.25rem .5rem;font-size:0.875rem;border-radius:.25rem}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2));padding:.5rem 1rem;font-size:1.25rem;border-radius:.5rem}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + 0.75rem + calc(1px * 2))}textarea.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2))}.form-control-color{width:3rem;height:calc(1.5em + 0.75rem + calc(1px * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important;border-radius:.375rem}.form-control-color::-webkit-color-swatch{border:0 !important;border-radius:.375rem}.form-control-color.form-control-sm{height:calc(1.5em + 0.5rem + calc(1px * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(1px * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:1px solid #dee2e6;border-radius:.375rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:#e9ecef}.form-select:-moz-focusring{color:rgba(0,0,0,0);text-shadow:0 0 0 #212529}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:0.875rem;border-radius:.25rem}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem;border-radius:.5rem}[data-bs-theme=dark] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: #ffffff;width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:1px solid #dee2e6;print-color-adjust:exact}.form-check-input[type=checkbox],.shiny-input-container .checkbox input[type=checkbox],.shiny-input-container .checkbox-inline input[type=checkbox],.shiny-input-container .radio input[type=checkbox],.shiny-input-container .radio-inline input[type=checkbox]{border-radius:.25em}.form-check-input[type=radio],.shiny-input-container .checkbox input[type=radio],.shiny-input-container .checkbox-inline input[type=radio],.shiny-input-container .radio input[type=radio],.shiny-input-container .radio-inline input[type=radio]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#0d6efd;border-color:#0d6efd}.form-check-input:checked[type=checkbox],.shiny-input-container .checkbox input:checked[type=checkbox],.shiny-input-container .checkbox-inline input:checked[type=checkbox],.shiny-input-container .radio input:checked[type=checkbox],.shiny-input-container .radio-inline input:checked[type=checkbox]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23ffffff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type=radio],.shiny-input-container .checkbox input:checked[type=radio],.shiny-input-container .checkbox-inline input:checked[type=radio],.shiny-input-container .radio input:checked[type=radio],.shiny-input-container .radio-inline input:checked[type=radio]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23ffffff'/%3e%3c/svg%3e")}.form-check-input[type=checkbox]:indeterminate,.shiny-input-container .checkbox input[type=checkbox]:indeterminate,.shiny-input-container .checkbox-inline input[type=checkbox]:indeterminate,.shiny-input-container .radio input[type=checkbox]:indeterminate,.shiny-input-container .radio-inline input[type=checkbox]:indeterminate{background-color:#0d6efd;border-color:#0d6efd;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23ffffff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;border-radius:2em;transition:background-position .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2386b7fe'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23ffffff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme=dark] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255, 255, 255, 0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:rgba(0,0,0,0)}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-0.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#b6d4fe}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0);border-radius:1rem}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#b6d4fe}.form-range::-moz-range-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0);border-radius:1rem}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:rgba(33,37,41,.75)}.form-range:disabled::-moz-range-thumb{background-color:rgba(33,37,41,.75)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(1px * 2));min-height:calc(3.5rem + calc(1px * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:1px solid rgba(0,0,0,0);transform-origin:0 0;transition:opacity .1s ease-in-out,transform .1s ease-in-out}@media(prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:rgba(0,0,0,0)}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:#fff;border-radius:.375rem}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:1px 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:#e9ecef}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;text-align:center;white-space:nowrap;background-color:#f8f9fa;border:1px solid #dee2e6;border-radius:.375rem}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;border-radius:.5rem}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem;border-radius:.25rem}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group:not(.has-validation)>:not(:last-child):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group:not(.has-validation)>.dropdown-toggle:nth-last-child(n+3),.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-control,.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>:nth-last-child(n+3):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group.has-validation>.dropdown-toggle:nth-last-child(n+4),.input-group.has-validation>.form-floating:nth-last-child(n+3)>.form-control,.input-group.has-validation>.form-floating:nth-last-child(n+3)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(1px*-1);border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.form-floating:not(:first-child)>.form-control,.input-group>.form-floating:not(:first-child)>.form-select{border-top-left-radius:0;border-bottom-left-radius:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#198754}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#198754;border-radius:.375rem}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#198754;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#198754;box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:#198754}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:#198754;box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:#198754}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:#198754}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#198754}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#dc3545;border-radius:.375rem}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#dc3545;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:#dc3545}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:#dc3545}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:#dc3545}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#dc3545}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: 0.75rem;--bs-btn-padding-y: 0.375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: #212529;--bs-btn-bg: transparent;--bs-btn-border-width: 1px;--bs-btn-border-color: transparent;--bs-btn-border-radius: 0.375rem;--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.15), 0 1px 1px rgba(0, 0, 0, 0.075);--bs-btn-disabled-opacity: 0.65;--bs-btn-focus-box-shadow: 0 0 0 0.25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);border-radius:var(--bs-btn-border-radius);background-color:var(--bs-btn-bg);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #000;--bs-btn-bg: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #e3e6ea;--bs-btn-hover-border-color: #e1e5e9;--bs-btn-focus-shadow-rgb: 189, 192, 196;--bs-btn-active-color: #000;--bs-btn-active-bg: #e5e8eb;--bs-btn-active-border-color: #e1e5e9;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #dee2e6;--bs-btn-disabled-border-color: #dee2e6}.btn-primary{--bs-btn-color: #ffffff;--bs-btn-bg: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #0b5ed7;--bs-btn-hover-border-color: #0a58ca;--bs-btn-focus-shadow-rgb: 49, 132, 253;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #0a58ca;--bs-btn-active-border-color: #0a53be;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #0d6efd;--bs-btn-disabled-border-color: #0d6efd}.btn-secondary{--bs-btn-color: #ffffff;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #5c636a;--bs-btn-hover-border-color: #565e64;--bs-btn-focus-shadow-rgb: 130, 138, 145;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #565e64;--bs-btn-active-border-color: #51585e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}.btn-success{--bs-btn-color: #ffffff;--bs-btn-bg: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #157347;--bs-btn-hover-border-color: #146c43;--bs-btn-focus-shadow-rgb: 60, 153, 110;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #146c43;--bs-btn-active-border-color: #13653f;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #198754;--bs-btn-disabled-border-color: #198754}.btn-info{--bs-btn-color: #000;--bs-btn-bg: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #31d2f2;--bs-btn-hover-border-color: #25cff2;--bs-btn-focus-shadow-rgb: 11, 172, 204;--bs-btn-active-color: #000;--bs-btn-active-bg: #3dd5f3;--bs-btn-active-border-color: #25cff2;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #0dcaf0;--bs-btn-disabled-border-color: #0dcaf0}.btn-warning{--bs-btn-color: #000;--bs-btn-bg: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffca2c;--bs-btn-hover-border-color: #ffc720;--bs-btn-focus-shadow-rgb: 217, 164, 6;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffcd39;--bs-btn-active-border-color: #ffc720;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #ffc107;--bs-btn-disabled-border-color: #ffc107}.btn-danger{--bs-btn-color: #ffffff;--bs-btn-bg: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #bb2d3b;--bs-btn-hover-border-color: #b02a37;--bs-btn-focus-shadow-rgb: 225, 83, 97;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #b02a37;--bs-btn-active-border-color: #a52834;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #dc3545;--bs-btn-disabled-border-color: #dc3545}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211, 212, 213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #ffffff;--bs-btn-bg: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #424649;--bs-btn-hover-border-color: #373b3e;--bs-btn-focus-shadow-rgb: 66, 70, 73;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #4d5154;--bs-btn-active-border-color: #373b3e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #212529;--bs-btn-disabled-border-color: #212529}.btn-outline-default{--bs-btn-color: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #dee2e6;--bs-btn-hover-border-color: #dee2e6;--bs-btn-focus-shadow-rgb: 222, 226, 230;--bs-btn-active-color: #000;--bs-btn-active-bg: #dee2e6;--bs-btn-active-border-color: #dee2e6;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #dee2e6;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dee2e6;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #0d6efd;--bs-btn-hover-border-color: #0d6efd;--bs-btn-focus-shadow-rgb: 13, 110, 253;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #0d6efd;--bs-btn-active-border-color: #0d6efd;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #0d6efd;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0d6efd;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #6c757d;--bs-btn-hover-border-color: #6c757d;--bs-btn-focus-shadow-rgb: 108, 117, 125;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #6c757d;--bs-btn-active-border-color: #6c757d;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #6c757d;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #198754;--bs-btn-hover-border-color: #198754;--bs-btn-focus-shadow-rgb: 25, 135, 84;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #198754;--bs-btn-active-border-color: #198754;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #198754;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #198754;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #0dcaf0;--bs-btn-hover-border-color: #0dcaf0;--bs-btn-focus-shadow-rgb: 13, 202, 240;--bs-btn-active-color: #000;--bs-btn-active-bg: #0dcaf0;--bs-btn-active-border-color: #0dcaf0;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #0dcaf0;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0dcaf0;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffc107;--bs-btn-hover-border-color: #ffc107;--bs-btn-focus-shadow-rgb: 255, 193, 7;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffc107;--bs-btn-active-border-color: #ffc107;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffc107;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ffc107;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #dc3545;--bs-btn-hover-border-color: #dc3545;--bs-btn-focus-shadow-rgb: 220, 53, 69;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #dc3545;--bs-btn-active-border-color: #dc3545;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #dc3545;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dc3545;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248, 249, 250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #212529;--bs-btn-hover-border-color: #212529;--bs-btn-focus-shadow-rgb: 33, 37, 41;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #212529;--bs-btn-active-border-color: #212529;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #212529;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #212529;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: #0d6efd;--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: #0a58ca;--bs-btn-hover-border-color: transparent;--bs-btn-active-color: #0a58ca;--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 49, 132, 253;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: 0.5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: 0.5rem}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: 0.25rem;--bs-btn-padding-x: 0.5rem;--bs-btn-font-size:0.875rem;--bs-btn-border-radius: 0.25rem}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height .2s ease}@media(prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width .35s ease}@media(prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid rgba(0,0,0,0);border-bottom:0;border-left:.3em solid rgba(0,0,0,0)}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: 0.5rem;--bs-dropdown-spacer: 0.125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: #212529;--bs-dropdown-bg: #ffffff;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-border-radius: 0.375rem;--bs-dropdown-border-width: 1px;--bs-dropdown-inner-border-radius: calc(0.375rem - 1px);--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-divider-margin-y: 0.5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-dropdown-link-color: #212529;--bs-dropdown-link-hover-color: #212529;--bs-dropdown-link-hover-bg: #f8f9fa;--bs-dropdown-link-active-color: #ffffff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: rgba(33, 37, 41, 0.5);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: 0.25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: 0.5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color);border-radius:var(--bs-dropdown-border-radius)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media(min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid rgba(0,0,0,0);border-bottom:.3em solid;border-left:.3em solid rgba(0,0,0,0)}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:0;border-bottom:.3em solid rgba(0,0,0,0);border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:.3em solid;border-bottom:.3em solid rgba(0,0,0,0)}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:rgba(0,0,0,0);border:0;border-radius:var(--bs-dropdown-item-border-radius, 0)}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:rgba(0,0,0,0)}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:0.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #ffffff;--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-link-hover-bg: rgba(255, 255, 255, 0.15);--bs-dropdown-link-active-color: #ffffff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group{border-radius:.375rem}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(1px*-1)}.btn-group>.btn:not(:last-child):not(.dropdown-toggle),.btn-group>.btn.dropdown-toggle-split:first-child,.btn-group>.btn-group:not(:last-child)>.btn{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:nth-child(n+3),.btn-group>:not(.btn-check)+.btn,.btn-group>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(1px*-1)}.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle),.btn-group-vertical>.btn-group:not(:last-child)>.btn{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn~.btn,.btn-group-vertical>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-top-right-radius:0}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: #0d6efd;--bs-nav-link-hover-color: #0a58ca;--bs-nav-link-disabled-color: rgba(33, 37, 41, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out}@media(prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: 1px;--bs-nav-tabs-border-color: #dee2e6;--bs-nav-tabs-border-radius: 0.375rem;--bs-nav-tabs-link-hover-border-color: #e9ecef #e9ecef #dee2e6;--bs-nav-tabs-link-active-color: #000;--bs-nav-tabs-link-active-bg: #ffffff;--bs-nav-tabs-link-active-border-color: #dee2e6 #dee2e6 #ffffff;border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1*var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid rgba(0,0,0,0);border-top-left-radius:var(--bs-nav-tabs-border-radius);border-top-right-radius:var(--bs-nav-tabs-border-radius)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1*var(--bs-nav-tabs-border-width));border-top-left-radius:0;border-top-right-radius:0}.nav-pills{--bs-nav-pills-border-radius: 0.375rem;--bs-nav-pills-link-active-color: #ffffff;--bs-nav-pills-link-active-bg: #0d6efd}.nav-pills .nav-link{border-radius:var(--bs-nav-pills-border-radius)}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: 0.125rem;--bs-nav-underline-link-active-color: #000;gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid rgba(0,0,0,0)}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: 0.5rem;--bs-navbar-color: #fdfefe;--bs-navbar-hover-color: rgba(253, 254, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 254, 0.75);--bs-navbar-active-color: #fdfeff;--bs-navbar-brand-padding-y: 0.3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: #fdfefe;--bs-navbar-brand-hover-color: #fdfeff;--bs-navbar-nav-link-padding-x: 0.5rem;--bs-navbar-toggler-padding-y: 0.25;--bs-navbar-toggler-padding-x: 0;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(253, 254, 254, 0);--bs-navbar-toggler-border-radius: 0.375rem;--bs-navbar-toggler-focus-width: 0.25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out;position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:rgba(0,0,0,0);border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);border-radius:var(--bs-navbar-toggler-border-radius);transition:var(--bs-navbar-toggler-transition)}@media(prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media(min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,.navbar[data-bs-theme=dark]{--bs-navbar-color: #fdfefe;--bs-navbar-hover-color: rgba(253, 254, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 254, 0.75);--bs-navbar-active-color: #fdfeff;--bs-navbar-brand-color: #fdfefe;--bs-navbar-brand-hover-color: #fdfeff;--bs-navbar-toggler-border-color: rgba(253, 254, 254, 0);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme=dark] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: 0.5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: 1px;--bs-card-border-color: rgba(0, 0, 0, 0.175);--bs-card-border-radius: 0.375rem;--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(0.375rem - 1px);--bs-card-cap-padding-y: 0.5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(33, 37, 41, 0.03);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: #ffffff;--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: 0.75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color);border-radius:var(--bs-card-border-radius)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-0.5*var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header:first-child{border-radius:var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius) 0 0}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer:last-child{border-radius:0 0 var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius)}.card-header-tabs{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-bottom:calc(-1*var(--bs-card-cap-padding-y));margin-left:calc(-0.5*var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-left:calc(-0.5*var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding);border-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-img,.card-img-top{border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-bottom{border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media(min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-img-top,.card-group>.card:not(:last-child) .card-header{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-img-bottom,.card-group>.card:not(:last-child) .card-footer{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-img-top,.card-group>.card:not(:first-child) .card-header{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-img-bottom,.card-group>.card:not(:first-child) .card-footer{border-bottom-left-radius:0}}.accordion{--bs-accordion-color: #212529;--bs-accordion-bg: #ffffff;--bs-accordion-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out, border-radius 0.15s ease;--bs-accordion-border-color: #dee2e6;--bs-accordion-border-width: 1px;--bs-accordion-border-radius: 0.375rem;--bs-accordion-inner-border-radius: calc(0.375rem - 1px);--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: #212529;--bs-accordion-btn-bg: #ffffff;--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23212529'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23052c65'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #86b7fe;--bs-accordion-btn-focus-box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: #052c65;--bs-accordion-active-bg: #cfe2ff}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;border-radius:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media(prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1*var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media(prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:first-of-type{border-top-left-radius:var(--bs-accordion-border-radius);border-top-right-radius:var(--bs-accordion-border-radius)}.accordion-item:first-of-type .accordion-button{border-top-left-radius:var(--bs-accordion-inner-border-radius);border-top-right-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:not(:first-of-type){border-top:0}.accordion-item:last-of-type{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-item:last-of-type .accordion-button.collapsed{border-bottom-right-radius:var(--bs-accordion-inner-border-radius);border-bottom-left-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:last-of-type .accordion-collapse{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0;border-radius:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}.accordion-flush .accordion-item .accordion-button,.accordion-flush .accordion-item .accordion-button.collapsed{border-radius:0}[data-bs-theme=dark] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: rgba(33, 37, 41, 0.75);--bs-breadcrumb-item-padding-x: 0.5rem;--bs-breadcrumb-item-active-color: rgba(33, 37, 41, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg);border-radius:var(--bs-breadcrumb-border-radius)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, ">") /* rtl: var(--bs-breadcrumb-divider, ">") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: 0.75rem;--bs-pagination-padding-y: 0.375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: #0d6efd;--bs-pagination-bg: #ffffff;--bs-pagination-border-width: 1px;--bs-pagination-border-color: #dee2e6;--bs-pagination-border-radius: 0.375rem;--bs-pagination-hover-color: #0a58ca;--bs-pagination-hover-bg: #f8f9fa;--bs-pagination-hover-border-color: #dee2e6;--bs-pagination-focus-color: #0a58ca;--bs-pagination-focus-bg: #e9ecef;--bs-pagination-focus-box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-pagination-active-color: #ffffff;--bs-pagination-active-bg: #0d6efd;--bs-pagination-active-border-color: #0d6efd;--bs-pagination-disabled-color: rgba(33, 37, 41, 0.75);--bs-pagination-disabled-bg: #e9ecef;--bs-pagination-disabled-border-color: #dee2e6;display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(1px*-1)}.page-item:first-child .page-link{border-top-left-radius:var(--bs-pagination-border-radius);border-bottom-left-radius:var(--bs-pagination-border-radius)}.page-item:last-child .page-link{border-top-right-radius:var(--bs-pagination-border-radius);border-bottom-right-radius:var(--bs-pagination-border-radius)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: 0.75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: 0.5rem}.pagination-sm{--bs-pagination-padding-x: 0.5rem;--bs-pagination-padding-y: 0.25rem;--bs-pagination-font-size:0.875rem;--bs-pagination-border-radius: 0.25rem}.badge{--bs-badge-padding-x: 0.65em;--bs-badge-padding-y: 0.35em;--bs-badge-font-size:0.75em;--bs-badge-font-weight: 700;--bs-badge-color: #ffffff;--bs-badge-border-radius: 0.375rem;display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:var(--bs-badge-border-radius)}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: 1px solid var(--bs-alert-border-color);--bs-alert-border-radius: 0.375rem;--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border);border-radius:var(--bs-alert-border-radius)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:1rem}}.progress,.progress-stacked{--bs-progress-height: 1rem;--bs-progress-font-size:0.75rem;--bs-progress-bg: #e9ecef;--bs-progress-border-radius: 0.375rem;--bs-progress-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-progress-bar-color: #ffffff;--bs-progress-bar-bg: #0d6efd;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg);border-radius:var(--bs-progress-border-radius)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media(prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: #212529;--bs-list-group-bg: #ffffff;--bs-list-group-border-color: #dee2e6;--bs-list-group-border-width: 1px;--bs-list-group-border-radius: 0.375rem;--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: 0.5rem;--bs-list-group-action-color: rgba(33, 37, 41, 0.75);--bs-list-group-action-hover-color: #000;--bs-list-group-action-hover-bg: #f8f9fa;--bs-list-group-action-active-color: #212529;--bs-list-group-action-active-bg: #e9ecef;--bs-list-group-disabled-color: rgba(33, 37, 41, 0.75);--bs-list-group-disabled-bg: #ffffff;--bs-list-group-active-color: #ffffff;--bs-list-group-active-bg: #0d6efd;--bs-list-group-active-border-color: #0d6efd;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;border-radius:var(--bs-list-group-border-radius)}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1*var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media(min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xxl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: 0.5;--bs-btn-close-hover-opacity: 0.75;--bs-btn-close-focus-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: 0.25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:rgba(0,0,0,0) var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;border-radius:.375rem;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme=dark] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: 0.75rem;--bs-toast-padding-y: 0.5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:0.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(255, 255, 255, 0.85);--bs-toast-border-width: 1px;--bs-toast-border-color: rgba(0, 0, 0, 0.175);--bs-toast-border-radius: 0.375rem;--bs-toast-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-toast-header-color: rgba(33, 37, 41, 0.75);--bs-toast-header-bg: rgba(255, 255, 255, 0.85);--bs-toast-header-border-color: rgba(0, 0, 0, 0.175);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow);border-radius:var(--bs-toast-border-radius)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color);border-top-left-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width));border-top-right-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width))}.toast-header .btn-close{margin-right:calc(-0.5*var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: 0.5rem;--bs-modal-color: ;--bs-modal-bg: #ffffff;--bs-modal-border-color: rgba(0, 0, 0, 0.175);--bs-modal-border-width: 1px;--bs-modal-border-radius: 0.5rem;--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-modal-inner-border-radius: calc(0.5rem - 1px);--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: #dee2e6;--bs-modal-header-border-width: 1px;--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: 0.5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: #dee2e6;--bs-modal-footer-border-width: 1px;position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0, -50px)}@media(prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin)*2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin)*2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);border-radius:var(--bs-modal-border-radius);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: 0.5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color);border-top-left-radius:var(--bs-modal-inner-border-radius);border-top-right-radius:var(--bs-modal-inner-border-radius)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y)*.5) calc(var(--bs-modal-header-padding-x)*.5);margin:calc(-0.5*var(--bs-modal-header-padding-y)) calc(-0.5*var(--bs-modal-header-padding-x)) calc(-0.5*var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap)*.5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color);border-bottom-right-radius:var(--bs-modal-inner-border-radius);border-bottom-left-radius:var(--bs-modal-inner-border-radius)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap)*.5)}@media(min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media(min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media(min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen .modal-header,.modal-fullscreen .modal-footer{border-radius:0}.modal-fullscreen .modal-body{overflow-y:auto}@media(max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-sm-down .modal-header,.modal-fullscreen-sm-down .modal-footer{border-radius:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media(max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-md-down .modal-header,.modal-fullscreen-md-down .modal-footer{border-radius:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media(max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-lg-down .modal-header,.modal-fullscreen-lg-down .modal-footer{border-radius:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media(max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xl-down .modal-header,.modal-fullscreen-xl-down .modal-footer{border-radius:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media(max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xxl-down .modal-header,.modal-fullscreen-xxl-down .modal-footer{border-radius:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: 0.5rem;--bs-tooltip-padding-y: 0.25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:0.875rem;--bs-tooltip-color: #ffffff;--bs-tooltip-bg: #000;--bs-tooltip-border-radius: 0.375rem;--bs-tooltip-opacity: 0.9;--bs-tooltip-arrow-width: 0.8rem;--bs-tooltip-arrow-height: 0.4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue","Noto Sans","Liberation Sans",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow{bottom:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow{left:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow{top:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow{right:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) 0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg);border-radius:var(--bs-tooltip-border-radius)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:0.875rem;--bs-popover-bg: #ffffff;--bs-popover-border-width: 1px;--bs-popover-border-color: rgba(0, 0, 0, 0.175);--bs-popover-border-radius: 0.5rem;--bs-popover-inner-border-radius: calc(0.5rem - 1px);--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: 0.5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: #e9ecef;--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: #212529;--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: 0.5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue","Noto Sans","Liberation Sans",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-radius:var(--bs-popover-border-radius)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:rgba(0,0,0,0);border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow{bottom:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow{left:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow{top:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-0.5*var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow{right:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) 0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-top-left-radius:var(--bs-popover-inner-border-radius);border-top-right-radius:var(--bs-popover-inner-border-radius)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23ffffff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23ffffff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid rgba(0,0,0,0);border-bottom:10px solid rgba(0,0,0,0);opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme=dark] .carousel .carousel-control-prev-icon,[data-bs-theme=dark] .carousel .carousel-control-next-icon,[data-bs-theme=dark].carousel .carousel-control-prev-icon,[data-bs-theme=dark].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme=dark] .carousel .carousel-indicators [data-bs-target],[data-bs-theme=dark].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme=dark] .carousel .carousel-caption,[data-bs-theme=dark].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-border-width: 0.25em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:rgba(0,0,0,0)}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: 0.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media(prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: #212529;--bs-offcanvas-bg: #ffffff;--bs-offcanvas-border-width: 1px;--bs-offcanvas-border-color: rgba(0, 0, 0, 0.175);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-offcanvas-transition: transform 0.3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media(max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 575.98px)and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media(max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media(min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 767.98px)and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media(max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media(min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 991.98px)and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media(max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media(min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1199.98px)and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media(max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media(min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1399.98px)and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media(max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media(min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media(prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y)*.5) calc(var(--bs-offcanvas-padding-x)*.5);margin-top:calc(-0.5*var(--bs-offcanvas-padding-y));margin-right:calc(-0.5*var(--bs-offcanvas-padding-x));margin-bottom:calc(-0.5*var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#000 !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#000 !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#000 !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(229, 232, 235, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(229, 232, 235, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(10, 88, 202, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(10, 88, 202, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(86, 94, 100, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(86, 94, 100, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(20, 108, 67, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(20, 108, 67, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(61, 213, 243, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(61, 213, 243, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(255, 205, 57, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(255, 205, 57, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(176, 42, 55, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(176, 42, 55, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249, 250, 251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249, 250, 251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(26, 30, 33, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(26, 30, 33, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:.2s ease-in-out transform}@media(prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: 75%}.ratio-16x9{--bs-aspect-ratio: 56.25%}.ratio-21x9{--bs-aspect-ratio: 42.8571428571%}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media(min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:1px;min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15) !important}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: 0.1}.border-opacity-25{--bs-border-opacity: 0.25}.border-opacity-50{--bs-border-opacity: 0.5}.border-opacity-75{--bs-border-opacity: 0.75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.325rem + 0.9vw) !important}.fs-2{font-size:calc(1.29rem + 0.48vw) !important}.fs-3{font-size:calc(1.27rem + 0.24vw) !important}.fs-4{font-size:1.25rem !important}.fs-5{font-size:1.1rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: 0.25}.text-opacity-50{--bs-text-opacity: 0.5}.text-opacity-75{--bs-text-opacity: 0.75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: 0.1}.link-opacity-10-hover:hover{--bs-link-opacity: 0.1}.link-opacity-25{--bs-link-opacity: 0.25}.link-opacity-25-hover:hover{--bs-link-opacity: 0.25}.link-opacity-50{--bs-link-opacity: 0.5}.link-opacity-50-hover:hover{--bs-link-opacity: 0.5}.link-opacity-75{--bs-link-opacity: 0.75}.link-opacity-75-hover:hover{--bs-link-opacity: 0.75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: 0.1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: 0.1}.link-underline-opacity-25{--bs-link-underline-opacity: 0.25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: 0.25}.link-underline-opacity-50{--bs-link-underline-opacity: 0.5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: 0.5}.link-underline-opacity-75{--bs-link-underline-opacity: 0.75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: 0.75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: 0.1}.bg-opacity-25{--bs-bg-opacity: 0.25}.bg-opacity-50{--bs-bg-opacity: 0.5}.bg-opacity-75{--bs-bg-opacity: 0.75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media(min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media(min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media(min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media(min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media(min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#000}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#000}.bg-warning{color:#000}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media(min-width: 1200px){.fs-1{font-size:2rem !important}.fs-2{font-size:1.65rem !important}.fs-3{font-size:1.45rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #ffffff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #ffffff}.bg-gradient-blue-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #ffffff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #ffffff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #ffffff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #ffffff}.bg-gradient-blue-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #ffffff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #ffffff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}:root{--bslib-value-box-shadow: none;--bslib-value-box-border-width-auto-yes: var(--bslib-value-box-border-width-baseline);--bslib-value-box-border-width-auto-no: 0;--bslib-value-box-border-width-baseline: 1px}.bslib-value-box{border-width:var(--bslib-value-box-border-width-auto-no, var(--bslib-value-box-border-width-baseline));container-name:bslib-value-box;container-type:inline-size}.bslib-value-box.card{box-shadow:var(--bslib-value-box-shadow)}.bslib-value-box.border-auto{border-width:var(--bslib-value-box-border-width-auto-yes, var(--bslib-value-box-border-width-baseline))}.bslib-value-box.default{--bslib-value-box-bg-default: var(--bs-card-bg, #ffffff);--bslib-value-box-border-color-default: var(--bs-card-border-color, rgba(0, 0, 0, 0.175));color:var(--bslib-value-box-color);background-color:var(--bslib-value-box-bg, var(--bslib-value-box-bg-default));border-color:var(--bslib-value-box-border-color, var(--bslib-value-box-border-color-default))}.bslib-value-box .value-box-grid{display:grid;grid-template-areas:"left right";align-items:center;overflow:hidden}.bslib-value-box .value-box-showcase{height:100%;max-height:var(---bslib-value-box-showcase-max-h, 100%)}.bslib-value-box .value-box-showcase,.bslib-value-box .value-box-showcase>.html-fill-item{width:100%}.bslib-value-box[data-full-screen=true] .value-box-showcase{max-height:var(---bslib-value-box-showcase-max-h-fs, 100%)}@media screen and (min-width: 575.98px){@container bslib-value-box (max-width: 300px){.bslib-value-box:not(.showcase-bottom) .value-box-grid{grid-template-columns:1fr !important;grid-template-rows:auto auto;grid-template-areas:"top" "bottom"}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-showcase{grid-area:top !important}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-area{grid-area:bottom !important;justify-content:end}}}.bslib-value-box .value-box-area{justify-content:center;padding:1.5rem 1rem;font-size:.9rem;font-weight:500}.bslib-value-box .value-box-area *{margin-bottom:0;margin-top:0}.bslib-value-box .value-box-title{font-size:1rem;margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}.bslib-value-box .value-box-title:empty::after{content:" "}.bslib-value-box .value-box-value{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}@media(min-width: 1200px){.bslib-value-box .value-box-value{font-size:1.65rem}}.bslib-value-box .value-box-value:empty::after{content:" "}.bslib-value-box .value-box-showcase{align-items:center;justify-content:center;margin-top:auto;margin-bottom:auto;padding:1rem}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{opacity:.85;min-width:50px;max-width:125%}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{font-size:4rem}.bslib-value-box.showcase-top-right .value-box-grid{grid-template-columns:1fr var(---bslib-value-box-showcase-w, 50%)}.bslib-value-box.showcase-top-right .value-box-grid .value-box-showcase{grid-area:right;margin-left:auto;align-self:start;align-items:end;padding-left:0;padding-bottom:0}.bslib-value-box.showcase-top-right .value-box-grid .value-box-area{grid-area:left;align-self:end}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid{grid-template-columns:auto var(---bslib-value-box-showcase-w-fs, 1fr)}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid>div{align-self:center}.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-showcase{margin-top:0}@container bslib-value-box (max-width: 300px){.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-grid .value-box-showcase{padding-left:1rem}}.bslib-value-box.showcase-left-center .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w, 30%) auto}.bslib-value-box.showcase-left-center[data-full-screen=true] .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w-fs, 1fr) auto}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-showcase{grid-area:left}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-area{grid-area:right}.bslib-value-box.showcase-bottom .value-box-grid{grid-template-columns:1fr;grid-template-rows:1fr var(---bslib-value-box-showcase-h, auto);grid-template-areas:"top" "bottom";overflow:hidden}.bslib-value-box.showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.bslib-value-box.showcase-bottom .value-box-grid .value-box-area{grid-area:top}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid{grid-template-rows:1fr var(---bslib-value-box-showcase-h-fs, 2fr)}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid .value-box-showcase{padding:1rem}[data-bs-theme=dark] .bslib-value-box{--bslib-value-box-shadow: 0 0.5rem 1rem rgb(0 0 0 / 50%)}@media(min-width: 576px){.nav:not(.nav-hidden){display:flex !important;display:-webkit-flex !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column){float:none !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.bslib-nav-spacer{margin-left:auto !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.form-inline{margin-top:auto;margin-bottom:auto}.nav:not(.nav-hidden).nav-stacked{flex-direction:column;-webkit-flex-direction:column;height:100%}.nav:not(.nav-hidden).nav-stacked>.bslib-nav-spacer{margin-top:auto !important}}.bslib-card{overflow:auto}.bslib-card .card-body+.card-body{padding-top:0}.bslib-card .card-body{overflow:auto}.bslib-card .card-body p{margin-top:0}.bslib-card .card-body p:last-child{margin-bottom:0}.bslib-card .card-body{max-height:var(--bslib-card-body-max-height, none)}.bslib-card[data-full-screen=true]>.card-body{max-height:var(--bslib-card-body-max-height-full-screen, none)}.bslib-card .card-header .form-group{margin-bottom:0}.bslib-card .card-header .selectize-control{margin-bottom:0}.bslib-card .card-header .selectize-control .item{margin-right:1.15rem}.bslib-card .card-footer{margin-top:auto}.bslib-card .bslib-navs-card-title{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center}.bslib-card .bslib-navs-card-title .nav{margin-left:auto}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border=true]){border:none}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border-radius=true]){border-top-left-radius:0;border-top-right-radius:0}[data-full-screen=true]{position:fixed;inset:3.5rem 1rem 1rem;height:auto !important;max-height:none !important;width:auto !important;z-index:1070}.bslib-full-screen-enter{display:none;position:absolute;bottom:var(--bslib-full-screen-enter-bottom, 0.2rem);right:var(--bslib-full-screen-enter-right, 0);top:var(--bslib-full-screen-enter-top);left:var(--bslib-full-screen-enter-left);color:var(--bslib-color-fg, var(--bs-card-color));background-color:var(--bslib-color-bg, var(--bs-card-bg, var(--bs-body-bg)));border:var(--bs-card-border-width) solid var(--bslib-color-fg, var(--bs-card-border-color));box-shadow:0 2px 4px rgba(0,0,0,.15);margin:.2rem .4rem;padding:.55rem !important;font-size:.8rem;cursor:pointer;opacity:.7;z-index:1070}.bslib-full-screen-enter:hover{opacity:1}.card[data-full-screen=false]:hover>*>.bslib-full-screen-enter{display:block}.bslib-has-full-screen .card:hover>*>.bslib-full-screen-enter{display:none}@media(max-width: 575.98px){.bslib-full-screen-enter{display:none !important}}.bslib-full-screen-exit{position:relative;top:1.35rem;font-size:.9rem;cursor:pointer;text-decoration:none;display:flex;float:right;margin-right:2.15rem;align-items:center;color:rgba(var(--bs-body-bg-rgb), 0.8)}.bslib-full-screen-exit:hover{color:rgba(var(--bs-body-bg-rgb), 1)}.bslib-full-screen-exit svg{margin-left:.5rem;font-size:1.5rem}#bslib-full-screen-overlay{position:fixed;inset:0;background-color:rgba(var(--bs-body-color-rgb), 0.6);backdrop-filter:blur(2px);-webkit-backdrop-filter:blur(2px);z-index:1069;animation:bslib-full-screen-overlay-enter 400ms cubic-bezier(0.6, 0.02, 0.65, 1) forwards}@keyframes bslib-full-screen-overlay-enter{0%{opacity:0}100%{opacity:1}}.bslib-grid{display:grid !important;gap:var(--bslib-spacer, 1rem);height:var(--bslib-grid-height)}.bslib-grid.grid{grid-template-columns:repeat(var(--bs-columns, 12), minmax(0, 1fr));grid-template-rows:unset;grid-auto-rows:var(--bslib-grid--row-heights);--bslib-grid--row-heights--xs: unset;--bslib-grid--row-heights--sm: unset;--bslib-grid--row-heights--md: unset;--bslib-grid--row-heights--lg: unset;--bslib-grid--row-heights--xl: unset;--bslib-grid--row-heights--xxl: unset}.bslib-grid.grid.bslib-grid--row-heights--xs{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xs)}@media(min-width: 576px){.bslib-grid.grid.bslib-grid--row-heights--sm{--bslib-grid--row-heights: var(--bslib-grid--row-heights--sm)}}@media(min-width: 768px){.bslib-grid.grid.bslib-grid--row-heights--md{--bslib-grid--row-heights: var(--bslib-grid--row-heights--md)}}@media(min-width: 992px){.bslib-grid.grid.bslib-grid--row-heights--lg{--bslib-grid--row-heights: var(--bslib-grid--row-heights--lg)}}@media(min-width: 1200px){.bslib-grid.grid.bslib-grid--row-heights--xl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xl)}}@media(min-width: 1400px){.bslib-grid.grid.bslib-grid--row-heights--xxl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xxl)}}.bslib-grid>*>.shiny-input-container{width:100%}.bslib-grid-item{grid-column:auto/span 1}@media(max-width: 767.98px){.bslib-grid-item{grid-column:1/-1}}@media(max-width: 575.98px){.bslib-grid{grid-template-columns:1fr !important;height:var(--bslib-grid-height-mobile)}.bslib-grid.grid{height:unset !important;grid-auto-rows:var(--bslib-grid--row-heights--xs, auto)}}.accordion .accordion-header{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2;color:var(--bs-heading-color);margin-bottom:0}@media(min-width: 1200px){.accordion .accordion-header{font-size:1.65rem}}.accordion .accordion-icon:not(:empty){margin-right:.75rem;display:flex}.accordion .accordion-button:not(.collapsed){box-shadow:none}.accordion .accordion-button:not(.collapsed):focus{box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.navbar+.container-fluid:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-sm:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-md:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-lg:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xl:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xxl:has(>.tab-content>.tab-pane.active.html-fill-container){padding-left:0;padding-right:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container{padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child){padding:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]){border-left:none;border-right:none;border-bottom:none}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]){border-radius:0}.navbar+div>.bslib-sidebar-layout{border-top:var(--bslib-sidebar-border)}html{height:100%}.bslib-page-fill{width:100%;height:100%;margin:0;padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}@media(max-width: 575.98px){.bslib-page-fill{height:var(--bslib-page-fill-mobile-height, auto)}}:root{--bslib-page-sidebar-title-bg: #517699;--bslib-page-sidebar-title-color: #ffffff}.bslib-page-title{background-color:var(--bslib-page-sidebar-title-bg);color:var(--bslib-page-sidebar-title-color);font-size:1.25rem;font-weight:300;padding:var(--bslib-spacer, 1rem);padding-left:1.5rem;margin-bottom:0;border-bottom:1px solid #dee2e6}.bslib-sidebar-layout{--bslib-sidebar-transition-duration: 500ms;--bslib-sidebar-transition-easing-x: cubic-bezier(0.8, 0.78, 0.22, 1.07);--bslib-sidebar-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-border-radius: var(--bs-border-radius);--bslib-sidebar-vert-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.05);--bslib-sidebar-fg: var(--bs-emphasis-color, black);--bslib-sidebar-main-fg: var(--bs-card-color, var(--bs-body-color));--bslib-sidebar-main-bg: var(--bs-card-bg, var(--bs-body-bg));--bslib-sidebar-toggle-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.1);--bslib-sidebar-padding: calc(var(--bslib-spacer) * 1.5);--bslib-sidebar-icon-size: var(--bslib-spacer, 1rem);--bslib-sidebar-icon-button-size: calc(var(--bslib-sidebar-icon-size, 1rem) * 2);--bslib-sidebar-padding-icon: calc(var(--bslib-sidebar-icon-button-size, 2rem) * 1.5);--bslib-collapse-toggle-border-radius: var(--bs-border-radius, 0.375rem);--bslib-collapse-toggle-transform: 0deg;--bslib-sidebar-toggle-transition-easing: cubic-bezier(1, 0, 0, 1);--bslib-collapse-toggle-right-transform: 180deg;--bslib-sidebar-column-main: minmax(0, 1fr);display:grid !important;grid-template-columns:min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px)) var(--bslib-sidebar-column-main);position:relative;transition:grid-template-columns ease-in-out var(--bslib-sidebar-transition-duration);border:var(--bslib-sidebar-border);border-radius:var(--bslib-sidebar-border-radius)}@media(prefers-reduced-motion: reduce){.bslib-sidebar-layout{transition:none}}.bslib-sidebar-layout[data-bslib-sidebar-border=false]{border:none}.bslib-sidebar-layout[data-bslib-sidebar-border-radius=false]{border-radius:initial}.bslib-sidebar-layout>.main,.bslib-sidebar-layout>.sidebar{grid-row:1/2;border-radius:inherit;overflow:auto}.bslib-sidebar-layout>.main{grid-column:2/3;border-top-left-radius:0;border-bottom-left-radius:0;padding:var(--bslib-sidebar-padding);transition:padding var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration);color:var(--bslib-sidebar-main-fg);background-color:var(--bslib-sidebar-main-bg)}.bslib-sidebar-layout>.sidebar{grid-column:1/2;width:100%;height:100%;border-right:var(--bslib-sidebar-vert-border);border-top-right-radius:0;border-bottom-right-radius:0;color:var(--bslib-sidebar-fg);background-color:var(--bslib-sidebar-bg);backdrop-filter:blur(5px)}.bslib-sidebar-layout>.sidebar>.sidebar-content{display:flex;flex-direction:column;gap:var(--bslib-spacer, 1rem);padding:var(--bslib-sidebar-padding);padding-top:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout>.sidebar>.sidebar-content>:last-child:not(.sidebar-title){margin-bottom:0}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion{margin-left:calc(-1*var(--bslib-sidebar-padding));margin-right:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:last-child{margin-bottom:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child){margin-bottom:1rem}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion .accordion-body{display:flex;flex-direction:column}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:first-child) .accordion-item:first-child{border-top:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child) .accordion-item:last-child{border-bottom:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content.has-accordion>.sidebar-title{border-bottom:none;padding-bottom:0}.bslib-sidebar-layout>.sidebar .shiny-input-container{width:100%}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar>.sidebar-content{padding-top:var(--bslib-sidebar-padding)}.bslib-sidebar-layout>.collapse-toggle{grid-row:1/2;grid-column:1/2;display:inline-flex;align-items:center;position:absolute;right:calc(var(--bslib-sidebar-icon-size));top:calc(var(--bslib-sidebar-icon-size, 1rem)/2);border:none;border-radius:var(--bslib-collapse-toggle-border-radius);height:var(--bslib-sidebar-icon-button-size, 2rem);width:var(--bslib-sidebar-icon-button-size, 2rem);display:flex;align-items:center;justify-content:center;padding:0;color:var(--bslib-sidebar-fg);background-color:unset;transition:color var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),top var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),right var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),left var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover{background-color:var(--bslib-sidebar-toggle-bg)}.bslib-sidebar-layout>.collapse-toggle>.collapse-icon{opacity:.8;width:var(--bslib-sidebar-icon-size);height:var(--bslib-sidebar-icon-size);transform:rotateY(var(--bslib-collapse-toggle-transform));transition:transform var(--bslib-sidebar-toggle-transition-easing) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover>.collapse-icon{opacity:1}.bslib-sidebar-layout .sidebar-title{font-size:1.25rem;line-height:1.25;margin-top:0;margin-bottom:1rem;padding-bottom:1rem;border-bottom:var(--bslib-sidebar-border)}.bslib-sidebar-layout.sidebar-right{grid-template-columns:var(--bslib-sidebar-column-main) min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px))}.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/2;border-top-right-radius:0;border-bottom-right-radius:0;border-top-left-radius:inherit;border-bottom-left-radius:inherit}.bslib-sidebar-layout.sidebar-right>.sidebar{grid-column:2/3;border-right:none;border-left:var(--bslib-sidebar-vert-border);border-top-left-radius:0;border-bottom-left-radius:0}.bslib-sidebar-layout.sidebar-right>.collapse-toggle{grid-column:2/3;left:var(--bslib-sidebar-icon-size);right:unset;border:var(--bslib-collapse-toggle-border)}.bslib-sidebar-layout.sidebar-right>.collapse-toggle>.collapse-icon{transform:rotateY(var(--bslib-collapse-toggle-right-transform))}.bslib-sidebar-layout.sidebar-collapsed{--bslib-collapse-toggle-transform: 180deg;--bslib-collapse-toggle-right-transform: 0deg;--bslib-sidebar-vert-border: none;grid-template-columns:0 minmax(0, 1fr)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right{grid-template-columns:minmax(0, 1fr) 0}.bslib-sidebar-layout.sidebar-collapsed:not(.transitioning)>.sidebar>*{display:none}.bslib-sidebar-layout.sidebar-collapsed>.main{border-radius:inherit}.bslib-sidebar-layout.sidebar-collapsed:not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed>.collapse-toggle{color:var(--bslib-sidebar-main-fg);top:calc(var(--bslib-sidebar-overlap-counter, 0)*(var(--bslib-sidebar-icon-size) + var(--bslib-sidebar-padding)) + var(--bslib-sidebar-icon-size, 1rem)/2);right:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px))}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.collapse-toggle{left:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px));right:unset}@media(min-width: 576px){.bslib-sidebar-layout.transitioning>.sidebar>.sidebar-content{display:none}}@media(max-width: 575.98px){.bslib-sidebar-layout[data-bslib-sidebar-open=desktop]{--bslib-sidebar-js-init-collapsed: true}.bslib-sidebar-layout>.sidebar,.bslib-sidebar-layout.sidebar-right>.sidebar{border:none}.bslib-sidebar-layout>.main,.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/3}.bslib-sidebar-layout[data-bslib-sidebar-open=always]{display:block !important}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar{max-height:var(--bslib-sidebar-max-height-mobile);overflow-y:auto;border-top:var(--bslib-sidebar-vert-border)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]){grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.sidebar{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.collapse-toggle{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed.sidebar-right{grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always])>.main{opacity:0;transition:opacity var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed>.main{opacity:1}}.html-fill-container{display:flex;flex-direction:column;min-height:0;min-width:0}.html-fill-container>.html-fill-item{flex:1 1 auto;min-height:0;min-width:0}.html-fill-container>:not(.html-fill-item){flex:0 0 auto}.tippy-box[data-theme~=quarto]{background-color:#fff;border:solid 1px #dee2e6;border-radius:.375rem;color:#212529;font-size:.875rem}.tippy-box[data-theme~=quarto]>.tippy-backdrop{background-color:#fff}.tippy-box[data-theme~=quarto]>.tippy-arrow:after,.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{content:"";position:absolute;z-index:-1}.tippy-box[data-theme~=quarto]>.tippy-arrow:after{border-color:rgba(0,0,0,0);border-style:solid}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-6px}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-6px}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-6px}.tippy-box[data-placement^=left]>.tippy-arrow:before{right:-6px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:before{border-top-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:after{border-top-color:#dee2e6;border-width:7px 7px 0;top:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow>svg{top:16px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow:after{top:17px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:before{border-bottom-color:#fff;bottom:16px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:after{border-bottom-color:#dee2e6;border-width:0 7px 7px;bottom:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow>svg{bottom:15px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow:after{bottom:17px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:before{border-left-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:after{border-left-color:#dee2e6;border-width:7px 0 7px 7px;left:17px;top:1px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow>svg{left:11px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow:after{left:12px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:before{border-right-color:#fff;right:16px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:after{border-width:7px 7px 7px 0;right:17px;top:1px;border-right-color:#dee2e6}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow>svg{right:11px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow:after{right:12px}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow{fill:#212529}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{background-image:url();background-size:16px 6px;width:16px;height:6px}.top-right{position:absolute;top:1em;right:1em}.visually-hidden{border:0;clip:rect(0 0 0 0);height:auto;margin:0;overflow:hidden;padding:0;position:absolute;width:1px;white-space:nowrap}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:.5em}figure>figcaption.quarto-float-caption-top{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,.h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,.h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,.h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,.h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1,#title-block-header .quarto-title-block>div>.h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}@media(min-width: 992px){#title-block-header .quarto-title-block>div>button{margin-top:5px}}tr.header>th>p:last-of-type{margin-bottom:0px}table,table.table{margin-top:.5rem;margin-bottom:.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-top{margin-top:.5rem;margin-bottom:.25rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-bottom{padding-top:.25rem;margin-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:rgba(33,37,41,.75)}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.tippy-content{overflow-x:auto}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*!
-*
-* ansi colors from IPython notebook's
-*
-* we also add `bright-[color]-` synonyms for the `-[color]-intense` classes since
-* that seems to be what ansi_up emits
-*
-*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-black,.ansi-bright-black-fg{color:#282c36}.ansi-black-intense-black,.ansi-bright-black-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-red,.ansi-bright-red-fg{color:#b22b31}.ansi-red-intense-red,.ansi-bright-red-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-green,.ansi-bright-green-fg{color:#007427}.ansi-green-intense-green,.ansi-bright-green-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-yellow,.ansi-bright-yellow-fg{color:#b27d12}.ansi-yellow-intense-yellow,.ansi-bright-yellow-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-blue,.ansi-bright-blue-fg{color:#0065ca}.ansi-blue-intense-blue,.ansi-bright-blue-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-magenta,.ansi-bright-magenta-fg{color:#a03196}.ansi-magenta-intense-magenta,.ansi-bright-magenta-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-cyan,.ansi-bright-cyan-fg{color:#258f8f}.ansi-cyan-intense-cyan,.ansi-bright-cyan-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-white,.ansi-bright-white-fg{color:#a1a6b2}.ansi-white-intense-white,.ansi-bright-white-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: #ffffff;--quarto-body-color: #212529;--quarto-text-muted: rgba(33, 37, 41, 0.75);--quarto-border-color: #dee2e6;--quarto-border-width: 1px;--quarto-border-radius: 0.375rem}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:relative;float:right;background-color:rgba(0,0,0,0)}input[type=checkbox]{margin-right:.5ch}:root{--mermaid-bg-color: #ffffff;--mermaid-edge-color: #6c757d;--mermaid-node-fg-color: #212529;--mermaid-fg-color: #212529;--mermaid-fg-color--lighter: #383f45;--mermaid-fg-color--lightest: #4e5862;--mermaid-font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica Neue, Noto Sans, Liberation Sans, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji;--mermaid-label-bg-color: #ffffff;--mermaid-label-fg-color: #0d6efd;--mermaid-node-bg-color: rgba(13, 110, 253, 0.1);--mermaid-node-fg-color: #212529}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}pre.sourceCode:hover>.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml, ');background-repeat:no-repeat;background-size:1rem 1rem}pre.sourceCode:hover>.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml, ')}pre.sourceCode:hover>.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml, ')}pre.sourceCode:hover>.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml, ')}main ol ol,main ul ul,main ol ul,main ul ol{margin-bottom:1em}ul>li:not(:has(>p))>ul,ol>li:not(:has(>p))>ul,ul>li:not(:has(>p))>ol,ol>li:not(:has(>p))>ol{margin-bottom:0}ul>li:not(:has(>p))>ul>li:has(>p),ol>li:not(:has(>p))>ul>li:has(>p),ul>li:not(:has(>p))>ol>li:has(>p),ol>li:not(:has(>p))>ol>li:has(>p){margin-top:1rem}body{margin:0}main.page-columns>header>h1.title,main.page-columns>header>.title.h1{margin-bottom:0}@media(min-width: 992px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] 35px [page-end-inset page-end] 5fr [screen-end-inset] 1.5em}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 3em [body-end] 50px [body-end-outset] minmax(0px, 250px) [page-end-inset] minmax(50px, 100px) [page-end] 1fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 100px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 150px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 991.98px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(1250px - 3em)) [body-content-end body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1.5em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 767.98px){body .page-columns,body.fullcontent:not(.floating):not(.docked) .page-columns,body.slimcontent:not(.floating):not(.docked) .page-columns,body.docked .page-columns,body.docked.slimcontent .page-columns,body.docked.fullcontent .page-columns,body.floating .page-columns,body.floating.slimcontent .page-columns,body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}nav[role=doc-toc]{display:none}}body,.page-row-navigation{grid-template-rows:[page-top] max-content [contents-top] max-content [contents-bottom] max-content [page-bottom]}.page-rows-contents{grid-template-rows:[content-top] minmax(max-content, 1fr) [content-bottom] minmax(60px, max-content) [page-bottom]}.page-full{grid-column:screen-start/screen-end !important}.page-columns>*{grid-column:body-content-start/body-content-end}.page-columns.column-page>*{grid-column:page-start/page-end}.page-columns.column-page-left .page-columns.page-full>*,.page-columns.column-page-left>*{grid-column:page-start/body-content-end}.page-columns.column-page-right .page-columns.page-full>*,.page-columns.column-page-right>*{grid-column:body-content-start/page-end}.page-rows{grid-auto-rows:auto}.header{grid-column:screen-start/screen-end;grid-row:page-top/contents-top}#quarto-content{padding:0;grid-column:screen-start/screen-end;grid-row:contents-top/contents-bottom}body.floating .sidebar.sidebar-navigation{grid-column:page-start/body-start;grid-row:content-top/page-bottom}body.docked .sidebar.sidebar-navigation{grid-column:screen-start/body-start;grid-row:content-top/page-bottom}.sidebar.toc-left{grid-column:page-start/body-start;grid-row:content-top/page-bottom}.sidebar.margin-sidebar{grid-column:body-end/page-end;grid-row:content-top/page-bottom}.page-columns .content{grid-column:body-content-start/body-content-end;grid-row:content-top/content-bottom;align-content:flex-start}.page-columns .page-navigation{grid-column:body-content-start/body-content-end;grid-row:content-bottom/page-bottom}.page-columns .footer{grid-column:screen-start/screen-end;grid-row:contents-bottom/page-bottom}.page-columns .column-body{grid-column:body-content-start/body-content-end}.page-columns .column-body-fullbleed{grid-column:body-start/body-end}.page-columns .column-body-outset{grid-column:body-start-outset/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset table{background:#fff}.page-columns .column-body-outset-left{grid-column:body-start-outset/body-content-end;z-index:998;opacity:.999}.page-columns .column-body-outset-left table{background:#fff}.page-columns .column-body-outset-right{grid-column:body-content-start/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset-right table{background:#fff}.page-columns .column-page{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-page table{background:#fff}.page-columns .column-page-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset table{background:#fff}.page-columns .column-page-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-inset-left table{background:#fff}.page-columns .column-page-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset-right figcaption table{background:#fff}.page-columns .column-page-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-left table{background:#fff}.page-columns .column-page-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-page-right figcaption table{background:#fff}#quarto-content.page-columns #quarto-margin-sidebar,#quarto-content.page-columns #quarto-sidebar{z-index:1}@media(max-width: 991.98px){#quarto-content.page-columns #quarto-margin-sidebar.collapse,#quarto-content.page-columns #quarto-sidebar.collapse,#quarto-content.page-columns #quarto-margin-sidebar.collapsing,#quarto-content.page-columns #quarto-sidebar.collapsing{z-index:1055}}#quarto-content.page-columns main.column-page,#quarto-content.page-columns main.column-page-right,#quarto-content.page-columns main.column-page-left{z-index:0}.page-columns .column-screen-inset{grid-column:screen-start-inset/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:screen-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:screen-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:screen-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:screen-start/screen-end;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}.zindex-content{z-index:998;opacity:.999}.zindex-modal{z-index:1055;opacity:.999}.zindex-over-content{z-index:999;opacity:.999}img.img-fluid.column-screen,img.img-fluid.column-screen-inset-shaded,img.img-fluid.column-screen-inset,img.img-fluid.column-screen-inset-left,img.img-fluid.column-screen-inset-right,img.img-fluid.column-screen-left,img.img-fluid.column-screen-right{width:100%}@media(min-width: 992px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.column-sidebar{grid-column:page-start/body-start !important;z-index:998}.column-leftmargin{grid-column:screen-start-inset/body-start !important;z-index:998}.no-row-height{height:1em;overflow:visible}}@media(max-width: 991.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.no-row-height{height:1em;overflow:visible}.page-columns.page-full{overflow:visible}.page-columns.toc-left .margin-caption,.page-columns.toc-left div.aside,.page-columns.toc-left aside:not(.footnotes):not(.sidebar),.page-columns.toc-left .column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.page-columns.toc-left .no-row-height{height:initial;overflow:initial}}@media(max-width: 767.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.no-row-height{height:initial;overflow:initial}#quarto-margin-sidebar{display:none}#quarto-sidebar-toc-left{display:none}.hidden-sm{display:none}}.panel-grid{display:grid;grid-template-rows:repeat(1, 1fr);grid-template-columns:repeat(24, 1fr);gap:1em}.panel-grid .g-col-1{grid-column:auto/span 1}.panel-grid .g-col-2{grid-column:auto/span 2}.panel-grid .g-col-3{grid-column:auto/span 3}.panel-grid .g-col-4{grid-column:auto/span 4}.panel-grid .g-col-5{grid-column:auto/span 5}.panel-grid .g-col-6{grid-column:auto/span 6}.panel-grid .g-col-7{grid-column:auto/span 7}.panel-grid .g-col-8{grid-column:auto/span 8}.panel-grid .g-col-9{grid-column:auto/span 9}.panel-grid .g-col-10{grid-column:auto/span 10}.panel-grid .g-col-11{grid-column:auto/span 11}.panel-grid .g-col-12{grid-column:auto/span 12}.panel-grid .g-col-13{grid-column:auto/span 13}.panel-grid .g-col-14{grid-column:auto/span 14}.panel-grid .g-col-15{grid-column:auto/span 15}.panel-grid .g-col-16{grid-column:auto/span 16}.panel-grid .g-col-17{grid-column:auto/span 17}.panel-grid .g-col-18{grid-column:auto/span 18}.panel-grid .g-col-19{grid-column:auto/span 19}.panel-grid .g-col-20{grid-column:auto/span 20}.panel-grid .g-col-21{grid-column:auto/span 21}.panel-grid .g-col-22{grid-column:auto/span 22}.panel-grid .g-col-23{grid-column:auto/span 23}.panel-grid .g-col-24{grid-column:auto/span 24}.panel-grid .g-start-1{grid-column-start:1}.panel-grid .g-start-2{grid-column-start:2}.panel-grid .g-start-3{grid-column-start:3}.panel-grid .g-start-4{grid-column-start:4}.panel-grid .g-start-5{grid-column-start:5}.panel-grid .g-start-6{grid-column-start:6}.panel-grid .g-start-7{grid-column-start:7}.panel-grid .g-start-8{grid-column-start:8}.panel-grid .g-start-9{grid-column-start:9}.panel-grid .g-start-10{grid-column-start:10}.panel-grid .g-start-11{grid-column-start:11}.panel-grid .g-start-12{grid-column-start:12}.panel-grid .g-start-13{grid-column-start:13}.panel-grid .g-start-14{grid-column-start:14}.panel-grid .g-start-15{grid-column-start:15}.panel-grid .g-start-16{grid-column-start:16}.panel-grid .g-start-17{grid-column-start:17}.panel-grid .g-start-18{grid-column-start:18}.panel-grid .g-start-19{grid-column-start:19}.panel-grid .g-start-20{grid-column-start:20}.panel-grid .g-start-21{grid-column-start:21}.panel-grid .g-start-22{grid-column-start:22}.panel-grid .g-start-23{grid-column-start:23}@media(min-width: 576px){.panel-grid .g-col-sm-1{grid-column:auto/span 1}.panel-grid .g-col-sm-2{grid-column:auto/span 2}.panel-grid .g-col-sm-3{grid-column:auto/span 3}.panel-grid .g-col-sm-4{grid-column:auto/span 4}.panel-grid .g-col-sm-5{grid-column:auto/span 5}.panel-grid .g-col-sm-6{grid-column:auto/span 6}.panel-grid .g-col-sm-7{grid-column:auto/span 7}.panel-grid .g-col-sm-8{grid-column:auto/span 8}.panel-grid .g-col-sm-9{grid-column:auto/span 9}.panel-grid .g-col-sm-10{grid-column:auto/span 10}.panel-grid .g-col-sm-11{grid-column:auto/span 11}.panel-grid .g-col-sm-12{grid-column:auto/span 12}.panel-grid .g-col-sm-13{grid-column:auto/span 13}.panel-grid .g-col-sm-14{grid-column:auto/span 14}.panel-grid .g-col-sm-15{grid-column:auto/span 15}.panel-grid .g-col-sm-16{grid-column:auto/span 16}.panel-grid .g-col-sm-17{grid-column:auto/span 17}.panel-grid .g-col-sm-18{grid-column:auto/span 18}.panel-grid .g-col-sm-19{grid-column:auto/span 19}.panel-grid .g-col-sm-20{grid-column:auto/span 20}.panel-grid .g-col-sm-21{grid-column:auto/span 21}.panel-grid .g-col-sm-22{grid-column:auto/span 22}.panel-grid .g-col-sm-23{grid-column:auto/span 23}.panel-grid .g-col-sm-24{grid-column:auto/span 24}.panel-grid .g-start-sm-1{grid-column-start:1}.panel-grid .g-start-sm-2{grid-column-start:2}.panel-grid .g-start-sm-3{grid-column-start:3}.panel-grid .g-start-sm-4{grid-column-start:4}.panel-grid .g-start-sm-5{grid-column-start:5}.panel-grid .g-start-sm-6{grid-column-start:6}.panel-grid .g-start-sm-7{grid-column-start:7}.panel-grid .g-start-sm-8{grid-column-start:8}.panel-grid .g-start-sm-9{grid-column-start:9}.panel-grid .g-start-sm-10{grid-column-start:10}.panel-grid .g-start-sm-11{grid-column-start:11}.panel-grid .g-start-sm-12{grid-column-start:12}.panel-grid .g-start-sm-13{grid-column-start:13}.panel-grid .g-start-sm-14{grid-column-start:14}.panel-grid .g-start-sm-15{grid-column-start:15}.panel-grid .g-start-sm-16{grid-column-start:16}.panel-grid .g-start-sm-17{grid-column-start:17}.panel-grid .g-start-sm-18{grid-column-start:18}.panel-grid .g-start-sm-19{grid-column-start:19}.panel-grid .g-start-sm-20{grid-column-start:20}.panel-grid .g-start-sm-21{grid-column-start:21}.panel-grid .g-start-sm-22{grid-column-start:22}.panel-grid .g-start-sm-23{grid-column-start:23}}@media(min-width: 768px){.panel-grid .g-col-md-1{grid-column:auto/span 1}.panel-grid .g-col-md-2{grid-column:auto/span 2}.panel-grid .g-col-md-3{grid-column:auto/span 3}.panel-grid .g-col-md-4{grid-column:auto/span 4}.panel-grid .g-col-md-5{grid-column:auto/span 5}.panel-grid .g-col-md-6{grid-column:auto/span 6}.panel-grid .g-col-md-7{grid-column:auto/span 7}.panel-grid .g-col-md-8{grid-column:auto/span 8}.panel-grid .g-col-md-9{grid-column:auto/span 9}.panel-grid .g-col-md-10{grid-column:auto/span 10}.panel-grid .g-col-md-11{grid-column:auto/span 11}.panel-grid .g-col-md-12{grid-column:auto/span 12}.panel-grid .g-col-md-13{grid-column:auto/span 13}.panel-grid .g-col-md-14{grid-column:auto/span 14}.panel-grid .g-col-md-15{grid-column:auto/span 15}.panel-grid .g-col-md-16{grid-column:auto/span 16}.panel-grid .g-col-md-17{grid-column:auto/span 17}.panel-grid .g-col-md-18{grid-column:auto/span 18}.panel-grid .g-col-md-19{grid-column:auto/span 19}.panel-grid .g-col-md-20{grid-column:auto/span 20}.panel-grid .g-col-md-21{grid-column:auto/span 21}.panel-grid .g-col-md-22{grid-column:auto/span 22}.panel-grid .g-col-md-23{grid-column:auto/span 23}.panel-grid .g-col-md-24{grid-column:auto/span 24}.panel-grid .g-start-md-1{grid-column-start:1}.panel-grid .g-start-md-2{grid-column-start:2}.panel-grid .g-start-md-3{grid-column-start:3}.panel-grid .g-start-md-4{grid-column-start:4}.panel-grid .g-start-md-5{grid-column-start:5}.panel-grid .g-start-md-6{grid-column-start:6}.panel-grid .g-start-md-7{grid-column-start:7}.panel-grid .g-start-md-8{grid-column-start:8}.panel-grid .g-start-md-9{grid-column-start:9}.panel-grid .g-start-md-10{grid-column-start:10}.panel-grid .g-start-md-11{grid-column-start:11}.panel-grid .g-start-md-12{grid-column-start:12}.panel-grid .g-start-md-13{grid-column-start:13}.panel-grid .g-start-md-14{grid-column-start:14}.panel-grid .g-start-md-15{grid-column-start:15}.panel-grid .g-start-md-16{grid-column-start:16}.panel-grid .g-start-md-17{grid-column-start:17}.panel-grid .g-start-md-18{grid-column-start:18}.panel-grid .g-start-md-19{grid-column-start:19}.panel-grid .g-start-md-20{grid-column-start:20}.panel-grid .g-start-md-21{grid-column-start:21}.panel-grid .g-start-md-22{grid-column-start:22}.panel-grid .g-start-md-23{grid-column-start:23}}@media(min-width: 992px){.panel-grid .g-col-lg-1{grid-column:auto/span 1}.panel-grid .g-col-lg-2{grid-column:auto/span 2}.panel-grid .g-col-lg-3{grid-column:auto/span 3}.panel-grid .g-col-lg-4{grid-column:auto/span 4}.panel-grid .g-col-lg-5{grid-column:auto/span 5}.panel-grid .g-col-lg-6{grid-column:auto/span 6}.panel-grid .g-col-lg-7{grid-column:auto/span 7}.panel-grid .g-col-lg-8{grid-column:auto/span 8}.panel-grid .g-col-lg-9{grid-column:auto/span 9}.panel-grid .g-col-lg-10{grid-column:auto/span 10}.panel-grid .g-col-lg-11{grid-column:auto/span 11}.panel-grid .g-col-lg-12{grid-column:auto/span 12}.panel-grid .g-col-lg-13{grid-column:auto/span 13}.panel-grid .g-col-lg-14{grid-column:auto/span 14}.panel-grid .g-col-lg-15{grid-column:auto/span 15}.panel-grid .g-col-lg-16{grid-column:auto/span 16}.panel-grid .g-col-lg-17{grid-column:auto/span 17}.panel-grid .g-col-lg-18{grid-column:auto/span 18}.panel-grid .g-col-lg-19{grid-column:auto/span 19}.panel-grid .g-col-lg-20{grid-column:auto/span 20}.panel-grid .g-col-lg-21{grid-column:auto/span 21}.panel-grid .g-col-lg-22{grid-column:auto/span 22}.panel-grid .g-col-lg-23{grid-column:auto/span 23}.panel-grid .g-col-lg-24{grid-column:auto/span 24}.panel-grid .g-start-lg-1{grid-column-start:1}.panel-grid .g-start-lg-2{grid-column-start:2}.panel-grid .g-start-lg-3{grid-column-start:3}.panel-grid .g-start-lg-4{grid-column-start:4}.panel-grid .g-start-lg-5{grid-column-start:5}.panel-grid .g-start-lg-6{grid-column-start:6}.panel-grid .g-start-lg-7{grid-column-start:7}.panel-grid .g-start-lg-8{grid-column-start:8}.panel-grid .g-start-lg-9{grid-column-start:9}.panel-grid .g-start-lg-10{grid-column-start:10}.panel-grid .g-start-lg-11{grid-column-start:11}.panel-grid .g-start-lg-12{grid-column-start:12}.panel-grid .g-start-lg-13{grid-column-start:13}.panel-grid .g-start-lg-14{grid-column-start:14}.panel-grid .g-start-lg-15{grid-column-start:15}.panel-grid .g-start-lg-16{grid-column-start:16}.panel-grid .g-start-lg-17{grid-column-start:17}.panel-grid .g-start-lg-18{grid-column-start:18}.panel-grid .g-start-lg-19{grid-column-start:19}.panel-grid .g-start-lg-20{grid-column-start:20}.panel-grid .g-start-lg-21{grid-column-start:21}.panel-grid .g-start-lg-22{grid-column-start:22}.panel-grid .g-start-lg-23{grid-column-start:23}}@media(min-width: 1200px){.panel-grid .g-col-xl-1{grid-column:auto/span 1}.panel-grid .g-col-xl-2{grid-column:auto/span 2}.panel-grid .g-col-xl-3{grid-column:auto/span 3}.panel-grid .g-col-xl-4{grid-column:auto/span 4}.panel-grid .g-col-xl-5{grid-column:auto/span 5}.panel-grid .g-col-xl-6{grid-column:auto/span 6}.panel-grid .g-col-xl-7{grid-column:auto/span 7}.panel-grid .g-col-xl-8{grid-column:auto/span 8}.panel-grid .g-col-xl-9{grid-column:auto/span 9}.panel-grid .g-col-xl-10{grid-column:auto/span 10}.panel-grid .g-col-xl-11{grid-column:auto/span 11}.panel-grid .g-col-xl-12{grid-column:auto/span 12}.panel-grid .g-col-xl-13{grid-column:auto/span 13}.panel-grid .g-col-xl-14{grid-column:auto/span 14}.panel-grid .g-col-xl-15{grid-column:auto/span 15}.panel-grid .g-col-xl-16{grid-column:auto/span 16}.panel-grid .g-col-xl-17{grid-column:auto/span 17}.panel-grid .g-col-xl-18{grid-column:auto/span 18}.panel-grid .g-col-xl-19{grid-column:auto/span 19}.panel-grid .g-col-xl-20{grid-column:auto/span 20}.panel-grid .g-col-xl-21{grid-column:auto/span 21}.panel-grid .g-col-xl-22{grid-column:auto/span 22}.panel-grid .g-col-xl-23{grid-column:auto/span 23}.panel-grid .g-col-xl-24{grid-column:auto/span 24}.panel-grid .g-start-xl-1{grid-column-start:1}.panel-grid .g-start-xl-2{grid-column-start:2}.panel-grid .g-start-xl-3{grid-column-start:3}.panel-grid .g-start-xl-4{grid-column-start:4}.panel-grid .g-start-xl-5{grid-column-start:5}.panel-grid .g-start-xl-6{grid-column-start:6}.panel-grid .g-start-xl-7{grid-column-start:7}.panel-grid .g-start-xl-8{grid-column-start:8}.panel-grid .g-start-xl-9{grid-column-start:9}.panel-grid .g-start-xl-10{grid-column-start:10}.panel-grid .g-start-xl-11{grid-column-start:11}.panel-grid .g-start-xl-12{grid-column-start:12}.panel-grid .g-start-xl-13{grid-column-start:13}.panel-grid .g-start-xl-14{grid-column-start:14}.panel-grid .g-start-xl-15{grid-column-start:15}.panel-grid .g-start-xl-16{grid-column-start:16}.panel-grid .g-start-xl-17{grid-column-start:17}.panel-grid .g-start-xl-18{grid-column-start:18}.panel-grid .g-start-xl-19{grid-column-start:19}.panel-grid .g-start-xl-20{grid-column-start:20}.panel-grid .g-start-xl-21{grid-column-start:21}.panel-grid .g-start-xl-22{grid-column-start:22}.panel-grid .g-start-xl-23{grid-column-start:23}}@media(min-width: 1400px){.panel-grid .g-col-xxl-1{grid-column:auto/span 1}.panel-grid .g-col-xxl-2{grid-column:auto/span 2}.panel-grid .g-col-xxl-3{grid-column:auto/span 3}.panel-grid .g-col-xxl-4{grid-column:auto/span 4}.panel-grid .g-col-xxl-5{grid-column:auto/span 5}.panel-grid .g-col-xxl-6{grid-column:auto/span 6}.panel-grid .g-col-xxl-7{grid-column:auto/span 7}.panel-grid .g-col-xxl-8{grid-column:auto/span 8}.panel-grid .g-col-xxl-9{grid-column:auto/span 9}.panel-grid .g-col-xxl-10{grid-column:auto/span 10}.panel-grid .g-col-xxl-11{grid-column:auto/span 11}.panel-grid .g-col-xxl-12{grid-column:auto/span 12}.panel-grid .g-col-xxl-13{grid-column:auto/span 13}.panel-grid .g-col-xxl-14{grid-column:auto/span 14}.panel-grid .g-col-xxl-15{grid-column:auto/span 15}.panel-grid .g-col-xxl-16{grid-column:auto/span 16}.panel-grid .g-col-xxl-17{grid-column:auto/span 17}.panel-grid .g-col-xxl-18{grid-column:auto/span 18}.panel-grid .g-col-xxl-19{grid-column:auto/span 19}.panel-grid .g-col-xxl-20{grid-column:auto/span 20}.panel-grid .g-col-xxl-21{grid-column:auto/span 21}.panel-grid .g-col-xxl-22{grid-column:auto/span 22}.panel-grid .g-col-xxl-23{grid-column:auto/span 23}.panel-grid .g-col-xxl-24{grid-column:auto/span 24}.panel-grid .g-start-xxl-1{grid-column-start:1}.panel-grid .g-start-xxl-2{grid-column-start:2}.panel-grid .g-start-xxl-3{grid-column-start:3}.panel-grid .g-start-xxl-4{grid-column-start:4}.panel-grid .g-start-xxl-5{grid-column-start:5}.panel-grid .g-start-xxl-6{grid-column-start:6}.panel-grid .g-start-xxl-7{grid-column-start:7}.panel-grid .g-start-xxl-8{grid-column-start:8}.panel-grid .g-start-xxl-9{grid-column-start:9}.panel-grid .g-start-xxl-10{grid-column-start:10}.panel-grid .g-start-xxl-11{grid-column-start:11}.panel-grid .g-start-xxl-12{grid-column-start:12}.panel-grid .g-start-xxl-13{grid-column-start:13}.panel-grid .g-start-xxl-14{grid-column-start:14}.panel-grid .g-start-xxl-15{grid-column-start:15}.panel-grid .g-start-xxl-16{grid-column-start:16}.panel-grid .g-start-xxl-17{grid-column-start:17}.panel-grid .g-start-xxl-18{grid-column-start:18}.panel-grid .g-start-xxl-19{grid-column-start:19}.panel-grid .g-start-xxl-20{grid-column-start:20}.panel-grid .g-start-xxl-21{grid-column-start:21}.panel-grid .g-start-xxl-22{grid-column-start:22}.panel-grid .g-start-xxl-23{grid-column-start:23}}main{margin-top:1em;margin-bottom:1em}h1,.h1,h2,.h2{color:inherit;margin-top:2rem;margin-bottom:1rem;font-weight:600}h1.title,.title.h1{margin-top:0}main.content>section:first-of-type>h2:first-child,main.content>section:first-of-type>.h2:first-child{margin-top:0}h2,.h2{border-bottom:1px solid #dee2e6;padding-bottom:.5rem}h3,.h3{font-weight:600}h3,.h3,h4,.h4{opacity:.9;margin-top:1.5rem}h5,.h5,h6,.h6{opacity:.9}.header-section-number{color:#5a6570}.nav-link.active .header-section-number{color:inherit}mark,.mark{padding:0em}.panel-caption,.figure-caption,.subfigure-caption,.table-caption,figcaption,caption{font-size:.9rem;color:#5a6570}.quarto-layout-cell[data-ref-parent] caption{color:#5a6570}.column-margin figcaption,.margin-caption,div.aside,aside,.column-margin{color:#5a6570;font-size:.825rem}.panel-caption.margin-caption{text-align:inherit}.column-margin.column-container p{margin-bottom:0}.column-margin.column-container>*:not(.collapse):first-child{padding-bottom:.5em;display:block}.column-margin.column-container>*:not(.collapse):not(:first-child){padding-top:.5em;padding-bottom:.5em;display:block}.column-margin.column-container>*.collapse:not(.show){display:none}@media(min-width: 768px){.column-margin.column-container .callout-margin-content:first-child{margin-top:4.5em}.column-margin.column-container .callout-margin-content-simple:first-child{margin-top:3.5em}}.margin-caption>*{padding-top:.5em;padding-bottom:.5em}@media(max-width: 767.98px){.quarto-layout-row{flex-direction:column}}.nav-tabs .nav-item{margin-top:1px;cursor:pointer}.tab-content{margin-top:0px;border-left:#dee2e6 1px solid;border-right:#dee2e6 1px solid;border-bottom:#dee2e6 1px solid;margin-left:0;padding:1em;margin-bottom:1em}@media(max-width: 767.98px){.layout-sidebar{margin-left:0;margin-right:0}}.panel-sidebar,.panel-sidebar .form-control,.panel-input,.panel-input .form-control,.selectize-dropdown{font-size:.9rem}.panel-sidebar .form-control,.panel-input .form-control{padding-top:.1rem}.tab-pane div.sourceCode{margin-top:0px}.tab-pane>p{padding-top:0}.tab-pane>p:nth-child(1){padding-top:0}.tab-pane>p:last-child{margin-bottom:0}.tab-pane>pre:last-child{margin-bottom:0}.tab-content>.tab-pane:not(.active){display:none !important}div.sourceCode{background-color:rgba(233,236,239,.65);border:1px solid rgba(233,236,239,.65);border-radius:.375rem}pre.sourceCode{background-color:rgba(0,0,0,0)}pre.sourceCode{border:none;font-size:.875em;overflow:visible !important;padding:.4em}.callout pre.sourceCode{padding-left:0}div.sourceCode{overflow-y:hidden}.callout div.sourceCode{margin-left:initial}.blockquote{font-size:inherit;padding-left:1rem;padding-right:1.5rem;color:#5a6570}.blockquote h1:first-child,.blockquote .h1:first-child,.blockquote h2:first-child,.blockquote .h2:first-child,.blockquote h3:first-child,.blockquote .h3:first-child,.blockquote h4:first-child,.blockquote .h4:first-child,.blockquote h5:first-child,.blockquote .h5:first-child{margin-top:0}pre{background-color:initial;padding:initial;border:initial}p pre code:not(.sourceCode),li pre code:not(.sourceCode),pre code:not(.sourceCode){background-color:initial}p code:not(.sourceCode),li code:not(.sourceCode),td code:not(.sourceCode){background-color:#f8f9fa;padding:.2em}nav p code:not(.sourceCode),nav li code:not(.sourceCode),nav td code:not(.sourceCode){background-color:rgba(0,0,0,0);padding:0}td code:not(.sourceCode){white-space:pre-wrap}#quarto-embedded-source-code-modal>.modal-dialog{max-width:1000px;padding-left:1.75rem;padding-right:1.75rem}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body{padding:0}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body div.sourceCode{margin:0;padding:.2rem .2rem;border-radius:0px;border:none}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-header{padding:.7rem}.code-tools-button{font-size:1rem;padding:.15rem .15rem;margin-left:5px;color:rgba(33,37,41,.75);background-color:rgba(0,0,0,0);transition:initial;cursor:pointer}.code-tools-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml, ');background-repeat:no-repeat;background-size:1rem 1rem}.code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml, ')}#quarto-embedded-source-code-modal .code-copy-button>.bi::before{background-image:url('data:image/svg+xml, ')}#quarto-embedded-source-code-modal .code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml, ')}.sidebar{will-change:top;transition:top 200ms linear;position:sticky;overflow-y:auto;padding-top:1.2em;max-height:100vh}.sidebar.toc-left,.sidebar.margin-sidebar{top:0px;padding-top:1em}.sidebar.quarto-banner-title-block-sidebar>*{padding-top:1.65em}figure .quarto-notebook-link{margin-top:.5em}.quarto-notebook-link{font-size:.75em;color:rgba(33,37,41,.75);margin-bottom:1em;text-decoration:none;display:block}.quarto-notebook-link:hover{text-decoration:underline;color:#0d6efd}.quarto-notebook-link::before{display:inline-block;height:.75rem;width:.75rem;margin-bottom:0em;margin-right:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml, ');background-repeat:no-repeat;background-size:.75rem .75rem}.toc-actions i.bi,.quarto-code-links i.bi,.quarto-other-links i.bi,.quarto-alternate-notebooks i.bi,.quarto-alternate-formats i.bi{margin-right:.4em;font-size:.8rem}.quarto-other-links-text-target .quarto-code-links i.bi,.quarto-other-links-text-target .quarto-other-links i.bi{margin-right:.2em}.quarto-other-formats-text-target .quarto-alternate-formats i.bi{margin-right:.1em}.toc-actions i.bi.empty,.quarto-code-links i.bi.empty,.quarto-other-links i.bi.empty,.quarto-alternate-notebooks i.bi.empty,.quarto-alternate-formats i.bi.empty{padding-left:1em}.quarto-notebook h2,.quarto-notebook .h2{border-bottom:none}.quarto-notebook .cell-container{display:flex}.quarto-notebook .cell-container .cell{flex-grow:4}.quarto-notebook .cell-container .cell-decorator{padding-top:1.5em;padding-right:1em;text-align:right}.quarto-notebook .cell-container.code-fold .cell-decorator{padding-top:3em}.quarto-notebook .cell-code code{white-space:pre-wrap}.quarto-notebook .cell .cell-output-stderr pre code,.quarto-notebook .cell .cell-output-stdout pre code{white-space:pre-wrap;overflow-wrap:anywhere}.toc-actions,.quarto-alternate-formats,.quarto-other-links,.quarto-code-links,.quarto-alternate-notebooks{padding-left:0em}.sidebar .toc-actions a,.sidebar .quarto-alternate-formats a,.sidebar .quarto-other-links a,.sidebar .quarto-code-links a,.sidebar .quarto-alternate-notebooks a,.sidebar nav[role=doc-toc] a{text-decoration:none}.sidebar .toc-actions a:hover,.sidebar .quarto-other-links a:hover,.sidebar .quarto-code-links a:hover,.sidebar .quarto-alternate-formats a:hover,.sidebar .quarto-alternate-notebooks a:hover{color:#0d6efd}.sidebar .toc-actions h2,.sidebar .toc-actions .h2,.sidebar .quarto-code-links h2,.sidebar .quarto-code-links .h2,.sidebar .quarto-other-links h2,.sidebar .quarto-other-links .h2,.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2,.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-weight:500;margin-bottom:.2rem;margin-top:.3rem;font-family:inherit;border-bottom:0;padding-bottom:0;padding-top:0px}.sidebar .toc-actions>h2,.sidebar .toc-actions>.h2,.sidebar .quarto-code-links>h2,.sidebar .quarto-code-links>.h2,.sidebar .quarto-other-links>h2,.sidebar .quarto-other-links>.h2,.sidebar .quarto-alternate-notebooks>h2,.sidebar .quarto-alternate-notebooks>.h2,.sidebar .quarto-alternate-formats>h2,.sidebar .quarto-alternate-formats>.h2{font-size:.8rem}.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-size:.875rem}.sidebar nav[role=doc-toc]>ul a{border-left:1px solid #e9ecef;padding-left:.6rem}.sidebar .toc-actions h2>ul a,.sidebar .toc-actions .h2>ul a,.sidebar .quarto-code-links h2>ul a,.sidebar .quarto-code-links .h2>ul a,.sidebar .quarto-other-links h2>ul a,.sidebar .quarto-other-links .h2>ul a,.sidebar .quarto-alternate-notebooks h2>ul a,.sidebar .quarto-alternate-notebooks .h2>ul a,.sidebar .quarto-alternate-formats h2>ul a,.sidebar .quarto-alternate-formats .h2>ul a{border-left:none;padding-left:.6rem}.sidebar .toc-actions ul a:empty,.sidebar .quarto-code-links ul a:empty,.sidebar .quarto-other-links ul a:empty,.sidebar .quarto-alternate-notebooks ul a:empty,.sidebar .quarto-alternate-formats ul a:empty,.sidebar nav[role=doc-toc]>ul a:empty{display:none}.sidebar .toc-actions ul,.sidebar .quarto-code-links ul,.sidebar .quarto-other-links ul,.sidebar .quarto-alternate-notebooks ul,.sidebar .quarto-alternate-formats ul{padding-left:0;list-style:none}.sidebar nav[role=doc-toc] ul{list-style:none;padding-left:0;list-style:none}.sidebar nav[role=doc-toc]>ul{margin-left:.45em}.quarto-margin-sidebar nav[role=doc-toc]{padding-left:.5em}.sidebar .toc-actions>ul,.sidebar .quarto-code-links>ul,.sidebar .quarto-other-links>ul,.sidebar .quarto-alternate-notebooks>ul,.sidebar .quarto-alternate-formats>ul{font-size:.8rem}.sidebar nav[role=doc-toc]>ul{font-size:.875rem}.sidebar .toc-actions ul li a,.sidebar .quarto-code-links ul li a,.sidebar .quarto-other-links ul li a,.sidebar .quarto-alternate-notebooks ul li a,.sidebar .quarto-alternate-formats ul li a,.sidebar nav[role=doc-toc]>ul li a{line-height:1.1rem;padding-bottom:.2rem;padding-top:.2rem;color:inherit}.sidebar nav[role=doc-toc] ul>li>ul>li>a{padding-left:1.2em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>a{padding-left:2.4em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>a{padding-left:3.6em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:4.8em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:6em}.sidebar nav[role=doc-toc] ul>li>a.active,.sidebar nav[role=doc-toc] ul>li>ul>li>a.active{border-left:1px solid #0d6efd;color:#0d6efd !important}.sidebar nav[role=doc-toc] ul>li>a:hover,.sidebar nav[role=doc-toc] ul>li>ul>li>a:hover{color:#0d6efd !important}kbd,.kbd{color:#212529;background-color:#f8f9fa;border:1px solid;border-radius:5px;border-color:#dee2e6}.quarto-appendix-contents div.hanging-indent{margin-left:0em}.quarto-appendix-contents div.hanging-indent div.csl-entry{margin-left:1em;text-indent:-1em}.citation a,.footnote-ref{text-decoration:none}.footnotes ol{padding-left:1em}.tippy-content>*{margin-bottom:.7em}.tippy-content>*:last-child{margin-bottom:0}.callout{margin-top:1.25rem;margin-bottom:1.25rem;border-radius:.375rem;overflow-wrap:break-word}.callout .callout-title-container{overflow-wrap:anywhere}.callout.callout-style-simple{padding:.4em .7em;border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout.callout-style-default{border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout .callout-body-container{flex-grow:1}.callout.callout-style-simple .callout-body{font-size:.9rem;font-weight:400}.callout.callout-style-default .callout-body{font-size:.9rem;font-weight:400}.callout:not(.no-icon).callout-titled.callout-style-simple .callout-body{padding-left:1.6em}.callout.callout-titled>.callout-header{padding-top:.2em;margin-bottom:-0.2em}.callout.callout-style-simple>div.callout-header{border-bottom:none;font-size:.9rem;font-weight:600;opacity:75%}.callout.callout-style-default>div.callout-header{border-bottom:none;font-weight:600;opacity:85%;font-size:.9rem;padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body{padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body>:first-child{padding-top:.5rem;margin-top:0}.callout>div.callout-header[data-bs-toggle=collapse]{cursor:pointer}.callout.callout-style-default .callout-header[aria-expanded=false],.callout.callout-style-default .callout-header[aria-expanded=true]{padding-top:0px;margin-bottom:0px;align-items:center}.callout.callout-titled .callout-body>:last-child:not(.sourceCode),.callout.callout-titled .callout-body>div>:last-child:not(.sourceCode){padding-bottom:.5rem;margin-bottom:0}.callout:not(.callout-titled) .callout-body>:first-child,.callout:not(.callout-titled) .callout-body>div>:first-child{margin-top:.25rem}.callout:not(.callout-titled) .callout-body>:last-child,.callout:not(.callout-titled) .callout-body>div>:last-child{margin-bottom:.2rem}.callout.callout-style-simple .callout-icon::before,.callout.callout-style-simple .callout-toggle::before{height:1rem;width:1rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.callout.callout-style-default .callout-icon::before,.callout.callout-style-default .callout-toggle::before{height:.9rem;width:.9rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:.9rem .9rem}.callout.callout-style-default .callout-toggle::before{margin-top:5px}.callout .callout-btn-toggle .callout-toggle::before{transition:transform .2s linear}.callout .callout-header[aria-expanded=false] .callout-toggle::before{transform:rotate(-90deg)}.callout .callout-header[aria-expanded=true] .callout-toggle::before{transform:none}.callout.callout-style-simple:not(.no-icon) div.callout-icon-container{padding-top:.2em;padding-right:.55em}.callout.callout-style-default:not(.no-icon) div.callout-icon-container{padding-top:.1em;padding-right:.35em}.callout.callout-style-default:not(.no-icon) div.callout-title-container{margin-top:-1px}.callout.callout-style-default.callout-caution:not(.no-icon) div.callout-icon-container{padding-top:.3em;padding-right:.35em}.callout>.callout-body>.callout-icon-container>.no-icon,.callout>.callout-header>.callout-icon-container>.no-icon{display:none}div.callout.callout{border-left-color:rgba(33,37,41,.75)}div.callout.callout-style-default>.callout-header{background-color:rgba(33,37,41,.75)}div.callout-note.callout{border-left-color:#0d6efd}div.callout-note.callout-style-default>.callout-header{background-color:#e7f1ff}div.callout-note:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-note.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-note .callout-toggle::before{background-image:url('data:image/svg+xml, ')}div.callout-tip.callout{border-left-color:#198754}div.callout-tip.callout-style-default>.callout-header{background-color:#e8f3ee}div.callout-tip:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-tip.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-tip .callout-toggle::before{background-image:url('data:image/svg+xml, ')}div.callout-warning.callout{border-left-color:#ffc107}div.callout-warning.callout-style-default>.callout-header{background-color:#fff9e6}div.callout-warning:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-warning.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-warning .callout-toggle::before{background-image:url('data:image/svg+xml, ')}div.callout-caution.callout{border-left-color:#fd7e14}div.callout-caution.callout-style-default>.callout-header{background-color:#fff2e8}div.callout-caution:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-caution.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-caution .callout-toggle::before{background-image:url('data:image/svg+xml, ')}div.callout-important.callout{border-left-color:#dc3545}div.callout-important.callout-style-default>.callout-header{background-color:#fcebec}div.callout-important:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-important.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml, ');}div.callout-important .callout-toggle::before{background-image:url('data:image/svg+xml, ')}.quarto-toggle-container{display:flex;align-items:center}.quarto-reader-toggle .bi::before,.quarto-color-scheme-toggle .bi::before{display:inline-block;height:1rem;width:1rem;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.sidebar-navigation{padding-left:20px}.navbar{background-color:#517699;color:#fdfefe}.navbar .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml, ')}.navbar .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml, ')}.sidebar-navigation .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml, ')}.sidebar-navigation .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml, ')}.quarto-sidebar-toggle{border-color:#dee2e6;border-bottom-left-radius:.375rem;border-bottom-right-radius:.375rem;border-style:solid;border-width:1px;overflow:hidden;border-top-width:0px;padding-top:0px !important}.quarto-sidebar-toggle-title{cursor:pointer;padding-bottom:2px;margin-left:.25em;text-align:center;font-weight:400;font-size:.775em}#quarto-content .quarto-sidebar-toggle{background:#fafafa}#quarto-content .quarto-sidebar-toggle-title{color:#212529}.quarto-sidebar-toggle-icon{color:#dee2e6;margin-right:.5em;float:right;transition:transform .2s ease}.quarto-sidebar-toggle-icon::before{padding-top:5px}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-icon{transform:rotate(-180deg)}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-title{border-bottom:solid #dee2e6 1px}.quarto-sidebar-toggle-contents{background-color:#fff;padding-right:10px;padding-left:10px;margin-top:0px !important;transition:max-height .5s ease}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-contents{padding-top:1em;padding-bottom:10px}@media(max-width: 767.98px){.sidebar-menu-container{padding-bottom:5em}}.quarto-sidebar-toggle:not(.expanded) .quarto-sidebar-toggle-contents{padding-top:0px !important;padding-bottom:0px}nav[role=doc-toc]{z-index:1020}#quarto-sidebar>*,nav[role=doc-toc]>*{transition:opacity .1s ease,border .1s ease}#quarto-sidebar.slow>*,nav[role=doc-toc].slow>*{transition:opacity .4s ease,border .4s ease}.quarto-color-scheme-toggle:not(.alternate).top-right .bi::before{background-image:url('data:image/svg+xml, ')}.quarto-color-scheme-toggle.alternate.top-right .bi::before{background-image:url('data:image/svg+xml, ')}#quarto-appendix.default{border-top:1px solid #dee2e6}#quarto-appendix.default{background-color:#fff;padding-top:1.5em;margin-top:2em;z-index:998}#quarto-appendix.default .quarto-appendix-heading{margin-top:0;line-height:1.4em;font-weight:600;opacity:.9;border-bottom:none;margin-bottom:0}#quarto-appendix.default .footnotes ol,#quarto-appendix.default .footnotes ol li>p:last-of-type,#quarto-appendix.default .quarto-appendix-contents>p:last-of-type{margin-bottom:0}#quarto-appendix.default .footnotes ol{margin-left:.5em}#quarto-appendix.default .quarto-appendix-secondary-label{margin-bottom:.4em}#quarto-appendix.default .quarto-appendix-bibtex{font-size:.7em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-bibtex code.sourceCode{white-space:pre-wrap}#quarto-appendix.default .quarto-appendix-citeas{font-size:.9em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-heading{font-size:1em !important}#quarto-appendix.default *[role=doc-endnotes]>ol,#quarto-appendix.default .quarto-appendix-contents>*:not(h2):not(.h2){font-size:.9em}#quarto-appendix.default section{padding-bottom:1.5em}#quarto-appendix.default section *[role=doc-endnotes],#quarto-appendix.default section>*:not(a){opacity:.9;word-wrap:break-word}.btn.btn-quarto,div.cell-output-display .btn-quarto{--bs-btn-color: #fefefe;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fefefe;--bs-btn-hover-bg: #828a91;--bs-btn-hover-border-color: #7b838a;--bs-btn-focus-shadow-rgb: 130, 138, 144;--bs-btn-active-color: #000;--bs-btn-active-bg: #899197;--bs-btn-active-border-color: #7b838a;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}nav.quarto-secondary-nav.color-navbar{background-color:#517699;color:#fdfefe}nav.quarto-secondary-nav.color-navbar h1,nav.quarto-secondary-nav.color-navbar .h1,nav.quarto-secondary-nav.color-navbar .quarto-btn-toggle{color:#fdfefe}@media(max-width: 991.98px){body.nav-sidebar .quarto-title-banner{margin-bottom:0;padding-bottom:1em}body.nav-sidebar #title-block-header{margin-block-end:0}}p.subtitle{margin-top:.25em;margin-bottom:.5em}code a:any-link{color:inherit;text-decoration-color:#6c757d}/*! light */div.observablehq table thead tr th{background-color:var(--bs-body-bg)}input,button,select,optgroup,textarea{background-color:var(--bs-body-bg)}.code-annotated .code-copy-button{margin-right:1.25em;margin-top:0;padding-bottom:0;padding-top:3px}.code-annotation-gutter-bg{background-color:#fff}.code-annotation-gutter{background-color:rgba(233,236,239,.65)}.code-annotation-gutter,.code-annotation-gutter-bg{height:100%;width:calc(20px + .5em);position:absolute;top:0;right:0}dl.code-annotation-container-grid dt{margin-right:1em;margin-top:.25rem}dl.code-annotation-container-grid dt{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:#383f45;border:solid #383f45 1px;border-radius:50%;height:22px;width:22px;line-height:22px;font-size:11px;text-align:center;vertical-align:middle;text-decoration:none}dl.code-annotation-container-grid dt[data-target-cell]{cursor:pointer}dl.code-annotation-container-grid dt[data-target-cell].code-annotation-active{color:#fff;border:solid #aaa 1px;background-color:#aaa}pre.code-annotation-code{padding-top:0;padding-bottom:0}pre.code-annotation-code code{z-index:3}#code-annotation-line-highlight-gutter{width:100%;border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}#code-annotation-line-highlight{margin-left:-4em;width:calc(100% + 4em);border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#e9ecef;font-weight:bolder}code.sourceCode .code-annotation-anchor{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;height:18px;width:18px;font-size:9px;margin-top:2px}code.sourceCode button.code-annotation-anchor{padding:2px;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none}code.sourceCode a.code-annotation-anchor{line-height:18px;text-align:center;vertical-align:middle;cursor:default;text-decoration:none}@media print{.page-columns .column-screen-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:page-start-inset/page-end-inset;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}}.quarto-video{margin-bottom:1em}.table{border-top:1px solid #d3d8dc;border-bottom:1px solid #d3d8dc}.table>thead{border-top-width:0;border-bottom:1px solid #9ba5ae}.table a{word-break:break-word}.table>:not(caption)>*>*{background-color:unset;color:unset}#quarto-document-content .crosstalk-input .checkbox input[type=checkbox],#quarto-document-content .crosstalk-input .checkbox-inline input[type=checkbox]{position:unset;margin-top:unset;margin-left:unset}#quarto-document-content .row{margin-left:unset;margin-right:unset}.quarto-xref{white-space:nowrap}a.external:after{content:"";background-image:url('data:image/svg+xml, ');background-size:contain;background-repeat:no-repeat;background-position:center center;margin-left:.2em;padding-right:.75em}div.sourceCode code a.external:after{content:none}a.external:after:hover{cursor:pointer}.quarto-ext-icon{display:inline-block;font-size:.75em;padding-left:.3em}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.quarto-title-banner{margin-bottom:1em;color:#fdfefe;background:#517699}.quarto-title-banner a{color:#fdfefe}.quarto-title-banner h1,.quarto-title-banner .h1,.quarto-title-banner h2,.quarto-title-banner .h2{color:#fdfefe}.quarto-title-banner .code-tools-button{color:#b9dcdc}.quarto-title-banner .code-tools-button:hover{color:#fdfefe}.quarto-title-banner .code-tools-button>.bi::before{background-image:url('data:image/svg+xml, ')}.quarto-title-banner .code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml, ')}.quarto-title-banner .quarto-title .title{font-weight:600}.quarto-title-banner .quarto-categories{margin-top:.75em}@media(min-width: 992px){.quarto-title-banner{padding-top:2.5em;padding-bottom:2.5em}}@media(max-width: 991.98px){.quarto-title-banner{padding-top:1em;padding-bottom:1em}}@media(max-width: 767.98px){body.hypothesis-enabled #title-block-header>*{padding-right:20px}}main.quarto-banner-title-block>section:first-child>h2,main.quarto-banner-title-block>section:first-child>.h2,main.quarto-banner-title-block>section:first-child>h3,main.quarto-banner-title-block>section:first-child>.h3,main.quarto-banner-title-block>section:first-child>h4,main.quarto-banner-title-block>section:first-child>.h4{margin-top:0}.quarto-title .quarto-categories{display:flex;flex-wrap:wrap;row-gap:.5em;column-gap:.4em;padding-bottom:.5em;margin-top:.75em}.quarto-title .quarto-categories .quarto-category{padding:.25em .75em;font-size:.65em;text-transform:uppercase;border:solid 1px;border-radius:.375rem;opacity:.6}.quarto-title .quarto-categories .quarto-category a{color:inherit}.quarto-title-meta-container{display:grid;grid-template-columns:1fr auto}.quarto-title-meta-column-end{display:flex;flex-direction:column;padding-left:1em}.quarto-title-meta-column-end a .bi{margin-right:.3em}#title-block-header.quarto-title-block.default .quarto-title-meta{display:grid;grid-template-columns:minmax(max-content, 1fr) 1fr;grid-column-gap:1em}#title-block-header.quarto-title-block.default .quarto-title .title{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-author-orcid img{margin-top:-0.2em;height:.8em;width:.8em}#title-block-header.quarto-title-block.default .quarto-title-author-email{opacity:.7}#title-block-header.quarto-title-block.default .quarto-description p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p,#title-block-header.quarto-title-block.default .quarto-title-authors p,#title-block-header.quarto-title-block.default .quarto-title-affiliations p{margin-bottom:.1em}#title-block-header.quarto-title-block.default .quarto-title-meta-heading{text-transform:uppercase;margin-top:1em;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-contents{font-size:.9em}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p.affiliation:last-of-type{margin-bottom:.1em}#title-block-header.quarto-title-block.default p.affiliation{margin-bottom:.1em}#title-block-header.quarto-title-block.default .keywords,#title-block-header.quarto-title-block.default .description,#title-block-header.quarto-title-block.default .abstract{margin-top:0}#title-block-header.quarto-title-block.default .keywords>p,#title-block-header.quarto-title-block.default .description>p,#title-block-header.quarto-title-block.default .abstract>p{font-size:.9em}#title-block-header.quarto-title-block.default .keywords>p:last-of-type,#title-block-header.quarto-title-block.default .description>p:last-of-type,#title-block-header.quarto-title-block.default .abstract>p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .keywords .block-title,#title-block-header.quarto-title-block.default .description .block-title,#title-block-header.quarto-title-block.default .abstract .block-title{margin-top:1em;text-transform:uppercase;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-author{display:grid;grid-template-columns:minmax(max-content, 1fr) 1fr;grid-column-gap:1em}.quarto-title-tools-only{display:flex;justify-content:right}
diff --git a/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.js b/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.js
deleted file mode 100644
index 20ad7b0..0000000
--- a/blog/aging-curve/index_files/libs/bootstrap/bootstrap.min.js
+++ /dev/null
@@ -1,7 +0,0 @@
-/*!
- * Bootstrap v5.3.1 (https://getbootstrap.com/)
- * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)
- * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)
- */
-!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t=new Map,e={set(e,i,n){t.has(e)||t.set(e,new Map);const s=t.get(e);s.has(i)||0===s.size?s.set(i,n):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(s.keys())[0]}.`)},get:(e,i)=>t.has(e)&&t.get(e).get(i)||null,remove(e,i){if(!t.has(e))return;const n=t.get(e);n.delete(i),0===n.size&&t.delete(e)}},i="transitionend",n=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),s=t=>{t.dispatchEvent(new Event(i))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(n(t)):null,a=t=>{if(!o(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},l=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),c=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?c(t.parentNode):null},h=()=>{},d=t=>{t.offsetHeight},u=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,f=[],p=()=>"rtl"===document.documentElement.dir,m=t=>{var e;e=()=>{const e=u();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(f.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of f)t()})),f.push(e)):e()},g=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,_=(t,e,n=!0)=>{if(!n)return void g(t);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let r=!1;const a=({target:n})=>{n===e&&(r=!0,e.removeEventListener(i,a),g(t))};e.addEventListener(i,a),setTimeout((()=>{r||s(e)}),o)},b=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},v=/[^.]*(?=\..*)\.|.*/,y=/\..*/,w=/::\d+$/,A={};let E=1;const T={mouseenter:"mouseover",mouseleave:"mouseout"},C=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function O(t,e){return e&&`${e}::${E++}`||t.uidEvent||E++}function x(t){const e=O(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function k(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function L(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=I(t);return C.has(o)||(o=t),[n,s,o]}function S(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=L(e,i,n);if(e in T){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=x(t),c=l[a]||(l[a]={}),h=k(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=O(r,e.replace(v,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return P(s,{delegateTarget:r}),n.oneOff&&N.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return P(n,{delegateTarget:t}),i.oneOff&&N.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function D(t,e,i,n,s){const o=k(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function $(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&D(t,e,i,r.callable,r.delegationSelector)}function I(t){return t=t.replace(y,""),T[t]||t}const N={on(t,e,i,n){S(t,e,i,n,!1)},one(t,e,i,n){S(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=L(e,i,n),a=r!==e,l=x(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))$(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(w,"");a&&!e.includes(s)||D(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;D(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=u();let s=null,o=!0,r=!0,a=!1;e!==I(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=P(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function P(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function M(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function j(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const F={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${j(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${j(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=M(t.dataset[n])}return e},getDataAttribute:(t,e)=>M(t.getAttribute(`data-bs-${j(e)}`))};class H{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=o(e)?F.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...o(e)?F.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],r=o(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(r))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${r}" but expected type "${s}".`)}var i}}class W extends H{constructor(t,i){super(),(t=r(t))&&(this._element=t,this._config=this._getConfig(i),e.set(this._element,this.constructor.DATA_KEY,this))}dispose(){e.remove(this._element,this.constructor.DATA_KEY),N.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){_(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return e.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.1"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const B=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return n(e)},z={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!l(t)&&a(t)))},getSelectorFromElement(t){const e=B(t);return e&&z.findOne(e)?e:null},getElementFromSelector(t){const e=B(t);return e?z.findOne(e):null},getMultipleElementsFromSelector(t){const e=B(t);return e?z.find(e):[]}},R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;N.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),l(this))return;const s=z.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},q=".bs.alert",V=`close${q}`,K=`closed${q}`;class Q extends W{static get NAME(){return"alert"}close(){if(N.trigger(this._element,V).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),N.trigger(this._element,K),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Q.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(Q,"close"),m(Q);const X='[data-bs-toggle="button"]';class Y extends W{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=Y.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}N.on(document,"click.bs.button.data-api",X,(t=>{t.preventDefault();const e=t.target.closest(X);Y.getOrCreateInstance(e).toggle()})),m(Y);const U=".bs.swipe",G=`touchstart${U}`,J=`touchmove${U}`,Z=`touchend${U}`,tt=`pointerdown${U}`,et=`pointerup${U}`,it={endCallback:null,leftCallback:null,rightCallback:null},nt={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class st extends H{constructor(t,e){super(),this._element=t,t&&st.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return it}static get DefaultType(){return nt}static get NAME(){return"swipe"}dispose(){N.off(this._element,U)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),g(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&g(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(N.on(this._element,tt,(t=>this._start(t))),N.on(this._element,et,(t=>this._end(t))),this._element.classList.add("pointer-event")):(N.on(this._element,G,(t=>this._start(t))),N.on(this._element,J,(t=>this._move(t))),N.on(this._element,Z,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const ot=".bs.carousel",rt=".data-api",at="next",lt="prev",ct="left",ht="right",dt=`slide${ot}`,ut=`slid${ot}`,ft=`keydown${ot}`,pt=`mouseenter${ot}`,mt=`mouseleave${ot}`,gt=`dragstart${ot}`,_t=`load${ot}${rt}`,bt=`click${ot}${rt}`,vt="carousel",yt="active",wt=".active",At=".carousel-item",Et=wt+At,Tt={ArrowLeft:ht,ArrowRight:ct},Ct={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},Ot={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class xt extends W{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=z.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===vt&&this.cycle()}static get Default(){return Ct}static get DefaultType(){return Ot}static get NAME(){return"carousel"}next(){this._slide(at)}nextWhenVisible(){!document.hidden&&a(this._element)&&this.next()}prev(){this._slide(lt)}pause(){this._isSliding&&s(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?N.one(this._element,ut,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void N.one(this._element,ut,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?at:lt;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&N.on(this._element,ft,(t=>this._keydown(t))),"hover"===this._config.pause&&(N.on(this._element,pt,(()=>this.pause())),N.on(this._element,mt,(()=>this._maybeEnableCycle()))),this._config.touch&&st.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of z.find(".carousel-item img",this._element))N.on(t,gt,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ct)),rightCallback:()=>this._slide(this._directionToOrder(ht)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new st(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=Tt[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=z.findOne(wt,this._indicatorsElement);e.classList.remove(yt),e.removeAttribute("aria-current");const i=z.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(yt),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===at,s=e||b(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>N.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(dt).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),d(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(yt),i.classList.remove(yt,c,l),this._isSliding=!1,r(ut)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return z.findOne(Et,this._element)}_getItems(){return z.find(At,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return p()?t===ct?lt:at:t===ct?at:lt}_orderToDirection(t){return p()?t===lt?ct:ht:t===lt?ht:ct}static jQueryInterface(t){return this.each((function(){const e=xt.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}N.on(document,bt,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=z.getElementFromSelector(this);if(!e||!e.classList.contains(vt))return;t.preventDefault();const i=xt.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===F.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),N.on(window,_t,(()=>{const t=z.find('[data-bs-ride="carousel"]');for(const e of t)xt.getOrCreateInstance(e)})),m(xt);const kt=".bs.collapse",Lt=`show${kt}`,St=`shown${kt}`,Dt=`hide${kt}`,$t=`hidden${kt}`,It=`click${kt}.data-api`,Nt="show",Pt="collapse",Mt="collapsing",jt=`:scope .${Pt} .${Pt}`,Ft='[data-bs-toggle="collapse"]',Ht={parent:null,toggle:!0},Wt={parent:"(null|element)",toggle:"boolean"};class Bt extends W{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=z.find(Ft);for(const t of i){const e=z.getSelectorFromElement(t),i=z.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return Ht}static get DefaultType(){return Wt}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Bt.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(N.trigger(this._element,Lt).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(Pt),this._element.classList.add(Mt),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt,Nt),this._element.style[e]="",N.trigger(this._element,St)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(N.trigger(this._element,Dt).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,d(this._element),this._element.classList.add(Mt),this._element.classList.remove(Pt,Nt);for(const t of this._triggerArray){const e=z.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt),N.trigger(this._element,$t)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(Nt)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=r(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(Ft);for(const e of t){const t=z.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=z.find(jt,this._config.parent);return z.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Bt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}N.on(document,It,Ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of z.getMultipleElementsFromSelector(this))Bt.getOrCreateInstance(t,{toggle:!1}).toggle()})),m(Bt);var zt="top",Rt="bottom",qt="right",Vt="left",Kt="auto",Qt=[zt,Rt,qt,Vt],Xt="start",Yt="end",Ut="clippingParents",Gt="viewport",Jt="popper",Zt="reference",te=Qt.reduce((function(t,e){return t.concat([e+"-"+Xt,e+"-"+Yt])}),[]),ee=[].concat(Qt,[Kt]).reduce((function(t,e){return t.concat([e,e+"-"+Xt,e+"-"+Yt])}),[]),ie="beforeRead",ne="read",se="afterRead",oe="beforeMain",re="main",ae="afterMain",le="beforeWrite",ce="write",he="afterWrite",de=[ie,ne,se,oe,re,ae,le,ce,he];function ue(t){return t?(t.nodeName||"").toLowerCase():null}function fe(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function pe(t){return t instanceof fe(t).Element||t instanceof Element}function me(t){return t instanceof fe(t).HTMLElement||t instanceof HTMLElement}function ge(t){return"undefined"!=typeof ShadowRoot&&(t instanceof fe(t).ShadowRoot||t instanceof ShadowRoot)}const _e={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];me(s)&&ue(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});me(n)&&ue(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function be(t){return t.split("-")[0]}var ve=Math.max,ye=Math.min,we=Math.round;function Ae(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function Ee(){return!/^((?!chrome|android).)*safari/i.test(Ae())}function Te(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&me(t)&&(s=t.offsetWidth>0&&we(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&we(n.height)/t.offsetHeight||1);var r=(pe(t)?fe(t):window).visualViewport,a=!Ee()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function Ce(t){var e=Te(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Oe(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&ge(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function xe(t){return fe(t).getComputedStyle(t)}function ke(t){return["table","td","th"].indexOf(ue(t))>=0}function Le(t){return((pe(t)?t.ownerDocument:t.document)||window.document).documentElement}function Se(t){return"html"===ue(t)?t:t.assignedSlot||t.parentNode||(ge(t)?t.host:null)||Le(t)}function De(t){return me(t)&&"fixed"!==xe(t).position?t.offsetParent:null}function $e(t){for(var e=fe(t),i=De(t);i&&ke(i)&&"static"===xe(i).position;)i=De(i);return i&&("html"===ue(i)||"body"===ue(i)&&"static"===xe(i).position)?e:i||function(t){var e=/firefox/i.test(Ae());if(/Trident/i.test(Ae())&&me(t)&&"fixed"===xe(t).position)return null;var i=Se(t);for(ge(i)&&(i=i.host);me(i)&&["html","body"].indexOf(ue(i))<0;){var n=xe(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Ie(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function Ne(t,e,i){return ve(t,ye(e,i))}function Pe(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function Me(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const je={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=be(i.placement),l=Ie(a),c=[Vt,qt].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return Pe("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:Me(t,Qt))}(s.padding,i),d=Ce(o),u="y"===l?zt:Vt,f="y"===l?Rt:qt,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=$e(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,A=Ne(v,w,y),E=l;i.modifiersData[n]=((e={})[E]=A,e.centerOffset=A-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Oe(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Fe(t){return t.split("-")[1]}var He={top:"auto",right:"auto",bottom:"auto",left:"auto"};function We(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=t.isFixed,u=r.x,f=void 0===u?0:u,p=r.y,m=void 0===p?0:p,g="function"==typeof h?h({x:f,y:m}):{x:f,y:m};f=g.x,m=g.y;var _=r.hasOwnProperty("x"),b=r.hasOwnProperty("y"),v=Vt,y=zt,w=window;if(c){var A=$e(i),E="clientHeight",T="clientWidth";A===fe(i)&&"static"!==xe(A=Le(i)).position&&"absolute"===a&&(E="scrollHeight",T="scrollWidth"),(s===zt||(s===Vt||s===qt)&&o===Yt)&&(y=Rt,m-=(d&&A===w&&w.visualViewport?w.visualViewport.height:A[E])-n.height,m*=l?1:-1),s!==Vt&&(s!==zt&&s!==Rt||o!==Yt)||(v=qt,f-=(d&&A===w&&w.visualViewport?w.visualViewport.width:A[T])-n.width,f*=l?1:-1)}var C,O=Object.assign({position:a},c&&He),x=!0===h?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:we(i*s)/s||0,y:we(n*s)/s||0}}({x:f,y:m},fe(i)):{x:f,y:m};return f=x.x,m=x.y,l?Object.assign({},O,((C={})[y]=b?"0":"",C[v]=_?"0":"",C.transform=(w.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",C)):Object.assign({},O,((e={})[y]=b?m+"px":"",e[v]=_?f+"px":"",e.transform="",e))}const Be={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:be(e.placement),variation:Fe(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,We(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,We(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var ze={passive:!0};const Re={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=fe(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,ze)})),a&&l.addEventListener("resize",i.update,ze),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,ze)})),a&&l.removeEventListener("resize",i.update,ze)}},data:{}};var qe={left:"right",right:"left",bottom:"top",top:"bottom"};function Ve(t){return t.replace(/left|right|bottom|top/g,(function(t){return qe[t]}))}var Ke={start:"end",end:"start"};function Qe(t){return t.replace(/start|end/g,(function(t){return Ke[t]}))}function Xe(t){var e=fe(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function Ye(t){return Te(Le(t)).left+Xe(t).scrollLeft}function Ue(t){var e=xe(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ge(t){return["html","body","#document"].indexOf(ue(t))>=0?t.ownerDocument.body:me(t)&&Ue(t)?t:Ge(Se(t))}function Je(t,e){var i;void 0===e&&(e=[]);var n=Ge(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=fe(n),r=s?[o].concat(o.visualViewport||[],Ue(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Je(Se(r)))}function Ze(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function ti(t,e,i){return e===Gt?Ze(function(t,e){var i=fe(t),n=Le(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=Ee();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+Ye(t),y:l}}(t,i)):pe(e)?function(t,e){var i=Te(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):Ze(function(t){var e,i=Le(t),n=Xe(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ve(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ve(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+Ye(t),l=-n.scrollTop;return"rtl"===xe(s||i).direction&&(a+=ve(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Le(t)))}function ei(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?be(s):null,r=s?Fe(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case zt:e={x:a,y:i.y-n.height};break;case Rt:e={x:a,y:i.y+i.height};break;case qt:e={x:i.x+i.width,y:l};break;case Vt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?Ie(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case Xt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Yt:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ii(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.strategy,r=void 0===o?t.strategy:o,a=i.boundary,l=void 0===a?Ut:a,c=i.rootBoundary,h=void 0===c?Gt:c,d=i.elementContext,u=void 0===d?Jt:d,f=i.altBoundary,p=void 0!==f&&f,m=i.padding,g=void 0===m?0:m,_=Pe("number"!=typeof g?g:Me(g,Qt)),b=u===Jt?Zt:Jt,v=t.rects.popper,y=t.elements[p?b:u],w=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=Je(Se(t)),i=["absolute","fixed"].indexOf(xe(t).position)>=0&&me(t)?$e(t):t;return pe(i)?e.filter((function(t){return pe(t)&&Oe(t,i)&&"body"!==ue(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=ti(t,i,n);return e.top=ve(s.top,e.top),e.right=ye(s.right,e.right),e.bottom=ye(s.bottom,e.bottom),e.left=ve(s.left,e.left),e}),ti(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(pe(y)?y:y.contextElement||Le(t.elements.popper),l,h,r),A=Te(t.elements.reference),E=ei({reference:A,element:v,strategy:"absolute",placement:s}),T=Ze(Object.assign({},v,E)),C=u===Jt?T:A,O={top:w.top-C.top+_.top,bottom:C.bottom-w.bottom+_.bottom,left:w.left-C.left+_.left,right:C.right-w.right+_.right},x=t.modifiersData.offset;if(u===Jt&&x){var k=x[s];Object.keys(O).forEach((function(t){var e=[qt,Rt].indexOf(t)>=0?1:-1,i=[zt,Rt].indexOf(t)>=0?"y":"x";O[t]+=k[i]*e}))}return O}function ni(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?ee:l,h=Fe(n),d=h?a?te:te.filter((function(t){return Fe(t)===h})):Qt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ii(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[be(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const si={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=be(g),b=l||(_!==g&&p?function(t){if(be(t)===Kt)return[];var e=Ve(t);return[Qe(t),e,Qe(e)]}(g):[Ve(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(be(i)===Kt?ni(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,A=new Map,E=!0,T=v[0],C=0;C=0,S=L?"width":"height",D=ii(e,{placement:O,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),$=L?k?qt:Vt:k?Rt:zt;y[S]>w[S]&&($=Ve($));var I=Ve($),N=[];if(o&&N.push(D[x]<=0),a&&N.push(D[$]<=0,D[I]<=0),N.every((function(t){return t}))){T=O,E=!1;break}A.set(O,N)}if(E)for(var P=function(t){var e=v.find((function(e){var i=A.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==P(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function oi(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function ri(t){return[zt,qt,Rt,Vt].some((function(e){return t[e]>=0}))}const ai={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ii(e,{elementContext:"reference"}),a=ii(e,{altBoundary:!0}),l=oi(r,n),c=oi(a,s,o),h=ri(l),d=ri(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},li={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=ee.reduce((function(t,i){return t[i]=function(t,e,i){var n=be(t),s=[Vt,zt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[Vt,qt].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},ci={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=ei({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},hi={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ii(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=be(e.placement),b=Fe(e.placement),v=!b,y=Ie(_),w="x"===y?"y":"x",A=e.modifiersData.popperOffsets,E=e.rects.reference,T=e.rects.popper,C="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,O="number"==typeof C?{mainAxis:C,altAxis:C}:Object.assign({mainAxis:0,altAxis:0},C),x=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,k={x:0,y:0};if(A){if(o){var L,S="y"===y?zt:Vt,D="y"===y?Rt:qt,$="y"===y?"height":"width",I=A[y],N=I+g[S],P=I-g[D],M=f?-T[$]/2:0,j=b===Xt?E[$]:T[$],F=b===Xt?-T[$]:-E[$],H=e.elements.arrow,W=f&&H?Ce(H):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},z=B[S],R=B[D],q=Ne(0,E[$],W[$]),V=v?E[$]/2-M-q-z-O.mainAxis:j-q-z-O.mainAxis,K=v?-E[$]/2+M+q+R+O.mainAxis:F+q+R+O.mainAxis,Q=e.elements.arrow&&$e(e.elements.arrow),X=Q?"y"===y?Q.clientTop||0:Q.clientLeft||0:0,Y=null!=(L=null==x?void 0:x[y])?L:0,U=I+K-Y,G=Ne(f?ye(N,I+V-Y-X):N,I,f?ve(P,U):P);A[y]=G,k[y]=G-I}if(a){var J,Z="x"===y?zt:Vt,tt="x"===y?Rt:qt,et=A[w],it="y"===w?"height":"width",nt=et+g[Z],st=et-g[tt],ot=-1!==[zt,Vt].indexOf(_),rt=null!=(J=null==x?void 0:x[w])?J:0,at=ot?nt:et-E[it]-T[it]-rt+O.altAxis,lt=ot?et+E[it]+T[it]-rt-O.altAxis:st,ct=f&&ot?function(t,e,i){var n=Ne(t,e,i);return n>i?i:n}(at,et,lt):Ne(f?at:nt,et,f?lt:st);A[w]=ct,k[w]=ct-et}e.modifiersData[n]=k}},requiresIfExists:["offset"]};function di(t,e,i){void 0===i&&(i=!1);var n,s,o=me(e),r=me(e)&&function(t){var e=t.getBoundingClientRect(),i=we(e.width)/t.offsetWidth||1,n=we(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=Le(e),l=Te(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==ue(e)||Ue(a))&&(c=(n=e)!==fe(n)&&me(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:Xe(n)),me(e)?((h=Te(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=Ye(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function ui(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var fi={placement:"bottom",modifiers:[],strategy:"absolute"};function pi(){for(var t=arguments.length,e=new Array(t),i=0;iNumber.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(F.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...g(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=z.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>a(t)));i.length&&b(i,e,t===Ti,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=qi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=z.find(Ni);for(const i of e){const e=qi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ei,Ti].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ii)?this:z.prev(this,Ii)[0]||z.next(this,Ii)[0]||z.findOne(Ii,t.delegateTarget.parentNode),o=qi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}N.on(document,Si,Ii,qi.dataApiKeydownHandler),N.on(document,Si,Pi,qi.dataApiKeydownHandler),N.on(document,Li,qi.clearMenus),N.on(document,Di,qi.clearMenus),N.on(document,Li,Ii,(function(t){t.preventDefault(),qi.getOrCreateInstance(this).toggle()})),m(qi);const Vi="backdrop",Ki="show",Qi=`mousedown.bs.${Vi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Yi={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Ui extends H{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Yi}static get NAME(){return Vi}show(t){if(!this._config.isVisible)return void g(t);this._append();const e=this._getElement();this._config.isAnimated&&d(e),e.classList.add(Ki),this._emulateAnimation((()=>{g(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),g(t)}))):g(t)}dispose(){this._isAppended&&(N.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=r(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),N.on(t,Qi,(()=>{g(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){_(t,this._getElement(),this._config.isAnimated)}}const Gi=".bs.focustrap",Ji=`focusin${Gi}`,Zi=`keydown.tab${Gi}`,tn="backward",en={autofocus:!0,trapElement:null},nn={autofocus:"boolean",trapElement:"element"};class sn extends H{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return en}static get DefaultType(){return nn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),N.off(document,Gi),N.on(document,Ji,(t=>this._handleFocusin(t))),N.on(document,Zi,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,N.off(document,Gi))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=z.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===tn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?tn:"forward")}}const on=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",rn=".sticky-top",an="padding-right",ln="margin-right";class cn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,an,(e=>e+t)),this._setElementAttributes(on,an,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,an),this._resetElementAttributes(on,an),this._resetElementAttributes(rn,ln)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&F.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=F.getDataAttribute(t,e);null!==i?(F.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(o(t))e(t);else for(const i of z.find(t,this._element))e(i)}}const hn=".bs.modal",dn=`hide${hn}`,un=`hidePrevented${hn}`,fn=`hidden${hn}`,pn=`show${hn}`,mn=`shown${hn}`,gn=`resize${hn}`,_n=`click.dismiss${hn}`,bn=`mousedown.dismiss${hn}`,vn=`keydown.dismiss${hn}`,yn=`click${hn}.data-api`,wn="modal-open",An="show",En="modal-static",Tn={backdrop:!0,focus:!0,keyboard:!0},Cn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class On extends W{constructor(t,e){super(t,e),this._dialog=z.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new cn,this._addEventListeners()}static get Default(){return Tn}static get DefaultType(){return Cn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||N.trigger(this._element,pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(wn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(N.trigger(this._element,dn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){N.off(window,hn),N.off(this._dialog,hn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Ui({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=z.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),d(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,N.trigger(this._element,mn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){N.on(this._element,vn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),N.on(window,gn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),N.on(this._element,bn,(t=>{N.one(this._element,_n,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(wn),this._resetAdjustments(),this._scrollBar.reset(),N.trigger(this._element,fn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(N.trigger(this._element,un).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(En)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(En),this._queueCallback((()=>{this._element.classList.remove(En),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=p()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=p()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=On.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}N.on(document,yn,'[data-bs-toggle="modal"]',(function(t){const e=z.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),N.one(e,pn,(t=>{t.defaultPrevented||N.one(e,fn,(()=>{a(this)&&this.focus()}))}));const i=z.findOne(".modal.show");i&&On.getInstance(i).hide(),On.getOrCreateInstance(e).toggle(this)})),R(On),m(On);const xn=".bs.offcanvas",kn=".data-api",Ln=`load${xn}${kn}`,Sn="show",Dn="showing",$n="hiding",In=".offcanvas.show",Nn=`show${xn}`,Pn=`shown${xn}`,Mn=`hide${xn}`,jn=`hidePrevented${xn}`,Fn=`hidden${xn}`,Hn=`resize${xn}`,Wn=`click${xn}${kn}`,Bn=`keydown.dismiss${xn}`,zn={backdrop:!0,keyboard:!0,scroll:!1},Rn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class qn extends W{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return zn}static get DefaultType(){return Rn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||N.trigger(this._element,Nn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new cn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Dn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Sn),this._element.classList.remove(Dn),N.trigger(this._element,Pn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(N.trigger(this._element,Mn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add($n),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Sn,$n),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new cn).reset(),N.trigger(this._element,Fn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Ui({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():N.trigger(this._element,jn)}:null})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_addEventListeners(){N.on(this._element,Bn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():N.trigger(this._element,jn))}))}static jQueryInterface(t){return this.each((function(){const e=qn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}N.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=z.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this))return;N.one(e,Fn,(()=>{a(this)&&this.focus()}));const i=z.findOne(In);i&&i!==e&&qn.getInstance(i).hide(),qn.getOrCreateInstance(e).toggle(this)})),N.on(window,Ln,(()=>{for(const t of z.find(In))qn.getOrCreateInstance(t).show()})),N.on(window,Hn,(()=>{for(const t of z.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&qn.getOrCreateInstance(t).hide()})),R(qn),m(qn);const Vn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Yn={allowList:Vn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Un={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Gn={entry:"(string|element|function|null)",selector:"(string|element)"};class Jn extends H{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Yn}static get DefaultType(){return Un}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Gn)}_setContent(t,e,i){const n=z.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?o(e)?this._putElementInTemplate(r(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return g(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const Zn=new Set(["sanitize","allowList","sanitizeFn"]),ts="fade",es="show",is=".modal",ns="hide.bs.modal",ss="hover",os="focus",rs={AUTO:"auto",TOP:"top",RIGHT:p()?"left":"right",BOTTOM:"bottom",LEFT:p()?"right":"left"},as={allowList:Vn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},ls={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class cs extends W{constructor(t,e){if(void 0===vi)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,e),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return as}static get DefaultType(){return ls}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),N.off(this._element.closest(is),ns,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=N.trigger(this._element,this.constructor.eventName("show")),e=(c(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),N.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._queueCallback((()=>{N.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!N.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._activeTrigger.click=!1,this._activeTrigger[os]=!1,this._activeTrigger[ss]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),N.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ts,es),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ts),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Jn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ts)}_isShown(){return this.tip&&this.tip.classList.contains(es)}_createPopper(t){const e=g(this._config.placement,[this,t,this._element]),i=rs[e.toUpperCase()];return bi(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return g(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...g(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)N.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ss?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ss?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");N.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?os:ss]=!0,e._enter()})),N.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?os:ss]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},N.on(this._element.closest(is),ns,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=F.getDataAttributes(this._element);for(const t of Object.keys(e))Zn.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=cs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(cs);const hs={...cs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},ds={...cs.DefaultType,content:"(null|string|element|function)"};class us extends cs{static get Default(){return hs}static get DefaultType(){return ds}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=us.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(us);const fs=".bs.scrollspy",ps=`activate${fs}`,ms=`click${fs}`,gs=`load${fs}.data-api`,_s="active",bs="[href]",vs=".nav-link",ys=`${vs}, .nav-item > ${vs}, .list-group-item`,ws={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Es extends W{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return ws}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=r(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(N.off(this._config.target,ms),N.on(this._config.target,ms,bs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=z.find(bs,this._config.target);for(const e of t){if(!e.hash||l(e))continue;const t=z.findOne(decodeURI(e.hash),this._element);a(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(_s),this._activateParents(t),N.trigger(this._element,ps,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))z.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(_s);else for(const e of z.parents(t,".nav, .list-group"))for(const t of z.prev(e,ys))t.classList.add(_s)}_clearActiveClass(t){t.classList.remove(_s);const e=z.find(`${bs}.${_s}`,t);for(const t of e)t.classList.remove(_s)}static jQueryInterface(t){return this.each((function(){const e=Es.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(window,gs,(()=>{for(const t of z.find('[data-bs-spy="scroll"]'))Es.getOrCreateInstance(t)})),m(Es);const Ts=".bs.tab",Cs=`hide${Ts}`,Os=`hidden${Ts}`,xs=`show${Ts}`,ks=`shown${Ts}`,Ls=`click${Ts}`,Ss=`keydown${Ts}`,Ds=`load${Ts}`,$s="ArrowLeft",Is="ArrowRight",Ns="ArrowUp",Ps="ArrowDown",Ms="Home",js="End",Fs="active",Hs="fade",Ws="show",Bs=":not(.dropdown-toggle)",zs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Rs=`.nav-link${Bs}, .list-group-item${Bs}, [role="tab"]${Bs}, ${zs}`,qs=`.${Fs}[data-bs-toggle="tab"], .${Fs}[data-bs-toggle="pill"], .${Fs}[data-bs-toggle="list"]`;class Vs extends W{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),N.on(this._element,Ss,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?N.trigger(e,Cs,{relatedTarget:t}):null;N.trigger(t,xs,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Fs),this._activate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),N.trigger(t,ks,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Hs)))}_deactivate(t,e){t&&(t.classList.remove(Fs),t.blur(),this._deactivate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),N.trigger(t,Os,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Hs)))}_keydown(t){if(![$s,Is,Ns,Ps,Ms,js].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!l(t)));let i;if([Ms,js].includes(t.key))i=e[t.key===Ms?0:e.length-1];else{const n=[Is,Ps].includes(t.key);i=b(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Vs.getOrCreateInstance(i).show())}_getChildren(){return z.find(Rs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=z.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=z.findOne(t,i);s&&s.classList.toggle(n,e)};n(".dropdown-toggle",Fs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Fs)}_getInnerElement(t){return t.matches(Rs)?t:z.findOne(Rs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Vs.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(document,Ls,zs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this)||Vs.getOrCreateInstance(this).show()})),N.on(window,Ds,(()=>{for(const t of z.find(qs))Vs.getOrCreateInstance(t)})),m(Vs);const Ks=".bs.toast",Qs=`mouseover${Ks}`,Xs=`mouseout${Ks}`,Ys=`focusin${Ks}`,Us=`focusout${Ks}`,Gs=`hide${Ks}`,Js=`hidden${Ks}`,Zs=`show${Ks}`,to=`shown${Ks}`,eo="hide",io="show",no="showing",so={animation:"boolean",autohide:"boolean",delay:"number"},oo={animation:!0,autohide:!0,delay:5e3};class ro extends W{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return oo}static get DefaultType(){return so}static get NAME(){return"toast"}show(){N.trigger(this._element,Zs).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(eo),d(this._element),this._element.classList.add(io,no),this._queueCallback((()=>{this._element.classList.remove(no),N.trigger(this._element,to),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(N.trigger(this._element,Gs).defaultPrevented||(this._element.classList.add(no),this._queueCallback((()=>{this._element.classList.add(eo),this._element.classList.remove(no,io),N.trigger(this._element,Js)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(io),super.dispose()}isShown(){return this._element.classList.contains(io)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){N.on(this._element,Qs,(t=>this._onInteraction(t,!0))),N.on(this._element,Xs,(t=>this._onInteraction(t,!1))),N.on(this._element,Ys,(t=>this._onInteraction(t,!0))),N.on(this._element,Us,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=ro.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(ro),m(ro),{Alert:Q,Button:Y,Carousel:xt,Collapse:Bt,Dropdown:qi,Modal:On,Offcanvas:qn,Popover:us,ScrollSpy:Es,Tab:Vs,Toast:ro,Tooltip:cs}}));
-//# sourceMappingURL=bootstrap.bundle.min.js.map
diff --git a/blog/aging-curve/index_files/libs/clipboard/clipboard.min.js b/blog/aging-curve/index_files/libs/clipboard/clipboard.min.js
deleted file mode 100644
index 98d959b..0000000
--- a/blog/aging-curve/index_files/libs/clipboard/clipboard.min.js
+++ /dev/null
@@ -1,7 +0,0 @@
-/*!
- * clipboard.js v2.0.11
- * https://clipboardjs.com/
- *
- * Licensed MIT © Zeno Rocha
- */
-!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return b}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),r=n.n(e);function c(t){try{return document.execCommand(t)}catch(t){return}}var a=function(t){t=r()(t);return c("cut"),t};function o(t,e){var n,o,t=(n=t,o="rtl"===document.documentElement.getAttribute("dir"),(t=document.createElement("textarea")).style.fontSize="12pt",t.style.border="0",t.style.padding="0",t.style.margin="0",t.style.position="absolute",t.style[o?"right":"left"]="-9999px",o=window.pageYOffset||document.documentElement.scrollTop,t.style.top="".concat(o,"px"),t.setAttribute("readonly",""),t.value=n,t);return e.container.appendChild(t),e=r()(t),c("copy"),t.remove(),e}var f=function(t){var e=1.anchorjs-link,.anchorjs-link:focus{opacity:1}",A.sheet.cssRules.length),A.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",A.sheet.cssRules.length),A.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',A.sheet.cssRules.length)),h=document.querySelectorAll("[id]"),t=[].map.call(h,function(A){return A.id}),i=0;i\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),A=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||A||!1}}});
-// @license-end
diff --git a/blog/aging-curve/index_files/libs/quarto-html/popper.min.js b/blog/aging-curve/index_files/libs/quarto-html/popper.min.js
deleted file mode 100644
index 5f4be85..0000000
--- a/blog/aging-curve/index_files/libs/quarto-html/popper.min.js
+++ /dev/null
@@ -1,5 +0,0 @@
-/**
- * @popperjs/core v2.11.7 - MIT License
- */
-
-!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){"use strict";function t(e){if(null==e)return window;if("[object Window]"!==e.toString()){var t=e.ownerDocument;return t&&t.defaultView||window}return e}function n(e){return e instanceof t(e).Element||e instanceof Element}function r(e){return e instanceof t(e).HTMLElement||e instanceof HTMLElement}function o(e){return"undefined"!=typeof ShadowRoot&&(e instanceof t(e).ShadowRoot||e instanceof ShadowRoot)}var i=Math.max,a=Math.min,s=Math.round;function f(){var e=navigator.userAgentData;return null!=e&&e.brands&&Array.isArray(e.brands)?e.brands.map((function(e){return e.brand+"/"+e.version})).join(" "):navigator.userAgent}function c(){return!/^((?!chrome|android).)*safari/i.test(f())}function p(e,o,i){void 0===o&&(o=!1),void 0===i&&(i=!1);var a=e.getBoundingClientRect(),f=1,p=1;o&&r(e)&&(f=e.offsetWidth>0&&s(a.width)/e.offsetWidth||1,p=e.offsetHeight>0&&s(a.height)/e.offsetHeight||1);var u=(n(e)?t(e):window).visualViewport,l=!c()&&i,d=(a.left+(l&&u?u.offsetLeft:0))/f,h=(a.top+(l&&u?u.offsetTop:0))/p,m=a.width/f,v=a.height/p;return{width:m,height:v,top:h,right:d+m,bottom:h+v,left:d,x:d,y:h}}function u(e){var n=t(e);return{scrollLeft:n.pageXOffset,scrollTop:n.pageYOffset}}function l(e){return e?(e.nodeName||"").toLowerCase():null}function d(e){return((n(e)?e.ownerDocument:e.document)||window.document).documentElement}function h(e){return p(d(e)).left+u(e).scrollLeft}function m(e){return t(e).getComputedStyle(e)}function v(e){var t=m(e),n=t.overflow,r=t.overflowX,o=t.overflowY;return/auto|scroll|overlay|hidden/.test(n+o+r)}function y(e,n,o){void 0===o&&(o=!1);var i,a,f=r(n),c=r(n)&&function(e){var t=e.getBoundingClientRect(),n=s(t.width)/e.offsetWidth||1,r=s(t.height)/e.offsetHeight||1;return 1!==n||1!==r}(n),m=d(n),y=p(e,c,o),g={scrollLeft:0,scrollTop:0},b={x:0,y:0};return(f||!f&&!o)&&(("body"!==l(n)||v(m))&&(g=(i=n)!==t(i)&&r(i)?{scrollLeft:(a=i).scrollLeft,scrollTop:a.scrollTop}:u(i)),r(n)?((b=p(n,!0)).x+=n.clientLeft,b.y+=n.clientTop):m&&(b.x=h(m))),{x:y.left+g.scrollLeft-b.x,y:y.top+g.scrollTop-b.y,width:y.width,height:y.height}}function g(e){var t=p(e),n=e.offsetWidth,r=e.offsetHeight;return Math.abs(t.width-n)<=1&&(n=t.width),Math.abs(t.height-r)<=1&&(r=t.height),{x:e.offsetLeft,y:e.offsetTop,width:n,height:r}}function b(e){return"html"===l(e)?e:e.assignedSlot||e.parentNode||(o(e)?e.host:null)||d(e)}function x(e){return["html","body","#document"].indexOf(l(e))>=0?e.ownerDocument.body:r(e)&&v(e)?e:x(b(e))}function w(e,n){var r;void 0===n&&(n=[]);var o=x(e),i=o===(null==(r=e.ownerDocument)?void 0:r.body),a=t(o),s=i?[a].concat(a.visualViewport||[],v(o)?o:[]):o,f=n.concat(s);return i?f:f.concat(w(b(s)))}function O(e){return["table","td","th"].indexOf(l(e))>=0}function j(e){return r(e)&&"fixed"!==m(e).position?e.offsetParent:null}function E(e){for(var n=t(e),i=j(e);i&&O(i)&&"static"===m(i).position;)i=j(i);return i&&("html"===l(i)||"body"===l(i)&&"static"===m(i).position)?n:i||function(e){var t=/firefox/i.test(f());if(/Trident/i.test(f())&&r(e)&&"fixed"===m(e).position)return null;var n=b(e);for(o(n)&&(n=n.host);r(n)&&["html","body"].indexOf(l(n))<0;){var i=m(n);if("none"!==i.transform||"none"!==i.perspective||"paint"===i.contain||-1!==["transform","perspective"].indexOf(i.willChange)||t&&"filter"===i.willChange||t&&i.filter&&"none"!==i.filter)return n;n=n.parentNode}return null}(e)||n}var D="top",A="bottom",L="right",P="left",M="auto",k=[D,A,L,P],W="start",B="end",H="viewport",T="popper",R=k.reduce((function(e,t){return e.concat([t+"-"+W,t+"-"+B])}),[]),S=[].concat(k,[M]).reduce((function(e,t){return e.concat([t,t+"-"+W,t+"-"+B])}),[]),V=["beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite"];function q(e){var t=new Map,n=new Set,r=[];function o(e){n.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){if(!n.has(e)){var r=t.get(e);r&&o(r)}})),r.push(e)}return e.forEach((function(e){t.set(e.name,e)})),e.forEach((function(e){n.has(e.name)||o(e)})),r}function C(e){return e.split("-")[0]}function N(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&o(n)){var r=t;do{if(r&&e.isSameNode(r))return!0;r=r.parentNode||r.host}while(r)}return!1}function I(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function _(e,r,o){return r===H?I(function(e,n){var r=t(e),o=d(e),i=r.visualViewport,a=o.clientWidth,s=o.clientHeight,f=0,p=0;if(i){a=i.width,s=i.height;var u=c();(u||!u&&"fixed"===n)&&(f=i.offsetLeft,p=i.offsetTop)}return{width:a,height:s,x:f+h(e),y:p}}(e,o)):n(r)?function(e,t){var n=p(e,!1,"fixed"===t);return n.top=n.top+e.clientTop,n.left=n.left+e.clientLeft,n.bottom=n.top+e.clientHeight,n.right=n.left+e.clientWidth,n.width=e.clientWidth,n.height=e.clientHeight,n.x=n.left,n.y=n.top,n}(r,o):I(function(e){var t,n=d(e),r=u(e),o=null==(t=e.ownerDocument)?void 0:t.body,a=i(n.scrollWidth,n.clientWidth,o?o.scrollWidth:0,o?o.clientWidth:0),s=i(n.scrollHeight,n.clientHeight,o?o.scrollHeight:0,o?o.clientHeight:0),f=-r.scrollLeft+h(e),c=-r.scrollTop;return"rtl"===m(o||n).direction&&(f+=i(n.clientWidth,o?o.clientWidth:0)-a),{width:a,height:s,x:f,y:c}}(d(e)))}function F(e,t,o,s){var f="clippingParents"===t?function(e){var t=w(b(e)),o=["absolute","fixed"].indexOf(m(e).position)>=0&&r(e)?E(e):e;return n(o)?t.filter((function(e){return n(e)&&N(e,o)&&"body"!==l(e)})):[]}(e):[].concat(t),c=[].concat(f,[o]),p=c[0],u=c.reduce((function(t,n){var r=_(e,n,s);return t.top=i(r.top,t.top),t.right=a(r.right,t.right),t.bottom=a(r.bottom,t.bottom),t.left=i(r.left,t.left),t}),_(e,p,s));return u.width=u.right-u.left,u.height=u.bottom-u.top,u.x=u.left,u.y=u.top,u}function U(e){return e.split("-")[1]}function z(e){return["top","bottom"].indexOf(e)>=0?"x":"y"}function X(e){var t,n=e.reference,r=e.element,o=e.placement,i=o?C(o):null,a=o?U(o):null,s=n.x+n.width/2-r.width/2,f=n.y+n.height/2-r.height/2;switch(i){case D:t={x:s,y:n.y-r.height};break;case A:t={x:s,y:n.y+n.height};break;case L:t={x:n.x+n.width,y:f};break;case P:t={x:n.x-r.width,y:f};break;default:t={x:n.x,y:n.y}}var c=i?z(i):null;if(null!=c){var p="y"===c?"height":"width";switch(a){case W:t[c]=t[c]-(n[p]/2-r[p]/2);break;case B:t[c]=t[c]+(n[p]/2-r[p]/2)}}return t}function Y(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function G(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function J(e,t){void 0===t&&(t={});var r=t,o=r.placement,i=void 0===o?e.placement:o,a=r.strategy,s=void 0===a?e.strategy:a,f=r.boundary,c=void 0===f?"clippingParents":f,u=r.rootBoundary,l=void 0===u?H:u,h=r.elementContext,m=void 0===h?T:h,v=r.altBoundary,y=void 0!==v&&v,g=r.padding,b=void 0===g?0:g,x=Y("number"!=typeof b?b:G(b,k)),w=m===T?"reference":T,O=e.rects.popper,j=e.elements[y?w:m],E=F(n(j)?j:j.contextElement||d(e.elements.popper),c,l,s),P=p(e.elements.reference),M=X({reference:P,element:O,strategy:"absolute",placement:i}),W=I(Object.assign({},O,M)),B=m===T?W:P,R={top:E.top-B.top+x.top,bottom:B.bottom-E.bottom+x.bottom,left:E.left-B.left+x.left,right:B.right-E.right+x.right},S=e.modifiersData.offset;if(m===T&&S){var V=S[i];Object.keys(R).forEach((function(e){var t=[L,A].indexOf(e)>=0?1:-1,n=[D,A].indexOf(e)>=0?"y":"x";R[e]+=V[n]*t}))}return R}var K={placement:"bottom",modifiers:[],strategy:"absolute"};function Q(){for(var e=arguments.length,t=new Array(e),n=0;n=0?-1:1,i="function"==typeof n?n(Object.assign({},t,{placement:e})):n,a=i[0],s=i[1];return a=a||0,s=(s||0)*o,[P,L].indexOf(r)>=0?{x:s,y:a}:{x:a,y:s}}(n,t.rects,i),e}),{}),s=a[t.placement],f=s.x,c=s.y;null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=f,t.modifiersData.popperOffsets.y+=c),t.modifiersData[r]=a}},se={left:"right",right:"left",bottom:"top",top:"bottom"};function fe(e){return e.replace(/left|right|bottom|top/g,(function(e){return se[e]}))}var ce={start:"end",end:"start"};function pe(e){return e.replace(/start|end/g,(function(e){return ce[e]}))}function ue(e,t){void 0===t&&(t={});var n=t,r=n.placement,o=n.boundary,i=n.rootBoundary,a=n.padding,s=n.flipVariations,f=n.allowedAutoPlacements,c=void 0===f?S:f,p=U(r),u=p?s?R:R.filter((function(e){return U(e)===p})):k,l=u.filter((function(e){return c.indexOf(e)>=0}));0===l.length&&(l=u);var d=l.reduce((function(t,n){return t[n]=J(e,{placement:n,boundary:o,rootBoundary:i,padding:a})[C(n)],t}),{});return Object.keys(d).sort((function(e,t){return d[e]-d[t]}))}var le={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name;if(!t.modifiersData[r]._skip){for(var o=n.mainAxis,i=void 0===o||o,a=n.altAxis,s=void 0===a||a,f=n.fallbackPlacements,c=n.padding,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.flipVariations,h=void 0===d||d,m=n.allowedAutoPlacements,v=t.options.placement,y=C(v),g=f||(y===v||!h?[fe(v)]:function(e){if(C(e)===M)return[];var t=fe(e);return[pe(e),t,pe(t)]}(v)),b=[v].concat(g).reduce((function(e,n){return e.concat(C(n)===M?ue(t,{placement:n,boundary:p,rootBoundary:u,padding:c,flipVariations:h,allowedAutoPlacements:m}):n)}),[]),x=t.rects.reference,w=t.rects.popper,O=new Map,j=!0,E=b[0],k=0;k=0,S=R?"width":"height",V=J(t,{placement:B,boundary:p,rootBoundary:u,altBoundary:l,padding:c}),q=R?T?L:P:T?A:D;x[S]>w[S]&&(q=fe(q));var N=fe(q),I=[];if(i&&I.push(V[H]<=0),s&&I.push(V[q]<=0,V[N]<=0),I.every((function(e){return e}))){E=B,j=!1;break}O.set(B,I)}if(j)for(var _=function(e){var t=b.find((function(t){var n=O.get(t);if(n)return n.slice(0,e).every((function(e){return e}))}));if(t)return E=t,"break"},F=h?3:1;F>0;F--){if("break"===_(F))break}t.placement!==E&&(t.modifiersData[r]._skip=!0,t.placement=E,t.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function de(e,t,n){return i(e,a(t,n))}var he={name:"preventOverflow",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.mainAxis,s=void 0===o||o,f=n.altAxis,c=void 0!==f&&f,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.padding,h=n.tether,m=void 0===h||h,v=n.tetherOffset,y=void 0===v?0:v,b=J(t,{boundary:p,rootBoundary:u,padding:d,altBoundary:l}),x=C(t.placement),w=U(t.placement),O=!w,j=z(x),M="x"===j?"y":"x",k=t.modifiersData.popperOffsets,B=t.rects.reference,H=t.rects.popper,T="function"==typeof y?y(Object.assign({},t.rects,{placement:t.placement})):y,R="number"==typeof T?{mainAxis:T,altAxis:T}:Object.assign({mainAxis:0,altAxis:0},T),S=t.modifiersData.offset?t.modifiersData.offset[t.placement]:null,V={x:0,y:0};if(k){if(s){var q,N="y"===j?D:P,I="y"===j?A:L,_="y"===j?"height":"width",F=k[j],X=F+b[N],Y=F-b[I],G=m?-H[_]/2:0,K=w===W?B[_]:H[_],Q=w===W?-H[_]:-B[_],Z=t.elements.arrow,$=m&&Z?g(Z):{width:0,height:0},ee=t.modifiersData["arrow#persistent"]?t.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},te=ee[N],ne=ee[I],re=de(0,B[_],$[_]),oe=O?B[_]/2-G-re-te-R.mainAxis:K-re-te-R.mainAxis,ie=O?-B[_]/2+G+re+ne+R.mainAxis:Q+re+ne+R.mainAxis,ae=t.elements.arrow&&E(t.elements.arrow),se=ae?"y"===j?ae.clientTop||0:ae.clientLeft||0:0,fe=null!=(q=null==S?void 0:S[j])?q:0,ce=F+ie-fe,pe=de(m?a(X,F+oe-fe-se):X,F,m?i(Y,ce):Y);k[j]=pe,V[j]=pe-F}if(c){var ue,le="x"===j?D:P,he="x"===j?A:L,me=k[M],ve="y"===M?"height":"width",ye=me+b[le],ge=me-b[he],be=-1!==[D,P].indexOf(x),xe=null!=(ue=null==S?void 0:S[M])?ue:0,we=be?ye:me-B[ve]-H[ve]-xe+R.altAxis,Oe=be?me+B[ve]+H[ve]-xe-R.altAxis:ge,je=m&&be?function(e,t,n){var r=de(e,t,n);return r>n?n:r}(we,me,Oe):de(m?we:ye,me,m?Oe:ge);k[M]=je,V[M]=je-me}t.modifiersData[r]=V}},requiresIfExists:["offset"]};var me={name:"arrow",enabled:!0,phase:"main",fn:function(e){var t,n=e.state,r=e.name,o=e.options,i=n.elements.arrow,a=n.modifiersData.popperOffsets,s=C(n.placement),f=z(s),c=[P,L].indexOf(s)>=0?"height":"width";if(i&&a){var p=function(e,t){return Y("number"!=typeof(e="function"==typeof e?e(Object.assign({},t.rects,{placement:t.placement})):e)?e:G(e,k))}(o.padding,n),u=g(i),l="y"===f?D:P,d="y"===f?A:L,h=n.rects.reference[c]+n.rects.reference[f]-a[f]-n.rects.popper[c],m=a[f]-n.rects.reference[f],v=E(i),y=v?"y"===f?v.clientHeight||0:v.clientWidth||0:0,b=h/2-m/2,x=p[l],w=y-u[c]-p[d],O=y/2-u[c]/2+b,j=de(x,O,w),M=f;n.modifiersData[r]=((t={})[M]=j,t.centerOffset=j-O,t)}},effect:function(e){var t=e.state,n=e.options.element,r=void 0===n?"[data-popper-arrow]":n;null!=r&&("string"!=typeof r||(r=t.elements.popper.querySelector(r)))&&N(t.elements.popper,r)&&(t.elements.arrow=r)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function ve(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function ye(e){return[D,L,A,P].some((function(t){return e[t]>=0}))}var ge={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(e){var t=e.state,n=e.name,r=t.rects.reference,o=t.rects.popper,i=t.modifiersData.preventOverflow,a=J(t,{elementContext:"reference"}),s=J(t,{altBoundary:!0}),f=ve(a,r),c=ve(s,o,i),p=ye(f),u=ye(c);t.modifiersData[n]={referenceClippingOffsets:f,popperEscapeOffsets:c,isReferenceHidden:p,hasPopperEscaped:u},t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-reference-hidden":p,"data-popper-escaped":u})}},be=Z({defaultModifiers:[ee,te,oe,ie]}),xe=[ee,te,oe,ie,ae,le,he,me,ge],we=Z({defaultModifiers:xe});e.applyStyles=ie,e.arrow=me,e.computeStyles=oe,e.createPopper=we,e.createPopperLite=be,e.defaultModifiers=xe,e.detectOverflow=J,e.eventListeners=ee,e.flip=le,e.hide=ge,e.offset=ae,e.popperGenerator=Z,e.popperOffsets=te,e.preventOverflow=he,Object.defineProperty(e,"__esModule",{value:!0})}));
diff --git a/blog/aging-curve/index_files/libs/quarto-html/quarto-syntax-highlighting.css b/blog/aging-curve/index_files/libs/quarto-html/quarto-syntax-highlighting.css
deleted file mode 100644
index d9fd98f..0000000
--- a/blog/aging-curve/index_files/libs/quarto-html/quarto-syntax-highlighting.css
+++ /dev/null
@@ -1,203 +0,0 @@
-/* quarto syntax highlight colors */
-:root {
- --quarto-hl-ot-color: #003B4F;
- --quarto-hl-at-color: #657422;
- --quarto-hl-ss-color: #20794D;
- --quarto-hl-an-color: #5E5E5E;
- --quarto-hl-fu-color: #4758AB;
- --quarto-hl-st-color: #20794D;
- --quarto-hl-cf-color: #003B4F;
- --quarto-hl-op-color: #5E5E5E;
- --quarto-hl-er-color: #AD0000;
- --quarto-hl-bn-color: #AD0000;
- --quarto-hl-al-color: #AD0000;
- --quarto-hl-va-color: #111111;
- --quarto-hl-bu-color: inherit;
- --quarto-hl-ex-color: inherit;
- --quarto-hl-pp-color: #AD0000;
- --quarto-hl-in-color: #5E5E5E;
- --quarto-hl-vs-color: #20794D;
- --quarto-hl-wa-color: #5E5E5E;
- --quarto-hl-do-color: #5E5E5E;
- --quarto-hl-im-color: #00769E;
- --quarto-hl-ch-color: #20794D;
- --quarto-hl-dt-color: #AD0000;
- --quarto-hl-fl-color: #AD0000;
- --quarto-hl-co-color: #5E5E5E;
- --quarto-hl-cv-color: #5E5E5E;
- --quarto-hl-cn-color: #8f5902;
- --quarto-hl-sc-color: #5E5E5E;
- --quarto-hl-dv-color: #AD0000;
- --quarto-hl-kw-color: #003B4F;
-}
-
-/* other quarto variables */
-:root {
- --quarto-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
-}
-
-pre > code.sourceCode > span {
- color: #003B4F;
-}
-
-code span {
- color: #003B4F;
-}
-
-code.sourceCode > span {
- color: #003B4F;
-}
-
-div.sourceCode,
-div.sourceCode pre.sourceCode {
- color: #003B4F;
-}
-
-code span.ot {
- color: #003B4F;
- font-style: inherit;
-}
-
-code span.at {
- color: #657422;
- font-style: inherit;
-}
-
-code span.ss {
- color: #20794D;
- font-style: inherit;
-}
-
-code span.an {
- color: #5E5E5E;
- font-style: inherit;
-}
-
-code span.fu {
- color: #4758AB;
- font-style: inherit;
-}
-
-code span.st {
- color: #20794D;
- font-style: inherit;
-}
-
-code span.cf {
- color: #003B4F;
- font-style: inherit;
-}
-
-code span.op {
- color: #5E5E5E;
- font-style: inherit;
-}
-
-code span.er {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.bn {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.al {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.va {
- color: #111111;
- font-style: inherit;
-}
-
-code span.bu {
- font-style: inherit;
-}
-
-code span.ex {
- font-style: inherit;
-}
-
-code span.pp {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.in {
- color: #5E5E5E;
- font-style: inherit;
-}
-
-code span.vs {
- color: #20794D;
- font-style: inherit;
-}
-
-code span.wa {
- color: #5E5E5E;
- font-style: italic;
-}
-
-code span.do {
- color: #5E5E5E;
- font-style: italic;
-}
-
-code span.im {
- color: #00769E;
- font-style: inherit;
-}
-
-code span.ch {
- color: #20794D;
- font-style: inherit;
-}
-
-code span.dt {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.fl {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.co {
- color: #5E5E5E;
- font-style: inherit;
-}
-
-code span.cv {
- color: #5E5E5E;
- font-style: italic;
-}
-
-code span.cn {
- color: #8f5902;
- font-style: inherit;
-}
-
-code span.sc {
- color: #5E5E5E;
- font-style: inherit;
-}
-
-code span.dv {
- color: #AD0000;
- font-style: inherit;
-}
-
-code span.kw {
- color: #003B4F;
- font-style: inherit;
-}
-
-.prevent-inlining {
- content: "";
-}
-
-/*# sourceMappingURL=debc5d5d77c3f9108843748ff7464032.css.map */
diff --git a/blog/aging-curve/index_files/libs/quarto-html/quarto.js b/blog/aging-curve/index_files/libs/quarto-html/quarto.js
deleted file mode 100644
index 3ebd49c..0000000
--- a/blog/aging-curve/index_files/libs/quarto-html/quarto.js
+++ /dev/null
@@ -1,899 +0,0 @@
-const sectionChanged = new CustomEvent("quarto-sectionChanged", {
- detail: {},
- bubbles: true,
- cancelable: false,
- composed: false,
-});
-
-const layoutMarginEls = () => {
- // Find any conflicting margin elements and add margins to the
- // top to prevent overlap
- const marginChildren = window.document.querySelectorAll(
- ".column-margin.column-container > *, .margin-caption, .aside"
- );
-
- let lastBottom = 0;
- for (const marginChild of marginChildren) {
- if (marginChild.offsetParent !== null) {
- // clear the top margin so we recompute it
- marginChild.style.marginTop = null;
- const top = marginChild.getBoundingClientRect().top + window.scrollY;
- if (top < lastBottom) {
- const marginChildStyle = window.getComputedStyle(marginChild);
- const marginBottom = parseFloat(marginChildStyle["marginBottom"]);
- const margin = lastBottom - top + marginBottom;
- marginChild.style.marginTop = `${margin}px`;
- }
- const styles = window.getComputedStyle(marginChild);
- const marginTop = parseFloat(styles["marginTop"]);
- lastBottom = top + marginChild.getBoundingClientRect().height + marginTop;
- }
- }
-};
-
-window.document.addEventListener("DOMContentLoaded", function (_event) {
- // Recompute the position of margin elements anytime the body size changes
- if (window.ResizeObserver) {
- const resizeObserver = new window.ResizeObserver(
- throttle(() => {
- layoutMarginEls();
- if (
- window.document.body.getBoundingClientRect().width < 990 &&
- isReaderMode()
- ) {
- quartoToggleReader();
- }
- }, 50)
- );
- resizeObserver.observe(window.document.body);
- }
-
- const tocEl = window.document.querySelector('nav.toc-active[role="doc-toc"]');
- const sidebarEl = window.document.getElementById("quarto-sidebar");
- const leftTocEl = window.document.getElementById("quarto-sidebar-toc-left");
- const marginSidebarEl = window.document.getElementById(
- "quarto-margin-sidebar"
- );
- // function to determine whether the element has a previous sibling that is active
- const prevSiblingIsActiveLink = (el) => {
- const sibling = el.previousElementSibling;
- if (sibling && sibling.tagName === "A") {
- return sibling.classList.contains("active");
- } else {
- return false;
- }
- };
-
- // fire slideEnter for bootstrap tab activations (for htmlwidget resize behavior)
- function fireSlideEnter(e) {
- const event = window.document.createEvent("Event");
- event.initEvent("slideenter", true, true);
- window.document.dispatchEvent(event);
- }
- const tabs = window.document.querySelectorAll('a[data-bs-toggle="tab"]');
- tabs.forEach((tab) => {
- tab.addEventListener("shown.bs.tab", fireSlideEnter);
- });
-
- // fire slideEnter for tabby tab activations (for htmlwidget resize behavior)
- document.addEventListener("tabby", fireSlideEnter, false);
-
- // Track scrolling and mark TOC links as active
- // get table of contents and sidebar (bail if we don't have at least one)
- const tocLinks = tocEl
- ? [...tocEl.querySelectorAll("a[data-scroll-target]")]
- : [];
- const makeActive = (link) => tocLinks[link].classList.add("active");
- const removeActive = (link) => tocLinks[link].classList.remove("active");
- const removeAllActive = () =>
- [...Array(tocLinks.length).keys()].forEach((link) => removeActive(link));
-
- // activate the anchor for a section associated with this TOC entry
- tocLinks.forEach((link) => {
- link.addEventListener("click", () => {
- if (link.href.indexOf("#") !== -1) {
- const anchor = link.href.split("#")[1];
- const heading = window.document.querySelector(
- `[data-anchor-id=${anchor}]`
- );
- if (heading) {
- // Add the class
- heading.classList.add("reveal-anchorjs-link");
-
- // function to show the anchor
- const handleMouseout = () => {
- heading.classList.remove("reveal-anchorjs-link");
- heading.removeEventListener("mouseout", handleMouseout);
- };
-
- // add a function to clear the anchor when the user mouses out of it
- heading.addEventListener("mouseout", handleMouseout);
- }
- }
- });
- });
-
- const sections = tocLinks.map((link) => {
- const target = link.getAttribute("data-scroll-target");
- if (target.startsWith("#")) {
- return window.document.getElementById(decodeURI(`${target.slice(1)}`));
- } else {
- return window.document.querySelector(decodeURI(`${target}`));
- }
- });
-
- const sectionMargin = 200;
- let currentActive = 0;
- // track whether we've initialized state the first time
- let init = false;
-
- const updateActiveLink = () => {
- // The index from bottom to top (e.g. reversed list)
- let sectionIndex = -1;
- if (
- window.innerHeight + window.pageYOffset >=
- window.document.body.offsetHeight
- ) {
- sectionIndex = 0;
- } else {
- sectionIndex = [...sections].reverse().findIndex((section) => {
- if (section) {
- return window.pageYOffset >= section.offsetTop - sectionMargin;
- } else {
- return false;
- }
- });
- }
- if (sectionIndex > -1) {
- const current = sections.length - sectionIndex - 1;
- if (current !== currentActive) {
- removeAllActive();
- currentActive = current;
- makeActive(current);
- if (init) {
- window.dispatchEvent(sectionChanged);
- }
- init = true;
- }
- }
- };
-
- const inHiddenRegion = (top, bottom, hiddenRegions) => {
- for (const region of hiddenRegions) {
- if (top <= region.bottom && bottom >= region.top) {
- return true;
- }
- }
- return false;
- };
-
- const categorySelector = "header.quarto-title-block .quarto-category";
- const activateCategories = (href) => {
- // Find any categories
- // Surround them with a link pointing back to:
- // #category=Authoring
- try {
- const categoryEls = window.document.querySelectorAll(categorySelector);
- for (const categoryEl of categoryEls) {
- const categoryText = categoryEl.textContent;
- if (categoryText) {
- const link = `${href}#category=${encodeURIComponent(categoryText)}`;
- const linkEl = window.document.createElement("a");
- linkEl.setAttribute("href", link);
- for (const child of categoryEl.childNodes) {
- linkEl.append(child);
- }
- categoryEl.appendChild(linkEl);
- }
- }
- } catch {
- // Ignore errors
- }
- };
- function hasTitleCategories() {
- return window.document.querySelector(categorySelector) !== null;
- }
-
- function offsetRelativeUrl(url) {
- const offset = getMeta("quarto:offset");
- return offset ? offset + url : url;
- }
-
- function offsetAbsoluteUrl(url) {
- const offset = getMeta("quarto:offset");
- const baseUrl = new URL(offset, window.location);
-
- const projRelativeUrl = url.replace(baseUrl, "");
- if (projRelativeUrl.startsWith("/")) {
- return projRelativeUrl;
- } else {
- return "/" + projRelativeUrl;
- }
- }
-
- // read a meta tag value
- function getMeta(metaName) {
- const metas = window.document.getElementsByTagName("meta");
- for (let i = 0; i < metas.length; i++) {
- if (metas[i].getAttribute("name") === metaName) {
- return metas[i].getAttribute("content");
- }
- }
- return "";
- }
-
- async function findAndActivateCategories() {
- const currentPagePath = offsetAbsoluteUrl(window.location.href);
- const response = await fetch(offsetRelativeUrl("listings.json"));
- if (response.status == 200) {
- return response.json().then(function (listingPaths) {
- const listingHrefs = [];
- for (const listingPath of listingPaths) {
- const pathWithoutLeadingSlash = listingPath.listing.substring(1);
- for (const item of listingPath.items) {
- if (
- item === currentPagePath ||
- item === currentPagePath + "index.html"
- ) {
- // Resolve this path against the offset to be sure
- // we already are using the correct path to the listing
- // (this adjusts the listing urls to be rooted against
- // whatever root the page is actually running against)
- const relative = offsetRelativeUrl(pathWithoutLeadingSlash);
- const baseUrl = window.location;
- const resolvedPath = new URL(relative, baseUrl);
- listingHrefs.push(resolvedPath.pathname);
- break;
- }
- }
- }
-
- // Look up the tree for a nearby linting and use that if we find one
- const nearestListing = findNearestParentListing(
- offsetAbsoluteUrl(window.location.pathname),
- listingHrefs
- );
- if (nearestListing) {
- activateCategories(nearestListing);
- } else {
- // See if the referrer is a listing page for this item
- const referredRelativePath = offsetAbsoluteUrl(document.referrer);
- const referrerListing = listingHrefs.find((listingHref) => {
- const isListingReferrer =
- listingHref === referredRelativePath ||
- listingHref === referredRelativePath + "index.html";
- return isListingReferrer;
- });
-
- if (referrerListing) {
- // Try to use the referrer if possible
- activateCategories(referrerListing);
- } else if (listingHrefs.length > 0) {
- // Otherwise, just fall back to the first listing
- activateCategories(listingHrefs[0]);
- }
- }
- });
- }
- }
- if (hasTitleCategories()) {
- findAndActivateCategories();
- }
-
- const findNearestParentListing = (href, listingHrefs) => {
- if (!href || !listingHrefs) {
- return undefined;
- }
- // Look up the tree for a nearby linting and use that if we find one
- const relativeParts = href.substring(1).split("/");
- while (relativeParts.length > 0) {
- const path = relativeParts.join("/");
- for (const listingHref of listingHrefs) {
- if (listingHref.startsWith(path)) {
- return listingHref;
- }
- }
- relativeParts.pop();
- }
-
- return undefined;
- };
-
- const manageSidebarVisiblity = (el, placeholderDescriptor) => {
- let isVisible = true;
- let elRect;
-
- return (hiddenRegions) => {
- if (el === null) {
- return;
- }
-
- // Find the last element of the TOC
- const lastChildEl = el.lastElementChild;
-
- if (lastChildEl) {
- // Converts the sidebar to a menu
- const convertToMenu = () => {
- for (const child of el.children) {
- child.style.opacity = 0;
- child.style.overflow = "hidden";
- }
-
- nexttick(() => {
- const toggleContainer = window.document.createElement("div");
- toggleContainer.style.width = "100%";
- toggleContainer.classList.add("zindex-over-content");
- toggleContainer.classList.add("quarto-sidebar-toggle");
- toggleContainer.classList.add("headroom-target"); // Marks this to be managed by headeroom
- toggleContainer.id = placeholderDescriptor.id;
- toggleContainer.style.position = "fixed";
-
- const toggleIcon = window.document.createElement("i");
- toggleIcon.classList.add("quarto-sidebar-toggle-icon");
- toggleIcon.classList.add("bi");
- toggleIcon.classList.add("bi-caret-down-fill");
-
- const toggleTitle = window.document.createElement("div");
- const titleEl = window.document.body.querySelector(
- placeholderDescriptor.titleSelector
- );
- if (titleEl) {
- toggleTitle.append(
- titleEl.textContent || titleEl.innerText,
- toggleIcon
- );
- }
- toggleTitle.classList.add("zindex-over-content");
- toggleTitle.classList.add("quarto-sidebar-toggle-title");
- toggleContainer.append(toggleTitle);
-
- const toggleContents = window.document.createElement("div");
- toggleContents.classList = el.classList;
- toggleContents.classList.add("zindex-over-content");
- toggleContents.classList.add("quarto-sidebar-toggle-contents");
- for (const child of el.children) {
- if (child.id === "toc-title") {
- continue;
- }
-
- const clone = child.cloneNode(true);
- clone.style.opacity = 1;
- clone.style.display = null;
- toggleContents.append(clone);
- }
- toggleContents.style.height = "0px";
- const positionToggle = () => {
- // position the element (top left of parent, same width as parent)
- if (!elRect) {
- elRect = el.getBoundingClientRect();
- }
- toggleContainer.style.left = `${elRect.left}px`;
- toggleContainer.style.top = `${elRect.top}px`;
- toggleContainer.style.width = `${elRect.width}px`;
- };
- positionToggle();
-
- toggleContainer.append(toggleContents);
- el.parentElement.prepend(toggleContainer);
-
- // Process clicks
- let tocShowing = false;
- // Allow the caller to control whether this is dismissed
- // when it is clicked (e.g. sidebar navigation supports
- // opening and closing the nav tree, so don't dismiss on click)
- const clickEl = placeholderDescriptor.dismissOnClick
- ? toggleContainer
- : toggleTitle;
-
- const closeToggle = () => {
- if (tocShowing) {
- toggleContainer.classList.remove("expanded");
- toggleContents.style.height = "0px";
- tocShowing = false;
- }
- };
-
- // Get rid of any expanded toggle if the user scrolls
- window.document.addEventListener(
- "scroll",
- throttle(() => {
- closeToggle();
- }, 50)
- );
-
- // Handle positioning of the toggle
- window.addEventListener(
- "resize",
- throttle(() => {
- elRect = undefined;
- positionToggle();
- }, 50)
- );
-
- window.addEventListener("quarto-hrChanged", () => {
- elRect = undefined;
- });
-
- // Process the click
- clickEl.onclick = () => {
- if (!tocShowing) {
- toggleContainer.classList.add("expanded");
- toggleContents.style.height = null;
- tocShowing = true;
- } else {
- closeToggle();
- }
- };
- });
- };
-
- // Converts a sidebar from a menu back to a sidebar
- const convertToSidebar = () => {
- for (const child of el.children) {
- child.style.opacity = 1;
- child.style.overflow = null;
- }
-
- const placeholderEl = window.document.getElementById(
- placeholderDescriptor.id
- );
- if (placeholderEl) {
- placeholderEl.remove();
- }
-
- el.classList.remove("rollup");
- };
-
- if (isReaderMode()) {
- convertToMenu();
- isVisible = false;
- } else {
- // Find the top and bottom o the element that is being managed
- const elTop = el.offsetTop;
- const elBottom =
- elTop + lastChildEl.offsetTop + lastChildEl.offsetHeight;
-
- if (!isVisible) {
- // If the element is current not visible reveal if there are
- // no conflicts with overlay regions
- if (!inHiddenRegion(elTop, elBottom, hiddenRegions)) {
- convertToSidebar();
- isVisible = true;
- }
- } else {
- // If the element is visible, hide it if it conflicts with overlay regions
- // and insert a placeholder toggle (or if we're in reader mode)
- if (inHiddenRegion(elTop, elBottom, hiddenRegions)) {
- convertToMenu();
- isVisible = false;
- }
- }
- }
- }
- };
- };
-
- const tabEls = document.querySelectorAll('a[data-bs-toggle="tab"]');
- for (const tabEl of tabEls) {
- const id = tabEl.getAttribute("data-bs-target");
- if (id) {
- const columnEl = document.querySelector(
- `${id} .column-margin, .tabset-margin-content`
- );
- if (columnEl)
- tabEl.addEventListener("shown.bs.tab", function (event) {
- const el = event.srcElement;
- if (el) {
- const visibleCls = `${el.id}-margin-content`;
- // walk up until we find a parent tabset
- let panelTabsetEl = el.parentElement;
- while (panelTabsetEl) {
- if (panelTabsetEl.classList.contains("panel-tabset")) {
- break;
- }
- panelTabsetEl = panelTabsetEl.parentElement;
- }
-
- if (panelTabsetEl) {
- const prevSib = panelTabsetEl.previousElementSibling;
- if (
- prevSib &&
- prevSib.classList.contains("tabset-margin-container")
- ) {
- const childNodes = prevSib.querySelectorAll(
- ".tabset-margin-content"
- );
- for (const childEl of childNodes) {
- if (childEl.classList.contains(visibleCls)) {
- childEl.classList.remove("collapse");
- } else {
- childEl.classList.add("collapse");
- }
- }
- }
- }
- }
-
- layoutMarginEls();
- });
- }
- }
-
- // Manage the visibility of the toc and the sidebar
- const marginScrollVisibility = manageSidebarVisiblity(marginSidebarEl, {
- id: "quarto-toc-toggle",
- titleSelector: "#toc-title",
- dismissOnClick: true,
- });
- const sidebarScrollVisiblity = manageSidebarVisiblity(sidebarEl, {
- id: "quarto-sidebarnav-toggle",
- titleSelector: ".title",
- dismissOnClick: false,
- });
- let tocLeftScrollVisibility;
- if (leftTocEl) {
- tocLeftScrollVisibility = manageSidebarVisiblity(leftTocEl, {
- id: "quarto-lefttoc-toggle",
- titleSelector: "#toc-title",
- dismissOnClick: true,
- });
- }
-
- // Find the first element that uses formatting in special columns
- const conflictingEls = window.document.body.querySelectorAll(
- '[class^="column-"], [class*=" column-"], aside, [class*="margin-caption"], [class*=" margin-caption"], [class*="margin-ref"], [class*=" margin-ref"]'
- );
-
- // Filter all the possibly conflicting elements into ones
- // the do conflict on the left or ride side
- const arrConflictingEls = Array.from(conflictingEls);
- const leftSideConflictEls = arrConflictingEls.filter((el) => {
- if (el.tagName === "ASIDE") {
- return false;
- }
- return Array.from(el.classList).find((className) => {
- return (
- className !== "column-body" &&
- className.startsWith("column-") &&
- !className.endsWith("right") &&
- !className.endsWith("container") &&
- className !== "column-margin"
- );
- });
- });
- const rightSideConflictEls = arrConflictingEls.filter((el) => {
- if (el.tagName === "ASIDE") {
- return true;
- }
-
- const hasMarginCaption = Array.from(el.classList).find((className) => {
- return className == "margin-caption";
- });
- if (hasMarginCaption) {
- return true;
- }
-
- return Array.from(el.classList).find((className) => {
- return (
- className !== "column-body" &&
- !className.endsWith("container") &&
- className.startsWith("column-") &&
- !className.endsWith("left")
- );
- });
- });
-
- const kOverlapPaddingSize = 10;
- function toRegions(els) {
- return els.map((el) => {
- const boundRect = el.getBoundingClientRect();
- const top =
- boundRect.top +
- document.documentElement.scrollTop -
- kOverlapPaddingSize;
- return {
- top,
- bottom: top + el.scrollHeight + 2 * kOverlapPaddingSize,
- };
- });
- }
-
- let hasObserved = false;
- const visibleItemObserver = (els) => {
- let visibleElements = [...els];
- const intersectionObserver = new IntersectionObserver(
- (entries, _observer) => {
- entries.forEach((entry) => {
- if (entry.isIntersecting) {
- if (visibleElements.indexOf(entry.target) === -1) {
- visibleElements.push(entry.target);
- }
- } else {
- visibleElements = visibleElements.filter((visibleEntry) => {
- return visibleEntry !== entry;
- });
- }
- });
-
- if (!hasObserved) {
- hideOverlappedSidebars();
- }
- hasObserved = true;
- },
- {}
- );
- els.forEach((el) => {
- intersectionObserver.observe(el);
- });
-
- return {
- getVisibleEntries: () => {
- return visibleElements;
- },
- };
- };
-
- const rightElementObserver = visibleItemObserver(rightSideConflictEls);
- const leftElementObserver = visibleItemObserver(leftSideConflictEls);
-
- const hideOverlappedSidebars = () => {
- marginScrollVisibility(toRegions(rightElementObserver.getVisibleEntries()));
- sidebarScrollVisiblity(toRegions(leftElementObserver.getVisibleEntries()));
- if (tocLeftScrollVisibility) {
- tocLeftScrollVisibility(
- toRegions(leftElementObserver.getVisibleEntries())
- );
- }
- };
-
- window.quartoToggleReader = () => {
- // Applies a slow class (or removes it)
- // to update the transition speed
- const slowTransition = (slow) => {
- const manageTransition = (id, slow) => {
- const el = document.getElementById(id);
- if (el) {
- if (slow) {
- el.classList.add("slow");
- } else {
- el.classList.remove("slow");
- }
- }
- };
-
- manageTransition("TOC", slow);
- manageTransition("quarto-sidebar", slow);
- };
- const readerMode = !isReaderMode();
- setReaderModeValue(readerMode);
-
- // If we're entering reader mode, slow the transition
- if (readerMode) {
- slowTransition(readerMode);
- }
- highlightReaderToggle(readerMode);
- hideOverlappedSidebars();
-
- // If we're exiting reader mode, restore the non-slow transition
- if (!readerMode) {
- slowTransition(!readerMode);
- }
- };
-
- const highlightReaderToggle = (readerMode) => {
- const els = document.querySelectorAll(".quarto-reader-toggle");
- if (els) {
- els.forEach((el) => {
- if (readerMode) {
- el.classList.add("reader");
- } else {
- el.classList.remove("reader");
- }
- });
- }
- };
-
- const setReaderModeValue = (val) => {
- if (window.location.protocol !== "file:") {
- window.localStorage.setItem("quarto-reader-mode", val);
- } else {
- localReaderMode = val;
- }
- };
-
- const isReaderMode = () => {
- if (window.location.protocol !== "file:") {
- return window.localStorage.getItem("quarto-reader-mode") === "true";
- } else {
- return localReaderMode;
- }
- };
- let localReaderMode = null;
-
- const tocOpenDepthStr = tocEl?.getAttribute("data-toc-expanded");
- const tocOpenDepth = tocOpenDepthStr ? Number(tocOpenDepthStr) : 1;
-
- // Walk the TOC and collapse/expand nodes
- // Nodes are expanded if:
- // - they are top level
- // - they have children that are 'active' links
- // - they are directly below an link that is 'active'
- const walk = (el, depth) => {
- // Tick depth when we enter a UL
- if (el.tagName === "UL") {
- depth = depth + 1;
- }
-
- // It this is active link
- let isActiveNode = false;
- if (el.tagName === "A" && el.classList.contains("active")) {
- isActiveNode = true;
- }
-
- // See if there is an active child to this element
- let hasActiveChild = false;
- for (child of el.children) {
- hasActiveChild = walk(child, depth) || hasActiveChild;
- }
-
- // Process the collapse state if this is an UL
- if (el.tagName === "UL") {
- if (tocOpenDepth === -1 && depth > 1) {
- el.classList.add("collapse");
- } else if (
- depth <= tocOpenDepth ||
- hasActiveChild ||
- prevSiblingIsActiveLink(el)
- ) {
- el.classList.remove("collapse");
- } else {
- el.classList.add("collapse");
- }
-
- // untick depth when we leave a UL
- depth = depth - 1;
- }
- return hasActiveChild || isActiveNode;
- };
-
- // walk the TOC and expand / collapse any items that should be shown
-
- if (tocEl) {
- walk(tocEl, 0);
- updateActiveLink();
- }
-
- // Throttle the scroll event and walk peridiocally
- window.document.addEventListener(
- "scroll",
- throttle(() => {
- if (tocEl) {
- updateActiveLink();
- walk(tocEl, 0);
- }
- if (!isReaderMode()) {
- hideOverlappedSidebars();
- }
- }, 5)
- );
- window.addEventListener(
- "resize",
- throttle(() => {
- if (!isReaderMode()) {
- hideOverlappedSidebars();
- }
- }, 10)
- );
- hideOverlappedSidebars();
- highlightReaderToggle(isReaderMode());
-});
-
-// grouped tabsets
-window.addEventListener("pageshow", (_event) => {
- function getTabSettings() {
- const data = localStorage.getItem("quarto-persistent-tabsets-data");
- if (!data) {
- localStorage.setItem("quarto-persistent-tabsets-data", "{}");
- return {};
- }
- if (data) {
- return JSON.parse(data);
- }
- }
-
- function setTabSettings(data) {
- localStorage.setItem(
- "quarto-persistent-tabsets-data",
- JSON.stringify(data)
- );
- }
-
- function setTabState(groupName, groupValue) {
- const data = getTabSettings();
- data[groupName] = groupValue;
- setTabSettings(data);
- }
-
- function toggleTab(tab, active) {
- const tabPanelId = tab.getAttribute("aria-controls");
- const tabPanel = document.getElementById(tabPanelId);
- if (active) {
- tab.classList.add("active");
- tabPanel.classList.add("active");
- } else {
- tab.classList.remove("active");
- tabPanel.classList.remove("active");
- }
- }
-
- function toggleAll(selectedGroup, selectorsToSync) {
- for (const [thisGroup, tabs] of Object.entries(selectorsToSync)) {
- const active = selectedGroup === thisGroup;
- for (const tab of tabs) {
- toggleTab(tab, active);
- }
- }
- }
-
- function findSelectorsToSyncByLanguage() {
- const result = {};
- const tabs = Array.from(
- document.querySelectorAll(`div[data-group] a[id^='tabset-']`)
- );
- for (const item of tabs) {
- const div = item.parentElement.parentElement.parentElement;
- const group = div.getAttribute("data-group");
- if (!result[group]) {
- result[group] = {};
- }
- const selectorsToSync = result[group];
- const value = item.innerHTML;
- if (!selectorsToSync[value]) {
- selectorsToSync[value] = [];
- }
- selectorsToSync[value].push(item);
- }
- return result;
- }
-
- function setupSelectorSync() {
- const selectorsToSync = findSelectorsToSyncByLanguage();
- Object.entries(selectorsToSync).forEach(([group, tabSetsByValue]) => {
- Object.entries(tabSetsByValue).forEach(([value, items]) => {
- items.forEach((item) => {
- item.addEventListener("click", (_event) => {
- setTabState(group, value);
- toggleAll(value, selectorsToSync[group]);
- });
- });
- });
- });
- return selectorsToSync;
- }
-
- const selectorsToSync = setupSelectorSync();
- for (const [group, selectedName] of Object.entries(getTabSettings())) {
- const selectors = selectorsToSync[group];
- // it's possible that stale state gives us empty selections, so we explicitly check here.
- if (selectors) {
- toggleAll(selectedName, selectors);
- }
- }
-});
-
-function throttle(func, wait) {
- let waiting = false;
- return function () {
- if (!waiting) {
- func.apply(this, arguments);
- waiting = true;
- setTimeout(function () {
- waiting = false;
- }, wait);
- }
- };
-}
-
-function nexttick(func) {
- return setTimeout(func, 0);
-}
diff --git a/blog/aging-curve/index_files/libs/quarto-html/tippy.css b/blog/aging-curve/index_files/libs/quarto-html/tippy.css
deleted file mode 100644
index 2a52516..0000000
--- a/blog/aging-curve/index_files/libs/quarto-html/tippy.css
+++ /dev/null
@@ -1 +0,0 @@
-.tippy-box[data-animation=fade][data-state=hidden]{opacity:0}[data-tippy-root]{max-width:calc(100vw - 10px)}.tippy-box{position:relative;background-color:#333;color:#fff;border-radius:4px;font-size:14px;line-height:1.4;white-space:normal;outline:0;transition-property:transform,visibility,opacity}.tippy-box[data-placement^=top]>.tippy-arrow{bottom:0}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-7px;left:0;border-width:8px 8px 0;border-top-color:initial;transform-origin:center top}.tippy-box[data-placement^=bottom]>.tippy-arrow{top:0}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-7px;left:0;border-width:0 8px 8px;border-bottom-color:initial;transform-origin:center bottom}.tippy-box[data-placement^=left]>.tippy-arrow{right:0}.tippy-box[data-placement^=left]>.tippy-arrow:before{border-width:8px 0 8px 8px;border-left-color:initial;right:-7px;transform-origin:center left}.tippy-box[data-placement^=right]>.tippy-arrow{left:0}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-7px;border-width:8px 8px 8px 0;border-right-color:initial;transform-origin:center right}.tippy-box[data-inertia][data-state=visible]{transition-timing-function:cubic-bezier(.54,1.5,.38,1.11)}.tippy-arrow{width:16px;height:16px;color:#333}.tippy-arrow:before{content:"";position:absolute;border-color:transparent;border-style:solid}.tippy-content{position:relative;padding:5px 9px;z-index:1}
diff --git a/blog/aging-curve/index_files/libs/quarto-html/tippy.umd.min.js b/blog/aging-curve/index_files/libs/quarto-html/tippy.umd.min.js
deleted file mode 100644
index 2266fd1..0000000
--- a/blog/aging-curve/index_files/libs/quarto-html/tippy.umd.min.js
+++ /dev/null
@@ -1 +0,0 @@
-!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t(require("@popperjs/core")):"function"==typeof define&&define.amd?define(["@popperjs/core"],t):(e=e||self).tippy=t(e.Popper)}(this,(function(e){"use strict";var t={passive:!0,capture:!0},n=function(){return document.body};function r(e,t,n){if(Array.isArray(e)){var r=e[t];return null==r?Array.isArray(n)?n[t]:n:r}return e}function o(e,t){var n={}.toString.call(e);return 0===n.indexOf("[object")&&n.indexOf(t+"]")>-1}function i(e,t){return"function"==typeof e?e.apply(void 0,t):e}function a(e,t){return 0===t?e:function(r){clearTimeout(n),n=setTimeout((function(){e(r)}),t)};var n}function s(e,t){var n=Object.assign({},e);return t.forEach((function(e){delete n[e]})),n}function u(e){return[].concat(e)}function c(e,t){-1===e.indexOf(t)&&e.push(t)}function p(e){return e.split("-")[0]}function f(e){return[].slice.call(e)}function l(e){return Object.keys(e).reduce((function(t,n){return void 0!==e[n]&&(t[n]=e[n]),t}),{})}function d(){return document.createElement("div")}function v(e){return["Element","Fragment"].some((function(t){return o(e,t)}))}function m(e){return o(e,"MouseEvent")}function g(e){return!(!e||!e._tippy||e._tippy.reference!==e)}function h(e){return v(e)?[e]:function(e){return o(e,"NodeList")}(e)?f(e):Array.isArray(e)?e:f(document.querySelectorAll(e))}function b(e,t){e.forEach((function(e){e&&(e.style.transitionDuration=t+"ms")}))}function y(e,t){e.forEach((function(e){e&&e.setAttribute("data-state",t)}))}function w(e){var t,n=u(e)[0];return null!=n&&null!=(t=n.ownerDocument)&&t.body?n.ownerDocument:document}function E(e,t,n){var r=t+"EventListener";["transitionend","webkitTransitionEnd"].forEach((function(t){e[r](t,n)}))}function O(e,t){for(var n=t;n;){var r;if(e.contains(n))return!0;n=null==n.getRootNode||null==(r=n.getRootNode())?void 0:r.host}return!1}var x={isTouch:!1},C=0;function T(){x.isTouch||(x.isTouch=!0,window.performance&&document.addEventListener("mousemove",A))}function A(){var e=performance.now();e-C<20&&(x.isTouch=!1,document.removeEventListener("mousemove",A)),C=e}function L(){var e=document.activeElement;if(g(e)){var t=e._tippy;e.blur&&!t.state.isVisible&&e.blur()}}var D=!!("undefined"!=typeof window&&"undefined"!=typeof document)&&!!window.msCrypto,R=Object.assign({appendTo:n,aria:{content:"auto",expanded:"auto"},delay:0,duration:[300,250],getReferenceClientRect:null,hideOnClick:!0,ignoreAttributes:!1,interactive:!1,interactiveBorder:2,interactiveDebounce:0,moveTransition:"",offset:[0,10],onAfterUpdate:function(){},onBeforeUpdate:function(){},onCreate:function(){},onDestroy:function(){},onHidden:function(){},onHide:function(){},onMount:function(){},onShow:function(){},onShown:function(){},onTrigger:function(){},onUntrigger:function(){},onClickOutside:function(){},placement:"top",plugins:[],popperOptions:{},render:null,showOnCreate:!1,touch:!0,trigger:"mouseenter focus",triggerTarget:null},{animateFill:!1,followCursor:!1,inlinePositioning:!1,sticky:!1},{allowHTML:!1,animation:"fade",arrow:!0,content:"",inertia:!1,maxWidth:350,role:"tooltip",theme:"",zIndex:9999}),k=Object.keys(R);function P(e){var t=(e.plugins||[]).reduce((function(t,n){var r,o=n.name,i=n.defaultValue;o&&(t[o]=void 0!==e[o]?e[o]:null!=(r=R[o])?r:i);return t}),{});return Object.assign({},e,t)}function j(e,t){var n=Object.assign({},t,{content:i(t.content,[e])},t.ignoreAttributes?{}:function(e,t){return(t?Object.keys(P(Object.assign({},R,{plugins:t}))):k).reduce((function(t,n){var r=(e.getAttribute("data-tippy-"+n)||"").trim();if(!r)return t;if("content"===n)t[n]=r;else try{t[n]=JSON.parse(r)}catch(e){t[n]=r}return t}),{})}(e,t.plugins));return n.aria=Object.assign({},R.aria,n.aria),n.aria={expanded:"auto"===n.aria.expanded?t.interactive:n.aria.expanded,content:"auto"===n.aria.content?t.interactive?null:"describedby":n.aria.content},n}function M(e,t){e.innerHTML=t}function V(e){var t=d();return!0===e?t.className="tippy-arrow":(t.className="tippy-svg-arrow",v(e)?t.appendChild(e):M(t,e)),t}function I(e,t){v(t.content)?(M(e,""),e.appendChild(t.content)):"function"!=typeof t.content&&(t.allowHTML?M(e,t.content):e.textContent=t.content)}function S(e){var t=e.firstElementChild,n=f(t.children);return{box:t,content:n.find((function(e){return e.classList.contains("tippy-content")})),arrow:n.find((function(e){return e.classList.contains("tippy-arrow")||e.classList.contains("tippy-svg-arrow")})),backdrop:n.find((function(e){return e.classList.contains("tippy-backdrop")}))}}function N(e){var t=d(),n=d();n.className="tippy-box",n.setAttribute("data-state","hidden"),n.setAttribute("tabindex","-1");var r=d();function o(n,r){var o=S(t),i=o.box,a=o.content,s=o.arrow;r.theme?i.setAttribute("data-theme",r.theme):i.removeAttribute("data-theme"),"string"==typeof r.animation?i.setAttribute("data-animation",r.animation):i.removeAttribute("data-animation"),r.inertia?i.setAttribute("data-inertia",""):i.removeAttribute("data-inertia"),i.style.maxWidth="number"==typeof r.maxWidth?r.maxWidth+"px":r.maxWidth,r.role?i.setAttribute("role",r.role):i.removeAttribute("role"),n.content===r.content&&n.allowHTML===r.allowHTML||I(a,e.props),r.arrow?s?n.arrow!==r.arrow&&(i.removeChild(s),i.appendChild(V(r.arrow))):i.appendChild(V(r.arrow)):s&&i.removeChild(s)}return r.className="tippy-content",r.setAttribute("data-state","hidden"),I(r,e.props),t.appendChild(n),n.appendChild(r),o(e.props,e.props),{popper:t,onUpdate:o}}N.$$tippy=!0;var B=1,H=[],U=[];function _(o,s){var v,g,h,C,T,A,L,k,M=j(o,Object.assign({},R,P(l(s)))),V=!1,I=!1,N=!1,_=!1,F=[],W=a(we,M.interactiveDebounce),X=B++,Y=(k=M.plugins).filter((function(e,t){return k.indexOf(e)===t})),$={id:X,reference:o,popper:d(),popperInstance:null,props:M,state:{isEnabled:!0,isVisible:!1,isDestroyed:!1,isMounted:!1,isShown:!1},plugins:Y,clearDelayTimeouts:function(){clearTimeout(v),clearTimeout(g),cancelAnimationFrame(h)},setProps:function(e){if($.state.isDestroyed)return;ae("onBeforeUpdate",[$,e]),be();var t=$.props,n=j(o,Object.assign({},t,l(e),{ignoreAttributes:!0}));$.props=n,he(),t.interactiveDebounce!==n.interactiveDebounce&&(ce(),W=a(we,n.interactiveDebounce));t.triggerTarget&&!n.triggerTarget?u(t.triggerTarget).forEach((function(e){e.removeAttribute("aria-expanded")})):n.triggerTarget&&o.removeAttribute("aria-expanded");ue(),ie(),J&&J(t,n);$.popperInstance&&(Ce(),Ae().forEach((function(e){requestAnimationFrame(e._tippy.popperInstance.forceUpdate)})));ae("onAfterUpdate",[$,e])},setContent:function(e){$.setProps({content:e})},show:function(){var e=$.state.isVisible,t=$.state.isDestroyed,o=!$.state.isEnabled,a=x.isTouch&&!$.props.touch,s=r($.props.duration,0,R.duration);if(e||t||o||a)return;if(te().hasAttribute("disabled"))return;if(ae("onShow",[$],!1),!1===$.props.onShow($))return;$.state.isVisible=!0,ee()&&(z.style.visibility="visible");ie(),de(),$.state.isMounted||(z.style.transition="none");if(ee()){var u=re(),p=u.box,f=u.content;b([p,f],0)}A=function(){var e;if($.state.isVisible&&!_){if(_=!0,z.offsetHeight,z.style.transition=$.props.moveTransition,ee()&&$.props.animation){var t=re(),n=t.box,r=t.content;b([n,r],s),y([n,r],"visible")}se(),ue(),c(U,$),null==(e=$.popperInstance)||e.forceUpdate(),ae("onMount",[$]),$.props.animation&&ee()&&function(e,t){me(e,t)}(s,(function(){$.state.isShown=!0,ae("onShown",[$])}))}},function(){var e,t=$.props.appendTo,r=te();e=$.props.interactive&&t===n||"parent"===t?r.parentNode:i(t,[r]);e.contains(z)||e.appendChild(z);$.state.isMounted=!0,Ce()}()},hide:function(){var e=!$.state.isVisible,t=$.state.isDestroyed,n=!$.state.isEnabled,o=r($.props.duration,1,R.duration);if(e||t||n)return;if(ae("onHide",[$],!1),!1===$.props.onHide($))return;$.state.isVisible=!1,$.state.isShown=!1,_=!1,V=!1,ee()&&(z.style.visibility="hidden");if(ce(),ve(),ie(!0),ee()){var i=re(),a=i.box,s=i.content;$.props.animation&&(b([a,s],o),y([a,s],"hidden"))}se(),ue(),$.props.animation?ee()&&function(e,t){me(e,(function(){!$.state.isVisible&&z.parentNode&&z.parentNode.contains(z)&&t()}))}(o,$.unmount):$.unmount()},hideWithInteractivity:function(e){ne().addEventListener("mousemove",W),c(H,W),W(e)},enable:function(){$.state.isEnabled=!0},disable:function(){$.hide(),$.state.isEnabled=!1},unmount:function(){$.state.isVisible&&$.hide();if(!$.state.isMounted)return;Te(),Ae().forEach((function(e){e._tippy.unmount()})),z.parentNode&&z.parentNode.removeChild(z);U=U.filter((function(e){return e!==$})),$.state.isMounted=!1,ae("onHidden",[$])},destroy:function(){if($.state.isDestroyed)return;$.clearDelayTimeouts(),$.unmount(),be(),delete o._tippy,$.state.isDestroyed=!0,ae("onDestroy",[$])}};if(!M.render)return $;var q=M.render($),z=q.popper,J=q.onUpdate;z.setAttribute("data-tippy-root",""),z.id="tippy-"+$.id,$.popper=z,o._tippy=$,z._tippy=$;var G=Y.map((function(e){return e.fn($)})),K=o.hasAttribute("aria-expanded");return he(),ue(),ie(),ae("onCreate",[$]),M.showOnCreate&&Le(),z.addEventListener("mouseenter",(function(){$.props.interactive&&$.state.isVisible&&$.clearDelayTimeouts()})),z.addEventListener("mouseleave",(function(){$.props.interactive&&$.props.trigger.indexOf("mouseenter")>=0&&ne().addEventListener("mousemove",W)})),$;function Q(){var e=$.props.touch;return Array.isArray(e)?e:[e,0]}function Z(){return"hold"===Q()[0]}function ee(){var e;return!(null==(e=$.props.render)||!e.$$tippy)}function te(){return L||o}function ne(){var e=te().parentNode;return e?w(e):document}function re(){return S(z)}function oe(e){return $.state.isMounted&&!$.state.isVisible||x.isTouch||C&&"focus"===C.type?0:r($.props.delay,e?0:1,R.delay)}function ie(e){void 0===e&&(e=!1),z.style.pointerEvents=$.props.interactive&&!e?"":"none",z.style.zIndex=""+$.props.zIndex}function ae(e,t,n){var r;(void 0===n&&(n=!0),G.forEach((function(n){n[e]&&n[e].apply(n,t)})),n)&&(r=$.props)[e].apply(r,t)}function se(){var e=$.props.aria;if(e.content){var t="aria-"+e.content,n=z.id;u($.props.triggerTarget||o).forEach((function(e){var r=e.getAttribute(t);if($.state.isVisible)e.setAttribute(t,r?r+" "+n:n);else{var o=r&&r.replace(n,"").trim();o?e.setAttribute(t,o):e.removeAttribute(t)}}))}}function ue(){!K&&$.props.aria.expanded&&u($.props.triggerTarget||o).forEach((function(e){$.props.interactive?e.setAttribute("aria-expanded",$.state.isVisible&&e===te()?"true":"false"):e.removeAttribute("aria-expanded")}))}function ce(){ne().removeEventListener("mousemove",W),H=H.filter((function(e){return e!==W}))}function pe(e){if(!x.isTouch||!N&&"mousedown"!==e.type){var t=e.composedPath&&e.composedPath()[0]||e.target;if(!$.props.interactive||!O(z,t)){if(u($.props.triggerTarget||o).some((function(e){return O(e,t)}))){if(x.isTouch)return;if($.state.isVisible&&$.props.trigger.indexOf("click")>=0)return}else ae("onClickOutside",[$,e]);!0===$.props.hideOnClick&&($.clearDelayTimeouts(),$.hide(),I=!0,setTimeout((function(){I=!1})),$.state.isMounted||ve())}}}function fe(){N=!0}function le(){N=!1}function de(){var e=ne();e.addEventListener("mousedown",pe,!0),e.addEventListener("touchend",pe,t),e.addEventListener("touchstart",le,t),e.addEventListener("touchmove",fe,t)}function ve(){var e=ne();e.removeEventListener("mousedown",pe,!0),e.removeEventListener("touchend",pe,t),e.removeEventListener("touchstart",le,t),e.removeEventListener("touchmove",fe,t)}function me(e,t){var n=re().box;function r(e){e.target===n&&(E(n,"remove",r),t())}if(0===e)return t();E(n,"remove",T),E(n,"add",r),T=r}function ge(e,t,n){void 0===n&&(n=!1),u($.props.triggerTarget||o).forEach((function(r){r.addEventListener(e,t,n),F.push({node:r,eventType:e,handler:t,options:n})}))}function he(){var e;Z()&&(ge("touchstart",ye,{passive:!0}),ge("touchend",Ee,{passive:!0})),(e=$.props.trigger,e.split(/\s+/).filter(Boolean)).forEach((function(e){if("manual"!==e)switch(ge(e,ye),e){case"mouseenter":ge("mouseleave",Ee);break;case"focus":ge(D?"focusout":"blur",Oe);break;case"focusin":ge("focusout",Oe)}}))}function be(){F.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),F=[]}function ye(e){var t,n=!1;if($.state.isEnabled&&!xe(e)&&!I){var r="focus"===(null==(t=C)?void 0:t.type);C=e,L=e.currentTarget,ue(),!$.state.isVisible&&m(e)&&H.forEach((function(t){return t(e)})),"click"===e.type&&($.props.trigger.indexOf("mouseenter")<0||V)&&!1!==$.props.hideOnClick&&$.state.isVisible?n=!0:Le(e),"click"===e.type&&(V=!n),n&&!r&&De(e)}}function we(e){var t=e.target,n=te().contains(t)||z.contains(t);"mousemove"===e.type&&n||function(e,t){var n=t.clientX,r=t.clientY;return e.every((function(e){var t=e.popperRect,o=e.popperState,i=e.props.interactiveBorder,a=p(o.placement),s=o.modifiersData.offset;if(!s)return!0;var u="bottom"===a?s.top.y:0,c="top"===a?s.bottom.y:0,f="right"===a?s.left.x:0,l="left"===a?s.right.x:0,d=t.top-r+u>i,v=r-t.bottom-c>i,m=t.left-n+f>i,g=n-t.right-l>i;return d||v||m||g}))}(Ae().concat(z).map((function(e){var t,n=null==(t=e._tippy.popperInstance)?void 0:t.state;return n?{popperRect:e.getBoundingClientRect(),popperState:n,props:M}:null})).filter(Boolean),e)&&(ce(),De(e))}function Ee(e){xe(e)||$.props.trigger.indexOf("click")>=0&&V||($.props.interactive?$.hideWithInteractivity(e):De(e))}function Oe(e){$.props.trigger.indexOf("focusin")<0&&e.target!==te()||$.props.interactive&&e.relatedTarget&&z.contains(e.relatedTarget)||De(e)}function xe(e){return!!x.isTouch&&Z()!==e.type.indexOf("touch")>=0}function Ce(){Te();var t=$.props,n=t.popperOptions,r=t.placement,i=t.offset,a=t.getReferenceClientRect,s=t.moveTransition,u=ee()?S(z).arrow:null,c=a?{getBoundingClientRect:a,contextElement:a.contextElement||te()}:o,p=[{name:"offset",options:{offset:i}},{name:"preventOverflow",options:{padding:{top:2,bottom:2,left:5,right:5}}},{name:"flip",options:{padding:5}},{name:"computeStyles",options:{adaptive:!s}},{name:"$$tippy",enabled:!0,phase:"beforeWrite",requires:["computeStyles"],fn:function(e){var t=e.state;if(ee()){var n=re().box;["placement","reference-hidden","escaped"].forEach((function(e){"placement"===e?n.setAttribute("data-placement",t.placement):t.attributes.popper["data-popper-"+e]?n.setAttribute("data-"+e,""):n.removeAttribute("data-"+e)})),t.attributes.popper={}}}}];ee()&&u&&p.push({name:"arrow",options:{element:u,padding:3}}),p.push.apply(p,(null==n?void 0:n.modifiers)||[]),$.popperInstance=e.createPopper(c,z,Object.assign({},n,{placement:r,onFirstUpdate:A,modifiers:p}))}function Te(){$.popperInstance&&($.popperInstance.destroy(),$.popperInstance=null)}function Ae(){return f(z.querySelectorAll("[data-tippy-root]"))}function Le(e){$.clearDelayTimeouts(),e&&ae("onTrigger",[$,e]),de();var t=oe(!0),n=Q(),r=n[0],o=n[1];x.isTouch&&"hold"===r&&o&&(t=o),t?v=setTimeout((function(){$.show()}),t):$.show()}function De(e){if($.clearDelayTimeouts(),ae("onUntrigger",[$,e]),$.state.isVisible){if(!($.props.trigger.indexOf("mouseenter")>=0&&$.props.trigger.indexOf("click")>=0&&["mouseleave","mousemove"].indexOf(e.type)>=0&&V)){var t=oe(!1);t?g=setTimeout((function(){$.state.isVisible&&$.hide()}),t):h=requestAnimationFrame((function(){$.hide()}))}}else ve()}}function F(e,n){void 0===n&&(n={});var r=R.plugins.concat(n.plugins||[]);document.addEventListener("touchstart",T,t),window.addEventListener("blur",L);var o=Object.assign({},n,{plugins:r}),i=h(e).reduce((function(e,t){var n=t&&_(t,o);return n&&e.push(n),e}),[]);return v(e)?i[0]:i}F.defaultProps=R,F.setDefaultProps=function(e){Object.keys(e).forEach((function(t){R[t]=e[t]}))},F.currentInput=x;var W=Object.assign({},e.applyStyles,{effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow)}}),X={mouseover:"mouseenter",focusin:"focus",click:"click"};var Y={name:"animateFill",defaultValue:!1,fn:function(e){var t;if(null==(t=e.props.render)||!t.$$tippy)return{};var n=S(e.popper),r=n.box,o=n.content,i=e.props.animateFill?function(){var e=d();return e.className="tippy-backdrop",y([e],"hidden"),e}():null;return{onCreate:function(){i&&(r.insertBefore(i,r.firstElementChild),r.setAttribute("data-animatefill",""),r.style.overflow="hidden",e.setProps({arrow:!1,animation:"shift-away"}))},onMount:function(){if(i){var e=r.style.transitionDuration,t=Number(e.replace("ms",""));o.style.transitionDelay=Math.round(t/10)+"ms",i.style.transitionDuration=e,y([i],"visible")}},onShow:function(){i&&(i.style.transitionDuration="0ms")},onHide:function(){i&&y([i],"hidden")}}}};var $={clientX:0,clientY:0},q=[];function z(e){var t=e.clientX,n=e.clientY;$={clientX:t,clientY:n}}var J={name:"followCursor",defaultValue:!1,fn:function(e){var t=e.reference,n=w(e.props.triggerTarget||t),r=!1,o=!1,i=!0,a=e.props;function s(){return"initial"===e.props.followCursor&&e.state.isVisible}function u(){n.addEventListener("mousemove",f)}function c(){n.removeEventListener("mousemove",f)}function p(){r=!0,e.setProps({getReferenceClientRect:null}),r=!1}function f(n){var r=!n.target||t.contains(n.target),o=e.props.followCursor,i=n.clientX,a=n.clientY,s=t.getBoundingClientRect(),u=i-s.left,c=a-s.top;!r&&e.props.interactive||e.setProps({getReferenceClientRect:function(){var e=t.getBoundingClientRect(),n=i,r=a;"initial"===o&&(n=e.left+u,r=e.top+c);var s="horizontal"===o?e.top:r,p="vertical"===o?e.right:n,f="horizontal"===o?e.bottom:r,l="vertical"===o?e.left:n;return{width:p-l,height:f-s,top:s,right:p,bottom:f,left:l}}})}function l(){e.props.followCursor&&(q.push({instance:e,doc:n}),function(e){e.addEventListener("mousemove",z)}(n))}function d(){0===(q=q.filter((function(t){return t.instance!==e}))).filter((function(e){return e.doc===n})).length&&function(e){e.removeEventListener("mousemove",z)}(n)}return{onCreate:l,onDestroy:d,onBeforeUpdate:function(){a=e.props},onAfterUpdate:function(t,n){var i=n.followCursor;r||void 0!==i&&a.followCursor!==i&&(d(),i?(l(),!e.state.isMounted||o||s()||u()):(c(),p()))},onMount:function(){e.props.followCursor&&!o&&(i&&(f($),i=!1),s()||u())},onTrigger:function(e,t){m(t)&&($={clientX:t.clientX,clientY:t.clientY}),o="focus"===t.type},onHidden:function(){e.props.followCursor&&(p(),c(),i=!0)}}}};var G={name:"inlinePositioning",defaultValue:!1,fn:function(e){var t,n=e.reference;var r=-1,o=!1,i=[],a={name:"tippyInlinePositioning",enabled:!0,phase:"afterWrite",fn:function(o){var a=o.state;e.props.inlinePositioning&&(-1!==i.indexOf(a.placement)&&(i=[]),t!==a.placement&&-1===i.indexOf(a.placement)&&(i.push(a.placement),e.setProps({getReferenceClientRect:function(){return function(e){return function(e,t,n,r){if(n.length<2||null===e)return t;if(2===n.length&&r>=0&&n[0].left>n[1].right)return n[r]||t;switch(e){case"top":case"bottom":var o=n[0],i=n[n.length-1],a="top"===e,s=o.top,u=i.bottom,c=a?o.left:i.left,p=a?o.right:i.right;return{top:s,bottom:u,left:c,right:p,width:p-c,height:u-s};case"left":case"right":var f=Math.min.apply(Math,n.map((function(e){return e.left}))),l=Math.max.apply(Math,n.map((function(e){return e.right}))),d=n.filter((function(t){return"left"===e?t.left===f:t.right===l})),v=d[0].top,m=d[d.length-1].bottom;return{top:v,bottom:m,left:f,right:l,width:l-f,height:m-v};default:return t}}(p(e),n.getBoundingClientRect(),f(n.getClientRects()),r)}(a.placement)}})),t=a.placement)}};function s(){var t;o||(t=function(e,t){var n;return{popperOptions:Object.assign({},e.popperOptions,{modifiers:[].concat(((null==(n=e.popperOptions)?void 0:n.modifiers)||[]).filter((function(e){return e.name!==t.name})),[t])})}}(e.props,a),o=!0,e.setProps(t),o=!1)}return{onCreate:s,onAfterUpdate:s,onTrigger:function(t,n){if(m(n)){var o=f(e.reference.getClientRects()),i=o.find((function(e){return e.left-2<=n.clientX&&e.right+2>=n.clientX&&e.top-2<=n.clientY&&e.bottom+2>=n.clientY})),a=o.indexOf(i);r=a>-1?a:r}},onHidden:function(){r=-1}}}};var K={name:"sticky",defaultValue:!1,fn:function(e){var t=e.reference,n=e.popper;function r(t){return!0===e.props.sticky||e.props.sticky===t}var o=null,i=null;function a(){var s=r("reference")?(e.popperInstance?e.popperInstance.state.elements.reference:t).getBoundingClientRect():null,u=r("popper")?n.getBoundingClientRect():null;(s&&Q(o,s)||u&&Q(i,u))&&e.popperInstance&&e.popperInstance.update(),o=s,i=u,e.state.isMounted&&requestAnimationFrame(a)}return{onMount:function(){e.props.sticky&&a()}}}};function Q(e,t){return!e||!t||(e.top!==t.top||e.right!==t.right||e.bottom!==t.bottom||e.left!==t.left)}return F.setDefaultProps({plugins:[Y,J,G,K],render:N}),F.createSingleton=function(e,t){var n;void 0===t&&(t={});var r,o=e,i=[],a=[],c=t.overrides,p=[],f=!1;function l(){a=o.map((function(e){return u(e.props.triggerTarget||e.reference)})).reduce((function(e,t){return e.concat(t)}),[])}function v(){i=o.map((function(e){return e.reference}))}function m(e){o.forEach((function(t){e?t.enable():t.disable()}))}function g(e){return o.map((function(t){var n=t.setProps;return t.setProps=function(o){n(o),t.reference===r&&e.setProps(o)},function(){t.setProps=n}}))}function h(e,t){var n=a.indexOf(t);if(t!==r){r=t;var s=(c||[]).concat("content").reduce((function(e,t){return e[t]=o[n].props[t],e}),{});e.setProps(Object.assign({},s,{getReferenceClientRect:"function"==typeof s.getReferenceClientRect?s.getReferenceClientRect:function(){var e;return null==(e=i[n])?void 0:e.getBoundingClientRect()}}))}}m(!1),v(),l();var b={fn:function(){return{onDestroy:function(){m(!0)},onHidden:function(){r=null},onClickOutside:function(e){e.props.showOnCreate&&!f&&(f=!0,r=null)},onShow:function(e){e.props.showOnCreate&&!f&&(f=!0,h(e,i[0]))},onTrigger:function(e,t){h(e,t.currentTarget)}}}},y=F(d(),Object.assign({},s(t,["overrides"]),{plugins:[b].concat(t.plugins||[]),triggerTarget:a,popperOptions:Object.assign({},t.popperOptions,{modifiers:[].concat((null==(n=t.popperOptions)?void 0:n.modifiers)||[],[W])})})),w=y.show;y.show=function(e){if(w(),!r&&null==e)return h(y,i[0]);if(!r||null!=e){if("number"==typeof e)return i[e]&&h(y,i[e]);if(o.indexOf(e)>=0){var t=e.reference;return h(y,t)}return i.indexOf(e)>=0?h(y,e):void 0}},y.showNext=function(){var e=i[0];if(!r)return y.show(0);var t=i.indexOf(r);y.show(i[t+1]||e)},y.showPrevious=function(){var e=i[i.length-1];if(!r)return y.show(e);var t=i.indexOf(r),n=i[t-1]||e;y.show(n)};var E=y.setProps;return y.setProps=function(e){c=e.overrides||c,E(e)},y.setInstances=function(e){m(!0),p.forEach((function(e){return e()})),o=e,m(!1),v(),l(),p=g(y),y.setProps({triggerTarget:a})},p=g(y),y},F.delegate=function(e,n){var r=[],o=[],i=!1,a=n.target,c=s(n,["target"]),p=Object.assign({},c,{trigger:"manual",touch:!1}),f=Object.assign({touch:R.touch},c,{showOnCreate:!0}),l=F(e,p);function d(e){if(e.target&&!i){var t=e.target.closest(a);if(t){var r=t.getAttribute("data-tippy-trigger")||n.trigger||R.trigger;if(!t._tippy&&!("touchstart"===e.type&&"boolean"==typeof f.touch||"touchstart"!==e.type&&r.indexOf(X[e.type])<0)){var s=F(t,f);s&&(o=o.concat(s))}}}}function v(e,t,n,o){void 0===o&&(o=!1),e.addEventListener(t,n,o),r.push({node:e,eventType:t,handler:n,options:o})}return u(l).forEach((function(e){var n=e.destroy,a=e.enable,s=e.disable;e.destroy=function(e){void 0===e&&(e=!0),e&&o.forEach((function(e){e.destroy()})),o=[],r.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),r=[],n()},e.enable=function(){a(),o.forEach((function(e){return e.enable()})),i=!1},e.disable=function(){s(),o.forEach((function(e){return e.disable()})),i=!0},function(e){var n=e.reference;v(n,"touchstart",d,t),v(n,"mouseover",d),v(n,"focusin",d),v(n,"click",d)}(e)})),l},F.hideAll=function(e){var t=void 0===e?{}:e,n=t.exclude,r=t.duration;U.forEach((function(e){var t=!1;if(n&&(t=g(n)?e.reference===n:e.popper===n.popper),!t){var o=e.props.duration;e.setProps({duration:r}),e.hide(),e.state.isDestroyed||e.setProps({duration:o})}}))},F.roundArrow=' ',F}));
diff --git a/blog/aging-curve/pdm.lock b/blog/aging-curve/pdm.lock
new file mode 100644
index 0000000..f8a4812
--- /dev/null
+++ b/blog/aging-curve/pdm.lock
@@ -0,0 +1,2418 @@
+# This file is @generated by PDM.
+# It is not intended for manual editing.
+
+[metadata]
+groups = ["default"]
+strategy = ["cross_platform", "inherit_metadata"]
+lock_version = "4.4.1"
+content_hash = "sha256:22ed8b97dcf5a430a19f6b36061b2a3ec76bc7f108a8e22bd80365d950e0ce56"
+
+[[package]]
+name = "anyio"
+version = "4.3.0"
+requires_python = ">=3.8"
+summary = "High level compatibility layer for multiple asynchronous event loop implementations"
+groups = ["default"]
+dependencies = [
+ "idna>=2.8",
+ "sniffio>=1.1",
+]
+files = [
+ {file = "anyio-4.3.0-py3-none-any.whl", hash = "sha256:048e05d0f6caeed70d731f3db756d35dcc1f35747c8c403364a8332c630441b8"},
+ {file = "anyio-4.3.0.tar.gz", hash = "sha256:f75253795a87df48568485fd18cdd2a3fa5c4f7c5be8e5e36637733fce06fed6"},
+]
+
+[[package]]
+name = "appnope"
+version = "0.1.4"
+requires_python = ">=3.6"
+summary = "Disable App Nap on macOS >= 10.9"
+groups = ["default"]
+marker = "platform_system == \"Darwin\""
+files = [
+ {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"},
+ {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"},
+]
+
+[[package]]
+name = "argon2-cffi"
+version = "23.1.0"
+requires_python = ">=3.7"
+summary = "Argon2 for Python"
+groups = ["default"]
+dependencies = [
+ "argon2-cffi-bindings",
+]
+files = [
+ {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"},
+ {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"},
+]
+
+[[package]]
+name = "argon2-cffi-bindings"
+version = "21.2.0"
+requires_python = ">=3.6"
+summary = "Low-level CFFI bindings for Argon2"
+groups = ["default"]
+dependencies = [
+ "cffi>=1.0.1",
+]
+files = [
+ {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"},
+ {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"},
+]
+
+[[package]]
+name = "arrow"
+version = "1.3.0"
+requires_python = ">=3.8"
+summary = "Better dates & times for Python"
+groups = ["default"]
+dependencies = [
+ "python-dateutil>=2.7.0",
+ "types-python-dateutil>=2.8.10",
+]
+files = [
+ {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"},
+ {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"},
+]
+
+[[package]]
+name = "arviz"
+version = "0.18.0"
+requires_python = ">=3.10"
+summary = "Exploratory analysis of Bayesian models"
+groups = ["default"]
+dependencies = [
+ "dm-tree>=0.1.8",
+ "h5netcdf>=1.0.2",
+ "matplotlib>=3.5",
+ "numpy<2.0,>=1.23.0",
+ "packaging",
+ "pandas>=1.5.0",
+ "scipy>=1.9.0",
+ "setuptools>=60.0.0",
+ "typing-extensions>=4.1.0",
+ "xarray-einstats>=0.3",
+ "xarray>=2022.6.0",
+]
+files = [
+ {file = "arviz-0.18.0-py3-none-any.whl", hash = "sha256:6eaaaffff4fb90ed49bf5305c171e5c6848b2b18cc5db1537319d8fb67c4e8f5"},
+ {file = "arviz-0.18.0.tar.gz", hash = "sha256:2ffd6a632af6b28eb5dac7e3b938223ffa202308dc67c58b55a404565a985bd2"},
+]
+
+[[package]]
+name = "asttokens"
+version = "2.4.1"
+summary = "Annotate AST trees with source code positions"
+groups = ["default"]
+dependencies = [
+ "six>=1.12.0",
+]
+files = [
+ {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"},
+ {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"},
+]
+
+[[package]]
+name = "async-lru"
+version = "2.0.4"
+requires_python = ">=3.8"
+summary = "Simple LRU cache for asyncio"
+groups = ["default"]
+files = [
+ {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"},
+ {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"},
+]
+
+[[package]]
+name = "attrs"
+version = "23.2.0"
+requires_python = ">=3.7"
+summary = "Classes Without Boilerplate"
+groups = ["default"]
+files = [
+ {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"},
+ {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"},
+]
+
+[[package]]
+name = "babel"
+version = "2.15.0"
+requires_python = ">=3.8"
+summary = "Internationalization utilities"
+groups = ["default"]
+files = [
+ {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"},
+ {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"},
+]
+
+[[package]]
+name = "beautifulsoup4"
+version = "4.12.3"
+requires_python = ">=3.6.0"
+summary = "Screen-scraping library"
+groups = ["default"]
+dependencies = [
+ "soupsieve>1.2",
+]
+files = [
+ {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"},
+ {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"},
+]
+
+[[package]]
+name = "black"
+version = "24.4.2"
+requires_python = ">=3.8"
+summary = "The uncompromising code formatter."
+groups = ["default"]
+dependencies = [
+ "click>=8.0.0",
+ "mypy-extensions>=0.4.3",
+ "packaging>=22.0",
+ "pathspec>=0.9.0",
+ "platformdirs>=2",
+]
+files = [
+ {file = "black-24.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:accf49e151c8ed2c0cdc528691838afd217c50412534e876a19270fea1e28e2d"},
+ {file = "black-24.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:88c57dc656038f1ab9f92b3eb5335ee9b021412feaa46330d5eba4e51fe49b04"},
+ {file = "black-24.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be8bef99eb46d5021bf053114442914baeb3649a89dc5f3a555c88737e5e98fc"},
+ {file = "black-24.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:415e686e87dbbe6f4cd5ef0fbf764af7b89f9057b97c908742b6008cc554b9c0"},
+ {file = "black-24.4.2-py3-none-any.whl", hash = "sha256:d36ed1124bb81b32f8614555b34cc4259c3fbc7eec17870e8ff8ded335b58d8c"},
+ {file = "black-24.4.2.tar.gz", hash = "sha256:c872b53057f000085da66a19c55d68f6f8ddcac2642392ad3a355878406fbd4d"},
+]
+
+[[package]]
+name = "bleach"
+version = "6.1.0"
+requires_python = ">=3.8"
+summary = "An easy safelist-based HTML-sanitizing tool."
+groups = ["default"]
+dependencies = [
+ "six>=1.9.0",
+ "webencodings",
+]
+files = [
+ {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"},
+ {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"},
+]
+
+[[package]]
+name = "blog"
+version = "0.1.0"
+requires_python = ">=3.8"
+git = "https://github.com/assuncaolfi/site"
+revision = "699d76aeef1e4f9bf20f2d6c324772ab8fa6618a"
+summary = ""
+groups = ["default"]
+dependencies = [
+ "seaborn~=0.13.0",
+]
+
+[[package]]
+name = "cachetools"
+version = "5.3.3"
+requires_python = ">=3.7"
+summary = "Extensible memoizing collections and decorators"
+groups = ["default"]
+files = [
+ {file = "cachetools-5.3.3-py3-none-any.whl", hash = "sha256:0abad1021d3f8325b2fc1d2e9c8b9c9d57b04c3932657a72465447332c24d945"},
+ {file = "cachetools-5.3.3.tar.gz", hash = "sha256:ba29e2dfa0b8b556606f097407ed1aa62080ee108ab0dc5ec9d6a723a007d105"},
+]
+
+[[package]]
+name = "certifi"
+version = "2024.2.2"
+requires_python = ">=3.6"
+summary = "Python package for providing Mozilla's CA Bundle."
+groups = ["default"]
+files = [
+ {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"},
+ {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"},
+]
+
+[[package]]
+name = "cffi"
+version = "1.16.0"
+requires_python = ">=3.8"
+summary = "Foreign Function Interface for Python calling C code."
+groups = ["default"]
+dependencies = [
+ "pycparser",
+]
+files = [
+ {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"},
+ {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"},
+ {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"},
+ {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"},
+ {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"},
+ {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"},
+]
+
+[[package]]
+name = "charset-normalizer"
+version = "3.3.2"
+requires_python = ">=3.7.0"
+summary = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
+groups = ["default"]
+files = [
+ {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"},
+ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"},
+]
+
+[[package]]
+name = "click"
+version = "8.1.7"
+requires_python = ">=3.7"
+summary = "Composable command line interface toolkit"
+groups = ["default"]
+dependencies = [
+ "colorama; platform_system == \"Windows\"",
+]
+files = [
+ {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
+ {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
+]
+
+[[package]]
+name = "cloudpickle"
+version = "3.0.0"
+requires_python = ">=3.8"
+summary = "Pickler class to extend the standard pickle.Pickler functionality"
+groups = ["default"]
+files = [
+ {file = "cloudpickle-3.0.0-py3-none-any.whl", hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7"},
+ {file = "cloudpickle-3.0.0.tar.gz", hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882"},
+]
+
+[[package]]
+name = "colorama"
+version = "0.4.6"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
+summary = "Cross-platform colored terminal text."
+groups = ["default"]
+marker = "platform_system == \"Windows\" or sys_platform == \"win32\""
+files = [
+ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
+ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
+]
+
+[[package]]
+name = "comm"
+version = "0.2.2"
+requires_python = ">=3.8"
+summary = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc."
+groups = ["default"]
+dependencies = [
+ "traitlets>=4",
+]
+files = [
+ {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"},
+ {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"},
+]
+
+[[package]]
+name = "cons"
+version = "0.4.6"
+requires_python = ">=3.6"
+summary = "An implementation of Lisp/Scheme-like cons in Python."
+groups = ["default"]
+dependencies = [
+ "logical-unification>=0.4.0",
+]
+files = [
+ {file = "cons-0.4.6.tar.gz", hash = "sha256:669fe9d5ee916d5e42b9cac6acc911df803d04f2e945c1604982a04d27a29b47"},
+]
+
+[[package]]
+name = "contourpy"
+version = "1.2.1"
+requires_python = ">=3.9"
+summary = "Python library for calculating contours of 2D quadrilateral grids"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.20",
+]
+files = [
+ {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"},
+ {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"},
+ {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"},
+ {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"},
+ {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"},
+ {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
+ {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
+]
+
+[[package]]
+name = "cycler"
+version = "0.12.1"
+requires_python = ">=3.8"
+summary = "Composable style cycles"
+groups = ["default"]
+files = [
+ {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
+ {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
+]
+
+[[package]]
+name = "debugpy"
+version = "1.8.1"
+requires_python = ">=3.8"
+summary = "An implementation of the Debug Adapter Protocol for Python"
+groups = ["default"]
+files = [
+ {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"},
+ {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"},
+ {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"},
+ {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"},
+ {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"},
+ {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"},
+]
+
+[[package]]
+name = "decorator"
+version = "5.1.1"
+requires_python = ">=3.5"
+summary = "Decorators for Humans"
+groups = ["default"]
+files = [
+ {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"},
+ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
+]
+
+[[package]]
+name = "defusedxml"
+version = "0.7.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "XML bomb protection for Python stdlib modules"
+groups = ["default"]
+files = [
+ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"},
+ {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"},
+]
+
+[[package]]
+name = "dm-tree"
+version = "0.1.8"
+summary = "Tree is a library for working with nested data structures."
+groups = ["default"]
+files = [
+ {file = "dm-tree-0.1.8.tar.gz", hash = "sha256:0fcaabbb14e7980377439e7140bd05552739ca5e515ecb3119f234acee4b9430"},
+ {file = "dm_tree-0.1.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ea9e59e0451e7d29aece402d9f908f2e2a80922bcde2ebfd5dcb07750fcbfee8"},
+ {file = "dm_tree-0.1.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:94d3f0826311f45ee19b75f5b48c99466e4218a0489e81c0f0167bda50cacf22"},
+ {file = "dm_tree-0.1.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:435227cf3c5dc63f4de054cf3d00183790bd9ead4c3623138c74dde7f67f521b"},
+ {file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09964470f76a5201aff2e8f9b26842976de7889300676f927930f6285e256760"},
+ {file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:75c5d528bb992981c20793b6b453e91560784215dffb8a5440ba999753c14ceb"},
+ {file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a94aba18a35457a1b5cd716fd7b46c5dafdc4cf7869b4bae665b91c4682a8e"},
+ {file = "dm_tree-0.1.8-cp312-cp312-win_amd64.whl", hash = "sha256:96a548a406a6fb15fe58f6a30a57ff2f2aafbf25f05afab00c8f5e5977b6c715"},
+]
+
+[[package]]
+name = "etuples"
+version = "0.3.9"
+requires_python = ">=3.8"
+summary = "Python S-expression emulation using tuple-like objects."
+groups = ["default"]
+dependencies = [
+ "cons",
+ "multipledispatch",
+]
+files = [
+ {file = "etuples-0.3.9.tar.gz", hash = "sha256:a474e586683d8ba8d842ba29305005ceed1c08371a4b4b0e0e232527137e5ea3"},
+]
+
+[[package]]
+name = "executing"
+version = "2.0.1"
+requires_python = ">=3.5"
+summary = "Get the currently executing AST node of a frame, and other information"
+groups = ["default"]
+files = [
+ {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"},
+ {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"},
+]
+
+[[package]]
+name = "fastjsonschema"
+version = "2.19.1"
+summary = "Fastest Python implementation of JSON schema"
+groups = ["default"]
+files = [
+ {file = "fastjsonschema-2.19.1-py3-none-any.whl", hash = "sha256:3672b47bc94178c9f23dbb654bf47440155d4db9df5f7bc47643315f9c405cd0"},
+ {file = "fastjsonschema-2.19.1.tar.gz", hash = "sha256:e3126a94bdc4623d3de4485f8d468a12f02a67921315ddc87836d6e456dc789d"},
+]
+
+[[package]]
+name = "filelock"
+version = "3.14.0"
+requires_python = ">=3.8"
+summary = "A platform independent file lock."
+groups = ["default"]
+files = [
+ {file = "filelock-3.14.0-py3-none-any.whl", hash = "sha256:43339835842f110ca7ae60f1e1c160714c5a6afd15a2873419ab185334975c0f"},
+ {file = "filelock-3.14.0.tar.gz", hash = "sha256:6ea72da3be9b8c82afd3edcf99f2fffbb5076335a5ae4d03248bb5b6c3eae78a"},
+]
+
+[[package]]
+name = "fonttools"
+version = "4.51.0"
+requires_python = ">=3.8"
+summary = "Tools to manipulate font files"
+groups = ["default"]
+files = [
+ {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"},
+ {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"},
+ {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"},
+ {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"},
+ {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"},
+ {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"},
+ {file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"},
+ {file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"},
+ {file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"},
+ {file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"},
+]
+
+[[package]]
+name = "fqdn"
+version = "1.5.1"
+requires_python = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4"
+summary = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers"
+groups = ["default"]
+files = [
+ {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"},
+ {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"},
+]
+
+[[package]]
+name = "greenlet"
+version = "3.0.3"
+requires_python = ">=3.7"
+summary = "Lightweight in-process concurrent programming"
+groups = ["default"]
+marker = "platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\""
+files = [
+ {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"},
+ {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"},
+ {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"},
+ {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"},
+ {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"},
+]
+
+[[package]]
+name = "h11"
+version = "0.14.0"
+requires_python = ">=3.7"
+summary = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
+groups = ["default"]
+files = [
+ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
+ {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
+]
+
+[[package]]
+name = "h5netcdf"
+version = "1.3.0"
+requires_python = ">=3.9"
+summary = "netCDF4 via h5py"
+groups = ["default"]
+dependencies = [
+ "h5py",
+ "packaging",
+]
+files = [
+ {file = "h5netcdf-1.3.0-py3-none-any.whl", hash = "sha256:f2df69dcd3665dc9c4d43eb6529dedd113b2508090d12ac973573305a8406465"},
+ {file = "h5netcdf-1.3.0.tar.gz", hash = "sha256:a171c027daeb34b24c24a3b6304195b8eabbb6f10c748256ed3cfe19806383cf"},
+]
+
+[[package]]
+name = "h5py"
+version = "3.11.0"
+requires_python = ">=3.8"
+summary = "Read and write HDF5 files from Python"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.17.3",
+]
+files = [
+ {file = "h5py-3.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a76cae64080210389a571c7d13c94a1a6cf8cb75153044fd1f822a962c97aeab"},
+ {file = "h5py-3.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f3736fe21da2b7d8a13fe8fe415f1272d2a1ccdeff4849c1421d2fb30fd533bc"},
+ {file = "h5py-3.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6ae84a14103e8dc19266ef4c3e5d7c00b68f21d07f2966f0ca7bdb6c2761fb"},
+ {file = "h5py-3.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:21dbdc5343f53b2e25404673c4f00a3335aef25521bd5fa8c707ec3833934892"},
+ {file = "h5py-3.11.0.tar.gz", hash = "sha256:7b7e8f78072a2edec87c9836f25f34203fd492a4475709a18b417a33cfb21fa9"},
+]
+
+[[package]]
+name = "httpcore"
+version = "1.0.5"
+requires_python = ">=3.8"
+summary = "A minimal low-level HTTP client."
+groups = ["default"]
+dependencies = [
+ "certifi",
+ "h11<0.15,>=0.13",
+]
+files = [
+ {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"},
+ {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"},
+]
+
+[[package]]
+name = "httpx"
+version = "0.27.0"
+requires_python = ">=3.8"
+summary = "The next generation HTTP client."
+groups = ["default"]
+dependencies = [
+ "anyio",
+ "certifi",
+ "httpcore==1.*",
+ "idna",
+ "sniffio",
+]
+files = [
+ {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"},
+ {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"},
+]
+
+[[package]]
+name = "idna"
+version = "3.7"
+requires_python = ">=3.5"
+summary = "Internationalized Domain Names in Applications (IDNA)"
+groups = ["default"]
+files = [
+ {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
+ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
+]
+
+[[package]]
+name = "importlib-metadata"
+version = "7.1.0"
+requires_python = ">=3.8"
+summary = "Read metadata from Python packages"
+groups = ["default"]
+dependencies = [
+ "zipp>=0.5",
+]
+files = [
+ {file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
+ {file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
+]
+
+[[package]]
+name = "ipykernel"
+version = "6.29.4"
+requires_python = ">=3.8"
+summary = "IPython Kernel for Jupyter"
+groups = ["default"]
+dependencies = [
+ "appnope; platform_system == \"Darwin\"",
+ "comm>=0.1.1",
+ "debugpy>=1.6.5",
+ "ipython>=7.23.1",
+ "jupyter-client>=6.1.12",
+ "jupyter-core!=5.0.*,>=4.12",
+ "matplotlib-inline>=0.1",
+ "nest-asyncio",
+ "packaging",
+ "psutil",
+ "pyzmq>=24",
+ "tornado>=6.1",
+ "traitlets>=5.4.0",
+]
+files = [
+ {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"},
+ {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"},
+]
+
+[[package]]
+name = "ipython"
+version = "8.24.0"
+requires_python = ">=3.10"
+summary = "IPython: Productive Interactive Computing"
+groups = ["default"]
+dependencies = [
+ "colorama; sys_platform == \"win32\"",
+ "decorator",
+ "jedi>=0.16",
+ "matplotlib-inline",
+ "pexpect>4.3; sys_platform != \"win32\" and sys_platform != \"emscripten\"",
+ "prompt-toolkit<3.1.0,>=3.0.41",
+ "pygments>=2.4.0",
+ "stack-data",
+ "traitlets>=5.13.0",
+]
+files = [
+ {file = "ipython-8.24.0-py3-none-any.whl", hash = "sha256:d7bf2f6c4314984e3e02393213bab8703cf163ede39672ce5918c51fe253a2a3"},
+ {file = "ipython-8.24.0.tar.gz", hash = "sha256:010db3f8a728a578bb641fdd06c063b9fb8e96a9464c63aec6310fbcb5e80501"},
+]
+
+[[package]]
+name = "ipywidgets"
+version = "8.1.2"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets"
+groups = ["default"]
+dependencies = [
+ "comm>=0.1.3",
+ "ipython>=6.1.0",
+ "jupyterlab-widgets~=3.0.10",
+ "traitlets>=4.3.1",
+ "widgetsnbextension~=4.0.10",
+]
+files = [
+ {file = "ipywidgets-8.1.2-py3-none-any.whl", hash = "sha256:bbe43850d79fb5e906b14801d6c01402857996864d1e5b6fa62dd2ee35559f60"},
+ {file = "ipywidgets-8.1.2.tar.gz", hash = "sha256:d0b9b41e49bae926a866e613a39b0f0097745d2b9f1f3dd406641b4a57ec42c9"},
+]
+
+[[package]]
+name = "isoduration"
+version = "20.11.0"
+requires_python = ">=3.7"
+summary = "Operations with ISO 8601 durations"
+groups = ["default"]
+dependencies = [
+ "arrow>=0.15.0",
+]
+files = [
+ {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"},
+ {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"},
+]
+
+[[package]]
+name = "jedi"
+version = "0.19.1"
+requires_python = ">=3.6"
+summary = "An autocompletion tool for Python that can be used for text editors."
+groups = ["default"]
+dependencies = [
+ "parso<0.9.0,>=0.8.3",
+]
+files = [
+ {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"},
+ {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"},
+]
+
+[[package]]
+name = "jinja2"
+version = "3.1.3"
+requires_python = ">=3.7"
+summary = "A very fast and expressive template engine."
+groups = ["default"]
+dependencies = [
+ "MarkupSafe>=2.0",
+]
+files = [
+ {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"},
+ {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"},
+]
+
+[[package]]
+name = "json5"
+version = "0.9.25"
+requires_python = ">=3.8"
+summary = "A Python implementation of the JSON5 data format."
+groups = ["default"]
+files = [
+ {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"},
+ {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"},
+]
+
+[[package]]
+name = "jsonpointer"
+version = "2.4"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
+summary = "Identify specific nodes in a JSON document (RFC 6901) "
+groups = ["default"]
+files = [
+ {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
+ {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
+]
+
+[[package]]
+name = "jsonschema"
+version = "4.22.0"
+requires_python = ">=3.8"
+summary = "An implementation of JSON Schema validation for Python"
+groups = ["default"]
+dependencies = [
+ "attrs>=22.2.0",
+ "jsonschema-specifications>=2023.03.6",
+ "referencing>=0.28.4",
+ "rpds-py>=0.7.1",
+]
+files = [
+ {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"},
+ {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"},
+]
+
+[[package]]
+name = "jsonschema-specifications"
+version = "2023.12.1"
+requires_python = ">=3.8"
+summary = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
+groups = ["default"]
+dependencies = [
+ "referencing>=0.31.0",
+]
+files = [
+ {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"},
+ {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"},
+]
+
+[[package]]
+name = "jsonschema"
+version = "4.22.0"
+extras = ["format-nongpl"]
+requires_python = ">=3.8"
+summary = "An implementation of JSON Schema validation for Python"
+groups = ["default"]
+dependencies = [
+ "fqdn",
+ "idna",
+ "isoduration",
+ "jsonpointer>1.13",
+ "jsonschema==4.22.0",
+ "rfc3339-validator",
+ "rfc3986-validator>0.1.0",
+ "uri-template",
+ "webcolors>=1.11",
+]
+files = [
+ {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"},
+ {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"},
+]
+
+[[package]]
+name = "jupyter"
+version = "1.0.0"
+summary = "Jupyter metapackage. Install all the Jupyter components in one go."
+groups = ["default"]
+dependencies = [
+ "ipykernel",
+ "ipywidgets",
+ "jupyter-console",
+ "nbconvert",
+ "notebook",
+ "qtconsole",
+]
+files = [
+ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"},
+ {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"},
+ {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"},
+]
+
+[[package]]
+name = "jupyter-black"
+version = "0.3.4"
+summary = "A simple extension for Jupyter Notebook and Jupyter Lab to beautify Python code automatically using Black. Fork of dnanhkhoa/nb_black."
+groups = ["default"]
+dependencies = [
+ "black>=21",
+ "ipython>=7",
+ "tokenize-rt>=4",
+]
+files = [
+ {file = "jupyter-black-0.3.4.tar.gz", hash = "sha256:2a38f33d4c321eb768f426103635ac9b80b40c9e42aa06072a729e3caddca4c3"},
+ {file = "jupyter_black-0.3.4-py3-none-any.whl", hash = "sha256:8690ec1d16d173a74eecc44419755ca7209c494b213e0d7b04c40a878239e247"},
+]
+
+[[package]]
+name = "jupyter-cache"
+version = "1.0.0"
+requires_python = ">=3.9"
+summary = "A defined interface for working with a cache of jupyter notebooks."
+groups = ["default"]
+dependencies = [
+ "attrs",
+ "click",
+ "importlib-metadata",
+ "nbclient>=0.2",
+ "nbformat",
+ "pyyaml",
+ "sqlalchemy<3,>=1.3.12",
+ "tabulate",
+]
+files = [
+ {file = "jupyter_cache-1.0.0-py3-none-any.whl", hash = "sha256:594b1c4e29b488b36547e12477645f489dbdc62cc939b2408df5679f79245078"},
+ {file = "jupyter_cache-1.0.0.tar.gz", hash = "sha256:d0fa7d7533cd5798198d8889318269a8c1382ed3b22f622c09a9356521f48687"},
+]
+
+[[package]]
+name = "jupyter-client"
+version = "8.6.1"
+requires_python = ">=3.8"
+summary = "Jupyter protocol implementation and client libraries"
+groups = ["default"]
+dependencies = [
+ "jupyter-core!=5.0.*,>=4.12",
+ "python-dateutil>=2.8.2",
+ "pyzmq>=23.0",
+ "tornado>=6.2",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_client-8.6.1-py3-none-any.whl", hash = "sha256:3b7bd22f058434e3b9a7ea4b1500ed47de2713872288c0d511d19926f99b459f"},
+ {file = "jupyter_client-8.6.1.tar.gz", hash = "sha256:e842515e2bab8e19186d89fdfea7abd15e39dd581f94e399f00e2af5a1652d3f"},
+]
+
+[[package]]
+name = "jupyter-console"
+version = "6.6.3"
+requires_python = ">=3.7"
+summary = "Jupyter terminal console"
+groups = ["default"]
+dependencies = [
+ "ipykernel>=6.14",
+ "ipython",
+ "jupyter-client>=7.0.0",
+ "jupyter-core!=5.0.*,>=4.12",
+ "prompt-toolkit>=3.0.30",
+ "pygments",
+ "pyzmq>=17",
+ "traitlets>=5.4",
+]
+files = [
+ {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"},
+ {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"},
+]
+
+[[package]]
+name = "jupyter-core"
+version = "5.7.2"
+requires_python = ">=3.8"
+summary = "Jupyter core package. A base package on which Jupyter projects rely."
+groups = ["default"]
+dependencies = [
+ "platformdirs>=2.5",
+ "pywin32>=300; sys_platform == \"win32\" and platform_python_implementation != \"PyPy\"",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"},
+ {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"},
+]
+
+[[package]]
+name = "jupyter-events"
+version = "0.10.0"
+requires_python = ">=3.8"
+summary = "Jupyter Event System library"
+groups = ["default"]
+dependencies = [
+ "jsonschema[format-nongpl]>=4.18.0",
+ "python-json-logger>=2.0.4",
+ "pyyaml>=5.3",
+ "referencing",
+ "rfc3339-validator",
+ "rfc3986-validator>=0.1.1",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"},
+ {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"},
+]
+
+[[package]]
+name = "jupyter-lsp"
+version = "2.2.5"
+requires_python = ">=3.8"
+summary = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server"
+groups = ["default"]
+dependencies = [
+ "jupyter-server>=1.1.2",
+]
+files = [
+ {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"},
+ {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"},
+]
+
+[[package]]
+name = "jupyter-server"
+version = "2.14.0"
+requires_python = ">=3.8"
+summary = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications."
+groups = ["default"]
+dependencies = [
+ "anyio>=3.1.0",
+ "argon2-cffi>=21.1",
+ "jinja2>=3.0.3",
+ "jupyter-client>=7.4.4",
+ "jupyter-core!=5.0.*,>=4.12",
+ "jupyter-events>=0.9.0",
+ "jupyter-server-terminals>=0.4.4",
+ "nbconvert>=6.4.4",
+ "nbformat>=5.3.0",
+ "overrides>=5.0",
+ "packaging>=22.0",
+ "prometheus-client>=0.9",
+ "pywinpty>=2.0.1; os_name == \"nt\"",
+ "pyzmq>=24",
+ "send2trash>=1.8.2",
+ "terminado>=0.8.3",
+ "tornado>=6.2.0",
+ "traitlets>=5.6.0",
+ "websocket-client>=1.7",
+]
+files = [
+ {file = "jupyter_server-2.14.0-py3-none-any.whl", hash = "sha256:fb6be52c713e80e004fac34b35a0990d6d36ba06fd0a2b2ed82b899143a64210"},
+ {file = "jupyter_server-2.14.0.tar.gz", hash = "sha256:659154cea512083434fd7c93b7fe0897af7a2fd0b9dd4749282b42eaac4ae677"},
+]
+
+[[package]]
+name = "jupyter-server-terminals"
+version = "0.5.3"
+requires_python = ">=3.8"
+summary = "A Jupyter Server Extension Providing Terminals."
+groups = ["default"]
+dependencies = [
+ "pywinpty>=2.0.3; os_name == \"nt\"",
+ "terminado>=0.8.3",
+]
+files = [
+ {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"},
+ {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"},
+]
+
+[[package]]
+name = "jupyterlab"
+version = "4.1.8"
+requires_python = ">=3.8"
+summary = "JupyterLab computational environment"
+groups = ["default"]
+dependencies = [
+ "async-lru>=1.0.0",
+ "httpx>=0.25.0",
+ "ipykernel>=6.5.0",
+ "jinja2>=3.0.3",
+ "jupyter-core",
+ "jupyter-lsp>=2.0.0",
+ "jupyter-server<3,>=2.4.0",
+ "jupyterlab-server<3,>=2.27.1",
+ "notebook-shim>=0.2",
+ "packaging",
+ "tornado>=6.2.0",
+ "traitlets",
+]
+files = [
+ {file = "jupyterlab-4.1.8-py3-none-any.whl", hash = "sha256:c3baf3a2f91f89d110ed5786cd18672b9a357129d4e389d2a0dead15e11a4d2c"},
+ {file = "jupyterlab-4.1.8.tar.gz", hash = "sha256:3384aded8680e7ce504fd63b8bb89a39df21c9c7694d9e7dc4a68742cdb30f9b"},
+]
+
+[[package]]
+name = "jupyterlab-pygments"
+version = "0.3.0"
+requires_python = ">=3.8"
+summary = "Pygments theme using JupyterLab CSS variables"
+groups = ["default"]
+files = [
+ {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"},
+ {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"},
+]
+
+[[package]]
+name = "jupyterlab-server"
+version = "2.27.1"
+requires_python = ">=3.8"
+summary = "A set of server components for JupyterLab and JupyterLab like applications."
+groups = ["default"]
+dependencies = [
+ "babel>=2.10",
+ "jinja2>=3.0.3",
+ "json5>=0.9.0",
+ "jsonschema>=4.18.0",
+ "jupyter-server<3,>=1.21",
+ "packaging>=21.3",
+ "requests>=2.31",
+]
+files = [
+ {file = "jupyterlab_server-2.27.1-py3-none-any.whl", hash = "sha256:f5e26156e5258b24d532c84e7c74cc212e203bff93eb856f81c24c16daeecc75"},
+ {file = "jupyterlab_server-2.27.1.tar.gz", hash = "sha256:097b5ac709b676c7284ac9c5e373f11930a561f52cd5a86e4fc7e5a9c8a8631d"},
+]
+
+[[package]]
+name = "jupyterlab-widgets"
+version = "3.0.10"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets for JupyterLab"
+groups = ["default"]
+files = [
+ {file = "jupyterlab_widgets-3.0.10-py3-none-any.whl", hash = "sha256:dd61f3ae7a5a7f80299e14585ce6cf3d6925a96c9103c978eda293197730cb64"},
+ {file = "jupyterlab_widgets-3.0.10.tar.gz", hash = "sha256:04f2ac04976727e4f9d0fa91cdc2f1ab860f965e504c29dbd6a65c882c9d04c0"},
+]
+
+[[package]]
+name = "jupytext"
+version = "1.16.2"
+requires_python = ">=3.8"
+summary = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts"
+groups = ["default"]
+dependencies = [
+ "markdown-it-py>=1.0",
+ "mdit-py-plugins",
+ "nbformat",
+ "packaging",
+ "pyyaml",
+]
+files = [
+ {file = "jupytext-1.16.2-py3-none-any.whl", hash = "sha256:197a43fef31dca612b68b311e01b8abd54441c7e637810b16b6cb8f2ab66065e"},
+ {file = "jupytext-1.16.2.tar.gz", hash = "sha256:8627dd9becbbebd79cc4a4ed4727d89d78e606b4b464eab72357b3b029023a14"},
+]
+
+[[package]]
+name = "kiwisolver"
+version = "1.4.5"
+requires_python = ">=3.7"
+summary = "A fast implementation of the Cassowary constraint solver"
+groups = ["default"]
+files = [
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
+ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
+]
+
+[[package]]
+name = "logical-unification"
+version = "0.4.6"
+requires_python = ">=3.6"
+summary = "Logical unification in Python"
+groups = ["default"]
+dependencies = [
+ "multipledispatch",
+ "toolz",
+]
+files = [
+ {file = "logical-unification-0.4.6.tar.gz", hash = "sha256:908435123f8a106fa4dcf9bf1b75c7beb309fa2bbecf277868af8f1c212650a0"},
+]
+
+[[package]]
+name = "markdown-it-py"
+version = "3.0.0"
+requires_python = ">=3.8"
+summary = "Python port of markdown-it. Markdown parsing, done right!"
+groups = ["default"]
+dependencies = [
+ "mdurl~=0.1",
+]
+files = [
+ {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
+ {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
+]
+
+[[package]]
+name = "markupsafe"
+version = "2.1.5"
+requires_python = ">=3.7"
+summary = "Safely add untrusted strings to HTML/XML markup."
+groups = ["default"]
+files = [
+ {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"},
+ {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
+]
+
+[[package]]
+name = "matplotlib"
+version = "3.8.4"
+requires_python = ">=3.9"
+summary = "Python plotting package"
+groups = ["default"]
+dependencies = [
+ "contourpy>=1.0.1",
+ "cycler>=0.10",
+ "fonttools>=4.22.0",
+ "kiwisolver>=1.3.1",
+ "numpy>=1.21",
+ "packaging>=20.0",
+ "pillow>=8",
+ "pyparsing>=2.3.1",
+ "python-dateutil>=2.7",
+]
+files = [
+ {file = "matplotlib-3.8.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6485ac1f2e84676cff22e693eaa4fbed50ef5dc37173ce1f023daef4687df616"},
+ {file = "matplotlib-3.8.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c89ee9314ef48c72fe92ce55c4e95f2f39d70208f9f1d9db4e64079420d8d732"},
+ {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50bac6e4d77e4262c4340d7a985c30912054745ec99756ce213bfbc3cb3808eb"},
+ {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f51c4c869d4b60d769f7b4406eec39596648d9d70246428745a681c327a8ad30"},
+ {file = "matplotlib-3.8.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b12ba985837e4899b762b81f5b2845bd1a28f4fdd1a126d9ace64e9c4eb2fb25"},
+ {file = "matplotlib-3.8.4-cp312-cp312-win_amd64.whl", hash = "sha256:7a6769f58ce51791b4cb8b4d7642489df347697cd3e23d88266aaaee93b41d9a"},
+ {file = "matplotlib-3.8.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7064120a59ce6f64103c9cefba8ffe6fba87f2c61d67c401186423c9a20fd35"},
+ {file = "matplotlib-3.8.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0e47eda4eb2614300fc7bb4657fced3e83d6334d03da2173b09e447418d499f"},
+ {file = "matplotlib-3.8.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:493e9f6aa5819156b58fce42b296ea31969f2aab71c5b680b4ea7a3cb5c07d94"},
+ {file = "matplotlib-3.8.4.tar.gz", hash = "sha256:8aac397d5e9ec158960e31c381c5ffc52ddd52bd9a47717e2a694038167dffea"},
+]
+
+[[package]]
+name = "matplotlib-inline"
+version = "0.1.7"
+requires_python = ">=3.8"
+summary = "Inline Matplotlib backend for Jupyter"
+groups = ["default"]
+dependencies = [
+ "traitlets",
+]
+files = [
+ {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"},
+ {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"},
+]
+
+[[package]]
+name = "mdit-py-plugins"
+version = "0.4.1"
+requires_python = ">=3.8"
+summary = "Collection of plugins for markdown-it-py"
+groups = ["default"]
+dependencies = [
+ "markdown-it-py<4.0.0,>=1.0.0",
+]
+files = [
+ {file = "mdit_py_plugins-0.4.1-py3-none-any.whl", hash = "sha256:1020dfe4e6bfc2c79fb49ae4e3f5b297f5ccd20f010187acc52af2921e27dc6a"},
+ {file = "mdit_py_plugins-0.4.1.tar.gz", hash = "sha256:834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c"},
+]
+
+[[package]]
+name = "mdurl"
+version = "0.1.2"
+requires_python = ">=3.7"
+summary = "Markdown URL utilities"
+groups = ["default"]
+files = [
+ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
+ {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
+]
+
+[[package]]
+name = "minikanren"
+version = "1.0.3"
+requires_python = ">=3.6"
+summary = "Relational programming in Python"
+groups = ["default"]
+dependencies = [
+ "cons>=0.4.0",
+ "etuples>=0.3.1",
+ "logical-unification>=0.4.1",
+ "multipledispatch",
+ "toolz",
+]
+files = [
+ {file = "miniKanren-1.0.3.tar.gz", hash = "sha256:1ec8bdb01144ad5e8752c7c297fb8a122db920f859276d25a72d164e998d7f6e"},
+]
+
+[[package]]
+name = "mistune"
+version = "3.0.2"
+requires_python = ">=3.7"
+summary = "A sane and fast Markdown parser with useful plugins and renderers"
+groups = ["default"]
+files = [
+ {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"},
+ {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"},
+]
+
+[[package]]
+name = "multipledispatch"
+version = "1.0.0"
+summary = "Multiple dispatch"
+groups = ["default"]
+files = [
+ {file = "multipledispatch-1.0.0-py3-none-any.whl", hash = "sha256:0c53cd8b077546da4e48869f49b13164bebafd0c2a5afceb6bb6a316e7fb46e4"},
+ {file = "multipledispatch-1.0.0.tar.gz", hash = "sha256:5c839915465c68206c3e9c473357908216c28383b425361e5d144594bf85a7e0"},
+]
+
+[[package]]
+name = "mypy-extensions"
+version = "1.0.0"
+requires_python = ">=3.5"
+summary = "Type system extensions for programs checked with the mypy type checker."
+groups = ["default"]
+files = [
+ {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"},
+ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
+]
+
+[[package]]
+name = "nbclient"
+version = "0.10.0"
+requires_python = ">=3.8.0"
+summary = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
+groups = ["default"]
+dependencies = [
+ "jupyter-client>=6.1.12",
+ "jupyter-core!=5.0.*,>=4.12",
+ "nbformat>=5.1",
+ "traitlets>=5.4",
+]
+files = [
+ {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"},
+ {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"},
+]
+
+[[package]]
+name = "nbconvert"
+version = "7.16.4"
+requires_python = ">=3.8"
+summary = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)."
+groups = ["default"]
+dependencies = [
+ "beautifulsoup4",
+ "bleach!=5.0.0",
+ "defusedxml",
+ "jinja2>=3.0",
+ "jupyter-core>=4.7",
+ "jupyterlab-pygments",
+ "markupsafe>=2.0",
+ "mistune<4,>=2.0.3",
+ "nbclient>=0.5.0",
+ "nbformat>=5.7",
+ "packaging",
+ "pandocfilters>=1.4.1",
+ "pygments>=2.4.1",
+ "tinycss2",
+ "traitlets>=5.1",
+]
+files = [
+ {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"},
+ {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"},
+]
+
+[[package]]
+name = "nbformat"
+version = "5.10.4"
+requires_python = ">=3.8"
+summary = "The Jupyter Notebook format"
+groups = ["default"]
+dependencies = [
+ "fastjsonschema>=2.15",
+ "jsonschema>=2.6",
+ "jupyter-core!=5.0.*,>=4.12",
+ "traitlets>=5.1",
+]
+files = [
+ {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"},
+ {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"},
+]
+
+[[package]]
+name = "nest-asyncio"
+version = "1.6.0"
+requires_python = ">=3.5"
+summary = "Patch asyncio to allow nested event loops"
+groups = ["default"]
+files = [
+ {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"},
+ {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"},
+]
+
+[[package]]
+name = "notebook"
+version = "7.1.3"
+requires_python = ">=3.8"
+summary = "Jupyter Notebook - A web-based notebook environment for interactive computing"
+groups = ["default"]
+dependencies = [
+ "jupyter-server<3,>=2.4.0",
+ "jupyterlab-server<3,>=2.22.1",
+ "jupyterlab<4.2,>=4.1.1",
+ "notebook-shim<0.3,>=0.2",
+ "tornado>=6.2.0",
+]
+files = [
+ {file = "notebook-7.1.3-py3-none-any.whl", hash = "sha256:919b911e59f41f6e3857ce93c9d93535ba66bb090059712770e5968c07e1004d"},
+ {file = "notebook-7.1.3.tar.gz", hash = "sha256:41fcebff44cf7bb9377180808bcbae066629b55d8c7722f1ebbe75ca44f9cfc1"},
+]
+
+[[package]]
+name = "notebook-shim"
+version = "0.2.4"
+requires_python = ">=3.7"
+summary = "A shim layer for notebook traits and config"
+groups = ["default"]
+dependencies = [
+ "jupyter-server<3,>=1.8",
+]
+files = [
+ {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"},
+ {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"},
+]
+
+[[package]]
+name = "numpy"
+version = "1.26.4"
+requires_python = ">=3.9"
+summary = "Fundamental package for array computing in Python"
+groups = ["default"]
+files = [
+ {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
+ {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
+ {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
+ {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
+ {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
+ {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
+ {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
+ {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
+ {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
+ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
+]
+
+[[package]]
+name = "overrides"
+version = "7.7.0"
+requires_python = ">=3.6"
+summary = "A decorator to automatically detect mismatch when overriding a method."
+groups = ["default"]
+files = [
+ {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"},
+ {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"},
+]
+
+[[package]]
+name = "packaging"
+version = "24.0"
+requires_python = ">=3.7"
+summary = "Core utilities for Python packages"
+groups = ["default"]
+files = [
+ {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"},
+ {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"},
+]
+
+[[package]]
+name = "pandas"
+version = "2.2.2"
+requires_python = ">=3.9"
+summary = "Powerful data structures for data analysis, time series, and statistics"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.26.0; python_version >= \"3.12\"",
+ "python-dateutil>=2.8.2",
+ "pytz>=2020.1",
+ "tzdata>=2022.7",
+]
+files = [
+ {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"},
+ {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"},
+ {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"},
+ {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"},
+ {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"},
+ {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
+ {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
+ {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"},
+]
+
+[[package]]
+name = "pandocfilters"
+version = "1.5.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+summary = "Utilities for writing pandoc filters in python"
+groups = ["default"]
+files = [
+ {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"},
+ {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"},
+]
+
+[[package]]
+name = "parso"
+version = "0.8.4"
+requires_python = ">=3.6"
+summary = "A Python Parser"
+groups = ["default"]
+files = [
+ {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"},
+ {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"},
+]
+
+[[package]]
+name = "pathspec"
+version = "0.12.1"
+requires_python = ">=3.8"
+summary = "Utility library for gitignore style pattern matching of file paths."
+groups = ["default"]
+files = [
+ {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"},
+ {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"},
+]
+
+[[package]]
+name = "pexpect"
+version = "4.9.0"
+summary = "Pexpect allows easy control of interactive console applications."
+groups = ["default"]
+marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\""
+dependencies = [
+ "ptyprocess>=0.5",
+]
+files = [
+ {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"},
+ {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"},
+]
+
+[[package]]
+name = "pillow"
+version = "10.3.0"
+requires_python = ">=3.8"
+summary = "Python Imaging Library (Fork)"
+groups = ["default"]
+files = [
+ {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"},
+ {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"},
+ {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"},
+ {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"},
+ {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"},
+ {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"},
+ {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"},
+ {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"},
+ {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"},
+ {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"},
+ {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"},
+ {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"},
+ {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"},
+ {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
+]
+
+[[package]]
+name = "platformdirs"
+version = "4.2.1"
+requires_python = ">=3.8"
+summary = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
+groups = ["default"]
+files = [
+ {file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"},
+ {file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"},
+]
+
+[[package]]
+name = "polars"
+version = "0.20.23"
+requires_python = ">=3.8"
+summary = "Blazingly fast DataFrame library"
+groups = ["default"]
+files = [
+ {file = "polars-0.20.23-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:9b1001a29e785126f0e189786223c45bf9c7696ed3d221a61dd629ff5e8229d3"},
+ {file = "polars-0.20.23-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:7de724f9b7f94c76008023b1ef9319e7dccada97e98d48d548be487be8dc2ea6"},
+ {file = "polars-0.20.23-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f109512a456f9f8bdc20e5b19e5794471d4a1a507f99daf1afe1b41eb3227c41"},
+ {file = "polars-0.20.23-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:bfd10ffabafecba3bb836f9e267405abc8259da5fb8d5e74096d46eea802a295"},
+ {file = "polars-0.20.23-cp38-abi3-win_amd64.whl", hash = "sha256:de69adcfe4a92821f28c0223b801e56a36682a7aac32df8e860e6df7678f4c8a"},
+ {file = "polars-0.20.23.tar.gz", hash = "sha256:4503c446c7771d5b52d5bff4f2dbf2e999a87a1cc3c89931db255cff43218436"},
+]
+
+[[package]]
+name = "prometheus-client"
+version = "0.20.0"
+requires_python = ">=3.8"
+summary = "Python client for the Prometheus monitoring system."
+groups = ["default"]
+files = [
+ {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"},
+ {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"},
+]
+
+[[package]]
+name = "prompt-toolkit"
+version = "3.0.43"
+requires_python = ">=3.7.0"
+summary = "Library for building powerful interactive command lines in Python"
+groups = ["default"]
+dependencies = [
+ "wcwidth",
+]
+files = [
+ {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"},
+ {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"},
+]
+
+[[package]]
+name = "psutil"
+version = "5.9.8"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
+summary = "Cross-platform lib for process and system monitoring in Python."
+groups = ["default"]
+files = [
+ {file = "psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81"},
+ {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421"},
+ {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4"},
+ {file = "psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0"},
+ {file = "psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf"},
+ {file = "psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8"},
+ {file = "psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c"},
+]
+
+[[package]]
+name = "ptyprocess"
+version = "0.7.0"
+summary = "Run a subprocess in a pseudo terminal"
+groups = ["default"]
+marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\" or os_name != \"nt\""
+files = [
+ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"},
+ {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"},
+]
+
+[[package]]
+name = "pure-eval"
+version = "0.2.2"
+summary = "Safely evaluate AST nodes without side effects"
+groups = ["default"]
+files = [
+ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"},
+ {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"},
+]
+
+[[package]]
+name = "pyarrow"
+version = "16.0.0"
+requires_python = ">=3.8"
+summary = "Python library for Apache Arrow"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.16.6",
+]
+files = [
+ {file = "pyarrow-16.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:fb8065dbc0d051bf2ae2453af0484d99a43135cadabacf0af588a3be81fbbb9b"},
+ {file = "pyarrow-16.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:20ce707d9aa390593ea93218b19d0eadab56390311cb87aad32c9a869b0e958c"},
+ {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5823275c8addbbb50cd4e6a6839952682a33255b447277e37a6f518d6972f4e1"},
+ {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab8b9050752b16a8b53fcd9853bf07d8daf19093533e990085168f40c64d978"},
+ {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:42e56557bc7c5c10d3e42c3b32f6cff649a29d637e8f4e8b311d334cc4326730"},
+ {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a7abdee4a4a7cfa239e2e8d721224c4b34ffe69a0ca7981354fe03c1328789b"},
+ {file = "pyarrow-16.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:ef2f309b68396bcc5a354106741d333494d6a0d3e1951271849787109f0229a6"},
+ {file = "pyarrow-16.0.0.tar.gz", hash = "sha256:59bb1f1edbbf4114c72415f039f1359f1a57d166a331c3229788ccbfbb31689a"},
+]
+
+[[package]]
+name = "pycparser"
+version = "2.22"
+requires_python = ">=3.8"
+summary = "C parser in Python"
+groups = ["default"]
+files = [
+ {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"},
+ {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
+]
+
+[[package]]
+name = "pygments"
+version = "2.18.0"
+requires_python = ">=3.8"
+summary = "Pygments is a syntax highlighting package written in Python."
+groups = ["default"]
+files = [
+ {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"},
+ {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"},
+]
+
+[[package]]
+name = "pymc"
+version = "5.14.0"
+requires_python = ">=3.10"
+summary = "Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor"
+groups = ["default"]
+dependencies = [
+ "arviz>=0.13.0",
+ "cachetools>=4.2.1",
+ "cloudpickle",
+ "numpy>=1.15.0",
+ "pandas>=0.24.0",
+ "pytensor<2.21,>=2.20",
+ "rich>=13.7.1",
+ "scipy>=1.4.1",
+ "typing-extensions>=3.7.4",
+]
+files = [
+ {file = "pymc-5.14.0-py3-none-any.whl", hash = "sha256:f78ed3decb5b0949568d2a4eaa9f543f38ae37057e3c6ce64e6b7e1683d4365a"},
+ {file = "pymc-5.14.0.tar.gz", hash = "sha256:9b5a93e2d42647b5af04cbecbb41915b4b43ad8a5a0c08f10b4d107c5e6b0b1c"},
+]
+
+[[package]]
+name = "pyparsing"
+version = "3.1.2"
+requires_python = ">=3.6.8"
+summary = "pyparsing module - Classes and methods to define and execute parsing grammars"
+groups = ["default"]
+files = [
+ {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
+ {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
+]
+
+[[package]]
+name = "pytensor"
+version = "2.20.0"
+requires_python = "<3.13,>=3.10"
+summary = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs."
+groups = ["default"]
+dependencies = [
+ "cons",
+ "etuples",
+ "filelock",
+ "logical-unification",
+ "miniKanren",
+ "numpy>=1.17.0",
+ "scipy>=0.14",
+ "setuptools>=48.0.0",
+ "typing-extensions",
+]
+files = [
+ {file = "pytensor-2.20.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:217e4cfbbea218e6244b46ce0816b2cf7d3152d35d9f1743a42d8bc302b07495"},
+ {file = "pytensor-2.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3591171bb337601b855528e48f163b4032ce02c4b44696fc98871970820f8793"},
+ {file = "pytensor-2.20.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a0649818d0acce09a7b46c0892675246c34e8c274e209c819dced67f09ce8e7b"},
+ {file = "pytensor-2.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:75bcaca96486ee63cc61c304505e01adc7828b06f742357d2a5c5ea7bc753ad2"},
+ {file = "pytensor-2.20.0-cp312-cp312-win_amd64.whl", hash = "sha256:8300df0ca05224d28b8a94522098294392f321708fd7db4d0a5986d66e569e5e"},
+ {file = "pytensor-2.20.0.tar.gz", hash = "sha256:d88a5c84d04366d5224b5705a9d0daab7d9b0b84ed43c76fc9aae7760fe3eac2"},
+]
+
+[[package]]
+name = "python-dateutil"
+version = "2.9.0.post0"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
+summary = "Extensions to the standard Python datetime module"
+groups = ["default"]
+dependencies = [
+ "six>=1.5",
+]
+files = [
+ {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"},
+ {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"},
+]
+
+[[package]]
+name = "python-json-logger"
+version = "2.0.7"
+requires_python = ">=3.6"
+summary = "A python library adding a json log formatter"
+groups = ["default"]
+files = [
+ {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"},
+ {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"},
+]
+
+[[package]]
+name = "pytz"
+version = "2024.1"
+summary = "World timezone definitions, modern and historical"
+groups = ["default"]
+files = [
+ {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
+ {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
+]
+
+[[package]]
+name = "pywin32"
+version = "306"
+summary = "Python for Window Extensions"
+groups = ["default"]
+marker = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""
+files = [
+ {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"},
+ {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"},
+ {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"},
+]
+
+[[package]]
+name = "pywinpty"
+version = "2.0.13"
+requires_python = ">=3.8"
+summary = "Pseudo terminal support for Windows from Python."
+groups = ["default"]
+marker = "os_name == \"nt\""
+files = [
+ {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"},
+ {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"},
+]
+
+[[package]]
+name = "pyyaml"
+version = "6.0.1"
+requires_python = ">=3.6"
+summary = "YAML parser and emitter for Python"
+groups = ["default"]
+files = [
+ {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
+ {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
+ {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
+ {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
+ {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
+ {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
+ {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
+ {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
+]
+
+[[package]]
+name = "pyzmq"
+version = "26.0.3"
+requires_python = ">=3.7"
+summary = "Python bindings for 0MQ"
+groups = ["default"]
+dependencies = [
+ "cffi; implementation_name == \"pypy\"",
+]
+files = [
+ {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"},
+ {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"},
+ {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"},
+]
+
+[[package]]
+name = "qtconsole"
+version = "5.5.2"
+requires_python = ">=3.8"
+summary = "Jupyter Qt console"
+groups = ["default"]
+dependencies = [
+ "ipykernel>=4.1",
+ "jupyter-client>=4.1",
+ "jupyter-core",
+ "packaging",
+ "pygments",
+ "pyzmq>=17.1",
+ "qtpy>=2.4.0",
+ "traitlets!=5.2.1,!=5.2.2",
+]
+files = [
+ {file = "qtconsole-5.5.2-py3-none-any.whl", hash = "sha256:42d745f3d05d36240244a04e1e1ec2a86d5d9b6edb16dbdef582ccb629e87e0b"},
+ {file = "qtconsole-5.5.2.tar.gz", hash = "sha256:6b5fb11274b297463706af84dcbbd5c92273b1f619e6d25d08874b0a88516989"},
+]
+
+[[package]]
+name = "qtpy"
+version = "2.4.1"
+requires_python = ">=3.7"
+summary = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)."
+groups = ["default"]
+dependencies = [
+ "packaging",
+]
+files = [
+ {file = "QtPy-2.4.1-py3-none-any.whl", hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b"},
+ {file = "QtPy-2.4.1.tar.gz", hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987"},
+]
+
+[[package]]
+name = "referencing"
+version = "0.35.1"
+requires_python = ">=3.8"
+summary = "JSON Referencing + Python"
+groups = ["default"]
+dependencies = [
+ "attrs>=22.2.0",
+ "rpds-py>=0.7.0",
+]
+files = [
+ {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"},
+ {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"},
+]
+
+[[package]]
+name = "requests"
+version = "2.31.0"
+requires_python = ">=3.7"
+summary = "Python HTTP for Humans."
+groups = ["default"]
+dependencies = [
+ "certifi>=2017.4.17",
+ "charset-normalizer<4,>=2",
+ "idna<4,>=2.5",
+ "urllib3<3,>=1.21.1",
+]
+files = [
+ {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
+ {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
+]
+
+[[package]]
+name = "rfc3339-validator"
+version = "0.1.4"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "A pure python RFC3339 validator"
+groups = ["default"]
+dependencies = [
+ "six",
+]
+files = [
+ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"},
+ {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"},
+]
+
+[[package]]
+name = "rfc3986-validator"
+version = "0.1.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "Pure python rfc3986 validator"
+groups = ["default"]
+files = [
+ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"},
+ {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"},
+]
+
+[[package]]
+name = "rich"
+version = "13.7.1"
+requires_python = ">=3.7.0"
+summary = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
+groups = ["default"]
+dependencies = [
+ "markdown-it-py>=2.2.0",
+ "pygments<3.0.0,>=2.13.0",
+]
+files = [
+ {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"},
+ {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"},
+]
+
+[[package]]
+name = "rpds-py"
+version = "0.18.0"
+requires_python = ">=3.8"
+summary = "Python bindings to Rust's persistent data structures (rpds)"
+groups = ["default"]
+files = [
+ {file = "rpds_py-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7f2facbd386dd60cbbf1a794181e6aa0bd429bd78bfdf775436020172e2a23f0"},
+ {file = "rpds_py-0.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1d9a5be316c15ffb2b3c405c4ff14448c36b4435be062a7f578ccd8b01f0c4d8"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd5bf1af8efe569654bbef5a3e0a56eca45f87cfcffab31dd8dde70da5982475"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5417558f6887e9b6b65b4527232553c139b57ec42c64570569b155262ac0754f"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:56a737287efecafc16f6d067c2ea0117abadcd078d58721f967952db329a3e5c"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8f03bccbd8586e9dd37219bce4d4e0d3ab492e6b3b533e973fa08a112cb2ffc9"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4457a94da0d5c53dc4b3e4de1158bdab077db23c53232f37a3cb7afdb053a4e3"},
+ {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0ab39c1ba9023914297dd88ec3b3b3c3f33671baeb6acf82ad7ce883f6e8e157"},
+ {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9d54553c1136b50fd12cc17e5b11ad07374c316df307e4cfd6441bea5fb68496"},
+ {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0af039631b6de0397ab2ba16eaf2872e9f8fca391b44d3d8cac317860a700a3f"},
+ {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:84ffab12db93b5f6bad84c712c92060a2d321b35c3c9960b43d08d0f639d60d7"},
+ {file = "rpds_py-0.18.0-cp312-none-win32.whl", hash = "sha256:685537e07897f173abcf67258bee3c05c374fa6fff89d4c7e42fb391b0605e98"},
+ {file = "rpds_py-0.18.0-cp312-none-win_amd64.whl", hash = "sha256:e003b002ec72c8d5a3e3da2989c7d6065b47d9eaa70cd8808b5384fbb970f4ec"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:ad36cfb355e24f1bd37cac88c112cd7730873f20fb0bdaf8ba59eedf8216079f"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:36b3ee798c58ace201289024b52788161e1ea133e4ac93fba7d49da5fec0ef9e"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8a2f084546cc59ea99fda8e070be2fd140c3092dc11524a71aa8f0f3d5a55ca"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e4461d0f003a0aa9be2bdd1b798a041f177189c1a0f7619fe8c95ad08d9a45d7"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8db715ebe3bb7d86d77ac1826f7d67ec11a70dbd2376b7cc214199360517b641"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:793968759cd0d96cac1e367afd70c235867831983f876a53389ad869b043c948"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66e6a3af5a75363d2c9a48b07cb27c4ea542938b1a2e93b15a503cdfa8490795"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ef0befbb5d79cf32d0266f5cff01545602344eda89480e1dd88aca964260b18"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d4acf42190d449d5e89654d5c1ed3a4f17925eec71f05e2a41414689cda02d1"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:a5f446dd5055667aabaee78487f2b5ab72e244f9bc0b2ffebfeec79051679984"},
+ {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:9dbbeb27f4e70bfd9eec1be5477517365afe05a9b2c441a0b21929ee61048124"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:22806714311a69fd0af9b35b7be97c18a0fc2826e6827dbb3a8c94eac6cf7eeb"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b34ae4636dfc4e76a438ab826a0d1eed2589ca7d9a1b2d5bb546978ac6485461"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c8370641f1a7f0e0669ddccca22f1da893cef7628396431eb445d46d893e5cd"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c8362467a0fdeccd47935f22c256bec5e6abe543bf0d66e3d3d57a8fb5731863"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11a8c85ef4a07a7638180bf04fe189d12757c696eb41f310d2426895356dcf05"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b316144e85316da2723f9d8dc75bada12fa58489a527091fa1d5a612643d1a0e"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf1ea2e34868f6fbf070e1af291c8180480310173de0b0c43fc38a02929fc0e3"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e546e768d08ad55b20b11dbb78a745151acbd938f8f00d0cfbabe8b0199b9880"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4901165d170a5fde6f589acb90a6b33629ad1ec976d4529e769c6f3d885e3e80"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:618a3d6cae6ef8ec88bb76dd80b83cfe415ad4f1d942ca2a903bf6b6ff97a2da"},
+ {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ed4eb745efbff0a8e9587d22a84be94a5eb7d2d99c02dacf7bd0911713ed14dd"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c81e5f372cd0dc5dc4809553d34f832f60a46034a5f187756d9b90586c2c307"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:43fbac5f22e25bee1d482c97474f930a353542855f05c1161fd804c9dc74a09d"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d7faa6f14017c0b1e69f5e2c357b998731ea75a442ab3841c0dbbbfe902d2c4"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:08231ac30a842bd04daabc4d71fddd7e6d26189406d5a69535638e4dcb88fe76"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:044a3e61a7c2dafacae99d1e722cc2d4c05280790ec5a05031b3876809d89a5c"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f26b5bd1079acdb0c7a5645e350fe54d16b17bfc5e71f371c449383d3342e17"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:482103aed1dfe2f3b71a58eff35ba105289b8d862551ea576bd15479aba01f66"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1374f4129f9bcca53a1bba0bb86bf78325a0374577cf7e9e4cd046b1e6f20e24"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:635dc434ff724b178cb192c70016cc0ad25a275228f749ee0daf0eddbc8183b1"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:bc362ee4e314870a70f4ae88772d72d877246537d9f8cb8f7eacf10884862432"},
+ {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:4832d7d380477521a8c1644bbab6588dfedea5e30a7d967b5fb75977c45fd77f"},
+ {file = "rpds_py-0.18.0.tar.gz", hash = "sha256:42821446ee7a76f5d9f71f9e33a4fb2ffd724bb3e7f93386150b61a43115788d"},
+]
+
+[[package]]
+name = "scipy"
+version = "1.13.0"
+requires_python = ">=3.9"
+summary = "Fundamental algorithms for scientific computing in Python"
+groups = ["default"]
+dependencies = [
+ "numpy<2.3,>=1.22.4",
+]
+files = [
+ {file = "scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0de696f589681c2802f9090fff730c218f7c51ff49bf252b6a97ec4a5d19e8b"},
+ {file = "scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:b2a3ff461ec4756b7e8e42e1c681077349a038f0686132d623fa404c0bee2551"},
+ {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf9fe63e7a4bf01d3645b13ff2aa6dea023d38993f42aaac81a18b1bda7a82a"},
+ {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e7626dfd91cdea5714f343ce1176b6c4745155d234f1033584154f60ef1ff42"},
+ {file = "scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:109d391d720fcebf2fbe008621952b08e52907cf4c8c7efc7376822151820820"},
+ {file = "scipy-1.13.0-cp312-cp312-win_amd64.whl", hash = "sha256:8930ae3ea371d6b91c203b1032b9600d69c568e537b7988a3073dfe4d4774f21"},
+ {file = "scipy-1.13.0.tar.gz", hash = "sha256:58569af537ea29d3f78e5abd18398459f195546bb3be23d16677fb26616cc11e"},
+]
+
+[[package]]
+name = "seaborn"
+version = "0.13.2"
+requires_python = ">=3.8"
+summary = "Statistical data visualization"
+groups = ["default"]
+dependencies = [
+ "matplotlib!=3.6.1,>=3.4",
+ "numpy!=1.24.0,>=1.20",
+ "pandas>=1.2",
+]
+files = [
+ {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"},
+ {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"},
+]
+
+[[package]]
+name = "send2trash"
+version = "1.8.3"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
+summary = "Send file to trash natively under Mac OS X, Windows and Linux"
+groups = ["default"]
+files = [
+ {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"},
+ {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"},
+]
+
+[[package]]
+name = "setuptools"
+version = "69.5.1"
+requires_python = ">=3.8"
+summary = "Easily download, build, install, upgrade, and uninstall Python packages"
+groups = ["default"]
+files = [
+ {file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"},
+ {file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"},
+]
+
+[[package]]
+name = "six"
+version = "1.16.0"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
+summary = "Python 2 and 3 compatibility utilities"
+groups = ["default"]
+files = [
+ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
+ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
+]
+
+[[package]]
+name = "sniffio"
+version = "1.3.1"
+requires_python = ">=3.7"
+summary = "Sniff out which async library your code is running under"
+groups = ["default"]
+files = [
+ {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"},
+ {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"},
+]
+
+[[package]]
+name = "soupsieve"
+version = "2.5"
+requires_python = ">=3.8"
+summary = "A modern CSS selector implementation for Beautiful Soup."
+groups = ["default"]
+files = [
+ {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"},
+ {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"},
+]
+
+[[package]]
+name = "sqlalchemy"
+version = "2.0.29"
+requires_python = ">=3.7"
+summary = "Database Abstraction Library"
+groups = ["default"]
+dependencies = [
+ "greenlet!=0.4.17; platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\"",
+ "typing-extensions>=4.6.0",
+]
+files = [
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d96710d834a6fb31e21381c6d7b76ec729bd08c75a25a5184b1089141356171f"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:52de4736404e53c5c6a91ef2698c01e52333988ebdc218f14c833237a0804f1b"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c7b02525ede2a164c5fa5014915ba3591730f2cc831f5be9ff3b7fd3e30958e"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dfefdb3e54cd15f5d56fd5ae32f1da2d95d78319c1f6dfb9bcd0eb15d603d5d"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a88913000da9205b13f6f195f0813b6ffd8a0c0c2bd58d499e00a30eb508870c"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:fecd5089c4be1bcc37c35e9aa678938d2888845a134dd016de457b942cf5a758"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-win32.whl", hash = "sha256:8197d6f7a3d2b468861ebb4c9f998b9df9e358d6e1cf9c2a01061cb9b6cf4e41"},
+ {file = "SQLAlchemy-2.0.29-cp312-cp312-win_amd64.whl", hash = "sha256:9b19836ccca0d321e237560e475fd99c3d8655d03da80c845c4da20dda31b6e1"},
+ {file = "SQLAlchemy-2.0.29-py3-none-any.whl", hash = "sha256:dc4ee2d4ee43251905f88637d5281a8d52e916a021384ec10758826f5cbae305"},
+ {file = "SQLAlchemy-2.0.29.tar.gz", hash = "sha256:bd9566b8e58cabd700bc367b60e90d9349cd16f0984973f98a9a09f9c64e86f0"},
+]
+
+[[package]]
+name = "stack-data"
+version = "0.6.3"
+summary = "Extract data from python stack frames and tracebacks for informative displays"
+groups = ["default"]
+dependencies = [
+ "asttokens>=2.1.0",
+ "executing>=1.2.0",
+ "pure-eval",
+]
+files = [
+ {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"},
+ {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"},
+]
+
+[[package]]
+name = "tabulate"
+version = "0.9.0"
+requires_python = ">=3.7"
+summary = "Pretty-print tabular data"
+groups = ["default"]
+files = [
+ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"},
+ {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"},
+]
+
+[[package]]
+name = "terminado"
+version = "0.18.1"
+requires_python = ">=3.8"
+summary = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library."
+groups = ["default"]
+dependencies = [
+ "ptyprocess; os_name != \"nt\"",
+ "pywinpty>=1.1.0; os_name == \"nt\"",
+ "tornado>=6.1.0",
+]
+files = [
+ {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"},
+ {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"},
+]
+
+[[package]]
+name = "tinycss2"
+version = "1.3.0"
+requires_python = ">=3.8"
+summary = "A tiny CSS parser"
+groups = ["default"]
+dependencies = [
+ "webencodings>=0.4",
+]
+files = [
+ {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"},
+ {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"},
+]
+
+[[package]]
+name = "tokenize-rt"
+version = "5.2.0"
+requires_python = ">=3.8"
+summary = "A wrapper around the stdlib `tokenize` which roundtrips."
+groups = ["default"]
+files = [
+ {file = "tokenize_rt-5.2.0-py2.py3-none-any.whl", hash = "sha256:b79d41a65cfec71285433511b50271b05da3584a1da144a0752e9c621a285289"},
+ {file = "tokenize_rt-5.2.0.tar.gz", hash = "sha256:9fe80f8a5c1edad2d3ede0f37481cc0cc1538a2f442c9c2f9e4feacd2792d054"},
+]
+
+[[package]]
+name = "toolz"
+version = "0.12.1"
+requires_python = ">=3.7"
+summary = "List processing tools and functional utilities"
+groups = ["default"]
+files = [
+ {file = "toolz-0.12.1-py3-none-any.whl", hash = "sha256:d22731364c07d72eea0a0ad45bafb2c2937ab6fd38a3507bf55eae8744aa7d85"},
+ {file = "toolz-0.12.1.tar.gz", hash = "sha256:ecca342664893f177a13dac0e6b41cbd8ac25a358e5f215316d43e2100224f4d"},
+]
+
+[[package]]
+name = "tornado"
+version = "6.4"
+requires_python = ">= 3.8"
+summary = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed."
+groups = ["default"]
+files = [
+ {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"},
+ {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"},
+ {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"},
+ {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"},
+ {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"},
+ {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"},
+ {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"},
+ {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"},
+ {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"},
+ {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"},
+ {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"},
+]
+
+[[package]]
+name = "traitlets"
+version = "5.14.3"
+requires_python = ">=3.8"
+summary = "Traitlets Python configuration system"
+groups = ["default"]
+files = [
+ {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"},
+ {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"},
+]
+
+[[package]]
+name = "types-python-dateutil"
+version = "2.9.0.20240316"
+requires_python = ">=3.8"
+summary = "Typing stubs for python-dateutil"
+groups = ["default"]
+files = [
+ {file = "types-python-dateutil-2.9.0.20240316.tar.gz", hash = "sha256:5d2f2e240b86905e40944dd787db6da9263f0deabef1076ddaed797351ec0202"},
+ {file = "types_python_dateutil-2.9.0.20240316-py3-none-any.whl", hash = "sha256:6b8cb66d960771ce5ff974e9dd45e38facb81718cc1e208b10b1baccbfdbee3b"},
+]
+
+[[package]]
+name = "typing-extensions"
+version = "4.11.0"
+requires_python = ">=3.8"
+summary = "Backported and Experimental Type Hints for Python 3.8+"
+groups = ["default"]
+files = [
+ {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
+ {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
+]
+
+[[package]]
+name = "tzdata"
+version = "2024.1"
+requires_python = ">=2"
+summary = "Provider of IANA time zone data"
+groups = ["default"]
+files = [
+ {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
+ {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
+]
+
+[[package]]
+name = "uri-template"
+version = "1.3.0"
+requires_python = ">=3.7"
+summary = "RFC 6570 URI Template Processor"
+groups = ["default"]
+files = [
+ {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"},
+ {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"},
+]
+
+[[package]]
+name = "urllib3"
+version = "2.2.1"
+requires_python = ">=3.8"
+summary = "HTTP library with thread-safe connection pooling, file post, and more."
+groups = ["default"]
+files = [
+ {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"},
+ {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"},
+]
+
+[[package]]
+name = "wcwidth"
+version = "0.2.13"
+summary = "Measures the displayed width of unicode strings in a terminal"
+groups = ["default"]
+files = [
+ {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"},
+ {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"},
+]
+
+[[package]]
+name = "webcolors"
+version = "1.13"
+requires_python = ">=3.7"
+summary = "A library for working with the color formats defined by HTML and CSS."
+groups = ["default"]
+files = [
+ {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"},
+ {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"},
+]
+
+[[package]]
+name = "webencodings"
+version = "0.5.1"
+summary = "Character encoding aliases for legacy web content"
+groups = ["default"]
+files = [
+ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
+ {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
+]
+
+[[package]]
+name = "websocket-client"
+version = "1.8.0"
+requires_python = ">=3.8"
+summary = "WebSocket client for Python with low level API options"
+groups = ["default"]
+files = [
+ {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"},
+ {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"},
+]
+
+[[package]]
+name = "widgetsnbextension"
+version = "4.0.10"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets for Jupyter Notebook"
+groups = ["default"]
+files = [
+ {file = "widgetsnbextension-4.0.10-py3-none-any.whl", hash = "sha256:d37c3724ec32d8c48400a435ecfa7d3e259995201fbefa37163124a9fcb393cc"},
+ {file = "widgetsnbextension-4.0.10.tar.gz", hash = "sha256:64196c5ff3b9a9183a8e699a4227fb0b7002f252c814098e66c4d1cd0644688f"},
+]
+
+[[package]]
+name = "xarray"
+version = "2024.3.0"
+requires_python = ">=3.9"
+summary = "N-D labeled arrays and datasets in Python"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.23",
+ "packaging>=22",
+ "pandas>=1.5",
+]
+files = [
+ {file = "xarray-2024.3.0-py3-none-any.whl", hash = "sha256:ca2bc4da2bf2e7879e15862a7a7c3fc76ad19f6a08931d030220cef39a29118d"},
+ {file = "xarray-2024.3.0.tar.gz", hash = "sha256:5c1db19efdde61db7faedad8fc944f4e29698fb6fbd578d352668b63598bd1d8"},
+]
+
+[[package]]
+name = "xarray-einstats"
+version = "0.7.0"
+requires_python = ">=3.9"
+summary = "Stats, linear algebra and einops for xarray"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.22",
+ "scipy>=1.8",
+ "xarray>=2022.09.0",
+]
+files = [
+ {file = "xarray_einstats-0.7.0-py3-none-any.whl", hash = "sha256:f39403341ebf5b634ab1f1bd0e1bb2dc51046e0df31aa908dfbe2fa6a493712e"},
+ {file = "xarray_einstats-0.7.0.tar.gz", hash = "sha256:2d7b571b3bbad3cf2fd10c6c75fd949d247d14c29574184c8489d9d607278d38"},
+]
+
+[[package]]
+name = "zipp"
+version = "3.18.1"
+requires_python = ">=3.8"
+summary = "Backport of pathlib-compatible object wrapper for zip files"
+groups = ["default"]
+files = [
+ {file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
+ {file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
+]
diff --git a/blog/aging-curve/pyproject.toml b/blog/aging-curve/pyproject.toml
index 3b30ff9..35bf101 100644
--- a/blog/aging-curve/pyproject.toml
+++ b/blog/aging-curve/pyproject.toml
@@ -2,35 +2,23 @@
name = "aging-curve"
version = "0.1.0"
authors = [
- { name = "Luís Assunção", email = "assuncaolfi@gmail.com" }
+ {name = "Luís Assunção", email = "assuncaolfi@gmail.com"},
]
dependencies = [
- "blog @ git+https://github.com/assuncaolfi/site/",
- "numpy~=1.24.4",
- "patsy~=0.5.6",
- "polars~=0.19.17",
- "pyarrow~=14.0.1",
- "pymc~=5.6.1",
- "rich~=13.7.0",
- "seaborn~=0.13.0",
- "jupyter>=1.0.0",
+ "blog @ git+https://github.com/assuncaolfi/site",
+ "jupyter-black>=0.3.4",
"jupyter-cache>=1.0.0",
+ "jupyter>=1.0.0",
+ "polars>=0.20.23",
+ "pymc>=5.14.0",
+ "seaborn>=0.13.2",
+ "pyarrow>=16.0.0",
+ "jupytext>=1.16.2",
]
-requires-python = ">= 3.11"
-
-[project.scripts]
-hello = "aging_curve:hello"
-
-[build-system]
-requires = ["hatchling"]
-build-backend = "hatchling.build"
-
-[tool.rye]
-managed = true
-dev-dependencies = []
+requires-python = "==3.12.*"
+readme = "README.md"
+license = {text = "MIT"}
-[tool.hatch.metadata]
-allow-direct-references = true
-[tool.hatch.build.targets.wheel]
-packages = ["src/aging_curve"]
+[tool.pdm]
+distribution = false
diff --git a/blog/aging-curve/requirements-dev.lock b/blog/aging-curve/requirements-dev.lock
deleted file mode 100644
index 7c9c36f..0000000
--- a/blog/aging-curve/requirements-dev.lock
+++ /dev/null
@@ -1,150 +0,0 @@
-# generated by rye
-# use `rye lock` or `rye sync` to update this lockfile
-#
-# last locked with the following flags:
-# pre: false
-# features: []
-# all-features: false
-# with-sources: false
-
--e file:.
-anyio==4.2.0
-appnope==0.1.3
-argon2-cffi==23.1.0
-argon2-cffi-bindings==21.2.0
-arrow==1.3.0
-arviz==0.17.0
-asttokens==2.4.1
-async-lru==2.0.4
-attrs==23.2.0
-babel==2.14.0
-beautifulsoup4==4.12.3
-bleach==6.1.0
-blog @ git+https://github.com/assuncaolfi/site/
-cachetools==5.3.2
-certifi==2023.11.17
-cffi==1.16.0
-charset-normalizer==3.3.2
-click==8.1.7
-cloudpickle==3.0.0
-comm==0.2.1
-cons==0.4.6
-contourpy==1.2.0
-cycler==0.12.1
-debugpy==1.8.0
-decorator==5.1.1
-defusedxml==0.7.1
-etuples==0.3.9
-executing==2.0.1
-fastjsonschema==2.19.1
-fastprogress==1.0.3
-filelock==3.13.1
-fonttools==4.47.2
-fqdn==1.5.1
-h5netcdf==1.3.0
-h5py==3.10.0
-idna==3.6
-importlib-metadata==7.0.1
-ipykernel==6.29.0
-ipython==8.20.0
-ipywidgets==8.1.1
-isoduration==20.11.0
-jedi==0.19.1
-jinja2==3.1.3
-json5==0.9.14
-jsonpointer==2.4
-jsonschema==4.21.1
-jsonschema-specifications==2023.12.1
-jupyter==1.0.0
-jupyter-cache==1.0.0
-jupyter-client==8.6.0
-jupyter-console==6.6.3
-jupyter-core==5.7.1
-jupyter-events==0.9.0
-jupyter-lsp==2.2.2
-jupyter-server==2.12.5
-jupyter-server-terminals==0.5.2
-jupyterlab==4.0.12
-jupyterlab-pygments==0.3.0
-jupyterlab-server==2.25.2
-jupyterlab-widgets==3.0.9
-kiwisolver==1.4.5
-logical-unification==0.4.6
-markdown-it-py==3.0.0
-markupsafe==2.1.4
-matplotlib==3.8.2
-matplotlib-inline==0.1.6
-mdurl==0.1.2
-minikanren==1.0.3
-mistune==3.0.2
-multipledispatch==1.0.0
-nbclient==0.9.0
-nbconvert==7.14.2
-nbformat==5.9.2
-nest-asyncio==1.6.0
-notebook==7.0.7
-notebook-shim==0.2.3
-numpy==1.24.4
-overrides==7.7.0
-packaging==23.2
-pandas==2.2.0
-pandocfilters==1.5.1
-parso==0.8.3
-patsy==0.5.6
-pexpect==4.9.0
-pillow==10.2.0
-platformdirs==4.1.0
-polars==0.19.19
-prometheus-client==0.19.0
-prompt-toolkit==3.0.43
-psutil==5.9.8
-ptyprocess==0.7.0
-pure-eval==0.2.2
-pyarrow==14.0.2
-pycparser==2.21
-pygments==2.17.2
-pymc==5.6.1
-pyparsing==3.1.1
-pytensor==2.12.3
-python-dateutil==2.8.2
-python-json-logger==2.0.7
-pytz==2023.4
-pyyaml==6.0.1
-pyzmq==25.1.2
-qtconsole==5.5.1
-qtpy==2.4.1
-referencing==0.33.0
-requests==2.31.0
-rfc3339-validator==0.1.4
-rfc3986-validator==0.1.1
-rich==13.7.0
-rpds-py==0.17.1
-scipy==1.12.0
-seaborn==0.13.2
-send2trash==1.8.2
-six==1.16.0
-sniffio==1.3.0
-soupsieve==2.5
-sqlalchemy==2.0.25
-stack-data==0.6.3
-tabulate==0.9.0
-terminado==0.18.0
-tinycss2==1.2.1
-toolz==0.12.1
-tornado==6.4
-traitlets==5.14.1
-types-python-dateutil==2.8.19.20240106
-typing-extensions==4.9.0
-tzdata==2023.4
-uri-template==1.3.0
-urllib3==2.2.0
-wcwidth==0.2.13
-webcolors==1.13
-webencodings==0.5.1
-websocket-client==1.7.0
-widgetsnbextension==4.0.9
-xarray==2024.1.1
-xarray-einstats==0.7.0
-zipp==3.17.0
-# The following packages are considered to be unsafe in a requirements file:
-setuptools==69.0.3
diff --git a/blog/aging-curve/requirements.lock b/blog/aging-curve/requirements.lock
deleted file mode 100644
index 7c9c36f..0000000
--- a/blog/aging-curve/requirements.lock
+++ /dev/null
@@ -1,150 +0,0 @@
-# generated by rye
-# use `rye lock` or `rye sync` to update this lockfile
-#
-# last locked with the following flags:
-# pre: false
-# features: []
-# all-features: false
-# with-sources: false
-
--e file:.
-anyio==4.2.0
-appnope==0.1.3
-argon2-cffi==23.1.0
-argon2-cffi-bindings==21.2.0
-arrow==1.3.0
-arviz==0.17.0
-asttokens==2.4.1
-async-lru==2.0.4
-attrs==23.2.0
-babel==2.14.0
-beautifulsoup4==4.12.3
-bleach==6.1.0
-blog @ git+https://github.com/assuncaolfi/site/
-cachetools==5.3.2
-certifi==2023.11.17
-cffi==1.16.0
-charset-normalizer==3.3.2
-click==8.1.7
-cloudpickle==3.0.0
-comm==0.2.1
-cons==0.4.6
-contourpy==1.2.0
-cycler==0.12.1
-debugpy==1.8.0
-decorator==5.1.1
-defusedxml==0.7.1
-etuples==0.3.9
-executing==2.0.1
-fastjsonschema==2.19.1
-fastprogress==1.0.3
-filelock==3.13.1
-fonttools==4.47.2
-fqdn==1.5.1
-h5netcdf==1.3.0
-h5py==3.10.0
-idna==3.6
-importlib-metadata==7.0.1
-ipykernel==6.29.0
-ipython==8.20.0
-ipywidgets==8.1.1
-isoduration==20.11.0
-jedi==0.19.1
-jinja2==3.1.3
-json5==0.9.14
-jsonpointer==2.4
-jsonschema==4.21.1
-jsonschema-specifications==2023.12.1
-jupyter==1.0.0
-jupyter-cache==1.0.0
-jupyter-client==8.6.0
-jupyter-console==6.6.3
-jupyter-core==5.7.1
-jupyter-events==0.9.0
-jupyter-lsp==2.2.2
-jupyter-server==2.12.5
-jupyter-server-terminals==0.5.2
-jupyterlab==4.0.12
-jupyterlab-pygments==0.3.0
-jupyterlab-server==2.25.2
-jupyterlab-widgets==3.0.9
-kiwisolver==1.4.5
-logical-unification==0.4.6
-markdown-it-py==3.0.0
-markupsafe==2.1.4
-matplotlib==3.8.2
-matplotlib-inline==0.1.6
-mdurl==0.1.2
-minikanren==1.0.3
-mistune==3.0.2
-multipledispatch==1.0.0
-nbclient==0.9.0
-nbconvert==7.14.2
-nbformat==5.9.2
-nest-asyncio==1.6.0
-notebook==7.0.7
-notebook-shim==0.2.3
-numpy==1.24.4
-overrides==7.7.0
-packaging==23.2
-pandas==2.2.0
-pandocfilters==1.5.1
-parso==0.8.3
-patsy==0.5.6
-pexpect==4.9.0
-pillow==10.2.0
-platformdirs==4.1.0
-polars==0.19.19
-prometheus-client==0.19.0
-prompt-toolkit==3.0.43
-psutil==5.9.8
-ptyprocess==0.7.0
-pure-eval==0.2.2
-pyarrow==14.0.2
-pycparser==2.21
-pygments==2.17.2
-pymc==5.6.1
-pyparsing==3.1.1
-pytensor==2.12.3
-python-dateutil==2.8.2
-python-json-logger==2.0.7
-pytz==2023.4
-pyyaml==6.0.1
-pyzmq==25.1.2
-qtconsole==5.5.1
-qtpy==2.4.1
-referencing==0.33.0
-requests==2.31.0
-rfc3339-validator==0.1.4
-rfc3986-validator==0.1.1
-rich==13.7.0
-rpds-py==0.17.1
-scipy==1.12.0
-seaborn==0.13.2
-send2trash==1.8.2
-six==1.16.0
-sniffio==1.3.0
-soupsieve==2.5
-sqlalchemy==2.0.25
-stack-data==0.6.3
-tabulate==0.9.0
-terminado==0.18.0
-tinycss2==1.2.1
-toolz==0.12.1
-tornado==6.4
-traitlets==5.14.1
-types-python-dateutil==2.8.19.20240106
-typing-extensions==4.9.0
-tzdata==2023.4
-uri-template==1.3.0
-urllib3==2.2.0
-wcwidth==0.2.13
-webcolors==1.13
-webencodings==0.5.1
-websocket-client==1.7.0
-widgetsnbextension==4.0.9
-xarray==2024.1.1
-xarray-einstats==0.7.0
-zipp==3.17.0
-# The following packages are considered to be unsafe in a requirements file:
-setuptools==69.0.3
diff --git a/blog/aging-curve/src/aging_curve/__init__.py b/blog/aging-curve/src/aging_curve/__init__.py
deleted file mode 100644
index b3d0cfa..0000000
--- a/blog/aging-curve/src/aging_curve/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-def hello():
- return "Hello from aging-curve!"
diff --git a/blog/fantasy-football/.pdm-python b/blog/fantasy-football/.pdm-python
new file mode 100644
index 0000000..39721cc
--- /dev/null
+++ b/blog/fantasy-football/.pdm-python
@@ -0,0 +1 @@
+/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/bin/python
\ No newline at end of file
diff --git a/blog/fantasy-football/index.ipynb b/blog/fantasy-football/index.ipynb
deleted file mode 100644
index 63590a8..0000000
--- a/blog/fantasy-football/index.ipynb
+++ /dev/null
@@ -1,1788 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "raw",
- "id": "fe604617-26e8-44c2-a15e-a7335540be73",
- "metadata": {},
- "source": [
- "---\n",
- "title: Drafting a fantasy football team\n",
- "date: 2023-09-21\n",
- "---"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4f20452f",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "[Cartola](http://cartola.globo.com) is a fantasy football league following the\n",
- "Brazilian Championship A Series.\n",
- "\n",
- "Cartola offers a public API to access data for the current round. A couple\n",
- "of years ago, I created a script to automate data retrieval to a\n",
- "[repository](https://github.com/assuncaolfi/tophat/tree/main), which now hosts\n",
- "comprehensive historical data since 2022.\n",
- "\n",
- "In this post, I will delve into the data for the 2022 season, formulate a mixed\n",
- "integer linear program to draft the optimal team, and present initial concepts\n",
- "for forecasting player scores using mixed effects linear models.\n",
- "\n",
- "## The game\n",
- "\n",
- "We begin the season with a budget of C$ 100, the game’s paper currency.\n",
- "\n",
- "Each round is preceded by a market session, where players are assigned a value.\n",
- "We are tasked with forming a team of 11 players plus a coach, all within our\n",
- "budget and adhering to a valid formation. A captain must be chosen from among\n",
- "the players, excluding the coach.\n",
- "\n",
- "The market is available until the round starts. Players then earn scores based\n",
- "on their real-life match performances. Our team's score is the aggregate of\n",
- "our players' scores, with our captain’s score doubled in the 2022 season.\n",
- "\n",
- "Following the conclusion of the round, player values are recalibrated based\n",
- "on performance -— with increases for scores above their average and decreases for\n",
- "below-average performances. Our budget for the next round is our previous\n",
- "budget, plus the sum of our players' value variations.\n",
- "\n",
- "## Data wrangling\n",
- "\n",
- "Let's talk about data structures: each round has a market, and each market is a\n",
- "list of players. A player is a structure like this:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "c057edb8",
- "metadata": {
- "lines_to_next_cell": 2
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Player(round=0, player=42234, team=264, position=1, games=0, average=0.0, value=10.0, score=0.0, appreciation=0.0, minimum=4.53)"
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: data-wrangling-players\n",
- "from pydantic import BaseModel, Field, field_validator\n",
- "from typing import Dict, List\n",
- "from urllib import request\n",
- "\n",
- "\n",
- "class Player(BaseModel):\n",
- " round: int = Field(alias=\"rodada_id\")\n",
- " player: int = Field(alias=\"atleta_id\")\n",
- " team: int = Field(alias=\"clube_id\")\n",
- " position: int = Field(alias=\"posicao_id\")\n",
- " games: int = Field(alias=\"jogos_num\")\n",
- " average: float = Field(alias=\"media_num\")\n",
- " value: float = Field(alias=\"preco_num\")\n",
- " score: float = Field(alias=\"pontos_num\")\n",
- " appreciation: float = Field(alias=\"variacao_num\")\n",
- " minimum: float | Dict | None = Field(alias=\"minimo_para_valorizar\")\n",
- "\n",
- " @field_validator(\"minimum\")\n",
- " @classmethod\n",
- " def dict_is_zero(cls, v: float | Dict | None):\n",
- " if v == {} or v is None:\n",
- " v = 0.0\n",
- " return v\n",
- "\n",
- "\n",
- "class Market(BaseModel):\n",
- " players: List[Player] = Field(alias=\"atletas\")\n",
- "\n",
- "\n",
- "base_url = \"https://raw.githubusercontent.com/assuncaolfi/tophat/main/2022/\"\n",
- "markets = []\n",
- "for round in range(1, 39):\n",
- " url = base_url + f\"{round:02}/atletas/mercado.json\"\n",
- " data = request.urlopen(url).read()\n",
- " market = Market.model_validate_json(data)\n",
- " if round == 1:\n",
- " for player in market.players:\n",
- " player.round = 0\n",
- " markets.extend(market.players)\n",
- "\n",
- "markets[0]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e23a272d",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Let's get the list of markets for 2022 and flatten it into a single DataFrame:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 76,
- "id": "047e15d0",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-------------------------------------------------------------------------------+\n",
- "| round player team position … value score appreciation minimum |\n",
- "+===============================================================================+\n",
- "| 1 37424 1371 6 … 3.0 0.0 0.0 0.0 |\n",
- "| 1 37646 314 3 … 5.0 0.0 0.0 2.3 |\n",
- "| 1 37656 266 1 … 9.0 0.0 0.0 4.08 |\n",
- "| … … … … … … … … … |\n",
- "| 38 121398 354 4 … 1.0 0.0 0.0 0.0 |\n",
- "| 38 121399 354 4 … 1.0 0.0 0.0 0.0 |\n",
- "| 38 121400 354 5 … 1.0 0.0 0.0 0.0 |\n",
- "+-------------------------------------------------------------------------------+\n",
- "shape: (30_063, 10)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-dataframe\n",
- "import polars as pl\n",
- "\n",
- "players = (\n",
- " pl.DataFrame(markets)\n",
- " .with_columns(round=pl.col(\"round\") + 1)\n",
- " .sort(\"round\", \"player\")\n",
- ")\n",
- "pl.Config(\n",
- " tbl_dataframe_shape_below=True,\n",
- " tbl_formatting=\"ASCII_BORDERS_ONLY_CONDENSED\",\n",
- " tbl_hide_column_data_types=True,\n",
- " tbl_rows=6,\n",
- ")\n",
- "print(players)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "dd0ac934",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Now, let's focus on a specific `player` to illustrate our data while we wrangle\n",
- "it:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 61,
- "id": "22ab906b",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-------------------------------------------------------------------------------+\n",
- "| round player team position … value score appreciation minimum |\n",
- "+===============================================================================+\n",
- "| 1 42234 264 1 … 10.0 0.0 0.0 4.53 |\n",
- "| 2 42234 264 1 … 7.93 2.0 -2.07 5.52 |\n",
- "| 3 42234 264 1 … 10.44 11.0 2.51 4.75 |\n",
- "| … … … … … … … … … |\n",
- "| 36 42234 264 1 … 11.51 0.0 0.03 3.63 |\n",
- "| 37 42234 264 1 … 12.68 0.0 1.17 9.29 |\n",
- "| 38 42234 264 1 … 11.06 0.0 -1.62 1.37 |\n",
- "+-------------------------------------------------------------------------------+\n",
- "shape: (38, 10)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-example\n",
- "def filter_example(markets: pl.DataFrame, columns: List[str]):\n",
- " example = players.filter(pl.col(\"player\") == 42234).select(\n",
- " [\"round\", \"player\"] + columns\n",
- " )\n",
- " print(example)\n",
- "\n",
- "\n",
- "filter_example(players, players.columns[2:])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "73ffae88",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "### Filtering participation\n",
- "\n",
- "Players will show up in the market for many rounds that they do not participate\n",
- "in. However, for our analysis, we are only interested in players that actually\n",
- "played a game in the round.\n",
- "\n",
- "Each player has a `status` field intended to indicate their participation in the\n",
- "round. However, this field is often inaccurate, likely due to the API data being\n",
- "updated before the round.\n",
- "\n",
- "One solution is to keep only rows where there is an increase in the number of\n",
- "`games` the player has played:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 62,
- "id": "cb9c234d",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------------------+\n",
- "| round player games |\n",
- "+========================+\n",
- "| 1 42234 0 |\n",
- "| 2 42234 1 |\n",
- "| 3 42234 2 |\n",
- "| … … … |\n",
- "| 36 42234 28 |\n",
- "| 37 42234 29 |\n",
- "| 38 42234 30 |\n",
- "+------------------------+\n",
- "shape: (31, 3)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-round-participation\n",
- "players = players.filter(\n",
- " pl.col(\"games\") != pl.col(\"games\").shift(1).over(\"player\").fill_null(-1)\n",
- ")\n",
- "filter_example(markets, [\"games\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "642b6687",
- "metadata": {
- "cell_marker": "r\"\"\""
- },
- "source": [
- "### Imputing scores\n",
- "\n",
- "Similarly, the player `score` field is often inaccurate, likely for the same\n",
- "reasons as the `status` field. Fortunately, the `average` field is reliable,\n",
- "allowing us to recover the `score`:\n",
- "\n",
- "$$\n",
- "\\begin{align*}\n",
- "\\mathrm{Average}(\\mathbf{s}_{1:t})\n",
- "= \\frac{\\mathrm{Average}(\\mathbf{s}_{1:(t-1)}) + s_t}{2} \\\\\n",
- "s_t\n",
- "= 2\\mathrm{Average}(\\mathbf{s}_{1:t}) - \\mathrm{Average}(\\mathbf{s}_{1:(t-1)}),\n",
- "\\end{align*}\n",
- "$$\n",
- "\n",
- "where $\\mathbf{s}$ is the vector of scores for a given player across all rounds."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 63,
- "id": "389e6b06",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+----------------------------------+\n",
- "| round player score average |\n",
- "+==================================+\n",
- "| 1 42234 2.0 2.0 |\n",
- "| 2 42234 11.0 6.5 |\n",
- "| 3 42234 9.5 8.0 |\n",
- "| … … … … |\n",
- "| 36 42234 5.1 4.96 |\n",
- "| 37 42234 4.62 4.79 |\n",
- "| 38 42234 4.79 4.79 |\n",
- "+----------------------------------+\n",
- "shape: (31, 4)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-missing-scores\n",
- "# TODO make this better\n",
- "players = players.with_columns(\n",
- " average=pl.col(\"average\").shift(-1).over(\"player\").fill_null(pl.col(\"average\"))\n",
- ").with_columns(\n",
- " score=2 * pl.col(\"average\")\n",
- " - pl.col(\"average\").shift(1).over(\"player\").fill_null(pl.col(\"average\")),\n",
- ")\n",
- "filter_example(players, [\"score\", \"average\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "84a0559c",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "### Adding fixtures\n",
- "\n",
- "Let's fetch the list of fixtures to enrich our dataset. A fixture is an object\n",
- "like:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "id": "f3f7a337",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Fixture(round=1, home=282, away=285)"
- ]
- },
- "execution_count": 65,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: data-wrangling-fixtures\n",
- "class Fixture(BaseModel):\n",
- " round: int = Field(default=0)\n",
- " home: int = Field(alias=\"clube_casa_id\")\n",
- " away: int = Field(alias=\"clube_visitante_id\")\n",
- "\n",
- "\n",
- "class Round(BaseModel):\n",
- " round: int = Field(alias=\"rodada\")\n",
- " fixtures: List[Fixture] = Field(alias=\"partidas\")\n",
- "\n",
- "\n",
- "fixtures = []\n",
- "for round in range(1, 39):\n",
- " url = base_url + f\"{round:02}/partidas.json\"\n",
- " data = request.urlopen(url).read()\n",
- " round = Round.model_validate_json(data)\n",
- " for fixture in round.fixtures:\n",
- " fixture.round = round.round\n",
- " fixtures.extend(round.fixtures)\n",
- "fixtures[0]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "65e6bc44",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Let's consolidate these fixtures into a single DataFrame and then pivot them\n",
- "into a long format:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 66,
- "id": "905f557b",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------------------------+\n",
- "| round team versus home |\n",
- "+==============================+\n",
- "| 1 282 285 1 |\n",
- "| 1 266 277 1 |\n",
- "| 1 276 293 1 |\n",
- "| … … … … |\n",
- "| 38 276 290 0 |\n",
- "| 38 294 1371 0 |\n",
- "| 38 263 293 0 |\n",
- "+------------------------------+\n",
- "shape: (760, 4)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-fixtures-long\n",
- "fixtures = (\n",
- " pl.DataFrame(fixtures)\n",
- " .rename({\"home\": \"team\", \"away\": \"versus\"})\n",
- " .with_columns(home=pl.lit(1))\n",
- ")\n",
- "mirrored = fixtures.rename({\"team\": \"versus\", \"versus\": \"team\"}).with_columns(\n",
- " home=pl.lit(0)\n",
- ")\n",
- "fixtures = pl.concat([fixtures, mirrored], how=\"diagonal\")\n",
- "print(fixtures)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a30a39f2",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Finally, let's join this data to our dataset:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 67,
- "id": "fe762abe",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+---------------------------------------+\n",
- "| round player team versus home |\n",
- "+=======================================+\n",
- "| 1 42234 264 263 0 |\n",
- "| 2 42234 264 314 1 |\n",
- "| 3 42234 264 275 0 |\n",
- "| … … … … … |\n",
- "| 36 42234 264 354 1 |\n",
- "| 37 42234 264 294 0 |\n",
- "| 38 42234 264 282 1 |\n",
- "+---------------------------------------+\n",
- "shape: (31, 5)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-fixtures-join\n",
- "players = players.join(fixtures, on=[\"round\", \"team\"], how=\"inner\")\n",
- "filter_example(players, [\"team\", \"versus\", \"home\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ee811e64",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "### Aligning variables\n",
- "\n",
- "In our subsequent analysis, the `average` field will exclude the `score` from\n",
- "the given round. Additionally, the `appreciation` field will be calculated in\n",
- "relation to the round's `score`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 68,
- "id": "a9f96c40",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+---------------------------------------------------------+\n",
- "| round player average value score appreciation |\n",
- "+=========================================================+\n",
- "| 1 42234 0.0 10.0 2.0 -2.07 |\n",
- "| 2 42234 2.0 7.93 11.0 2.51 |\n",
- "| 3 42234 6.5 10.44 9.5 1.25 |\n",
- "| … … … … … … |\n",
- "| 36 42234 4.82 11.51 5.1 1.17 |\n",
- "| 37 42234 4.96 12.68 4.62 -1.62 |\n",
- "| 38 42234 4.79 11.06 4.79 0.0 |\n",
- "+---------------------------------------------------------+\n",
- "shape: (31, 6)\n"
- ]
- }
- ],
- "source": [
- "# | label: data-wrangling-lookahead-variables\n",
- "players = players.with_columns(\n",
- " average=pl.col(\"average\").shift(1).over(\"player\").fill_null(0.0),\n",
- " appreciation=pl.col(\"appreciation\").shift(-1).over(\"player\").fill_null(0.0),\n",
- ")\n",
- "filter_example(players, [\"average\", \"value\", \"score\", \"appreciation\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "10b9966f",
- "metadata": {
- "cell_marker": "r\"\"\"",
- "lines_to_next_cell": 2
- },
- "source": [
- "## Team picking\n",
- "\n",
- "Now let's solve the problem of picking the best team a given market. Let $\n",
- "\\mathcal{F}$ be the set of valid formations, then for each formation $f \\in\n",
- "\\mathcal{F}$, solve:\n",
- "\n",
- "$$\n",
- "\\begin{equation*} \\begin{array}{ll@{}ll}\n",
- "\\text{maximize} & \\displaystyle \\hat{\\mathbf{s}}^T \\mathbf{x}, & \\mathbf{x} \\in \\{\\mathbf{0}, \\mathbf{1}\\} \\\\\n",
- "\\text{subject to}\n",
- "& \\displaystyle \\mathbf{v}^T \\mathbf{x} \\leq b \\\\\n",
- "& \\displaystyle \\mathbf{P}^T \\mathbf{x} = f, \\\\\n",
- "\\end{array} \\end{equation*}\n",
- "$$\n",
- "\n",
- "where\n",
- "\n",
- "$\\mathbf{x}$ is a variable vector of player picks in the market;\n",
- "$\\hat{\\mathbf{s}}$ is the vector of predicted player scores in the market;\n",
- "$b$ is our available budget for that round;\n",
- "$\\mathbf{P}$ is the matrix of dummy-encoded player formations in the market.\n",
- "\n",
- "Finally, take the solution with the highest objective."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "1bb8505a",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | echo: true\n",
- "# | label: team-picking-problem\n",
- "import numpy as np\n",
- "import pulp\n",
- "\n",
- "\n",
- "class Formation(BaseModel):\n",
- " goalkeeper: int = Field(alias=\"gol\")\n",
- " defender: int = Field(alias=\"zag\")\n",
- " winger: int = Field(alias=\"lat\")\n",
- " midfielder: int = Field(alias=\"mei\")\n",
- " forward: int = Field(alias=\"ata\")\n",
- " coach: int = Field(alias=\"tec\")\n",
- "\n",
- "\n",
- "class Problem(BaseModel):\n",
- " scores: List[float]\n",
- " values: List[float]\n",
- " budget: float\n",
- " positions: List[List[int]]\n",
- " formations: List[Formation]\n",
- "\n",
- " def solve(self) -> List[pulp.LpSolution]:\n",
- " formations = [list(f.model_dump().values()) for f in self.formations]\n",
- " problems = [self.construct(f) for f in formations]\n",
- " [p.solve(pulp.COIN(msg=False)) for p in problems]\n",
- " objectives = [p.objective.value() for p in problems]\n",
- " best = np.argmax(np.array(objectives))\n",
- " solution = problems[best]\n",
- " variables = [v.value() for v in solution.variables()]\n",
- " picks = np.array(variables)\n",
- " return picks\n",
- "\n",
- " def construct(self, formation: List[int]) -> pulp.LpProblem:\n",
- " n = len(self.scores)\n",
- " m = len(formation)\n",
- " problem = pulp.LpProblem(\"team_picking\", pulp.LpMaximize)\n",
- " indexes = [\"pick_\" + str(i).zfill(len(str(n))) for i in range(n)]\n",
- " picks = [pulp.LpVariable(i, cat=pulp.const.LpBinary) for i in indexes]\n",
- " problem += pulp.lpDot(picks, self.scores)\n",
- " problem += pulp.lpDot(picks, self.values) <= self.budget\n",
- " for i in range(m):\n",
- " problem += pulp.lpDot(picks, self.positions[i]) == formation[i]\n",
- " return problem"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "41b79536",
- "metadata": {
- "cell_marker": "r\"\"\""
- },
- "source": [
- "### Backtesting\n",
- "\n",
- "By solving the team picking problem for all rounds, we can backtest our\n",
- "performance in the season. Before backtesting, let's get the set of valid\n",
- "formations $\\mathcal{F}$:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "e156ac2d",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Formation(goalkeeper=1, defender=3, winger=0, midfielder=4, forward=3, coach=1),\n",
- " Formation(goalkeeper=1, defender=3, winger=0, midfielder=5, forward=2, coach=1),\n",
- " Formation(goalkeeper=1, defender=2, winger=2, midfielder=3, forward=3, coach=1),\n",
- " Formation(goalkeeper=1, defender=2, winger=2, midfielder=4, forward=2, coach=1),\n",
- " Formation(goalkeeper=1, defender=2, winger=2, midfielder=5, forward=1, coach=1),\n",
- " Formation(goalkeeper=1, defender=3, winger=2, midfielder=3, forward=2, coach=1),\n",
- " Formation(goalkeeper=1, defender=3, winger=2, midfielder=4, forward=1, coach=1)]"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: team-picking-formations\n",
- "from pydantic import RootModel\n",
- "\n",
- "\n",
- "class MetaFormation(BaseModel):\n",
- " id: int = Field(alias=\"esquema_id\")\n",
- " name: str = Field(alias=\"nome\")\n",
- " formation: Formation = Field(alias=\"posicoes\")\n",
- "\n",
- "\n",
- "class MetaFormations(RootModel):\n",
- " root: List[MetaFormation]\n",
- "\n",
- "\n",
- "url = base_url + \"38/esquemas.json\"\n",
- "data = request.urlopen(url).read()\n",
- "meta_formations = MetaFormations.model_validate_json(data).root\n",
- "formations = [m.formation for m in meta_formations]\n",
- "formations"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "397da432",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Knowing our formation constraints, we're ready to backtest. Starting with a\n",
- "budget of C$ 100, for each round let's:\n",
- "\n",
- "1. Predict each player's score based on their performance on previous rounds;\n",
- "2. Pick the team with the best total score;\n",
- "3. Add the sum of the team player's appreciation to our budget."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 77,
- "id": "097e2d05",
- "metadata": {},
- "outputs": [],
- "source": [
- "# | echo: true\n",
- "# | label: team-picking-backtest\n",
- "from typing import Callable\n",
- "import polars as pl\n",
- "\n",
- "\n",
- "def backtest(\n",
- " players: pl.DataFrame, predict: Callable, initial_budget: float = 100.0\n",
- ") -> pl.DataFrame:\n",
- " rounds = players.get_column(\"round\").max()\n",
- " budget = [None] * rounds\n",
- " teams = [None] * rounds\n",
- " budget[0] = initial_budget\n",
- " appreciation = 0\n",
- " for round in range(rounds):\n",
- " if round > 0:\n",
- " budget[round] = budget[round - 1] + appreciation\n",
- " data = players.filter(pl.col(\"round\") < round + 1)\n",
- " candidates = players.filter(pl.col(\"round\") == round + 1)\n",
- " candidates = predict(data, candidates)\n",
- " problem = Problem(\n",
- " scores=candidates.get_column(\"prediction\"),\n",
- " values=candidates.get_column(\"value\"),\n",
- " positions=candidates.get_column(\"position\").to_dummies(),\n",
- " budget=budget[round],\n",
- " formations=formations,\n",
- " )\n",
- " picks = problem.solve()\n",
- " team = candidates.filter(picks == 1)\n",
- " teams[round] = team\n",
- " appreciation = team.get_column(\"appreciation\").sum()\n",
- " teams = pl.concat(teams)\n",
- " return teams"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e7f98049",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "\n",
- "Before exploring predictions, we'll begin with a few hypothetical backtests\n",
- "using actual observed scores for team selection. Backtesting this strategy, this\n",
- "is our team in the first round:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 69,
- "id": "acf78b03",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----------------------------------------------------------------------------+\n",
- "| round player team position … minimum versus home prediction |\n",
- "+=============================================================================+\n",
- "| 1 71571 356 1 … 3.19 1371 1 11.0 |\n",
- "| 1 42145 294 2 … 2.75 290 1 15.8 |\n",
- "| 1 105584 264 2 … 2.75 263 0 10.5 |\n",
- "| … … … … … … … … … |\n",
- "| 1 89840 276 5 … 5.42 293 1 27.1 |\n",
- "| 1 104530 294 5 … 2.3 290 1 11.0 |\n",
- "| 1 97341 276 6 … 0.0 293 1 9.52 |\n",
- "+-----------------------------------------------------------------------------+\n",
- "shape: (12, 13)\n"
- ]
- }
- ],
- "source": [
- "# | label: team-picking-backtest-first-team\n",
- "def predict_score(data: pl.DataFrame, candidates: pl.DataFrame) -> pl.DataFrame:\n",
- " prediction = candidates.get_column(\"score\")\n",
- " candidates = candidates.with_columns(prediction=prediction)\n",
- " return candidates\n",
- "\n",
- "\n",
- "teams = backtest(players, predict_score)\n",
- "print(teams.filter(pl.col(\"round\") == 1).sort(\"position\"))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5d5c18c8",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "And we can plot out cumulative performance during the season:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "fdc43591",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABLcAAAN6CAYAAAB8KavqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAADaKklEQVR4nOzdd3gU1dvG8Xs3PYSaQOgdKdKLIL1JRxREbCgWUEAFRcTefjYQARtYsGAB9RWEgLTQpPcuPSCkUVKA9LI77x+RhWVDSCDZTfl+rsvLzZmZsw/hAMmdM8+YDMMwBAAAAAAAABRAZlcXAAAAAAAAANwowi0AAAAAAAAUWIRbAAAAAAAAKLAItwAAAAAAAFBgEW4BAAAAAACgwCLcAgAAAAAAQIFFuAUAAAAAAIACi3ALAAAAAAAABRbhFgAAAAAAAAoswi0AAAAAAAAUWIRbAAAAAAAAKLAItwAAAAAAAFBgEW4BAAAAAACgwCLcAgAAAAAAQIFFuAUAAAAAAIACi3ALAAAAAAAABRbhFgAAAAAAAAoswi0AAAAAAAAUWIRbAAAAAAAAKLDcXV0AkJacIMOw5ugady9fmc1uslotSk9JzKPKANdinaMoYJ2jsGONozAymczy8C7m6jIAwIZwCy5nGNYch1tXXw8UdqxzFAWscxR2rHEAAPIGtyUCAAAAAACgwCLcAgAAAAAAQIFFuAUAAAAAAIACi3ALAAAAAAAABRbhFgAAAAAAAAoswi0AAAAAAAAUWIRbAAAAAAAAKLAItwAAAAAAAFBgEW4BAAAAAACgwCLcAgAAAAAAQIFFuAUAAAAAAIACi3ALAAAAAAAABRbhFgAAAAAAAAoswi0AAAAAAAAUWIRbAAAAAAAAKLAItwAAAAAAAFBgEW4BAAAAAFDIpVusri4BhZir1xfhFgAAAAAAhZRhGPr0tzUaO+UPpaVbXF0OCqHYuEQ9+MYPClq3z2U1EG4BAAAAAFAIpVusevPrxZr11xZt2ndCq7YfdnVJKIR+C96hY6Hn9PY3i/Xdwk0uqYFwCwAAAACAQsZiteqV6Qv014b9kqRn7u2knm0auLgqFEYj7mqv/h0aSpK++L+1+nLeOqfXQLgFAAAAAEAh88EPy7Vy2xFJ0uh7OmpYvzYurgiFldls0ptP9FHPNvUlSd/M36jfgnc4twanvhsAAAAAAMhT3wZt1J9r9kiShtzRQo/debuLK0JhZzKZ9PaIvrqtQTVJ0uSfV2rtrmPOe3/DMAynvRuQidSkOBlGzp6s4OHtJ7PZTVarRWnJ8XlUGeBarHMUBaxzFHasceRHMRcTtXTLUW3Y+6/Coy4qNi5JXh7uKlHMW7dU8VfLepXV47ba8vPxyvR6k8ksT5/iTq4a2XXwxGk98s5PslisalKnkr5+5QG5u+V8X8vOQ6FauvmAdh4K1dmYOKVbrfIvUUy3VCunri1vUc82DW5o3uPhUfp9xU5tO3BSp6PjZMhQ+TIl1LJ+Vd3duYnq1yh/3TniElMUtHavNuwJUUh4tC7EJ8nPx0vlyhTX7Y1qqF/7hqpR0f+682w/eEpPfjAnx7+GhR8/pYplS+b4upuxce9xLd74j/YeDdfZ2Hh5e7qrvH8J3dagmu7q3EQ1KwVcd44WD0/M8fu+ObyP7uzQKNvnx15M1AOvf6+zsfEqXdxXv3/wmMqUKJbj980pwi24HOEWkDnWOYoC1jkKO9Y48pug9Qf1+dxNik9KzfK8Yt6eeuCOJhraq5lDgEG4lX+lpqXrwTd+0PHwaHl5uOuPD5/IcQhzOvqi3pm5WFv+OZnlebUqBej90XeqduWy2Z776/kbNHPBRlksmX//ZzJJX750v1rWr3rNOX5fsVMz5q7TxYTka57j5mbWI31aa/TgjlnWUxDCrdiLiXp5epC2Hbj274eb2aQhd7TQc/d3ldlsuuZ5zgi3pIwg7pnJ/ydJ6tyijj4eMzDH75tT7nn+DgAAAAAAl5v39z+aPOdyo+dmdSqoXaNqCizjp3SLVRFRcdp2KEy7j0YqITlV3yzcprBzF/T6sK4urBo5EbRun46HR0uSHu57W44DmKjz8Rr65izFXEyUJLWsX1XtmtRUef8SSk2z6GRkjBau36dzsfEKCY/SyA9/1Y9vPaIKASWuO/cnv67Wj4u3SpICSvmpf4eGql25bMbaO3deq7Yfka+3p1rUq3LNOWbMXaeZCzZKksqU8FW3VnXVoEZ5FfPx0tnYOG3756TW7j4mi8Wq7xZuktUw9My9na45X+3KZTX1uUHZ+txMmb1KoWdiVdLPR/4l834nkiQlpaTpyQ/mKCQ8SpJUNbC0+rZvqCqBpZSQlKojp84qaO0+paSla/ay7UpOTdOrj/a65nzZ/bUGrd2n1Tsy+rXVzsaOsKu1bVxTnZrV1t+7jmnNjqPaczRMTepUzvE8OUG4BQAAAACFXMzFRH0+d5MkydvTXZNH91bzupUcznu0bwsdC4vWx7+uU2R0nEbceZuzS8UNsloNzV66XZLk7emhB3q2yvEcAaX89Gi/Nvrz7z16/bHealzHcY2MuLud3v9+mYLW7VPMxUR9M3+93niiT5bzrtsdYgu2Wt9aTROfvkvFi3lfNW97JaWkyWS69s6je7o10+odR9ShaW09MeB2+Xh52h2/v0dL7Q+J0NMf/a64xBT9tGSr7u7cRJXLlcp0vlLFfdSxWe0sa5ekkLBzCj0TK0m6q1NjeXk6J0r5eclWW7DVv0NDvfpoL3m4u9mdM7TPbRr+3mydiYnTvNV7dHenJmpQs0Km82Xn15qWbtH7PyyTJDWsVeGac13Po3ferr//67n14+Kt+nhM3oZbNJQHAAAAgEIueNsxJaemS5Lu6dIw02DrktqV/fX583fqmxfvVmAZP2eViJu0fk+ITp6OkST1aF1PJa4Kj7LrgV6t9Nt7j2cabEmSh7ubXh7Wwzb/xn0nspzPajU05ZeVkqQKASU08Zm7HYKtS3y8PLKcq2wpP/367mN65t5ODsHWJQ1rVdSj/TMa6FssVm39598s58yOOcsznvznZjZpcLfmNz1fdi3fclCS5OXprhce6u4QbElSpbKl9OTd7W0fr98TclPvuWLrYZ2LzbiNfsgdLW54nka1Kqp+9Yz+aWt3HlPY2fM3Vdf1sHMLAAAAAAq5sLMXbK9rVSxz3fPdzGaVLZ39YMtqNbRi6yEt3XxQh/49rZiLifJwd1PZ0n5qWqeSere9Va3+e4ra9VxMSNbvK3Zq7a5j+jcyWimp6Spdwle3VCmn7rfVVd/2DeVmznqfRma9lHq2qa/3R90pSUpOTdOcZTsUvPWQTp2OUVJKmiRpxF3t9OTA9g7zXSn2YqLmLN+u9btDdOpMrKyGoXKli6v1rdV1X48W2WpknhdWbjtse92x+fV36GQlq75NkuTp4a6q5Utrf0ikEq7Tv239nozPk5SxO6u4b+YPKsit2iSpTpXLfcASkrOu73ouxCdp8cZ/JEkdm9XJ1i2YuSX8XMaf29qVy17zAQ+S1Lh2Rdvrs7E3199xzvKM3X/+JYvpjtvq3dRcHZvX1sF/T8tqGFq944iG9s67naCEWwAAAABQQByPiFFxXy+VLZWznj/FfC7vcgm9IujKDdEXEvT8tLnaHxJpN56WntGj6WRkjBas3afmdavojSd6q0pg6WvOtT8kQmOm/KHzcUl24+di43UuNl4b9h7Xr8E79cm4e1S2VM52lZ2OvigpIzx76oM5OnzqbI6ul6RtB05q/Kd/Ki4xxW489EysQs/EasHavRr/UHcN6to0x3PfrEsNx00mZTtIvFGGYehMTJwk+yApM+t3Z+wk8vb0UI/WNxeWZFdk1EXb61uqlLupueau3q2U/3Y93nuH83ZtSRkPdkhJTVdqWnqW58VfEeDd6I49Sdp7NFz/HM/4c3x35yaZ7hTLiTa3VtdX89ZLkrYfOEW4BQAAAABF2YX4ZL313UptORAqSXrj0a7q1fqWbF9fv9rlb/D/b/V+dWhSXXWrZv8pd9dyOvqiRrw/27bDpGJASfXv0FA1KgUoLd2iIyfPauW2w4qIuqBdR0IVeib2muHWwROnNXLib0r87xv1Ts1qq0Oz2ipRzFvhZ89rwdq9+jcyRodPntHID3/VT28/cs3b2K5sFL500wEt23xQp6Mvymo1NHbKHzp86qxKF/fVXZ0bq261QL30+YLr/lo37z+h56bOVWqaRe5uZvVu20At61eTt6e7jodHae7qPYo6H68PZi1TCT/vm971khOxcYm2sCmwTIksd/nkhv9buct269rQPlkHFtsPnZIktahXRd6el3+/ws6eV2TUBXl7eahKudIqVdwnV2q7mJCsX5ZukyTVrRao22698aAv3WLVHyt3Scp4OuRteRwaXq125bLaeuCkTkREK/zceVUqWyrT86689bLTTezau7Rry83NrHtyIaCtWflyM/qD/56+6fmyQrgFAAAAAPnY8YgYvTh9qSKu2I0yd80/OQq3OjSprlqVyigkPEZxiSl6ctJ83dOloQZ1bqgK/sVvuLb3f1hmC7Z63d5Abzze267Zdp+2t+rZIZ21aMN+RZ2PV9vGNTOdxzAMfTBruS3YenN4H93ZoZHdOff3bKnxn/6pdbtDdCIiWt8GbdTTgzN/Et6VjcIPnsj4pvpcbLz+b+VO7TkaruZ1q+jjsQNtu1xeUtbhVlJKqv737VKlpllUqriPPh9/r62f0CX39WipURN/08F/T2virGC1aVjjpm/By67wK/oZVSt/7Z1xNyMpJVXHwqI0f80eLVi7V5L0xIC26tLi2usw9mKiTkZm9AGr9V/QsWrbYX3553qFhEXZznMzm9SmUQ09M7iT6lTN+U4ri9Wq6PMJ2rz/hL4N2qSws+dVqWxJTXx6QJYN6q9n5bZDttDQ2bu2pIzgcOuBk0q3WDV2yh/6cPQA1apsH0rvC4nQrEVbJElDuje/4acSnom5qJXbM56Q2K3lLSpb+sb/XrjEz8dL/iWLKfpCgqIvJCglNT3PmvETbgEAAABAPrV29wm98/0qJf7XE+qSauVL5Wges9mkyaP76JmpQQo7d1Gp6RbNDt6jX1fsVZPa5dWxaQ11alZD5ctk/xvadbtDtGHPcUlSgxrl9c6TfTPthWU2mxyCqqut2XnUdjtUt1Z1Mz3fw91Nbz7RR3e+8JUSk1P1fyt36YkBbe12A2XFahj65Lc1qlS2pKaMHXjNpuaZmbNsh+22xpcf6eEQbEkZt4P978m+GvzKt4qNS9SSjf/o3u7OCUSiLyTYXpcq7purc/+0ZKumzVlt+9jD3U23NaimoX1a6/ZGNbK89lIwJEllSxfX9D/W6tugTQ7nWayGNuw5ru0HTul/T/VTt1Z1s11fxxFT7fpqVQgooUf6ttawfm1u6hY9KeP3XZL8fL3Ut92tNzXXjWjbuKZGD+6oL/5vrY6HR+u+V79X+6a11KfdrWrbqIaC1u3T57+vVWpauh7t3+aaYW92/L5ilywWq6SbayR/tVJ+Prb1GXUh/pq7z24W4RYAAAAA5DOGYeiHxTv1zcJtDsca1yqvZ++5PcdzBpbx0w+vDtY3C7fpz7//UWq6RVbD0K6jkdp1NFKf/rFRDWsEalCXhuravJbc3bJu2r7kvybbkjT8rnbXbfKelb93HrW9vrtzk2ueV7qErzo1r60lGw8oPjFFm/adyHLn0NVSUtP13ANdcxRsSZefWudfspi6trx28FKjUoAa1aqovccitHr7EaeFW0lXhJ/e13niYE5d2nl1icVi1ZmYOO09Gq6GNStk+bm8mHC5d9qaHUe041CoKgaU1KP926h1w+oqW8pPp6Mvat7qPfpl6TalpKXrrW8Wq06Vsqpa/voPPjgXG+fQMD4+MUXHw6N06OSZm7qNcH9IhPaFREiSBnRodM2nM+a1x/rfrnrVAjX555U6eTpGa3cd09pdx2Q2mWQ1DPn5eumLFx9Q01tubMeWlPGAhT9X75aUcSvnzcx1tSvXY9JVIX1uItwCAAAAgHwkKSVN785ardU7jzscu7N9fY27r/0NN3r29fbQmMFt9XCvZlq44aCCtx1TSHhGeGEY0r7jZ7Tv+Bn9uGSXXn2ks12vritZrFZbo3BPD7fr7uC5nq3/XG6G3vSWSlme26ROZS3ZeECS9M/xyByFW9UrlFHn5nUcxhd+/JQkZXob4ZmYizoaek6SVK9a4HWf1le3WqD2HovQgTzuMXQli9Vqe+1+EyFjZgZ2bqKOzWorKSVV4WcvaNX2Izr472l9PX+D/tr4jz5/YfA1g6gLCcm21zsOhapVg2qaPOZuu55gVcuX0dj7u6hsaT9Nmb1Kicmp+mnJVr36aK/r1ubj7ampzw2SYRg6Gxuvo6fOatGG/Vq3O0Trdofo8Ttv16h7Ot7Qr3v2soz+UyaTNNhJIWVmrFZDp6MvKi4x43NZvUIZhZ09r/T/dlnFJ6bog1nL9fTgTurQtNYNvcfiDf/Yfq+G5PKv9cqQPD3dmsWZN/k+eTYzAAAAACBHIqPj9NKMpToaFm037mY2aey97TSw06031UPoktLFffRwr+Z6uFdzhZ45r1U7j2v5tqM6ERErKaPP1+iPg/TJ2H5qVNPxFryYi4m2HTM1Kvjf1FPVrFbD1py8TIli190hU6lsSdvrK3tNZUff9g0z/fxVvGLOq0Wcu/x0yeTUNK3ddSzL97j0pMf4xBQlJqfK1zvvd/xc+fmPT0rJ4syca1Czgt3Hj915uxau26d3Zi5R+NnzGv/ZfP389iOZroErw4wqgaU1ZezAa34+7u3eXN/M36C4xBQFbzmklx7pcd3dgH4+Xrbeapc8Nai9xk2bp73HIvRt0CbVqhygnm0aZPeXK0k6GxOnldsOS8q4NTCrJ3zmpaSUVE34fIE27DkuX29PfTDqTvVoU1/n45K0fMtB/blmj46cOqtjoec0dsofemJAW40c1CHH73OpkXxJPx/1uj1nn6vruXI95lW/LYlwCwAAAADyhV1HI/TqV8t1Pj7ZbrxkMW+9N+IONa+b9Y6mG1UlsJQe6d1cj/Rurk37T2nynHWKjI5Tcmq63v5ulX575z6HkCHqfPzl+vxu7il3F+KTZDUMScrWU/6uPCcuMWdBTqNaFXNWnOz7We04FKodh0KzfW18YopTwq0re0vldriVmf4dGmnrPye1eOM/OhZ6Tn/vPKrumTwd0u+KnXBDe9+W5efCw91N9auX19YDJxWXmKLo8wkql4MecJeUKVFM7zzZT3e/+LUMQ/p2waYch1v/t3KXbWfUfbnYfyon0i1WPTv5D+08HCofLw99/fL9ql8jI2guVdxH93Zvrnu7N9ffO4/qve+XKfpCgmYu2ChJOQq4Nu8/oePhGWH6XZ0a53oAFX/Fn9G8fMBC7u5XBAAAAADk2J9r/9GzUxc5BFu1KpXRty8PzLNg62q3N6yqr168S6WKZ4QlEVEXtXm/Y5hjtRq219e7Te96rrylLjsMXX7vnPb5yo1dbzmR01/bjQq84sl2l3aO5bUOzS7fArdp34lMz7kyiMzO56J0icvN8K8MUHOqSmBpVa/gL0kKCY/S2Ssa219PSmq65q3ZLUmqGlj6pm+5vVFBa/dq5+GMP3sP97nNFmxdrVPzOvrhjaG24PD7RZsVGXUh03Mzc+n2SzezSYO75e4tiYZh6OJ/tzu6u5nlX7JYrs5/JXZuAQAAAICLpKVbNO33Dfpz7QGHY52b1dBrj3SVr3fuNgi/noCSxdS3TV39ErxHknQiMkbtGts35i5T4vI3qTe7U6i47+VdR1c3B89MQtLlc8qUyN0nA2bmym/IB3RqrDce753n75lTlQNLy8PdTWnpFoWERclitd5Ug//sCLxiV9Wl20qzOif2YuJ15zSMK4LL6zzQ4HrKlSmuExEZO5LOxsZlexfY4o3/2ALCwd2bOz0QvWTFf7dFSlKHq269vFrFsiV1Z8dG+nX5DlksVq3ZeVT392h53fc4GRmjjXuP296jQkCJmyv6KqdOx9qayFev6J+nn0t2bgEAAACAC8TGJWnMJ4syDbYe79dS7w7v4fRg65KKZS9/k3v1bjJJCihVzNYo+uqn6eWUl6e7ypb2kyRFX4i/7hPVwq7os1XeP3e/Gc/Mle8RfT4hizNdx8PdTbdUzWj+n5yappCwqDx/z5Q0i+11MZ/MbzesWLak7bbVk6evv06irwjALq2JG5Waln5Ffdm/He5S/ylfb0/d2bHRTdVwM05HXbS9Llvq+p+LSzvVJOl09MUszrzs1+AdupQnDsmD2y//OR5pe33rVb3bchvhFgAAAAA42ZHQKD32wVztPhppN+7j5a73n+yhx/u1vOnb/W7GuStCnLKlHG8l8nB3U6sGGbu54hJTtC8k4qber2HNjF5YhiHtPRqe5bm7j4TZXrduWP2m3jc7KgSUVI2KGcHBvpAIpaVbrnOFa7RvUtP2evuBk3n+fodPnrG9rlzu2g3XG/4Xauw8HGq3M+tqaekW25z+JYupdPEb35VnsVp17L8nXLqZTdnekbT1n39twWDfdrdmqwfc9cxZvl19n5uhbqM/1Yezlis5Nevw9pKSfpd3NMYlOAbMV7uYcPl21Ct3Vl5LXGKKFq3fL0mqVSlAtzWodp0rcm77oVO21+0a18zizJtHuAUAAAAATrRqR4ie+mi+zsTY38pVMaC4vn7xbnVulvvfBIaeOa/gbVk/5e+StHSLlm05avu4Yc3ATM/r0fpyA/HvF26+qfqunGv+33uueV7sxUSt2x0iKSMAaVzbOb3IurWqKymj+f2CtXud8p451addQ7n9F4jOv4kaF67bp8iorHf+pKala96q3baPe7Spf81zOzbPuKXuXGy87fcuMyu3HbY1H+/Zpn6mt7BFnY/XvNW7Hcav9tf6/baHDXRuUUfentnbAXmp/5QkDel+8/2nVm47rMk/r9Tp6Is6H5ek/1u5S5/9/ne2rq1b7fKfu7VZfN6kjB54y7ccsn1cr1rmf2avNP/vPUr87zbge+/I3V5bkpSQlPHUSynj9uH2TWpd54qbQ7gFAAAAAE5gtRr6OmirXvsmWMmp6XbHmtetqJkvDVStSv7XuPrGRV9I1HOf/aU3v12hd39Y5RCqXelCfLJe+nKZIqMzGnA3rlVet9bI/BvlPu0aqu5/t8L9vfOoPv1tzTWbhq/ZcTTLAKxLy1tUJTBj90/w1kNavPEfh3NS09L19szFtm/In7y7vdN2tz3U+zYF/Hdr2JRfVmnNjqOZnpeWbtHvK3badsQ4U+VypdSl5S2SpJCwKO06HHadKxxNm7Nab32zWCPen62d13gqZHJqml77cpFOnYmVJHVsVlt1qpS95px92t5q24X14azlmQZn4efOa+qc1ZIkb08P3ZtJsHQ8PEqPvP2T3vt+mT76eYVtHVxt+8FT+ujnlZIy+nY93Kd1Fr/iy0LPxGrDnoz+U7c1qKYalQKydV1Wlm856Di22XEsM/d2b65L+d63CzZqz9HMfz/T0i36YNYy2061OlXKXndHo9Vq6PfgnZIynmjZt92t2aopJ/7a8M/l8Kx781x/CuPVaCgPAAAAAHksITlV73y/Suv2/Otw7J7ODfXs4Nvl7uaWJ+998nSs4hIzvslcvPmIgrcfU9M6FdWibiWVLeUrXy9PnY9P0j8nzmr1zuO2pu4BJX315qNdrzmvu5tZb43oqxHvz1ZcYopm/bVF63YfU++2t6pa+TJKS7fo38hord5x1PaNd81K/urUvI7DXB7ubnrtsV4aPek3pVusev3LRVq9/Yg6NK0lPx8vhZ49rwVr99r6e7WoX1V3d25yzdrOxyVp77Hw/379l3s97T0WbvuGu5SfjxrXyd7Or+K+Xnr98V564ZM/lZKWrnGfzFPrhtXVuXkdlS3tp4SkVB3697RWbDusc7Hx8vb0UMNaFez6IDnDI31aa+W2wzIMadqvq/TDG0Nz1MTb/79bUCOiLmj4+7PVon5VtW9cUxXKlpTVatXR0HNavOEfnfnv6YOVypXSW8P7ZDmnr7enXny4u17+IkhnYuJ032vfaUDHxmpQo7zMZpMOnjiteWv22HZtPf9AV1vQeSU/Hy95/xeQ/Lp8h5ZvPqhureqqQY3y8vP1VtT5eG3ed0Jrdx+z9ZEae18XNaxVMVu/9jnLd8j634W51X/KJMfPfXZ/P2pWCtDTgzvps9//VkJyqoa/P0ddWtRRqwbV5F+ymNLSLDoeEaVlmw7agsYSxbz13sj+1517zY4jivjviYp3dmgkH6/Me6bdqLiEZM1csFGSVMzbM9efwpgZk5HVTa+AE6QmxckwcvaIXA9vP5nNbrJaLUpLvvFHxAL5GescRQHrHIUdaxySFHbugibMWKoTEbF24+5uZr1wfwfd2f7at3TllsjoOE3/c7PW7Dwui/X63wK2rFdJLz7QUZXLlXQ4ZjKZ5elz+clz/0ZG67kpc23fYF9Li/pV9fpjvTINLi5Zs+Oo3vzmL1vQkZl2TWpq0jN3ZXmr2faDp/TkB3OyrqdeFX39ygNZnnO1bQdO6sXP5utiFj2Q3Mwm3dWpicbc1zlHjcxzy6SfVui34B2SpJeH9dA9XZvl6PrlWw5q2pzVtgDrWto1rqm3RvTJVn8nSfoteIemzF6ldEvm3/t5uLvppUfu0F2drh1axl5M1ORfVmrZ5gPKKsko5uOplx7poT5ts7cjKT4pRX3GTFdCcqoqBpTUgslP5squwFXbDmv8Z/Ptxh7o2VLjHuyW7Tl+C96hz37/+7oPWmhQo7zeeKJPlrvoLhn+3mztPBwqk0n6c9KILP9M3oj3v1+muf/dPvr6472y/D3NLYRbcDnCLSBzrHMUBaxzFHascWw/FK7Xvlmuiwn2YU3p4j764Mkealw7b58gdrXwcxf1967j2nk0Qv9GntfFhGQlp6arZDFvlSnpoya1K6hT0xpqUffaO5quDrekjFsGF63fr9U7jujwybM6H58kbw93lQ8ooRb1qqrX7fXVpE7lbNUYfSFBv6/YqfV7QhRx7oISklNVys9H9auXV/8ODdWtVd3r7n7Jq3BLytgVNnf1Lq3fHaITEdFKTElTcV8vVStfRq0aVNNdnRqrQoBjKOgsSSlpevD1H3TydIx8vDw089UHVa/69XswXSk5NU3BWw5p3e4QHTp5RtHnE+Tubla50n5qWLOi+rS71fZAgZw4Hh6l34J3atvBkzodfVFuZrMqBJTQ7Y1q6N7uzVWpbKlszXPk1Fkt33JQW/85qYhzFxSflKIyJXxVqWwpdWlRR73b3qrSJbLfkH5/SITemblEIeFRGjOksx7um71bGbNjzvLt+mnxViWnpqtH63oae3+XbPcAu+RsTJyWbjqgdbtDFH7uvGLjEuXl4a4yJYupYc0K6tqyrjo0qyU38/U7TyUkpei5qXO1+0iY2jSqoU/HDb7RX1qmlm85qFemB8kwMm5ZnfrcoFyd/1oIt+ByhFtA5ljnKApY5yjsWONF2/y1B/Txr+sd+lDVrRqgD5/qpcAyfi6q7OZkFm4hfzl66qyeeH+24hNTFFimuGa99bDKliqY682ZQs/EqnQJ31x5SmJ+dz4uSUkpadl+kmR2/HM8UsPfn62U1HRVK19G377+4E099TInaCgPAAAAALko3WLV1N/Wa9LstQ7BVveWtTXjhQEFNthCwVCnajlNe26QvDzcdSYmTqMn/qboCwmuLivfqxJYukgEW5JUqrhPrgZbR0PPaczHfyglNV1lS/vpixfvdVqwJRFuAQAAAECuiU9K0fgvluj/Vts/Lc9kkp666za9/Xi3HN+SBNyIZnWraNKzd8nLw10h4VEa8f5snYvNuo8WcCMOnzyjJz+Yo9i4RPmXLKbPx9/r9FtzCbcAAAAAIBeEnbugERPna8uBULtxb093vf9kTz3cq3mOnlwH3Kz2TWrpixeHqEQxb4WdPa+Q8ChXl4RCaM/RcF2IT1KVwNL67vWHVLvy9Zva5zZ6bsHl6LkFZI51jqKAdY7CjjVedOw6EqGXv1rm0Dg+sLSfJo7qpVuqBLiostxHz62C53h4lP6NjFHXlre4uhQUUvNW71aXFrfkqJF/biLc+s++ffs0b948bdmyRZGRkTIMQ/7+/mratKn69++vzp07Z3n9vHnz9PLLL2frvR577DFNmDAhy3Pi4+M1a9YsBQcHKzQ0VFarVZUqVVK3bt30yCOPqEyZMtl6r9yaJy8RbgGZY52jKGCdo7BjjRcNQesP6qPZ6xz6a91ao5w+fKqX/Eu65pu9vEK4BSC/cXd1Aa528eJFvf7661q6dKnDsbCwMIWFhWnRokXq2LGjPvnkE/n63vw/TLfeemuWx0NCQjR8+HCFh4fbjR89elRHjx7VH3/8oRkzZqhx48ZOmQcAAACAI4vVqs/nbtZvK/c6HOvRqrZefrizvDyK/LdcAJDnivzftN99952WLl2qUqVK6aGHHlLXrl1VuXJlJScn69ixY/rxxx+1Zs0arV27Vi+++KI+//zz6865d6/jP25X8vC4dgPJ+Ph4jRgxQuHh4fLw8NDYsWPVr18/eXt7a/v27Zo4caJOnTqlkSNHav78+SpbNvN7WXNrHgAAAACOEpJS9ca3K7Rp/ymHYyPubKVHetNfCwCcpciHW2PGjFG5cuXUq1cvu1v0SpYsqcDAQLVr105vvfWW5syZo+DgYB05ckS33JL1fcpeXjf+6NBvv/1WYWFhkqRJkyapT58+tmPdu3dXfHy8JkyYoKioKE2fPl1vvvlmns4DAAAAwF74uYt6cfoSnYiMtRv39nTX68O6qkvzmi6qDACKpiL/tESTyaQHHnggy95T9913n+11SEhIntVisVg0Z84cSVKzZs3sAqlLx7/66ivbx/PmzVNSUlKezQMAAADA3u6jkRo+cZ5DsFW2VDHNeGEAwRYAuECRD7eyIzU11fa6XLlyefY+O3fuVGxsxj+SvXv3djg+d+5cHT9+XIMGDZIkJScna/369Xk2DwAAAIDLFm08pGenLdT5+GS78frVyurblweqblVafQCAKxBuZcOsWbMkSXXq1FHz5s1zdK3Vmv2nAO7fv9/2ulmzZnbHkpKS9Nlnn6lJkyYaM2ZMptfk9jwAAAAALjWO36T3f1yjdIv91/fdWtbS9HEDFFCymIuqAwAU+Z5bV7NarUpLS1NCQoIOHDigH374QevWrVPFihX1ySefZKspZFBQkObPn68jR44oKipKPj4+atKkiR566CF17979mtcdP37c9rpy5cp2x2bNmqWzZ89q8uTJCgwMlLu7u9LT0+2uye15nMXdK+dPoDSZzLb/e3j75XZJQL7AOkdRwDpHYccaL/gSklL12leLtH6P49fLI+5uqyfuvJ3G8QDgYoRbVwkKCtKECRNsH/v7++uZZ57Rww8/rBIlSmRrjvHjx9t9nJiYqE2bNmnTpk0aOnSoXnvttUyvi4mJsb0uXbq07XVsbKxmzpypjh07qnXr1pKkEiVKKCYmxnb7YV7M4yxms9sNX2symWQy3fj1QEHAOkdRwDpHYccaL5gizl3Q2Kl/KCQsym7cy9Ndb4/oqztuq+eiygAAVyLcusqJEyfsPo6OjtZPP/2khIQEPfPMM/L1zXyXUaVKldSzZ095eHioVatWat26tcqXL6/U1FRt3rxZH330kUJDQ/XTTz+pQYMGGjhwoMMcl5q6e3p62v3058svv1R8fLzGjRtnG/P09JSUEZzl1TzOYrVacnyNyWSWyWSSYRgyjOzf+gkUJKxzFAWscxR2rPGCa8/RcI3/dL5i4+wfvFS2lJ8mj7lLDWqUv6GvYwuLm/kBNQDkNsKtqzz33HN67rnnlJCQoLCwMC1atEg///yzvvvuO61fv15z5syRn5/jlvLWrVvbdkNdycfHRz179lTjxo3Vr18/xcfHa8aMGZmGW5eYzZdboYWHh2v27Nnq16+f6tW7/JOh7PTyyq158lp6SmKOv9jz8PaTyeQmw7AqLTk+jyoDXIt1jqKAdY7CjjVe8BiGoQXrDmrKb+sd+mvVq1pWE0f2VNnSfkX699NkMsvTp7irywAAGxrKX0OxYsVUt25djRs3Tt99953MZrOOHDmiadOm3dB8FSpUUK9evSRJp06dUmhoqMM5l3aFpaWl2camTZsmwzDsmr9LUkpKit01eTEPAAAAUJSkpln04c9/a9LstQ7BVtfmNTX9hTtVtjS90wAgvyHcyoZmzZqpRYsWkqQ///zzhuepU6eO7fWpU6ccjpcpU0aSZLFYFBcXp0OHDmnRokW67777VKVKFdt5aWlpiouLs7smL+YBAAAAiopzsfEaPWWBFm445HDssb4t9M4Td8jb08MFlQEArodwK5uqV68uSYqPj7dr2J4TPj4+ttdX7qq6pGbNmrbX4eHhmjx5snx8fDRq1Ci78yIjI223E9aoUSPP5gEAAACKgt1HI/XoB3P1z4mzduM+Xu56b0QPPdG/lcxmnogIAPkVPbeyKTk5WVLGk26KFSt2Q3OcO3fO9jowMNDheMOGDW2vZ82apXXr1umZZ55x2FW1c+dO2+tGjRrl2TwAAABAYWYYhub9/Y+m/b5Rlqt60VYpV1IfPNVTNStyhwMA5HeEW9lgsVi0Y8cOSVK1atXk5eV1Q/Ns3LhRklS8ePFMd0o1a9ZMpUuXVmxsrObNmyd/f389+uijDuctXbpUkuTt7a127drl2TwAAABAYZWSlq6PZq/T4k2HHY61bVRVbz7aTcV9b+zrfgCAcxX52xK/+eYbDR06VOfPn7/mOTNmzFBERIQk6cEHH3Q4bhiGPvzwQ61YseKacyxZssQWkN11113y9vZ2OMfNzU3333+/7eNhw4Y57BLbuHGj1qxZI0kaNGiQ3a2OuT0PAAAAUBidiYnXyMkLMg22Hu3TQpNG9ibYAoACxGQYhuHqIlzl0KFDGjJkiJKTk1WqVCkNHTpUXbp0UZUqVWSxWHT48GHNnj1by5YtkyS1adNGM2fOlIeHfSPJmTNn6qOPPpIkde/eXYMGDVLDhg3l6+uriIgIBQUF6fvvv1d6erqqVaumuXPnqnjxzB+dGx8frwEDBigsLEzly5fXhAkT1KZNG1mtVgUHB2vSpElKTExUQECA5s+fr7Jly+bpPM6QmhQnw7Be/8QreHj7yWx2k9VqKdKPYUbhxjpHUcA6R2HHGs9/dh4O12szg3U+Ltlu3NfbQ68P66pOTelFez0mk1mePpl/PwMArlCkwy1J2rFjh1555RX9+++/WZ7Xr18/vf322/Lzc3z0b3p6uj7++GP99NNPmTaKv6Rx48aaMmWK3RMLMxMSEqLhw4crPDw80+MBAQGaMWOGGjdu7JR58hrhFpA51jmKAtY5CjvWeP5hGIZ+X7VPn8/dJIvV/lugqoGl9OHInqpevrSLqitYCLcA5DdFPtySMnpqLV68WKtWrdLevXsVFRUld3d3BQYGqkWLFhowYIBatmx53XlOnjyp//u//9P69esVERGhpKQklS1bVrfccov69eunXr16yd09e23O4uPjNWvWLC1fvlyhoaEyDEMVK1ZUt27dNGzYMIfm8Hk9T14i3AIyxzpHUcA6R2HHGs8fklPTNPGXtVq25ajDsfaNq+vNR7uqmI+nCyormAi3AOQ3hFtwOcItIHOscxQFrHMUdqxx14uMuqiXv1quI6FRDsee6N9Sw3q3kNlsckFlBRfhFoD8hqclAgAAACiUth8K0+vfrNCFBPv+WsW8PfXWY93UrnE1F1UGAMhNhFsAAAAAChXDMDRnxV5Nn7dZ1qtuVKlRobQ+eKqnqgaWck1xAIBcR7gFAAAAoNBISknTBz/9rRXbjzkc69yshl59pIuKedNfCwAKE8ItAAAAAIVC2LkLeuXL5ToWHm03bjJJTw64TUN7NpPJRH8tAChsCLcAAAAAFHhrdh3Xe7PWKCE51W68uK+n3n68u9rcWtVFlQEA8hrhFgAAAIACKy3doi/mbdbvq/Y5HKtZsYw+HNlTlcuWdEFlAABnIdwCAAAAUCCdjonT698E658TZx2OdWtRSy8P7Sxfbw8XVAYAcCbCLQAAAAAFzoZ9J/W/H1bpYkKK3bi7m1nP3HO77unckP5aAFBEEG4BAAAAKDDSLVZ9E7RNPy3b5XCsfBk/vTv8DjWoEeiCygAArkK4BQAAAKBAOHc+QW/MXKE9xyIdjrVrVE2vD+uiEsW8XVAZAMCVCLcAAAAA5HtbD4Tqre9X6nxcst24m9mkp+5qrfu7N5HZzG2IAFAUEW4BAAAAyLcsVqu+/2uHvl+8Q4ZhfyygpK/+N/wONaldwTXFAQDyBcItAAAAAPlSzMUkvf3dCm07FO5wrFX9ynrrsW4qXdzHBZUBAPITwi0AAAAA+c6uoxF6c+YKRV1ItBs3maQn+rXSw72byc1sdlF1AID8hHALAAAAQL5htRr6JXi3vl6wVRar/X2IpYv76O3Hu6llvcouqg4AkB8RbgEAAADIFy7EJ+udH1Zp0/5TDsea1qmgd57oroCSxVxQGQAgPyPcAgAAAOBy/5w4o9e+CdaZmHiHYw/3aqYn+reSuxu3IQIAHBFuAQAAAHAZwzD0f6v36/O5m5RusdodK1HMS28M66q2jaq5qDoAQEFAuAUAAADAJdLSLZo8Z50WbjjkcOzWGoH63/DuKl+muAsqAwAUJIRbAAAAAJzuYkKyXvl6uXYejnA4NqRbY426u7U83N1cUBkAoKAh3AIAAADgVKfOnNf4L5Yo9OwFu/Fi3p567ZEu6tSshosqAwAURIRbAAAAAJxmx+FwvfLVcsUlptiNVwworo9G9VaNimVcVBkAoKAi3AIAAADgFAs3HNSkX9bJYrVvHN+kdnm9/2RPlS7u46LKAAAFGeEWAAAAgDxlsVo1488tmh28x+FY7za3aMKDneTpQX8tAMCNIdwCAAAAkGcSk9P01ncrtX7vvw7HnrrrNg3t2Uwmk8n5hQEACg3CLQAAAAB54mxsvMZPX6KjodF2414e7np9WBd1bVHLRZUBAAoTwi0AAAAAue7gybOaMH2poi4k2o0HlPTVxFG9VL9aORdVBgAobAi3AAAAAOSqVTtC9L8fVislLd1uvE4Vf300qrfKlfZzUWUAgMKIcAsAAABArjAMQz8u3aWvFmx1ONa+cXW99Vg3+Xp7uKAyAEBhRrgFAAAA4Kalpln04c9/a+mWIw7HHryjiZ66u7XczGYXVAYAKOwItwAAAADclNi4JL3y1TLtOXbabtzNbNaLD3ZQ/3b1XVQZAKAoINwCAAAAcMNORMRo/PQlioiKsxsv7uulD57soeZ1K7moMgBAUUG4BQAAAOCGbDkQqte+DlZCcqrdeJVyJTV5dG9VCSzlmsIAAEUK4RYAAACAHJu7Zr+m/b5BFqthN968bkW9P6KHShTzdlFlAICihnALAAAAQLalWyya+tsG/bn2gMOx/u3qafwDHeTu5uaCygAARRXhFgAAAIBsuZiQrFe/DtaOw+F24yaTNHrg7bq/e2OZTCYXVQcAKKoItwAAAABc17+nY/XiF0sUdu6i3biPl7veeqy7OjSp7prCAABFHuEWAAAAgCxt/ueU3pi5QvFJ9o3jy5fx06RRvVW7sr+LKgMAgHALAAAAwDUYhqHfV+3TZ39sktWwbxzfpHZ5vTeip8qU8HFRdQAAZCDcAgAAAOAgLd2iyXPWaeGGQw7H+ratq/H3d5SnB43jAQCuR7gFAAAAwM75+CS9+tVy7ToaaTdO43gAQH5EuAUAAADA5nhEjF6cvkQRUXF2477eHnrn8e5q26iaiyoDACBzhFsAAAAAJEkb9p3Um9+uUGJymt14xYAS+mhUL9WoWMZFlQEAcG2EWwAAAEARZxiG5gTv0Rd/btZVfePVrE4FvfdkD5Xyo3E8ACB/ItwCAAAAirDUNIsmzV6rxZsOOxy7s319jbuvvTzcaRwPAMi/CLcAAACAIirmYpJe+WqZ9oacths3m0x6dnBbDe7SkMbxAIB8j3ALAAAAKIKOhUXrxelLdDom3m7cz8dT/xt+h1o3qOKiygAAyBnCLQAAAKCIWbv7hN7+fqWSUtLtxiuXLaFJo3urevnSLqoMAICcI9wCAAAAigjDMPTTst36asEWh8bxLetV0rvD71CJYt6uKQ4AgBtEuAUAAAAUASlp6frgp7+1fOtRh2MDO92qsfe2lbsbjeMBAAUP4RYAAABQyEVdSNDLXy7TPyfO2o27mU0ae287Derc0EWVAQBw8wi3AAAAgELs8KlzmjBjqc7GJtiNF/f11HsjeqhlvcouqgwAgNxBuAUAAAAUUqt2hOh/P6xWSpp94/iqgaX00aheqhJYyjWFAQCQiwi3AAAAgELGajX03V/b9d1fOxyOtW5QRe880V3Ffb1cUBkAALmPcAsAAAAoRJJS0vTurNVavfO4w7Eh3Rpr9MA2cnczu6AyAADyBuEWAAAAUEiciYnXhBlLdSQ0ym7c3c2sFx/oqH7t6rmoMgAA8g7hFgAAAFAI7D9+Ri99uVQxF5Psxkv5eeuDp3qqSe0KLqoMAIC8RbgFAAAAFHBLNh/RxJ//Vmq6xW68VqUymjSylyoElHBRZQAA5D3CLQAAAKCAslit+mrBVv28bLfDsfaNq+vNx7qqmLen8wsDAMCJCLcAAACAAighOVVvf7dS6/eedDj2cK9mGnHnbTKbTS6oDAAA5yLcAgAAAAqYiKiLenH6Uh2PiLEb93R30ysPd1aP2+q4qDIAAJyPcAsAAAAoQHYdjdArXy7XhYRku3H/Er6aOLKnGtQIdFFlAAC4BuEWAAAAUEAErT+oj2avk8VqtRuvV7WsPhzZU+VK+7moMgAAXIdwCwAAAMjn0i1WfT53k35ftc/hWLcWtfTqI53l7enhgsoAAHA9wi0AAAAgH4tLTNEbM1doy4FQh2PD+7fSsD7NZTLROB4AUHQRbgEAAAD5VNjZCxo/fYlOnj5vN+7t6a7Xh3VVl+Y1XVMYAAD5COEWAAAAkA/tOByuV79erosJKXbjgaX9NHFUL91SJcBFlQEAkL8QbgEAAAD5zPx1B/TxnPUOjeNvrRGoD5/qKf+Svi6qDACA/IdwCwAAAMgnsmoc3+O2Onp5aCd5efAlPAAAV+JfRgAAACAfiE/KaBy/+R/HxvFPDrhND/dqRuN4AAAyQbgFAAAAuFjYuQt68Yul+vd0rN24t6e73ny0mzo1q+GiygAAyP8ItwAAAAAX2nUkQi9/tcyhcXy50sU0cWRv1a1K43gAALJCuAUAAAC4SND6g/po9rpMGseX0wdP9VRAyWIuqgwAgIKDcAsAAABwMovVqs/nbtZvK/c6HLujVW29MrSzvDz5Uh0AgOzgX0wAAADAiRKSUvXGtyu0af8ph2PD72ylYb2b0zgeAIAcINwCAAAAnCT83EW9OH2JTkTaN4738nDX68O6qGuLWi6qDACAgotwCwAAAHCCXUcj9MqXy3UhIdluvGypYpo4spfqVSvrosoAACjYCLcAAACAPBa0dp8+mBWsdIt94/j61crqw5G9VLYUjeMBALhRhFsAAABAHrFYrfrkt7/185JtDse6tayl1x7uQuN4AABuEv+S/mffvn2aN2+etmzZosjISBmGIX9/fzVt2lT9+/dX586dszVPfHy8Zs2apeDgYIWGhspqtapSpUrq1q2bHnnkEZUpU6ZAzgMAAICcSUhO1dszlmv9nuMOxx7v11KP9W1B43gAAHKByTAMw9VFuNLFixf1+uuva+nSpVme17FjR33yySfy9fW95jkhISEaPny4wsPDMz0eEBCgGTNmqHHjxlm+V36bJ6+lJsXJMKzXP/EKHt5+MpvdZLValJYcn0eVAa7FOkdRwDpHYRUZHafxXyzR8YgYu3FPDze9/kgXdWtZ20WVATfPZDLL06e4q8sAAJsiH25NmzZNM2bMUKlSpfTQQw+pa9euqly5spKTk3Xs2DH9+OOPWrNmjSTpjjvu0Oeff57pPPHx8RowYIDCwsLk4eGhsWPHql+/fvL29tb27ds1ceJEnTp1SgEBAZo/f77Kls28YWh+m8cZCLeAzLHOURSwzlEY7T9+RhNmLFVsXJLdeEBJX304spcaVC/nosqA3EG4BSC/Mbu6AFcbM2aM3nzzTS1ZskTPPPOMbr31VpUsWVKBgYFq166dvvrqK91///2SpODgYB05ciTTeb799luFhYVJkiZNmqQnnnhC5cuXV6lSpdS9e3eNHj1akhQVFaXp06dfs578Ng8AAACyb/m2o3p6SpBDsFWvWqC+fWkgwRYAAHmgyIdbJpNJDzzwQJa9p+677z7b65CQEIfjFotFc+bMkSQ1a9ZMffr0cTj+1Vdf2T6eN2+ekpLsv+DJj/MAAAAgewzD0MyF2/TWtyuVmm6xO9a15S365pX7VLa0n4uqAwCgcCvy4VZ2pKam2l6XK+f407adO3cqNjZWktS7d2+H43PnztXx48c1aNAgSVJycrLWr1+f7+cBAADA9aWkpuvNb1fqu792OBwb1q+1Jj59l7y9PFxQGQAARQPhVjbMmjVLklSnTh01b97c4fj+/fttr5s1a2Z3LCkpSZ999pmaNGmiMWPGZHpNfp0HAAAAWYu+kKinpwZpxfZjduPubma9PqyLRt/TQWYzT0QEACAvubu6gPzGarUqLS1NCQkJOnDggH744QetW7dOFStW1CeffJLp45qPH7/8eOfKlSvbHZs1a5bOnj2ryZMnKzAwUO7u7kpPT7e7Jr/O4yzuXtd+AuW1mExm2/89vNnij8KJdY6igHWOguxo6Dk9P+1PnY6Osxsv6eejj54ZoGZ1K7PGAQBwAsKtqwQFBWnChAm2j/39/fXMM8/o4YcfVokSJTK9Jibm8iOeS5cubXsdGxurmTNnqmPHjmrdurUkqUSJEoqJibHdNpif53EWs9nthq81mUwymW78eqAgYJ2jKGCdo6BZu+uYXp2xUInJqXbjNSr6a+pzg1QlsLTdOGscAIC8Q7h1lRMnTth9HB0drZ9++kkJCQl65pln5OvruMvoUjN2T09Pu51dX375peLj4zVu3DjbmKenpyQpMTEx38/jLFar5fonXcVkMstkMskwDBmGNQ+qAlyPdY6igHWOgsYwDM1ZvkPTfl0jw7A/1qZhdX0wqr/8fL1sX9+wxlFY3cwPqAEgtxFuXeW5557Tc889p4SEBIWFhWnRokX6+eef9d1332n9+vWaM2eO/Pwy31JuNl9uYRYeHq7Zs2erX79+qlevnm3car3+FzX5bZ68lp6SmOMv9jy8/WQyuckwrEpLjs+jygDXYp2jKGCdoyBJt1j08a/rtWDdQYdjAzvdqrH3tpO7OU1pyWm2cdY4CiOTySxPn+KuLgMAbGgofw3FihVT3bp1NW7cOH333Xcym806cuSIpk2b5nDupd1caWmXv5CZNm2aDMOwa9ouSSkpKXbX5Od5AAAAkOFiQoqe+3SxQ7BlNpn0/JD2euH+DnJ340trAABcgX+Bs6FZs2Zq0aKFJOnPP/90OF6mTBlJksViUVxcnA4dOqRFixbpvvvuU5UqVWznpaWlKS4uzu6a/DwPAAAApNAz5zVi0jztOBxuN+7r7aHJT/fWPV0auqgyAAAgEW5lW/Xq1SVJ8fHxdg3bJalmzZq21+Hh4Zo8ebJ8fHw0atQou/MiIyNttwHWqFHD4T3y2zwAAABF3a4jERo+6U+dOnPBbryCf3F9/eLdanNrVRdVBgAALiHcyqbk5GRJGU+6KVasmN2xhg0v/7Ru1qxZWrdunR577DGH3VA7d+60vW7UqJHDe+S3eQAAAIqyRRsOacwni3QxIcVuvFHNQH0zYaBqVmTnOwAA+QHhVjZYLBbt2LFDklStWjV5eXnZHW/WrJlKl8543PO8efPk7++vRx991GGepUuXSpK8vb3Vrl07h+P5bR4AAICiyGK16ou5m/T+T2uUbrF/6E3P1nX06XP9VaaEj2uKAwAADop8uPXNN99o6NChOn/+/DXPmTFjhiIiIiRJDz74oMNxNzc33X///baPhw0b5rC7a+PGjVqzZo0kadCgQfLxcfyCKL/NAwAAUNQkp6bp1a+W65fgPQ7HRtzZSm8M6yovDx44DgBAfmIyDMNwdRGucujQIQ0ZMkTJyckqVaqUhg4dqi5duqhKlSqyWCw6fPiwZs+erWXLlkmS2rRpo5kzZ8rDw8Nhrvj4eA0YMEBhYWEqX768JkyYoDZt2shqtSo4OFiTJk1SYmKiAgICNH/+fJUtWzbTmvLbPM6QmhQnw7Be/8QreHj7yWx2k9Vq4bHaKLRY5ygKWOfIT2IuJunF6Ut04N+zduOeHm56Y1hXdW1RK8dzssZRGJlMZnn6FHd1GQBgU6TDLUnasWOHXnnlFf37779ZntevXz+9/fbb8vPzu+Y5ISEhGj58uMLDwzM9HhAQoBkzZqhx48ZZvld+myevEW4BmWOdoyhgnSO/OHn6vMZ9/pciouLsxv1L+GriqF5qUL3cDc3LGkdhRLgFIL8p8uGWlNFTa/HixVq1apX27t2rqKgoubu7KzAwUC1atNCAAQPUsmXLbM0VHx+vWbNmafny5QoNDZVhGKpYsaK6deumYcOGOTR1Lyjz5CXCLSBzrHMUBaxz5Ad7jkVqwoylDo3ja1fy10ejeyuwzLV/uHk9rHEURoRbAPIbwi24HOEWkDnWOYoC1jlcbeX2Y/rfD6uVmm6xG29Vv7LeH9FDxXw8b2p+1jgKI8ItAPkN3TABAABQ5BiGodnBe/TFvM0Ox/q2rasJD3aUu5ubCyoDAAA5RbgFAACAIiXdYtW03zdo3t//OBwb3r+VhvVpLpPJ5ILKAADAjSDcAgAAQJGRlJKmN2au0IZ9J+3G3cxmvTy0k/rcXtdFlQEAgBtFuAUAAIAiIfpCosZPX6JDJ8/ZjRfz9tQHT/VQy3qVXVQZAAC4GYRbAAAAKPT+jYzVuM8XKzI6zm68XOli+vjpPqpVyd9FlQEAgJtFuAUAAIBCbdfRCL00Y6niElPtxutU9tfk0b1VtrSfiyoDAAC5gXALAAAAhdbybUf13qzVSku32o23blBF7464Q8W8PV1UGQAAyC2EWwAAACh0DMPQz8t3a8afWxyO9W9XT+Mf6CB3NzcXVAYAAHIb4RYAAAAKlXSLVVN+Xa/56w44HBtxZys90ru5TCaTCyoDAAB5gXALAAAAhUZicppenxmsTftP2Y27u5n1ysOd1av1LS6qDAAA5BXCLQAAABQKURcSNP6LJTp8Kspu3M/HUx881VMt6lZyUWUAACAvEW4BAACgwDseEaMXPl+s0zHxduOBZfz08dN9VLNiGRdVBgAA8hrhFgAAAAq0DXtP6s3vVigxOc1u/JYqAZr8dG8FlCzmosoAAIAzEG4BAACgQLr0RMQv52+RYdgfu/3WKvrf8B7y9fZwTXEAAMBpCLcAAABQ4KSkpevDn//Wsi1HHY4N6FBf4+7rIHc3swsqAwAAzka4BQAAgAIl6kKCXv5ymf45cdZu3M1s0rOD2+qezg1lMplcVB0AAHA2wi0AAAAUGIdOntOEGUt17nyC3XhxX0/974k7dFuDKi6qDAAAuArhFgAAAAqEFduP6b1Za5SSlm43XjWwlCaN6qWqgaVcUxgAAHApwi0AAADka1aroZmLtumHxTsdjrW5tYrefry7ivt6uaAyAACQHxBuAQAAIN9KTE7T/35Ypb93n3A4dl/3xho9sI3czDSOBwCgKCPcAgAAQL4UGR2nCdOX6lh4tN24u5tZLz7YUf3a1nNRZQAAID8h3AIAAEC+s+dYpF7+apnOxyXbjZcu7qMPnuyhxrUruKgyAACQ3xBuAQAAIF9ZuOGgPpq9TukWq914ncr+mjiql8qXKe6iygAAQH5EuAUAAIB8Id1i1edzN+n3VfscjnVuVlOvD+siHy8PF1QGAADyM8ItAAAAuFxcYopenxmsrQfCHI491reFHuvbUmazyQWVAQCA/I5wCwAAAC518vR5TZixRKfOXLAb9/Jw1+vDuqhri1ouqgwAABQEhFsAAABwmS0HQvX6N8GKT0q1Gy9XupgmjuylulXLuqgyAABQUBBuAQAAwCX+WL1f037fIKth2I3fWiNQHz7VU/4lfV1UGQAAKEgItwAAAOBU6Rarpv2+QfP+/sfhWO82t+jFBzvKy4MvUwEAQPbwVQMAAACc5lqN400mafTA23V/98YymWgcDwAAso9wCwAAAE4Rdu6Cxn+xRCdPn7cb9/Xy0NuPd1e7xtVcUxgAACjQCLcAAACQ53YdjdArXy7XhYRku/HAMn76aFRv1a7s76LKAABAQUe4BQAAgDz118ZDmvjLWqVbrHbjt9YI1MSRPVWmBI3jAQDAjSPcAgAAQJ6wWg19uWCLfl622+HYHa1q65WHO9M4HgAA3DS+mgAAAECuS0pJ09vfrdTaPf86HBvev5WG9WlO43gAAJArCLcAAACQq87Gxmv89CU6GhptN+7p4abXH+mibi1ru6gyAABQGBFuAQAAINcc+PesXpqxVFEXEu3G/Uv4auLInmpQI9BFlQEAgMKKcAsAAAC5YtWOEL3zwyqlplnsxutU9tekUb0VWMbPRZUBAIDCjHALAAAAN8UwDP2wZKe+CdrmcKx94+p667Fu8vX2cEFlAACgKCDcAgAAwA1LSUvXBz/9reVbjzoce/COJnrq7tZyM5tdUBkAACgqCLcAAABwQ2IuJumlL5dq//EzduPubma9+EBH9WtXz0WVAQCAooRwCwAAADkWEh6j8V8s1umYeLvxEsW89MGTPdXsloouqgwAABQ1hFsAAADIkY37TuqNb1coMTnNbrxqYClNHt1blcuVdFFlAACgKCLcAgAAQLYYhqE5wXv0xZ+bZRj2x1rVq6T/De+hEsW8XFMcAAAosgi3AAAAcF0paema9MtaLdl8xOHY3R0b6Lkh7eTu5uaCygAAQFFHuAUAAIAsRV9I1EtfLtM/J+wbx5tNJj07uK0Gd2kok8nkouoAAEBRR7gFAACAazp86pwmzFiqs7EJduN+Pp763/A71LpBFRdVBgAAkIFwCwAAAJlauf2Y3p21Rilp6XbjVQNLatKo3qoaWMo1hQEAAFyBcAsAAAB2rFZD3y7aru8X73A41rpBFb3zRHcV96VxPAAAyB9cFm5ZLBYdPXpUZ86cUVxcnNLT03XXXXe5qhwAAABISkpJ0/9+WKU1u044HBvStZFGD7pd7m5mF1QGAACQOaeHW7t27dKPP/6o1atXKyUlxe5YZuFWUFCQmjVrpipV6OcAAACQlyKj4/TSjKU6GhZtN+7uZtaLD3RUv3b1XFQZAADAtTkt3DIMQ++9955mz54twzBkGIbd8cyesDN16lR9/fXXatOmjb7//ntnlQoAAFDk7D0WqZe+Wqbzccl246WKe+uDJ3uqSe0KLqoMAAAga04Lt15//XXNnTtXhmGoYsWK6t+/v+rXr68TJ07ok08+yfSaFi1ayDAMbd68WXv37lXjxo2dVS4AAECRsWjDIU2avVbpFqvdeJ3K/vpwZC9V8C/uosoAAACuzynh1saNG/XHH3/IZDLp3nvv1WuvvSZPT09J0po1a655XceOHVW/fn0dOnRIQUFBhFsAAAC5KN1i1RfzNuu3lXsdjnVqWkOvD+sqX28PF1QGAACQfU4Jt37//XdJUv369fXOO+/k6Npu3brp4MGD2rZtW16UBgAAUCTFJabojZkrtOVAqMOxx/q20GN9W8psdmwbAQAAkN84JdzavXu3TCaT7r777hxfW6NGDUlSREREbpcFAABQJJ06c14vTl+qU2fO2417ebjrtUc6q1vL2q4pDAAA4AY4JdyKjs544k6FCjlvRHrp9sWkpKRcrQkAAKAo2nogVK/PDFZcYqrdeLnSxfThU71Ur1pZF1UGAABwY5wSbvn4+CguLs4WcuXEiRMnJEmlSpXK5aoAAACKDsMw9H+r9+uzPzbKYrV/avWtNQL14VM95V/S10XVAQAA3DizM96kbt26kqTg4OAcXWcYhoKCgmQymdSgQYO8KA0AAKDQs1itmvrbBk37fYNDsNWr9S36/Pn+BFsAAKDAckq41adPHxmGoQ0bNmj+/PnZvu7TTz/VsWPHJEm9e/fOo+oAAAAKr6SUNL385XL9sWa/3bjJJI0e2EavD+siLw+nbOYHAADIE04Jt+655x7Vrl1bhmHolVde0bvvvquQkJBrnn/w4EGNGzdOX375pUwmk2655RbdeeedzigVAACg0Ii5mKjRU4K0fu+/duO+3h6aNKq3HuzRVCYTT0QEAAAFm8kwDOP6p92806dP67777tPp06dtX0R5e3vLy8tL58+fl8lkUtWqVRUdHa2EhARJGbclBgYG6vfff1dgYKAzyoQLpCbFyTCsObrGw9tPZrObrFaL0pLj86gywLVY5ygKWOd559/TsRr32WJFRsfZjZcrXUwfP91HtSr5u6iyooU1jsLIZDLL06e4q8sAABun7NySpPLly+u3337THXfcIcMwZBiGkpKSdOHCBVvYderUKcXHx9uOd+rUSb/++ivBFgAAQA7sOhqhJyfNdwi26lT21zcv3k2wBQAAChWn7dy60q5du7R48WL9/fffioiIUHp6uiTJ3d1dgYGB6tixo3r27Kk2bdo4uzS4ADu3gMyxzlEUsM5zX/C2Y3p31iqlpdv/29q6QRW9O+IOFfP2dFFlRRNrHIURO7cA5DcuCbeuFhsbK0kqXbq0iyuBKxBuAZljnaMoYJ3nHsMw9PPy3Zrx5xaHY/3b1dP4BzrI3c3NBZUVbaxxFEaEWwDym3zxaBxCLQAAgBuXbrFq6m/r9efaAw7HRtzZSo/0bk7jeAAAUGjli3ALAAAANyYxOU2vzwzWpv2n7Mbd3cx65eHO6tX6FhdVBgAA4ByEWwAAAAVU1IUEjf9iiQ6firIb9/Px1AdP9VSLupVcVBkAAIDzEG4BAAAUQCciYvT854t1Jsa+j1NgGT99/HQf1axYxkWVAQAAOJdTwq2HH37YYcxkMmnKlCny9+dR1AAAADmx83C4XvpymeKTUu3G61YN0EejeyugZDEXVQYAAOB8Tgm3tm7dKpPJpCsfzGgymZSSkuKMtwcAACg0lm45ovd/XKN0i/2Thm9vWFX/e+IO+Xp7uKgyAAAA13BKuHXp6Tx16tRRqVKlbONeXl7OeHsAAIACzzAMzVqyU18HbXM4dleHBnr+vvZydzO7oDIAAADXckq4VaJECV28eFEjRoxQ//79nfGWAAAAhUa6xaKPZq/Twg2HHI6Nuru1HuzR1PbDRAAAgKLGKT/eq1evnqSM2xMBAACQfQnJqRr/xVKHYMvD3ay3H++uh3o2I9gCAABFmlPCrcGDB8swDC1YsEBHjx7N0bVr1qxR/fr11aBBgzyqDgAAIH+KjUvS01OCtOVAqN14cV8vTRvTT3e0qu2iygAAAPIPp4Rb/fr10913363U1FQNHz5cBw8ezNH1hmHYNaMHAAAo7M7Fxmv0x0E6fCrKbryCf3F99eJdalanoosqAwAAyF+c1nX0gw8+0PDhwxUVFaXBgwfrww8/1JkzZ5z19gAAAAVG+LmLGvnxAv17OtZuvH61svpmwt2qXr60iyoDAADIf5zSUF6S0tPTde+996pcuXL6+OOPNWvWLP38889q06aNmjZtes3r/v33X2eVCAAA4HL/Rsbq2WkLFXUh0W68Vf3K+vCpnvLx8nBRZQAAAPmTU8KtDh06KDo62uHWwvT0dG3YsEEbNmxwRhkAAAD52uFT5/Tcp3/pfHyy3XjHJtX1zhN3yNPDzUWVAQAA5F9OCbfOnTt3zWP5qZfWjh07FBQUpK1btyoqKkopKSkqW7asmjZtqoEDB6pdu3ZZXj9v3jy9/PLL2Xqvxx57TBMmTMjynPj4eM2aNUvBwcEKDQ2V1WpVpUqV1K1bNz3yyCMqU6ZMtt4rt+YBAAB5Z++xSI37fIkSklPtxnvcVkevPdJZ7m4EWwAAAJlx2m2JJpNJzz33XJa3IGZm9+7dmjJlSt4U9Z+kpCS98cYbCgoKcjgWFhamsLAwLVq0SAMHDtS7774rt1z44vLWW2/N8nhISIiGDx+u8PBwu/GjR4/q6NGj+uOPPzRjxgw1btzYKfMAAIC8s/VAqF76cpmSU9Ptxu/u2EDj7usgs9nkosoAAADyP6eFW5JUt25d3XbbbTm6JjEx8fon3YTU1FQ98cQT2r59u8xms4YMGaIBAwaoWrVqSktL08GDBzVlyhQdPnxY8+bNk7+/v1544YXrzrt3794sj3t4XLtfRnx8vEaMGKHw8HB5eHho7Nix6tevn7y9vbV9+3ZNnDhRp06d0siRIzV//nyVLVs2T+cBAAB5Z+3uE3p9ZrDS0q124w/e0USjBraRyUSwBQAAkBWnPS0xP91+eCVPT089+OCDKleunGbOnKm33npLzZo1U5kyZRQYGKjOnTvrt99+U5UqVSRJP/74o2JjY68zq+Tl5ZXlf2bztT/13377rcLCwiRJkyZN0hNPPKHy5curVKlS6t69u0aPHi1JioqK0vTp0/N8HgAAkDeWbTmiV79e7hBsDb+zFcEWAABANjkl3Dp06JAOHTqkTp065fjazp0769ChQzp48GAeVJahT58+Wr169TV7avn4+Oihhx6SJKWkpGjr1q15VovFYtGcOXMkSc2aNVOfPn0cjn/11Ve2j+fNm6ekpKQ8mwcAAOSN+WsP6J0fVslitf8B4JjBbfVonxYEWwAAANnktJ1b+Z27e9Z3aNaoUcP2OqsG+Tdr586dtp1hvXv3djg+d+5cHT9+XIMGDZIkJScna/369Xk2DwAAyH2zl+/WpNlrdeXGdpNJenloJw3pRh9MAACAnCDcyqYre3+VLFkyR9dardbrn/Sf/fv32143a9bM7lhSUpI+++wzNWnSRGPGjMn0mtyeBwAA5B7DMPRN0DZ9Pm+z3bib2ay3H++u/u3qu6gyAACAgsupDeULsisbxGfniY9BQUGaP3++jhw5oqioKPn4+KhJkyZ66KGH1L1792ted/z4cdvrypUr2x2bNWuWzp49q8mTJyswMFDu7u5KT0+3uya35wEAALnDMAx9+n8b9duqfXbjnu5ueu/JHmrXqJqLKgMAACjYCLeyITU1VQsXLpSUsQvqUnP5rIwfP97u48TERG3atEmbNm3S0KFD9dprr2V6XUxMjO116dKlba9jY2M1c+ZMdezYUa1bt5YklShRQjExMZk2uM+teZzB3cs3x9eYTGbb/z28/XK7JCBfYJ2jKCgq69xiteqDH4K1YK19sOXj5aEpY+9Wy/pVXVQZ8lpRWeMAALgS4VY2fP3117Y+W88+++w1z6tUqZJ69uwpDw8PtWrVSq1bt1b58uWVmpqqzZs366OPPlJoaKh++uknNWjQQAMHDnSY41JTd09PT7tGsl9++aXi4+M1btw425inp6ck+1smc3seZzCb3W74WpPJJJPpxq8HCgLWOYqCwrzO09IteuOrxVq+5ZDdeHFfL332wmA1ql3JRZXBmQrzGgcAwNVcEm7t3r1bS5Ys0d69exUaGqq4uDi5ubnJ399fFSpUULt27dStWzfVrl3bFeXZ2blzp7788ktJ0uDBg9W2bdtrntu6dWvbbqgr+fj4qGfPnmrcuLH69eun+Ph4zZgxI9Nw6xKz+XI7tPDwcM2ePVv9+vVTvXr1bOPZ6eWVW/PkJavVkuNrTCazTCaTDMOQYbi2fiCvsM5RFBT2dZ6cmqaXv1io9Xvsb/0vU8JXn71wj26pWu6G/h1EwVHY1ziKrpv5ATUA5DanhltHjx7VG2+8od27d9uNG/89KigpKUlhYWHatm2bpk2bpr59+2r8+PEKDAx0Zpk2YWFhGj16tNLS0tSwYcNr3kqYXRUqVFCvXr30xx9/6NSpUwoNDXW4xdHXN+MWvbS0NNvYtGnTZBiGXfN3SUpJSbG7Ji/mcYb0lMQcf7Hn4e0nk8lNhmFVWnJ8HlUGuBbrHEVBYV7nCcmpmjBjqXYejrAbL1e6mD4Z01/VyvkWul8zHBXmNY6iy2Qyy9OnuKvLAAAbpz0tcdu2bbrvvvu0e/fu/35ydfk/Dw8Pubu7O4z/9ddfGjJkiMLDw51Vps2ZM2f06KOPKiYmRlWqVNGMGTPk7e190/PWqVPH9vrUqVMOx8uUKSNJslgsiouL06FDh7Ro0SLdd999dkFYWlqa4uLi7K7Ji3kAAEDOXUxI0dhPFjkEW5XKltCMF+5StfKlXFMYAABAIeSUnVtxcXEaO3asEhISJGU8bXDQoEFq3ry5qlSpYuv5lJqaqtDQUO3YsUNz587Vnj17dPr0aT322GMKCgqSl5eXM8pVVFSUHn30UZ06dUqVKlXSrFmzVK5cuVyZ28fHx/b6yl1Vl9SsWdP2Ojw8XJMnT5aPj49GjRpld15kZKTtdsIaNWrk2TwAACBnklLSNP6LxfrnxFm78RoVS+uTMf0UULKYiyoDAAAonJyyc2v27NmKjo6WyWTS888/r19//VWDBw9WrVq1bMGWlNHYvFatWrr33nv122+/aezYsZIydjj99ttvzihVZ86c0UMPPaSQkBBVq1ZNP/74oypVyr1Gr5ca00vK9HbLhg0b2l7PmjVL69at02OPPeawq2rnzp22140aNcqzeQAAQPalpVv06tfLte/4GbvxetXKavrzAwi2AAAA8oBTwq3Vq1fLZDKpbdu2GjFiRLave+qpp3T77bfLMAwtW7YsDyvMEBoaqvvvv18nTpxQvXr1NHv2bFWuXDlX32Pjxo2SpOLFi2e6U6pZs2YqXbq0JGnevHny9/fXo48+6nDe0qVLJUne3t5q165dns0DAACyx2o19O6s1dr8T6jdeKOagfpsbH+V9Lv59gYAAABw5JRw6+TJk5Kknj175vjaXr16ScpoRp+Xjhw5ovvvv1/h4eFq27atfvnlFwUEBGT7esMw9OGHH2rFihXXPGfJkiXasWOHJOmuu+7KtIeXm5ub7r//ftvHw4YNU7Fi9j/l3bhxo9asWSNJGjRokN2tjrk9DwAAuD7DMDTt9w0K3nbMbrxOZX9NfrqPivl4XuNKAAAA3Cyn9dySbqxhub+/vyQpMTExV2u60q5du/Tkk0/qwoUL6t27t9599115eHjYniJ4NZPJZHc7pSR9++23+v777/X999+re/fuGjRokBo2bChfX19FREQoKChI33//vSSpWrVqDk8svNLjjz+uoKAghYWF6ZdfflHlypXVpk0bWa1WBQcHa9KkSTIMQwEBARo5cmSezwMAALL23V879Mea/XZjlcqW0JRn+qq4r3N6hgIAABRVTgm3SpQoodjY2Bt66mFkZKQkqVSpUrlc1WVTpkzRhQsXJGXsrlqyZEmW51evXt3hNslhw4YpOjpaP/30k1asWHHNHVyNGzfWlClTVLz4tR+d6+fnp6+//lrDhw9XeHi4nnvuOYdzAgICNGPGDJUtWzbP5wEAANf2x+r9+nbRdruxgJK++mRMP/mX9HVRVQAAAEWHU25LrFevngzD0IIFC2QYRravMwxDQUFBMplMqlOnTh5WmDOZ9cpyd3fXhAkT9Ndff2n48OGqX7++SpYsKU9PT1WqVEldunTRxx9/rDlz5qhKlSrXfY9atWopKChIzz77rOrVq6dixYrJ19dXtWvX1pNPPqmFCxeqcePGTpsHAAA4Wr71qKb8tt5urLivp6Y+21cVA0q4qCoAAICixWTkJG26QX/88Ydee+01mUwmDR48WK+99prDbX1XS09P13vvvac5c+bIZDLpjTfesOshhcIjNSlOhmHN0TUe3n4ym91ktVqUlhyfR5UBrsU6R1FQkNf5pv2n9OL0pbJYL/8b5uXhrk/H9lOjWuVdWBnyk4K8xoFrMZnM8vS59p0oAOBsTgm3LBaL7r33Xv3zzz8ymUwqX7687rzzTrVo0UJVq1aVn5+fJCkhIUGhoaHasWOHFixYoMjISBmGoerVq2vRokVyd3fKXZRwMsItIHOscxQFBXWd7ws5rWenLVJKWrptzM1s1qRRvXR7w6ourAz5TUFd40BWCLcA5DdOCbckKSYmRg888ID+/fdfmUymbF1jGIYCAwP1448/qlq1anlcIVyFcAvIHOscRUFBXOch4dEa9fECxSWm2sZMJunNx7qpR6v800YB+UNBXOPA9RBuAchvnNJzS8p4UuIff/yhRx99VG5ubjIMI8v/zGaz7rrrLv35558EWwAAIF+IiLqo5z79yy7YkqTn7m1PsAUAAOAiTtu5daWYmBitXbtWGzduVGRkpGJjY2WxWFSiRAlVqVJFTZo0Uc+ePVWuXDlnlwYXYOcWkDnWOYqCgrTOYy4m6smP5iv83EW78cf7tdTj/Vq6qCrkdwVpjQPZxc4tAPmNS8It4EqEW0DmWOcoCgrKOo9LTNHTU4J0NCzabvyezg313JB22W65gKKnoKxxICcItwDkN067LREAAKAgSklN14vTlzoEW3e0qq2x9xJsAQAAuBrhFgAAwDWkWyx6fWaw9hyLtBu//dYqeu2RLjKbCbYAAABcjXALAAAgE1arofd//Fvr9560G29UM1DvPdlDHu5uLqoMAAAAVyLcAgAAuIphGPrsj41auuWI3XjNimX00eg+8vb0cFFlAAAAuJrTwq1NmzZp2rRpslqz3zjcYrFo4sSJ2rRpUx5WBgAAYO/Hpbv026p9dmMVA4pr6rN9VaKYl4uqAgAAQGbcnfEm6enpevXVVxUZGano6Gj973//y9Z17733nmbPnq2VK1dq2bJlNGwFAAB5bv7aA/pqwVa7sTIlfDTt2X4qW6qYi6oCAADAtThl59bixYsVEREhSbrrrruyfd2QIUNkMpkUGhqq4ODgPKoOAAAgw6odIfpozlq7MT8fT019tq8qlyvpoqoAAACQFaeEWytWrJAkNWnSRC1atMj2dXXr1lXbtm0liXALAADkqQ17T+qt71bKMC6PeXq4adKo3qpTOcB1hQEAACBLTgm39u3bJ5PJpC5duuT42vbt28swDO3ZsycPKgMAAJA2/xOqV75epnTL5d6gbmaT3hveQ03rVHBhZQAAALgep4Rb0dHRkqTq1avn+NqKFStKks6dO5ebJQEAAEiSth8K00tfLlVauv1Db155uIvaNa7moqoAAACQXU4Jt8zmjLdJS0vL8bUWi0WScvSURQAAgOzYdSRC479YqtQ0i934iw92VO82t7ioKgAAAOSEU8Kt8uXLS9IN3Vq4f/9+SVK5cuVytSYAAFC07T0WqRe+WKyUtHS78eeHtNddHRq4qCoAAADklFPCrRYtWsgwDP355585ur0wLi5Of/75p0wmk5o0aZKHFQIAgKLkwIkzev7zxUpKsQ+2nr3ndt3TpaGLqgIAAMCNcEq4dc8990iSEhISNHz4cJ05c+a61yQkJGjs2LGKjY2VJN155515WiMAACgaDp86p7Gf/qXEZPt2CSPvbq37uvPDNAAAgILGKeFWs2bNdM8998gwDB0+fFh9+/bVRx99pB07dig+Pt52Xmpqqg4dOqSZM2eqf//+2rhxo0wmkzp16qSOHTs6o1QAAFCIHQ2L0phPFik+KdVufHj/Vhras5mLqgIAAMDNMBmGYTjjjSwWi0aMGKENGzbIZDLZHXNzc5PZbHZoOG8YhurWravZs2erWLFizigTLpCaFCfDyNkDAzy8/WQ2u8lqtSgtOf76FwAFEOscRYEz1/nxiBg9PSVI5+OT7caH9WmuEXfelqfvjaKLv8tRGJlMZnn6FHd1GQBg45SdW1JGgPXNN99o3Lhx8vLykmEYtv/S09OVmppqNyZJDz74oObMmUOwBQAAbsrJ0+f17LSFDsHWgz2aanj/Vi6qCgAAALnBaTu3rhQTE6Pg4GCtWrVKJ0+e1Llz52S1WuXv768KFSqoQ4cO6t27t6pUqeLs0uAC7NwCMsc6R1HgjHUedvaCRn28QFEXEu3Gh3RtpGcHt3XYUQ7kJv4uR2HEzi0A+Y1Lwi3gSoRbQOZY5ygK8nqdR0Rd1OiPg3Qm1n7ugZ1u1bj72hNsIc/xdzkKI8ItAPmN025LBAAAcKbTMXF6ZupCh2Drzvb19fwQgi0AAIDCgnALAAAUOudi4/XM1IWKjI6zG+9ze129+EBHmc0EWwAAAIUF4RYAAChUoi8k6plpCxV+7qLdeI9WtfXy0E4EWwAAAIUM4RYAACg0Yi4m6dlpC3XqzAW78a7Na+q1YV3lZuZLHwAAgMKGr/AAAEChcCE+WWM+WagTkbF24x2bVNdbj3eTuxtf9gAAABRG7s56o+joaF24cEE1a9a85jmRkZGaO3euTpw4IZPJpObNm2vgwIHy9vZ2VpkAAKAAupiQojGfLFJIeIzdeNtGVfW/4XfI3c3NRZUBAAAgr5kMwzCc8Ubjx4/XsmXL9OKLL+qhhx5yOL5y5UqNGzdOKSkpduM1a9bUL7/8olKlSjmjTLhAalKcDMOao2t4rDaKAtY5ioLcWOfxSSkaM22RDp48ZzfeukEVfTiyp7w8nPazPMABf5ejMDKZzPL0Ke7qMgDAxin780NDQ/XXX38pLS1NmWVpkZGRGj9+vJKTk2UYht1/x48f17hx45xRJgAAKGAuJiRnGmy1qFtJHz5FsAUAAFAUOCXcWrBggaxWq8qWLashQ4Y4HP/666+VmJgok8mkHj16aPr06ZoyZYrq1q0rwzC0ceNG7dy50xmlAgCAAiI2LknPTF3oEGw1rVNBk0b1kpcnwRYAAEBR4JSv+jZv3iyTyaQ77rhDnp6edsdSU1O1YMECmUwmtW3bVp9++qntWJs2bXTHHXcoMTFRf/31l5o3b+6McgEAQD4XdSFBz05dpH9P2zePb1QzUB+N7i0fLw8XVQYAAABnc8rOrZMnT0qSGjRo4HBs/fr1SkxMlCSNGDHC7liZMmXUr18/GYah3bt353mdAAAg/zsdE6dRkxc4BFvN6lTQlGf7qpi35zWuBAAAQGHklJ1b58+flySVLFnS4djq1aslSaVLl1br1q0djl8KxCIiIvKuQAAAUCCEn7uoZ6YG6XSMfWPu2xpU1odP9ZS3Jzu2AAAAihqnhFvu7u5KT0+XxWJxOPb333/LZDKpXbt2mV7r7+8vSYqLi8vTGgEAQP528vR5PTM1SFEXEu3G2zeupv8Nv4Pm8QAAAEWUU25LLFeunKTLtydesnXrVp09e1aS1KFDh0yvvRRqFStWLA8rBAAA+VlIeLRGfbzAIdjq0rym3hvRg2ALAACgCHNKuNWoUSMZhqGFCxcqJSVFkmQYhr744gtJkoeHhzp37pzptUeOHJGU0X8LAAAUPYdPndPoKUGKjUuyG+/Zuo7efry7PNzdXFQZAAAA8gOn/Jjzzjvv1KJFi3Ts2DHdc8896tChg/bt26dt27bZnqJYokSJTK9dtWqVTCaTmjZt6oxSAQBAPrL/+Bk9/9lfik9KtRu/s319vfhAR5nNJhdVBgAAgPzCKeFWx44d1bZtW23cuFHHjh3TsWPHbMe8vb01duzYTK9bvny5Tp48KZPJdM2dXQAAoHDadSRC479YosSUNLvxe7o01HP3tpPJRLAFAAAAJ92WKEnTpk1T27ZtZRiG7b8yZcros88+U5UqVRzOT01N1XvvvSeTyaSqVauqR48ezioVAAC42JYDoXr+s8UOwdaDPZoSbAEAAMCOyTAMw5lveOjQIR0/flylS5dW06ZN5ePjc81zg4KC9Nprr2n69Olq3769E6uEM6UmxckwrDm6xsPbT2azm6xWi9KS469/AVAAsc5RFGS2ztfv/Vevfr1caen2/zY83q+lHuvbgmALBQp/l6MwMpnM8vQp7uoyAMDG6eFWTkVGRqpChQquLgN5iHALyBzrHEXB1et81Y4QvfntSlms9v8ujLy7tYb2bOaiKoEbx9/lKIwItwDkN/n+udkEWwAAFA1LtxzRuz+slvWqn7uNvbed7u3ayEVVAQAAIL/L9+EWAAAo/Ob/vVfv/7BKV+ZaJpM0/oGOuqtDA9cVBgAAgHyPcAsAALjUb8E7NOmnFXZjZpNJrz7SRb3b3OKiqgAAAFBQEG4BAACX+WnxVn36+1q7MTezWW8/3k1dW9RyUVUAAAAoSAi3AACAS3z313bNXLjdbszD3ax3h/dQhybVXVMUAAAAChzCLQAA4HSzg/c4BFueHm768KleanNrFRdVBQAAgIKIcAsAADjV0i1H9PncTXZjPl4e+mhULzWvW8lFVQEAAKCgItwCAABOs+VAqN6btcZurJi3pz4ZN0gNqpR0TVEAAAAo0MyuLgAAABQNB0+e1StfLZPFarWNubuZNXnsQDWpw44tAAAA3BjCLQAAkOfCzl7QuM8XKykl3W787RF9dFuDai6qCgAAAIUB4RYAAMhT0RcSNfbTv3Q+LtlufMzgturRup6LqgIAAEBhQbgFAADyTEJyqsZ9vlgRURftxh/q2VRDujV2UVUAAAAoTAi3AABAnkhLt+iVL5fpSGiU3XjvNrdo5F2tXVQVAAAAChvCLQAAkOusVkPvzlqtbYfC7cbb3FpFLw/tJJPJ5KLKAAAAUNgQbgEAgFxlGIY+m7tJwduO2Y3Xr1ZW7w7vIXc3NxdVBgAAgMKIcAsAAOSqOcF79NvKvXZjVcqV1OSn+8jX28NFVQEAAKCwItwCAAC5ZsnmI/p83ma7Mf8Svpr6bF+VLu7joqoAAABQmBFuAQCAXLH5n1C9/+MauzFfbw99/EwfVQwo4ZqiAAAAUOgRbgEAgJt24N+zevXrZbJYrbYxD3ezJo7spVuqBLiwMgAAABR2hFsAAOCmhJ45rxe+WKyklHTbmMkkvTGsq1rUreTCygAAAFAUEG4BAIAbFn0hUc999pfOxyXbjY+9t526taztoqoAAABQlBBuAQCAG5KQlKrnP/9LEVFxduNDezbT4C6NXFQVAAAAihrCLQAAkGOpaRa9/NUyHQ2Nthvv0+YWPXXXbS6qCgAAAEUR4RYAAMgRq9XQ/2at0vZD4XbjtzesqpeGdpLJZHJRZQAAACiK3F3xpiEhIQoODtb+/ft1+vRpxcXFyWq1Kjg42OHc1NRUeXp6uqBKAABwNcMw9OkfG7Vye4jd+K01yund4XfI3c3NRZUBAACgqHJquBUaGqq3335bGzZssI0ZhiFJmf6U98iRIxo3bpzuu+8+Pfjgg06rEwAAZO7n5bv1+6p9dmNVA0vqo9G95ePl4aKqAAAAUJQ57bbEvXv3atCgQdqwYYMMw5Cbm5tq1aqlWrVqXfOauXPn6ujRo5o2bZoSEhKcVSoAAMjE/63epxl/brEbCyjpq6nP9FUpPx8XVQUAAICizinhVlxcnEaOHKmLFy+qRIkSevvtt7Vt2zYtWrRI48ePv+Z1I0eOlI+Pj+Lj47VgwQJnlAoAADIxf90BTf1tg91YMW9PffxMH1UIKOGiqgAAAAAnhVuzZs1SdHS0vL299eOPP2rIkCHy8bn+T3hLlSqlHj16yDAMrV271gmVAgCAqy3ZfFgfzbb/d9jLw12TRvVSncoBLqoKAAAAyOCUcGvVqlUymUwaOHCg6tatm6NrmzdvLkk6ePBgXpQGAACysGL7Mb03a43+a5EpSfJ0d9PEkT3V7JaKrisMAAAA+I9Twq3Q0FBJUsuWLXN8rb+/vyQpJiYmV2sCAABZ+3vXCb393UpZr0i23MxmvTeih25rUMWFlQEAAACXOSXcSklJyXgzc87fLj4+XpLk7u7UBzsCAFCkbdx3Uq/PDJbFemWwZdI7T3RXu8bVXFgZAAAAYM8p4Vb58uUlSQcOHMjxtVu2ZDyVqXLlyrlaEwAAyNy2g2F65avlSrdYbWMmk/T6o13VpXlNF1YGAAAAOHJKuNWmTRsZhqH/+7//04ULF7J9XUhIiBYtWiSTyaTbb789DysEAACStOtohF6cvlSp6Ra78VeGdlaPVnVcVBUAAABwbU4Jtx566CG5ubnp/PnzevLJJ3X27NnrXhMSEqKRI0cqLS1Nbm5uuu+++5xQKQAARdf+42c0/vMlSklLtxsf/0AH9W1bz0VVAQAAAFlzSiOrW265Rc8//7w++ugj7dmzR3fccYe6dOmiRo0aKTIy0nbewoULFRUVpW3btmnt2rWyWCwymUx64YUXVLNm3t8GsWPHDgUFBWnr1q2KiopSSkqKypYtq6ZNm2rgwIFq165dtuaJj4/XrFmzFBwcrNDQUFmtVlWqVEndunXTI488ojJlyhTIeQAAhdehk+f0/Gd/KTElzW58zOC2urvjrS6qCgAAALg+k2Fc+XDvvPXFF19o+vTpttAqK4ZhyGw268knn9SYMWPytK6kpCS98cYbCgoKyvK8gQMH6t1335Wbm9s1zwkJCdHw4cMVHh6e6fGAgADNmDFDjRs3zvK98ts8eSk1KU6GYb3+iVfw8PaT2ewmq9WitOT4PKoMcC3WOZzlWFi0np4apIsJKXbjI+9uraE9m+Xpe7POUdixxlEYmUxmefoUd3UZAGDj1HBLkg4ePKiPPvpIW7ZskcViyfQck8mkFi1aaPz48WrSpEme1pOamqpHH31U27dvl9ls1pAhQzRgwABVq1ZNaWlpOnjwoKZMmaLDhw9LkoYPH64XXngh07ni4+M1YMAAhYWFycPDQ2PHjlW/fv3k7e2t7du3a+LEiTp16pQCAgI0f/58lS1btkDMk9cIt4DMsc7hDP9GxmrUlAU6H5dsN/54v5Z6vF/LPH9/1jkKO9Y4CiPCLQD5jVNuS7xS/fr19d133yk2Nlbr1q1TWFiYoqOjJUn+/v6qWLGi2rdvr4CAAKfU4+npqQcffFCnTp3Shx9+6HDrYWBgoFq3bq3+/fsrNDRUP/74ox5//HGVLl3aYa5vv/1WYWFhkqRJkyapT58+tmPdu3dXfHy8JkyYoKioKE2fPl1vvvlmpjXlt3kAAIVT2NkLenbaQodga2jPZnqsbwsXVQUAAADkjNN3buVX6enpcne/dtb3ww8/6IMPPpAkffrpp+rZs6fdcYvFonbt2ik2NlbNmjXTr7/+6nC8X79+On78uCTJ29tbmzdvlo+PT76exxnYuQVkjnWOvBQZdVGjPg7SmVj7tXVv10YaM7jtddsH5BbWOQo71jgKI3ZuAchvnPK0xIIgq2BLkmrUqGF7fe7cOYfjO3fuVGxsrCSpd+/eDsfnzp2r48ePa9CgQZKk5ORkrV+/Pt/PAwAofM7GxuuZaQsdgq27OzZwarAFAAAA5AbCrWxKTEy0vS5ZsqTD8f3799teN2tm33w3KSlJn332mZo0aWLXHP/Ka/LrPACAwiX6QqKenbZQEVFxduN9bq+rcfd1INgCAABAgUO4lU179+61vW7atKnD8Uu390lS5cqV7Y7NmjVLZ8+e1bhx4xQYGGjbJXblNfl1HgBA4REbl6Rnpy3UqTMX7MbvaFVbLw/tJLOZYAsAAAAFj1Mayk+dOlX9+/dX7dq1nfF2uS41NVULFy6UlLELqkqVKg7nxMTE2F5f2Ww+NjZWM2fOVMeOHdW6dWtJUokSJRQTE2O7bTA/z+MM7l6+Ob7GZDLb/u/h7ZfbJQH5AuscuelCfJKe+2yJTkTa/13fpUUdvfNUf7m7uebnXaxzFHascQAA8p5Twq2vvvpKX3/9tWrXrq3+/furT58+DruJ8rOvv/7a1mfr2WefzfScpKQkSRlPX7zylo4vv/xS8fHxGjdunG3M09NTkv2tjvl1Hmcwm91u+FqTySST6cavBwoC1jluVnxSisZMmacjp87ajbdvUksfjB4gD3fXry/WOQo71jgAAHnHKeGWJBmGoWPHjmnq1KmaOnWqmjRpon79+ql3797y9/d3Vhk5tnPnTn355ZeSpMGDB6tt27ZZnm82X/7Jd3h4uGbPnq1+/fqpXr16tnGr9fpPBsxv8+Qlq9WS42tMJrNMJpMMw8jxkxaBgoJ1jtyQlJKqZyfP1T/HI+3GW99aTR+O7i838439PZxbWOco7FjjKKxu5gfUAJDbnBJuzZgxQ8uXL9eqVat04UJGn489e/Zoz549+uCDD9S6dWv17dtXPXv2lJ9f/tmuHRYWptGjRystLU0NGzbUa6+9ds1zfX0zbq1LS0uzjU2bNk2GYdg1bZeklJQUu2vy8zzOkJ6SmOMv9jy8/WQyuckwrDxWG4UW6xw3KyUtXS9+sUR7jobbjTerU0EfPNldZmuy0pJdVNx/WOco7FjjKIxMJrM8fYq7ugwAsHFKuNWlSxd16dJFFotFW7Zs0fLly7VixQpFRUXJYrFo06ZN2rRpk95++2117NhRffv2Vbdu3Wy3y7nCmTNn9OijjyomJkZVqlTRjBkz5O3tfc3zy5QpI0myWCyKi4tTeHi4Fi1apAcffNCuR1daWpri4uLsrsnP8wAACqa0dIte/Xq5th2yD7Ya1gzUpNG95e3p4aLKAAAAgNzltNsSJcnNzU1t27ZV27Zt9eabb2rnzp0KDg7W8uXLFRERodTUVK1cuVIrV66Ur6+vunfvrj59+qh9+/Zyc3PetteoqCg9+uijOnXqlCpVqqRZs2apXLlyWV5Ts2ZN2+vw8HBNnjxZPj4+GjVqlN15kZGRttsAa9Soke/nAQAUPOkWq976bqU27jtlN163aoA+frqPinm77odHAAAAQG5zzaORlNFUs0WLFnrppZe0atUqzZ07V08++aRq1KghwzCUkJCgoKAgPfXUU2rfvr3efvttp9R15swZPfTQQwoJCVG1atX0448/qlKlSte9rmHDhrbXs2bN0rp16/TYY4857IbauXOn7XWjRo3y/TwAgILFajX0/o9rtHrncbvxGhVLa+qzfVXc18tFlQEAAAB5w2QYhuHqIq4WEhKiZcuWKTg4WAcPHpSUEYZdep1XQkND9cgjjyg8PFz16tXTt99+q4CAgGxda7FY1K5dO8XGZjxi3d/fX8HBwSpWrJjdeU899ZRWr14tb29vbd68WT4+Pvl6HmdITYq7oZ5bZrObrFYL/StQaLHOkVOGYeij2es0f90Bu/Eq5Upq+rgB8i/pmt6KWWGdo7BjjaMwoucWgPzGZTu3slKtWjU1bNhQDRo0cFqT8yNHjuj+++9XeHi42rZtq19++SXbwZaUccvl/fffb/t42LBhDkHSxo0btWbNGknSoEGDMg2S8ts8AICCwTAMffrHJodgq3wZP306tn++DLYAAACA3JBvdm6lpqZq3bp1WrZsmdasWWNrcn6pvJIlS2rLli158t67du3Sk08+qQsXLqh3795699135eFx7Ua7JpMp02b38fHxGjBggMLCwlS+fHlNmDBBbdq0kdVqVXBwsCZNmqTExEQFBARo/vz5Klu2bKbz57d58ho7t4DMsc6RE18HbdUPi3fajQWU9NX0FwaoctmSLqrq+ljnKOxY4yiM2LkFIL9xabiVlJSkNWvWaPny5fr777+VlJQk6XKg5ePjo65du6pfv35q3759loHTzRg6dKi2bt2a7fOrV6+uZcuWZXosJCREw4cPV3h4eKbHAwICNGPGDDVu3DjL98hv8+Qlwi0gc6xzZNePS3fqy/n2/46VKu6t6eMGqHr50i6qKntY5yjsWOMojAi3AOQ3Tn1aopSxm2jVqlVatmyZNmzYoJSUFEmXAy1PT0916NBBffv2VdeuXeXt7e3sEq8rq6cK1qpVS0FBQZo1a5aWL1+u0NBQGYahihUrqlu3bho2bJhDU/eCMA8AIH/6beVeh2CruK+XPhnTL98HWwAAAEBucMrOrfPnz2vFihVavny5Nm3apPT0dEmXAy03Nze1adNGffv2VY8ePeTn55fXJSEfYecWkDnWOa4naP1Bffjz33Zjvt4e+nRMPzWoEeiiqnKGdY7CjjWOwoidWwDyG6fs3GrXrp2s1ozw4lKgZTKZ1Lx5c/Xt21e9e/dm9xAAADmwbMsRTfzFPtjy8nDX5NF9CkywBQAAAOQGp4RbFovF9rpBgwbq27ev+vbtq/Llyzvj7QEAKFTW7Dqud2et1pV7rz3czZo4sqea1qngusIAAAAAF3BKuFWzZk316dNH/fr1U/Xq1Z3xlgAAFEob953UGzNXyGK9nGy5mc16b0QP3dagigsrAwAAAFzDKeHW4sWLnfE2AAAUajsOh+uVr5cr3XK5T6HZZNJbj3VV+8bVXVcYAAAA4EJmVxcAAACub1/Iab04fYlS0yx246883FndWtZ2UVUAAACA6xFuAQCQzx06eU7Pf7ZYSSnpduMv3N9BfW6v66KqAAAAgPyBcAsAgHwsJDxGYz9dpITkVLvxZ+65XQM73eqiqgAAAID8wyk9t27GhQsXdOTIEUlSq1atXFwNAADOc+rMeY35ZKEuJqTYjQ/v30r3d2/ioqoAAACA/CXfh1u7du3SU089JbPZrAMHDri6HAAAnCL0zHk9M3WhYi4m2Y0/1LOphvVp7qKqAAAAgPwn34dblxiGcf2TAAAoBE6dOa+npwQp6kKi3fg9XRpq5F2tZTKZXFQZAAAAkP/QcwsAgHzk39OxmQZb/drW09jB7Qi2AAAAgKsUmJ1bAAAUdv9GxuqZqQsVfdE+2Orbtq4mPNRRZjPBFgAAAHC1XAu3kpOTZTKZ5OXl5XBs/vz5NzzvoUOHbqIqAAAKhhMRMXpmmmOPrf7t6mnCg50ItgAAAIBryJVwa86cOXrvvfdkMpn02muvaciQIXbHX3rpJW6jAADgGkLCY/TMtCCdj0u2G7+zfX29+AA7tgAAAICs5ErPrWnTpik9PV1paWmaOnXqNc8zDOOG/gMAoLAKCY/WM1Mdg627OzYg2AIAAACyIVd2bhUvXlwXL16UYRgqUaLENc975JFHVK9evRzNfejQIc2aNetmSwQAIN85GhalZ6cu0oUE+2BrYKdbNe6+9ux6BgAAALIhV8KtSZMmaeLEiTKZTHrxxReveV7btm3VqVOnHM29Zs0awi0AQKFzJDRKz05bqIsJKXbj93RuqOeG8FREAAAAILtyJdxq3ry5fvvtt9yYCgCAQu/wqXN6dtoixSXaB1v3dm2kMYPbEmwBAAAAOZBrT0sEAADXd+jkOY35ZKHiElPtxod0a6xn77mdYAsAAADIIcItAACc5MC/Z/Xcp4scgq37uzfR04PaEGwBAAAAN8Ap4da9994rk8mkihUr5vjaUqVKqVWrVnlQFQAAzvPPiTN67tO/FJ9kH2w92KOpRt3dmmALAAAAuEEmwzAMVxeBoi01KU6GYc3RNR7efjKb3WS1WpSWHJ9HlQGuxTovPPYfzwi2EpLtg62hPZvpqbtuK9LBFuschR1rHIWRyWSWp09xV5cBADbclggAQB7aF3Jaz332lxKT0+zGH+ndXCPubFWkgy0AAAAgNxBuAQCQR/Yei9Tzny1WYop9sPVonxZ6on9Lgi0AAAAgFxBuAQCQB3YfjdS4z/9SUkq63fjj/Vrq8X4tXVQVAAAAUPgQbgEAkMt2HYnQC18sdgi2nujfUo/1JdgCAAAAchPhFgAAuWjXkQiN+3yxklPtg60Rd7bSsD4tXFQVAAAAUHiZXV3A9RiGoSVLlri6DAAArmvvsUi98IVjsPXUXbcRbAEAAAB5JF/v3EpLS9OgQYN09OhRFS9eXO3bt3d1SQAAZOqfE2f0/OeOtyKOuru1HurZzEVVAQAAAIWfU3ZuPfDAA3rllVd04sSJHF3n4eEhf39/GYahv/76K4+qAwDg5hw6eU7PffqXEpPtn4pIsAUAAADkPaeEWzt37tSff/6pU6dO5fjaS7u1du/enctVAQBw846GRWnsp4sUn5RqNz7izlYEWwAAAIAT5PueWxUqVJAknT592sWVAABg73hEjMZM+//27js8inJ94/g9m0JCqCGhV5Gi0iIqCIoFpBkERY+goqCgIM2Coh6OylH5CSJFVGJBDdjOUSIGpCqiICBSFKQI0gk1JEBCenZ+f3hcGZNAArs7u5vv57q4nH1m5t0nXO9GcmfmnXk6dTrbUh/QvTVrbAEAAABe4vPhVlZWliTJ6XTa3AkAAH/Ze/iERkyZqxPpWZb6PV1aaWCPK2zqCgAAACh9fD7c+vN2xKpVq9rbCAAA/3Pg6EkNn5yolFOZlvqdHVtoSK82MgzDps4AAACA0sdnn5Zomqa+/PJLJSQkyDAMXXXVVXa3BACADiWf0vDJc5V8MsNS733dZRpx+9UEWwAAAICXuT3c+vHHH/XMM88Uuu+f//ynypQpc84xTNPUsWPHlJeXJ9M0FRISovvuu8/drQIAUCJHUtI1bPJcHUlNt9RvueYSPXrnNQRbAAAAgA3cHm5VrlxZSUlJMgxDpmm66qZpKjk5ucTjBQcH64UXXlDjxo3d2SYAACVy7MRpDZucqEPH0yz17m0b68m7OsjhINgCAAAA7OD2cKtmzZqqWbOmpXbw4EEZhqHIyMhiXbllGIYqVqyoFi1aqF+/fmrYsKG72wQAoNhSTmVo+OS5Sjp2ylLvfOXFevre6wm2AAAAABu5PdwqV66cli5daqk1bdpUkjRu3Dhdd9117n5LAAA8JjUtU8OnzNW+Iycs9Rsuv0hj+t+oIIfPP5sFAAAACGj8ixwAgCKcOp2lR6bO0+6DqZb6tS3ra+wDHRUcxP9GAQAAALvxr3IAAAqRlpGtR6Z+pR0HjlvqVzerqxcG3qTgoCCbOgMAAABwJrfflliYP9fgCgsL88bbAQBwQU5n5uixaV9p275jlvqVl9TWuIc6KzSEYAsAAADwFV4Jt/6+BhcAAL4qIytXo96Yr827j1rqlzeuqfFDuqhMiFf+1wkAAACgmLgtEQCA/8nKydWTby7QL78fttRbXlxdEx7uprDQEJs6AwAAAFAUwi0AACRl5+Zp9PRFWr/9oKV+WYOqmji0u8qGEWwBAAAAvohwCwBQ6mXn5umZtxbrp60HLPWmdaM1afjNiggPtakzAAAAAOfCwiEAgFItMztXT01fqJ+2JVnqjWpX0ZSRN6t82TI2dQYAAACgOHz+yq3169frxRdf1OrVq+1uBQAQYP54KuL8AsFWg5qVNWVkrCpE8JRfAAAAwNd5/cqt9PR0/fLLLzp+/LicTmeRx5mmqaNHj+rDDz9UcnKyVq9erXnz5nmxUwBAIDt1OkuPTZuvLXusT0VsUKOyXhvZQ5XLh9vUGQAAAICS8Fq4lZ+fr1dffVUffvihcnNzi32eaZqSpH79+nmqNQBAKZNyKlOPvjZPOw4ct9Qb14nSlJE3q1I5gi0AAADAX3gt3Hr88ce1aNEiV1hVXBUrVtSgQYN05513eqgzAEBpcuzEaY2cMk97Dqda6pc1qKZJw7uzxhYAAADgZ7wSbi1btkwLFy6UYRiqUaOGevfurRo1amj79u2Kj4+XYRgaN26c5ZzNmzfrww8/VK1atdS7d29vtAkACHCHjqdpxJS5Sjp2ylKPaVRDE4Z2U0QYT0UEAAAA/I1Xwq0vvvhCklSuXDl9/vnnqlKliqQ/Qq/4+HhJ0q233mo559Zbb1WlSpX0+uuva+jQofr444+90SoAIEAdOHpSw6fM1ZGUdEv9qktr6+XBXRQWGmJTZwAAAAAuhFeelrhp0yYZhqEePXq4gi1JMgzjrOc9/PDDatCggTZs2KC5c+d6uk0AQIDafTBFD7/6ZYFg65oW9TVhSDeCLQAAAMCPeSXcOn78jwV7L7nkEks9NPSv2z9ycnIKnOdwONSzZ0+ZpqnExETPNgkACEjb9ydr6KREJZ/MsNQ7XtFQ4x66SaEhQTZ1BgAAAMAdvBJu5efnS5IiIyMt9YiICNd2SkpKoefWr19fkrR161bPNAcACFhbdh/R8MmJOpGeZal3v7qJnr+/o4KDCLYAAAAAf+eVcKtixYqSpIwM62/N69at69r+9ddfCz331Kk/Fv09efKkh7oDAASin3cc0oip85SWYb0y+NYOl+qZftcryOGV/wUCAAAA8DCv/Mu+Tp06kqS9e/da6pUqVVKtWrUkSR999FGh5y5fvlzSXwEZAADnsmbLfj362lfKyMq11Pt0aqFRfa+Vw3H2NR8BAAAA+A+vhFvNmzeXaZrasGFDgX2dO3eWaZpavXq1Ro8ercOHD0v6Y52uyZMna8mSJTIMQ5dffrk3WgUA+LkVG/foiTcXKDs3z1If0L21hve++pwPMwEAAADgXwzTNE1Pv8myZcs0ePBghYeHa926dXKccStIcnKyOnfurMzMTFctODhYeXl//FBimqYcDodmzZql1q1be7pV2CAnM02m6SzROSFh5eRwBMnpzFduVvq5TwD8EPO85Jau26nnZnyjfKf1e8rgXlfp3q78ksQXMc8R6JjjCESG4VBoeHm72wAAF69cudW+fXs9+OCD+uSTTyzBliRFRUVp4sSJCg4OlmmaMk1Tubm5rm3DMPTEE08QbAEAzmrB6u169t2vCwRbI+9oR7AFAAAABDCvXLlVHNu3b1dcXJzWrFmjEydOqGLFimrdurXuu+8+gq0Ax5VbQOGY58U3Z/kWvfLx9zrz/2iGIT15Vwf1vPZS+xrDOTHPEeiY4whEXLkFwNf4TLiF0otwCygc87x4/vPNRk39bKWl5jAMjel/g7q2aWxTVygu5jkCHXMcgYhwC4CvCba7AQAAztfMhRsUN+dHSy3I4dDYBzrqxtYNbeoKAAAAgDcRbgEA/NL7X63TO3N/stRCg4P00kOd1b55PZu6AgAAAOBthFsAAL9imqZmzFur975aZ6mHhQZr/JCuuvKS2jZ1BgAAAMAOhFsAAL9hmqbemfuTPpi/3lIPLxOsV4fdrFaNatjUGQAAAAC7OOxu4FxM09QPP/ygY8eO2d0KAMBGpmkqbs6aAsFW2bAQTR5OsAUAAACUVj4fbt17770aOHCgPvvsM7tbAQDYxDRNvZGwWrMWbbDUI8JCNWVErFpcTLAFAAAAlFY+H261atVKpmlq+fLldrcCALCBaZp67bOV+njJL5Z6+bKhmvpIrJpdVM2mzgAAAAD4Ap9fc6thwz8e5b5r1y6bOwEAeJtpmpr83x/0+be/Wurly5bR1JGxalov2qbOAAAAAPgKnw+3QkNDJUmnT5+2uRMAgDc5naZe/XS5vvh+i6VeIaKMpo7soSZ1o2zqDAAAAIAv8flwa/PmzZKkcuXK2dwJAMBbnE5Tr3zyvb5cvtVSr1QuTFMfiVWj2gRbAAAAAP7gs+FWVlaWli9frk8//VSGYahVq1Z2twQA8AKn09TLH36neSu3WeqVyodp2iO3qGGtSJs6AwAAAOCL3BJuLVu2TEOGDHHHUAWYpinDMHTvvfd6ZHwAgO/Idzr1fzOXaf7q7ZZ6ZIVwTXukhxrUJNgCAAAAYOW2K7dM03TXUAWMGDFC7dq189j4AAD75TudejH+Wy36cYelHlWxrF57tIfqV69sU2cAAAAAfJlbb0s0DENXXHGFW8YKCwtTvXr11LNnTzVv3twtYwIAfFNevlMvfLBUS3763VKPqlhWrz92i+pWq2RPYwAAAAB8ntvX3Jo1a5a7hwQABLC8/Hw9P+MbLV2/y1KvWjlCrz96i2pXrWhTZwAAAAD8gc8uKA8ACHx5+fl69t1vtGyDNdiqFllOrz96i2pFV7CpMwAAAAD+gnALAGCL3Lx8/eudJfr+lz2Weo0q5fX6oz1UI4pgCwAAAMC5EW4V4dChQ3r55Ze1cOFCSdLMmTPVpk2bs56TkJCgp59+uljj33///Ro9evRZj0lPT1d8fLyWLFmi/fv3y+l0qlatWurYsaPuu+8+RUYW76lh7hoHANwlJzdfY95ZrBUb91rqNaMqaNqjPVSjSnmbOgMAAADgbwi3/iYnJ0fvv/++4uLilJGR4bH3ueyyy866f+fOnRo0aJCSkpIs9R07dmjHjh36/PPPNX36dLVo0cIr4wCAu2Tn5umZtxZr1a/7LPXa0RU07dFbVC2ynE2dAQAAAPBHbgm3rr32Wv3000/uGMpWy5cv14svvqg9e/ZIkqpXr67Dhw+f11gbN2486/6QkJAi96Wnp+vBBx9UUlKSQkJC9Mgjjyg2NlZhYWFau3atxo8fr3379mnIkCGaM2eOoqOjPToOALjL6awcjZ6+UOt/O2ip161WUdMe6aHoygRbAAAAAErG4Y5BgoKCVL58eZUv75+3keTl5WnYsGEaOHCg9uzZo+joaI0fP17jx48/7zHLlClz1j8OR9F/9TNmzNCBAwckSRMmTNDAgQNVvXp1VapUSZ06ddLQoUMlScnJyXrzzTc9Pg4AuMOp01l6ZOq8AsFWveqV9PpjtxBsAQAAADgvbgm3/F1wcLAqVKigkJAQDRo0SIsWLVKvXr1kGIbXe8nPz9cnn3wiSYqJiVH37t0L7H/rrbdcrxMSEpSZmemxcQDAHY6fzNDQSYnavPuopd6gZmW9/ugtiqoYYVNnAAAAAPwd4db/jB49WvPnz9eoUaMUEWHfD1nr169XamqqJKlbt24F9s+ePVu7du1S7969JUlZWVlasWKFx8YBgAt16Hiahkyco51JKZb6JfWi9eZjPVWlYlmbOgMAAAAQCAi3/qdixYqqW7euR8Z2Op3FPvbXX391bcfExFj2ZWZmatq0aWrZsqVGjhxZ6DnuHgcALsTewyc0ZOIcHTh2ylKPaVRDrz3SQxXLhdnUGQAAAIBA4ZWnJT799NMXPIZhGBo3bpwbuvGOxMREzZkzR9u3b1dycrLCw8PVsmVL3XPPPerUqVOR5+3atcu1Xbt2bcu++Ph4HT16VBMnTlS1atUUHBysvLw8yznuHscbgsuU/KoNw3C4/hsSxjo9CEz+Ps9/23tUw1/9Uqlp1luer2l5kf5vaA+FhRb9YA2UHv4+z4FzYY4DAOB5Xgm3vvjiiwtav8o0Tb8Lt5544gnL64yMDK1atUqrVq1Sv379NGbMmELPS0n567adypUru7ZTU1P17rvvqkOHDmrTpo0kqUKFCkpJSXHdfuiJcbzB4Qg673MNw5BhnP/5gD/wx3n+y44DGvHq50rPyLbUO7dpqn8/FKuQYP/6euB5/jjPgZJgjgMA4DleCbekPwKqkjIMQxUqVFCVKlUUGRnpga7cq1atWurSpYtCQkJ05ZVXqk2bNqpevbpycnK0evVqvfLKK9q/f79mzZqlSy+9VLfddluBMf5c1D00NNQSCMbFxSk9PV2PP/64qxYaGirpj+DMU+N4g9OZX+JzDMMhwzBkmqZMs/i3fQL+xF/n+Y+b92rU1C+UlZNnqffs0FxP979JQY7z+9wjMPnrPAeKizmOQHUhv6AGAHfzSrj1zTfflPicDz74QLNmzVLjxo311ltvqWxZ319wuE2bNq6roc4UHh6uLl26qEWLFoqNjVV6erqmT59eaLj1J4fjr+XQkpKS9PHHHys2NlZNmzZ11Yuzlpe7xvGkvOyMEv9jLySsnAwjSKbpVG5Wuoc6A+zlj/P8u59369l3lyg3z/qZ7tOphYb3vlrOnAzxox3O5I/zHCgJ5jgCkWE4FBpe3u42AMDFK+FWrVq1SnzOP//5T0nShx9+qKefflpTp051d1teV6NGDXXt2lWff/659u3bp/3796tOnTqWY/4M8XJzc121KVOmyDRNy+LvkpSdnW05xxPjAEBxLVi9XeNmfqt8p/VK3YE9rtCA7q0v6PZ0AAAAACiKTz8tcfTo0apRo4YWL16sVatW2d2OWzRq1Mi1vW/fvgL7/7z9Mj8/X2lpadq2bZvmzZunPn36WIKw3NxcpaWlWc7xxDgAUByzl/2qFz5YWiDYGnlHO91/8xUEWwAAAAA8xqfDreDgYN15550yTVOzZ8+2ux23CA8Pd22feVXVny666CLXdlJSkiZOnKjw8HA9/PDDluMOHTrkup2wQYMGHhsHAM5l5sINevXTFZaawzD0TL/rdWfHFjZ1BQAAAKC08OlwS5IaN24sSVq3bp3NnbjHsWPHXNvVqlUrsL9Zs2au7fj4eC1fvlz3339/gauq1q9f79pu3ry5x8YBgKKYpqk3v1ituDk/WurBQQ79e2AnxbZvWsSZAAAAAOA+Ph9u/fkEv+TkZJs7cY+VK1dKksqXL1/olVIxMTGqXLmyJCkhIUFVqlTRgAEDChy3cOFCSVJYWJjat2/vsXEAoDBOp6mJnyzXh4t+ttTLhARrwsNddWPrhvY0BgAAAKDU8flwa9GiRZKkcuXK2dzJ2ZmmqZdffllff/11kccsWLDAdQVar169FBYWVuCYoKAg9e3b1/W6f//+ioiIsByzcuVKLVu2TJLUu3dvy62O7h4HAP4uL9+pF+KX6ovvt1jqZcNCNHnEzWp7WV2bOgMAAABQGnnlaYk//fRTiY7Pz8/XkSNHtHDhQn377bcyDEOtWrXyTHNnvGdeXp6lduaaWLm5ua6nCkqSw+FQSEiI6/WMGTP0/vvv6/3331enTp3Uu3dvNWvWTGXLltXBgweVmJio999/X5JUr169Ak8sPNMDDzygxMREHThwQB999JFq166ttm3byul0asmSJZowYYJM01RUVJSGDBni8XEA4E/ZuXl69t2vtfyXPZZ6xYgwTRrRXZfUq2pPYwAAAABKLcM0TfPch12Ypk2bnveTskzTVFBQkOLj43XFFVe4ubO/JCQk6Omnny728bfeeqtefvll1+u8vDy9+uqrmjVrVqELxf+pRYsWmjRpkuWJhYXZuXOnBg0apKSkpEL3R0VFafr06WrR4uyLNbtrHE/KyUyTaTpLdE5IWDk5HEFyOvOVm5Xuoc4Ae/naPM/IytVTcQu1dpv1+0lUxbKaOjJWDWryxFWUnK/Nc8DdmOMIRIbhUGh4ebvbAAAXr1y5Jf0RUp2PihUr6tlnn/VosOUOwcHBGj16tPr06aPPPvtMK1as0MGDB5WZmano6Gg1btxYsbGx6tq1q4KDz/3X3rBhQyUmJio+Pl6LFy/W/v37ZZqmatasqY4dO6p///4FFof35DgASrdTp7M16o35+nXXEUu9ZlR5TR3ZQ7WiK9jUGQAAAIDSzitXbr3++uslPqds2bJq0KCBrr766kLXpkLg4MotoHC+Ms9TTmXo0de+0o4Dxy31BjUqa8qImxVd2bfXRIRv85V5DngKcxyBiCu3APgar4RbwNkQbgGF84V5fjglTSOnzNP+oyct9aZ1ozVpRHdVKseDKHBhfGGeA57EHEcgItwC4Gu8dlsiAMC/7DtyQiOnzNORVOsPYy0vrqFXhnZVufAyNnUGAAAAAH8h3AIAFLDjQLIemfqVUtMyLfWrL6ujlx7qrLDQkCLOBAAAAADvItwCAFhs2nVYo16fr7SMHEv9xssv0nP3d1RIcJBNnQEAAABAQV4NtzZv3qwtW7YoNTVVOTk55z7hb4YNG+aBrgAAf/pp6wE9FbdQmdl5lnqP9k315N0dFORw2NQZAAAAABTOK+HWoUOHNGzYMG3ZsuWCxiHcAgDP+e7n3Xr23SXKzbM+4OHOji004varZRiGTZ0BAAAAQNG8Em6NHTtWmzdv9sZbAQDOw4LV2zVu5rfKd1ofoDuwxxUa0L01wRYAAAAAn+WVcOvHH3+UYRjq0qWLRo0apapVqyo0NNQbbw0AOIfZy37Vq5+uKFAfeUc73dmxhQ0dAQAAAEDxeSXcioiIUFZWljp37qzatWt74y0BAMUwc+F6xc1ZY6k5DENP3XOdYts3takrAAAAACg+r6wMfMMNN8g0Ta1atcobbwcAOAfTNPXmF6sLBFvBQQ79e2Angi0AAAAAfsMr4daoUaPUqFEjzZ49W/Pnz/fGWwIAiuB0mpr4yXJ9uOhnS71MSLAmPNxVN7ZuaE9jAAAAAHAeDNM0zXMfduGSk5N1xx136MiRI+rUqZMiIiJKdL5hGBo3bpyHuoOdcjLTZJrOcx94hpCwcnI4guR05is3K91DnQH28sQ8z8vP14sffKvFP/1uqUeEheqVod3UqlENt7wPUFx8P0egY44jEBmGQ6Hh5e1uAwBcvBJu/f777+rfv7+OHz9+QeNs3brVTR3BlxBuAYVz9zzPzs3Tv95ZohUb91rqlcqFafKIm9WkbvQFvwdQUnw/R6BjjiMQEW4B8DVeWVD+pZdeUnJysjfeCgBQiNNZORo9faHW/3bQUo+qWFavPdJD9WtUtqkzAAAAALgwXgm3fv75ZxmGoS5dumjUqFGqWrWqQkNDvfHWAFDqnTqdpcdfn6/Nu49a6jWjKui1R2JVM6qCTZ0BAAAAwIXzSrhVsWJFZWVlqXPnzqpdu7Y33hIAIOn4yQw98to87UxKsdQb1KysKSNiFV2pZOsfAgAAAICv8crTEmNjY2Wapn788UdvvB0AQNKh42kaMnFOgWDrknrRevOxngRbAAAAAAKCV8KtESNGqG3btvr888+1YMECb7wlAJRq+46c0MMTv9SBY6cs9ZhGNfTaoz1UsVyYTZ0BAAAAgHt55bbENWvWqFevXtqzZ48ef/xxLViwQBERJbtiwDAMjRs3zkMdAkDg2HEgWY9M/UqpaZmWervmdfXSoM4qE+qVb/0AAAAA4BWGaZqmp9+kadOmMgxDkmSapmu7uP48Z+vWrZ5oDzbLyUyTaTpLdA6P1UZpcD7z/NddR/T4618pLSPHUu/YuqGeHXCjQoKDPNEqcN74fo5AxxxHIDIMh0LDy9vdBgC4eOXX9zVr1vTG2wBAqbZ2W5JGT1+gzOw8S71H+6Z68u4OCnJ45U50AAAAAPAqr4RbS5cu9cbbAECptWLjHo15e4ly8vIt9TtvbK4Rd7Qr8RWzAAAAAOAvWHgFAPzckp9+17/fX6p8p/X23vtvbq0HYq8g2AIAAAAQ0Ai3AMCPJa7YqvEffae/r544rPfVuuumlvY0BQAAAABeRLgFAH7q069/0Wufr7LUDEN64q4O6nXtpTZ1BQAAAADe5ZVw6+DBg24Zh4XpAeCPJ8i+99U6zZi31lIPchj614Ab1fnKRjZ1BgAAAADe55Vw68Ybb7zgNV8Mw9CWLVvc1BEA+CfTNDVt9ip9+vVGSz00OEgvDLpJ17asb09jAAAAAGATr92WaP59QRgAQInkO52a8NH3mvvDNks9vEywxg/pqiua1rapMwAAAACwj1fCrVtvvbXE5yxdulSnTp3Sddddp1tuuUWRkZEe6AwA/ENefr7Gvr9U36zdaamXLxuqicO6q/lF1W3qDAAAAADsZZg+eknV/v37de+99+rYsWOaNm2abrjhBrtbgofkZKbJNJ0lOickrJwcjiA5nfnKzUr3UGeAvf6c5xlZWXpq2hz9sGmvZX+l8mGaMiJWjetE2dQhcOH4fo5AxxxHIDIMh0LDy9vdBgC4OOxuoCh16tTRtGnTZJqmxowZo5MnT9rdEgB43enMbD06OaFAsFW1coSmP96LYAsAAABAqeez4ZYkNWvWTJ07d1ZKSor+85//2N0OAHjVyfRMPTzhP1q7db+lXiu6gqaP6qV61SvZ0xgAAAAA+BCfDrck6brrrpNpmlq8eLHdrQCA16ScytCQ8f/VrzsPWeoX1YzU9FE9VaMKtwIAAAAAgOTFpyWer8qVK0uS9u7de44jASAwnEzP0tBJidp7+ISl3rRetCYPv1kVy4XZ0xgAAAAA+CCfD7d27vzjyWC5ubk2dwIAnpedk6cn31xQINhq1aiGXnm4myLCQ+1pDAAAAAB8lE+HW5s3b9aMGTNkGIbq1KljdzsA4FH5TqfGvv+NNu06Yqlf3by+XhrUUWGhITZ1BgAAAAC+yyvh1r333lui451Op44cOaIDBw7INE0ZhqHOnTt7qDsAsJ9pmnrts5VatmG3pd66aR1NHNFLRn6WTZ0BAAAAgG/zSri1Zs0aGYZR4vNM05QkXXrppRo4cKC72wIAn/HpNxv12be/WmoX1aqiV0feptCQYOXm29QYAAAAAPg4r92W+GdQVVzh4eFq0KCBunbtqvvuu09lypTxUGcAYK+v1/6uaZ+vstSiKpbV1Md6q3xEmJxOki0AAAAAKIpXwq1t27Z5420AwO9s2H5QL3yw1FIrGxaiScNvVvUqFWzqCgAAAAD8h8PuBgCgtNp1MEVPxS1Ubp7TVQtyOPTy4C66uHYVGzsDAAAAAP9BuAUANjh24rQenzZfaRk5lvoz916vK5rWtqkrAAAAAPA/hFsA4GWnM3M06vX5OpKabqkP7nWVurVtbFNXAAAAAOCfPBZuJScnu2WcTz75RPn5LKYMIDDk5uXrmbcWaceB45b6rR0uVb8uMTZ1BQAAAAD+yyPh1qxZs3Tbbbdd0ELyOTk5evDBB/Xvf/9br7/+uhu7AwB7mKaplz/8Tj9tS7LUr2lRT4/eeY0Mw7CpMwAAAADwX24Pt9LT0zV16lQdO3ZMEyZMOO9xQkNDFRISItM09cEHHyglJcWNXQKA970z9yctWL3dUru0flWNfaCTgoO4SxwAAAAAzofbf5qaM2eO0tPT5XA4NGbMmAsa65lnnlFoaKiysrI0d+5cN3UIAN43Z/kWfTB/vaVWO7qCXhnaTeFlQmzqCgAAAAD8n9vDrR9++EGS1K5dO1100UUXNFatWrV07bXXyjRNLV++3B3tAYDX/bBxryZ+bP0eVqlcmCYNv1mVy4fb1BUAAAAABAa3h1u//fabDMPQ1Vdf7Zbx2rRpI0natWuXW8YDAG/asvuI/vXuEjlN01UrExKsV4Z2U+2qFW3sDAAAAAACg9vDrRMnTkiSatas6ZbxoqKiJEmpqaluGQ8AvOXAsZMa9eYCZeXkuWoOw9C/B3bSZQ2q2dgZAAAAAAQOt4dbOTk5kqTc3Fy3jGf+72qH/Px8t4wHAN6Qmpapx177SifSsiz1x/teo2tb1renKQAAAAAIQG4PtypXrixJOnDggFvGS0pKkiRFRka6ZTwA8LSsnFw9+eZCHTh2ylK/t2uMbu1wmU1dAQAAAEBgcnu4dckll8g0TX399dduGe+7776TYRhq2rSpW8YDAE/Kdzr13IxvtHn3EUu9S5tGeqjnVTZ1BQAAAACBy+3h1o033ihJ2rJli9auXXtBY23evFnr1q2zjAsAvso0TU3+zw9a/sseS/2KprX0TL/rZRiGPY0BAAAAQABze7h1yy23qFKlSpKkJ598UocPHz6vcVJSUjRq1ChJUqVKldSjRw93tQgAHjFr0QYlfLfZUru4VhWNe6izQoKDbOoKAAAAAAKb28OtsmXLavTo0TJNU4cOHVLv3r21YMGCEo2xdOlS3Xbbbdq9e7cMw9ATTzyh8PBwd7cKAG6T8N1mxc1ZY6lVrRyhV4d1U7nwMjZ1BQAAAACBzzD/fByhm7344ov68MMPXbfh1K1bV126dFGLFi1Up04dVapUSSEhIcrNzdXJkyd14MABbdy4UUuWLNGuXbtcT0m85557NGbMGE+0CB+Rk5km03SW6JyQsHJyOILkdOYrNyvdQ50BxbP4px0a+943OvO7abnwUE0f1UsNa53/wzCY5ygNmOcIdMxxBCLDcCg0vLzdbQCAi8fCLUmKi4vTtGnTlJ+fX6K1ZkzTVFBQkIYNG6YhQ4Z4qj34CMIt+LMfNu3VU9MXKd/51xwODQnS5BE3K6ZRzQsam3mO0oB5jkDHHEcgItwC4GvcflvimQYPHqyEhARdf/0fCymbpnnOP4Zh6Prrr1dCQgLBFgCftmHHQf3z7cWWYCvI4dC4BztfcLAFAAAAACgej165dabDhw/ru+++08aNG7V3716dOHFC2dnZKlOmjCpVqqR69eqpZcuWuvbaa1WjRg1vtAQfwZVb8Ee/7TumYZPm6nRWjqtmGNLz93fSTVde7Jb3YJ6jNGCeI9AxxxGIuHILgK/xWrgFFIVwC/5m7+ETGvLqHJ1Iy7LUn7yrg3p1uNRt78M8R2nAPEegY44jEBFuAfA1Hr0tEQACzeGUND0ydV6BYGtwrzZuDbYAAAAAAMVDuAUAxZRyKlOPTJ2nI6nW37zffVNL9evSyp6mAAAAAKCUI9wCgGJIz8zWY9O+0r4jJy31W665RA/f1rZET4QFAAAAALgP4RYAnENWTq6eeGOBtu9PttRvvPwiPXHXtQRbAAAAAGAjwi0AOIvcvHz9863F+uX3w5Z6m0vr6Ln7OyrIwbdRAAAAALATP5UBQBHynU698MG3WrV5v6XeomF1jXuos0KCg2zqDAAAAADwJ8ItACiEaZp69ZMV+nrt75Z6o9pV9MrQbgovE2JTZwAAAACAMxFuAUAh4uas0ZzlWyy12tEVNHnEzSpftoxNXQEAAAAA/o5wCwD+5sNFGzRr0QZLLbpShKY+0kORFcra1BUAAAAAoDCEWwBwhi+Xb9GbX/xoqVUqF6apI2NVo0p5m7oCAAAAABSFcAsA/uebtb9rwsffW2plw0I0afjNql+jsk1dAQAAAADOhnALACSt3rxPY99fKtP8qxYaHKQJQ7qqab1o+xoDAAAAAJwV4RaAUm/j74f0dNxi5eU7XbUgh6EXH7xJlzepZWNnAAAAAIBzIdwCUKpt23tMo95YoOzcPFfNMKQx992ga1rUt68xAAAAAECxEG4BKLV+25eskVPnKT0zx1J/7M5r1KVNY5u6AgAAAACUBOEWgFJpx4FkjZw6V2kZ2Zb6oFuuVO/rm9nUFQAAAACgpAi3AJQ6O5NSNHLKPJ06bQ227u0ao/7dLrepKwAAAADA+SDcAlCq7D6YouFTEnUiPctSv/umlnqo51UyDMOmzgAAAAAA5yPY7gZ81aFDh/Tyyy9r4cKFkqSZM2eqTZs2xTo3PT1d8fHxWrJkifbv3y+n06latWqpY8eOuu+++xQZGemX4wD+bs/hVA2fMlcn0qzB1p0dW+jh29oSbAEAAACAHzJM0zTtbsKX5OTk6P3331dcXJwyMjJc9eKGWzt37tSgQYOUlJRU6P6oqChNnz5dLVq08KtxPCknM02m6SzROSFh5eRwBMnpzFduVrqHOkMg2X/khIZOSlTyyQxL/fYbmunRf7T3yWCLeY7SgHmOQMccRyAyDIdCw8vb3QYAuHBb4hmWL1+uHj16aNKkScrIyFD16tVLdH56eroefPBBJSUlKSQkRE888YS+++47/fjjj3rjjTdUt25dJScna8iQITp27JjfjAP4uwPHTmrY5LkFgq1bO1zqs8EWAAAAAKB4CLck5eXladiwYRo4cKD27Nmj6OhojR8/XuPHjy/RODNmzNCBAwckSRMmTNDAgQNVvXp1VapUSZ06ddLQoUMlScnJyXrzzTf9ZhzAnx1MPqXhk+bq2InTlnrPay/R432uJdgCAAAAAD9HuCUpODhYFSpUUEhIiAYNGqRFixapV69eJfqhNz8/X5988okkKSYmRt27dy+w/6233nK9TkhIUGZmps+PA/izQ8fTNGxSoo6kWm8DiW3XVE/07SCHg2ALAAAAAPwd4db/jB49WvPnz9eoUaMUERFR4vPXr1+v1NRUSVK3bt0K7J89e7Z27dql3r17S5KysrK0YsUKnx8H8FdHUtI1fHKiDqdYg61ubRtr9D0EWwAAAAAQKAi3/qdixYqqW7fueZ//66+/urZjYmIs+zIzMzVt2jS1bNlSI0eOLPQcXx0H8EfHUtM1bHKiDianWeqdr7xYz9x7vYIcfOsDAAAAgEARbHcDgWLXrl2u7dq1a1v2xcfH6+jRo5o4caKqVaum4OBg5eXlWc7x1XG8IbhM2RKfYxgO139Dwsq5uyX4seQT6Ro+5SslHTtlqd90VRONfehmBQf5T7DFPEdpwDxHoGOOAwDgeYRbbpKSkuLarly5sms7NTVV7777rjp06KA2bdpIkipUqKCUlBTXbYO+PI43OBxB532uYRgyjPM/H4El+US6hoz/r/Ydsc7ljlc20YtDbvGrYOtMzHOUBsxzBDrmOAAAnkO45SZ/LsYeGhpqWYg+Li5O6enpevzxx1210NBQSVJGRobPj+MNTmd+ic8xDIcMw5BpmjJNpwe6gr9JOXVag1/+r/YcSrHUr2/dSC8+1F0OwzyvuWYn5jlKA+Y5Ah1zHIHqQn5BDQDuRrjlZo4z1vJJSkrSxx9/rNjYWDVt2tRVdzrP/Q8bXxvHk/KyM0r8j72QsHIyjCCZplO5WennPgEB7UR6poZNmqvdB63B1jUt6mnsgOtl5mUqN8+e3i4E8xylAfMcgY45jkBkGA6Fhpe3uw0AcPHPe3R8UNmyf6wblZub66pNmTJFpmlaFm2XpOzsbMs5vjwO4OtOpmdp5JR52vW3YOvqZnX14qDOCgnmt4oAAAAAEMi4cstNIiMjJUn5+flKS0tTUlKS5s2bp7vvvlt16tRxHZebm6u0tDTLOb48DuDLTp3O1sip87TjwHFL/apLa2vcQ50VGkKwBQAAAACBjiu33OSiiy5ybSclJWnixIkKDw/Xww8/bDnu0KFDrtsAGzRo4PPjAL4qLSNbj7w2T9v3J1vqVzStpfGDu6pMCNk9AAAAAJQGhFtu0qxZM9d2fHy8li9frvvvv7/A1VDr1693bTdv3tznxwF8UXZunp58c4G27T1mqV/euKYmPNxVZUIJtgAAAACgtCDccpOYmBhVrlxZkpSQkKAqVapowIABBY5buHChJCksLEzt27f3+XEAX2OapsbNXKZffj9sqbe8uIZeGdpNYaEhNnUGAAAAALAD4ZabBAUFqW/fvq7X/fv3V0REhOWYlStXatmyZZKk3r17Kzw83OfHAXzNO3N/0pKffrfUml9UTROHdVN4GYItAAAAAChtCLf+Jz8/X9nZ2ZY/Zz5pMDc3t8h9f3rggQdUu3ZtSdJHH32k+fPnKyUlRcnJyfrkk080dOhQmaapqKgoDRkypMhefG0cwFfMW7lNH8xfb6nVrVZJrwztpoiwUJu6AgAAAADYyTBN07S7CV+QkJCgp59+utjH33rrrXr55ZcL1Hfu3KlBgwYpKSmp0POioqI0ffp0tWjR4qzj+9o4npSTmSbTdJbonJCwcnI4guR05is3K91DncGXrN2WpEdf+0r5zr/mSqVyYXp79K2qHV3Rxs48h3mO0oB5jkDHHEcgMgyHQsPL290GALiw6rKbNWzYUImJiYqPj9fixYu1f/9+maapmjVrqmPHjurfv3+BRd39YRzATrsPpuiZtxZZgq3Q4CCNH9I1YIMtAAAAAEDxcOUWbMeVWziblFMZGjT+Cx06nmapvzjoJt3YuqFNXXkH8xylAfMcgY45jkDElVsAfA1rbgHwWVk5uXryzYUFgq0ht7YJ+GALAAAAAFA8hFsAfJLTaerf7y/Vlj1HLfUe7Zvqns6t7GkKAAAAAOBzCLcA+KQ3v1itZRt2W2pXXlJbT9x1rQzDsKkrAAAAAICvIdwC4HO++H6zPl7yi6V2Uc1IvfTgTQoOCrKpKwAAAACALyLcAuBTVm/ep0mfrrDUqlQoq4nDuqlceBmbugIAAAAA+CrCLQA+Y8eBZI15e4nynX89xDUsNFivDO2m6pE8kQcAAAAAUBDhFgCfcOzEaT3xxgJlZOe6aoYhPX9/RzWtF21jZwAAAAAAX0a4BcB2GVm5euKNBTqaetpSH3F7O3Vo1cCmrgAAAAAA/oBwC4Ct8p1OPTfja23fn2yp3359M/3jxuY2dQUAAAAA8BeEWwBsY5qmpv53pX7YtNdSb9+8nkb+o50Mw7CpMwAAAACAvyDcAmCb/y7dpM+X/WqpNa4TpbEPdFKQg29PAAAAAIBz46dHALb4/ufdeu3zlZZa1coRemVoN5UNC7GpKwAAAACAvyHcAuB1W/ce1fPvfSPT/KtWtkyIJg7truhKEfY1BgAAAADwO4RbALzq0PE0PfnGQmXl5LlqQQ5DLz54ky6uXcXGzgAAAAAA/ohwC4DXnM7M0RNvLNDxUxmW+uN9rlXby+ra1BUAAAAAwJ8RbgHwinynU8+997V2HUyx1O++qaV6dbjUpq4AAAAAAP6OcAuAV8TNWaOVm/ZZatfHXKQht7a1qSMAAAAAQCAg3ALgcQtWb9dHi3+21JrWi9ZzA26Uw2HY0xQAAAAAICAQbgHwqM27j2j8h99ZalEVy2r84C4qExpsU1cAAAAAgEBBuAXAY46lpuup6YuUk5fvqoUGB+nlwV0UXbmcjZ0BAAAAAAIF4RYAj8jOydPouEUFnoz4dL/rdGmDajZ1BQAAAAAINIRbANzONE29NHOZtu09Zqnf06WVurRpbFNXAAAAAIBARLgFwO1mLtygr9f+bqm1a15XD/W8yqaOAAAAAACBinALgFt9//NuvfXlGkutQY3KGnt/JwU5+JYDAAAAAHAvftIE4DY7k47r3+8vtdQqRJTR+Ie7KiI81KauAAAAAACBjHALgFucSM/Uk28uVEZ2rqsW5DD04qDOqh1d0cbOAAAAAACBjHALwAXLy8/XP99arEPH0yz1R/7RXlc0rWVTVwAAAACA0oBwC8AFm/yfH7RhxyFLrde1l+q26y6zqSMAAAAAQGlBuAXggsxe9qu++H6LpRbTqIYe69NehmHY1BUAAAAAoLQg3AJw3tZuS9KU//5gqdWoUl4vPdRZwUFBNnUFAAAAAChNCLcAnJcDx05qzDuLle80XbWyZUI04eGuqlQu3MbOAAAAAAClCeEWgBI7nZmj0W8u1KnT2a6aYUjPDrhRDWtVsbEzAAAAAEBpQ7gFoETynU49/9432n0o1VJ/8Jar1KFVA5u6AgAAAACUVoRbAErkrS/X6IdNey21TldcrHu7xtjUEQAAAACgNCPcAlBsi37crg8X/WypNa0brWfuvY4nIwIAAAAAbEG4BaBYtuw+ov+b9Z2lVqVCWY0f0kVhoSE2dQUAAAAAKO0ItwCc07HUdD0Vt0g5efmuWmhwkF4e0kXRlcvZ2BkAAAAAoLQj3AJwVhlZuRodt0jJJzMs9dH3XKfLGlSzqSsAAAAAAP5AuAWgSHn5+frXO4u1be8xS/3um1qqW9vGNnUFAAAAAMBfCLcAFMo0TU34aLlWbd5vqV/drK4G39rGpq4AAAAAALAi3AJQqBnz1mreym2WWuM6Ufr3wE4KcvCtAwAAAADgG/gJFUABXy7fove+Wmep1ahSXq8O666IsFCbugIAAAAAoCDCLQAWP2zaq4mfLLfUKkSU0aThN6tKxbI2dQUAAAAAQOEItwC4bNl9RP96Z4nynaarFhoSpFeGdlO96pXsawwAAAAAgCIQbgGQJB04elKj3ligrJw8V81hGBr7QCc1v6i6jZ0BAAAAAFA0wi0ASjmVqUenfaUT6VmW+mN9rtF1rRrY1BUAAAAAAOdGuAWUcpnZuXrijflKOnbKUr+3a4xuu+4ym7oCAAAAAKB4CLeAUiwv36kx7yzR1r3HLPVubRvroZ5X2dQVAAAAAADFR7gFlFKmaeqVj7/Xql/3WepXXlJbT91znQzDsKkzAAAAAACKj3ALKKXe+2qd5v6wzVJrVKeKxj3UWSHBQTZ1BQAAAABAyRBuAaXQ3B+2asa8tZZa9chyenVYd0WEhdrUFQAAAAAAJUe4BZQyKzft1YSPvrfUKkSU0aQRNyuqYoRNXQEAAAAAcH4It4BSZMueoxrzzhLlO01XLTQkSBOGdFX96pVt7AwAAAAAgPNDuAWUEgeOntSoN+YrKyfPVTMMaez9ndTi4ho2dgYAAAAAwPkj3AJKgdS0TD027SudSMuy1B+78xpdF9PApq4AAAAAALhwhFtAgMvMztUTbyzQgWOnLPV+XWLU+/pmNnUFAAAAAIB7EG4BASwv36l/vbtEW/YctdS7tGmkwb2usqkrAAAAAADch3ALCFCmaWriJ8u1ctM+S/3KprX0TL/rZRiGTZ0BAAAAAOA+hFtAgPpw8c9KXLHVUmtUp4rGPdRFIcFBNnUFAAAAAIB7EW4BAWj15n2Km/OjpVYtspwmDu2uiPBQm7oCAAAAAMD9CLeAALP/yAk9N+NrmeZftfJly2jy8JsVXSnCvsYAAAAAAPAAwi0ggJzOytFTcYuUlpHjqjkMQy8M7KT6NSrb2BkAAAAAAJ5BuAUECKfT1AvvL9XuQ6mW+sO3tdVVl9axqSsAAAAAADyLcAsIEPEL1uv7X/ZYap2vvFh9O7WwpyEAAAAAALyAcAsIAMt/2aN35v5kqTWuE6Wn+l0nwzBs6goAAAAAAM8j3AL83J7DqRr7/jeWWqVyYfq/wV0UFhpiU1cAAAAAAHgH4Rbgx9Izs/XU9IXKyMp11YIchl4cdJNqVClvY2cAAAAAAHgH4Rbgp5xOU8+/9432HTlpqY+4o50ub1LLpq4AAAAAAPAuwi3AT7077yet3LTPUut+dRPdfn0zmzoCAAAAAMD7CLcAP/Tt+l36YP56S+2SetF64q5rWUAeAAAAAFCqEG4BfmZnUopejF9qqUVWCNf/De6iMiHBNnUFAAAAAIA9CLcAP3LqdJZGT1+ozOw8Vy04yKFxD3ZW1crlbOwMAAAAAAB7EG4BfiLf6dSzM77WweRTlvpjd16jFhfXsKkrAAAAAADsRbgF+Im4OWu0ZssBS63ntZeoV4dLbeoIAAAAAAD7EW4BfmDJT7/ro8U/W2rNL6qmR/9xjT0NAQAAAADgIwi3AB+3fX+yxs1cZqlFVSyrlx7qrNCQIHuaAgAAAADARxBuAT7sRHqmnpq+UNm5fy0gHxLs0P8N7qKoihE2dgYAAAAAgG8g3AJ8VF6+U2PeWaLDKemW+hN3ddBlDarZ1BUAAAAAAL6FcAvwUW/MXqX1vx201G6/vpli2zW1qSMAAAAAAHxPsN0NBJKEhAQ9/fTTxTr2/vvv1+jRo4vcn56ervj4eC1ZskT79++X0+lUrVq11LFjR913332KjIws1vu4axx414LVv+k/SzdZaq0a1dCIO662qSMAAAAAAHwT4ZZNLrvssiL37dy5U4MGDVJSUpKlvmPHDu3YsUOff/65pk+frhYtWpz1Pdw1Drxr696jGv/h95Zatcrl9OKgzgoOYgF5AAAAAADORLjlIRs3bjzr/pCQkELr6enpevDBB5WUlKSQkBA98sgjio2NVVhYmNauXavx48dr3759GjJkiObMmaPo6GiPjgPvOnU6W0/HLVJOXr6rFhoSpP8b3EWRFcJt7AwAAAAAAN/EmlseUqZMmbP+cTgK/6ufMWOGDhw4IEmaMGGCBg4cqOrVq6tSpUrq1KmThg4dKklKTk7Wm2++WeT7u2sceNfUz37Q0dTTltpT91ynpvUIHwEAAAAAKAzhlg/Jz8/XJ598IkmKiYlR9+7dC+x/6623XK8TEhKUmZnpsXHgXSs27tGC1dsttTtvbK6ubRrb1BEAAAAAAL6PcMuHrF+/XqmpqZKkbt26Fdg/e/Zs7dq1S71795YkZWVlacWKFR4bB95z6nS2JnxkXWfropqRGnJrW5s6AgAAAADAPxBueYHT6SzWcb/++qtrOyYmxrIvMzNT06ZNU8uWLTVy5MhCz3H3OPCeqZ/9oOSTGa7XQQ5DY+67QaEhLCAPAAAAAMDZsKC8hyQmJmrOnDnavn27kpOTFR4erpYtW+qee+5Rp06dCj1n165dru3atWtb9sXHx+vo0aOaOHGiqlWrpuDgYOXl5VnOcfc43hJcpmyJzzEMh+u/IWHl3N2SV32/YWeB2xHvu7mNmjdpYFNH8BWBNM+BojDPEeiY4wAAeB7hloc88cQTltcZGRlatWqVVq1apX79+mnMmDEFzklJSXFtV65c2bWdmpqqd999Vx06dFCbNm0kSRUqVFBKSorr9kNPjOMtDsf5X51kGIYMw3+vbjp1Okv/F7/EUmtYO0qDerW/oL8XBBZ/n+dAcTDPEeiY4wAAeA7hlhvVqlVLXbp0UUhIiK688kq1adNG1atXV05OjlavXq1XXnlF+/fv16xZs3TppZfqtttus5z/56LuoaGhMgzDVY+Li1N6eroef/xxVy00NFTSH6HZ37lrHG9xOvNLfI5hOGQYhkzTlGkW77ZPX/TKrCVKPpHueh3kMPTcwK4KDjLO6+8FgSVQ5jlwNsxzBDrmOAIVv4gF4EsIt9yoTZs2riuizhQeHq4uXbqoRYsWio2NVXp6uqZPn14g3PqTw/HXUmhJSUn6+OOPFRsbq6ZNm7rqxVnHy13jeFpedkaJ/7EXElZOhhEk03QqNyv93Cf4oBUb92j+yi2WWr+uMbq4ejm//ZrgXoEwz4FzYZ4j0DHHEYgMw6HQ8PJ2twEALiwo70U1atRQ165dJUn79u3T/v37LfvLlv1j7anc3FxXbcqUKTJN07L4uyRlZ2dbzvHEOPCcU6ezNP5D69MRG9aK1IDurW3qCAAAAAAA/0S45WWNGjVybe/bt8+yLzIyUpKUn5+vtLQ0bdu2TfPmzVOfPn1Up04d13G5ublKS0uznOOJceA5U/67UsdPWZ+O+M97b1BIMJd3AwAAAABQEoRbXhYeHu7aPvPKKkm66KKLXNtJSUmaOHGiwsPD9fDDD1uOO3TokOt2wgYNCj5Rz13jwDNWbNyjhT9an47Yr2uMmtaLtqkjAAAAAAD8F+GWlx07dsy1Xa1aNcu+Zs2aubbj4+O1fPly3X///QWuqlq/fr1ru3nz5gXew13jwP24HREAAAAAAPci3PKylStXSpLKly9f4GqpmJgYVa5cWZKUkJCgKlWqaMCAAQXGWLhwoSQpLCxM7du3L7DfXePA/Qq7HXHMfdyOCAAAAADA+SLcchPTNPXyyy/r66+/LvKYBQsWaN26dZKkXr16KSwszLI/KChIffv2db3u37+/IiIiLMesXLlSy5YtkyT17t3bcpuju8eBexV1O2KTutyOCAAAAADA+TJM0zTtbiIQvPvuu3rllVckSZ06dVLv3r3VrFkzlS1bVgcPHlRiYqLef/995eXlqV69epo9e7bKly/4+Nz09HT17NlTBw4cUPXq1TV69Gi1bdtWTqdTS5Ys0YQJE5SRkaGoqCjNmTNH0dGFByPuGscbcjLTZJrOEp0TElZODkeQnM58v3is9qnTWbp77H8tV201rBWp957uzVVbKJK/zXPgfDDPEeiY4whEhuFQaHjBn2UAwC6EW26Sl5enV199VbNmzSqwUPyZWrRooUmTJlmeWvh3O3fu1KBBg5SUlFTo/qioKE2fPl0tWrQ4a0/uGsfTSkO4Nfb9b7Toxx2u10EOQ+8+dRtXbeGs/G2eA+eDeY5AxxxHICLcAuBrCLfcbO/evfrss8+0YsUKHTx4UJmZmYqOjlbjxo0VGxurrl27Kjg4+JzjpKenKz4+XosXL9b+/ftlmqZq1qypjh07qn///gUWh/f0OJ4U6OHW8l/2aPT0hZbagO6tNeiWK23qCP7Cn+Y5cL6Y5wh0zHEEIsItAL6GcAu2C+Rwi9sRcSH8ZZ4DF4J5jkDHHEcgItwC4GtYUB7woMn//YGnIwIAAAAA4EGEW4CHLP9lj2WdLUm6t+vlrLMFAAAAAIAbEW4BHnDqdJYmfPS9pdawVqT6d7/cpo4AAAAAAAhMhFuAB0z6D7cjAgAAAADgDYRbgJt9//NuLV7D7YgAAAAAAHgD4RbgRqdOZ+mVj5dbahfXqsLtiAAAAAAAeAjhFuBGhd2O+E9uRwQAAAAAwGMItwA3Kfp2xCibOgIAAAAAIPARbgFucOp0liZ8bH06IrcjAgAAAADgeYRbgBu8Pnu1Uk5lul4HORzcjggAAAAAgBcQbgEXaM+hVM1f9Zuldl+3GG5HBAAAAADACwi3gAs0Y95aOU3T9bpe9Uq6rxu3IwIAAAAA4A2EW8AF2HEgWd+s22mpDepxJbcjAgAAAADgJYRbwAV4J3Gt5XWjOlV0fcxFNnUDAAAAAEDpQ7gFnKctu49oxcY9ltqDPa6Sw2HY0xAAAAAAAKUQ4RZwnt6e+5Pl9WUNqqpd87o2dQMAAAAAQOlEuAWchw07DmrNlgOW2oO3XCXD4KotAAAAAAC8iXALKCHTNPX2l9arti5vXFNXNK1lU0cAAAAAAJRehFtACf209YB++f2QpTboliu5agsAAAAAABsQbgElYJqm3k60XrXV9rI6anlxDZs6AgAAAACgdCPcAkrgh017tWXPUUtt0C1X2tQNAAAAAAAg3AKKyek09c7frtrq0LK+LqlX1aaOAAAAAAAA4RZQTMs27NKOA8ddrw2Dq7YAAAAAALAb4RZQDPlOp96Za71qq2Pri9WwVhWbOgIAAAAAABLhFlAsi9f8rr2HT7heOwxDD8ReYV9DAAAAAABAEuEWcE55+fmaMW+tpda1bWPVq17JnoYAAAAAAIAL4RZwDvNW/qaDyadcr4McDt1/c2sbOwIAAAAAAH8i3ALOIjs3Tx/MX2ep3XJNU9WMqmBTRwAAAAAA4EyEW8BZfLl8q46mnna9Dg0O0n3dLrexIwAAAAAAcCbCLaAImdm5mrlwvaV2a4dLVbVyOZs6AgAAAAAAf0e4BRRh9rJflXIq0/U6LDRY/brG2NgRAAAAAAD4O8ItoBCnM3P04eKfLbU7bmiuyApl7WkIAAAAAAAUinALKMR/lm7UqdPZrtcRYaG6u3NLGzsCAAAAAACFIdwC/ubU6Sx9smSjpdb3phaqEBFmU0cAAAAAAKAohFvA33y85Bedzspxva4QUUZ33tjCxo4AAAAAAEBRCLeAM6ScytR/l26y1O7p3EoR4aE2dQQAAAAAAM6GcAs4w6xFG5SVk+d6HVkhXL2vb2ZjRwAAAAAA4GwIt4D/OZaari++22yp3dv1coWXCbGpIwAAAAAAcC6EW8D/fLBgvXLy8l2vq1aOUM9rL7GxIwAAAAAAcC6EW4Ckg8mnlLhim6XWv3trlQkJtqkjAAAAAABQHIRbgKT3vlqnfKfT9bpmVAXFtmtiY0cAAAAAAKA4CLdQ6u09fEILV2+31B6Iba3goCCbOgIAAAAAAMVFuIVSb8a8tXKaput1veqV1PmqRjZ2BAAAAAAAiotwC6Xa7weO6+u1v1tqA2OvUJCDjwYAAAAAAP6An+BRqr079yfL64trVdENlze0qRsAAAAAAFBShFsotXYfTNH3v+yx1AbdcqUcDsOehgAAAAAAQIkRbqHU2nHguOX1pfWr6poW9WzqBgAAAAAAnA/CLZRaV15SW+XCQyVJYaHBeuQf7WUYXLUFAAAAAIA/Cba7AcAulcuH69OxfbVm635dUq+q6lWvZHdLAAAAAACghAi3UKpFVghX1zaN7W4DAAAAAACcJ25LBAAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfItwCAAAAAACA3yLcAgAAAAAAgN8i3AIAAAAAAIDfCra7AcAwLixjvdDzAX/APEdpwDxHoGOOI1AwlwH4GsM0TdPuJgAAAAAAAIDzQeQOAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAv0W4BQAAAAAAAL9FuAUAAAAAAAC/RbgFAAAAAAAAvxVsdwNAcaWnpys+Pl5LlizR/v375XQ6VatWLXXs2FH33XefIiMj7W4RKLZDhw7p5Zdf1sKFCyVJM2fOVJs2bYp1Lp8F+Kp169YpMTFRa9asUXJysrKzsxUdHa1WrVrptttuU/v27Ys1DnMcvmzTpk1KSEjQjz/+qEOHDsk0TVWpUkWtWrVSjx49dP311xdrHOY5AADuY5imadrdBHAuO3fu1KBBg5SUlFTo/qioKE2fPl0tWrTwcmdAyeTk5Oj9999XXFycMjIyXPXihlt8FuCLMjMz9eyzzyoxMfGsx91222168cUXFRQUVOQxzHH4qlOnTulf//qX65cSRenQoYOmTp2qsmXLFnkM8xwAAPci3ILPS09PV8+ePXXgwAGFhITokUceUWxsrMLCwrR27VqNHz9e+/btU1RUlObMmaPo6Gi7WwYKtXz5cr344ovas2ePJKl69eo6fPiwpOKFW3wW4ItycnI0YMAArV27Vg6HQ3feead69uypevXqKTc3V1u3btWkSZP022+/SZIGDRqkUaNGFToWcxy+bMqUKZo+fboqVaqke+65RzfeeKNq166trKws/f7775o5c6aWLVsmSbrpppv0+uuvFzoO8xwAAPdjzS34vBkzZujAgQOSpAkTJmjgwIGqXr26KlWqpE6dOmno0KGSpOTkZL355pt2tgoUKi8vT8OGDdPAgQO1Z88eRUdHa/z48Ro/fnyJxuGzAF8UGhqqu+++W1WrVtW7776r559/XjExMYqMjFS1atV0/fXX6z//+Y/q1Kkj6Y8gNzU1tdCxmOPwZSNHjtRzzz2nBQsWaPjw4brssstUsWJFVatWTe3bt9dbb72lvn37SpKWLFmi7du3FzoO8xwAAPcj3IJPy8/P1yeffCJJiomJUffu3Qvsf+utt1yvExISlJmZ6dUegXMJDg5WhQoVFBISokGDBmnRokXq1auXDMMo9hh8FuDLunfvrm+//bbINbXCw8N1zz33SJKys7O1Zs2aAscwx+HrDMPQXXfddda1sPr06ePa3rlzZ4H9zHMAADyDcAs+bf369a7f8Hfr1q3A/tmzZ2vXrl3q3bu3JCkrK0srVqzwao9AcYwePVrz58/XqFGjFBERUeLz+SzA1wUHn/0ZNQ0aNHBtHzt2rMB+5jgCQU5Ojmu7atWqBfYzzwEA8AzCLfi0X3/91bUdExNj2ZeZmalp06apZcuWGjlyZKHnAL6iYsWKqlu37nmfz2cB/u7MByhUrFixwH7mOAJBfHy8JKlRo0a6/PLLC+xnngMA4Bln/zUrYLNdu3a5tmvXrm3ZFx8fr6NHj2rixImqVq2agoODlZeXZzkHCBR8FuDvNm7c6Npu1apVgf3Mcfgbp9Op3NxcnT59Wlu2bNEHH3yg5cuXq2bNmpo6dWqht54zzwEA8AzCLfi0lJQU13blypVd26mpqXr33XfVoUMH1xPmKlSooJSUlCIXKgb8GZ8F+LOcnBzNnTtX0h9Xq/y5uPyZmOPwN4mJiRo9erTrdZUqVTR8+HDde++9qlChQqHnMM8BAPAMbkuET/tzEdXQ0FDLb0Dj4uKUnp6uxx9/3FULDQ2VZL31BQgUfBbgz95++23XOlsjRowo9BjmOPzN7t27La+PHz+uWbNmafr06UXOTeY5AACeQbgFv+Bw/DVVk5KS9PHHHys2NlZNmzZ11Z1Opx2tAV7FZwH+Zv369YqLi5Mk3XHHHWrXrt1Zj2eOw188+uij+u2337R+/XolJibqwQcfVE5Ojt577z3deeedSk9PL/Jc5jkAAO5FuAWfVrZsWUlSbm6uqzZlyhSZpmlZbFX64/HyZ54DBBI+C/BHBw4c0NChQ5Wbm6tmzZppzJgxRR7LHIe/ioiIUJMmTfT444/rvffek8Ph0Pbt2zVlypQCxzLPAQDwDMIt+LTIyEhJUn5+vtLS0rRt2zbNmzdPffr0sazZkpubq7S0NMs5QCDhswB/c+TIEQ0YMEApKSmqU6eOpk+frrCwsCKPZ44jEMTExKh169aSpC+++KLAfuY5AACeQbgFn3bRRRe5tpOSkjRx4kSFh4fr4Ycfthx36NAh1+X7DRo08GqPgDfwWYA/SU5O1oABA7Rv3z7VqlVL8fHxqlq16lnPYY4jUNSvX1+SlJ6ebllAXmKeAwDgKYRb8GnNmjVzbcfHx2v58uW6//77C/wWc/369a7t5s2be60/wFv4LMBfHDlyRPfcc4927typevXqaebMmapVq9Y5z2OOI1BkZWVJkgzDUEREhGUf8xwAAM8g3IJPi4mJcT0qOyEhQVWqVNGAAQMKHLdw4UJJUlhYmNq3b+/VHgFv4LMAf7B//3717dtXu3fvVtOmTfXxxx+rdu3axTqXOY5AkJ+fr3Xr1kmS6tWrpzJlylj2M88BAPAMwi34tKCgIPXt29f1un///gV+C7py5UotW7ZMktS7d2+Fh4d7s0XAK/gswNdt375dffv2VVJSktq1a6ePPvpIUVFRxT6fOQ5f984776hfv346ceJEkcdMnz5dBw8elCTdfffdBfYzzwEA8AzCLfi8Bx54wPWb/48++kjz589XSkqKkpOT9cknn2jo0KEyTVNRUVEaMmSIzd0ChcvPz1d2drblz5lPy8rNzS1y35/4LMBXbdiwQffcc4+OHTumbt26adq0aQoJCSkw5//8k5OTU+g4zHH4qm3btun111/XmjVr1KVLF73++uvavHmzTp06pdTUVK1evVojRozQtGnTJElt27a1hFhnYp4DAOB+hmmapt1NAOeyc+dODRo0SElJSYXuj4qK0vTp09WiRQsvdwYUT0JCgp5++uliH3/rrbfq5ZdfLlDnswBf1K9fP61Zs6bYx9evX1+LFi0qdB9zHL5q3bp1euaZZ7Rnz56zHhcbG6uxY8eqXLlyRR7DPAcAwL2C7W4AKI6GDRsqMTFR8fHxWrx4sfbv3y/TNFWzZk117NhR/fv351HZKBX4LCAQnO3pb8xx+KrWrVtr/vz5mj9/vpYuXaqNGzcqOTlZwcHBqlatmlq3bq2ePXvqiiuuOOdYzHMAANyLK7cAAAAAAADgt1hzCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAlGq5ubkyTdPuNgAAAHCeCLcAAECpNnfuXLVs2VJdu3bV999/b3c7AAAAKCHCLQAAUOplZ2dr9+7dSk5OtrsVAAAAlFCw3Q0AAICze+qpp/TFF18UqIeEhCgiIkLR0dFq0qSJOnTooJtuuklly5a1oUsAAADAHoRbAAD4qdzcXJ04cUInTpzQjh07NG/ePEVHR+tf//qXunTpYnd7AAAAgFcQbgEA4Ecee+wxNW7cWJJkmqZOnz6tvXv3atmyZdq0aZOOHTumkSNH6pVXXlGPHj1s7hYAAADwPMItAAD8SKtWrdSmTZsC9WHDhunjjz/W2LFjZZqmXnjhBV133XWqUKGCDV0CAAAA3sOC8gAABIi77rpL7du3lySdPHlS3377rc0dAQAAAJ5HuAUAQAD5M9ySpG3bthV5XF5enj7//HMNGDBAV199tS677DK1bdtWd955p+Li4nTq1KlzvtePP/6oJk2aqEmTJpo2bdpZj73xxhvVpEkT3XjjjUUeM23atALH7N69W+PHj1f37t3VsmVLtW7dWn369Cl0gf2iZGRkKC4uTj179lTLli0VExOjXr16KS4uTpmZmcUeBwAAAL6J2xIBAAgg5cuXd22fPn260GNSUlI0aNAg/frrr5Z6amqqUlNT9fPPP2vmzJmaMmWKrrrqKo/2W5gTJ07INE298cYbiouLU25urmX/hg0btGHDBu3Zs0ePPvroWcc6duyY+vXrp927d1vqW7du1datWzV79mzdcsstbv8aAAAA4D2EWwAABJCjR4+6tiMjIwvsT09P11133eUKey699FL17NlTNWvWVEpKihYtWqSVK1fq+PHjeuihh/Tpp5+qSZMmXutf+iOUe/755/Xpp5+qbNmy6tOnj1q1aqW8vDx9++23WrhwoSTp7bff1u233646deoUOk5mZqYGDBjg+lpr1aqlf/zjH6pfv75Onjypb775Rt99953eeOMNr31tAAAAcD/CLQAAAsiZ62wVdtXVG2+84Qp7br/9dv373/9WUFCQa3+fPn0UFxenyZMnKyMjQ88995w+/fRTzzf+N59++qmaNWumV199VfXr13fVe/XqpaFDh+rrr7+W0+nUN998o/79+xc6Rnx8vHbs2CFJuuKKK/TOO++obNmyrv133nmnFi9erMcee6zA1WEAAADwH6y5BQBAAMjPz9fkyZNdtxpedtlluvrqqy3HHD9+XLNmzZIkVa9eXc8++6wl2PrT4MGD1apVK0l/3AK4fv16zzZfiMaNGys+Pt4SbP3p5ptvdm3v27ev0PNzcnI0Y8YMSVKZMmU0ceJES7D1p86dO2v48OHuaRoAAAC24MotAAD8yM8//6yMjAxJkmmaOn36tH7//XctWrTIdUVW9erVNXXqVBmGYTn3+++/d12h1LNnT5UpU6bI97n99tv1888/S5IWLFigyy+/3ANfTdGeeuoplStXrtB9Z96GWNSC8OvWrXMtin/99derRo0aRb5XdHT0BXQKAAAAuxFuAQDgRyZNmnTW/TfccIPGjh2ratWqFdi3cuVK13br1q3POs6ZYdamTZtK2OWFCw4u+p8oERERrm3TNAs9ZvXq1a5tOxbFBwAAgPcQbgEAEABiY2PVv39/NW/evMhjDh8+7NouahH2wvbv37//wht0o9DQ0HMec+bXWq9ePU+2AwAAAJux5hYAAH5k5syZ+u233/Tbb7/phRdecNXT0tLOGmxJUkpKimu7qFv+/hQaGqqQkBBJct3e509K8rUCAADAvxFuAQDgp+644w7FxMRIkr777jvNnTv3rMfn5+ef1/uc7RZBX3Xm7Yp/X3sMAAAAgYVwCwAAP2UYhp5//nnXEw/HjRun1NTUIo+vUKGCa/v06dNnHTsnJ8e1+HxkZKQbuvWuihUrurbP9bUCAADAvxFuAQDgx5o2bap+/fpJ+uNWvHHjxhV5bEnW0dq3b59ru2bNmhfYpfdFRUW5tpOSkmzsBAAAAJ5GuAUAgJ8bPny46+mIiYmJWr58eaHHtWzZ0rW9bt26s4555v527doVesyZt/ud7y2PnnLm17phwwYbOwEAAICnEW4BAODnypUrp3/+85+u188995wyMjIKHNelSxfXLYyJiYnKyckpcszZs2e7tjt27FjoMeHh4a7tI0eOFDnWkiVLdPDgwaK/AA+44oor5HD88c+cb775Runp6YUel5+fry+//NKbrQEAAMDNCLcAAAgAXbp0UYcOHST9cRve5MmTCxxTrVo19ejRQ5J08OBBvfTSS3I6nQWOi4uL0y+//CJJuvnmm9W4ceNC37N+/fquAOn7778vNFCbM2eORo0aZVng3RuqVq2qLl26SJJOnjypl156qUAP2dnZevzxx7V69Wqv9gYAAAD38r/HHwEAgEI9++yzuvnmm5Wdna0PP/xQsbGxltvzJGn06NFatWqVjhw5ok8//VSbN2/WLbfcoho1auj48eNauHChVq1aJemPgOjJJ58s8v3Kly+vdu3aacWKFUpOTtZdd92lu+++W1WrVlVSUpISExO1YcMGRUdHq3Hjxtq4caNHv/6/Gz58uL777jtlZGQoISFBu3fvVq9evVSxYkXt2bNH//3vf3Xw4EFdeeWV+umnn7zaGwAAANyHcAsAgABRp04dDR48WFOnTpXT6dSYMWOUkJCgkJAQ1zGRkZGKj4/X4MGDtWfPHm3atEmbNm0qMFbdunX13nvvqXr16md9z2eeeUZ9+/bVyZMntXXrVo0ZM8ayv0mTJpo8ebJmzpzp9XCrYcOGeuONNzR48GBlZ2drw4YNBdbf6tOnj/r27auePXt6tTcAAAC4D7clAgAQQAYOHKgGDRpIkrZv36633367wDENGjTQ3Llz9eyzz6pt27aKiopScHCwypcvr8svv1xPP/20EhMTLU9XLErDhg01e/Zs9e7dWzVq1FBISIgiIyPVrl07vfTSS0pISFDDhg0VGRnp9q+1ONq1a6cvv/xSd9xxh2rVqqWQkBBVrlxZ1157rd566y2NHTtWVatWtaU3AAAAuIdhensRDAAAAAAAAMBNuHILAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+i3ALAAAAAAAAfotwCwAAAAAAAH6LcAsAAAAAAAB+6/8BKGCcWpK3Ci4AAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 14,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 512.975
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: team-picking-backtest-score\n",
- "# | warning: false\n",
- "from blog import theme\n",
- "import seaborn.objects as so\n",
- "\n",
- "\n",
- "def summarize(teams: pl.DataFrame, model: str) -> pl.DataFrame:\n",
- " captains = (\n",
- " teams.filter(pl.col(\"position\") != 6)\n",
- " .filter(pl.col(\"prediction\") == pl.col(\"prediction\").over(\"round\").max())\n",
- " .with_columns(captain=2.0)\n",
- " .select(\"round\", \"player\", \"captain\")\n",
- " ) # TODO review\n",
- " campaign = (\n",
- " teams.join(captains, on=[\"round\", \"player\"], how=\"left\")\n",
- " .with_columns(score=pl.col(\"score\") * pl.col(\"captain\").fill_null(1.0))\n",
- " .group_by(\"round\")\n",
- " .agg(score=pl.col(\"score\").sum())\n",
- " .with_columns(score=pl.col(\"score\").cum_sum())\n",
- " )\n",
- " score = campaign.get_column(\"score\").tail(1).round(2).item()\n",
- " label = f\"{model} ({score})\"\n",
- " campaign = campaign.with_columns(label=pl.lit(label))\n",
- " return campaign\n",
- "\n",
- "\n",
- "def add_line(\n",
- " fig: so.Plot,\n",
- " campaign: pl.DataFrame,\n",
- " linestyle: str = \"solid\",\n",
- " valign: str = \"center_baseline\",\n",
- ") -> so.Plot:\n",
- " text = campaign.tail(1)\n",
- " fig = fig.add(\n",
- " so.Line(linestyle=linestyle),\n",
- " data=campaign,\n",
- " legend=False,\n",
- " ).add(\n",
- " so.Text({\"clip_on\": False}, halign=\"left\", valign=valign),\n",
- " data=text,\n",
- " )\n",
- " return fig\n",
- "\n",
- "\n",
- "season = summarize(teams, \"Score\")\n",
- "theme.set()\n",
- "fig = so.Plot(season, x=\"round\", y=\"score\", color=\"label\", text=\"label\").label(\n",
- " x=\"Round\", y=\"Cumulative score\"\n",
- ")\n",
- "fig = add_line(fig, season)\n",
- "fig"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "da18256d",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "This might seem like a perfect campaign at first, but it's possible that, early\n",
- "in the season, we didn't have enough budget to pick the best scoring teams. To\n",
- "test this hypothesis, we backtest the same strategy with unlimited budget from\n",
- "the start:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "cc11b6b8",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABMoAAAN5CAYAAAD5CtdsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAADw80lEQVR4nOzdd3hTV7Y28FfFvXeDMcYYY2OMjem99xIghJKekJApmdwkN3cmd+Zm6nenZZJMcjMzycykkQKh9957NRiDwb33XtTb+f4wliUsuWBbcnl/z5MnOkfnbC3kY8laWnttkSAIAoiIiIiIiIiIiPo5sb0DICIiIiIiIiIi6gmYKCMiIiIiIiIiIgITZURERERERERERACYKCMiIiIiIiIiIgLARBkREREREREREREAJsqIiIiIiIiIiIgAMFFGREREREREREQEgIkyIiIiIiIiIiIiAEyUERERERERERERAWCijIiIiIiIiIiICAATZURERERERERERACYKCMiIiIiIiIiIgLARBkREREREREREREAJsqIiIiIiIiIiIgAMFFGREREREREREQEgIkyIiIiIiIiIiIiAEyUERERERERERERAWCijIiIiIiIiIg6wGAw2DsE6uPseY0xUUZERERERERE7VJdVYlNX/0TebnZ9g6F+qikWzew9ftNUCoUdnl8JsqIiIiIiIiIqE3FxYXY+v3XqK2pxpkzx1lZRl1OpVTi0sWzKC0pxtbvv0Z9fZ3NYxAJgiDY/FGJiIiI6JEUFRXg6OF9UKvVmDJ1JuJHj7V3SNQBcrkMZaUlVu93dnHBwIGDuuRxDuzfhYryMkQOj8aChcsgEok6PW5XuZ10AxcvnoWzswsWLlqOkJBQe4dkU4IgQBAEiMX2qVvQ6/WQSCR2eezOsvdz158VFxVi547N0Om08PHxxeo1T8PDw9PeYVEfVFpajN07v4dKpYS7uwfWPfk8PD29bPb4TJQRERER9SLfb/4KJSVFAACxWIwf/+QtODg42iWWbVu/gayhHt4+vnh89ZN2iaG3ycxIw/59O6zeP2jQYKxZ92ynH+fC+dO4fu2ScXvV6vUYMiSi0+N2Ba1Wg3/87X1jJcqAASFY/9QL9g3KxurqavHl5/+Ah4cnYkeNxsRJ02zyuN99+znq6+rgHxCINWufscljdjV7PXf9XWVlObZt/QZqlQqenl5Yt/45uDNJRt2otLQYO7Z9B61WA19fP6xd9xxcXF1t8thMwxMRERH1avarEioqzEddXS30Op3dYqD2EdnxOmlTD6p0syVBEFBfX4fa2hqbPWZ5WSlUKiXQy2sl7PHc9WcKhRy7dm6BWqWCs7MLHn/iKSbJqNsFBw/E8sdWQyQSobq6Cnv3bLPZVF+pTR6FiIiILJLLZUi9fxfZWRmora2BUqmAVCqFs7MLAgKDMHhwOKJHjISTk7O9Q6UeYvrMuWZTLx0cHB5pHIPBAJmsAfX1dfD09LLplIb+bFhkFN58639a7P/r+7/v0sdJGDMeRYX5qKgoQ+TwERgcFt6l43eGg4MjZs1egIsXz8DZyRkzZsx95LF0Oh0a6utQ31CPgQMHPfLvA5E9qdVqNNTXQalUIHTwEHuH08KJ44cgl8kAAAsXL4ePj2+Hx1CrVUi5exs52VmoqqqASqWEo6MTPDw8EDYkAjExo+Dr59/hcfV6Pe7fu4O01HuoqCiDWq2Co6MTAgKDEBkZhZiR8e16XSgszEdaagoKC/Ihk9XDYDDA1dUNAYFBGBYZjejokR2e7pubm4X79+6iuLgQclkDpFIHeHh6YvDgIYgdNRp+fgEd/vd2Nb1ej8QbV3D1ygXodLoOVTVfvnQOVy6f79DjeXp64aWNP2n38WFDhmLK1Jm4eOEMSkqKcPXKBUyeMqNDj/komCgjIiKykzvJt3D+3Emo1Wqz/Xq9Hmq1GnV1tcjMSMOF86cxdtxETJg4lT1ZCCEhodjw8qudHuf+vTs4dvQAAGDBwmUYGRvf6TGp53Bzc8e6J5+3dxhWxY8e2yX99U6eOIx7KckAgA0vvwovL+9Oj0lka99+/W/jlxYdSSLYwr17d5CVmQ4AiIsfg6FDIzs8RlNPQrVKZbZfqVRAqVSgvLwMiTeuYNz4SZg6bXa7x62prsL+/TtRVVlhtl+lUqIgPxcF+blIT09tdZpxQ309jh09gPz8nBb31dfXob6+DlmZ6bhx7TKWLFsJf//ANuNSKOQ4dHAPCvJzzfbr9XqoK1SorCjHrZvXMTphPGbOmme3/pHFRYU4ceJQi+evpxk/YQqyszNRUlyIa1cvInzoMAQHD+zWx2SijIiIyA5uJyXi1Mkjxu1BgwYjfGgkPDw9YTAYUFdbg/z8XBQV5kOjUePypXOora3BosWP2TFqIiIi6i8MBgMunj8NAHBydsaUqTM7PMali2dx9coFAICrqxsiI6MRFDwAjo5OkMkakJ+fg+ysDBgMBly7egmCAEyb3nayrK6uFtu2fgOFQg4ACA+PQHhEJFxd3CCTNaCsrAQZ6amYMGGK1THkchk2f/eFcYzQ0DAMCR8GD09P6HU61NRUISUlGXKZDFVVFdi5fTOefPrFViuwtVotdmz7DlVVjcknbx9fxMSMgre3DzQaDSrKy3A35Tb0Oh1u3bwGnU6LefOXtPv57AoqlQoXzp/CneRbnRonOnokgoIGtHmcVqvF4UN7IAgC/Pw7XkUnEokwe84CbP72i8Zr8sIZrH7iqUcJud2YKCMiIrIxuVyGc2dPAgCkUgesfHwdQkPDWhw3afJ0VFSU4dTJo6ivq8XUqbNsHCkREVH/UVFeBqlUCh9fP3uH0iOkpaZAJmsAAMTFjYGLS8cbqcfFj0FmZhqGDo3ExElTWyw+kzBmPEpLirBr5/dQq1VIvHEFsaNGw9vbx+qYgiDg0IHdUCjkEIvFWLJsFSIjo1scN3fe4lanXbq5uWP8hCm4c+cW5i9YanHF4UmTZ+Dk8UNISUmGQiHHlcvnsWDhMqtjJt64YkySxYyMw7z5S1qsMDt2/CRs+/5ryGQNuJN8C7GjRnd7hVST1PspOHvmuDE56Obujpmz5uPQgd0dHsvH169dvyu3k26gaQ3J0aPHdfhxACAoaACGDBmK3Nxs5OfloKK8DAGBQY80VnswUUZERGRjaWn3oNNpAQCjE8ZZTJI1CQgIwpq1z0Ahl7FxLhERURfQ6/XQ6bRQKBSora1GWWkJsrLSUV5WitEJ4zF7zgJ7h9gj3Lx5zXg7Ln7MI43h7u6BZ5/b2Or0wuABIRg/YQounD8Fg8GAgvzcVhNl9+/fRWlpMYDGvp2WkmQA2tWbbMzYCUgYM95qfBKJBHPmLUZmVjrUKhVyc7NaHS8t7R4AQCqVYtbsBS2SZADg5eWNyVNm4PixgwCAnOxMmyTKSoqLcPjQHgCNVVqjE8ZhytSZcHR0eqREWXsIgoBbN28AaKyuCxsy9JHHih89Drm52QAar82Fi5Z3SYyWMFFGRERkY7U11cbb/gFt97oQi8UdSpIJgoD0tPtIS01BWVkJlEoFxGIJ3N09MDBkEEaMiG13s2CVSonbSYnIzspAdXUVdDotXFxdERAQhOHDR2BEzKg2+6YVFORhx7ZvzfZFRcVgybJVAACdVoubN68jI/0eamqqodU2JhEnTZ7eZsNWhUKOpFvXkZ2VidraagiCAHd3DwwOC0dCwvhHagz8KDZ9+U9UV1fCwcEBP/mPn3Xo3Jqaanz1xScAgLHjJmHGTPPG5ieOH2p1ekR7+4ul3L1t7En2sGNHD1i87/HVT3boj1pBEJCWeg/37yWjvKIMapUKrq5uCBsyFJMmTYeHp+2SvaZNhp9Y+4zVhHRdXS2++OzvABq//bf2h/f2rd+gsDDf7JiC/FzcvXsbxUUFkMtlcHR0QvCAgRg/YQpCQkK74V9lXVpqCg4d3GP1/tb+bU1Mn4vXXn8bSoUC586dRH5eY++eoRGRmDV7AZycnFBZUY7z50+hpLgQYrEEUdExmD5jLqRSyx8vvvriU9TUVFl97Pb2Fzt6ZL+xJ9nDmmI3JRKJ8JP/+JnVuB6WnZ2BlDu3UVJSBKVSAScnZ/j7ByAqeiRGxsa3u0+kIAhIvX8Xd+/eRkV5KXQ6Hdw9PDFkyFCMGz+5XWPYglKhwM2bV5GRnob6+lpIpVL4+QciJmYUYkeNbjW5Yfra3tbr9ef//lu7e3B19XOnUMiRcjcZWZlpqKurhVKpMFa3WJKdld5moqyyohy3bl1HQUEeZA31kEql8PLyxtCI4UgYMwHOzq0vwNP0fDysvr7O4sIeAwYOwnob9xysq6tFeVkpACAgILBTC760pwdXgMnfQxqNupUjgVuJjQk8L2+fR65QMtVWfFKpFD4+vigtKYZGrWn12Pq6WgCAn38AnJycrB43wKR6ralqr7sNGBiCoRGRUCjkmDtvMQIDg7v9MXNzs4yv/aNHj+tUP7bBYeGQSqXQ6XTIykqHwWDott69TJQRERHZmKNj8x9ONdXWPzg+Crlchn17t6O0pNhsv16vR01NVWO/jbu3ETJoMBYsXNbqN7alJUXYs3sblEqF+WPIZJDLZMjNyULSretYsWod3N09OhRnfUM9gMZE3I5t36GioqxD5wONSYr9+3ZCrTZvDlxbW4Pa2hqk3L2NWbMXPPK34B3h7x+A6upKaLVayOUyuLm5t/vcutoas3F6Eu8OrGzWUF+PQwd3o7i40Hx/Qz3u3klCdnYGnn7mpQ5fKz2NSqmEWq3C8WOHkJF+3+w+pVKBnOxM5OVm47GVaxAePsxOUXZeRXkZDuzfafYB7l5KMlRKJSZPmYHt2741+zCbdOsGxGIxZs6ab49wrfLw8GxXkkyn0+Ho4X1It/AzLSjIQ0FBHu4k38LKx9fB1dWt1bEMBgMOHtiFzIw0s/11tTW4nZSIeynJmD7z0Vf67ColJUXYv3cH5HKZcZ9er0dxUQGKiwqQlZmG5SvWWKyI6S5d/dxlpKfixPFDUKmUVo/x9fWDo5MTRBDB2dkZQcEDodfrrf67b1y/ggvnT5kl2/R6PcrLy1BeXobk2zfx2Mo1GDAgpN1xtuVRVpnsLNNG9IMHd/+quaaJQ/8A61Pq5HIZyssbE3gx7fiyrisIgoCGB3+3BLTxBaejoxN0Oh30en2rx5m+fjo7u3Q+yHZatPgxODo62WwBgVuJ1wE0rnYcMzKuU2NJpVKEhAxGXl421CoVystLu60Sj4kyIiIiGwsObm58mpR0AxHDhrerGWpbGurrsW3bN8ZvMz09vRAzMg5+fgHQG/SoKC9DRvp91NfXoagwH7W11VYTZWVlJdixfTO02sZvTodGRGLo0Eg4O7ugrq4xCVVdXYXy8jLs3L4ZTz2zweoUB3//AKxYuRYAkJqagrTUFDTU10EQBOzdvQ0VFWVwcXFF7KjRCAwMxsEDu9r8t+blZmPvnm3Q6/UQi8WIHhGL0NAwSB0cUFVZgTvJtyCXy3DyxGE4O7tgeNSIR3hG288/IND4AbuuttYsUVZdXYUzp48Zt+fMXWT2vNeaJMosNbkdPXpci1XG8vNzcctkSkx7DA4LN/4cHh4jYcwEDLZQZdjeCgKVWoVdOzejuroKQcEDEBMzCq6u7qirq0HSrRuQyRqgkMtx6eLZVnu79AYNDfXYvfN7lJQUwcPDE7GjRsPXzx8qlRJ3km+hvKwUBoMBp08exZCXImz2YSRk0GCzny/QWEnTNLWnow7s3wmtVoOJk6bB19cPN65fRkVFObKzM4wfUh++L+VuMqbPmGvxg+vc+Yuh1ZhXYty8ea3FqnBtGTNmgtk0K9Mx5i9Y2iKJ5dRGZQ/Q+CF4755txso5X19/xIyMg7e3D9RqFbKzMpCVlY6yshLs3rkF6596sdXk0YljB42JHgcHR4yKa+w/pNfrUVRUgPv37+LUiSNWz7eFBlkD9uzaCrVahegRsRg0aDAcHZ1QXFSAO3duQa/XIycnC2dOH8PceYttFldXPne5OVk4eGAXBEGASCTC8KgYDB48BE5Ozqivr0VGRhpKiguhUqkwbfocRAwb3uaYVy6fx+VL5wA0JjdiR41GYFAwBIOAoqJ8Yx+r3Tu34KlnXrL6Hjt/4TLoHlRPA8DxYwehUMjh6uqG+QuWtji+tS+1uktFefMXWI/SgL0jVColbiZeBQAEBgZZfD9qUliQZ7w9xKTiWaPRoKamCmqVCu7uHvD28e2yJNrtpETIZY0J5bHjJrV6rJ9/ABT5clRXVaKurtZqpWzT6w0ARES0fe11FSentl8Tu0pVVSXy8hqnSsbEjGq1wq69/Pz9jWOWlzFRRkRE1GdEDIuCv38gKivLoVapsHXLJoxOGI/RCeM6NbXh5IlDxiRZdPRIzF+4zKySYsSIWEyfMQf3UpIhl8swZEiExXEEQcDJE4eNSTJLU/sSxkzA/n07kJOdierqSly9csHqKlUuLq4YGtGY6CkrKwHQ+I3w7aQbKC4uRMigwXhsxRPGb1QPWp4daKTVanD82EHo9Xq4uLhi1er15onG4SOQMGY8du7YjPKyUpw6eQRhQ8K79Y9DP7/mDxG1dTUYGNI8paK4qAB5D3pqAI2VeqYfeuoe/MyAxg/oD/MPCGwxRffhKr/28PDwhIfJFF7TMQICAo0/o0dRWVEOsViMadNnY9z4yWbJoejoWHz15afQ6bTIzEzD/AVLbZY86g5N1Y/RI2IxZ+4isz/8R4yIxVdffAqZrAF1dbWoqCizydQWoLEP0MPVeqbXVkfpdDqse/IF+D2YvqzX643Tc7U6LdY/9bzxum+6T61Woa62xmJzZ0tTXzMyUjscV0BgkFkDZ9MxQgcPadf0zYcl3bph/NAaO2o05s5bbPYBO3bUaNxLScbRI/tRXl6GxBtXMGHiVItjFRcVIuXB1FBXVzesXf+cWTVQzMg4JIyZgL27t1qcemcrdbU1cHFxxbr1z2PAwObKp6joGAwbHo1dOzbDYDDg7p0kjBs/+ZGe147qyufOYDDg5InDxqqvxUtXIioqxuyYMWMn4vTJo7h9OxEH9u/E40881WrP0PLyUuN07uDggVi5ah1cXJub20ePGIm4uDHYvv1bqFUqnDpxBI8/8aTFsR5OBDW9V0ul0k69Fnel2rrmL3E6Ul3cXgaDAQq5DHl5Obh69SLqamvg6eWNpctXt/oeUVRUYLzt5x8AlVKJc+dOIi21uf8r0PiaGD96HMaNn/RICTOtVoPKygrcvZOEu3eSADR+OTAsMqrV88aNn4SC/FwYDAbs2b0VS5c93qJavKSkCDeuXwbQ+GWY6d8MfYnpF3rxCZ2fIguYX4udeY9rCxNlZHdalRyCYDBuS51cIRZLYDDooVN3/IMA0aPgdUe2JBKJsXLVOuzY/i1qa2ug1+uReOMKbiZeRUhIKCKGRWFYZFSHkmbZ2RnIyWlsMBsUNAALFz9m8Q9DkUjUZj+rrMx0lJU2JrQih0dbPF4ikWDBwmX44rN/QKvVIPl2IiZNmgZpOxrnAo3JuPPnTsHTyxuPrVjTZj8XU7duXjdOgZgzb5HFajxnZxcsWrwCX3/1TyiVCqTev4v4LuhjYo1pIst0KiUAY48XkUgEQRBQXl6G6BGxLY738vJuV+Phnmre/CUWrxUPT08MGBiCgvxcqFUqqJRKsw+XvZG1fl8ODo4YGhGJ5Ns3ATRWC9oqUdbVJk2ebkySATCrkpw8eYZZctj0PqVKCdvXvjw6rVaLy5fOAmhMGD+cJGsSMzIOuTlZSEu7h6RbNzBu/GSLx129ct54e/achRanzPn7B2Dx0pXYumVTF/5LOkYilbb8kuGB0NAwjIyNx53kW8Zk2dRps7o9pq587gryc43JtLCwoS2SZEDja/K0GbNx924S9Ho9Lp4/jfVPvWB1zPPnGqdbSiQSLHtstcXXsYDAIEybNhsnTxxGXl42qqoqzH5XehOFyZTcR1ntsjV///gv0JhUmHp6emHc+MkYP2Fym9MQm97/nZycoVAosH3rN8Z9pmSyBly8cBq5uVl4/PH17f77JPHGFePK5EDj3zuDB4dj3PhJ7erZOWRIBKZOm4WLF86guqoS3379b4SHD8OImFEYEj4UKXeTceH8aej1OoyfMMXql4y9nUqlxP17dwE0Tt3166KesabXoum08a7GRBnZnSAYzBJlD99HZGu87sgWPDw98fSzL+PypbO4nZQIvV4PQRBQWJiPwsJ8nD1zHAMGDsLo0eMwPGpEm9+Gpj74YwRo/IDbmekGWVnpxtujRiVYPc7V1Q0Rw4Yj9f5dqNVq5OZmt/lNqymdToeZM+d1KEkGNK8o5erqZnWlKwDw8/PHgAEhKCkpQkZGWrcmypqSXFqttsU3nGXljUnHkEGDUViQ16IfW9PxvfXDFNDYlLi1BKxppZNWp4XturF0j3nzl1i9z8urOU2kNZla1ds4OjqabUtMqlNbu6+tvjw9TV5uFtTqxl5BsaMSWn3tHBkbj7S0e5DLZSgpLkLIIPMFG7RaLQoeTAtzdXVD5HDrr08d6WPYHQYED2x1yn/0iFjjIiIP9x3sDl393FWb9P8cFDrY6nGOjk7w8vJBdXUlSkuLodPpLPa0UyoUxim+QyMizapzHzYiJhanTx2FwWBAZkZar31tN3396sovcWSyBrMkGQCo1WpUVVWgvLys1WmXAKBSNfYlFYlE2LtnG2SyBkSPiMXo0eMeLOAjoLAgHxcunEZ1VSWKCvNx5szxVl+3TVU/1DvWYDBAJqtHcXEhgoIHtutvlgkTpyIwKBhnTh1DTU01srMzkJ2dYfzCzMnJCY8/8azNF32xpTvJt8xWeO8qptdid77HMlFGRERkJ46Ojpg5az7GT5iCu3eSkJZ6D5WV5cb7S4oLUVJciGvXLmLBwmVW+zAYDAbk5GQCaPzmszNLbwPmfTPamg4wcOAgpN5vTNKVlhZ3KFHm6+tnsSfMhpdfBWC5j0ZDQz0qKxqfo8Cg4Dan8AUGBqOkpAjlD6Z8dheRSARfP3+UlZaY9RwzGAzGeKOjR6KwIM+43aTuwfSW7u4B050kbSRmTX9Ora0211u01p/KLInUB/6tfV1Odqbxtmn/SEtMp3yWlZW0SJQVFxcaE4UDQ0J79RRj0/eb7n79BLr+uTMYmhO2UmnrSZ6m32dBEKBWqyCVtkzE5eZmGV+7goJa74nk4OAIbx9fVFdVGquzeyODofmL465smO/g4IgVK9dCEATIZA2oqCjD/Xt3kJOdiZzsTEyYOLXVCsamhRlUKiW0Wg2WLFuF4cPN+5BGDBuOkEGD8e3X/zYuKDNp0rR2rSA+Ki4BERHDodVqUFdXi4yMVJSXNU67vX/vDlatfrLNxRUEQUBDfb0xCe/r64fa2hrjc6pWq3HqxBFMnT6rRQ/SvsBgMOB2UiKAxmrBrpxOLBY3v/+a/p53NSbKiIiI7MzV1Q0TJk7FhIlTUVNTjYz0+0i9n4KqqgoAQFVlBbZv/Rar1zyFgQNbJq4UCrnx21lfX/9OrVAmCIKxlN3VzQ0ODo6tHu/l7W283dFeESNiRln8MNRaLxzTx9BptcjOymj1MZr6cKnVamg0mhaVMF3J3z8QZaUlZlMvq6sqH1QoOCBi2HCcOH4ICoUcMlkD3N09IJfLjN+IdtW0BLIvW64QSJ1XZ9LrqryiDAqF9fYLphXnMktTvUz22WOVwq4klUrh5uYOuVwGjUZjtdKqq3T1c2faB7K1VZUNBgNqa6sBNP7uWptiaPreI2uob/O9Bw9y5A2yltdJbyGRNP+8NWp1l1VBOjk5tUicTJk6E/v2bEdJSRGuXb0If/8AREWPtHi+aQJv1uwFLZJkTZydnRE/epxxhdK0tHttNuIH0OJLyQkTpyIlJRnHjx5AXV0tDuzbiaee2WD1tV6r1eDg/l3IycmCg4MjlixdhajoGCiVCqSn3cOd5FuoqChHZWU59u7ehomTpmHK1JltxtWbZGSkGqfDxo8e26VfGmjUzauFtpUE7wwmyoiIiHoQHx9fY9IsJycTp04cQX19HXQ6LY4c2osXNvyoxTe7pj0anF06N6lNqVQYvzV3cmx7dSJHk2PUalWHHmvAgJC2D3qIQiE33m6aptpeGrWq2xNlQGOMWq0GDg6OxsUL/AMC4OrqBldXNygUclSUl8Hd3QN1tbXG83vr9Byi3kwhb35NOXn8cLvPU2vULfaZJtm687XGVhwdHdH09FirtOoqXf3chQ2JgIuLK5RKBdJSUzB+whT4WlhkIunWdeOXFYNCw6xWTpm+9yQl3UBS0o12xWH6ob63MV0x1tL13pVcXd2waPFj+PKLTwAAV69ctJooa/rbxNXNDXHxY1od1/TLxYenVHbEyJFxyM/LQer9u6isLEdWVrrFBJ3BYMDuXVtRVJgPBwcHrFn3jHGKs4uLK+JHj0P86HHIykzHiROHoJDLcfXKBQDoU8myWzevA2hMuMfGju7SsU3/1uyKVTSt6boaSiIiIupS4eHDsO7J543fcNfV1SL3QcN+U6ZT2cSizr21d3hanMnhHZ6aYeNpSYZungZnOnWyKQHW1Mg/ICDI7JimCoemaZdNUzeJqHcwrWppZvoa03unXTYxfT/o/mmkXfvcSaVSzF+wBCKRCHq9Hju3f4f79+5AoZDDYDCgoaEe165ewoXzp43nWFvJtDMsXye9g4dJb8lHWWm5o7x9fI0rP1dVVVis2gQAxwfJEcHQ9nu6q2vXNX43rYIzXcna1N27SSh68AXe2HGTrPYBjBg2HOuffMFYtX/92iW7roLblUpLi1HyoK9h9IjYTn+B+7CmqbcAWu0V2FmsKCMiIurB3N09EDMyDok3rgAAqqoqW0xZcHV1M95WazpW1fUw075gDzfbtUSjbf6W2bWLV8WyxPTfGhsbj/kLl3X7Y7aX6fLvtbU18A8INFaUGRNlfv4oyM9FRXmZ8TgA8PL26dZpTURkmaubm3Ga+8uvvNapD16mFThabe+tJGrS9B4gEonaXImws7rjuYsYFoUVq9bi2NEDkMkacOTwPqvHzpg5F4MGWW/6b/res2jxYxgRM6pLYuzJTL+8qSgvQ3j4sG5/THcPD1RXVwJobPpvqadY0++oSqWEwWBo9Uu6rvwi0cO9ORaZrMHiMRnpqcbbbfXl8vLyxsjYeCTdug6DwYCszHQkjBnfqRh7gqZqMgAY3Q2LKJWXN0+l7s4vGFlRRkRE1MOZ9gGz9K2um5u78Q/FmurqTj2WVCqFm3vj9BrT/lnWmPbj8vD06tRjt4enyWPITabC9ARubu4m1X+NTXsrHjTub06UPVxRVvtgP6vJiOzBNDHW2YoTN9fmqYn1db27OkSjURunG7q6uXVpM3dLuvO50z14H7PUUyo4eCBWrV7fZu8q0/c3ubxnvfd0l+ABzb26SkuLbfKYep3OeNvRSvuHoKBgAI1JMNPFcywxnTLb9LfNo9Lp246twaQqzHS1Z2tMpwM39IGKMpmsAekPViYPCQk1WwClq5hei9YWueoK/OqSiIioh5ObfHNp6Q8viUSC0MFDkJebDbVahZKSokfq/9VkQHAIMjPTADSuRBYWFm712KKiQuPtwa0c11U8Pb3g6+uP6upKlBQXQa/X96jm6f7+ASgoyENtbQ2qq6uMS6P7BzQmyJoSZbW1NY0raj34I98u/cl68Yp8HSX04ulP1L2GhEfgXkoyAKCosKBTH7xMEwslJUWdjs2eCgua+z+GDgqzeIzpK4jpQgePojueO1lDPQ7u3wWtVvug9+cUlJeVQaNVw9HBCT6+vmaVYq0ZYrKadFFhPsaNb7sp/KPoSasChw4Kg1QqhU6nQ3FRYbe/3xoMBlRWNlZ3ikQisy/GTJn+jhYW5lnsPdfENKni38mVpSvKS423vU2+wDRlWnmpUqnaXADBdBqhSzuvxbq6Wpw8cRglxYXw8vLBrNnzMSjU8u+orSXfTjRONx6d0PXVcQ319c1/N/kHdOvUS1aUERER2VhtbS3SUlPadaxer8f9e3eN2wMGWk6ARUXFGG9fv3qpU/ENNxnr7p0kq8cpFHLjyl+urm4WV+TsDpHDowE0/oF5926STR6zvfweNPSvq61F+YNpl17ePsZvn/38GyvHBEFARUW5SUWZ7RNlzibTbBus9ILpzUxXbLU2TQYAbt28Zotw2iR5MPW2rSpOMufs3LnrODw8wrhy2u2kG516/t3c3I0f2uvqalFUVGD12KbknL0oFIpW+2clJ9803h4y1PKUO6lD84pzsgbrv2OZGalt9l/qjucuIyPN+POMHjESDg6OCBkUivDwYQgZFNruJFlTfCEhoQCAnJxMY0KnqzRdx3K5rMf0NZM6OBj/HlAqFcjKSn+kceRyGe4k32rzuPv37hgbtUcMizK7vkwFBQ80Voe1Nq7BYEDKg2tFLBZj+PAYi8elpCS3eX3qdDokmzxWVJTlhQYCA4ONt9taGVUQBKSn3W8+Nyi4laMbGQwG7N+7HXm52dBoNKioKMOe3dvQUG//93CdTofk243Pkbu7B4ZFRnX5Y9y50/wziI2N7/LxTTFRRkREZEMKhRz7D+zBoYN7cPTI/lb/uFEqFdi/d7vxD7iBAwdZrRQbETPKOL0vKysd58+dsvrHdlZmGq61kkwbFhkFb28fAEB62j3cv3+3xTE6nQ7Hjh6AVtvYw2bylBk2aPbcaOy4icZvac+eOYGsB9VvD9Pr9Ui6dcOmH0ibvrGuq6tB2UON/IHGb5ubYi8pLjJO9WpKoNlSUHBzk+HU+ynQmUx5aaLX620ZUpfy8fU13k5Pv9/ifr1ejzOnj5n1U7EnH+/GeKuqKvpk4rK7BAc3vyam3L1t8ZjWrmNHRydMnjIdQGOC5sC+HVZX8K2qqsTxYweNr3uWmFZRnDp5BGoLqx4m3riCK5fPWx3DFqqrK3Hs6AGLv/dJt24gJzsTQGOi39LqfkDjKs1Nr/s5OVkWn5d7Kck4fGhvu2Lq6udOMFkg4GbiNchkDZ2q2Jo+Yy5EIhEEQcC+PdtQVVVp8TiVUokzp4+j8sHU+/YIfvDebjAYLL7nAvZ5PTadkpp8+2YrR1pWVVWBLd99iRPHD+H0qWNWe58WFOTh9KljABqTWuNbqdgTiURISJgAoHHBnEsXz1o87tLFs6h+8DOKGRkHF9eWfVTPnT2JY0f2Y/vWb6yuoq3TanHk8F7U1jS2thg6NBL+AYEWj41PGGu8fe3qBRSbVN2b0uv1OHniMCorG68R/4DAVqv3m9TUVBlbOjTRajXIzm49KWcLqffvGtuDxMWP6fLp2nq93vga7+TkhNhRo7t0/Idx6iUREZEN1dTUGP/4v5eSjLTUFIQMGozQ0CFwd3eHo6MjlEolSkqKkJGeCs2DJdnd3NyxaMkKq+OKxWIsXLQc27d9C7VahRvXLyM7OwMjRsTCx8cPer0e1dWVyMpMN/5h5ufnj4hhw1uMJZFIMG/BUuzasRkGgwFHDu1FZkYqhg6NhKOTE2prapBy9zZqahqXWh8UGoZRcQlWY1MqFSgpLnrw72/uoVZSXAjtgz+anV1c2l2R5uTkjPkLlmL/vh3Q63TYt3cHBoeFY9iw4XBz84BGo0Z5eSnS0+9DLpNBKnVA8ICQVqdndBX/BxVl9fV1KHsw5SPgoT+o/fwCIJfLkJnR2PRXJBLBx8d6bMXFhVAplWb7TP9Qrqgob/HN9YCBIcZ+ada4u3sgOnokUlNTUFNThe+++QyxoxLg4ekJtUqFqqpKpKWmYNbsBYiKtvxNfE82eHA4nJydoVapkJOdif37diIyMhoOjg6oqqzAneRbqK+vQ0hIKCqrKqBWdW4hjM4aETMK58+dhE6nw7bvv0Zc/Fh4e/tAqVKgvKwUIpEIc+cttnp+TXWV2e8XYN6fp6GhvsV14uPjCx8b/F4AlqsrTBOCBfm5qHqowqetZthAY2Lf08sb9XW1uJeSDLlchoiI4XB1dYNM1oDS0mLk5GTimWdftjqVa8zYicjJyUJhQR5yc7Px5eefIGZkHIKCBkAkFqGhvh75ednIfbDSnSAIWGBlIZHYUaORdOsGqqsrUVlRjm+//jfi4sfA29sXMlkD0lJTUFJShJCQ0FarprqbRCLB/Xt3UFxciJEj4+Dj6weNWo3MzDRjkkwkEmHWrPlWp9s5OTlj8OBw5OVlQ6GQY+uWrzE6YRzc3N1RX1eH+/fuoKSkCK5ubvD3D2yzz1VXP3eRw6Jx6cIZaLVa3L2T1KJCWiQSwcXFFX7+ARgeNQIjR8a3OrVwwMAQTJg4BVevXERdXS2+++YzREWPxKDQMDg5OkKhUKC4uBAZ6anQ6bTIz8vBU89saNdCLaMTxuHunSQYDAacOHYQJcWFGDAgBFKpAxoa6pCXmwOFQo6nn32p2/vFmfL3D0D40GHIyc5EQX4ucrIzEW6lwtASJ0cnODyoDEu6dR3pafcQGRmNoOABcHJyglwuQ25uttnrw/SZc42JQ2sSxoxHWmoKKirKcPXKBRQW5mP48BFwc3eHQiFHeuo9Y+LL29sHM2fNtziOm1vja059fR22b/0Gg0LDEB4eAU9PbwhCY5/R+/fuGKuSvby8sXDRcqtx+fkFYNr02bhw/jQ0Gg22b/sGEcOiEDo4DG6u7tDr9aiqqkBa2j1j4s3J2RmLl6xs3xNqbUXYDnxPWVFe1uqXMUqVssXrdUBgUJvTHG/davzSSSKRtPo34aNKvHHF+HOIHz3Wap+4rsJEGRERkQ2FhAzC2rVP4uq1a8hIvw+9Xo/8vBzk5+VYPSd08BDMm7cYXl7erY4dEBiE9U+9gL17tqG2phrVVZW4eOGMxWMHhYa12kA+NDQMy5Y/jqNH9kOtViMzIw2ZGS0rt8LDI7Bs+epWq8kqKyuwd8+2FvtNYxs0aDDWrHvW+j/u4ccdOgyrHl+P/ft3Qq1SWX0ORSIRRsTEwr2TTXzby+9BRZnBYDB+KDStKGs8xh/5+TkofrB8ure3b6sfpC6eP231m26gcergw9MHn1j7DELb0bNkzrxFqKmtRllpCaqrq3Du7IkWx1y5fB7Do0bYrGKwqzg4OGDOnEU4cngvBEFAZkaqMTnZZFhkFBYuWo4t331p90RZwpjxKCjIRW5OFurr63Dh/Cmz+yVSKaZNn222Mq2p1NSUVittCvJzUZCfa7Zv0uTpmDxlRqdjbw9LrwGmjh872GLfm2/9T5vjSiQSLH9sNXbv/B4KhRx5udnIe5DQMnX92iWriUaxWIxVj6/H0SP7kZ52D0qlwrjS8MO8vLzNprpbiufxJ57Etu+/Rn193YOf5WmzYwYMCMFjK9fgi8//YbfrLi5+LGSyemSkp1qsyBGLxZi/YGmbycpZs+fj++83Qa1SoaKirMXP0T8gEEuWrkLSrettJsq6+rnz8PTEYyvX4vjRAxan1gmCAIVCDkW+HAX5ubh18zpWPb7eakIVAKZMnQUnJ2ecP3cKer0e91KSLVYtOzo6YVRcQrt7evn5BWDegqU4cewgDAYD7iTfsjitMCM91eZfXMyesxBFhfnQaDQ4deoong8Nszot8mHuHp5Ys+5ZnD19HKmpKVAo5Lh9OxGwUPzp6OiEOfMWYcSI2DbHlUqlWLV6Pfbs2ory8lIUFeajyML75MCBg7DssdVwdHS0MEpjxZy7hyfOnz2JhoZ6FBbkobAgz+KxQ8IjsHDRcji7tL4C7PgJU+Dg4IAL509Dq9UiI/0+MixUNQNAUNAALFi4rN3903x9/RAQEGRcEAhobDMwdGjbXyo0uXnzWquV9lUW/mZbsHAZRrYy1bEgP9dYQTk8KqZD05rbo66uFlevXADQ+AXPhInTunR8S5goIyIisjFPD08sXbYKtbWzkJmRhsLCPFRXVUKlUkKr1cLZxQVuru4IGRSKYcOiEDp4SLvH9vX1w7PPbcT9e3eQmZGK8ooyqJRKSKVSeHh6YdCgwYiOjsXAkLartyKGReH5F0NwOykROdmZqKuvhVajgbOzC4KCByBmZBwiI6PtlkAJHTwEL274EZJv30ROdiaqq6ug1Wrg5OQMbx9fDB48BLGjRrf6oaerOTo6Gqtbmqb4PLzq08P9yOwx7bKJk5Mz1q57Dnfv3EJa2n1UVVZAq9XA0dEJ/v4BCBsyFCNj43tdkqxJ9IiRcPfwwI3rl1FSXASNRg1XVzeEhIRiZGw8wh406G6svquya6wSiQQrVq7FnTu3cC8lGVWVFdDr9XB2dkFAYBAiIoZDIu45C1f0JIGBwXjmuZdx6+b1xtequhro9Xq4urohMDAYEcOGI7qND99SqRRLl61CbGw87qUko7i4EHK5DCKRCG5u7hgwIAQRkVEYNiyqzYoeDw9PPP3sy7iZeBVZmemoqa2GRCyGj68fYmJGIS5+LMRiMdzc3O2WKPPw8MCs2fORlnoPd+7cQkV5mfH3I3TwEIwZO8Gs35I1vn7+ePqZl3D1ygXk5+VALpfByckZAQFBiIqOQczIOIjF4jYrXJvj6trnbvDgIdjw8quoqqqEXNZgNn1RrVGjrrYGaakpqK6uQnVVJXbu2Ixnn9vY6pcXY8dNwpDwYUi+fRMF+bmoq6uFwaCHi6srAgOCMCQ8AiNi4uDk1LGKl5Ej4xAYGIRbiddQUJgPuawBIpEIHh6eCB4QgqjoGISHt7+aq6t4eXlj5qz5OH7sIOrranH82EEsXrqy3ee7urph8dKVGDd+MtLS7iE/Pwf1dXXG683TyxvDhkUhesTIDveNW//UC43V+Wn3UFlRDrVaBVdXN/j5BSB21GgMi2z79zUqKgYRQyORln4fOdkZKC8rhVwuh0Qihpu7BwYED8SImFEd+ltsdMJ4DBsWhdTUFGRnZ6K+rhYKhRxSqQNcXd0QPGAgIiOjED40skMVgiKRCMtXPIGTxw+juLgQ3t6Nzfy7s6l9e9TV1cLNzR1yuQyjE8Z16dg6rRYH9++CTqeDSCTCwsWPGasUu5NI6ElLa1C/pFE2mK2U4+DsDrFYAoNBD62qc8t0E7UXrzuyJZFIDEeXtpcNJyIiou4lCAKOHT1grLKZv2Bpt/c/6o2OHdlvbI4/ecoMTJo83c4RUU/SuEhRWbsS7B0Z8+CB3caKvFmzFyBhTNevpmkJm/kTERERERFRn1GQn4vsrAyUl5e2eaxIJMLYcRON2+05pz+at2ApIiIa+5pevnQOSbd6xkIo1DOIRKIuT5KdOnnEmCSbMHGKzZJkABNlRERERERE1IecP3cKe/dsw4Vzp9s+GDBbMMXBwXI/q/5OLBZjybJVCAtrnLJ++tQxJN64aueoqC8SBAEnjh8yrrQ6evQ4TJ0226YxMFFGREREZGM6vaHtg4geEa8v6u98HyxWU1iY12aFmFKpMFs0ICwsvFtj682kUilWrFqL6OiRAICcnEwYDHy9oa6lVquNizNMnjIDs+cutHkM7FFGdsceZdQT8LojW2KPsv5LEAR8vO0s0vPL8dc3V8NByubs1LVqGhT44Z++x9OLxuOx6aPsHQ6RXRQW5mP71m8ANC6UETl8BAYMGAgXVzdIJVLo9XrI5TKUlZUgKzMdGo0aABAxbDgeW7HGnqH3CoIgIOnWDYyMjbe6oiRRZ9TX16GwMB8xMfZ5H2OijOyOiTLqCXjdkS0xUdY/6fQG/O6zwzh48S4A4A8/Xo6Fk2LsHBX1NZ/uOo9/77kEAHh1zQxsWD7ZzhER2cfNxKs4f+5UuyqeRCIR4uLGYObs+ZBI+AUGUX9nfd1bIiIiIuoSeoMBv/jHXpy8ng4AeG3tTCbJqFu8snIaSqvqsf/8Xfx9+zlotDr88HGuTkf9z5ixEzF0aCSSb99EcXEh6upqoVIpIQgCpFIpXFxc4ePrh0GDBmN4VAy8vX3sHTIR9RCsKCO7Y0UZ9QS87siWWFHW//zvF0ew+8xtAMCrT8zAhsdY5UPdRxAE/M8n+3H0SuNqYT97dh7WzR9r56iIiIh6BzbzJyIiIupGn++7ZEySrZs/lkky6nYikQi/fWUpJsSEAQDe+/Ykzt3KtHNUREREvQMrysjuWFFGPQGvO7Il04qyqjo5Dl1KwflbmSgsr0V1vQJOjlJ4ubsganAgJowcgkWTY+Dh6mTnqOlR3M8pxfO/+wZ6vQHxkSH41y+eglTS8e8pb6YW4MiVe7iZWoDy6gboDAb4ebpheFgg5owbjoWTYh5p3OyiSmw7cRPX7+WhtKoBAgQE+3pi3IjBWDUrHiPCg9sco0Ghxr5zybh4OwtZRVWokynh7uKEQF8PTB4VjmXTYhE+0K/NcW7cz8cP/rilw/+G/e//EAMDvDp8XmdcSs7GoUspSM4oQnmNDM6OUgT7eWJCTBhWzorH0BD/NscY+9yfO/y4v964pEMN+mvqFXjql1+ivEYGHw9XbPvjBvh6unX4cYmIiPoTJsrI7pgoo56A1x3ZUlOibPeZ2/jw+9OQKdStHu/m4ohnF0/Ai8snP1IyhOxDo9Xh6V99heyiKjg5SLHjTy93OKFTWlWP3312CFdT8lo9LiLEH3949TEMGxTQ7rH/teciPtt7CXq95UbXIhHw6X8/iXEjBlsdY9uJm/hk53nUy1VWj5FIxHh+yUS8umZGq/H0hkRZTb0CP//HPly/Z/3nIRGLsG7+WLz55ByIxSKrx9kiUQY0JvVee287AGDW2Ei8//rjHX5cIiKi/oTN/ImIiOxg+8lb+NOmY8btsdGhmDY6AsF+ntDpDSgqr8W1lDzcTCuAXKnBp7suoKCsFr/7wVI7Rk0dse/8HWQXVQEAnls6ocPJnMpaGZ799SZU1ysAAONGDMbU+KEI9vOERqtHXkk19l+4g4oaGbKKKvGjP32Pr3/zPAb4e7Y59kffn8bXh64BAPy93bF8eiyGDQqATm9AcUUtTt1Ih6uzI8ZGh1od45Od5/HZ3sbVFX09XTF3fBRiwoPh5uKE8poGXE/Jw7mkTOj1Bnyx/zIMgoDX1s60Ot6wQQH465ur2/XcfLD5FArKauDl7gI/L9tUSCnVWvzgj1uQVVQJABgc5IOl02IRGuQNuVKD9Pxy7Dt3B2qtDpuP3oBKo8X/vLjI6njt/bfuO3cHpxMbF4EY1o5KtYdNiRuKmQnDcPZWJs4kZuB2RiHiIwd1eBwiIqL+ghVlZHesKKOegNcd2VJNgwqr/+c7qDRaODs64KO3nrBatZORX44/fX0cJZV1+OKXzyDYr+0kCNmfwSDgif/+DHml1XB2dMDhj34MTzfnDo+z+ch17D57G7/csBhxkSEt7tfq9PjDl0ex7/wdAMCKGaPwq5eXtDrm+aQsvPHBDgDAxJFh+PNPVsLDQmxKtRYuTg5Wx6moleHVd7di+uhheHnFZLg4ObY45m5WMX7yl21oUKghkYix688bMSjQu9X42pJVWIG1v/gCAPD80on4j3WzOjVee/17z0V8uusCAGD59Fj8z4uL4CCVmB1TVFGLjb/fjLLqBgDAN795DjFDBzzyY2p1eix/61NU1MgQGzEAm3793CONcyerGC/89hsArCojIiJqC+dvEBER2djx6xlQabQAgHXzx7Q6tS1ycCD+9Ysn8dWvnmWSrBe5cDsLeaXVAIAFE6MfKUkGAE8tGo+tv3/JYpIMABykEvz8hQXG8S/dyWl1PINBwAffnQQADPD3xJ9fW2UxSQag1SQZAAR4u+P7/92A19bOtJgkA4DYiIF4cXnj4gV6vQHXUnJbHbM9thxLBNA4xXHN3DGdHq+9jl1tXEHSyVGK/3pmXoskGQCEBHjjB6umGbcv3M7q1GOeuJaGiprGL286s2rlqIiBGDGksd/cuZuN/RCJiIjIMk69JCIisrGC8jrj7WGhbfeUkojFCPT1aPf4BoOAE9dSceTKfaTmlqK6XgEHqQQBPu4YHRmCxVNGYvyD1fDaUi9XYduJmzh3KxO5JVVQa3Tw8XTF8NBAzJsQhaXTYiERt/69m6XeUwsnjcAffvwYAECl0WLL0UQcv5aK/NJqKNWNScRXVk7FDx6f1mI8UzX1Cmw5dgMXkrKQX1YDgyAg0McDE0cOwfoFY9vVRL47nLyeZrw9Y8ywTo3VWp8rAHB0kGJwsA/uZpVArtS0euyF243PEwC8smpapxeJaCs2AIg0ucblqtbja0udTIlDl1IAADMSIts1zbSrFFU0/t4OGxQAdxfrz1vcsIHG2+U1natQ3nLsBgDAz8sN8ydEd2qsGWOG4X5uKQyCgNOJ6Xh28YROjUdERNRXMVFGRET0iO5n5qKmToZJCTEQt5EsMuXm3Fx9k/+g6qirVNXJ8Z8f7sTdrBKz/VpdY0+rvJJq7D13B2OiQvGrlxcjNMjH6lh3s4rx+gc7UNugNNtfUSNDRY0MF5Oz8f3xm/jorScQ4O3eoThLq+oBNCbifvjHLUjLL+/Q+QBw/V4efvp/u9Hw0GIIBWU1KCirwd5zyfjpM/Owes7oDo/dWU3N3kUitDsp+agEQTBO9YtsI/F6IamxwsnZ0QELJnYu8dJeJZX1xtvDQwM7NdbO00lQa3QAgLXzbVdNBjT+3qo1Omi0ulaPk5kkAx+1khAAkjOKkJLd+Hu8ala8xQq2jpg0cgj++WDq6I17+UyUERERWcFEGRER0SP4ft8JVBelAgCuJd7EG6+0v3fQiCHNyYKtx29i5phI47Soziitqscrf9hsrHwZ6O+F5dNjER7iD61Oj/S8cpy8nobiyjrcSi9AQVmN1UTZ/ZxS/OjPW6F48KF/ZsIwTE8YBk83ZxSV12LvuWTkllQjLa8MP/rT9/jmt89bnapn2qT9yOV7OHrlPkqr6mEwCHjjgx1Iyy+Hj4crVs6KQ1RYEP77b3vb/LdeuZuDN/+6ExqtHlKJGIunxGDciDA4O0qRXVSJnadvo7JWhj9uOgpPd+dOV+N0RE2Dwpi4CvL1bLX6qCtsP3nLOD3v2SWtJz9upOYDaFw8wtmx+edVWF6Lkso6ODs5IDTQB94eLl0SW71che+OXAcARIUFYcLIR08a6vQG7Dh5C0DjKp8TujkB+bBhgwJw7V4ecoqrUFRRi5AAb4vHmU4vndmJasKmajKJRIwnuiDZO3RQ80IA93NLOz0eERFRX8VEGRERUQcVllaioiAVkgdFZI76etQ2yODt0b6qqhnx4RgWGoDMggrUy1XY8P++xbp5Y7Fu/hgM8O/Yyoim/vDVUWOSbNHkGPzqpcVwcmx+q18yZST+Y90sHLh4F5W1MkyJG2pxHEEQ8MdNx4xJsl9vXILHpo8yO+bJhePw0//bjfNJWcgprsLn+y7hJ2ssr2jo7eGCGQmNCYP7OY0f0CtqZNh+8iZuZxRhTFQo3n/jcWP1zX+j9USZUq3B//v8CDRaPbw9XPC3n65tkWhcv2AcfvznrbifW4o/bzqOSbHhnZ5m2F5FJv2fwoKtV+x1hlKtQWZhJfacuY2955IBAC+vmILZY4dbPaemXoG8ksYKxogHSZNT19Pw6e4LyCqsNB4nEYswaVQ4XlszE5GDO14BpjcYUFUrx5W7Ofh832UUltciJMALf/7JCohEbU/VtObk9VRjAtLW1WRAYxLy2r086PQGvPHBDvzp1RWIGGRewXcnqxibDlwFAKybN+aRV5csq67HyRuNK13OHTccAT7tn3ptjbuLE/y83FBVJ0dVnRxqjc7s9YGIiIga8d2RiIiog3YfOm5MkgGAUieCl7tbu88Xi0X46D+fwA//9D0Kymqg0erxzeFr+O7IdSREDcKsMZGYPS6qQ/2Xzidl4eLtbABATHgwfveDpRZ7h4nFohZJr4eduZlhnPI1d3yUxeMdpBL8+uUleOy//gmFSoPtJ2/h5RVTzKqUWmMQBHy09QxCArzwwRuPW20ob8mWo4nGqZs/f36BxWo8Tzdn/L8fLMWaX3yOmgYFDl9Kwdp5tkmuVNXJjbe9PVy7dOxvDl/Dh1tOG7cdpBJMiAnDs0smYvKo8FbPbUoyAUCAjwf+seMcPt93ucVxeoOAi7ezceNePv7fD5dh7viodsc345W/mvUhG+DvieeXTsQLyyZ1ahoi0PhzBwB3VycsnTqyU2M9iilxQ/Hqmhn4+/ZzyC6qwvr/+RLTRkdgydSRmDIqHPvO38Hftp2DRqvDi8snWU0ct8e2E7eg1zeuCN6ZJv4P83Z3MV6flXUyq1VxRERE/RkTZURERB2QkVMIkaoKMCmM8R8Y0eFKmWA/T2z+fy/g053nsf3ULWi0ehgEAYmpBUhMLcAHW04hblgI1s4bg3kToiGVtN4D7fCDBucAsHHl1DYb7Lfm7M0M4+1Vs+KtHufj6YqZY4bh8KV7kCnUuHwnp9WKpoepNTq8+dScDiXJgObVB/283DBnnPUkTniIP0ZFDERyZjFO30i3WaKsaTECAHBuY+XIjmqqCGui1xtQVt2A5IwixA4d0OpzWS9v7jV3JjEdiakFGOjvhReXT8LE2CEI8HZHaVU9dp2+je+OXIdaq8Nv/n0IkaEBGBzs22ZsFTUNLZr1yxRqZBdVIjWvrFNTJe9mFeNOVjEAYMX0UVZX2exuG5ZPRnRYEN779iTySqtx7lYmzt3KhFgkgkEQ4O7qhL//7CmMHv5olWRA4+IWu08nAWicrtqZsR5mej2aXqdERETUjIkyIiKiDjhw/BScTHJiCq0YLy6b/UhjuTo74j+fnosXl0/G7rO3cfTKfWQWVAAABAG4nVGE2xlF+GL/Zfzm5SWIGTrA4jh6g8HYpN3RQdJmZVFbrqU0N6IfPTyk1WPjIwfh8KV7AICU7JIOJcqGDPDFrDGRLfbvf/+HAGBxqmRZdT0yHjxH0WFBba66GBUWhOTMYtyzYU8mvcFgvC3tRMLSksdnxWNGwjAo1RoUldfh1I103M8txb/2XMTBSyn423+tsZrUqpOrjLcTUwswPiYM772+yqyH2uBgX7zx5GwE+Ljjg82noFBp8M3ha/ifFxe1GZuLsyP++uZqCIKA8hoZMvLLceDiXZxPysL5pCy89Nhk/PiJGY/07958tLFfl0gErLFRwtMSg0FAaVU9GhSNz+WQAb4oLK+F7kH1l0yhxh83HcNP1szE9NERj/QYhy6mGH9W67r432qacNfpDK0cSURE1H8xUUZERNROt1Iy4aSvN9s3OCIGLk6d633l4+mKDcsnY8PyycgvrcaJa2k4cvkesooa+0ZlFVZi4x+24JO31yEusmXiqrpeYazkCR/g16nV8QwGwdgY3tfTrc3KnZCA5p5qpr252mPptFiLlXgDA6z3aSt+0IMNaKy8OXcrs9XHaFqxU6ZQQ6HSwNW5+yuRTJ9/mVLdypEd93CydMNjk7H//B387rPDKCqvxU8/3oNvf/u8xWvANDESGuSDD9543OrzsXbeGPx7z0U0KNQ4fjUV//38gjarFN1dnIy96Jr8cPU0vPXhLiRnFuPzfZcRMcgfCyfFtPefCwAor27AyetpABqnP7a2Umt3Uqo1ePtve3HxdjZcnR3xxx8/hgWTRqC2QYljV+9j95nbSM8vR2ZBBd74YAdeXjEFP1o9vcOP09TE38vdBYsmd+y5aovp9cj+ZERERJbxHZKIiKidTp07B9O1AGVaKV5Z1PEPwq0ZHOyLDY9NxobHJuPi7Sz8adNxFFfWQaXR4p1/HsDudze2SFhU1sqMt73cO7daYZ1MCYMgAEC7Vms0PaZB0bGk0KiIgR0LDub9v5qmqbaXTKG2SaLMtBdXVyfKLFk+fRSupeTh0KUUZBZU4OzNDMyzsMqnu0mF3rOLJ7T6XDhIJRgxJBjX7uWhQaFGVa0cgb4dbyjv6+mG3/1gGVb97F8QBODzvZc7nCjbfvKWsWJrfRf26+oInd6A/3hvB26mFcDFyQH/+vmTGBHe2BvP28MFa+eNwdp5Y3D2ZgZ+/+VRVNXJ8dneSwDQoWTZlbs5yC6qAgCsnBnX5cksmcnvqK0WtyAiIuptunY+ABERUR91/kYyXKAw2xczKgFSyaNXb7VlanwEvvjVM/B50BC+qLzW2LDflMEgGG+3NRWxLabTBttDQPNjd7QvWmdWQHwUHf23PaogkxUKmyrautv0hOZpfpfv5Fg8xjSp2Z7nwsezeSEC02RsR4UG+WDIAD8AQFZRJcpNFhVoi1qjw64zSQCAwUE+nZ5W/Kj2nUvGzbTGpOxzSyYYk2QPmzkmEl/96lljEvLLA1dQUlln8VhLmqaYSsQirJnbtdMuBUFA/YMpnVKJGH5e7V+AhIiIqD9hRRkREVEbDAYDrl65AleTnFiDzhFLZo7v9scO8HbH8umx+PrQNQBATnFVi+ltvp7NH3g7W8Hk4dpcDfVwY3ZL5MrmY3w9u3aFR0tMP9yvmBmHX720uNsfs6MGBfnAQSqBVqdHVmEl9AZDpxZXaI8gk2qvpqmzrR1TU6+weIwpQTBJgraxmERbAn09kFPcWClVXtPQ7uq0Q5dSjMnGNfPG2Dy52uTEg6mfADD9od+/hw0M8MJjM0bh+2OJ0OsNOHMzA08uGNfmY+SVVONScrbxMTqy6m175JfWGBv4DxnoZ7fnkoiIqKdjRRkREVEbjp2/AVeJedJo0sRJEHdz8qNJSKC38balBIe/t5uxSffDqyJ2lJOjFAE+7gCAqjpZmyvjFZr0JQv269oP9paYPkZVrbyVI+3HQSrB8MGBABr7qGUVVnb7Y6q1euNtNxfLUyoHBngZp+bmlbZ9nVSZXGtN18Sj0mh1JvG1f8pfU78uV2dHPDZjVKdi6IzSyubehAHebT8XTRV0AFBaVd/Kkc2+P56Iptzkum6YYpqSXWK8PdLKwiBERETERBkREVGrdDo97ibfNNsnM7hi5oQ4m8VgOlUt0ELCwkEqwfiYMACNfcLuZBV36vFihzb2DhMEIDmjqNVjk9ILjbcnxg7p1OO2xwB/L4QPbExC3Mkqhlanb+MM+5gWP9R4+8a9vG5/vLS8MuPtQYHWm93HPkiQ3EwrMKsYe5hWpzeO6eflZpz++yj0BoNxNVeJWNTuSqlrKbnGJOPSqSPb1TOvLVuO3cDSNz/B3Ff/D3/adAwqTeuJ4CZe7s2Vlg0mq4daUy9vnnJrWvFpTYNCjQMX7gIAIkL8MeHB73NXupGab7w9NW5oK0cSERH1b0yUERERtWLviQtwlTZXwwgCMHfWjE6NWVBWi6NX7rXrWK1Oj8OXmo8dZWHVSwBYMLG5efuX+690Kj7TsfacvW31uJp6Bc4nZQFoTKbEDbMcW1ebOz4KQOPCA3vPJdvkMTtqydRYSB70i9vTiRj3n7+DksrWK5I0Wh12nUoybi+YNMLqsTPGNE4brKiRGX92lpy8nmZs/L5w0giL0/Qqa2XYdTqpxf6HHbxw17jQw6yxkXB2dGjzHKC5XxcArJvX+X5dJ6+n4b1vT6K0qh61DUpsP3kLH287265zo8KCjLfPtfK8AY09A49dTTVuR5uca82es7eheDDVee38ru1NBgByZePqpUDjFOlp8RFtnEFERNR/MVFGRERkhVqjQV5Gitk+pdgTY0e23qOoNVV1Crzxfwfwi3/sx6//dbDVaVm1DUq89dEuFD9oBh4fGWJ1pcglU2MR9WC639mbGfi/rWesNmw/k5jRajJt9rjhCA1qrEo6fi0Vhy6ltDhGo9Xht58dMn64/8GqaZ1eSKC9nlk8Af4Ppr998N0pnEnMsHicVqfHthM3jZU6tjQo0Buzxw0HAGQVVuJWWmEbZ7T04ZbT+M2/D+GVP2zGTSure6o0Wrzz6QHkl9UAAGYkDENkaIDVMZdMGWmsDvvTpmMWk3BFFbX465bTAABnRwestZCkyi6qxPO//Qa///Io/vLtCeN18LAb9/Pxl29PAmjsc/bckomt/IubFZTVGBeumBAThvAQ/3ad15pjV++33Hel5T5L1s4bg6Zc4ed7L+F2huWfp1anxx83HTVW0EWGBrRZaWkwCNh2vLFq1d3VCUunjmxXTB1x8GJKcyJu3pguX02TiIioL+G7JBERkRXbD56Gs7Q52aQ3AMsXz+nUmHmlNcbqmgMX7uLolfsYEx2K8SPCEODjDldnR9Q2KHA3qxgnrqcZm+X7e7vjf3+43Oq4UokYv3llKV75w2Y0KNTYdPAqzidlYvGUkQgL9oVWp0duSRVOJ2YYP8QPDfHDzDGRLcZykErwzoZFePXdrdDpDfjlpwdw+kY6po+OgLuLEwrKa7H3XLKxH9rYEYOxala81dhqG5RIzix68O9v7o2VnFlk/PDu7e6COCvVcg/zcHXCL19ahP/6aDfUWh3e+mgXJsYOwawxkQjwcYdcqUFqbilOXE9DRY0Mzo4OiI0YYNY3yhaeXzIRJ6+nQRCAD78/ha9+9WyHGqj7eTdO2SuurMPGP2zG2BGDMS1uKAYEeMFgMCCjoAKHLqag7MHU3JBAb/xm45JWx3R1dsTPnpuHn/99H8qqG7D+nS+wYkYcYsKDIRaLcD+nFLvO3DZWk/3nU3OMSVNT7i5OcH6QbPn+WCKOXbmPueOjEBMeDHdXZ1TWynDlTg7OJWUa+269sX42Yq0keh+25VgiDA9O7Kp+XSK0fO7b+/MYGuKPn6yZiY+3nYVcpcHGP2zB7LGRGB8TBj8vN2i1emQXV+Lo5fvGpKWnmzN+/yPrv7NNziSmG5Phj00fBRcnyz3mHlWDXIXP9l4CALg5O3b5appERER9jUhorUEFkQ1olA0QhOYPog7O7hCLJTAY9NCqHn05eqKO4HVHD2uQyfH5V1/BUdL8Nqlx9McbL63v9Nil1XJ8uvc6Tl5Pg97Q9tvwhJgw/OLFhRYTFg/LLanCmx/sNH5Yt2bsiMH45YZFrY55JjEDv/73QWPSxJKp8UPx7msrW51Od+N+Pn7wxy2txxMdin/94qlWj3nY9Xt5+NnHe1DfSs8oiViElTPj8fr6WR1qIt9V3v3mBLYeTwQA/PyFBXhiTkKHzj929T4+3HLamAyzZmrcUPzmlSXt6ocFAFuPJ+KDzaeg01uuOnSQSvDfz8/HypnWE6A19Qq8991JHL1yD639Nenm4oj/fn4BlkxpX6WUTKnGktf/AblKg4H+Xtj73g+6pFrx1PU0/PTjPWb7nlo4Dm89PbfdY2w9noiPt51tc5GLmPBg/OrlJa1W9zXZ+PvNuJlWAJEI2P3uK+36Pe+IP3x5FDsfTJH95UuLWv2ZEhERERNl1AMwUUY9Aa87etjn3++FuqZ5uptWDzz+xHqEBnd+CphIJIajiwcKy2tx6kYaEu8XIKekCnUyJVRqLbzcXeDv5YbRUaHGqpWO0Gh1OHDhLk4npiMtrxy1MiWcHaQI9vfE2OjBWDR5BOIjB7VrrKo6ObaduIkLt7NQXFEHuUoDb3cXjBgSjOXTYzF3fFSbVTndlSgDGqvVdp6+hQtJWcgproJCrYWHqxPCgn0xPiYMK2fGYYC/V4fH7SpKtRZP//Ir5JVWw8XJAZ/9z9OIHtJ2zypTKo0Wx6+m4nxSFlLzylBVK4dUKkagjztihw7EkqkjO3yNAI3TJ7cev4nr9/NQWlUPiViMAf6emDwqHGvnjUFIgHe7xknPL8exq/dxLSUPxRV1kCnV8PV0RUiAN2aPjcTiKSPh49n+xQDuZhXjd58dRlZRJV5fNwvPLW3fdM322HLsBr45dA0qjQ4LJkbjjSdnt7tnWpPy6gYcuXwP55OyUFRRi5oGBZwcpPD1ckPs0AGYMy4K0xMiIGnHqrhypRpv/nUnktILMWlUOP7vrTWP+k+z6NjV+/jFP/ZBEBqn5f71zdVdOj4REVFfxEQZ2R0TZdQT8LojU5U1dfjuu2/gIDHZ6TYAP36uaz5kNiXKqH/IyC/Hy3/YDJlCjSBfD2z6zXMI8G65eimZKyirgY+na5esdtnT1TYooVRr270iaHukZJdg4x82Q63RISzYF5//8ulOrV5KRETUX7CZPxER0UN2HDhhliRT64G1y+fbLyDq1SIHB+LDN1fDyUGKsuoGvPrnraiqk9s7rB4vNMinXyTJAMDbw6VLk2QZBRV4/f0dUGt0CPBxx99/tpZJMiIionZiooyIiMhESUUVNPUlZvvc/MLg79N1H2Kp/0mICsW7/7ESTg5SZBVV4pU/bEZFTet9x4geRVpeGX7wxy2oaVDAz8sNf/vpWrtOPyYiIuptmCgjIiIysevgCUhN3h1VOhHWLW9/s28ia6bFR+DvP1sHTzdnFJbXIquo0t4hUR90O6MIdTIlQoN88MUvn8GwQW0vKEBERETNpPYOoKe4c+cOdu3ahatXr6KkpASCIMDPzw+jR4/G8uXLMWvWrFbP37VrF37+85+367E2bNiAt99+u9VjZDIZNm3ahOPHj6OgoAAGgwEhISGYO3cunn/+efj6+rbrsbpqHCKi/iCvuAwGeQUkJokynwFD4eXOKUvUNRKiBuHzd55Gbkk1JsWG2zsc6oPWzhsDqUSM2WOHd2gRBSIiImrU75v519fX45e//CWOHDnS6nEzZszARx99BFdXy39wdCRR9v7772PZsmVW78/KysLGjRtRVFRk8X5/f3988skniIuLa/Vxumqc7sZm/tQT8LojAPi/zzdDqqk2bit1Ivzo5Zfh2sV9ktjMn4iIiIioZ+r3FWVffPEFjhw5Am9vbzzzzDOYM2cOBg0aBJVKhczMTHz99dc4c+YMzp07h5/97Gf429/+1uaYycnJrd7v4GB9GXKZTIZXXnkFRUVFcHBwwBtvvIFly5bB2dkZN27cwJ///Gfk5+fjRz/6Efbs2YOAAMvl9F01DhFRf5GRUwixuhoQNe8LGhzV5UkyIiIiIiLqufp9ouz1119HYGAgFi1aZDYN0cvLC0FBQZg6dSp+85vfYMuWLTh+/DjS09MxfPjwVsd0cnr0D1Wff/45CgsLAQDvvvsulixZYrxv3rx5kMlkePvtt1FZWYl//OMf+PWvf92t4xAR9RcHjp+Gk0mSTK4V46XFM+0XEBERERER2Vy/b+YvEonw1FNPtdqra/369cbbWVlZ3RaLXq/Hli1bAAAJCQlmya2m+//5z38at3ft2gWlUtlt4xAR9Rd303PhqKsz2xc2bCScHK1XABMRERERUd/T7xNl7aHRaIy3AwMDu+1xbt68iZqaGgDA4sWLW9y/c+dOZGdnY/Xq1QAAlUqFCxcudNs4RET9xbFTZyAyqSaTaSVYtWCa/QIiIiIiIiK7YKKsHTZt2gQAiIyMxJgxYzp0rsFgaPugB+7evWu8nZCQYHafUqnExx9/jPj4eLz++usWz+nqcYiI+oPEu+lwFswXcIgaEQ8HqcROERERERERkb30+x5lDzMYDNBqtZDL5bh37x6++uornD9/HgMHDsRHH30EkWnJgRX79u3Dnj17kJ6ejsrKSri4uCA+Ph7PPPMM5s2bZ/W87Oxs4+1BgwaZ3bdp0yaUl5fjvffeQ1BQEKRSKXQ6ndk5XT0OEVF/cObcebiYVZNJsWzOJPsFREREREREdsNE2UP27duHt99+27jt5+eH1157Dc899xw8PT3bNcZPf/pTs22FQoHLly/j8uXLePbZZ/HOO+9YPK+6utp428fHx3i7pqYGn332GWbMmIGJEycCADw9PVFdXW2cYtkd49iK1MnVbFskEhv/7+Dsbo+QqB/iddc/nb92Cy4i8x6N8WOnwNmtfa/3RERERETUtzBR9pCcnByz7aqqKnzzzTeQy+V47bXX4OrqavG8kJAQLFy4EA4ODhg/fjwmTpyI4OBgaDQaXLlyBX/5y19QUFCAb775BjExMXj88cdbjNHUUN/R0dGscu3TTz+FTCbDW2+9Zdzn6OgIoDEJ113j2IpYbHl6k0gkgkjEqU9kW7zu+g9BEHDxwlnzajK9E5bNnQqxmJ0JiIiIiIj6IybKHvLmm2/izTffhFwuR2FhIQ4cOIBvv/0WX3zxBS5cuIAtW7bA3b1ltcnEiRONVVqmXFxcsHDhQsTFxWHZsmWQyWT45JNPLCbKmph+QCsqKsLmzZuxbNkyREdHG/e3p/dZV43T3QwGvdm2SCSGSCSCIAgQBPvHR/0Dr7v+58T5q3ARqcz2TZw8HYDQ4nWpO1j7koCIiIiIiOyHiTIr3NzcEBUVhaioKMyZMwdPPfUU0tPT8eGHH1qdOtmaAQMGYNGiRdixYwfy8/NRUFCA0NBQs2OaqtW0Wq1x34cffghBEMwa7wOAWq02O6c7xrEVnVphlphwcHaHSCSBIBigVclaOZOo6/C6618MBgOuX70AV5NclUzvjBljomzy8xeJxHB08ej2xyEiIiIioo7h3JJ2SEhIwNixYwEAu3fvfuRxIiMjjbfz8/Nb3O/r6wsA0Ov1aGhoQGpqKg4cOID169ebJdW0Wi0aGhrMzumOcYiI+qp9Jy7CVaI12zdtypR2LdhCRERERER9FxNl7TRkyBAAgEwmM2uW3xEuLi7G26bVXk2GDh1qvF1UVIT33nsPLi4u+PGPf2x2XElJiXHKZHh4eLeNQ0TUF6k1GmSl3THbJ4c7poyJsVNERERERETUUzBR1k4qVWMfG5FIBDc3t0cao6Kiwng7KCioxf2xsbHG25s2bcL58+exYcOGFtVeN2/eNN4eNWpUt41DRNQXbTtwCi7S5uneegOwZP4cO0ZEREREREQ9BRNl7aDX65GYmAgACAsLg5OT0yONc+nSJQCAh4eHxQquhIQE+Pj4AAB27doFPz8/vPjiiy2OO3LkCADA2dkZU6dO7bZxiIj6mpo6GaqKM8326Zz8MHLYYDtFREREREREPUm/T5T9+9//xrPPPova2lqrx3zyyScoLi4GADz99NMt7hcEAX/6059w4sQJq2McPnzYmGxbuXIlnJ2dWxwjkUjw5JNPGrdfeOGFFtVrly5dwpkzZwAAq1evNpvO2dXjEBH1Ndv2H4OjSQN/rR5Ys2yB/QIiIiIiIqIeRSQIgmDvIOwlNTUV69atg0qlgre3N5599lnMnj0boaGh0Ov1SEtLw+bNm3H06FEAwKRJk/DZZ5/BwcHBbJzPPvsMf/nLXwAA8+bNw+rVqxEbGwtXV1cUFxdj3759+PLLL6HT6RAWFoadO3fCw8PyamcymQwrVqxAYWEhgoOD8fbbb2PSpEkwGAw4fvw43n33XSgUCvj7+2PPnj0ICAjo1nFsQaNsaLHqpVgsgcGg5+qDZDO87vq+guJy7Nm9DRKTr4hEHiH40TOrbB4LV70kIiIiIuqZ+nWiDAASExPxi1/8Arm5ua0et2zZMvz2t7+Fu7t7i/t0Oh3ef/99fPPNNxab9DeJi4vDBx98YLbypCVZWVnYuHEjioqKLN7v7++PTz75BHFxcTYZp7sxUUY9Aa+7vu+jz76Dg7bGuK3SibDh+Rfg7flofSc7g4kyIiIiIqKeqd8nyoDGHmSHDh3CqVOnkJycjMrKSkilUgQFBWHs2LFYsWIFxo0b1+Y4eXl52L59Oy5cuIDi4mIolUoEBARg+PDhWLZsGRYtWgSpVNqumGQyGTZt2oRjx46hoKAAgiBg4MCBmDt3Ll544YUWjfm7e5zuxEQZ9QS87vq2u+m5OHPiAMSi5n3uQcPx3OP2mXbJRBkRERERUc/ERBnZHRNl1BPwuuvb3v/kS7hAbtyWa8X4jx9uhJOjQytndR8myoiIiIiIeqZ+38yfiIj6tgs37polyQAgckS83ZJkRERERETUczFRRkREfZbBYMCVK5fM9jXoHLB8zmQ7RURERERERD0ZE2VERNRnHTpzBa4Sjdm+iRMnQyLh2x8REREREbXETwpERNQnqTVapKXcNtsnM7hi1gT7rvRLREREREQ9FxNlRETUJ+04dAouUr1x2yAAC+fOtmNERERERETU0zFRRkREfU51bT0qCjPM9mmkPoiPDrdTRERERERE1BswUUZERH3Olj1H4Chp3tbqgdVL59svICIiIiIi6hWYKCMioj7lflY+BEW52T5nn1CEhQTaKSIiIiIiIuotmCgjIqI+5dCxExCLmrcVWhGeWrnAfgEREREREVGvwUQZERH1GScvJcIFCrN9Q4bHwcPNxU4RERERERFRb8JEGRER9QkarRZJidfM9jXoHLFq/lQ7RURERERERL0NE2VERNQn7Dh4Gi5SvXFbEIAZ06dDIuFbHRERERERtQ8/PRARUa9XXVuP8sJ0s30qiRcmjx5hp4iIiIiIiKg3YqKMiIh6ve/3HoGjpHlbqweeWLbQfgEREREREVGvxEQZERH1avez8mGQl5vtc/YJRVhIoJ0iIiIiIiKi3oqJMiIi6tUOHTsBsah5W6EV4amVC+wXEBERERER9VpMlBERUa918lIiXKAw2zckchQ83FzsFBEREREREfVmTJQREVGvpNFqkZR4zWxfg84RqxZMs1NERERERETU2zFRRkREvdLuI+fgItUbtwUBmDF9OiQSvrUREREREdGj4acJIiLqdZQqNYryUs32qSRemDx6hJ0iIiIiIiKivoCJMiIi6nV2Hj4DZ4lg3NYbgFVL5tsxIiIiIiIi6guYKCMiol5FrlSioijTbJ/B2R9DQ4PtFBEREREREfUVTJQREVGvsuPgaTiZVJPpDMDjS+baMSIiIiIiIuormCgjIqJeo0EmR01pjtk+kWsgQgcE2CkiIiIiIiLqS5goIyKiXmP7wZNwNKkm0+qBJ5bNs2NERERERETUlzBRRkREvUJNXQPqK/LN9kk9B2BAgK+dIiIiIiIior6GiTIiIuoVth88AUdJ87ZGD6xlNRkREREREXUhJsqIiKjHq6iug6qmyGyfs88gBPh62SkiIiIiIiLqi5goIyKiHm/nwROQmrxjqXWsJiMiIiIioq7HRBkREfVopRXV0NSXmO1zDwiDr5e7nSIiIiIiIqK+iokyIiLq0XYdMq8mU+lEWLtsrv0CIiIiIiKiPouJMiIi6rEKSyugl5Wb7fMJDoeXu6udIiIiIiIior6MiTIiIuqxdh86CYnJO5VSJ8LaZXPsFxAREREREfVpTJQREVGPlFtQAigrzfYFhAyDm4uznSIiIiIiIqK+jokyIiLqkfYePWVWTabQirFm6Sy7xUNERERERH0fE2VERNTj3M/Kh0RTY7Zv4JAouDg52SkiIiIiIiLqD5goIyKiHufwidMQi5q35Voxnlg8w34BERERERFRv8BEGRER9ShJ9zLhbGgw2xc+PBaODg52ioiIiIiIiPoLJsqIiKhHOXn2nNm2TCvFyvlT7RQNERERERH1J0yUERFRj3HpZgpcoDDbFzMqAVKJxE4RERERERFRf8JEGRER9QiCIODS5Utm+xp0Dlgyc7ydIiIiIiIiov6GiTIiIuoRzlxJgqtYbbZv3NgJEIv5VkVERERERLbBTx9ERGR3BoMBiYnXzPY16J0xZ/Jo+wRERERERET9EhNlRERkd0fPXYerRGu2b/qUKRCJRHaKiIiIiIiI+iMmyoiIyK50Oj1S7twy2ycTXDFlTIydIiIiIiIiov6KiTIiIrKr/ScvwlWqM24LAjB35kw7RkRERERERP0VE2VERGQ3Gq0W2el3zfYpxR4YOzLCThEREREREVF/xkQZERHZza4jZ+EiNRi3DQKwZP5sO0ZERERERET9GRNlRERkF0qVGsV5aWb7NA4+iIkYbKeIiIiIiIiov2OijIiI7GL7wVNwlgjGbZ0BWLlorh0jIiIiIiKi/o6JMiIisrl6mRzVJdlm+wSXAAwNDbZTREREREREREyUERGRHWw/cAKOJtVkWj2wZul8O0ZERERERETERBkREdlYZU0dZJUFZvscPAdgYJCvnSIiIiIiIiJqxEQZERHZ1I4DJ+Agad7W6IG1y1lNRkRERERE9sdEGRER2UxRaSW09SVm+1z9wuDv42mniIiIiIiIiJoxUUZERDaz6/AJSEzeeVQ6EdYt50qXRERERETUMzBRRkRENpGVXwKRstJsn9/ACHi5u9opIiIiIiIiInNMlBERkU3sP3oSYlHztkIrxpqls+0XEBERERER0UOYKCMiom53LzMPDtpas30h4dFwdXayT0BEREREREQWMFFGRETd7siJ0xCZVJPJtRKsXjTdfgERERERERFZwEQZERF1q8S76XAWZGb7hkXHwdHBwU4RERERERERWcZEGRERdasz586bbcu0Ujw2d7KdoiEiIiIiIrKOiTIiIuo2F27cgYtIabZv1OixkEj49kNERERERD0PP6kQEVG3EAQBV65eMdvXoHPEwmlj7RQRERERERFR65goIyKibnHy4k24itVm+yZOnASxmG89RERERETUM/HTChERdTmDwYCkpBtm+2R6F8yaEGeniIiIiIiIiNrGRBkREXW5w2euwlWiNds3c/o0O0VDRERERETUPkyUERFRl9Lp9EhNSTLbJxfcMTE+yj4BERERERERtRMTZURE1KX2nbgAF6neuG0QgPmzZ9gxIiIiIiIiovZhooyIiLqMWqNFTkaK2T6V2BOjRwy1U0RERERERETtx0QZERF1md1HzsJFajBu6w3A0vlz7BgRERERERFR+zFRRkREXUKpUqM4P81sn9bRByMiBtkpIiIiIiIioo5hooyIiLrEjkOn4SwRjNs6A7By0Vw7RkRERERERNQxTJQREVGnyeRKVBZnme0TXAIwNDTYThERERERERF1HBNlRETUadsOnICTSTWZVg+sXjLPjhERERERERF1HBNlRETUKdV1DWioyDPbJ/UIxqBgPztFRERERERE9GiYKCMiok7ZceAEHCTN2xo9sGY5q8mIiIiIiKj3kdo7gJ7izp072LVrF65evYqSkhIIggA/Pz+MHj0ay5cvx6xZs9o1jkwmw6ZNm3D8+HEUFBTAYDAgJCQEc+fOxfPPPw9fX99eOQ4RkSXllTVQ1RZBavK1i4vPIAT6etstJiIiIiIiokclEgRBaPuwvqu+vh6//OUvceTIkVaPmzFjBj766CO4urpaPSYrKwsbN25EUVGRxfv9/f3xySefIC4urtXH6mnjdDeNsgGCYDBuOzi7QyyWwGDQQ6uS2TEy6k943T2af3y9HZCXGbdVOuDF51+Aj6e7HaPq+UQiMRxdPOwdBhERERERPaTfT7384osvcOTIEXh7e+MnP/kJdu3ahWvXruHcuXP44osvjJVk586dw89+9jOr48hkMrzyyisoKiqCg4MDfvrTn+Ls2bO4evUq/v73v2Pw4MGorKzEj370I1RUVPSacYiIrCksrYS+ocxsn1dQOJNkRERERETUa/X7RNnrr7+OX//61zh8+DBee+01jBw5El5eXggKCsLUqVPxz3/+E08++SQA4Pjx40hPT7c4zueff47CwkIAwLvvvouXX34ZwcHB8Pb2xrx58/Dqq68CACorK/GPf/zDajw9bRwiImt2Hz4Bicm7iFInwtqlc+wXEBERERERUSf1+0SZSCTCU0891WqvrvXr1xtvZ2Vltbhfr9djy5YtAICEhAQsWbKkxf3//Oc/jdu7du2CUqns8eMQEVmTW1ACKCvN9vmHDIOHm4udIiIiIiIiIuq8fp8oaw+NRmO8HRgY2OL+mzdvoqamBgCwePHiFvfv3LkT2dnZWL16NQBApVLhwoULPX4cIiJr9h07DYmoeVuhE2HNkll2i4eIiIiIiKgrMFHWDps2bQIAREZGYsyYMS3uv3v3rvF2QkKC2X1KpRIff/wx4uPj8frrr1s8p6eOQ0RkSUZuEcTqarN9AwdHw9XZyU4RERERERERdQ2pvQPoaQwGA7RaLeRyOe7du4evvvoK58+fx8CBA/HRRx9BJBK1OCc7O9t4e9CgQWb3bdq0CeXl5XjvvfcQFBQEqVQKnU5ndk5PHYeIyJKDx0/B0eSlUK4V46XFM+wXEBERERERURdhouwh+/btw9tvv23c9vPzw2uvvYbnnnsOnp6eFs+prm6urPDx8THerqmpwWeffYYZM2Zg4sSJAABPT09UV1cbp0b25HFsRerkarYtEomN/3dw5up5ZBu87tonJT0bDto6wCRRFj48Hu6ePtZPIiIiIiIi6iWYKHtITk6O2XZVVRW++eYbyOVyvPbaa3B1dW1xTlMjfEdHR7OKs08//RQymQxvvfWWcZ+joyMAQKFQ9PhxbEUslljcLxKJIBJZvo+ou/C6a93BI0fhZFZNJsHaxxZa/T0mIiIiIiLqTZgoe8ibb76JN998E3K5HIWFhThw4AC+/fZbfPHFF7hw4QK2bNkCd3fL1SZicXPLt6KiImzevBnLli1DdHS0cb/BYGgzhp42TnczGPRm2yKRGCKRCIIgQBDsHx/1D7zu2nbrbhqc9HVm+yJHjoFE3PL3mNrG5CIRERERUc/DRJkVbm5uiIqKQlRUFObMmYOnnnoK6enp+PDDD/HOO++YHdtUZabVao37PvzwQwiCYNYwHwDUarXZOT15HFvRqRVmiQkHZ3eIRBIIggFalcxucVH/wuuubUePH4OLybZMK8WyWeP4fD0CkUgMRxcPe4dBREREREQP4aqX7ZCQkICxY8cCAHbv3t3ifl9fXwCAXq9HQ0MDUlNTceDAAaxfvx6hoaHG47RaLRoaGszO6cnjEBE1uXEnDS6Qm+2LHjkaUgmrooiIiIiIqO9goqydhgwZAgCQyWRmzfIBYOjQocbbRUVFeO+99+Di4oIf//jHZseVlJQYpzqGh4e3eIyeNg4RUZOzFy6abct0Dlg6a4KdoiEiIiIiIuoeTJS1k0qlAtDY6NvNzc3svtjYWOPtTZs24fz589iwYUOLKq2bN28ab48aNarFY/S0cYiIAODSzRS4wHzBj7j4sZBI+BZCRERERER9Cz/ltINer0diYiIAICwsDE5OTmb3JyQkwMfHBwCwa9cu+Pn54cUXX2wxzpEjRwAAzs7OmDp1aov7e9o4REQAcOnyZbPtBp0jFkwbY6doiIiIiIiIuk+/T5T9+9//xrPPPova2lqrx3zyyScoLi4GADz99NMt7pdIJHjyySeN2y+88EKLqrNLly7hzJkzAIDVq1fDxcUFD+tp4xARnbt2G65ildm+cWMnmK2qS0RERERE1FeIBEEQ7B2EvaSmpmLdunVQqVTw9vbGs88+i9mzZyM0NBR6vR5paWnYvHkzjh49CgCYNGkSPvvsMzg4OLQYSyaTYcWKFSgsLERwcDDefvttTJo0CQaDAcePH8e7774LhUIBf39/7NmzBwEBARZj6mnj2IJG2dBi1UuxWAKDQc/V9MhmeN21JAgC3v/HZ3AVq437GvTO+NmrL0EkEtkxst6Pq14SEREREfVM/TpRBgCJiYn4xS9+gdzc3FaPW7ZsGX7729/C3d3d6jFZWVnYuHEjioqKLN7v7++PTz75BHFxca0+Vk8bp7sxUUY9Aa+7ls5cScK9WxfM9sWOn4UZ42KtnEHtxUQZEREREVHP1O8TZUBjD7JDhw7h1KlTSE5ORmVlJaRSKYKCgjB27FisWLEC48aNa9dYMpkMmzZtwrFjx1BQUABBEDBw4EDMnTsXL7zwQouG+r1lnO7ERBn1BLzuzFmqJpPpXfCzn7xkx6j6DibKiIiIiIh6JibKyO6YKKOegNeduXNXb+PuzfNm++ImzMa0sSPtFFHfwkQZEREREVHPxG7MRERkRhAEXLtxzWyfTO/MJBkREREREfV5TJQREZGZCzfumE25BBoXMyEiIiIiIurrmCgjIiIzV6+ZV5M16J3ZwJ+IiIiIiPoFJsqIiMjoYuJduIpVZvsmTphgp2iIiIiIiIhsi4kyIiIyunzlitl2g94JM8ePslM0REREREREtsVEGRERAQAu3UxpUU02YdwEiEQiO0VERERERERkW0yUERERAODSw9VkOifMmhhnp2iIiIiIiIhsj4kyIiLClaR7cBUpzfaNGzue1WRERERERNSvMFFGRES4eOmy2XaDzhFzJsfbKRoiIiIiIiL7YKKMiKifu3b7PlweqiYbM4bVZERERERE1P8wUUZE1M+dt1BNNm/KaPsEQ0REREREZEdMlBER9WPXk9PgAoXZvoSEsawmIyIiIiKifomJMiKifuzcxYtm2w06B8ybkmCnaIiIiIiIiOyLiTIion7q0s2UFtVk8fFjIRbzrYGIiIiIiPonfhoiIuqHBEHApcuXzPY16BywYNoYO0VERERERERkf0yUERH1Q6cu34KrWG22b/y4iawmIyIiIiKifo2fiIiI+hmDwYBbN6+b7WvQO2P2pHg7RURERERERNQzMFFGRNTPHDpzBa4Srdm+mdOmcaVLIiIiIiLq95goIyLqR3Q6PdJSbpvtkwvumDQ62k4RERERERER9RxMlBER9SN7jp2Di1Rv3DYIwII5M+0YERERERERUc/BRBkRUT+h1miQn3XffJ/EC/HR4XaKiIiIiIiIqGdhooyIqJ/YfvA0nKUG47beACxfONeOEREREREREfUsTJQREfUDMrkSFUWZZvv0zv4YPmSgnSIiIiIiIiLqeZgoIyLqB7YdOA4niWDc1hqA1UtYTUZERERERGSKiTIioj6uurYeDRX5Zvuk7sEIHRBgp4iIiIiIiIh6JibKiIj6uG0HjsNB0ryt0QNrls+zX0BEREREREQ9FBNlRER9WHFZFTR1JWb7XP0GI9DX2z4BERERERER9WBMlBER9WG7Dh2H1OSVXqUTYR2ryYiIiIiIiCxiooyIqI/KLSyFoKw02+czYCi83F3tFBEREREREVHPxkQZEVEfte/oKUhEzdsKnQjrls2xX0BEREREREQ9HBNlRER9UEZuEcTqarN9AwZHwdXZyU4RERERERER9XxMlBER9UEHj5+C2KSaTK4V44nFM+0XEBERERERUS/ARBkRUR9zLyMXDto6s31hETFwcnSwU0RERERERES9AxNlRER9zJFTZyEyqyaTYNXC6fYLiIiIiIiIqJdgooyIqA9JupcJZ0OD2b6I6FFwkErsFBEREREREVHvwUQZEVEfcvLsebNtmVaKFXOn2CkaIiIiIiKi3oWJMiKiPuLa7VS4QG62LyY2ARIJX+qJiIiIiIjag5+eiIj6iPMXL5pty3QOWDJrvJ2iISIiIiIi6n2YKCMi6gMuJt6Fi0hpti9+9DiIxXyZJyIiIiIiai9+giIi6uUEQcDlK5fN9jXoHLFg2hg7RURERERERNQ7MVFGRNTLnbmSBFex2mzfhPGTIBKJ7BQRERERERFR78REGRFRL2YwGJCYeN1sX4PeGbMnxdkpIiIiIiIiot6LiTIiol7sxIVEuEo0ZvumTZ5ip2iIiIiIiIh6NybKiIh6KYPBgOTkRLN9MoMrpo6NsVNEREREREREvRsTZUREvdSBk5fgKtEZtwUBmD1jmh0jIiIiIiIi6t2YKCMi6oU0Wi0yUu+Y7VOKPDB+1HA7RURERERERNT7Se31wHq9HhkZGSgrK0NDQwN0Oh1Wrlxpr3CIiHqV3UfPwUWqN24bBGDRvFn2C4iIiIiIiKgPsHmi7NatW/j6669x+vRpqNVqs/ssJcr27duHhIQEhIaG2ihCIqKeTalSoygnFc4mr+AaqQ9ih4fZLygiIiIiIqI+wGaJMkEQ8Pvf/x6bN2+GIAgQBMHsfpFI1OKcv/71r/jXv/6FSZMm4csvv7RVqEREPdr2g6fgLG1+DdUbgBXL5toxIiIiIiIior7BZomyX/7yl9i5cycEQcDAgQOxfPlyjBgxAjk5Ofjoo48snjN27FgIgoArV64gOTkZcXFxtgqXiKhHqmuQo7okG46S5n0GlwBEhAbbLygiIiIiIqI+wiaJskuXLmHHjh0QiURYu3Yt3nnnHTg6OgIAzpw5Y/W8GTNmYMSIEUhNTcW+ffuYKCOifm/7wRNwlDRXk2n1wJql8+0YERERERERUd9hk1Uvt23bBgAYMWIEfve73xmTZO0xd+5cCIKA69evd1d4RES9QkV1HeSVBWb7HLwGYmCQr50iIiIiIiIi6ltskihLSkqCSCTCqlWrOnxueHg4AKC4uLirwyIi6lV2HDgOB5Mpl2o9sHYZq8mIiIiIiIi6ik0SZVVVVQCAAQMGdPjcpuozpVLZpTEREfUmhaUV0DWUmu3z8B8Cfx8PO0VERERERETU99gkUebi4gKgOWHWETk5OQAAb2/vrgyJiKhX2X3oBCQmr9hKnQhrudIlERERERFRl7JJoiwqKgoAcPz48Q6dJwgC9u3bB5FIhJiYmO4IjYiox8vILYJIZf5FQ0DIMHi6u9gpIiIiIiIior7JJomyJUuWQBAEXLx4EXv27Gn3ef/3f/+HzMxMAMDixYu7KToiop7t4LFTEIuatxVaMdYunW2/gIiIiIiIiPoomyTKnnjiCQwbNgyCIOAXv/gF/vd//xdZWVlWj79//z7eeustfPrppxCJRBg+fDgee+wxW4RKRNSjJKdlw1FfZ7YvNCIGzk7tXz2YiIiIiIiI2kckCIJgiwcqLS3F+vXrUVpaCpGosTTC2dkZTk5OqK2thUgkwuDBg1FVVQW5XA6gceplUFAQtm3bhqCgIFuESXagUTZAEAzGbQdnd4jFEhgMemhVMjtGRv1JT73uPvj0KzgLzfHItBK8+eNX4CCVtHIW9XQikRiOLlyIgYiIiIiop7FJRRkABAcHY+vWrZg/fz4EQYAgCFAqlairqzMmzvLz8yGTyYz3z5w5E99//z2TZETULyWnZZslyQAgKiaeSTIiIiIiIqJuIrXlgwUFBeHjjz/GrVu3cOjQIZw9exbFxcXQ6XSNwUilCAoKwowZM7Bw4UJMmjTJluEREfUoJ86ch7PJtkwrxbLZfF0kIiIiIiLqLjabetmampoaAICPj4+dIyF74NRL6gl62nV3Nz0H504eNNsXEjkGK+ZNsVNE1JU49ZKIiIiIqGeyaUWZNUyQERGZO376PJxMtllNRkRERERE1P1s1qOMiIja515GLhz19Wb7ho8YBYmEL9lERERERETdiZ+6iIh6mKOnz+HBGicAHlSTzWE1GRERERERUXdjooyIqAe5n5UHR515Ndmw6FhIJVzpkoiIiIiIqLvZpEfZc88912KfSCTCBx98AD8/P1uEQETUKxw9eQ6OZtVkEjw2d7L9AiIiIiIiIupHbJIou3btGkQiEUwX2BSJRFCr1bZ4eCKiXiE1qwAOujrAJFEWMZzVZERERERERLZik0SZ6EGzncjISHh7exv3Ozk5WTmDiKj/OXLqjFk1mVwrwYr5U+wXEBERERERUT9jk0SZp6cn6uvr8corr2D58uW2eEgiol4lPacQUq15NVl45EhWkxEREREREdmQTZr5R0dHA2icgklERC0dOnEG4hbVZFPtFxAREREREVE/ZJNE2Zo1ayAIAvbu3YuMjIwOnXvmzBmMGDECMTEx3RQdEZF9ZeQWQaqtNds3JDIGDlJWkxEREREREdmSTRJly5Ytw6pVq6DRaLBx40bcv3+/Q+cLgmC2EAARUV/SsppMjBXzWE1GRERERERkazZJlAHAH//4R2zcuBGVlZVYs2YN/vSnP6GsrMxWD09E1CNl5hdBoqkx2xcWEQNHB5u0kCQiIiIiIiITNvskptPpsHbtWgQGBuL999/Hpk2b8O2332LSpEkYPXq01fNyc3NtFSIRkc0dPnEekoeqyV5eMM1+AREREREREfVjNkmUTZ8+HVVVVS2mT+p0Oly8eBEXL160RRhERD1KeWUtoKw0q+0NHRrNajIiIiIiIiI7scmnsYqKCqv3sfcYEfVXe4+dgcQkSabUibByPqvJiIiIiIiI7MVmZQsikQhvvvlmq9MsLUlKSsIHH3zQPUEREdmJTKGEvLoIjiYLW3oHDYGzk6P9giIiIiIiIurnbDq/JyoqChMmTOjQOQqFopuiaSkxMRH79u3DtWvXUFlZCbVajYCAAIwePRqPP/44pk5tfRW6Xbt24ec//3m7HmvDhg14++23Wz1GJpNh06ZNOH78OAoKCmAwGBASEoK5c+fi+eefh6+vb7seq6vGIaKus/fYeThKmitqNXpg/cKZdoyIiIiIiIiIbJYo68lTLJVKJX71q19h3759Le4rLCxEYWEhDhw4gMcffxz/+7//C4lEYmGUjhk5cmSr92dlZWHjxo0oKioy25+RkYGMjAzs2LEDn3zyCeLi4mwyDhF1HZ1Oj9KCTLiYvAJL3YPg6+Vuv6CIiIiIiIgIIqEnZ7BsQKPR4MUXX8SNGzcgFouxbt06rFixAmFhYdBqtbh//z4++OADpKWlAQA2btyI//qv/7I4lmlFWXJycquP6+DgALFYbPE+mUyGFStWoLCwEA4ODnjjjTewbNkyODs748aNG/jzn/+M/Px8+Pv7Y8+ePQgICOjWcbqbRtkAQTAYtx2c3SEWS2Aw6KFVyewSE/U/trzu9p+4iIKMW8ZtvQFYvnIthoQEduvjUs8hEonh6OJh7zCIiIiIiOghljM1/YijoyOefvppBAYG4rPPPsNvfvMbJCQkwNfXF0FBQZg1axa2bt2K0NBQAMDXX3+NmpqaNsd1cnJq9T9rSTIA+Pzzz1FYWAgAePfdd/Hyyy8jODgY3t7emDdvHl599VUAQGVlJf7xj390+zhE1HUEQUBa6l2zfVoHbybJiIiIiIiIeoB+nygDgCVLluD06dNWe5C5uLjgmWeeAQCo1Wpcu3at22LR6/XYsmULACAhIQFLlixpcf8///lP4/auXbugVCq7bRwi6loXEu/AVaI12zd3euv9D4mIiIiIiMg2mCh7QCptvV1beHi48XZFRUW3xXHz5k1jxdrixYtb3L9z505kZ2dj9erVAACVSoULFy502zhE1LWuXb9hti0zuCJ+RLiVo4mIiIiIiMiWmChrJ9PVN728vDp0rsFgaPugB+7ebZ6SlZCQYHafUqnExx9/jPj4eLz++usWz+nqcYio69xNz4ULzFfyHT92rJ2iISIiIiIioofZbNXL3s60Of/o0aPbPH7fvn3Ys2cP0tPTUVlZCRcXF8THx+OZZ57BvHnzrJ6XnZ1tvD1o0CCz+zZt2oTy8nK89957CAoKglQqhU6nMzunq8exBamTq9m2SCQ2/t/BmasAkm3Y4ro7ef4SHEy2ZToHzJsxudWehURERERERGQ7dkmUJSUl4fDhw0hOTkZBQQEaGhogkUjg5+eHAQMGYOrUqZg7dy6GDRtmj/Ba0Gg02L9/P4DG6qymxv6t+elPf2q2rVAocPnyZVy+fBnPPvss3nnnHYvnVVdXG2/7+PgYb9fU1OCzzz7DjBkzMHHiRACAp6cnqqurLS4u0FXj2IJYLLG4XyQSQSSyfB9Rd+mu666guAxidTUgat4XNTIBUqmD9ZOIiIiIiIjIpmyaKMvIyMCvfvUrJCUlme0XBAFA45TAwsJCXL9+HR9++CGWLl2Kn/70pwgKCrJlmC3861//MvYl+4//+A+rx4WEhGDhwoVwcHDA+PHjMXHiRAQHB0Oj0eDKlSv4y1/+goKCAnzzzTeIiYnB448/3mKMpob6jo6OEImaP1F/+umnkMlkeOutt4z7HB0dAZhPC+3qcWzBYNCbbYtEYohEIgiCAEFo/7RVos7o7utu14HDkJgkyRRaMR6bP6PF9U/9h7UvCYiIiIiIyH5slii7fv06fvjDH0KhUBgTY00cHBwgCAJ0Op3Z/oMHD+LGjRv47rvvEBISYqtQzdy8eROffvopAGDNmjWYMmWK1WMnTpxorNIy5eLigoULFyIuLg7Lli2DTCbDJ598YjFR1sR0KlZRURE2b96MZcuWITo62ri/Pb3Pumqc7qRTK8wSEw7O7hCJJBAEA7QqmR0jo/6kO6+7ugY51LVFcDDJiwQMioBIr4KWebJ+SSQSw9HFw95hEBERERHRQ2ySKGtoaMAbb7wBuVwOoLHH1+rVqzFmzBiEhoYaK5o0Gg0KCgqQmJiInTt34vbt2ygtLcWGDRuwb98+ODk52SJco8LCQrz66qvQarWIjY21Ol2yvQYMGIBFixZhx44dyM/PR0FBQYtpnK6ujf26tFqtcd+HH34IQRDMGu8DgFqtNjunO8Yhos7bc/SsWZJMrQOeWTDDfgERERERERGRRTbpIL1582ZUVVVBJBLhP//zP/H9999jzZo1iIiIMCbJgMYpgBEREVi7di22bt2KN954AwCQn5+PrVu32iJUo7KyMrz44ouorq5GaGgoPvnkEzg7O3d63MjISOPt/Pz8Fvf7+voCAPR6PRoaGpCamooDBw5g/fr1Zkk1rVaLhoYGs3O6Yxwi6hy1Rouqkhyzfc4+IfB0d7FTRERERERERGSNTRJlp0+fhkgkwpQpU/DKK6+0+7wf/vCHmDx5MgRBwNGjR7sxQnOVlZV48cUXkZ+fj5CQEGzatAmBgYFdMraLS/OHY9NqryZDhw413i4qKsJ7770HFxcX/PjHPzY7rqSkxDhlMjw8vNvGIaLOOXzmKpylzdPNdQZg5cKZdoyIiIiIiIiIrLFJoiwvLw8AsHDhwg6fu2jRIgCNCwHYQllZGZ555hlkZWUhLCwMX3/9dZf2R2taFACAxUUKYmNjjbc3bdqE8+fPY8OGDS2qvW7evGm8PWrUqG4bh4g6JzMj1Wzb4OSLAQGs3iQiIiIiIuqJbJIo68zUPj8/PwC2WZGxoKAATz75JHJychAdHY3Nmzdj0KBBXfoYly5dAgB4eHhYrOBKSEiAj48PAGDXrl3w8/PDiy++2OK4I0eOAACcnZ0xderUbhuHiB5dek4hXMUqs30zp7Zc8IOIiIiIiIh6Bpskyjw9PQE0TgHsqJKSEgCAt7d3V4bUQnp6Op588kkUFRVhypQp+O677+Dv79/u8wVBwJ/+9CecOHHC6jGHDx9GYmIiAGDlypUWe55JJBI8+eSTxu0XXngBbm5uZsdcunQJZ86cAQCsXr3abDpnV49DRI/uxPnLZtsynSMSRkTYKRoiIiIiIiJqi00SZdHR0RAEAXv37oUgCG2f8IAgCNi3bx9EIpFZE/yuduvWLTzzzDOoqKjA4sWL8fHHH8PBwQFqtdrifxqNpsUYn3/+Ob788ku8+uqrePXVV3Hq1CmUl5dDJpMhPT0d7733Hv7rv/4LABAWFtZi5UlTL730krGS7bvvvsOhQ4dQXV2NyspKbNmyBa+++ioEQYC/vz9+9KMfdfs4RNRxao0Gmvpys31h4d33OkZERERERESdJxI6krl6RDt27MA777wDkUiENWvW4J133jFb7dISnU6H3//+99iyZQtEIhF+9atfmVVIdaVnn30W165da/fxQ4YMabG4gE6nw/vvv49vvvnGYpP+JnFxcfjggw/MVp60JCsrCxs3brRahefv749PPvkEcXFxNhmnO2mUDRAEg3HbwdkdYrEEBoMeWpXMbnFR/9LV193e4xdQlJlk3NbogZdefAkebqzcJEAkEsPRxcPeYRARERER0UNskijT6/VYu3YtUlJSIBKJEBwcjMceewxjx47F4MGD4e7uDgCQy+UoKChAYmIi9u7di5KSEgiCgCFDhuDAgQOQSqXdEl9HE2WzZ8/Gp59+avG+vLw8bN++HRcuXEBxcTGUSiUCAgIwfPhwLFu2DIsWLWr3v0Mmk2HTpk04duwYCgoKIAgCBg4ciLlz5+KFF15od8+3rhqnuzBRRj1BV1937/39M7P+ZFpHf7z+0vpOj0t9AxNlREREREQ9k00SZQBQXV2Np556Crm5uRCJRO06RxAEBAUF4euvv0ZYWFg3R0j2wkQZ9QRded2l5xTixJE9ZvsmzVyMMTHsT0aNmCgjIiIiIuqZbNKjDGhc8XLHjh148cUXIZFIIAhCq/+JxWKsXLkSu3fvZpKMiHqVE+evmG3LdA5MkhEREREREfUC3TOX0Qp3d3e8/fbb2LhxI86dO4dLly6hpKQENTU10Ov18PT0RGhoKOLj47Fw4UIEBgbaMjwiok5rbOJfBkdJ877QIWziT0RERERE1BvYbOolkTWcekk9QVddd/uOX0Rh5i3jtkYPbHjhJXi6s4k/NePUSyIiIiKinslmUy+JiPqD9PT7ZtsiFz8myYiIiIiIiHoJJsqIiLpIRk6h2UqXAP5/e3ceHlV5sH/8PjOTZcIewhqQTQGRLSCCrCoIsigKtu4VVNxbfYvW2vq29a1at6p9fRW0Whv3/iqIcQMCCLLv+yK7JGENCZDJOsv5/WGd5JiEdWbOTPL9XJdX53nOOc/c2JNcF7dn0cB+fWxKAwAAAAA4UxRlABAiVT3Ev/dF59uUBgAAAABwpijKACAESsvKVHrikGWuVRtKMgAAAACIJRErypYuXapXXnlFgUDg1Dv/h9/v13PPPaelS5eGMRkAnLtZ365UvLP83Shlfmn0FZfamAgAAAAAcKZckfgSn8+n3//+9zpw4ICOHj2qP//5z6d13NNPP60PP/xQc+fO1axZs2QYRpiTAsDZ2f7dViVV/E8PiY3VoG6SbXkAAAAAAGcuIleUffXVV9q/f78k6dprrz3t42644QYZhqGsrCxlZmaGKR0AnJsde6t4iH/fi21KAwAAAAA4WxEpyubMmSNJ6tGjh3r37n3ax3Xq1En9+/eXJIoyAFFrzsLllrHHF6eLu11gUxoAAAAAwNmKSFG2ceNGGYahyy+//IyPHThwoEzT1Pr168OQDADOTWmZVyXHD1rmeIg/AAAAAMSmiBRlR48elSS1bdv2jI9t2bKlJOnIkSOhjAQAITFzwXIl8BB/AAAAAKgRIlKUORw/fI3X6z3jY/1+vySd0dsyASBSdmzfYp1ITOYh/gAAAAAQoyJSlDVv3lySzur2yU2bNkmSmjZtGtJMAHCu1m7eqSRHmWVuyIC+NqUBAAAAAJyriBRlvXv3lmma+vTTT8/oFsqCggJ9+umnMgxDPXr0CGNCADhz3y61PsS/wJ+gtAs72JQGAAAAAHCuIlKUXX/99ZKkwsJCTZo0SYcOHTrlMYWFhXr44YeVn58vSbrmmmvCmhEAzkRu3nE5SvMtc506dbEpDQAAAAAgFCJSlKWlpen666+XaZr67rvvNHr0aL3wwgtavXq1PB5PcL+ysjJt27ZNb731lq6++motWbJEhmFoyJAhGjx4cCSiAsBp+WLuIjkr/AYt9hkaddkl9gUCAAAAAJwzwzRN89S7nTu/36+7775bixcvlmEYlm1Op1MOh6PSw/5N01SnTp304Ycfqk6dOpGICRuUFRfINMtf1hCXWFcOh1OBgF/eEs9JjgRC50zOO5/Pr/+d8oYSXeXnravhebr7Jq58xekxDIfi3fXsjgEAAADgJyJyRZn0Qxn297//XZMnT1ZCQoJM0wz+4/P5VFZWZpmTpFtuuUUfffQRJRmAqDJnyWpLSeYLSGOGDrQxEQAAAAAgFFyR/DKHw6FJkyZp/PjxyszM1Lx58/T999/ryJEjCgQCaty4sVq0aKFBgwZp5MiRat26dSTjAcBp2bRpo5IqXBjrdTVQy6bJ9gUCAAAAAIRExG69BKrDrZeIBqd73m3dtU/fzM6wzKVdOkyX9uwc7oioQbj1EgAAAIhOEbv1EgBqgrnfLrWMPb449evRyaY0AAAAAIBQoigDgNN0vKBQgaIjlrm27TtVekEJAAAAACA2UZQBwGn6Yu5iuSr81izxGRoz9FL7AgEAAAAAQoqiDABOQyAQ0MGsXZa5xAYtlJSYYFMiAAAAAECoUZQBwGlYsGKD3C5/cBwwpauuGGBjIgAAAABAqLki9UVHjx7V8ePH1b59+2r3OXDggKZNm6Y9e/bIMAz16tVL48aNU2JiYqRiAkCV1qxdK3eFcYlRV+1bNbMtDwAAAAAg9CJWlD377LOaNWuWfvOb3+jWW2+ttH3u3LmaPHmySktLg3NffvmlPvjgA33wwQdq2LBhpKICgMXerANKMAulCs/s752WZl8gAAAAAEBYROTWy6ysLH355Zfyer0yTbPS9gMHDujRRx9VSUmJTNO0/LN7925Nnjw5EjEBoEoz5y+Ro0JJ5vG6NOSSbvYFAgAAAACERUSKss8++0yBQEBNmjTRDTfcUGn7m2++qaKiIhmGoeHDh+v111/XSy+9pE6dOsk0TS1ZskRr1qyJRFQAsCgqLlHJ8QOWuZbndZDDwSMeAQAAAKCmicitl8uWLZNhGLryyisVHx9v2VZWVqbPPvtMhmGof//++t///d/gtn79+unKK69UUVGRvvzyS/Xq1SsScQEg6LPMRYp3lo/L/NI1w3iIPwAAAADURBG5JOL777+XJHXp0qXStkWLFqmoqEiSdPfdd1u2JScna8yYMTJNU+vWrQt7TgCoKBAIaP/3OyxzzjpNVb9ukk2JAAAAAADhFJGi7NixY5KkBg0aVNr2zTffSJIaNWqkvn37Vtr+Y7m2f//+8AUEgCrMXrRKbpc/OA6Y0qihg2xMBAAAAAAIp4gUZS7XD3d4+v3+StsWLFggwzA0YEDVtzI1btxYklRQUBC+gABQhU0b11vGJY566nBeC5vSAAAAAADCLSJFWdOmTSWV34L5oxUrVujw4cOSpEGDqr5K48eCrE6dOmFMCABWqzdtV5Kj1DI36NJ+NqUBAAAAAERCRIqybt26yTRNff755yot/eEvnqZp6rXXXpMkxcXF6bLLLqvy2O3bt0v64XllABAp3y5ZZhkX+BLUt0cnm9IAAAAAACIhIm+9vOaaa/TFF19o586duv766zVo0CBt3LhRK1euDL4Ns379+lUeO2/ePBmGoZ49e0YiKgDo+5xDivOdkIzyuYsu6m5fIAAAAABARESkKBs8eLD69++vJUuWaOfOndq5c2dwW2Jioh5++OEqj5s9e7a+//57GYZR7RVnABBqX879Vo4KJVmh16GrhlxsXyAAAAAAQERE5NZLSXrllVfUv39/maYZ/Cc5OVmvvvqqWrduXWn/srIyPf300zIMQ+edd56GDx8eqagAarHjJwrkPXHIMte89flyOZ02JQIAAAAAREpEriiTpPr16+sf//iHtm3bpt27d6tRo0bq2bOn3G53lfvHx8dr8uTJeuKJJ/Tf//3fMgyjyv0AIJSmfZmpuAqdWKlPum141S8bAQAAAADULBEryn7UuXNnde7c+bT2veaaa9SnTx+1aNEizKkAQCrzenUke6cSK/xmTGyUqnp1qi70AQAAAAA1S8RuvTxblGQAIuXz2fOV6AoEx76AdM2Vg21MBAAAAACIpKgvygAgEkzT1LbN6yxz/vhGSm3W2J5AAAAAAICIoygDAEkLl69VkrPMMjd08ACb0gAAAAAA7EBRBgCSli5bYhl7Aknq3qmtPWEAAAAAALagKANQ6323J0uJpscy1zstzaY0AAAAAAC7UJQBqPVmf7PIMvZ4Xbq8Xw+b0gAAAAAA7EJRBqBWyz9eILP4qGWu7fkXyuHg1yMAAAAA1Db8TRBArfb1/GVyVfhNWOwzNHZYf/sCAQAAAABsQ1EGoFbbn7XbMq7buLUS4uNsSgMAAAAAsBNFGYBaa+3mHUpyeoPjgCmNuGKwjYkAAAAAAHaiKANQay1avtoyLjaTdEHbVjalAQAAAADYjaIMQK1UVFyiQFGuZa5zl242pQEAAAAARAOKMgC10swFyxXnLB+X+gyNHjrIvkAAAAAAANtRlAGolXbv2m4Zx9VvJndigk1pAAAAAADRgKIMQK2zfU+2khyllrnLBw2wKQ0AAAAAIFpQlAGodeYuWm4Ze3zx6tnlApvSAAAAAACiBUUZgFqlzOtVyfGDlrnWbc+3KQ0AAAAAIJpQlAGoVeYsXq0Epxkce/3SqMv72ZgIAAAAABAtKMoA1Cpbt26xjAMJyWpQN8mmNAAAAACAaEJRBqDWyDpwRAlmkWWu78VpNqUBAAAAAEQbijIAtcbsBUvlMMrHHq9L/Xp0si8QAAAAACCqUJQBqBUCgYCOHcm2zDVt2UYOB78GAQAAAAA/4G+IAGqFBSs2yO0KBMe+gDTq8kttTAQAAAAAiDYUZQBqhXXrN1jGZc76atq4oT1hAAAAAABRyWXHl+7atUuZmZnatGmTDh48qIKCAgUCAWVmZlbat6ysTPHx8TakBFBT5OYdl8t3wvKfBnp272ZfIAAAAABAVIpoUZaVlaUnn3xSixcvDs6ZpilJMgyj0v7bt2/X5MmTdeONN+qWW26JWE4ANcvX85fKWaEkK/I6dHnfHvYFAgAAAABEpYjderlhwwaNHz9eixcvlmmacjqd6tChgzp06FDtMdOmTdOOHTv0yiuvqLCwMFJRAdQggUBAh3L2Wubqp6TK6eTOcwAAAACAVUT+plhQUKD77rtPJ06cUP369fXkk09q5cqV+uKLL/Too49We9x9990nt9stj8ejzz77LBJRAdQwS9ZsUZLLFxwHTGn4EB7iDwAAAACoLCJFWXp6uo4eParExES9++67uuGGG+R2u095XMOGDTV8+HCZpqlvv/02AkkB1DQrVq+2jItVR21Tm9qUBgAAAAAQzSJSlM2bN0+GYWjcuHHq1KnTGR3bq1cvSdLWrVvDEQ1ADZZ9MFfx/gLLXM/u3W1KAwAAAACIdhEpyrKysiRJF1988Rkf27hxY0lSXl5eSDMBqPm+nrdIjgrvCSn0OnTFpWn2BQIAAAAARLWIFGWlpaU/fJnjzL/O4/FIklyuiL6gE0CMKy3zypOXY5lr0rIdD/EHAAAAAFQrIn9jbN68uSRpy5YtZ3zs8uXLJUmtWrUKaSYANdusBSuU4DSDY69fGjN0oI2JAAAAAADRLiJFWb9+/WSapv7973/r+PHjp33crl279MUXX8gwDF16KW+pA3D6tm+3FvNmYrJSGtWzKQ0AAAAAIBZEpCi79dZb5XQ6dezYMd1zzz06fPjwKY/ZtWuX7rvvPnm9XjmdTt14440RSAqgJtiwbbeSHKWWuSED+tqUBgAAAAAQKyLy4K+OHTvq17/+tV544QWtX79eV155pS6//HJ169ZNBw4cCO73+eefKzc3VytXrtS3334rv98vwzD0yCOPqH379mHPuXr1amVkZGjFihXKzc1VaWmpmjRpop49e2rcuHEaMGDAaa3j8XiUnp6uzMxMZWVlKRAIKDU1VUOHDtXtt9+u5OTkmFwHiBXzFy+3/HLz+BKUdmEH2/IAAAAAAGKDYZqmeerdQuO1117T66+/HizATsY0TTkcDt1zzz166KGHwpqruLhYf/jDH5SRkXHS/caNG6ennnpKTqez2n127dqlSZMmKScnp8rtKSkpmjJlirp3737S74q2dcKprLhAphkIjuMS68rhcCoQ8Mtb4rEtF2JT/vECvfd+ulwVrpdt3qGnxg0/+fPJOO8QSYbhULybW4EBAACAaBPRokyStm7dqhdeeEHLly+X3++vOpRhqHfv3nr00UfVo0ePsOYpKyvTxIkTtWrVKjkcDt1www0aO3as2rRpI6/Xq61bt+qll17Sd999J0maNGmSHnnkkSrX8ng8Gjt2rLKzsxUXF6eHH35YY8aMUWJiolatWqXnnntO+/btU0pKimbMmKEmTZrExDrhRlGGUHp3+tfyHNoVHBf7DD14z91KiI876XGcd4gkijIAAAAgOkXk1suKLrzwQv3jH/9Qfn6+Fi5cqOzsbB09elSS1LhxY7Vs2VIDBw5USkpKRPLEx8frlltu0b59+/Tss89Wur2yWbNm6tu3r66++mplZWXp3Xff1Z133qlGjRpVWuvtt99Wdna2JOn555/XqFGjgtuGDRsmj8ejxx57TLm5uXr99df1xz/+scpM0bYOECsCgYCO5OyVu8JvtjqNUk9ZkgEAAAAAINlwRVm08vl8crmq7w3/+c9/6i9/+Ysk6X//9381YsQIy3a/368BAwYoPz9faWlp+vjjjyttHzNmjHbv3i1JSkxM1LJly+R2u6N6nUjgijKEyrwla7Rt/ZLg2B+Qrh13g1q3OPXVkpx3iCSuKAMAAACiU0TeehkLTlaSSVK7du2Cn48cOVJp+5o1a5Sfny9JGjlyZKXt06ZN0+7duzV+/HhJUklJiRYtWhT16wCxZO369ZZxqbPeaZVkAAAAAABIFGWnraioKPi5QYMGlbZv2rQp+DktLc2yrbi4WK+++qp69OhheTFBxWOidR0gVuzJOqBEs9Ay16dXWjV7AwAAAABQGUXZadqwYUPwc8+ePStt//EWRklq1aqVZVt6eroOHz6syZMnq1mzZsGr1yoeE63rALFi1vwlqvgyXY/XpUEXd7UvEAAAAAAg5kTkYf4vv/yyrr76ap1//vmR+LqQKysr0+effy7ph6uzWrduXWmfvLy84OeKD/rPz8/XW2+9pcGDB6tv376SpPr16ysvLy94a2Q0rxMJroQky9gwHMH/jUusa0ckxJjiklKVHD+oeGf5XKt2nZWQVP+01+C8AwAAAABEpCh744039Oabb+r888/X1VdfrVGjRlW6yimavfnmm8Hnkv3qV7+qcp/i4mJJP7xF06hwWcvUqVPl8Xg0efLk4Fx8fLwk6+2c0bpOJDgczirnDcOQYVS9Dajo88wFineWv5ekzC+NGzm02nPrZDjvAAAAAKD2ikhRJkmmaWrnzp16+eWX9fLLL6tHjx4aM2aMRo4cqcaNG0cqxhlbs2aNpk6dKkn62c9+pv79+590f4ej/G7WnJwcffjhhxozZow6d+4cnA8EAlUdGtXrhFMg4LeMDcMhwzBkmqblbZhAdXZ9t0lJFbotZ91mqlfXXencOhnOO0Ta2RS5AAAAAMIrIkXZlClTNHv2bM2bN0/Hjx+XJK1fv17r16/XX/7yF/Xt21ejR4/WiBEjVLdu9NzylJ2drQceeEBer1ddu3bVE088Ue2+SUk/3D7o9XqDc6+88opM07Q8MF+SSktLLcdE8zqR4CstshQTcYl1ZRhOmWZA3hKPLZkQO1Zt+k5JzrLg2DSlKwb2PeNzh/MOkWQYDsW769kdAwAAAMBPRKQou/zyy3X55ZfL7/dr+fLlmj17tubMmaPc3Fz5/X4tXbpUS5cu1ZNPPqnBgwdr9OjRGjp0aPCWQDscOnRIEydOVF5enlq3bq0pU6YoMTGx2v2Tk5MlSX6/XwUFBcrJydEXX3yhW265xfJMM6/Xq4KCAssx0bwOEO0WL1uluArjwkCiLjr/PNvyAAAAAABiV8RuvZQkp9Op/v37q3///vrjH/+oNWvWKDMzU7Nnz9b+/ftVVlamuXPnau7cuUpKStKwYcM0atQoDRw4UE5n5G5Ryc3N1cSJE7Vv3z6lpqYqPT1dTZs2Pekx7du3D37OycnRiy++KLfbrfvvv9+y34EDB4K3OrZr1y7q1wGiWW7+cTlK8y3v772wy0X2BQIAAAAAxDTHqXcJD8Mw1Lt3b/32t7/VvHnzNG3aNN1zzz1q166dTNNUYWGhMjIydO+992rgwIF68sknI5Lr0KFDuvXWW7Vr1y61adNG7777rlJTU095XNeuXYOf09PTtXDhQt1xxx2VrtJas2ZN8HO3bt2ifh0gmn05d7GcFX6LFfsMjRjUx75AAAAAAICYZpimaZ56t8jatWuXZs2apczMTG3dulXSD8Xaj5/DJSsrS7fffrtycnLUuXNnvf3220pJSTmtY/1+vwYMGKD8/HxJUuPGjZWZmak6depY9rv33nv1zTffKDExUcuWLZPb7Y7qdSKhrLig0jPKHA6nAgE/z4pCtQKBgF5+barcrvJzx9Wwte6+aexZrcd5h0jiGWUAAABAdLLtirKTadOmjbp27aouXbpE7AHz27dv10033aScnBz1799fH3zwwWmXZNIPt5XedNNNwfGECRMqlVJLlizR/PnzJUnjx4+vspSKtnWAaPXNsnWWkswfkEZdMdDGRAAAAACAWBfRZ5SdTFlZmRYuXKhZs2Zp/vz5wQfM/3jBW/369cP23WvXrtU999yj48ePa+TIkXrqqacUFxcXfBvkTxmGUeWLBu68805lZGQoOztbH3zwgVq1aqV+/fopEAgoMzNTzz//vEzTVEpKiu67775q80TbOkA0Wrd+vSpWu6XO+mrVrLFteQAAAAAAsc/WWy+Li4s1f/58zZ49WwsWLFBxcbGk8nLM7Xbriiuu0JgxYzRw4EDFxcWdbLmzdtttt2nFihWnvX/btm01a9asKrft2rVLkyZNUk5OTpXbU1JSNGXKFHXv3v2k3xFt64QTt17iTO3NOqAvP58mwyif63rxEA3uc/bP2eO8QyRx6yUAAAAQnSJ+RZnH49G8efM0a9YsLV68OHjV1o/lWHx8vAYNGqTRo0friiuuUGJiYqQjntLJ3g7ZoUMHZWRkKD09XbNnz1ZWVpZM01TLli01dOhQTZgwodID9WNhHSCazFyw1FKSebwuDezN2y4BAAAAAOcmIleUHTt2THPmzNHs2bO1dOlS+Xw+SeXlmNPpVL9+/TR69GgNHz5cdevWDXckRBGuKMOZKC0r0+tv/l0JzvJfXfWad9Rt1w0/p3U57xBJXFEGAAAARKeIXFE2YMAABQI/FCE/lmOGYahXr14aPXq0Ro4cyVVNAE7LV98ss5RkZX7p6qEDbEwEAAAAAKgpIlKU+f3+4OcuXbpo9OjRGj16tJo3bx6JrwdQg+zasU1JzvKx4U5Rw/p1qj8AAAAAAIDTFJGirH379ho1apTGjBmjtm3bRuIrAdRA67fuUpKzzDJ3+cC+NqUBAAAAANQ0ESnKvvrqq0h8DYAabsGSFZZfWgX+BHXvVP3LNQAAAAAAOBMOuwMAwOnIP14glRy1zHXs1MWmNAAAAACAmoiiDEBM+HLeErkq/MYq9hkaNeQS+wIBAAAAAGocijIAUS8QCOhQ9m7LXJ1GLZUQH2dTIgAAAABATRSRZ5Sdi+PHj2v79u2SpD59+ticBoAdFq7aKLer/O25AVMadfkAGxMBAAAAAGqiqC/K1q5dq3vvvVcOh0NbtmyxOw4AG6xes1aJFcbFRl21TW1qWx4AAAAAQM0UM7demqZpdwQANtiTdUDxAY9lrlePHjalAQAAAADUZDFTlAGonb6et0gOo3xc6HXq8n4UZQAAAACA0KMoAxC1CjyF8hYcssyltrlADge/ugAAAAAAoReyZ5SVlJTIMAwlJCRU2jZjxoyzXnfbtm3nkApALPssc5HinOXjUp90zZU8xB8AAAAAEB4hKco++ugjPf300zIMQ0888YRuuOEGy/bf/va3MgyjmqMBoDK/P6BD2bvkrvBbKqFBS9VNctsXCgAAAABQo4Xk/qVXXnlFPp9PXq9XL7/8crX7maZ5Vv8AqH0yF6+W2xUIjv0BacywgTYmAgAAAADUdCG5oqxevXo6ceKETNNU/fr1q93v9ttvV+fOnc9o7W3btik9Pf1cIwKIMZs2rldShSq/zFlf57Vsal8gAAAAAECNF5Ki7Pnnn9dzzz0nwzD0m9/8ptr9+vfvryFDhpzR2vPnz6coA2qZDdt2K8lRYpkb0O8Sm9IAAAAAAGqLkBRlvXr10r/+9a9QLAUA+mbRUsVVGBf44tWv55ldjQoAAAAAwJkKyTPKACBUDufmy1Gab5nr2Pkim9IAAAAAAGoTijIAUeXzOQvlrPCbqchnaPRl3HYJAAAAAAi/kNx6eSo///nPZRiGWrZsecbHNmzYUH369AlDKgDRprSsTCdys5TgLJ9r2LSN4uPiqj8IAAAAAIAQMUzTNO0OgdqtrLhAphkIjuMS68rhcCoQ8Mtb4rExGSJt+swFOrhnY3Ds9Us33/wLNUmu/m26ocJ5h0gyDIfi3fXsjgEAAADgJ7j1EkBUME1Tu3dus865G0ekJAMAAAAAQKIoAxAllqzZrCSnNzg2TWnYoP42JgIAAAAA1DYUZQCiwvKVqyzjQjNJXTu2sSkNAAAAAKA2oigDYLs9WQcUH7A+FyytZ097wgAAAAAAai2KMgC2+/qbRXIY5WOP16kr+vW0LQ8AAAAAoHaK+qLMNE19/fXXdscAECaeomKVnThkmUttc4Gczqj/9QQAAAAAqGFcdgc4Ga/Xq/Hjx2vHjh2qV6+eBg4caHckACH25bwlineWj0v90jXDBtgXCAAAAABQa0Xkko2bb75Zv/vd77Rnz54zOi4uLk6NGzeWaZr68ssvw5QOgF1M01TW3h2WOVfdZqpXx21TIgAAAABAbRaRomzNmjX69NNPtW/fvjM+9seryNatWxfiVADstnTNZiU5fcFxwJRGDOlvYyIAAAAAQG0W9Q8BatGihSTp4MGDNicBEGrLVq22jIuUpI7tUm1KAwAAAACo7aK+KCspKZEkBQIBm5MACKXsg0cU7y+wzPXs1sOmNAAAAAAAxEBR9uMtl02bNrU3CICQ+mreYjmM8nGh16Gh/dPsCwQAAAAAqPWitigzTVMzZszQ9OnTZRiGLrnkErsjAQiR0jKvCvNyLHNNWraT0xm1v5IAAAAAALWAK9QLLl++XL/73e+q3Pb73/9eCQkJp1zDNE0dOXJEPp9PpmkqLi5Ot99+e6ijArDJ1/OXK8FpBsdev3T1sIE2JgIAAAAAIAxFWaNGjZSTkyPDMGSa5X8RNk1Tubm5Z7yey+XSn//8Z3Xs2DGUMQHYaOf2LUpylo/NxMZq3LCefYEAAAAAAFAYirKWLVuqZcuWlrn9+/fLMAwlJyef1hVlhmGoQYMG6t69u2677TZ16NAh1DEB2GTt5p1KcpZZ5i4f0M+mNAAAAAAAlAt5UVa3bl3NmzfPMte5c2dJ0jPPPKMhQ4aE+isBxJBvly5XXIWxx5+gHhe2sy0PAAAAAAA/4snZACImN++4HKX5lrlOnS+yKQ0AAAAAAFYUZQAi5ou5i1TxxZbFPkMjh/SxLxAAAAAAABWE/NbLqvz4zLLExMRIfB2AKOTz+ZV38HslVvitUy+lteLj4qo/CAAAAACACIpIUfbTZ5YBqH3mLFmtRFcgOPYFpGuHDrQxEQAAAAAAVtx6CSAiNm/aaBl7XQ3UsmmyTWkAAAAAAKiMogxA2G3blSW3UWyZ69/3YpvSAAAAAABQNYoyAGGX+e1iy9jji1O/Hp1tSgMAAAAAQNUoygCEVW7ecZlFuZa5Nu07yTAMmxIBAAAAAFC1qC/K1qxZo6eeekrLli2zOwqAs/BZ5gK5KvymKfYZumbYpfYFAgAAAACgGhF562VFHo9H69ev19GjRxUIBKrdzzRNHT58WO+//75yc3O1bNkyffHFFxFMCuBcFZeU6sSRLCU4y+fqpbSWOyHBvlAAAAAAAFQjYkWZ3+/XX//6V73//vvyer2nfZxpmpKk2267LVzRAITJ53MXK8FpBsdev/SzEUNsTAQAAAAAQPUiVpRNnjxZs2bNChZfp6tBgwaaNGmSbrjhhjAlAxAOgUBAWXu+k7vC1WRKSlGT5Aa2ZQIAAAAA4GQiUpTNnz9fM2fOlGEYatGihcaPH68WLVpo+/btSk9Pl2EYeuaZZyzHbN68We+//75SU1M1fvz4SMQEEELzlq6R2+kPjgOmNPLyQTYmAgAAAADg5CJSlH366aeSpLp16+qTTz5R48aNJf1QoKWnp0uSrrvuOssx1113nRo2bKj/+7//0wMPPKAPP/wwElEBhMi6deuUVPEh/kZddWyXal8gAAAAAABOISJvvdy4caMMw9DVV18dLMkkyTCMkx53//33q127dlq7dq0+//zzcMcEECLrtuxUkqPEMtf/kktsSgMAAAAAwOmJSFF29OhRSdKFF15omY+Pjw9+Lisrq3Scw+HQ2LFjZZqmMjIywhsSQMjMX7TUMi7wxat/rwur2RsAAAAAgOgQkaLM7//hOUXJycmW+Tp16gQ/5+XlVXls27ZtJUlbt24NTzgAIZW1/7BcvuOWuc4Xdj3lFaQAAAAAANgtIkVZgwY/vOWuqKjIMn/eeecFP2/atKnKY0+cOCFJOn78eJXbAUSXL+Z8K0eFTqzQ69Doy/vaFwgAAAAAgNMUkaKsdevWkqTvv//eMt+wYUOlpv7wcO8PPvigymMXLlwoqbxsAxC9jhcUquzEQctcs9Yd5HI6bUoEAAAAAMDpi0hR1q1bN5mmqbVr11baNnz4cJmmqWXLlumxxx7TwYM//CX76NGjevnll5WZmSnDMNSrV69IRAVwDj6b/a3iKnRipT7p2isH2xcIAAAAAIAz4IrElwwYMEDvvfee1qxZo0AgIIejvJ+788479a9//UvFxcXKyMhQRkaGXC6XfD5fcB/DMHT77bdHIiqAs1Tm9Sp3/x4lVvitktiwperXddsXCgAAAACAMxCRK8oGDBigu+++Wx999JGlJJOklJQUvfjii3K5XDJNU6Zpyuv1Bj8bhqFHH31UvXv3jkRUAGfp6/nLlegKBMe+gHT18CE2JgIAAAAA4MwYpmmadoeQpO3bt2vq1KlasWKFjh07pgYNGqh37966/fbbKclquLLiAplmecESl1hXDodTgYBf3hKPjclwukzT1F9fe1NJTm9wrsTVSL+edIuNqc4M5x0iyTAcinfXszsGAAAAgJ+IyK2Xp6Njx4566aWX7I4B4CwsWr3JUpJJ0rDBA2xKAwAAAADA2YnIrZcAarYVK1dZxp5Akrp3amtPGAAAAAAAzhJFGYBzsmNvjhLNQstcr7Q0m9IAAAAAAHD2KMoAnJPZ8xfLMMrHHq9LV/TrYV8gAAAAAADOEkUZgLN27IRHvsLDlrnW7TpWerstAAAAAACxIOr/NmuaphYvXqwjR47YHQXAT2RkLlRchd8iJT5DY4fxEH8AAAAAQGyK+qLsF7/4he666y79+9//tjsKgAp8Pr9y9++xzCU1aqkkd4JNiQAAAAAAODdRX5T17NlTpmlq4cKFdkcBUMHMb5cr0RUIjv0BacyVg21MBAAAAADAuYn6oqxDhw6SpN27d9ucBEBF27Zutoy9cQ3Vqlljm9IAAAAAAHDuor4oi4+PlyQVFhbanATAj1Zt+k5JjlLL3JABfW1KAwAAAABAaER9UbZ58w9XrdStW9fmJAB+tHDJCsvY409Q74susCkNAAAAAACh4bI7QHVKSkq0cOFCffzxxzIMQz179rQ7EgBJ2QePKM53XDLK57pc1N2+QAAAAAAAhEhIirL58+frvvvuC8VSlZimKcMw9Itf/CIs6wM4M1/MWShHhZKs0OvQVYMvti8QAAAAAAAhErIrykzTDNVSlfzqV79S//79w7Y+gNNTWFyskmP7Fe8sn2ua2l4up7P6gwAAAAAAiBEhvfXSMAxdfHForixJTExUmzZtNHbsWHXr1i0kawI4NxlzFltKsjK/dPOVg+wLBAAAAABACIX8GWXvvfdeqJe0xYEDB/Tss89q5syZkqR3331Xffue/K1+06dP1+OPP35a699xxx167LHHTrqPx+NRenq6MjMzlZWVpUAgoNTUVA0dOlS33367kpOTT+u7QrUOardAIKD9e3fIXeG3hrNuMzWsX8e+UAAAAAAAhFDUPszfLmVlZXrnnXc0depUFRUVhe17LrroopNu37VrlyZNmqScnBzL/I4dO7Rjxw598sknmjJlirp3P/lD1EO1DjBv6Tq5Xf7gOGBKo64YaGMiAAAAAABCi6KsgoULF+qpp57S3r17JUnNmzfXwYMHz2qtDRs2nHR7XFxctds8Ho/uvvtu5eTkKC4uTg8//LDGjBmjxMRErVq1Ss8995z27dun++67TzNmzFCTJk3Cug4gSevXr5W7wkP8S4y66nBeC/sCAQAAAAAQYg67A0QDn8+nBx98UHfddZf27t2rJk2a6LnnntNzzz131msmJCSc9B+Ho/p/9W+//bays7MlSc8//7zuuusuNW/eXA0bNtSwYcP0wAMPSJJyc3P1+uuvh30dYMuOvXIbxZa5fpf0sSkNAAAAAADhQVEmyeVyqX79+oqLi9OkSZM0a9YsXXvttTIM49QHh5jf79dHH30kSUpLS9OoUaMqbX/jjTeC4+nTp6u42FpghHIdQJIyFyy2jD2+OA3o1cWmNAAAAAAAhEdIirJBgwZp5cqVWrFiRSiWs8Vjjz2mr776So888ojq1LHv4eRr1qxRfn6+JGnkyJGVtk+bNk27d+/W+PHjJUklJSVatGhR2NYBsg8ekaM03zJ3fscuthTJAAAAAACEU0iKMqfTqXr16qlevXqhWM4WDRo00HnnnReWtQOBwGnvu2nTpuDntLQ0y7bi4mK9+uqr6tGjhx566KEqjwn1OsDnmQvkrPCbosjr0Jgr+tkXCAAAAACAMOFh/mGSkZGhGTNmaPv27crNzZXb7VaPHj106623atiwYdUet3v37uDnVq1aWbalp6fr8OHDevHFF9WsWTO5XC75fD7LMaFeB7XbsRMelR0/qDhn+VyT1PaKP8nLKAAAAAAAiFUUZWHy6KOPWsZFRUVaunSpli5dqttuu01PPPFElcfl5eUFPzdq1Cj4OT8/X2+99ZYGDx6svn37SpLq16+vvLy84C2W4VgnElwJSZaxYTiC/xuXWNeOSPiPjOmzLCVZqc/QxLEjFZdo3+3J4cJ5BwAAAACgKAuh1NRUjRgxQnFxcerTp4/69u2r5s2bq6ysTMuWLdMLL7ygrKwsvffee+rSpYvGjRtXaY0fH6gfHx9veQbU1KlT5fF4NHny5OBcfHy8pB9KuHCtEwkOh7PKecMwZBhVb0P4lZZ5lbt/pxIr/F+Q1Pg8Naxf375QEcB5BwAAAAC1V0SKsscff/yc1zAMQ88880wI0oRP3759g1dpVeR2uzVixAh1795dY8aMkcfj0ZQpU6osyn7kcJQ/FConJ0cffvihxowZo86dOwfnT+fZZ6FaJ5wCAb9lbBgOGYYh0zRlmvZmq82mf5WpRKcZHPsC0s9GX1np/6+agvMOkVbdfyQAAAAAYJ+IFGWffvrpOb0hzzTNmCjKTqVFixa66qqr9Mknn2jfvn3KyspS69atLfskJf1wG6LX6w3OvfLKKzJN0/LgfUkqLS21HBOOdSLBV1pkKSbiEuvKMJwyzYC8JR5bMtV2gUBAu7/boKQKvyECiY3VpEFijf3/hPMOkWQYDsW7Y/cFOAAAAEBNFbFbL03TPPVOP2EYhurXr6/GjRsrOTk5DKki74ILLgh+3rdvX6Wi7Mc/p9/vV0FBgXJycvTFF1/olltusezr9XpVUFBgOSYc66B2mrN4tZJc5VeOBUxp5OWDbEwEAAAAAED4RaQomzt37hkf889//lPvvfeeOnbsqDfeeMO2q51Cze12Bz9XvNrrR+3btw9+zsnJ0Ysvvii3263777/fst+BAweCt0y2a9cubOugdtqwYZ2Syu/aVYlRV53at6r+AAAAAAAAaoCIFGWpqalnfMzvf/97SdL777+vxx9/XH/7299CHcsWR44cCX5u1qxZpe1du3YNfk5PT9fChQv1y1/+stLVXmvWrAl+7tatW9jWQe2zYv02JTlKLXMD+/ezKQ0AAAAAAJHjOPUu9nnsscfUokULzZ49W0uXLrU7TkgsWbJEklSvXr0qr+BKS0tTo0aNJEnTp09X48aNNXHixEr7zZw5U5KUmJioAQMGhG0d1D6Lli6zjD3+BPXr0bmavQEAAAAAqDmiuihzuVy64YYbZJqmpk2bZneckzJNU88++6zmzJlT7T5ff/21Vq9eLUm69tprlZiYWGkfp9Opm266KTieMGGC6tSpY9lnyZIlmj9/viRp/Pjxlts5Q70Oapcde7KVELA+yL579zSb0gAAAAAAEFkRe5j/2erYsaMkBQumcPH7/fL5fJa5is8Q83q9wbdDSpLD4VBcXFxw/Pbbb+udd97RO++8o2HDhmn8+PHq2rWrkpKStH//fmVkZOidd96RJLVp06bSmycruvPOO5WRkaHs7Gx98MEHatWqlfr166dAIKDMzEw9//zzMk1TKSkpuu+++8K+DmqPmd8slLPCC2o9XpeuHNDLvkAAAAAAAESQYZ7N6ygj6Msvv9TkyZMVFxenjRs3hu17pk+frscff/y097/uuuv07LPPBsc+n09//etf9d5771X5kP4fde/eXS+99FKlt13+1K5duzRp0iTl5ORUuT0lJUVTpkxR9+7dI7JOOJUVF8g0A8FxXGJdORxOBQJ+eUs8JzkSoXTwSJ7+/f8+lLPCdaYp53XVz0dfZlumSOK8QyQZhkPx7np2xwAAAADwE1F/RdmsWbMkSXXr1rU5ycm5XC499thjuvHGG/Xvf/9bixYt0v79+1VcXKwmTZqoY8eOGjNmjK666iq5XKf+196hQwdlZGQoPT1ds2fPVlZWlkzTVMuWLTV06FBNmDCh0oP5w7kOar6MzAWWkqzYZ2jslTy3DgAAAABQe0TkirKVK1ee0f5+v1+HDh3SzJkz9c0338gwDF122WWaMmVKmBLCTlxRZj9PYbHeeudtxTvL5xIbt9cdPx9lX6gI47xDJHFFGQAAABCdInJF2W233SbDME69YzUcDofuvPPOECYCUNGM2QssJVmZX7rpqsH2BQIAAAAAwAYRu/XybC9ca9Cggf7whz/o4osvDnEiAJJU5vXqcPZuJVb4bRBXr7ka1Y/u250BAAAAAAi1iBRlDz744Bkfk5SUpHbt2unSSy9VYmJiGFIBkKQv5y1Voqv81ld/QLp2+BAbEwEAAAAAYI+oLcoAhF8gENCuHVuUVOG2S198I7Vu0cS+UAAAAAAA2MRx6l0A1FQLlq9XktMXHJumdOWQgTYmAgAAAADAPhRlQC22eu0ay7hIddS1Yxub0gAAAAAAYC+KMqCWWrN5h5KMYsvcpX0vsSkNAAAAAAD2i9hbLyVp8+bN2rJli/Lz81VWVnbGx/OsMyB0FixeqoQK4wJfvAb06mJbHgAAAAAA7BaRouzAgQN68MEHtWXLlnNah6IMCI1d+w4ozndCMsrnLuraQ4ZhVH8QAAAAAAA1XESKsieffFKbN2+OxFcBOA1fz/1WjgqdWKHXqZGD+9gXCAAAAACAKBCRomz58uUyDEMjRozQI488oqZNmyo+Pj4SXw3gJw4fPaZA0RE5KjyhsFW7TnI6eWQhAAAAAKB2i8jfjOvUqSNJGj58uFq1akVJBtjos9nz5arwk1/sM3Tt8AH2BQIAAAAAIEpEpCi7/PLLZZqmli5dGomvA1ANT1GxCo/mWOYaNG0jd0JCNUcAAAAAAFB7RKQoe+SRR3TBBRdo2rRp+uqrryLxlQCq8NnshYp3msFxmV8ad9UQGxMBAAAAABA9IvKMsgYNGuidd97Rz372Mz3yyCOaOXNm8HbM02UYhp555pkwJQRqPq/Pp0NZO5VY4afeVbeZkhvUsy8UAAAAAABRxDBN0zz1budm586dmjBhgo4ePXpO62zdujVEiRBNyooLZJqB4Dgusa4cDqcCAb+8JR4bk9UsGZmLlb1zbXDsD0jXXPtztUltamOq6MF5h0gyDIfi3ZTUAAAAQLSJyBVlTz/9tHJzcyPxVQCqEAgEtP27TUpyls954xpSkgEAAAAAUEFEirJ169bJMAyNGDFCjzzyiJo2bcqbL4EIWrhyo5Kc3uDYNKVhQ3jTJQAAAAAAFUXkYf4NGjSQJA0fPlytWrWiJAMibNXqVZZxoZmk7p3a2ZQGAAAAAIDoFJGibMyYMTJNU8uXL4/E1wGoYMO23XIbxZa5vn0utikNAAAAAADRKyJF2a9+9Sv169dPn3zyib7++utIfCWA/5i3cLFlXOCL0+A+3WxKAwAAAABA9IrIM8pWrFiha6+9Vnv37tXkyZP19ddfq06dOme0hmEYeuaZZ8KUEKiZvt9/SC7vcckon+t8YTcZhlH9QQAAAAAA1FKGaZpmuL+kc+fOwb+Ym6Z5xn9J//GYrVu3hiMebFZWXCDTDATHcYl15XA4FQj45S3x2Jgs9r2e/m+p6FBwXOh16L8euEcup/MkR9VOnHeIJMNwKN5dz+4YAAAAAH4iIleUtWzZMhJfA6CCvOMF8noOKa7CDdbNW59PSQYAAAAAQDUiUpTNmzcvEl8DoIIZsxZYSrISn6FfjBhkXyAAAAAAAKJcRB7mDyCySsvKdPzw95a5OsmpqpvktikRAAAAAADRj6IMqIE+y1ykBGf54we9AenaEZfZFwgAAAAAgBhAUQbUMIFAQFm7v7NOulPULKWhLXkAAAAAAIgVEXlG2f79+0OyDi8FAE5t9qJVcrv8wXHAlEYOHWxjIgAAAAAAYkNEirIrrrhChmGc0xqGYWjLli0hSgTUXJs2rldSxYf4O+qpYxtKZgAAAAAATiUiRZkkmaZ56p0AnJMV67cqyVFqmRvc/1Kb0gAAAAAAEFsiUpRdd911Z3zMvHnzdOLECQ0ZMkTXXHONkpOTw5AMqFkWLV2uxApjjz9Rl3TvaFseAAAAAABiSUSKsr/85S9nfExWVpZ+8YtfaNGiRbrhhhvUr1+/MCQDao7te7KVEPBIFe5y7t6jp215AAAAAACINVH71svWrVvr1VdflWmaeuKJJ3T8+HG7IwFRbeY3C1XxUYAer0tX9u9lXyAAAAAAAGJM1BZlktS1a1cNHz5ceXl5+te//mV3HCBq5R0rkFF81DLXtkNnOZ1R/SMOAAAAAEBUifq/RQ8ZMkSmaWr27Nl2RwGi1swFS1WxEyv2GRp75QD7AgEAAAAAEIOivihr1KiRJOn777+3OQkQvfZn7bGM6zRKVUJ8nE1pAAAAAACITVFflO3atUuS5PV6bU4CRKcN23YryVn+82Ga0rBBfW1MBAAAAABAbIrqomzz5s16++23ZRiGWrdubXccICotXLbKMi4MJOr8Ni1sSgMAAAAAQOxyReJLfvGLX5zR/oFAQIcOHVJ2drZM05RhGBo+fHiY0gGxq7SsTF7PEcU7y+fad+hoXyAAAAAAAGJYRIqyFStWyDCMMz7ONE1JUpcuXXTXXXeFOhYQ8zIXrlK80wyOy/zSVUP62JgIAAAAAIDYFZGiTCovvU6X2+1Wu3btdNVVV+n2229XQkJCmJIBseu77dvkrjiR2Fh1k9zV7Q4AAAAAAE4iIkXZtm3bIvE1QK2SffCIEswiqcLFmv36pNkXCAAAAACAGBfVD/MHUL3ZC5bJUaEk83hd6tu9k32BAAAAAACIcRRlQAwKBALKP5xtmWvS4ryzehYgAAAAAAD4AUUZEIOWrt0it8sfHPsD0lWX9bMxEQAAAAAAsS9sRVlubm5I1vnoo4/k9/tPvSNQi6xau94yLnHUVYsmyTalAQAAAACgZghLUfbee+9p3Lhx5/QQ/7KyMt199936n//5H/3f//1fCNMBsa3AUyijNN8y17VLF5vSAAAAAABQc4S8KPN4PPrb3/6mI0eO6Pnnnz/rdeLj4xUXFyfTNPXPf/5TeXl5IUwJxK6vFyyXq8JPbonP0ND+vewLBAAAAABADRHyomzGjBnyeDxyOBx64oknzmmt3/3ud4qPj1dJSYk+//zzECUEYtu+PTst44QGzRUf57IpDQAAAAAANUfIi7LFixdLkvr376/27duf01qpqakaNGiQTNPUwoULQxEPiGlbd+1TkrPMMndZ/z42pQEAAAAAoGYJeVH23XffyTAMXXrppSFZr2/fvpKk3bt3h2Q9IJbNX7LSMvb44nXR+efZlAYAAAAAgJol5EXZsWPHJEktW7YMyXopKSmSpPz8/FPsCdRsXp9PJccPWuZatz3fpjQAAAAAANQ8IS/Kysp+uC3M6/WGZD3TNCVJfr8/JOsBsWre0rVKcJrBsdcvjRzS18ZEAAAAAADULCEvyho1aiRJys7ODsl6OTk5kqTk5OSQrAfEqs2bN1vG/viGali/jk1pAAAAAACoeUJelF144YUyTVNz5swJyXoLFiyQYRjq3LlzSNYDYtH+Q0cVH/BY5i7u1dOeMAAAAAAA1FAhL8quuOIKSdKWLVu0atWqc1pr8+bNWr16tWVdoDb6ev4SOYzycaHXoYG9utgXCAAAAACAGijkRdk111yjhg0bSpJ+85vf6ODBgyc/oBp5eXl65JFHJEkNGzbU1VdfHaqIQEzx+fw6fjjLMte4eRs5HCH/8QUAAAAAoFYL+d+0k5KS9Nhjj8k0TR04cEDjx4/X119/fUZrzJs3T+PGjdOePXtkGIYeffRRud3uUEcFYsL85WuV6AoEx76ANPqKATYmAgAAAACgZnKFY9HrrrtOmzdv1vvvv6+8vDz9+te/1iuvvKIRI0aoe/fuat26tRo2bKi4uDh5vV4dP35c2dnZ2rBhgzIzM7V79+7g2y5vueUWjRs3LhwxgZiwfsNGVayJva76apbS0K44AAAAAADUWGEpyiTpiSeeUEpKil599VX5/X7t27dPf//730/rWNM05XQ69eCDD+q+++4LV0Qg6mUdOKIEs1Cq8HyyPr3S7AsEAAAAAEANFtaHHN17772aPn26LrvsMhmGIdM0T/mPYRi67LLLNH36dEoy1Hoz5y+2PMTf43VqYO+L7AsEAAAAAEANFrYryn7UqVMnTZ06VQcPHtSCBQu0YcMGff/99zp27JhKS0uVkJCghg0bqk2bNurRo4cGDRqkFi1ahDsWEPV8Pr8KcnOUWOGntFlqOx7iDwAAAABAmBjmjw8DA2xSVlwg0yx/WH1cYl05HE4FAn55Szw2JrPXzAXLtXvLyuDYG5BuufkXSmlU38ZUNRfnHSLJMByKd9ezOwYAAACAn+DSFCBKbd6y2TL2xzWkJAMAAAAAIIwoyoAotDfrgBLNIstcv4t72ZQGAAAAAIDagaIMiEKzvl0qw/IQf5cuTbvQvkAAAAAAANQCFGVAlCnzelWUf8Ay16J1exkVmzMAAAAAABByFGVAlMlcuEoJzvJ3bHj90pih/W1MBAAAAABA7UBRBkSZrdu2WMaBhGQ1ql/XpjQAAAAAANQeFGVAFNmxN0dJRrFlbkDfi21KAwAAAABA7UJRBkSROQuXWsYeX5z6dLvApjQAAAAAANQuFGVAlCgtK1Pp8UOWuVZtzuch/gAAAAAARAhFGRAlZi5YofgKD/Ev80ujr7jUxkQAAAAAANQuFGVAlNixfatlbLgbq0HdJJvSAAAAAABQ+1CUAVFgw3e7leQotcwNuvQSm9IAAAAAAFA7UZQBUWD+omWWsccXr15dOtiUBgAAAACA2omiDLBZ3rETUkmeZe78ThfalAYAAAAAgNrLZXeAaHXgwAE9++yzmjlzpiTp3XffVd++fU/rWI/Ho/T0dGVmZiorK0uBQECpqakaOnSobr/9diUnJ8fkOgiPjDmL5KpQWRf7DI2+rJ99gQAAAAAAqKUM0zTNU+9We5SVlemdd97R1KlTVVRUFJw/3aJs165dmjRpknJycqrcnpKSoilTpqh79+4xtU44lRUXyDQDwXFcYl05HE4FAn55Szy25YoEn8+vv015Q25X+Z/f2aC17rl5rI2paqfadN7BfobhULy7nt0xAAAAAPwEt15WsHDhQl199dV66aWXVFRUpObNm5/R8R6PR3fffbdycnIUFxenRx99VAsWLNDy5cv12muv6bzzzlNubq7uu+8+HTlyJGbWQfhkLl5lKcn8AenqoYNsTAQAAAAAQO1FUSbJ5/PpwQcf1F133aW9e/eqSZMmeu655/Tcc8+d0Tpvv/22srOzJUnPP/+87rrrLjVv3lwNGzbUsGHD9MADD0iScnNz9frrr8fMOgifzZs2WsZlrgZq2YxbYQEAAAAAsANFmSSXy6X69esrLi5OkyZN0qxZs3TttdfKMIzTXsPv9+ujjz6SJKWlpWnUqFGVtr/xxhvB8fTp01VcXBz16yB8tuzYqyRHiWVuQL8+NqUBAAAAAAAUZf/x2GOP6auvvtIjjzyiOnXqnPHxa9asUX5+viRp5MiRlbZPmzZNu3fv1vjx4yVJJSUlWrRoUdSvg/CZu3CZZezxxalfj842pQEAAAAAABRl/9GgQQOdd955Z338pk2bgp/T0tIs24qLi/Xqq6+qR48eeuihh6o8JlrXQXjkH/fILM61zLU7/0Kb0gAAAAAAAEly2R2gpti9e3fwc6tWrSzb0tPTdfjwYb344otq1qyZXC6XfD6f5ZhoXScSXAlJlrFhOIL/G5dY145IYffljEy5KtTUJT5D140cqrjEBPtC1XK14bwDAAAAAJwcRVmI5OXlBT83atQo+Dk/P19vvfWWBg8erL59+0qS6tevr7y8vOCtkdG8TiQ4HM4q5w3DkGFUvS2WBQIBHcraKXeFn746jc9TnaSk6g9CxNTU8w4AAAAAcGoUZSHy44Pw4+PjLS8BmDp1qjwejyZPnhyci4+PlyQVFRVF/TqREAj4LWPDcMgwDJmmKdMM2JIpnGZ+s0RuV/mf2R+Qrrvqikr/HhBZNf28Q/Sp7j8SAAAAALAPRVmIORzl99Pl5OToww8/1JgxY9S5c/lD2gOBU/8lPNrWCSdfaZGlmIhLrCvDcMo0A/KWeGxMFh7r1q6Uu8ILVUud9dUiuU6N/LPGkpp+3iG6GIZD8e56dscAAAAA8BM8zD9Ekv5z25zX6w3OvfLKKzJN0/LAfEkqLS21HBPN6yC0tu3Oktsotsz169PbpjQAAAAAAKAirigLkeTkZEmS3+9XQUGBcnJy9MUXX+iWW25R69atg/t5vV4VFBRYjonmdRBacxYssbTTHl+cBvTqYlseAAAAAABQjivKQqR9+/bBzzk5OXrxxRfldrt1//33W/Y7cOBA8FbHdu3aRf06CJ3jBYUKFB2xzLVp39HyDDkAAAAAAGAfirIQ6dq1a/Bzenq6Fi5cqDvuuKPSVVpr1qwJfu7WrVvUr4PQ+XzuIrkq/MSV+AxdfUV/+wIBAAAAAAALirIQSUtLU6NGjSRJ06dPV+PGjTVx4sRK+82cOVOSlJiYqAEDBkT9OggN0zR1MHuPZS6xQQsluRNsSgQAAAAAAH6KoixEnE6nbrrppuB4woQJqlOnjmWfJUuWaP78+ZKk8ePHy+12R/06CI21W3YqyekLjgOmNHIoxSQAAAAAANGEouw//H6/SktLLf9UfGOk1+utdtuP7rzzTrVq1UqS9MEHH+irr75SXl6ecnNz9dFHH+mBBx6QaZpKSUnRfffdV22WaFsH527JyjWWcZHpVrvUZjalAQAAAAAAVTFM0zTtDhENpk+frscff/y097/uuuv07LPPVprftWuXJk2apJycnCqPS0lJ0ZQpU9S9e/eTrh9t64RTWXGBTDMQHMcl1pXD4VQg4Je3xGNbrlApLfNqyptvKt5Z/qPWvH0PjRsxyMZU+Kmadt4huhmGQ/HuenbHAAAAAPATLrsD1DQdOnRQRkaG0tPTNXv2bGVlZck0TbVs2VJDhw7VhAkTKj1QPxbWwdmbu3i1pSQr80sjBvexMREAAAAAAKgKV5TBdjX9irK/TnlHbhUGx6Vxyfqvu262MRGqUtPOO0Q3rigDAAAAohPPKAPC6HBuvhLMQsvcJWk9bEoDAAAAAABOhqIMCKOZ3y6TwygfF3odujTtQvsCAQAAAACAalGUAWF0eP/3lnGDJq3kcPBjBwAAAABANOJv7ECYbNi2W0lOX3AcMKVhAy+xMREAAAAAADgZijIgTBYtX20ZFwUS1b51c5vSAAAAAACAU6EoA8KgzOtVacFhy1y7DhfYlAYAAAAAAJwOijIgDOYtXacEpxkcl/mlqwZz2yUAAAAAANGMogwIgy1bNlvGgYRGqlfHbVMaAAAAAABwOijKgBDLzTuuuIDHMndxj+42pQEAAAAAAKeLogwIsVnfLpfTKB8XeR0a0Psi+wIBAAAAAIDTQlEGhNiB7D2Wcb3GLeV08qMGAAAAAEC042/vQAht3rFXSU5vcGya0hUDeYg/AAAAAACxgKIMCKFvl66yjAsDCbqgTUub0gAAAAAAgDNBUQaEiM/nV8nxQ5a5Nm3PtykNAAAAAAA4UxRlQIjMX75OCS4zOPb6pRFDuO0SAAAAAIBYQVEGhMjGTZstY198AzWsV8emNAAAAAAA4ExRlAEhcMJTKKfvhGUurVs3m9IAAAAAAICzQVEGhMDshSvlqvDTVOwzNPgSijIAAAAAAGIJRRkQAnv37LKME+o1k8vptCkNAAAAAAA4GxRlwDk6cOSoElVsmbu0T5pNaQAAAAAAwNmiKAPOUebCFXIY5WOP16leXdrbFwgAAAAAAJwVijLgHB3ev88ybtS0lQzDqGZvAAAAAAAQrSjKgHOwbXeWkpze4Ng0paH9L7YxEQAAAAAAOFsUZcA5+HbZKsu40J+g9ue1sCkNAAAAAAA4FxRlwFkKBAIqOHrAMpd6Xlt7wgAAAAAAgHNGUQacpZUbvpPbFQiO/QFp+KBLbEwEAAAAAADOBUUZcJZWrN1gGZcYddQkuYFNaQAAAAAAwLmiKAPOQpnXK39hrmXuggs62pQGAAAAAACEAkUZcBbmL1uveKcZHJf5peEDedslAAAAAACxjKIMOAubt26xjAPxDZXkTrApDQAAAAAACAWKMuAMeQqL5fSesMz16HqRTWkAAAAAAECoUJQBZ2j2wpVyVfjJKfYZGtK3u32BAAAAAABASFCUAWdo9+4dlnF8vaZyOZ02pQEAAAAAAKFCUQacgYNH8pSoYsvcpb172hMGAAAAAACEFEUZcAbmLFoph1E+LvQ61bvr+fYFAgAAAAAAIUNRBpyBgzl7LeMGTVJlGEbVOwMAAAAAgJhCUQacph17spXk9Frmrujfx6Y0AAAAAAAg1CjKgNP0zdJVlrHHF6/z27SwKQ0AAAAAAAg1ijLgNPh8fnmO7rfMtWjV1p4wAAAAAAAgLCjKgNOwcOUGJboCwbEvII28rJ+NiQAAAAAAQKhRlAGnYd2GjZZxmbO+UhrVtykNAAAAAAAIB4oy4BSOHjsul++EZS6tezeb0gAAAAAAgHChKANO4etvlslZ4SelyOvQZX172BcIAAAAAACEBUUZcAoHc/ZYxvUat5TTyY8OAAAAAAA1DX/bB05i7ZadSnL6guOAKV05mIf4AwAAAABQE1GUASexaPlqy7go4Fb71s1tSgMAAAAAAMKJogyoRnFJqfyFRyxz53fsaFMaAAAAAAAQbhRlQDVmfbtS8c7ycalPumrwJfYFAgAAAAAAYUVRBlRj545tlrGzToqSEhNsSgMAAAAAAMKNogyowp6sA0pylFjmBvS92KY0AAAAAAAgEijKgCpkLlxuGXt8LvW+6Hyb0gAAAAAAgEigKAN+wufzy3N0v2WuRWp7m9IAAAAAAIBIoSgDfuLblRuU6AoEx76ANPLyfjYmAgAAAAAAkUBRBvzE+g0bLWOvs75SGtW3KQ0AAAAAAIgUijKggqPHjsvlO2GZ69m9m01pAAAAAABAJFGUARV8/c0yOSv8VBR5Hbqsbw/7AgEAAAAAgIihKAMqOJizxzKu17ilnE5+TAAAAAAAqA1oAID/WLt5p5KcvuA4YEpXDuYh/gAAAAAA1BYUZcB/LFm5xjIuCrjVvnVzm9IAAAAAAIBIoygDJPl8fpUVHLHMdTj/ApvSAAAAAAAAO1CUAZIWr9mkBJcZHHv90pUD+9iYCAAAAAAARBpFGSBp3YbNlrHPVV/167ptSgMAAAAAAOxAUYZar7SsTGZJnmXuws6dbUoDAAAAAADsQlGGWu+bZesU7ywfl/qlKy7taVseAAAAAABgD4oy1Hpbt22zTiQkKzEh3p4wAAAAAADANhRlqNU8hcVyek9Y5np2u8imNAAAAAAAwE4UZajV5ixeJVeFn4Jin6FBfbraFwgAAAAAANiGogy12q5dOy3j+LpN5HI6q9kbAAAAAADUZBRlqLWOHjuu+EChZa5PWneb0gAAAAAAALtRlKHWmrNolZwVfgIKvQ5d0r2jfYEAAAAAAICtKMpQa2V9v8cyrpvcQg4HPxIAAAAAANRWtAKolXIO5sptlFjmBl6SZlMaAAAAAAAQDSjKUCvNXbJShlE+9vhc6taxrW15AAAAAACA/SjKUCsd3r/PMk5ummpTEgAAAAAAEC0oylDr7NiboySnNzg2TenySy+2MREAAAAAAIgGFGWodRYsW20ZF/rj1eG8FjalAQAAAAAA0YKiDLWKaZo6diTHMtc8tY1NaQAAAAAAQDRx2R2gJpk+fboef/zx09r3jjvu0GOPPVbtdo/Ho/T0dGVmZiorK0uBQECpqakaOnSobr/9diUnJ5/W94RqnZpi43d7lOTyB8cBU7pyYB8bEwEAAAAAgGhBUWaTiy66qNptu3bt0qRJk5STY73yaceOHdqxY4c++eQTTZkyRd27dz/pd4RqnZpkycq1lnFRwK0WTWtXWQgAAAAAAKpGURYmGzZsOOn2uLi4Kuc9Ho/uvvtu5eTkKC4uTg8//LDGjBmjxMRErVq1Ss8995z27dun++67TzNmzFCTJk3Cuk5NEggEVHjskNwVzvo27drbFwgAAAAAAEQVnlEWJgkJCSf9x+Go+l/922+/rezsbEnS888/r7vuukvNmzdXw4YNNWzYMD3wwAOSpNzcXL3++uvVfn+o1qlJVmzYJrcrEBz7AtKVA3nbJQAAAAAA+AFFWRTx+/366KOPJElpaWkaNWpUpe1vvPFGcDx9+nQVFxeHbZ2aZt3GrZZxqaOukhvUsykNAAAAAACINhRlUWTNmjXKz8+XJI0cObLS9mnTpmn37t0aP368JKmkpESLFi0K2zo1jefYEcu4bZu29gQBAAAAAABRiaIsAgKBwKl3krRp06bg57S0NMu24uJivfrqq+rRo4ceeuihKo8J9To1SdaBI0py+YLjgCkN7NPDxkQAAAAAACDa8DD/MMnIyNCMGTO0fft25ebmyu12q0ePHrr11ls1bNiwKo/ZvXt38HOrVq0s29LT03X48GG9+OKLatasmVwul3w+n+WYUK9TkyxeZX25QpE/Ti2aNLIpDQAAAAAAiEYUZWHy6KOPWsZFRUVaunSpli5dqttuu01PPPFEpWPy8vKCnxs1Ki9x8vPz9dZbb2nw4MHq27evJKl+/frKy8sL3mIZjnUixZWQZBkbhiP4v3GJdUPyHftzspVYYdwwpWXI1kbNEI7zDgAAAAAQWyjKQig1NVUjRoxQXFyc+vTpo759+6p58+YqKyvTsmXL9MILLygrK0vvvfeeunTponHjxlmO//GB+vHx8TIMIzg/depUeTweTZ48OTgXHx8v6YcC7qdCtU6kOBzOKucNw5BhVL3tTJSUlsnpL7DcaNy7Z/dqvxe1W6jOOwAAAABA7KEoC6G+ffsGr9SqyO12a8SIEerevbvGjBkjj8ejKVOmVCrKfuRwlDc6OTk5+vDDDzVmzBh17tw5OH86zz0L1TrhFgj4LWPDcMgwDJmmKdM893yLVqxRXIWSrMRnqE/3Cyt9L2q3UJ93wKlQ1gMAAADRh6Isglq0aKGrrrpKn3zyifbt26esrCy1bt06uD0p6YdbEL1eb3DulVdekWmalgfvS1JpaanlmIpCtU6k+EqLLMVEXGJdGYZTphmQt8Rzzutv/OmLChIaKOAtUsBb9f6onUJ93gEnYxgOxbvr2R0DAAAAwE/w1ssIu+CCC4Kf9+3bZ9mWnJwsSfL7/SooKNC2bdv0xRdf6MYbb7QUal6vVwUFBZZjwrFOTVF0ItcybtumrT1BAAAAAABAVKMoizC32x38XPGKL0lq37598HNOTo5efPFFud1u3X///Zb9Dhw4ELxlsl27dpW+I1Tr1AS79x1Qkqv8FsuAKQ2+pLuNiQAAAAAAQLSiKIuwI0eOBD83a9bMsq1r167Bz+np6Vq4cKHuuOOOSld7rVmzJvi5W7dulb4jVOvUBEvXbLSMiwLxSmlU36Y0AAAAAAAgmlGURdiSJUskSfXq1at0FVdaWpoaNWokSZo+fboaN26siRMnVlpj5syZkqTExEQNGDCg0vZQrVMTHDiQbRk3SmlhUxIAAAAAABDtKMpCxDRNPfvss5ozZ061+3z99ddavXq1JOnaa69VYmKiZbvT6dRNN90UHE+YMEF16tSx7LNkyRLNnz9fkjR+/HjLrZyhXifWFRWXKj5QZJnr3e1Cm9IAAAAAAIBoZ5imadodoiZ466239MILL0iShg0bpvHjx6tr165KSkrS/v37lZGRoXfeeUc+n09t2rTRtGnTVK9e5TeeeTwejR07VtnZ2WrevLkee+wx9evXT4FAQJmZmXr++edVVFSklJQUzZgxQ02aNKkyT6jWiYSy4oJKb710OJwKBPzn9PbBOYtWa/vGpcFxsc/Qfz1wnxwO+mFUFqrzDjgdvPUSAAAAiE4UZSHi8/n017/+Ve+9916lh/RX1L17d7300kuWt0/+1K5duzRp0iTl5ORUuT0lJUVTpkxR9+4nfyh9qNYJt3AVZa++8y85S8qfCVfqaqT/mnTLOWVFzUVRhkiiKAMAAACiE0VZiH3//ff697//rUWLFmn//v0qLi5WkyZN1LFjR40ZM0ZXXXWVXC7XKdfxeDxKT0/X7NmzlZWVJdM01bJlSw0dOlQTJkyo9GD+cK8TTuEoykzT1Ev/N0VuV/m6rTr21jVDLz3nvKiZKMoQSRRlAAAAQHSiKIPtwlGUbdudpXmzPguO/QHp1tsmqFH9uuecFzUTRRkiiaIMAAAAiE48rAk10oq1myzjYjORkgwAAAAAAJwURRlqpMMHrc9lS2nawqYkAAAAAAAgVlCUocbxFBYrQSWWuT49L7IpDQAAAAAAiBUUZahxFq3aKGeFM7vI69BF559nXyAAAAAAABATKMpQ42zfucsyjqvTSA4HpzoAAAAAADg52gPUKIFAQL6ifMvcBed3sCkNAAAAAACIJRRlqFG27NynRFcgOPYFpEEXd7MxEQAAAAAAiBUUZahRVq7bZBmXyK16ddw2pQEAAAAAALGEogw1ytEjByzjZs1TbUoCAAAAAABiDUUZaoxjJzxKNEotc33TLrIpDQAAAAAAiDUUZagxlq7ZLIdRPi70OtS5fWv7AgEAAAAAgJhCUYYaY29WtmUcX6eRTUkAAAAAAEAsoihDjeE5kWcZt2zR0qYkAAAAAAAgFlGUoUYo83qVIOvzybpf2MGmNAAAAAAAIBZRlKFG2PjdHrkqnM0lPkMXtOGKMgAAAAAAcPooylAjbNmxxzL2O5PkcHB6AwAAAACA00eTgBrhyOFDlnGj5BSbkgAAAAAAgFhFUYYawSzzWMYXtG9jUxIAAAAAABCrKMoQ8/YfPiq3KxAcB0yp10UX2JgIAAAAAADEIooyxLy1m7dbxkX+ONWr47YpDQAAAAAAiFUUZYh532flWMaJSQ1sSgIAAAAAAGIZRRliXuGJPMs4tWVLm5IAAAAAAIBYRlGGmFZa5lWiUWaZ63HR+TalAQAAAAAAsYyiDDFt/bZdclY4i0t8htq3am5fIAAAAAAAELMoyhDTvtu51zIOuJLkcHBaAwAAAACAM0ejgJh25Mghy7hRchObkgAAAAAAgFhHUYbYVlZoGXZs39aeHAAAAAAAIOZRlCFmZR88okRXIDj2B6TeXS+wMREAAAAAAIhlFGWIWWs277CMiwNxSnIn2JQGAAAAAADEOooyxKysrGzLOLFOQ3uCAAAAAACAGoGiDDGryHPMMm6VmmpPEAAAAAAAUCNQlCEmlZSWKdEos8z17HK+TWkAAAAAAEBNQFGGmLR2yy45K5y9xT5D7Vo1sy8QAAAAAACIeRRliEnbd+2xjE1XHRmGYVMaAAAAAABQE1CUISbl5h62jJNTmtqUBAAAAAAA1BQUZYhJhrfQMu7Uvo1NSQAAAAAAQE1BUYaY833OISW6zODYH5DSLuJB/gAAAAAA4NxQlCHmrNuy0zIuDsQrKTHBpjQAAAAAAKCmoChDzMnKybGM3fUa2hMEAAAAAADUKBRliDnFnnzL+LzUVJuSAAAAAACAmoSiDDGlqLhUiYbXMtfzogtsSgMAAAAAAGoSijLElLVbdspZ4awt9hlq07KpfYEAAAAAAECNQVGGmLJ9917rRFxdW3IAAAAAAICah6IMMSUv94hl3DiFq8kAAAAAAEBoUJQhZpimKYev0DLX+fy29oQBAAAAAAA1DkUZYsb+w0eV4DKDY19ASuvSwcZEAAAAAACgJqEoQ8yo405UoLwnU4ncSoiPty8QAAAAAACoUSjKEDMa1q+res07qshr6ITXpauGXWF3JAAAAAAAUIMYpmmap94NCJ+y4gKZZiA4jkusK4fDqUDAL2+Jp9L+gYApw5AMw4hkTNRwpzrvgFAyDIfi3fXsjgEAAADgJ1x2BwDOlMNBQQYAAAAAAEKPWy8BAAAAAAAAUZQBAAAAAAAAkijKAAAAAAAAAEkUZQAAAAAAAIAkijIAAAAAAABAEkUZAAAAAAAAIImiDAAAAAAAAJBEUQYAAAAAAABIoigDAAAAAAAAJFGUAQAAAAAAAJIoygAAAAAAAABJFGUAAAAAAACAJIoyAAAAAAAAQBJFGQAAAAAAACCJogwAAAAAAACQRFEGAAAAAAAASKIoAwAAAAAAACRRlAEAAAAAAACSKMoAAAAAAAAASRRlAAAAAAAAgCSKMgAAAAAAAEASRRkAAAAAAAAgiaIMAAAAAAAAkERRBgAAAAAAAEiiKAMAAAAAAAAkUZQBAAAAAAAAkijKAAAAAAAAAEkUZQAAAAAAAIAkyWV3AMAwqu9rT7YNCBfOO4Qb5xgAAAAQnQzTNE27QwAAAAAAAAB24z9pAwAAAAAAAKIoAwAAAAAAACRRlAEAAAAAAACSKMoAAAAAAAAASRRlAAAAAAAAgCSKMgAAAAAAAEASRRkAAAAAAAAgiaIMAAAAAAAAkERRBgAAAAAAAEiiKAMAAAAAAAAkUZQBAAAAAAAAkijKAAAAAAAAAEkUZQAAAAAAAIAkijIAAAAAAABAEkUZAAAAAAAAIImiDAAAAAAAAJBEUQYAAAAAAABIoigDAAAAAAAAJFGUAQAAAAAAAJIoygAAAAAAAABJFGUAAAAAAACAJIoyAAAAAAAAQBJFGQAAAAAAACCJogwAAAAAAACQRFEGAAAAAAAASKIoAwAAAAAAACRRlAEAAAAAAACSKMoAAAAAAAAASZLL7gCAJHk8HqWnpyszM1NZWVkKBAJKTU3V0KFDdfvttys5OdnuiIgxq1evVkZGhlasWKHc3FyVlpaqSZMm6tmzp8aNG6cBAwac1jqcmwAAAABQeximaZp2h0DttmvXLk2aNEk5OTlVbk9JSdGUKVPUvXv3CCdDLCouLtYf/vAHZWRknHS/cePG6amnnpLT6ax2H85NAAAAAKhdKMpgK4/Ho7Fjxyo7O1txcXF6+OGHNWbMGCUmJmrVqlV67rnntG/fPqWkpGjGjBlq0qSJ3ZERxcrKyjRx4kStWrVKDodDN9xwg8aOHas2bdrI6/Vq69ateumll/Tdd99JkiZNmqRHHnmkyrU4NwEAAACg9uEZZbDV22+/rezsbEnS888/r7vuukvNmzdXw4YNNWzYMD3wwAOSpNzcXL3++ut2RkUMiI+P1y233KKmTZvqrbfe0p/+9CelpaUpOTlZzZo102WXXaZ//etfat26tSTp3XffVX5+fpVrcW4CAAAAQO1DUQbb+P1+ffTRR5KktLQ0jRo1qtL2N954IziePn26iouLI5oRsWfUqFH65ptvqn0Gmdvt1q233ipJKi0t1YoVKyrtw7kJAAAAALUTRRlss2bNmuDVPCNHjqy0fdq0adq9e7fGjx8vSSopKdGiRYsimhGxyeU6+XtK2rVrF/x85MiRSts5NwEAAACgdqIog202bdoU/JyWlmbZVlxcrFdffVU9evTQQw89VOUxwNkqKioKfm7QoEGl7ZybAAAAAFA7UZTBNrt37w5+btWqlWVbenq6Dh8+rMmTJ6tZs2bBK4QqHgOcrQ0bNgQ/9+zZs9J2zk0AAAAAqJ0oymCbvLy84OdGjRoFP+fn5+utt97S4MGD1bdvX0lS/fr1g9uAc1FWVqbPP/9c0g9Xi/34YP+KODcBAAAAoHaiKINtfnz4eXx8vAzDCM5PnTpVHo9HkydPDs7Fx8dLst4yB5yNN998M/hcsl/96ldV7sO5CQAAAAC1E0UZbOdwlJ+GOTk5+vDDDzVmzBh17tw5OB8IBOyIhhpmzZo1mjp1qiTpZz/7mfr373/S/Tk3AQAAAKB2oSiDbZKSkiRJXq83OPfKK6/INE3LQ9IlqbS01HIMcKays7P1wAMPyOv1qmvXrnriiSeq3ZdzEwAAAABqJ5fdAVB7JScnS5L8fr8KCgqUk5OjL774QrfccovluVFer1cFBQWWY4AzcejQIU2cOFF5eXlq3bq1pkyZosTExGr359wEAAAAgNqJK8pgm/bt2wc/5+Tk6MUXX5Tb7db9999v2e/AgQPB29vatWsX0YyIfbm5uZo4caL27dun1NRUpaenq2nTpic9hnMTAAAAAGonijLYpmvXrsHP6enpWrhwoe64445KV+asWbMm+Llbt24Ry4fYd+jQId16663atWuX2rRpo3fffVepqamnPI5zEwAAAABqJ4oy2CYtLU2NGjWSJE2fPl2NGzfWxIkTK+03c+ZMSVJiYqIGDBgQ0YyIXVlZWbrpppu0Z88ede7cWR9++KFatWp1WsdybgIAAABA7URRBts4nU7ddNNNwfGECRNUp04dyz5LlizR/PnzJUnjx4+X2+2OZETEqO3bt+umm25STk6O+vfvrw8++EApKSmnfTznJgAAAADUToZpmqbdIVB7eTwejR07VtnZ2WrevLkee+wx9evXT4FAQJmZmXr++edVVFSklJQUzZgxQ02aNLE7MqLc2rVrdc899+j48eMaOXKknnrqKcXFxVW7v2EYio+PrzTPuQkAAAAAtQ9FGWy3a9cuTZo0STk5OVVuT0lJ0ZQpU9S9e/cIJ0Msuu2227RixYrT3r9t27aaNWtWlds4NwEAAACgdnHZHQDo0KGDMjIylJ6ertmzZysrK0umaaply5YaOnSoJkyYUOkh6kConOxtlZybAAAAAFC7cEUZAAAAAAAAIB7mDwAAAAAAAEiiKAMAAAAAAAAkUZQBAAAAAAAAkijKAAAAAAAAAEkUZQAAAAAAAIAkijIAAAAAAABAEkUZAAAAAAAAIImiDAAAAAAAAJBEUQYAAAAAAABIoigDAAAAAAAAJFGUAQAAAAAAAJIoygAAAAAAAABJFGUAAAAAAACAJIoyAAAAAAAAQBJFGQBEPa/XK9M07Y4BAAAAADUeRRkARLnPP/9cPXr00FVXXaVvv/3W7jgAAAAAUGNRlAFADCgtLdWePXuUm5trdxQAAAAAqLFcdgcAEPt++9vf6tNPP600HxcXpzp16qhJkybq1KmTBg8erCuvvFJJSUk2pAQAAAAA4OQoygCEjdfr1bFjx3Ts2DHt2LFDX3zxhZo0aaL//u//1ogRI+yOBwAAAACABUUZgJD69a9/rY4dO0qSTNNUYWGhvv/+e82fP18bN27UkSNH9NBDD+mFF17Q1VdfbXNaAAAAAADKUZQBCKmePXuqb9++leYffPBBffjhh3ryySdlmqb+/Oc/a8iQIapfv74NKQEAAAAAqIyH+QOImJtvvlkDBgyQJB0/flzffPONzYkAAAAAAChHUQYgon4syiRp27Zt1e7n8/n0ySefaOLEibr00kt10UUXqV+/frrhhhs0depUnThx4pTftXz5cnXq1EmdOnXSq6++etJ9r7jiCnXq1ElXXHFFtfu8+uqrlfbZs2ePnnvuOY0aNUo9evRQ7969deONN1b5coPqFBUVaerUqRo7dqx69OihtLQ0XXvttZo6daqKi4tPex0AAAAAwLnh1ksAEVWvXr3g58LCwir3ycvL06RJk7Rp0ybLfH5+vvLz87Vu3Tq9++67euWVV3TJJZeENW9Vjh07JtM09dprr2nq1Knyer2W7WvXrtXatWu1d+9e/dd//ddJ1zpy5Ihuu+027dmzxzK/detWbd26VdOmTdM111wT8j8DAAAAAKAyijIAEXX48OHg5+Tk5ErbPR6Pbr755mBx1KVLF40dO1YtW7ZUXl6eZs2apSVLlujo0aO655579PHHH6tTp04Ryy/9UPD96U9/0scff6ykpCTdeOON6tmzp3w+n7755hvNnDlTkvTmm2/q+uuvV+vWratcp7i4WBMnTgz+WVNTU/Xzn/9cbdu21fHjxzV37lwtWLBAr732WsT+bAAAAABQm1GUAYiois8lq+pqsNdeey1YHF1//fX6n//5HzmdzuD2G2+8UVOnTtXLL7+soqIi/fGPf9THH38c/uA/8fHHH6tr167661//qrZt2wbnr732Wj3wwAOaM2eOAoGA5s6dqwkTJlS5Rnp6unbs2CFJuvjii/X3v/9dSUlJwe033HCDZs+erV//+teVrloDAAAAAIQezygDEBF+v18vv/xy8HbKiy66SJdeeqlln6NHj+q9996TJDVv3lx/+MMfLCXZj+6991717NlT0g+3Oa5Zsya84avQsWNHpaenW0qyH40ePTr4ed++fVUeX1ZWprfffluSlJCQoBdffNFSkv1o+PDh+uUvfxma0AAAAACAk+KKMgAhtW7dOhUVFUmSTNNUYWGhdu7cqVmzZgWvFGvevLn+9re/yTAMy7Hffvtt8MqpsWPHKiEhodrvuf7667Vu3TpJ0tdff61evXqF4U9Tvd/+9reqW7duldsq3mpZ3cP4V69eHXwhwWWXXaYWLVpU+11NmjQ5h6QAAAAAgNNFUQYgpF566aWTbr/88sv15JNPqlmzZpW2LVmyJPi5d+/eJ12nYjG2cePGM0x57lyu6n991qlTJ/jZNM0q91m2bFnwsx0vJAAAAAAAVEZRBiAixowZowkTJqhbt27V7nPw4MHg5+oegF/V9qysrHMPGELx8fGn3Kfin7VNmzbhjAMAAAAAOE08owxASL377rv67rvv9N133+nPf/5zcL6goOCkJZkk5eXlBT9Xd1vjj+Lj4xUXFydJwVsYY8mZ/FkBAAAAAJFBUQYgbH72s58pLS1NkrRgwQJ9/vnnJ93f7/ef1fec7DbIaFXxlsyfPqsNAAAAAGAPijIAYWMYhv70pz8F31z5zDPPKD8/v9r969evH/xcWFh40rXLysqCD/5PTk4OQdrIatCgQfDzqf6sAAAAAIDIoCgDEFadO3fWbbfdJumH2w2feeaZavc9k+eO7du3L/i5ZcuW55gy8lJSUoKfc3JybEwCAAAAAPgRRRmAsPvlL38ZfMtlRkaGFi5cWOV+PXr0CH5evXr1SdesuL1///5V7lPxlsazva0zXCr+WdeuXWtjEgAAAADAjyjKAIRd3bp19fvf/z44/uMf/6iioqJK+40YMSJ4m2ZGRobKysqqXXPatGnBz0OHDq1yH7fbHfx86NChatfKzMzU/v37q/8DhMHFF18sh+OHX8Fz586Vx+Opcj+/36/PPvssktEAAAAAoNaiKAMQESNGjNDgwYMl/XCr4csvv1xpn2bNmunqq6+WJO3fv19PP/20AoFApf2mTp2q9evXS5JGjx6tjh07Vvmdbdu2DZZR3377bZXl3IwZM/TII49YHq4fCU2bNtWIESMkScePH9fTTz9dKUNpaakmT56sZcuWRTQbAAAAANRWsfeqOAAx6w9/+INGjx6t0tJSvf/++xozZozlFkRJeuyxx7R06VIdOnRIH3/8sTZv3qxrrrlGLVq00NGjRzVz5kwtXbpU0g9l029+85tqv69evXrq37+/Fi1apNzcXN1888265ZZb1LRpU+Xk5CgjI0Nr165VkyZN1LFjR23YsCGsf/6f+uUvf6kFCxaoqKhI06dP1549e3TttdeqQYMG2rt3r/7f//t/2r9/v/r06aOVK1dGNBsAAAAA1EYUZQAipnXr1rr33nv1t7/9TYFAQE888YSmT5+uuLi44D7JyclKT0/Xvffeq71792rjxo3auHFjpbXOO+88/eMf/1Dz5s1P+p2/+93vdNNNN+n48ePaunWrnnjiCcv2Tp066eWXX9a7774b8aKsQ4cOeu2113TvvfeqtLRUa9eurfS8shtvvFE33XSTxo4dG9FsAAAAAFAbceslgIi666671K5dO0nS9u3b9eabb1bap127dvr888/1hz/8Qf369VNKSopcLpfq1aunXr166fHHH1dGRoblLZnV6dChg6ZNm6bx48erRYsWiouLU3Jysvr376+nn35a06dPV4cOHZScnBzyP+vp6N+/vz777DP97Gc/U2pqquLi4tSoUSMNGjRIb7zxhp588kk1bdrUlmwAAAAAUNsYZqQfzAMAAAAAAABEIa4oAwAAAAAAAERRBgAAAAAAAEiiKAMAAAAAAAAkUZQBAAAAAAAAkijKAAAAAAAAAEkUZQAAAAAAAIAkijIAAAAAAABAEkUZAAAAAAAAIImiDAAAAAAAAJBEUQYAAAAAAABIoigDAAAAAAAAJFGUAQAAAAAAAJIoygAAAAAAAABJFGUAAAAAAACAJIoyAAAAAAAAQBJFGQAAAAAAACCJogwAAAAAAACQRFEGAAAAAAAASKIoAwAAAAAAACRRlAEAAAAAAACSKMoAAAAAAAAASRRlAAAAAAAAgCSKMgAAAAAAAEASRRkAAAAAAAAgiaIMAAAAAAAAkCT9fzLchBeWXZJ2AAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 15,
- "metadata": {
- "image/png": {
- "height": 377.825,
- "width": 521.05
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: team-picking-backtest-score-unlimited-budget\n",
- "# | warning: false\n",
- "def add_backtest(\n",
- " fig: so.Plot,\n",
- " teams: pl.DataFrame,\n",
- " model: str,\n",
- " valign: str = \"center_baseline\",\n",
- ") -> so.Plot:\n",
- " campaign = summarize(teams, model)\n",
- " fig = add_line(fig, campaign, valign=valign)\n",
- " return fig\n",
- "\n",
- "\n",
- "teams = backtest(players, predict_score, initial_budget=1000.0)\n",
- "add_backtest(fig, teams, \"Score with unlimited budget\", valign=\"bottom\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "439ab58e",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "Both runs are nearly identical, which is evidence that focusing on appreciation\n",
- "is not so important if we have accurate predictions for the scores. If we\n",
- "predict scores perfectly, we get a near perfect run.\n",
- "\n",
- "To put our backtests into perspective,\n",
- "[the 2022 season champion had a total score of 3434.37](https://ge.globo.com/cartola/noticia/2022/12/03/cartola-2022-com-larga-vantagem-mosquito-bar-8-vence-liga-premiada-meliuz-e-fatura-r-20-mil.ghtml).\n",
- "This is very impressive and not very far from the near perfect run."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "ee53cbc4",
- "metadata": {
- "lines_to_next_cell": 2
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAN6CAYAAABv/useAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3gU5doG8Hu2pPdCQkKH0CGEIr13CEWRJqCigoWDwEHF7qfHiogUFUXpCoLSQu+9Q+gQEpJAeu91y8z3R2DJkrZpuyn377rOdSbvzLz7JJlg9s5bBEmSJBAREREREREREdVAMlMXQEREREREREREVFkYfhERERERERERUY3F8IuIiIiIiIiIiGoshl9ERERERERERFRjMfwiIiIiIiIiIqIai+EXERERERERERHVWAy/iIiIiIiIiIioxmL4RURERERERERENRbDLyIiIiIiIiIiqrEYfhERERERERERUY3F8IuIiIiIiIiIiGoshl9ERERERERERFRjMfwiIiIiIiIiIqIai+EXERERERERERHVWAy/iIiIiIiIiIioxmL4RURERERERERENRbDLyIiIiIiIiIiqrEYfhERERERERERUY3F8IuIiIiIiIiIiGoshakLIFLnZEKSxGKvUZhbQSaTQxS10ORmGakyqu743FBZ8LmhsuKzQ4YSBBmUFtamLoOIiKjWYPhFJidJYonh19PXE5UWnxsqCz43VFZ8doiIiIiqDk57JCIiIiIiIiKiGovhFxERERERERER1VgMv4iIiIiIiIiIqMZi+EVERERERERERDUWwy8iIiIiIiIiIqqxGH4REREREREREVGNxfCLiIiIiIiIiIhqLIZfRERERERERERUYzH8IiIiIiIiIiKiGovhFxERERERERER1VgMv4iIiIiIiIiIqMZi+EVERERERERERDUWwy8iIiIiIiIiIqqxGH4REREREREREVGNxfCLiIiIiIiIiIhqLIZfRERERERERERUYzH8IiIiIiIiKgeNVjR1CVSD8fkiKj+GX0RERERERGUgSRKWbT6OuYv/hVqjNXU5VAMlp2dhyqdr4XfqpqlLIarWGH4RERERERGVkkYr4rOVe7FuzwWcuxmKo5fvmbokqoE2H7qC++Hx+Pz3vVi965ypyyGqthh+ERERERERlYJWFPHhLzux58wtAMDsCX0xtFtrE1dFNdHMsb0wqndbAMDP/5zEr9tOmbgiouqJ4RcREREREVEpfLP2II5cCgQAzHq+D1727WbiiqimkskEfPbaCAzt1goA8PuOs9h86IqJqyKqfhh+ERERERERGWiV31lsP34dADBxcCe8Mrq7iSuimk4QBHw+cySead0QALDozyM4efW+iasiql4ESZIkUxdBtZsqOx2SVPwOJkoLG8hkcoiiFuqcDCNVRtUdnxsqCz43VFZ8dggAktKysP9CEM7ceIDIhDQkp2fDXKmAnbUFmtd3RueW9TC0a3M4ObmYulQqg7uhMXjpiw3QakV4e3li5YcvQCEv/XgC/4Bw7D9/B/4B4YhLSodGFOFsZ43mDetgQOfmGNqtdZn6DYlMwJbD/rh05yFiEtMhQYK7kx06t2qAZ/t5o1Vj9xL7SM/Khd/JGzhzPRjBkYlIzciGjaU56jjZonu7xvDt1RaNPZxL7Ofy3TC8/s2mUn8Ou354Ax6u9qW+rzzO3gjB3rO3cSMoEnHJGbAwU8Dd2Q7PtG6Isf280cSz5J/XTi9+V+rX/WzGCIzu3c7g65PTsvDCJ2sQl5wBR1srbPnmFTjZWZf6dYlqI4ZfZHIMv6iy8LmhsuBzQ2XFZ4f8Tt/FT1vPISNbVex11hZmmDbiGUwf1b1MAQeZhkqtwZRP1yIkMhHmSgX+/fa1Uoc0MYlp+OKPvbhw+2Gx1zX1dMHXs0ajWT1Xg/teueMM/th5Flpt4b9XCwLw6/uT0blVgyL72HLYHyu2nkJaZk6R18jlMrw0oitmje9TbD3VIfxKTsvCB7/44dKdor8fcpmAiYM7Yd7kAZDJhCKvM0b4BeQFdbMX/QMA6NfJCz/Mea7Ur0tUGylMXQARERERUXW37cRtLNr0ZCFqH6+66NmuIdycbKDRiohKSMelgAhcC4pGZo4Kv247jfDYFHzx+kgTVk2l4XfqJkIiEwEAL458ptQBTUJKBqZ9tg5JaVkAgM6tGqCndxO4O9tBpdbiYXQSdp2+ifjkDARHJuDNb//G+v97CXVd7Erse+nfx7B+70UAgIuDDUb1botm9Vzznr34FBy9HAgrCzN0alm/yD5WbD2FP3aeBQA42VlhYJcWaN3YHdaW5ohLTsel2w9x8tp9aLUiVu86B1GSMHtC3yL7a1bPFT/OG2fQ12bxxqMIj02GvY0lnO2NM5IpO1eN17/ZhODIBABAAzdHjOzVFvXdHJCZrUJgWBz8Tt5ErlqDjQcuI0elxkfThxXZn6Gfq9/Jmzh2JW+9uGYGjCh7Wo/2TdDXpxlOXL2P41eCcD0oAt5e9UrdD1Ftw/CLiIiIiKgcktKy8NPWcwAACzMFFs0ajo4tPAtcN31kJ9yPSMQPf59GTFIG3nq+t7FLpTISRQkb918GAFiYKfHC0C6l7sPFwQbTfbth+4nr+OSV4WjvVfAZmflsT3y95gD8Tt1EUloWft9xGp++NqLYfk9dC9YFX13bNMR3/xkLW2uLp/rthexcNQSh6JFLzw/0wbErgejdoRleG9MdluZmeucnD+mMW8FR+M/3W5CelYsN+y7i2X7eqFfHodD+HGwt0cenWbG1A0BwRDzCY5MBAGP7toe5mXHeov6576Iu+BrVuy0+mj4MSoVc75ppI57BjK82IjYpHduOXcezfb3RukndQvsz5HNVa7T4eu0BAEDbpnWL7Ksk00d3x4lHa36t33sRP8xh+EVUEo6zJiIiIiIqh0OX7iNHpQEAPN+/baHB12PN6jnj5/ljsPbTaXB3LnlED1UNp68H42FMEgBgSNeWsHsqXDLUC8O6YPNXrxYafAGAUiHHBy8P0fV/9mZosf2JooTFfx0BANR1scN3s58tEHw9ZmmuLLYvVwcb/P3lK5g9oW+B4Ouxtk09MH1U3gL/Wq2Ii7cfFNunITYdzNu5UC4TMH5gx3L3Z6iDF+4CAMzNFHhn6qACwRcAeLo64PVne+k+Pn09uFyvefjiPcQn502Lnzi4U5n7adfUA60a5a3fdtL/PiLiUspVF1FtwJFfRERERETlEBGXqjtu6uFU4vVymQx1nGwN7l8UJRy+GID95+8i4EEMktKyoFTI4epogw5enhjeow26PNoFriRpmTnYctgfJ6/ex4PoROSqNHC0s0Lz+nUw6JkWGNmrLeSy4v8+XthaTkO7tcLXb40GAOSo1Nh04AoOXQxAWEwSsnPVAICZY3vi9ed6Fegvv+S0LGw6eBmnrwUjLDYZoiShjqMturZphElDOhm00HplOHLpnu64T8eSR/gUp7h1owDATKlAA3dH3AqORmYJ68edvp73dQLyRnfZWplXam0A4FX/yTpkmTnF11eS1Ixs7D17GwDQx8fLoCmeFSUyPu/ntlk9V9hYFv11a9/MQ3ccl1y+9Rw3HcwbPehsb43Bz7QsV199OjbD3QcxECUJx64EYtrwZ8rVH1FNx/CLiIiIiAhAfEom0jJz0NDdsVQL0VtbPhklE54vCKsIiamZ+O+SrbgVHK3XrtbkrRH1MDoJO0/eRMcW9fHpa8NR382xyL5uBUdhzuJ/kZKerdcen5yB+OQMnLkRgr8P+WPp/Ofh6mBTqjpjEtMA5IVrb3yzCffC4kp1PwBcuvMQ7y7bjvSsXL328NhkhMcmY+fJG3h36iCMG9Ch1H2X1+MF0QUBBgeNZSVJEmKT0gHoB02FOX0tbySShZkSQ7qWL0wxVHRCmu64ef065epr67FryH00anLCYOON+gLyNp7IVWmgUmuKvS4jX8BX1hF/AHAjKBK3Q/J+jp/t513oSLPS6NamEX7bdhoAcPlOGMMvohIw/CIiIiKiWm/HqTtYsuUMVGot+nZojK9fH1Ls+kj5tWr4JAD459gt9PZuhBYNDN+lrygxiWmY+fVG3QgVDxd7jOrdFo09XaDWaBH4MA5HLt1DVEIqrgaGIzw2ucjw625oDN78bjOyHr2R7+vTDL19msHO2gKRcSnYefIGHkQn4d7DWLz57d/Y8PlLRU6Ty7+Q+f5zd3Dg/F3EJKZBFCXMXfwv7oXFwdHWCmP7tUeLhm54/6edJX6u52+FYt6PW6FSa6GQyzC8R2t0btUQFmYKhEQmYOux60hIycA36w7Azsai3KNmSiM5PUsXRrk52RU7Sqgi/HPkqm5q3LQRxQcalwPCAACdWtaHhdmT71dEXAqiE1JhYa5E/TqOcLC1rJDa0jJz8Nf+SwCAFg3d8EybsgeBGq2If49cBZC3u+UzlRwqPq1ZPVdcvPMQoVGJiIxPgaerQ6HX5Z/a2bcco/4ej/qSy2V4vgIC3Cb1niyWf/dBTLn7I6rpGH4RERERUa2289QdLPzrpO7jE9dCkZCSCVdHw0Y/9fZuhKaeTgiOTEJ6Vi5eX7gDz/dvi3H92qKus+HTG5/29doDuuBrWPfW+PTV4XqLgY/o0QZvT+yH3WduISElAz3aNym0H0mS8M26g7rg67MZIzC6dzu9ayYP7Yx3l23HqWvBCI1KxCq/s/jP+MJ38su/kPnd0Lw33fHJGfjniD+uB0WiY4v6+GHuc7pRMu+j+PArO1eF/63aD5VaCwdbS/z07gTdekaPTRrSGW99txl3H8Tgu3WH0K1t43JP8TNUZL71lBq6Fz2yrjyyc1W4H5GAHcevY+fJGwCA18b0QP9OzYu8JzktCw+j89Yha/ooCDl66R5+3X4awREJuuvkMgHd2jXG7PF94dWg9CO1tKKIxJRMnL8VilV+5xARlwJPV3t8958xBgfEhTlyKUAXKhp71BeQFyxevPMQGq2IuYv/xbezxqBpPf3Q+mZwFNbtvgAAmDioY5l3VYxNSsORy3k7PA7s3ByujmX/d+ExG0tzONtbIzE1E4mpmchVaYy2WQBRdcSfDiIiIiKqtXafCcB3+YIvAHCys4StteHBikwmYNGsEZj9ox8i4tOg0mix8dB1/H34BrybuaNPh8bo69MY7qVY5+vUtWCcuR4CAGjd2B1fvD6y0LW4ZDKhQJD1tOP+QbrpVgO7tCj0eqVCjs9eG4HR7/yGrBwV/jlyFa+N6aE3mqg4oiRh6ebj8HS1x+K5zxW56HphNh24ops2+cFLQwoEX0DedLP/vT4S4z9cheT0LOw7exsTBhknMElMzdQdO9haVWjfG/ZdxJJNx3QfKxVyPNO6IaaN6Iru7RoXe+/j4AgAXB1t8cu/J7HK71yB67SihDPXQ3D5Thj+94YvBnZpYXB9fWb+qLeuV10XO7w0site9u1WrimAQN73HQBsrMwxsmebcvVVFj3aN8Gs8X3w8z8nERKZiEkfrUGvDk0xomcb9GjXGH6nbuKnLSehUmswfVS3IsNgQ2w5fBVarQigfAvdP83BxlL3fCakZhQ5eo2IGH4RERERUS217/w9fPPncb02pUKGj1/qb3Do85ibkw3WfjQev++6hO0nbkOl0UKUJFwNisbVoGgs+/cs2jZ2w7j+bTGwkxcK30svX22PFgEHgBlje5a4CH1xTvgH6Y6f7edd5HWOdlbo27EZ9p29g4ysXJy7GVrsyKOn5ao0mPfCgFIFX8CTXfec7a0xoHPRwUxjTxe0a+qBG/ejcOxyoNHCr8cL9gOARQk7JpbW45Fbj2m1ImKT0nEjKBJtm9Qt9muZlvlk7bbjVwJxJSAcHi72mD6qG7q2bQRXBxvEJKZh27Hr+Gv/JeSqNfi/3/fCq74rGriXvDFDfHJ6gQXtM7JyERKZgICHseWapngrOAo3g6MAAGN6tytyd8nK9sqo7mjZ0A2L/jyChzFJOHn1Pk5evQ+ZIECUJNhYmePn915Ah+ZlG/EF5G0Asf3YNQB5U0XL09fT8j+P+Z9TIiqI4RcRERER1ToHLwbhq3XHIUlP2hRyGb6eORTd2jQoU59WFkrMGd8DLw7zwa4zd3Ho0n0ER+aFG5IE3AyJxc2QWKzfdxWfz/RF6yZ1C+1HK4q6hczNlPISRwCV5OLtJ4u1d2juWey13l71sO/sHQDA7ZDoUoVfjeo6oV9HrwLtu354AwAKnaYYm5SGoPB4AEDLhm4l7jbYoqEbbtyPwh0jrnGkFUXdsaIcIWRhnuvnjT4+zZCdq0JkXCqOXg7E3QcxWLnjDPacvY2f3hlfZFCVmpmjO74SEI4urRti0Zxn9dYka+DuhLmT+8PV0QaLNx5FVo4KG/ZdxEfTh5VYm6WFGX6cNw6SJCEuOQNBYXHYfeYWTl0LxqlrwXh1dHe89XyfMn3eGw/krX8lCMB4I4WYhRFFCTGJaUjPyvtaNqrrhIi4FGgejdLKyMrFN+sO4j/j+6J3h6Zleo29Z27rvlcTK/hzzb8xh0YjFnMlETH8IiIiIqJa5fDl+/hizVGI+ZIvuUyG/80YjJ7ty7/otqOtJV4c1hEvDuuI8NgUHPUPwcFLQQiNSgYAhEQlYcbXm7BiwUS09yoYRiWlZelG3DSu61yuXeFEUdItnu5kZ13iCBtPV3vdcf61rgwxslfbQteA8sjX59Oi4p/sjpmjUuPk1fvFvsbjnSozsnKRlaOClUXljxjK//XPyM4t5srSezoAfWV0d+w6dRNf/LEPkXEpeHf5Dvz5+UuFPgP5w476bo5YPPe5Ir8eEwZ1xO87ziA9KxeHLgTg/ZeGlDia0MbSXLe222NvjOuF+Uu24cb9KKzyO4em9VwwtFtrQz9dAEBcUjqOXLoHIG/qYXE7lFam7FwVFvy0E2euh8DKwgzfvDUaQ7q1Qkp6Ng5euIvtx68jMCwO98PjMXfxv3htTA+8Oa53qV/n8UL39jaWGNa9dF+rkuR/HrneF1Hx+BNCRERERLXGMf8QfL76yFPBl4AvXhuEvh3KN8KqMPXdHPDS8I54aXhHnLsVhkWbTiE6MR05KjU+/m03ti+cUSCESEjJ0B3b25Rvl77UjGzd52rILoX5r0nPKl3Q066pR+mKg/56WlcCwnElINzgezOyco0SfuVf26qiw6/CjOrdDhdvP8Tes7dxPzweJ/yDMKiQ3S1t8o2kmzb8mWK/FkqFHK0auePinYdIz8pFYkom6pRiDbrHnOys8cXrvnj2vZWQJGDVznOlDr/+OXJVN7JqUgWuf1UaGq2Itxf9C/974bA0V2LlB5PRqnHeWnMOtpaYMKgjJgzqiBP+QfhqzQEkpmbij51nAaBUAdj5W6EIiUwEAIzt277CA6qMfD+jxtoAgqi6qthxu0REREREVdTJa6H49I/D0IpPgi+ZIOCzVwaif8fCd0qsSN3bNsBv742Fo21eoBUZl6Jb1D4/MX99JUwDLEn+KXuGkKA/Gq40yrPzX1mU9nMrK7d8O/M9HnlW2Xr7PJlid+5maKHX5A8qDflaONo9Waw/f8BaWvXdHNGorjMAIDgyAXH5Ft4vSa5Kg23HrwEAGrg5lntKb1n5nbwB/3t5QeuLI57RBV9P69vRC2s/naYLFtfsPo/ohNRCry3M4+mdcpmA8QMrdsqjJElIezSdUiGXwdneukL7J6ppOPKLiIiIiGq8Mzce4uPfD+mFBIIAfPJyfwzq3KyYOyuWi701RnRvgb8OXgMAhEYlFpha5mT35E1seUca2Vo9GbX09OLlhcnMfnKNk13F7mxYmPxv2Mf0bY9PXx1e6a9ZWvXcHKFUyKHWaBEckQCtKJZrAwJDuOUblfV42mpx1ySnZZXYp5R/tKO8fPXXcbJFaFTeiKa45HSDR5HtPXtbFyCOH9TR6IHpY4cfTbsEgN4+xf/8e7jaY3Sfdvj74BVotSKO+wdh8pDOJb7Gw+gknL0RonuNui525Sv6KWExybpF7ht5OJvsa0lUXXDkFxERERHVaOdvh+HDlQd0U62AvODroxf7Y2hXwxd0ryge+d4EFxZauDhY6xayfno3wNIyN1PA1dEGAJCYmlHijnAR+db5cneu2Dfrhcn/GokpmcVcaTpKhRzNG9QBkLcuWXBEQqW/Zq5aqzu2tix8OqOHq71uWuzDmJKfk8R8z9rjZ6KsVGpNvvoMn273eP0rKwszjO7Trlw1lEdMQpru2NWh5K/F45FuABCTmFbMlU/8feiKbkONiZUwvfN2SLTuuE0Rm2cQ0RMMv4iIiIioxrp4JxzvrzgA9VM7oX0wtR9GdG9hkpri84U8dQoJIZQKObq0zlt4Pz0rFzeDo8r1em2b5K3FJUnAjaDIYq+9FhihO+7atlG5XtcQdV3s0dgjL1i4GRwFtUZbwh2m0cv7ybTYy3ceVvrr3XsYqzuuV6foBeHbPgo9/O+F643seppao9X16WxvDUfbso/q04oi7j/aoVMuEwwe0XTx9gNdcDiyZxuD1qAryaaDlzFy3goMnLUM3647iBxV8eHuY/Y2T0ZEpufbNbMoaZlPprvmH5lZlPSsXOw+fQsA0NTTBc+0Lv9GGk+7HBCmO+7ZvvKnbRNVdwy/iIiIiKhGuhwQifdW7IfqqUDlvSl94Nuz4ALiZRUem4JDl4rfpfAxtUaLAxcCdR+3K2S3RwAY0vVJfWt2nS9Xffn72nHiepHXJadl4dS1YAB5AUn7ZoXXVtEGdskLIVMzsrHz5A2jvGZpjejZFvJH66/tKEeNu07dRHRC8SOHVGoNth29pvt4SLdWRV7bp2PelL345Azd964wRy7d0y2OPrRbq0KnyCWkZGDbsWsF2p+25/Qt3WYI/Tp5wcJMWeI9wJP1rwBg4qDyr3915NI9LPrzCGIS05CSno1/jlzF8i0nDLq3RUM33fHJYr5uQN4afAcvBOg+bpnv3qLsOHEdWY+mGU8YXLFrfQFAZnberp1A3vTkXt5NS7iDiBh+EREREVGNczUwCu/+vA8qtX7wNX9SL4ztXbrd6YqTmJqFecv34LNVh/Hl2qOITSp6IfHUjBy8/+sBRCfmLRDu7eVZ5A6JI3q2RYtHU+1O+Adh2ebjRS5qfvxKULEBWf/OzVHfLW/00KGLAdh79naBa1RqDT7/Y6/uDfvrz/Yq92L7hpo6/Bm4PJp6tvivozh+JajQ69QaLbYc9teNqDGmenUc0L9z3hTZ4IgEXL0XUcIdBS3ZdAz/9/tezPx6I/yL2NUyR6XGx7/uRlhsMgCgj08zeNV3LbLPET3a6EZxfbvuYKHBWmR8Cn7cdAwAYGGmxIRCgqeQyAS89PkGfLXmAL7/87DuOXja5bth+P7PIwDy1g17cUTXYj7jJ8Jjk3WbOzzTuiEae7oYdF9xDl64W7DtfMG2wkwY1BGP879VO8/ielDh30+1Rotv1h3QjXTzqu9a4ohIUZSw5ZA/gLwdOUf2bGNQTaWx58ztJ+HaoI4VvoskUU3EnxIiIiIiqlGu34/GOz/vRW6+dYkAYO6EnhjXr22FvtbDmGSkZ+W9Cd17PhCHLt9HBy8PdGrhCVcHK1iZmyElIxu3Q+NwzD9Et+i8i4MNvnxjVJH9KuQy/N/MkZj59UakZ+Vi3Z4LOHXtPob3aIOG7k5Qa7R4EJ2IY1eCdG/Mm3g6o29HrwJ9KRVyfPzKMMxauBkarYhPft2NY5cD0btDU9hYmiM8LgU7T97QrS/WqVUDPNvPu8jaUtKzceN+5KPP/8laUzfuR+rekDvYWKJ9EaPanmZrZY5PXh2Gd5ZuR65ag/lLt6Fr20bo19ELro42yMxWIeBBDA5fuof45AxYmCnRtmldvXWYjOGlEV1x5NI9SBKw5O+jWPvptFItMu7skDddLiohFTO+3ohOrRqgV/smqOtqD1EUERQej71nbiP20e6JnnUc8H8zRhTbp5WFGd57cRA++NkPsUnpmPTxaozp0x6tG7tDJhNwNzQG245f1436+u8LA3RBaH42luaweBSg/H3wCg6ev4uBXVqgdWN32FhZICElA+dvhuLktfu6dazmTuqPtkWEt0/bdPAKxEc3VtT6VwIKfu0N/X408XTBf8b3xfItJ5CZo8KMrzehfycvdGndEM721lCrtQiJSsCBc3d1QaSdtQW+erPon9nHjl8JRNSjHSFH924HS/PC12wrq/TMHPyx8ywAwNrCrMJ3kSSqqQSpuMnhREagyk6HJBW/PbPSwgYymRyiqIU6p+xbM1PtwueGyoLPDZUVn52q4WZIDOYt3YOspxZ2n/18d0weVHSgUx7Rien4Zft5HPcPgVYs+Vfrzi3r4eNXRxQaQjztQXQi5i3eqnsDXpROrRrgk1eGFdvn8StB+Oz3PbogpDA9vZtg4eyxxU5lu3w3DK9/s6n4elrWx8oPXyj2mqdduvMQ7y3fgbRi1mCSywSM7euNOZP6lWqh9YqycMNhbD50BQDwwctD8PwAn1Ldf/DCXSzZdEwXcBWlZ/sm+L+ZIwxaXwoANh+6gsUbj+pt6pCfUiHH+y8Nxti+Rf8MJKdlYdFfR3Dg/B0U9w7R2tIM7780BCN6GDaiKSM7FyPm/ILMHBU8XOyxc9HrFTKq8Oile3h3+Q69theGdsb8KQMN7mPzoStYvuVEiRtBtG7sjk9fG1HsKLzHZny1Ef73wiEIwPaFMw36OS+Nr9ccwNZH01M/eXVYsd9TInqC4ReZHMMvqix8bqgs+NxQWfHZMb2Ah/GY/eMu3eiqx958tiumDS1dSFEWkfFpOHE1BP5BUXgQnYK0zBzkqDSwt7aAk70lvJvVRd8OjdG5ZX2YWdoa3K9KrcHu07dw7Eog7j2MQ0pGNiyUCri72KFTywYY1r0VvL3qGdRXYmomthz2x+nrwYiKT0VmjgoONpZo1cgdo3q3xcAuLUocPVNZ4ReQN6ps67GrOH0tGKFRicjKVcPWyhwN3Z3QpXVDjO3bHnVd7Evdb0XJzlVjyidr8TAmCZbmSvzx0RS0bFTyGlD55ajUOHQhAKeuBSPgYSwSUzKhUMhQx9EGbZt4YETPNroND0ojJDIBmw/549Ldh4hJTINcJkNdFzt0b9cYEwZ1hKerg0H9BIbF4eCFu7h4+yGi4lORkZ0LJzsreLo6oH8nLwzv0QaOdoYvmH8rOApf/LEPwZEJmDOxH14cadhUSUNsOngZG/ZeRI5KgyFdW2Lu5P4Gr0H2WFxSOvafu4NT14IRGZ+C5PQsmCsVcLK3RtsmdTGgcwv09mkKuazkFYMys3Mx78etuBYYgW7tGmPZ/PFl/dQKdfDCXXz4ix8kKW9K7I/zxlVo/0Q1GcMvMjmGX1RZ+NxQWfC5obLis2NawZFJmLV4J9Iy9Uc1zRzdBS+PqJhpVhVFEGSlCr+oagkKi8NrX29ERlYu3Jxsse7/XoSrQ8FdO0lfeGwyHO2sKmSXx6ouJT0b2blqg3fCNMTtkGjM+HojclUaNHR3wqpPppRr106i2oYL3hMRERFRtRYWm4I5S3cVCL5eGdmpygVfVP15NaiDJfPGwVypQGxSOmZ9txmJqZmmLqvKq+/mWCuCLwBwsLWs0OArKDwec374F7kqDVwdbfDzexMYfBGVEsMvIiIiIqq2ohLS8PaSXUhKy9ZrnzKkA1717Wyiqqim82lRHwvfHgtzpQLBkQmY+fVGxCcXv44XUVncexiL17/ZhOT0LDjbW+OndyeYdOovUXXF8IuIiIiIqqW45Ay8vWQX4pL1R908368t3nq2a6l24iMqrV7eTfHzexNhZ22BiLgUBEcmmLokqoGuB0UiNSMb9d0csfqTqWhWr+RF94moIIWpC6gqbt68iW3btuHChQuIjo6GJElwdnZGhw4dMGrUKPTr16/Y+7dt24YPPvjAoNd65ZVXsGDBgmKvycjIwLp163Do0CGEh4dDFEV4enpi4MCBeOmll+Dk5GTQa1VUP0RERERVSVJaFt5esgtRCfqjbXx7tMTcCT0ZfJFR+LSoh1UfT8GD6CR0a9vY1OVQDTRhUEco5DL079S8VBsNEJG+Wr/gfVpaGj755BPs37+/2Ov69OmDpUuXwsqq8H9wShN+/fDDD/D19S3yfHBwMGbMmIHIyMhCz7u4uGDFihVo3759sa9TUf1UNi54T5WFzw2VBZ8bKis+O8aTmpGD//zoh+DIJL32wV2a4dPpAwzalc2UuOA9ERGRcdX6kV+rV6/G/v374eDggKlTp2LAgAGoV68ecnJycP/+faxfvx7Hjx/HyZMn8d577+Gnn34qsc8bN24Ue16pLHr73YyMDMycORORkZFQKpWYO3cufH19YWFhgcuXL+O7775DWFgY3nzzTezYsQOuroUPe62ofoiIiIiqkozsXMxbtqdA8NW3Q2N88nL/Kh98ERERkfHV+vBrzpw5qFOnDoYNG6Y3BdDe3h5ubm7o2bMn/u///g+bNm3CoUOHEBgYiObNmxfbp7l52XcxWbVqFSIiIgAACxcuxIgRI3TnBg0ahIyMDCxYsAAJCQn45Zdf8Nlnn1VqP0RERERVRVaOGvOX70VAWLxee/c29fH5q4OgkMtNVBkRERFVZbX+T2OCIOCFF14odu2rSZMm6Y6Dg4MrrRatVotNmzYBAHx8fPQCq8fnf/vtN93H27ZtQ3a2/s5GFdkPERERUVWRq9LgvRX7cDMkVq+9YwsPfP36UJgpGXwRERFR4Wp9+GUIlUqlO65Tp06lvY6/vz+Sk5MBAMOHDy9wfuvWrQgJCcG4ceMAADk5OTh9+nSl9UNERERUFajUWnz42wH434vSa2/XxA0L3xwOc7NaP5mBiIiIisHwywDr1q0DAHh5eaFjx46lulcUi1/IPb9bt27pjn18fPTOZWdnY/ny5fD29sacOXMKvaei+yEiIiIyNY1WxGerDuPc7XC99pYNXPHD7BGwsih6LVUiIiIigGt+FSCKItRqNTIzM3Hnzh2sXbsWp06dgoeHB5YuXWrQttl+fn7YsWMHAgMDkZCQAEtLS3h7e2Pq1KkYNGhQkfeFhITojuvVq6d3bt26dYiLi8OiRYvg5uYGhUIBjUajd09F92MsCvOSt+wVBJnu/5UWNpVdEtUQfG6oLPjcUFnx2al4WlHEVyv34cS1UL32pvVcsPy9CXCwsTRRZUS1l0ajgULBt5FUOfh8UWXhU/UUPz8/LFiwQPexs7MzZs+ejRdffBF2dnYG9fHuu+/qfZyVlYVz587h3LlzmDZtGj7++ONC70tKerJrkaOjo+44OTkZf/zxB/r06YOuXbsCAOzs7JCUlKSb3lgZ/RiLTGb4Gh2CIEAQuKYHlQ6fGyoLPjdUVnx2KoYoSvhm3UEcOH9Xr72huxNWLJgEJztrE1VGVHudPHEEV/0vYvzEafDwqFfyDUSlIIoi1q5eAaVSiSnTXmMIRhWKT9NTQkP1/7KYmJiIDRs2IDMzE7Nnz4aVVeGjlDw9PTF06FAolUp06dIFXbt2hbu7O1QqFc6fP4/vv/8e4eHh2LBhA1q3bo3nnnuuQB+PF503MzPTG2H266+/IiMjA/Pnz9e1mZmZAcgL1iqrH2MRRW2J1wiCDIIgQJIkSJLhU0mpduNzQ2XB54bKis9OxZEkCYv+PIqdJ27otXu42uPn98bD0dbCoN8fqrLS/PGPqCrYs3s7Au/dAQAcOrAbL01/w8QVUU3j738R6elpAIBVv/+El6a/AQsLCxNXRTUFw6+nzJs3D/PmzUNmZiYiIiKwe/du/Pnnn1i9ejVOnz6NTZs2wcam4FSGrl276kZT5WdpaYmhQ4eiffv28PX1RUZGBlasWFFo+PWYTPZkKbbIyEhs3LgRvr6+aNmypa7dkLXEKqqfyqbJzSrxTYLSwgaCIIckiVDnZBipMqru+NxQWfC5obLis1MxJEnCj5vP4N/j+uuR1nG0xrI5I+FkJVT7r68gyGBmaWvqMmoNURSxds2vSE1JhpmZGSZMehGurm6mLqta8dvxD4KDAwEA1tbWmDzlFRNXRDVR587dkBAXh7t3byIrKxNrVv2MV2fM1g3YICoPLnhfBGtra7Ro0QLz58/H6tWrIZPJEBgYiCVLlpSpv7p162LYsGEAgLCwMISHhxe45vGoMrVarWtbsmQJJEnSW5weAHJzc/XuqYx+iIiIiIxJkiQs/vt0geDLyc4Sy+aOgoeLYUtQ1AQ/L1+EpT9+gxU/LzZ1KdXepYtnkZqSt8SHSqXC4UP7TFxR9XLk0F5d8GVpaYWXX3mLYQRVmmEjRqNFy9YAgJycHKxb82uVGLBB1R/DLwP4+PigU6dOAIDt27eXuR8vLy/dcVhYWIHzTk5OAACtVov09HQEBARg9+7dmDRpEurXr6+7Tq1WIz09Xe+eyuiHiIiIyFhEUcKiTaew9cRtvXYHWwssnTMKDdwcTFOYiahUuRBFkW/6KsDTG1YZsH8VPXLlygXcuHEVAKBUKvHy9NcZfFGlGzHyWXh65r1vzchIx98b15q2IKoROO3RQI0aNcKlS5eQkZGBpKSkMoVFlpZPdiTKPyrrsSZNmuiOIyMjsWjRIlhaWuKtt97Suy46Olr3i1Djxo0rrR8iIiIiYxBFCT/8fQrbT97Ra3ewtcDyuaPR1LP6/ZEuKysTp8+cRkREOHJzcyFJEoC8IMbCwhKe9RqgX//BsLWtPaPZTKVzl+64deu6btrjwEHDTV1StZCenoZTJ47oPh73/BRYWJZ+tkjYw1CcPXsC8fFx0Dx6DyQIApRKM9SrVx99+w2Gg2PZfsazsjLwx8qf4FmvAfr3HwonZ+dS3a/RaHDy+GEEBwciMzND93Mqk8lgb++Atu190LlztzLVBgDbt25CXFwsOnXqis7PdC9zPxXlqv8l3Ljhj5TkZN26iYIgwMrKCk2aNke//kMMWmT+5+WLoFLlluq17R0c8cqrb5V84SPPT5iKlb8uQXZ2NmJjo3Hl8nl0Ksf3gojhl4FycnIA5P3jYG1dtt2F4uPjdcdubgXXGWjbtq3ueN26dTh16hRmz55dIGjz9/fXHbdr167S+iEiIiKqbKIo4ftNJ7HzlP6ujo62llg+bxSaeFS/4OvYsaO4G3Cn0HOSJCE7Owv3gwJwPygAzbxaYKTvc3prtVLFkslkpXrTTXn+3fKXLgzq4NMFdT08S3V/Tk4Otvy9HomJ8QXOSZIElSoXISH3ERJyHx07dUXffoNKXeOxo4eg1WoR9jAUt29fQ+8+Aw2+9+qVizh58kihoytFUURychJOnTiCK5fO44Wpr5Q6qNZoNHj4MBSSJOHs2ZMmDb+ioyKxY/vfuve0+UmShMzMTNy8cRV3bt/A8JFj4eXVspBejEsmk2H8hGlYv24lAODUyaNo3qI1/2BAZcbwywBarRZXrlwBADRs2BDm5uZl6ufs2bMAAFtb20JHWvn4+MDR0RHJycnYtm0bnJ2dMX369ALX7d+/HwBgYWGBnj17Vlo/RERERJVJFCUs3HgSfqf1gy8nO0ssnzsKjatZ8CWKIv75dzMSExN1bQq5Am7u7rC3d4BCLkdKagri4mJ1b0KD7wciIT4OddzcTVU2UQHBwUFISUkCAJiZmaP/gCGlul8URaz6/Sfd6CC5XA4397pwcakDuVyO5KRERESEQaPRAAD8r1yAmZkZuvfoU6rXuB90D0DeAIXuPfoafO/FC2dw5vRx3ce2tnao61EPtjZ2yMxKR1xsDJKS8n6Os7IysX7tb3j9zXkGjYp67OSJI7rwsHnzVgbfV9Hi42Px96a1uo/Nzc3h4VEfDo6OUKvVSEyMR0x0FCRJglarxW6/rZg4+SV4eNQrss/efQcg49HyOcWJCH+IyMi8ta6dHEs3Kg8AnF1c0bSpF4KDgyBJEg4e2I1xz79Q6n6IAIZf+P3333Hy5EksX74cDg4OhV6zYsUKREVFAQCmTJlS4LwkSfjuu+/QuXNnDBpU+F8s9u3bpwvQxo4dW+iWrXK5HJMnT8Yvv/wCAHj55ZcLjDI7e/Ysjh8/DgAYN26c3lTKiu6HiIiIqLKIooTv/jqBXWcC9Nqd7Czx07zRaFTX0USVld3uPbt0wZcgCOjRvQe8vX0KXCcIMoRHxeDAPj/0HzCEwRdVOadOHNYdd+5S+qlmMpkMPXr1xYljh9CmrTcGDhpe6OjG/Xt34u7dvA0uLl44g67dehk8CvLShbO6qXsNGzYpVTDVwacLrl+7AlEUMXrM+EJHtcXHx+LvjWuh0WigUqlw/NhBDBo8wuDXuHP7uu64X//Sj2qrKK6ubmjatDkePAhGvwFD0L59xwLXqFQq/LXhD6Q82hjiwL5dmP7qm0X2WVgfhfn9t2W64379B5ey8jxDhvpixS8/AgDCwh4gNycH5oW8lyYqSa0OvwICAvDTTz8hJycHQ4cOxbRp09C/f3/Ur18fWq0W9+7dw8aNG3HgwAEAQLdu3TB58uQC/axatQpr1qzBmjVrMGjQIIwbNw5t27aFlZUVoqKi4OfnhzVr1gDIGzn29I6L+b366qvw8/NDREQE/vrrL9SrVw/dunWDKIo4dOgQFi5cCEmS4OLigjffLPofpIrqh4iIiKiiiaKEb/88gd1n9YMvZzsrLP/vKDRyr37BV3DwfUREPNnNe+yYZ1G3rkeR1zdt6oW3/jPfGKURlUpSYiKSk/NGfclkMnR5pkeZ+vHx6QJv707FhlnDRozBgwchyM7OgiiKCA97gIaNmhR5fX5Xr17UHZd2ZJqZmRlenfGfYmtzdXXDgAFDcfDgHgDAwwchBvd/6+Y13RrP7u4eZVorrSKNHjseoigW+fmamZnhhSmv4JeffwAApKYml/s1o6MikZGRNzrM0dGpzOu6WVhawc3NHbGxMYAk4cSJwxgy1Lfc9VHtU6vDr5YtW2L16tX48MMP8eDBAyxfvhzLly8v9FpfX198/vnnUCqVBc69/PLLSExMxIYNG3D48GEcPny4kB6A9u3bY/HixbC1tS2yJhsbG6xcuRIzZsxAZGQk5s2bV+AaFxcXrFixAq6urpXeDxEREVFF0ooivtlwAnvP3dNrd7G3wvJ5o9HQ3cE0hZXTyVMndMft2rYrNvgqC1EUcfzYIQTeu43snBxAkiAIAhwcnDB02KgS12NKSU7CxUvnEBH+EBnp6dBqNbpzMpkcDg4O6N69D5q3bF1kHxERYfhn8wYAwJuz5iM5KRF7dm9DenoagLwFrcdPmApbWzsEBQbgyOF9yM7OAgC4uNbB+AnTCp398HjxbHt7B7zy2iyoVCocOrgHoSFBugBBLpfD1dUNw0eMKfFNdHx8LP5c/0eR5wVBwNz/flhsH4VJTUnGoUN7ERMdqavr8QYGTZp6YcDAYSWOPtqyeQMiI8L0angQGoyzZ44jPj5eN5JJqTRD85atMWTIyFLXWV6XL5/THTs7u5ZrPTpD7rW3d9A9J1lZmQb1GxochOzsbABlD1YMqa2pV0vgUfil1hTcsKwo58+d0h33LeOIp4pW0udrbmEBpVIJtVqtm65ZHsePHdQd9+hl+JTUwrRq3T4v/AIQEhJUrr6o9qrV4RcAdOrUCXv37sXevXtx9OhR3LhxAwkJCVAoFHBzc0OnTp0wZswYdO7cucg+FAoFFixYgEmTJuGff/7B6dOnERUVhezsbLi6uqJ58+bw9fXFsGEl/wcRAJo2bQo/Pz+sW7cOBw8eRHh4OCRJgoeHBwYOHIiXX37ZoN0mK6qf6u6XFT+V6T6FXIGZM98o9NzKlb9Ck++XxtJ4683/FNq+cdOfSElJKVOfAwcOQovmBRemPHT4IIKCAsvUp5dXcwweVPCvaPcCA3DkSOEBb0kcHBzwwuSphZ6rjO/Tz8sX6daSKC1+n4z3fapqP09DhvmiTRvvAu38PlWt7xN/nqrn90krivhm/XGkRN7FVO+n31ylYc/2P0vs09jfJ0PExMbo3ogLggw9e/Yuc1+FiY6KxLatG6FSqfTaJUlCcnIi/v57HV6YMh1ubnWL7OPPDX8Uuts4AIiiFklJidizZzvu3r2JMc9OLLGmoMC7OHJ4n96b5NSUZGz8czX69huEfXt36l2fEB+Hrf/8iSnTXiuyT5UqF7ExUdiy+U9ongoatFotYmKisHbNr5hcwudaGW7fvKYbAZTf4w0Mbt+6jnsBtzFx0ksGTWOVJAmiKGLrP38hIiKswHm1WoXbN68hKTEekya/XBGfgsEiwh/qjps09ar018vMzNAd12/QyKB7Tp06qjsub7BSnOjoSN2xo4Nh75tiY6J0gbC1tU2xa2dVJaIo6n5vNjMzK1dfWVlZiImJetSXOZo3LzpUN0Sbtt66MC07K6vYUWxERan14ReQ95ekUaNGYdSoUeXqp2HDhnjnnXfwzjvvlLsmGxsbzJo1C7NmzaoS/RARERGVh1YU8dW649h/IRA96pu6mop188YN3bGra/lGyjxNq9Viy+YNEEUtFEolGjduClsbOyQlJeh2koMkYe/uHcWu0dOgYRME378Haxtb1HGtA3sHJ8hlcqSlpyAqMhyZmXkjbkJC7uPsmRPo0bP4QOFx8OXpWR8uLnVw69Z1aLUaZGVlYv8+PwAocC4uLhYajabIPwbn5qqw+e8N0Go1UCrN0LBRY9jZ2iM2Nlq3aLYkSdjy93rMmv1ukV9nO1t7dO3Wq0D7hfOni/2cinL3zk294MvKyhoNGzaBlZU1kpLi8fDhA4iiFhqNBps2rsWM19+GlVXJ09w2rP8dSYkJAPJGxnl6NoBWq8GD0GDddLHoqEhERIShXr0GZaq9LB6/NgA0aFhwk66KFHD3li4ocq3jBhubomfIPJaakozER1+3ighWiiKKIg7n+7736WvYul3Hjj4Z8dSpDOulmcrePTt0YXZ7707l6uv4sQO647ZtC/5BsbTMzMygUCh04dzDh6Fo3Lhpuful2oXhFxERERFVKq0o4st1x3DgQs2crhIXH6s79vSo2OmOj6cnNmrUBGOenagX+ERHRep2cUtJSSp2NMSIkWOLnYFw1f+SbmSF/5ULJYZfkiRh9NgJaPpoZJBGq8HtW9fznRuPpk2bFzgXEf4QjYp40/p4yl8zr5YYNXqc3rmwh6HY+u/GvP40Gpw7exI9e/UrtB9zC4tC67944Uypp3OJoojDh/fpPm7T1rvAekMqlQqrV/38aESKFn47tmDSCy+X2HdSYgIUCiVGj3m+wDpXK39dogsk/S9fMGr4pdVqdceVMWpJpVIhMvwhrvhfRHjYAwCAhYUlnh9v2OjLY0efBCvt2hXcUKK8UpKTcOfuTVzzv4Tc3LzdKrt261Xi1GIAyMnO0o0Wk8vl6NSpa4XXV5GysjIQEnwfly+d063z5ulZH737DChzn6IoIijwyS6cPXv3r5BaLS2tdEFpXEw0wy8qNYZfRERERFRptKKI/609hoMXa2bwBUA35REAXF3rVHj/hQUuAFDXwxPm5hbIzc0BAKQkJ8PJ2bnQPkpaesOnYxecO3sCubm5UKvVyMnOKnaR7mZeLXTBFwDY2zk8da55oefS0lOLraNpsxYFgi8gbwRS48bNEBp6HwBw+9a1IsOvinTm9HFoHk0XtbGxLfT7YGZmhvETpmL92pUA8qbKlfT1A/LCkemvvlnoaCev5q1x7eolAEBKBSw+bqjH4QIAQBAqdBTj3Ts3daMCH1MoFGjStDmGDhtl0PIwGo0GDx4tPC8IQoEpj0sWfw1JkmDv4IhXXn2rVPX9uuJHZGdl6bXZ2dljwKDhBgctx48d0h03b95K79zBA7t1IfD4idOMGmg+bef2zQgJua/XZmFhgU6du+GZrj3L1feli0924axfv2GpduEsjpm5OfBoUGJqWkqF9Em1C8MvqvGKWsOkPIpaa6U8yrPWSFEGDxpS6Loo5dGiectC19kpr8r4Ps2a/Q5kMjlEUQt1TkbJNxiA36ea//OktLAptJ3fp6r1fSqKKb9PSgubUv2bUxu+TxqtiP+tOYqDl/TfZAVn2GPuzFGo52pf3vJ0KuvnyRAazZORMra2dhXat1JpVuzOZhYWT8Kv7JwsAIWHX4awsLDUjXRJTk5G3WLCG3Nz/YXrFWZKg84Vte7YY6PHPF/kuW7de+vCr6ynQorKEhT0ZEdS7w5FTwVzdnaFnZ090tLywr1Ll86XOHqmW/feRU7zy79uWFnXLy2L/OGPTBAqtO/oqMgCbVqtFvFxMYiMCDNol8czp4/rRu81aNC4woIVAMjNySnQlp2dhcCA22jYsLFBQWBg4F3dcZ9+VWOh+8IkJxcMVFUqNR48CEGLlm1gb+9Q5r6v+j/ZhbNfKXfhLI5S8eTfEZUqt8L6pdqD4RcRERERVTiVWotP/ziEk9cf6LW7Odngp3mj4elasSGRKUmSqDuuyDfjQN7olhIuyFeH4VP6oqIikBAfh+zsLN00t5x8b/61oraoW03Gva4HBEGAJEmQJAmJifFwdq7cXcvTUlN0x23bFb92kXtdT134FVnIIvZPkxfzrFhZWRtWYAXLP+WxojVv2RoWlpbQaDRITkpETEwUsrIykZychG1bN+GZZ3qiZ+9+xfZx6+ZV3XH/gRX7h45u3XtDq9UiIyMdSYkJiImJglqtxp07NxESEoTpr7xZ7Gi+SxfP6b5+bm51DVr3zVS6dO2B1JRk5ObmICkpEVGR4dBoNIiMCMPa1Ssw9tmJBoWRTwsNDdaNhLW3d6jQn8/84aNYic8p1VwMv4iIiIioQmXnqvH+rwdw6W6EXru7kw1++u9oeLjUnOALyNvhUZLy3owZc5ROad29cxPnzp5Ear5Ap7pRKJRQq/N2vUxLSanU8EsUxSeBoiDAyqrwkcGPubi44tFSR3qLxpeFUqks+aJKkH+Xv9Kuj1aSevUaFJjql38q5MWLZ1C/QcMiF9m/e+embsdTBwcnODqWfZRjYZ7eJCE3Jweb/16PxMR45Dw6fml60aNrr1w5rzvu08+wxfFNpU2b9gXaDh7cg9s3r0EURezcsQVvvPXfUu/6eOrEkx13u3YvuOlEeeTf7VZhop8Pqt64PygRERERVZj0rFzMW7anQPBV19kWP9fA4AsAFAq57ji9nKFHZdny93rs3+dXrYMvIG+drMcyMitmSYOiJCcn6o4NmQJomW+kT0nTO6sqW7snU5ErOvwqTKvW7dC6dTvdx8ePHyry2nNnT+qOe5awIUNFMLewwAtTX4Eg5L1lTkpKRHy+zS3yC3sYqpsyam1tbdL1vMpqyJCRsHv0/ddqtXpfb0OkpqboduFUKpVo06b8uzzm9zj0BvIWvycqLY78IiIiIqIKkZyejXnL9iAwPEGvvaG7A5bN8YWrY/EjZ6orS0tL3aiEhPh4NGvazMQV6du7ZwciI8N1Hzs6OqFdex80atwU9vaOuqmaq1f9gtQU4y2uXjZPAhmZvHL/ji+KYskX5ZcvKxJkFbtelrE8PdLHkIX7y6tzl+64c+cmACA5KbHQa+LjY3XBrZmZOZq3bF2pNT2mUCjg5OSkC3VuXPfHwEHDC1x3It+Ip46duxmltsrQtFlzXPXP22ghNCQIfUsxgu3Ykf2641b5As2Kkn/kV0WP+qPageEXEREREZVbfHIG3l66Gw9jUvTam9d3wY9vj4SjraVpCjOCOnXckJr6aK2nQhb1NiVRFBF4747u41at2mLYiDEmrKh88q9JZWdbcRsmFMbWtnSjoLKznywWb25mXik1GYO5ublu44PAoAC0b9+xUl/P2eXJ1NWiAsfr167ojlWqXPz4w1fF9pmakqy7piw7P+ZnbWOrC7/SUgvfrTQp8Ungf+rEEZw6caTYPv/ZvEF3bOqdH/NzcnLRHecUsgFAUfLvwgkI6N1nYAVXBuTkPNlVt1EZ1iMj4rRHIiIiIiqXyPg0vPnDzgLBV/um7lg+b1SNDr4AoF3bJ6Mc4uPjTFhJQQ8fhuqCG5lMVq2DLwBQ51tTzdnFpZgry8/CwkK34YAkSSXuMJmQ8OR7b13ELo7VQf5RNQ9CQ4q5smLor5NX+Ii5Uo/Cq0DafPWZWxQeahpjiqgxqPJNLSzN5h35d+H09KxX6rXCShITHaX375iDo1OF9k+1A0d+EREREVGZhUYlYc7S3UhI1Q8GurT0xLdvDoOlec1fmNjdvS4sLS2RnZ0NURRx/vw5dOvW3dRlAQDS056MVKnoN6TGFhERBjx6A6xQKEpcgL4iWFlZI/PR2mK3b11Hl2eK/r5GR0fpjlu0MM60vMrQsmUbxMTkfS7RURElXF1+QYF3dcdFLfTfvn1H2BgQKF44fxoAYG5ugQ4+nQEALuXcFCEp39pvLi51Cr2mV58BUD0aLVeUO3du6n4eW7dpD1tbu0f1GRbiXrl8HmdOn4BWq4GlpRVGjx0PD496Bt1rqMjwh7pjG1vDA9z8u3D27T+4QmsCgNu3rumO849OIyoNhl9EREREVCb3wuIxb9kepGToT4/p7d0IX7w2CObK2vOrZu/efXHwYN6aN1ev+cPLqzmcnUtelyY3JwfmFhaVVlf+EUj518x5mkqlQmZG5S4gb4jEhHi9aXD5nT1zQnfs4upmlHq8mrfCtat5ayBdv3a5yPArMTE+X9AooF17H6PUVxm8fTrj5MkjEEURWVmZiI+PhWsZvt43bvgjNye32MAQ0F/IvlHjwqezudf1gHtdjxJf83H4ZWFpiR7FLIqvUqmwf+9ODB02qtifvwehwbqF7AVBQAefLoVe19mAdb4iIsJ0z0ibtt6lmuoYFRWBk/mmUmZnZ2HrP39h1ux3IZOVPJnr4ME9aNvWu9iwLDcnJ9/URaBTJ8PWLsu/C6etrR3c3OoadF9pBAQ8mbpd0vNEVBROeyQiIiKiUrt+Pxr/WbyrQPA15BkvfDVzcK0KvgCgWdNm8PTMe2MpSRL++Xcz7gUGFHl9ZGQ4Vv66BGtWr6jUKV2NGzfVHYuiqAsH8ktNScaaVb9Ao3myQ2FiQnyl1VScjRvXIC42pkD77ZvXEBkRpvt4wMChRqmnZ69+unAhPT0NRw7vK3BNbk4O/tnyp+7jFi1bGxRIVFUymQzNvFroPj5x/HAxVxfuxPHDOHJoH06fOor9e/2KfMZ3bt+sW8heEAT06z+kTDWXRnp6Gv5YuRzBwYFY9cfPeSMKCxEVFQG/nf/oPm7cuJnJRk9e9b9YoE2j0SA0NLjEezf+uRq3b17Dlr/X6xazf1pOdhbWr1up+z5ZWVnDq3lLg2rLH1527lLxwVRwcCBUqrxRdebmFmjZqm2FvwbVDrXrtxIiIiIiKrcLd8Lx/ooDyFVr9Nqf7dMa8yf1hqya7nRXXqN8R2PLP38jKSkJoijiyJHDOHnyBNzc3OHg4ABBEJCRkYHY2Bi99aP27d2Bkb7PVUpNMpkMDRo0QljYAwB5o6cCA+/C3d0DMpkMMdFRiIvLC5vyL3R++tRROLu4Gn0hbo1ajb/+XAXXOm7wqFsPEAREhD9EYuKTMK5evQbFji5JTk7E3Tu3CrQ/XjNIkiS9UWRA3hSvwhZ2NzMzQ68+A3DyUQB047o/gu8HolHjprCwsERiQjzCwkJ1oYG5uTmGDR9d+k+8ihk4cBgC7+VNRwwPe4C42BjUcXM3+H67R1P6AODu3Zu4d+8O3OvWhauLG+QKBZISExAREaYXuA4aPMKgqY3lZW5uAYVSidzcHOTm5uCfzRtgY2MLD8/6sLOzQ3Z2NqKjIpCUb+dJa2sbjBrzfKXXVrTC/001JGK1trYGkPfcHz92EOfOnoCHRz04OjpDlETExkQjJkZ/Ta2Jk140qKr8u3AqFArdVNOKdHD/bt1x5y7VdydNMj2GX0RERERksBNXQ/HpqkNQa/RHckwZ7I23nuumWyC8NpLJZJg08QUcPXoYAffyRn2p1WpERIQjIiK80Hvqenhi8BDfSq1rzLMTsfqPn3VrVyXExyHhqYX5nZycMWXaa/hj5XJkZ2dBpVIh+H6g0cOvRo2a4MGDEMTHxSI+LrbAeSdnF4yfOK3YPkJC7hc6wi2/p8+bmZkXuathp05dkZ2VhUsXzwIAMjMzcPvW9QLXWVpa4eXpr1frUV+PWVhaoVPnbrhy+TwAwG/nP3ht5myD7/fp9Awsraxw+NBeqNVqiKIWUZERiIosuIaYTCbDkKG+aNW6XSE9VTwzMzO88upb2L51k27UV0ZGut6uqPm5u3tg3PgpJv2+duz4TIH6FAoFGuYb2VmUMc9OxPFjB3Ht6mVIkoTc3FyEhgYXOmrM0tIK4ydMNXhB+WNHDuiOm1fCOnfHjh7Q7fJoZ2ePZ7r2rPDXoNqD4RcRERERGWT/hUB8te4YtKL+zmYzR3fBS8M71urgK78BAwahW7fuOHPmDMIjwpGbm6MbVSEIAszNzeHpWR/de/Yt01pKpaVQKPDazNk4fHgfgu7d1U0hEgQBtrZ26NipK3w65q1l9OLLM7Bj2xbExcWikwHrGFW0Z8dNxu2b13Du3ClkZKTrvm4WFpZo09YbffoONHpNANCrd3+0aNkax44cQGxsdL4dCgVYWlmiVat26N1nQI0Ivh7r03cgggLvIi0tFenpadi/d2epdgtt2aotWrZqiwvnTiMg4BZSU1Og1WoB5AVeFhaW8GreCj169oVFJa57VxiFQoHxE6chLjYG586eQGRkBFSqXN3zplAo4OJSB9269ULjpl5Gra0wdT080bvvQJzVLXhvidFjJxj8vPXrPwTduvXCyVPH8DA0GFlZmbrRinK5HLa2dmjv3bHUP/OPgykA6NuvYhe6fxAajGtXLwPI+7fq+QlTK7R/qn0Eqabsy0rVlio7HZJU/FoXSgsbyGRyiKIW6hzTL8ZK1QOfGyoLPjdUVjX92dl24jYWbTpVoH3O+B6YOLC9CSqqvgRBBjPLyp/eVV38vHyRLpCbN/8jE1dD+aWnp2HNqhXQavPCvt59Bxq0uDvVHjk5OYiMDEPTps0rrM/UlGSsXfOrLqAbOHh4kSMziQxVc/40QURERESVYuvxWwWCL5kg4MNp/Rh8EdVgtrZ2mDzlZd0Io1MnjuDGdX8TV0VViYWFRYUGX2lpqdiw/ndd8NWte28GX1QhGH4RERERUZH2nA3AD3/rr48kl8nw+asD4dvTsN3AiKj6cnV1w3PjJuumNR85vK/IXQOJyiM1JRnr1vwGtTpvIwTvDp3RvUcfE1dFNQXDLyIiIiIq1NErwfhmg/6ueGZKOb57cygGdm5moqqIyNjqN2iEF6a8Ark8b8nooKAAE1dENVFEZLhuB9AePfpiwMChJq6IahIueE9EREREBZy5+RCfrToCMd/ysAq5DN++MRTd2hh3B0AiMr06bu6Y/uqbOH7sEEaNHmfqcqgGatOmPTIz0mFtZY027TqYuhyqYRh+EREREZGeK/ci8dFvB6EVn2xIIxMEfP7qIAZfRLWYra0dgy+qVM907WnqEqiGYvhFRERERDq3QmLx3i/7oNJo9do/eqk/+ndsYqKqqCar4+YOtSoXdvYOpi6FiIhqKIZfRERERAQACAxPwPyf9iA7V6PX/s7k3hjereJ28yLKb/yEqaYugYiIajgueE9EREREeBCTjLnLdiM9S6XXPuu5bniubxsTVUVERERUfgy/iIiIiGq5qIQ0zFmyGynpOXrt00d0wpQhHUxTFBEREVEFYfhFREREVIvFJ2fg7SW7EJ+Sqdc+cWB7vDaqs4mqIiIiIqo4DL+IiIiIaqnk9Gy8vXQ3ohLS9dpH92qFt5/vDkEQTFQZERERUcVh+EVERERUC6Vn5WLust14GJOi1z6kSzO8+0JvBl9ERERUYzD8IiIiIqplsnLUmP/TXgSFJ+q19/ZuhI9f7g+5jL8iEhERUc3B32yIiIiIapFctQYLVuzHrZBYvfYurerhi9cGQSGXm6gyIiIiosrB8IuIiIioltBotfh45SFcuRep1+7dzB3fvjEU5kqFiSojIiIiqjwMv4iIiIhqAY1WxOerj+LMzYd67S0buOL7WcNhaa40UWVERERElYvhFxEREVENJ4oSvl5/HEeuBOu1N67riMVvj4CNpbmJKiMiIiKqfAy/iIiIiGowSZKwcONJ7L8QqNfu6WqHpXN94WBjaaLKiIiIiIyD4RcRERFRDSVJEn7ccgZ+p+/qtbs72WD5vFFwsbc2UWVERERExsPwi4iIiKgGkiQJv2y/gH+P3dJrd7G3wrJ5o+DuZGuiyoiIiIiMi+EXERERUQ20avdl/HXwml6bo60lls0bhXqu9qYpioiIiMgEGH4RERER1TAbDlzF6j1X9NrsrM2xbK4vGrk7mqgqIiIiItNg+EVERERUg2w+cgMrtl/Qa7OxNMPSOb5o6ulsoqqIiIiITIfhFxEREVENsePkHSz956xem5W5Eotnj0SLBq4mqoqIiIjItBh+EREREdUAe8/dw8KNJ/XazJUKfP+f4WjbxM1EVRERERGZHsMvIiIiomru8OX7+Hr9cb02M4UcC98aBh8vD9MURURERFRFMPwiIiIiqsZOXAvF56uPQJQkXZtCLsNXrw9Bl1b1TFgZERERUdXA8IuIiIiomjp3Kwyf/H4IWvFJ8CWXCfjitUHo2a6hCSsjIiIiqjoYfhERERFVQ5cDIvDBbweg0Yq6NkEAPpk+AP18mpiwMiIiIqKqheEXERERUTVz/X403vtlP1RqrV77h9P6YUgXLxNVRURERFQ1MfwiIiIiqkZuh8Zi/k97kaPS6LW/M7k3RvZoaaKqiIiIiKouhl9ERERE1cS9sHjMW7YHWTlqvfa3n++O5/q2MVFVRERERFUbwy8iIiKiaiA4MhFzl+5BRrZKr/2Nsc9g0iBvE1VFREREVPUx/CIiIiKq4h7EJOPtJbuRmpmj1/7KyE54cVhHE1VFREREVD0w/CIiIiKqwiLiUvH2j7uQnJ6t1z5lSAe86tvZRFURERERVR8Mv4iIiIiqqOjEdMxesgsJqVl67eP7t8Vbz3aFIAgmqoyIiIio+mD4RURERFQFxSVnYPaPuxCblKHXPrZ3a8yd0JPBFxEREZGBGH4RERERVTGJqVl4e8kuRCWk6bWP6N4C70zuzeCLiIiIqBQYfhERERFVIcnp2Xh7yS6ExabqtQ/q3AwfTOsLmYzBFxEREVFpMPwiIiIiqiLSMnMxd9luhEYn67X37dAYn07vD7mMv7oRERERlRZ/gyIiIiKqAjKzVZi3bDeCwhP12nu0a4AvXhsEhVxuosqIiIiIqjeGX0REREQmlpWjxvyf9uLuw3i99i4tPfHVzCFQKhh8EREREZUVwy8iIiIiE8pRqfHeL/twIzhGr72DV11899YwmCsVJqqMiIiIqGZg+EVERERkIrlqDd7/9QD8A6P02ts2ccP3s4bDwkxposqIiIiIag6GX0REREQmoNZo8cnvh3DxToRee8uGrlg8ewSsLcxMVBkRERFRzcLwi4iIiMjINFoRn68+gtM3Huq1N/N0xpK3R8LG0txElRERERHVPAy/iIiIiIxIFCV8vf44jvqH6LU3ruuIpXN9YWdtYaLKiIiIiGomhl9ERERERiJJEr7fdBL7LwTqtddztcPSub5wtLU0UWVERERENRfDLyIiIiIjkCQJS/85i52n7uq1uzvZYNm8UXCxtzZRZUREREQ1G8MvIiIiIiP4bedFbDl6U6/Nxd4Ky+aNgruTrYmqIiIiIqr5GH4RERERVbK1e69g/f6rem0OthZYNm8U6rnam6gqIiIiotqB4RcRERFRJfr78HWs9Luk12ZrZY5lc0ahkbujiaoiIiIiqj0YfhERERFVku0nb2PZv+f02qwtzLBkzkg0q+dsoqqIiIiIaheGX0RERESVYO+5e/h+4ym9NgszBX74z3C0aljHRFURERER1T4Mv4iIiIgq2JHL9/H1+uN6bWYKORa+NQztm9U1TVFEREREtRTDLyIiIqIKdOLqffzf6qMQJUnXppDL8PXrQ9C5ZT0TVkZERERUOzH8IiIiIqog526G4oOfd0Eriro2uUzA568OQo92DU1YGREREVHtxfCLiIiIqAL43wvH/KXboNZodW2CAHz8Un/079jEhJURERER1W4KUxdQVdy8eRPbtm3DhQsXEB0dDUmS4OzsjA4dOmDUqFHo16+fQf1kZGRg3bp1OHToEMLDwyGKIjw9PTFw4EC89NJLcHJyqpb9EBERUdFuh8Zi3tLdyFVp9Nrfn9oXQ7s2N1FVRERERAQAgiTlW5CiFkpLS8Mnn3yC/fv3F3tdnz59sHTpUlhZWRV5TXBwMGbMmIHIyMhCz7u4uGDFihVo3759sa9V1fqpbKrsdEiSWOw1SgsbyGRyiKIW6pwMI1VG1R2fGyoLPjdUWoHhCZj9ox/Ss1R67fMm9sT4/u1MVBVVZYIgg5mlranLICIiqjVqffi1ZMkSrFixAg4ODpg6dSoGDBiAevXqIScnB/fv38f69etx/PhxAMDgwYPx008/FdpPRkYGxowZg4iICCiVSsydOxe+vr6wsLDA5cuX8d133yEsLAwuLi7YsWMHXF1dq0U/xsDwiyoLnxsqCz43VBoPopPx1uKdSEnP0Wt/69mumDrUx0RVUVXH8IuIiMi4av2aX3PmzMFnn32Gffv2Yfbs2WjTpg3s7e3h5uaGnj174rfffsPkyZMBAIcOHUJgYGCh/axatQoREREAgIULF+K1116Du7s7HBwcMGjQIMyaNQsAkJCQgF9++aXIeqpaP0RERFS4yPg0vL1kV4Hga8aY7gy+iIiIiKqQWh9+CYKAF154odi1ryZNmqQ7Dg4OLnBeq9Vi06ZNAAAfHx+MGDGiwPnffvtN9/G2bduQnZ1d5fshIiKiwsUlZ2DO0l1ISM3Sa586vAtmjO1hoqqIiIiIqDC1PvwyhEr1ZA2POnXqFDjv7++P5ORkAMDw4cMLnN+6dStCQkIwbtw4AEBOTg5Onz5d5fshIiKigpLSsvH2kt2ISkjXax/X3xtzJ/WHIAgmqoyIiIiICsPwywDr1q0DAHh5eaFjx44Fzt+6dUt37OOjP80hOzsby5cvh7e3N+bMmVPoPVW1HyIiItKXlpmLect2Iyw2Ra99aFcvvDdtEIMvIiIioipIYeoCqhpRFKFWq5GZmYk7d+5g7dq1OHXqFDw8PLB06dJCf6kNCQnRHderV0/v3Lp16xAXF4dFixbBzc0NCoUCGo1G756q2g8RERE9kZmjwvyf9iAoIlGvvW+Hxvjoxf6QyRh8EREREVVFDL+e4ufnhwULFug+dnZ2xuzZs/Hiiy/Czs6u0HuSkpJ0x46Ojrrj5ORk/PHHH+jTpw+6du0KALCzs0NSUpJuWmJV7sdYFOZWJV4jCDLd/ystbCq7JKoh+NxQWfC5ocLkqNR4/9c9uB0ap9fevV0jfD1rDMyUCj47RERERFUUw6+nhIaG6n2cmJiIDRs2IDMzE7Nnz4aVVcGg5vFi8WZmZnojw3799VdkZGRg/vz5ujYzMzMAQFaW/gK5VbEfY5HJ5AZfKwgCBMHw64kAPjdUNnxu6DG1Rov3f9qFKwHheu0dW9TH928/BwtzpV47nx0iIiKiqoXh11PmzZuHefPmITMzExEREdi9ezf+/PNPrF69GqdPn8amTZtgY1P4X3NlsidLqEVGRmLjxo3w9fVFy5Ytde2iKJZYQ1Xrp7KJorbEawRBBkEQIEkSJMn0NVP1wOeGyoLPDeWn0Yr4eMVunLmhvzxA68bu+GHuWJgrZbr/jvHZodIozR//iIiIqHwYfhXB2toaLVq0QIsWLTBgwAC88MILCAwMxJIlS/Dxxx/rXft4NJharda1LVmyBJIk6S0qDwC5ubl691TlfoxFk5tV4psEpYUNBEEOSRKhzskwUmVU3fG5obLgc0OPiaKEr9Yfw5HLgXrtTT2dsPg/w2AuqKHOefLfWj47ZChBkMHM0tbUZRAREdUa3O3RAD4+PujUqRMAYPv27QXOOzk5AQC0Wi3S09MREBCA3bt3Y9KkSahfv77uOrVajfT0dL17qnI/REREtZUkSVi8+TT2ndcPvhq42WPpHF/YWVuYqDIiIiIiKi2GXwZq1KgRACAjI0NvQXkAaNKkie44MjISixYtgqWlJd566y2966Kjo3XTDBs3blzgNapaP0RERLWRJEn4ZfsFbDtxW6/d3ckGS+eMgpOd6UZLExEREVHpMfwyUE5ODoC8RWytra31zrVt21Z3vG7dOpw6dQqvvPJKgdFU/v7+uuN27doVeI2q1g8REVFttHafP/46eE2vzdnOCsvmjoKbE3dxJCIiIqpuGH4ZQKvV4sqVKwCAhg0bwtzcXO+8j48PHB0dAQDbtm2Ds7Mzpk+fXqCf/fv3AwAsLCzQs2fPAuerWj9ERES1zeYjN/C73yW9NntrCyyd64t6dexNVBURERERlUetD79+//13TJs2DSkpKUVes2LFCkRFRQEApkyZUuC8XC7H5MmTdR+//PLLBUaHnT17FsePHwcAjBs3DpaWllW+HyIiotpk95kALP3nrF6btYUZlswZiSYeXBuTiIiIqLoSJEmSTF2EqQQEBGDixInIycmBg4MDpk2bhv79+6N+/frQarW4d+8eNm7ciAMHDgAAunXrhj/++ANKpbJAXxkZGRgzZgwiIiLg7u6OBQsWoFu3bhBFEYcOHcLChQuRlZUFFxcX7NixA66uroXWVNX6MQZVdrpBuz3KZHKIopY7aJHB+NxQWfC5qZ1OXAvFR78dhJjv1yILMwWWvD0S7ZvVNagPPjtkKO72SEREZFy1OvwCgCtXruDDDz/EgwcPir3O19cXn3/+OWxsil7rIzg4GDNmzEBkZGSh511cXLBixQq0b9++2Neqav1UNoZfVFn43FBZ8LmpffzvReK/y/dCpdHq2pQKGRbNGoEureoZ3A+fHTIUwy8iIiLjqvXhF5C3ptfevXtx9OhR3LhxAwkJCVAoFHBzc0OnTp0wZswYdO7c2aC+MjIysG7dOhw8eBDh4eGQJAkeHh4YOHAgXn755QKLzleXfioTwy+qLHxuqCz43NQu98ISMGvxTmTlqHVtMkHAV68PQd8OpdsJmc8OGYrhFxERkXEx/CKTY/hFlYXPDZUFn5vaIzw2BW8s2onk9Gy99g+m9cWonq1K3R+fHTIUwy8iIiLjqvUL3hMREVHtE5+SibnL9hQIvt58tmuZgi8iIiIiqroYfhEREVGtkpaZi3nL9iA6MV2vffIgb0wd0sE0RRERERFRpWH4RURERLVGjkqN937Zh5CoJL32Ed2aY9Zz3SAIgokqIyIiIqLKwvCLiIiIagWNVouPfz+EG8Exeu092zXE+9P6QiZj8EVERERUEzH8IiIiohpPFCV8vf4Ezt4M02v3buaOL2cMhkIuN1FlRERERFTZGH4RERFRjSZJEpZvPYf9FwL12pt5OmPhW8NhbqYwUWVEREREZAwMv4iIiKhG23DgKjYfuaHX5uFih8Vvj4CtlbmJqiIiIiIiY2H4RURERDXWzlN38OuOi3ptTnaWWDJnJFzsrU1UFREREREZE8MvIiIiqpGOXw3B9xtP6bVZW5hh8eyRqOdqb6KqiIiIiMjYGH4RERFRjXPlXiQ+W3UYoiTp2syUciycNQzN67uYsDIiIiIiMjaGX0RERFSjBDyMx4IV+6HWiLo2uUzA/14bDB8vDxNWRkRERESmwPCLiIiIaoz7EYmYu2w3snLUeu3vT+2L3t6NTFMUEREREZkUwy8iIiKqEUKjkvD20l1Iy8zVa//Pc90wskdLE1VFRERERKbG8IuIiIiqvbDYFLy9ZDdS0nP02qcN9cELQzqYpigiIiIiqhIYfhEREVG1Fhmfhtk/7kJiWpZe+8QB7fDG2GdMVBURERERVRUMv4iIiKjaiklKx+wf/RCfkqnX/myf1nh7fA8IgmCiyoiIiIioqmD4RURERNVSfHIGZv+4CzFJGXrto3q2xPxJvRl8EREREREAhl9ERERUDSWmZmH2kt2IjE/Tax/WtTnem9IHMhmDLyIiIiLKw/CLiIiIqpXk9Gy8vXQXwmJT9NoHdmqKD1/sB7mMv94QERER0RP87ZCIiIiqjbTMHMxduhuhUcl67X28G+GzVwZAIeevNkRERESkj78hEhERUbWQkZ2Lucv2ICgiUa+9e9sG+OK1wVDI5SaqjIiIiIiqMoZfREREVOVl5qjw3+V7EfAwXq+9S6t6+Pr1ITBTMvgiIiIiosIx/CIiIqIqLTtXjXd/3odbIbF67T5edfHdm0NhrlSYqDIiIiIiqg4YfhEREVGVlavSYMGK/bgWFK3X3q6JG76fNQIWZkoTVUZERERE1QXDLyIiIqqSVGotPvjtAC4HROq1t2roih9mj4CVBYMvIiIiIioZwy8iIiKqcjRaLT754xDO3w7Xa29e3wU/vu0LG0tzE1VGRERERNUNwy8iIiKqUrSiiP+tPYZT1x/otTfxcMKSOSNhZ83gi4iIiIgMx/CLiIiIqgxRlLDwr5M4dOm+XntDdwcsm+sLBxtLE1VGRERERNUVwy8iIiKqEiRJwtJ/zmDXmQC9dg8XOyyb4wsnOysTVUZERERE1RnDLyIiIqoSVvpdwj/Hbum11XG0xvK5vnB1tDFRVURERERU3TH8IiIiIpNbv98f6/b567U52Vli2dxRqOtiZ6KqiIiIiKgmYPhFREREJvXPsZv4dcdFvTZbK3MsneOLBm4OpimKiIiIiGoMhl9ERERkMrvPBODHzWf02qwslPjx7ZFo6ulsoqqIiIiIqCZh+EVEREQmcejSfXzz53G9NnOlAotmjUDrRnVMUxQRERER1TgMv4iIiMjoTl1/gC/WHIUkPWlTKmT49s2h6OBV13SFEREREVGNw/CLiIiIjOrS3Qh8/PtBaEVR1yaXCfjitcHo2rq+CSsjIiIiopqI4RcREREZzfX70ViwYj/UmifBlyAAn7w8AH07NDZhZURERERUUzH8IiIiIqO4+zAO7/y0DzkqjV77gil9MeQZLxNVRUREREQ1HcMvIiIiqnTBkUmYt2wPMnNUeu1zxvfA6F6tTFQVEREREdUGDL+IiIioUoXHpmDO0l1Iy8zVa585ugsmDmxvoqqIiIiIqLZg+EVERESVJjohDW8v2Y2ktGy99mlDffDS8I4mqoqIiIiIahOGX0RERFQpYpMy8J8fdyE2OUOv/fl+bfHG2GcgCIKJKiMiIiKi2oThFxEREVW4hNRMzP7RD9GJ6XrtI3u0wNwJPRl8EREREZHRMPwiIiKiCpWUlo23f9yNiPg0vfbBXZrh/al9IZMx+CIiIiIi42H4RURERBUmNSMHc5buwoOYZL32fj5N8MnLAyCX8VcPIiIiIjIu/gZKREREFSItMxdzlu5GcGSSXnuv9g3x+asDoZDz1w4iIiIiMj7+FkpERETllpmtwn+X70FgeIJee7c29fHljCFQKuQmqoyIiIiIajuGX0RERFQuWTlqzP9pL+48iNNr79TCE9+8PhRmSgZfRERERGQ6DL+IiIiozHJUarz3yz7cCI7Ra/duVhcL3xoGczOFiSojIiIiIsrD8IuIiIjKJFetwYIVB+AfGKXX3qaxGxb9ZzgszZUmqoyIiIiI6AmGX0RERFRqao0WH608iEt3I/TaWzZwxeLZI2BtYWaiyoiIiIiI9DH8IiIiolLRaLX49I/DOHszTK+9maczlswZCVsrcxNVRkRERERUEMMvIiIiMphGK+LzNUdx4lqoXnvjuo5YOtcXdtYWJqqMiIiIiKhwDL+IiIjIIFpRxNfrj+PI5WC99gZu9lg2dxQcbS1NVBkRERERUdEYfhEREVGJRFHCwr9OYv+FQL12Dxc7LJ87Cs72ViaqjIiIiIioeCbbf1yr1SIoKAixsbFIT0+HRqPB2LFjTVUOERERFUGSJPy07Rx2nQnQa3dzssHyeaPg6mhjosqIiIiIiEpm9PDr6tWrWL9+PY4dO4bc3Fy9c4WFX35+fvDx8UH9+vWNVCERERHlt+HANfx9+IZem6uDNZbPG4W6zrYmqoqIiIiIyDBGC78kScJXX32FjRs3QpIkSJKkd14QhAL3/Pjjj1i5ciW6deuGNWvWGKtUIiIiesTv9F38uuOCXpujrSWWzR2Feq72JqqKiIiIiMhwRgu/PvnkE2zduhWSJMHDwwOjRo1Cq1atEBoaiqVLlxZ6T6dOnSBJEs6fP48bN26gffv2xiqXiIio1jt+NQQL/zqp12ZtYYbFs0eiobuDaYoiIiIiIiolo4RfZ8+exb///gtBEDBhwgR8/PHHMDMzAwAcP368yPv69OmDVq1aISAgAH5+fgy/iIiIjOTKvUh8tuowxHwjtc0Ucix8axhaNHAxYWVERERERKVjlN0et2zZAgBo1aoVvvjiC13wZYiBAwdCkiRcunSpssojIiKifO6FxWPBiv1Qa0Rdm0wQ8MVrg+DT3MOElRERERERlZ5Rwq9r165BEAQ8++yzpb63cePGAICoqKiKLouIiIieEhabgnnL9yArR63X/v60vujTobGJqiIiIiIiKjujhF+JiYkAgLp165b63sejxLKzsyu0JiIiItIXn5yBuUt3IyU9R6991nPd4NujpYmqIiIiIiIqH6OEX5aWlgCehGClERoaCgBwcHCoyJKIiIgon7TMHMxdtgcxSRl67VMGe2PKkA6mKYqIiIiIqAIYJfxq0aIFAODQoUOluk+SJPj5+UEQBLRu3boySiMiIqr1snPVmP/TPoRGJ+u1+/Zoibee62aiqoiIiIiIKoZRwq8RI0ZAkiScOXMGO3bsMPi+ZcuW4f79+wCA4cOHV1J1REREtZdao8VHKw/idmisXnsf70Z4b0ofCIJgosqIiIiIiCqGUcKv559/Hs2aNYMkSfjwww/x5ZdfIjg4uMjr7969i/nz5+PXX3+FIAho3rw5Ro8ebYxSiYiIag1RlPDlumM4fztcr93Hqy4+f20QFHKj/JpARERERFSpBEmSJGO8UExMDCZNmoSYmBjdX5EtLCxgbm6OlJQUCIKABg0aIDExEZmZmQDypj26ublhy5YtcHNzM0aZZAKq7HRIkljsNUoLG8hkcoiiFuqcjGKvJXqMzw2VRW15biRJwo9bzuDfY7f02r3qO+Pn/46GjaW5iSqrvmrLs0PlJwgymFnamroMIiKiWsNof9J1d3fH5s2bMXjwYEiSBEmSkJ2djdTUVF0YFhYWhoyMDN35vn374u+//2bwRUREVMHW7vUvEHzVc7XDj7NHMvgiIiIiohrFaCO/8rt69Sr27t2LEydOICoqChqNBgCgUCjg5uaGPn36YOjQoejWjYvs1gYc+UWVhc8NlUVteG62nbiNRZtO6bW52Fvh13fHwsPFzkRVVX+14dmhisGRX0RERMZlkvDracnJebtLOTo6mrgSMgWGX1RZ+NxQWdT05+b41RB8tPIg8v/X39bKDL/MH4Omns6mK6wGqOnPDlUchl9ERETGpTB1AQBDLyIiImO4+zAOn68+qhd8mSsVWDRrBIMvIiIiIqqxuI0TERFRLRCblIH3ft6PXLVG1yaXyfDVzMFo19TdhJUREREREVUuhl9EREQ1XFaOGu/9sg+JaVl67e9N6Y0e7RqaqCoiIiIiIuNg+EVERFSDaUURn606jKCIRL32KYO9MapnKxNVRURERERkPEZZ8+vFF18s0CYIAhYvXgxn56qzxsiVK1fg5+eHixcvIiEhAbm5uXB1dUWHDh3w3HPPoWfPnsXev23bNnzwwQcGvdYrr7yCBQsWFHtNRkYG1q1bh0OHDiE8PByiKMLT0xMDBw7ESy+9BCcnJ4Neq6L6ISKi6uenredx5uZDvbY+3o3w5rPcUZmIiIiIagejhF8XL16EIAjIv7GkIAjIzc01xsuXKDs7G59++in8/PwKnIuIiEBERAR2796N5557Dl9++SXkcnm5X7NNmzbFng8ODsaMGTMQGRmp1x4UFISgoCD8+++/WLFiBdq3b2+UfoiIqPrZcfIONh+5odfWooELPntlIGQywURVEREREREZl1HCL0HI+wXby8sLDg4OunZzc3NjvHyxVCoVXnvtNVy+fBkymQwTJ07EmDFj0LBhQ6jVaty9exeLFy/GvXv3sG3bNjg7O+Odd94psd8bN24Ue16pVBZ5LiMjAzNnzkRkZCSUSiXmzp0LX19fWFhY4PLly/juu+8QFhaGN998Ezt27ICrq2ul9kNERNXPpbsR+OHvU3ptLvZWWPjmMFiaF/3fICIiIiKimsYo4ZednR3S0tIwc+ZMjBo1yhgvaTAzMzNMmTIFYWFh+PbbbwtMbXRzc0PXrl0xatQohIeHY/369Xj11Vfh6OhYbL/lCfZWrVqFiIgIAMDChQsxYsQI3blBgwYhIyMDCxYsQEJCAn755Rd89tlnldoPERFVLw+ik/HRyoPQik9GXFuYKfD9rOFwdbQxYWVERERERMZnlAXvW7ZsCSBv+mNVNGLECBw7dqzINb0sLS0xdepUAEBubm6lfh5arRabNm0CAPj4+OgFVo/P//bbb7qPt23bhuzs7Errh4iIqpeUjGy88/M+ZGSrdG2CAPzfKwPRogFH+BIRERFR7WOU8Gv8+PGQJAk7d+5EUFBQqe49fvw4WrVqhdatW1dSdXkUiuIHwTVu3Fh3HB8fX2l1+Pv7Izk5GQAwfPjwAue3bt2KkJAQjBs3DgCQk5OD06dPV1o/RERUfajUWnzw6wFEJaTptc96thv6dGhcxF1ERERERDWbUcIvX19fPPvss1CpVJgxYwbu3r1bqvslSdJbLN8UsrKydMf29valulcURYOvvXXrlu7Yx8dH71x2djaWL18Ob29vzJkzp9B7KrofIiKqHiRJwjd/Hsf1+zF67aN6tsTkwd4mqoqIiIiIyPSMsuYXAHzzzTdwcXHBmjVrMH78eEydOhXTp0+Hm5ubsUool/wL2Hfo0KHE6/38/LBjxw4EBgYiISEBlpaW8Pb2xtSpUzFo0KAi7wsJCdEd16tXT+/cunXrEBcXh0WLFsHNzQ0KhQIajUbvnoruxxgU5lYlXiMIMt3/Ky24Xg0Zhs8NlUV1fW5W+Z3DgQv6o6s7t6qPD6YPh1JR/l2KqWTV9dkhIiIiqumMFn5pNBpMmDABderUwQ8//IB169bhzz//RLdu3YoNkx48eGCsEoukUqmwa9cuAHmjqOrXr1/iPe+++67ex1lZWTh37hzOnTuHadOm4eOPPy70vqSkJN1x/kX1k5OT8ccff6BPnz7o2rUrgLyNBJKSknTTGyujH2OQyQx/UyYIAgSBb+KodPjcUFlUp+fm4IW7+HXbGb22hu5O+P7t52BuZmaiqmqv6vTsEBEREdUGRgm/evfujcTExAJTFzUaDc6cOYMzZ84UcWfVsHLlSt06X2+//XaR13l6emLo0KFQKpXo0qULunbtCnd3d6hUKpw/fx7ff/89wsPDsWHDBrRu3RrPPfdcgT4eLzpvZmYGQRB07b/++isyMjIwf/58XZvZozc0+adkVnQ/xiCK2hKvEQQZBEF4NAXW8GmkVLvxuaGyqG7Pza3gaPzfyr16bfbWFvhx3rOwsVQa9G8sVYzq9uyQaZXmj39ERERUPkYJv4pbIN7Ua3mVxN/fH7/++iuAvIX7e/ToUeS1Xbt21Y2mys/S0hJDhw5F+/bt4evri4yMDKxYsaLQ8OsxmezJcmyRkZHYuHEjfH19dTtnAoatJVZR/VQmTW5WiW8SlBY2EAQ5JEmEOifDSJVRdcfnhsqiOj030Ynp+O+SbchVa3RtCrkMX78xBO72yipff01TnZ4dMi1BkMHM0tbUZRAREdUaRpv2KAgC5s2bZ9B6Wfldu3YNixcvrpyiShAREYFZs2ZBrVajbdu2RU5VNFTdunUxbNgw/PvvvwgLC0N4eHiBKZRWVnnrX6nVal3bkiVLIEmS3uL0AJCbm6t3T2X0Q0REVVNmtgrv/rwPyenZeu3vT+0LHy8PE1VFRERERFT1GC38AoAWLVrgmWeeKdU9ppqKFxsbi+nTpyMpKQn169fHihUrYGFhUe5+vby8dMdhYWEFwi8nJycAgFarRXp6OiIjI7F7925MmTJF71q1Wo309HS9eyqjHyIiqnokScIXa48iJCpJr/3FYT4Y0b2FiaoiIiIiIqqaZCVfUjGq+vTG/BISEjB9+nSEhYXB09MT69atQ506dSqkb0tLS91x/lFZjzVp0kR3HBkZiUWLFsHS0hJvvfWW3nXR0dG66YqNGzeutH6IiKjq+efYLZy6/kCvrZ9PE8wcXbo/MBERERER1QZGGfkVEBBQ5nv79etXrvtLKzY2Fi+99BJCQ0PRsGFDrF69Gp6enhXWf/71z9zc3Aqcb9u2re543bp1OHXqFGbPnl1gVJa/v7/uuF27dpXWDxERVS33wuLx87Zzem0tG7ji0+n9IZMJRdxFRERERFR7GW3kV3UQHh6OyZMnIzQ0FC1btsTGjRtRr169Cn2Ns2fPAgBsbW0LHWnl4+MDR0dHAMC2bdvg7OyM6dOnF7hu//79AAALCwv07Nmz0vohIqKqIzNHhU9+PwS15skmITaWZvhy5mBYmClNWBkRERERUdXF8OuRwMBATJ48GZGRkejRowf++usvuLi4GHy/JEn49ttvcfjw4SKv2bdvH65cuQIAGDt2bKFriMnlckyePFn38csvvwxra2u9a86ePYvjx48DAMaNG6c3lbKi+yEioqpBkiQs/OskIuLT9Nrfn9oXHi52JqqKiIiIiKjqE6TqtBhXJbl69Spef/11pKamYvjw4fjyyy+hVBb9F3RBEGBmZqbX9scff+D7778HAAwaNAjjxo1D27ZtYWVlhaioKPj5+WHNmjXQaDRo2LAhtm7dClvbwre4zsjIwJgxYxAREQF3d3csWLAA3bp1gyiKOHToEBYuXIisrCy4uLhgx44dcHV1rdR+KpsqOx2SJBZ7jdLCBjKZHKKo5fbxZDA+N1QWVfW52XXmLr7ZcEKv7dk+rfHuC31MVBE9rao+O1T1CIIMZpaF/x5IREREFY/hF4Bp06bh4sWLBl/fqFEjHDhwQK9No9Hghx9+wIYNGwpdyP6x9u3bY/HixQV2eXxacHAwZsyYgcjIyELPu7i4YMWKFWjfvr1R+qlMDL+osvC5obKois9NSFQSXv1mG3LVGl1bM09n/L7gWZibGXXjZipGVXx2qGpi+EVERGRc/I25DApbq0uhUGDBggWYNGkS/vnnH5w+fRpRUVHIzs6Gq6srmjdvDl9fXwwbNgwKRclf9qZNm8LPzw/r1q3DwYMHER4eDkmS4OHhgYEDB+Lll18usHh9ZfZDRESmkaNS45M/DukFXxZmCnwxYxCDLyIiIiIiA5hk5Ne1a9ewb98+3LhxA+Hh4UhPT4dcLoezszPq1q2Lnj17YuDAgWjWrJmxSyMT4Mgvqix8bqgsqtpz8+2fJ+B3+q5e20cv9sPIHi1NVBEVpao9O1R1ceQXERGRcRk1/AoKCsKnn36Ka9eu6bU/LkEQ9LdoHzlyJN599124ubkZq0QyAYZfVFn43FBZVKXn5vDl+/j0D/2NVIZ29cKnLw8o8N9MMr2q9OxQ1cbwi4iIyLiMttvjpUuXMGnSJFy7dg2SJOn9T6lUQqFQFGjfs2cPJk6cWOR6VURERDVVRHwqvv1Tf4H7+nXs8c7k3gy+iIiIiIhKwSiLhaSnp2Pu3LnIzMwEAHTo0AHjxo1Dx44dUb9+fd3OiSqVCuHh4bhy5Qq2bt2K69evIyYmBq+88gr8/Pxgbm5ujHKJiIhMSq3R4tM/DiMr58kGKmYKOf43YzCsLcyKuZOIiIiIiJ5mlJFfGzduRGJiIgRBwH//+1/8/fffGD9+PJo2baoLvgDAzMwMTZs2xYQJE7B582bMnTsXABAWFobNmzcbo1QiIiKT+2X7BQQ8jNdrm/18dzSv72KiioiIiIiIqi+jhF/Hjh2DIAjo0aMHZs6cafB9b7zxBrp37w5JknDgwIFKrJCIiKhqOH3jATYfuaHX1rdDYzzXt42JKiIiIiIiqt6MEn49fPgQADB06NBS3zts2DAAeYvlExER1WSxSRn4ct0xvTZ3Jxt8MK0f1/kiIiIiIiojo4Rf6enpAAAnJ6dS3+vs7AwAyMrKqtCaiIiIqhKNVsT/rT6MtMxcXZtcJuDz1wbBzpprXhIRERERlZVRwi87OzsAKNOujdHR0QAABweHiiyJiIioSlm95zKu34/Ra5s55hm0a+JuooqIiIiIiGoGo4RfLVu2hCRJ2LlzJyRJMvg+SZLg5+cHQRDg5eVViRUSERGZzuWACKzb56/X1rV1fUwZ3ME0BRERERER1SBGCb9GjBgBALh79y4+++wzqFSqEu/RaDT44osvcPPmTQDAkCFDKrVGIiIiU0hKy8Lnq48i/9+GnO2s8MnLAyCTcZ0vIiIiIqLyEqTSDMUqI61WiwkTJuD27dsQBAHu7u4YPXo0OnXqhAYNGsDGxgYAkJmZifDwcFy5cgU7d+5EdHQ0JElCo0aNsHv3bigUisoulUxAlZ0OSRKLvUZpYQOZTA5R1EKdk2Gkyqi643NDZWHM50Yripj/015cvBOhaxMEYOmcUejc0rNSX5sqHv/NIUMJggxmlramLoOIiKjWMEr4BQBJSUl44YUX8ODBA4N3rJIkCW5ubli/fj0aNmxYyRWSqTD8osrC54bKwpjPzUq/i1i7V3+64/QRnTBjdJdKfV2qHPw3hwzF8IuIiMi4jDLtEcjb6fHff//F9OnTIZfLIUlSsf+TyWQYO3Ystm/fzuCLiIhqnNM3HhQIvryb1cX0kZ1MVBERERERUc1ktJFf+SUlJeHkyZM4e/YsoqOjkZycDK1WCzs7O9SvXx/e3t4YOnQo6tSpY+zSyAQ48osqC58bKgtjPDcRcal45ZutyMh+sgamk50l1nz4PFwdrCvlNany8d8cMhRHfhERERmXScIvovwYflFl4XNDZVHZz012rhozF25HcGSSrk0uE7Bs3ij4eHlU+OuR8fDfHDIUwy8iIiLjMtq0RyIiotpOkiR89+cJveALAP4zrjuDLyIiIiKiSsLwi4iIyEj+PX4LBy/d12sb2LkpJgxoZ6KKiIiIiIhqPoZfRERERnD9fjSW/XNOr62xhyM+mNrP4F2QiYiIiB6TtBpTl0A1WE17vhh+ERERVbKE1Ex8vPIQtOKT9Q2tLczwzetDYWWhNGFlREREVN1IkgTVgRXI/XMBJI3a1OVQDSRlpiB7xatQ++81dSkVxmjh17lz57BkyRKIYvELm+en1Wrx3Xff4dy5cyVfTEREVAVptFp88vshJKZl6bV/8nJ/NHBzME1RREREVC1JWg1U276G+vRGaO9fhPbOCVOXRDWQ+vxWSLEhUG3/BqoTG0xdToVQGONFNBoNPvroI0RHRyMxMRH/+9//DLrvq6++wsaNG3HkyBEcOHCA00KIiKja+WnreVy/H6PX9uIwH/Tp0NhEFRFRdSSJIlQ7voXm9nHI6nrBYtL/INg4mboso5K0GkAm53sCqrUkUYvcLf+nC7yUg9+Aov0gE1dFNZGy/3RIqbHQXN0H9eGVgEYFs4GvmrqscjFK+LV3715ERUVBEASMHTvW4PsmTpyITZs2ITw8HIcOHcKQIUMqr0giIqIKdvBSELYcvanX1qWlJ2aM7mKiioioutIGX4Lm6j4AgPjwBtRnt8BsyBsmrsq4NNcPQrXrBwgO7jAb8TYUXl1NXVKF0gSeh+baAYjhtyFlJAIABBsnyDxaQNGqN+Qte0GwsDaoL0mrgebqXmhvH4cYGwIpKxWQKyHY14G8QTvI2/SDvEknCHKjvB2kCqLa9cOT4GvQDJj1mWLiiqimEmQymD37ASSNGtqbh6E+vhaCtQOU3caZurQyM8q/docPHwYAeHt7o1OnTgbf16JFC/To0QNnz55l+EVERNVKcGQivt2gPxXBzckGn782CHIZl9wkolJ6erSTUEv/HdGoICWEQUpPNHUlFUZS5+aN5gk4XfBcSgy0KTHQ3jkBi9d+hrxh+xL7E5MikbNhAaSEh/ontBpI8Q+hiX8Ize3jsHp3G8Dwq9pQHV8PzeVdAABFt3Ew6/uiiSuimk4QBJiP+wg5mckQQ65AtXcZBAd3KFr2NHVpZWKUf+1u3rwJQRDQv3//Ut/bq1cvnDlzBtevX6+EyoiIiCpeRnYuPvj1AHJUT3bJUSpk+Pr1IXCwsTRhZURU0cQbhyHuWaLXJhv9LmRt+hZ6vXbL55CCLyH/EtXW/ztV4uvIm3aBwmd43rRH92ZQdn++HFVTVZK77Wtd8CW4NIDCZzhkjnUBrQZiegLEhzchZacZFHxJ6lzkrJ0HKTkaACBr0gmKVr0g2LpAysmElBoLbfAlyOq3hWBWvf97JGUkQ0yJAeQKyOt6mbqcSqWNvAf1sdUAAFmDtjAb9p9S9yGJIrT3zkBz6xjEyABIGUmAqIVg5wKZZysoO46AvGlnw/vLzYLm5mFob5+AmBAOKTMJUJhBsHWFvFkXKDv5QlanUanrBADN/YvQXNkDMfwWpIxkQKGEzKUB5F5doegyBjI71yLv1YZeRc7qt0v9mpb/3ZL3c1fJslfNhvjgWqnuUfgMg/lzHxl0bXm+doUR5ApYTPgM2b+8CiktHrk7voX8P+sh2DiWqp+qwCjhV2Ji3l9mGjVqVOp7PTw8AADx8fEVWRIREVGlEEUJX6w5hoj4NL32+ZN6o1XDOiaqioiMSYq4AxQRfklR98rUpyAIMH/uQ5g/92F5SqMqRowNgfbWUQB5oYbFK8sLTkXsbXh/miu7dcGXstdkmA19q+BFA14pa7lVhpgcjezFEwDkBQNyA4OB6kjSqJC79UtA1AIKM5g//2mpp6uK8WHI3fENxLBbBftPjIA2MQLaG4cgbzcQ5mPeg2BuVWx/msDzUO38HlJanP4JdS6k7HRo4kKgOf8vlANfg1mfqQbXKeVmIXfrV9DePal/QquGGBkAMTIA6vNbYTX/HwgWNgb3WxtU5tdOsHaE2dgFyF3/DpCZgly/72HxwtcVWL1xGCX8kj2a3qFWl34bVq1WCwCl2iWSiIjIVDYcuIrTNx7otY3q2RKje7UyTUFEZDyCDJBESBG3Cz0tJUYC2Y+CcZk8780s1WrafGGEovOYcq/Bpddf1+q7Ng89ofHfCyn+AQBA2euFUo9OEmPuI3vNXCArFQAgq98W8ta9IbN3AwBoI+5Cc2U3kJsJ7c0jyNVqYDH5y6LruXYAudu+BiQRkMkhb9ED8qZdINg4QlJlQ3v/Ul6gK2qhPvQbBDMLKLuVPFJV0qiRs/4diGF5a6XK3JpC3mEIZA51IWWnQ0x4CO3NI1D4DC82vJG5NYH51G8N+tqo9v4EKSkCsLI32gYiZoNfh5SdWuJ1YkQA1MfXAgBkdZoUe21Ffe2Ko/DqCk3LXtAGnIb27ilow25C3qBdmfoyFaOEX+7u7nj48CGuX78OX1/fUt1761beP+B16vCv5UREVLVduBOOlX4X9dpaNnTFfyf1MlFFRGRUHs2ByAAgPgxSblaB0RNSZIDuWObZCmJ4wVEYVLvkX7tM5uBW/v4yKrY/Mi1JFKE+uyXvA6UFlD0mlLoPbehVIDsdkCthNvodKDuO0DuvaDcQyq7PIef3NyFlJEF75wQ0AWcKXddJkiRoAk4DkgjBvg7MJ/0P8nqt9a5R+gyHpt1A5G78EJBEqA6sgKLdIAjWDsXWqT68UhfeKHu9AOXg1yE8tUaqNPQtoIRBMYKVPRQtSl6TSowNzQu+ACg7+UJQmpd4T0WQN2hr0HU5Vw/kHSjNoeg4sthrK+prVxJln6m6Kdrq05sgf6F6hV9GWSmzU6dOkCQJ27dvL9X0xfT0dGzfvh2CIMDb27sSKyQiIiqf6IQ0fLbqMCTpSZu9tQW+mjkE5kouKExUGwiNffIOJBFSxN0C56WoR21yBeQNq9ebBqosUsmXlKq7Cu6PTEobdA5SYjgAQNFuAARL21L3oew+HubTFsJ80v8KBF+PyZw8oBw8U/exxn9vodcJggCLSf+D2fDZsJi+tEDw9ZiiZU8ovB9tVqdRQXPjcLE1iklRUJ//FwAgb9UbZkPfLBDeAIAgk0NQKIvty1Dq8//kHcjkUDzzbIX0WVHE1Fjd9EVF+8EQrOyKvtaIXzt5/TaQebQAAGgDzkBMiipXf8ZmlN/Gn3/+eWzduhWZmZmYMWMGfvvtN7i5Ff+XiMzMTMydOxfJyckQBAGjR482RqlERESllqvS4KOVh5CWmatrkwkCvnhtEOo6l/4XVSKqnmSNfaA9vQnAo3W/murvcv545Jfg2QpQWhTbl5ieiOyFY4s8Lzi4w2r+PwbVlbt3GTTn8q6Vt+5b5JQmSaNG9s/T83YJFIS8N7ePA70iSBo1NP57oLl5BGLMfUCdC8HaEbL6baDsPAryZl0MqhEAJFU21Of+gfbWMYiJ4YAgg8ypHuRt+0HZvfQjXiqD5t7ZvMWkI25DykoFLGwgq9MEivYDoeg4EoJMbuoSK4wYEwz1ha3QhvhDSosHFGaQOdaFvGVvKLs/X+ogRsrNgubKLmjunoYYFwrkZADmVpA5ekDepCMUnXwhc2lQeC351vh6mubqfmiu7i/QruwzDWb5Ap0i69KooLl2ANo7JyHGBud9XwUZBCs7yNybQd7sGSi8h5QpeCov7e3jumO5AaOZiqLw6lriNXKvbrpjMS6k2GsNGYEm9+oKzbX9BvWnvrAN0GoAmbzwdeoqmJSVBs31g3l1tuhZ5UZJas5v002LV3Yrfvqysb928pY9IUbdAyQR2rsnIes5qdJfs6IYJfzy8fHB888/j3///Rf37t3DyJEjMXHiRAwYMAAtWrSAjU3evFOVSoWQkBCcPn0aGzduRHR0NARBQN++fdGnTx9jlEpERFQqkiThq/XHERCmP7J55pgu6NKqnomqIqLSkjQqSDePQEqNhazdYAjOnqXvxKMFYG4F5GYBEXf0+8/NAuLDAABCI+POaDAbNBPagDOQkqOgvXMC2uDLhe7qpj7zd17wBUDxzLMlBl9iahxy1r8DKS5Ur11Ki4P2dhy0t49B0XEkzMa8W2IoJKYnImf125ASwvTbY4IgxgRB47/3yUgSE8hbdPwr3eL0OpkpEEP9oQr1h+byLlhMWwjBuuhd0LTR9yGlxeo+FhPCn5wLuwVJlVXgHnnTZ4ocsaENuQJJnfOkzqwnm61o7p0pcL1gZlXi9xXIm9KkOvSb/rp0GhXE6CCI0UFQX9wOiynfQF6/TYl9AYA2/DZyN36Yt8NgftnpELPvQYy6B/WZv6HoNApmw2aVuOC6IQTnkv8bLMbcR87GjyAlFxzBIqXmQJsaB+29s1Ad+g3KXpOh7D21wkYeGUIb4p93IAiQN+lU/MXlJFjZ646l7PSK7S8rrZgrAW3gOQCArKE3ZAZ838pLfWknoM77g6Wy23OV/nqlIalyoL6yC8Cjr4d7s2KvN/bXTt60C9RH83Ye1Yb4Q8nwq6DPP/8c0dHROHPmDDIzM7F69WqsXp33RZPL5ZDJZAUWxJckCS1atMAPP/xgrDKJiIhKZe1efxy+fF+vrY93I0wbWvKbCyKqGqSsVGj//RKIzJuWqL11HPLXfyv1GjCCTA6hQXtIQechRQdC0mp0C5hL0YF5C0QDEBp1AMILXxRf15elbaGLNudu/w7ITC5dXWYWMB+7ADlr5wKShNzdS2D5n7V6i6uLKbFQn1ifd72jB8yGvFFsn2JafN4aQal5u73JmnaBonUfCNaOkNLioLm6D2J0EDT+ewClOcx95xXZl6TKQc7aebrgS3CoC0VnX8ic60PKToc24BS0ged1iz8bmySKyPnzfYjBl/Lqc20Ihc9wyJw8IeVkQBtwBtqA0xAjA5Czbj4sXl9Z5ML1mnObCx2lBOSt21OATA6rT4ueMpa7/VtIKTGFn/vz/YLd/T975x0eRbX+8c/Mluxm03sCIfTei3Swoij2etV77b3+RL323nvXa7ui115RUQFBFOlI7xAgvfds35n5/bHJJsumbHrA83keHjZzzpw9O3t2d+Y77/t9e4/CfMVrjY4H4PrtA9xL3/P+ERqJYdwc5OSB3kiPjM3elDhrGY4Pb8d83bvIMU0Lxcq+dTg+udsnNsipw70pfBEJaI4q1KxteLYtA6cVz47fMRxzWYD4JYXF+H0etOpyXN95/5b7jsMw5dyA520sJc83hq0Sx7y5PkFO138CukFTkSLiQVW8/ldZ273pZy47ns2LMUy7sMkx2xPNWu77fEkRCUgmS8c+ob1OoKovXLUWrf54Tfh9qVUlvs++bsBRdfsrHrTiLK+PXWgUcmxPJGPTEbNBzUvx4Fn7nXdeCX06XFRsKZ5Nv3g92mg+6quzjx2AnNCn7vlbWb24q+g08Uun0/HOO+/w3nvv8frrr+Nw1N2h8Hg8Af0lSeKiiy5i7ty5hIa2XfkXCAQCgaC9+W3Dft75YZ3ftj7J0dx36TFIktRFsxIIBC1BK81B+eIhKMur21hVDNZyaEUqjNRnNNre1d4L/fx06OH1R6HW7N5oRkoZ1Lz4pTc2aNrsMoS0yiVK13cs+vGn4Vk3H604A/fKzzFOv6hu3J9eBrcDJImQM+9CMpqbHM+14GXvhbkkYTzjrkAT7Yln4/r+WTx//Yhn7bfoRxyHLm1kg2O5V33hix6T00Zh+tezfs9vmHAanu2/4/zyYVBaXj2+rXjWfuMTvvTjT8U45zY/ccswbg7ujb/g+uZxb1TUn59inPnPdnluKSK+zRUg69NcpUAlb29dhbmeQzBd/IyfcKEfeTz68afj+O/NYK/C9cPzmC55odHxNEc1zm8e934eJAnj7JswTD5EqBo3B+Psm3H//iFy79HIEXEB40iGEL/Pg1rv8ypHxgdlcH4ons0LfcKXfsxJhJx1b0Afw6SzUatKcC//2CvudpIpOoBaLxpNikvt8OdT6gkZtb5ObUH1G29g4/0yttT1S+yLpiq4l3+MZ/XX/pGCRjP6kSdgPOHqNolzyvZlaJVeUdEwsZtFfWmaz79LiohHN2R6k/07+9gBSCYLUlgMWnWp95/b2amfi7bQqQ68sixz1VVXcfbZZ7N48WKWLl1KRkYGRUVFqKpKbGwsycnJTJ8+ndmzZ5Oa2vEfcoFAIBAIWsPuzCIe+a9/+kukxcQz188mzHx4nAQIBH93tOydKF896hfxACD1GgGRras0LvWui/rUcnYg1YhfWo73QlBKHd5lvlDGE69H2bMaraIA97J56EfNQo6Ix7NnFcrO5UBw6Y5K5laUHb/7+jdkoi3JMsY5/4eSvh6tPB/3qq8aFL80jwt3jU8aeiMh597foPCmHzYTtfiyhqOjOhDN5cC1xBsFJSf1x3jq3AbfP8OYk1D2rkbZugTPmq8xTPtHg6JVyFn3+oksrqXv4/7tvwCYLn8lqJTE+hzq+2Z/7ybUg5sAsDy6vEVjAbgWvulNddQbCbngsQYjdnTJ/TGecA2u759D2bcOtfCAXzRIfdzL5vkqWuonnRMofNUghYQ2G23Y3qhFGb7HumFHN9pPDo8l5OSbO2FG/mhVdeJFe0RiNYey7Tff44YqPbYETVXx7PAatiPr0A2c3HjfGiEKvK/TMW8u6v6/Aju67HjWf4+yZzWmS19Ejm/YH645asUlTGHoR5/YqjE6CmXfWrSadamfcEazwndnHzsfoZFQI65p1SVI0SltG6+T6JLyUzExMZx//vmcf/75XfH0AoFAIBC0ieIKK/9+8xec7rrIZZ0s88Q1s+gR33hFHoFA0H1Qd/6J+sPzAZFEUtpI5LPuaXX0phTbwyucVRSiZe2AmipiWk0URGf7ffnNLSQU4xl34pw3F1x2XL+8TsiZd+P68SVve3RyUAKEZ2ud8G+YcEbjz6c3oh95PO4//oeye4VfGmgtasYWr/E5oBs0BTmy8Wg7KTy22bm1N8q+tb756cef2qRwqR97MsrWJWhVJajZOxqNdOuuaDX+ZVD7XjQuAOtHzcL144ugKnh2/IGxAfFL07S6Kn86A8ajL+mQebeW+oKSmrkd2mAo3yHU83Jrr5S1xlDLcn3vlRSVjG7ozDaNp2xdglaaA4BuxHHIEfGN9tVsdf5iroVvoh7chNxrBIYZF6HrMQRCLKj5+3D//iHK7pVolYU4v3gQ0zX/QdIbWzav7B2oNVG3+rEnNxvh2tnUFiZBb8Qw4dRm+3fmsauPZDTVRSC7HE117VYE1sAUCAQCgUDQKE63h7vfWkhhmdVv+x0XTmfMwMPjzpdA8HdG0zTUNd+gfvdUoPA1/Bjk8x9GMoW16Tmk3qO9z5Xt9RDTSnJ80WVdKX4B6PsfhX7sKYD3AtX52f1es29JIuTMu4O6GKw1WMZgQkro3WRfObkm3cnj8lb4O3SsAxt9j3U1x607oexZ6Xss9xjcZF9d8gDfY7U2zfUwQtm7xmdw39xrlYxmpFhvlk5jr1XN2YVWVewdL21Ep0QvtQRdvegm9/L/4Zz/rF80WFejqfWsgeSOjVlxzn/O931onH1jm1JtNVslrl9qfOVCQputuFnfG0w9uAnD1AswXfk6+kFTkcJikAwh6FKHEXLRU+gGT/P2y9+HUhtZ1gLcK2vEJUnqdimPalGmV2wH9MOOabJwRi2deez8qLceNSXQwqoxPGprkvbbjy6J/BIIBAKB4HBE0zSe/HAZ2w8U+m0//9gRnDZtSBfNSiAQBIumKqiL30bbsCCgTZr6D+TpF7aLX5/UZwza5kVgK0crzUGrFQdCIyG+d5vHbyvG2Tei7F2DVlXsE7KCSXcE7/egz2Bdb/QThxpCrVe9UasshHoCEeAz9IbgqvN1NvW9pdS8fWhNFRtQ1bqHlUWN9+um1H+tWkVhg9Ui/fFeyGqNvNbayB8AObFfm+fX3uh6DsVw7OXeynWahmf993jWf4+U0Bf9wEnohkxDTh3eZR6ekq4uMkdzWJvo2TZcyz/2edqlp81k5NAZrR5L0zScXz/m85synnRDk9GcANQT+XQjjsN40g0NdpMkCcPMf6Ls+hMAz5bF6EceH/Tc1MoilB3LvM8zYGKzhRo6G/fqL0Hzfqb0zRjd++ikY3co9ddjsH5fm0uc3Lm2mBcmxTEsumvsQYT4JRAIBAJBkHz4y0YWrfOv7DhpWCo3nN24l4VAIOgeaC476nfPoKX7F6lA1iHPvgm5DRcChyKljQJJBk1Fy95Rl/KYNrJbFMOQTGHoJ5+De9Fbvm2GCacHt7OtwhcdhL2ywYqCjdLABbxmLa+bV0gHV7NrBVp1ndjl+v7Z4HesSZU8nKgv7HnWfINnzTfB7deIMFMb9QWd41nVGozHXIYubRSupe+jZmwGQCvcj7twP+4/P0GKTEA/4XQMk8/r8NTDQ5HM4XV/ODtmPXn2rcW1+G0kYJ+pJ9dG/osvrW56WgytGs+95L06QX3MbAzjT2t2n/qfe+MxlzfZV04eCHqjN5K0KLPJvofiWfMt1EQp6Sed06J9OxrNXoVn00IA5J5D0fUM7oZqZx27AOqvxyAjpZ/fWkaW1cMlvxfwyuR4piR2fsqpSHsUCAQCgSAIft94gP/MX+u3rXdSNI9ceTx6nfg5FQi6M1p1KcrHdwUKXyGhyOc93K7CF4AUGgE1kS5a1g5f5FdXpzzWotmr6rxlanD+9Aqa1rEpKVqtaOa/te5hNxAG240GX+sRSiOvVdPqIuGQuu/vpK7vWMxXvob5/z7HePLN6AZMhJpoFq2iEPev72B/7V+oJdmdOi+pnk+WZqto9/GVnN04Pr0PSVMp1kdyb7+5vDgztfXC17r5uH+fB4DcexTG024Pbsf64kkznxtJp/eJglp1SdBz09xO3Ou/944R2xNd/6OC3rczcP/1A7jsgLfCaNB0wrE7FE3T0Ow1XmM6PVJYTFD7vTw5niFRRmwejWv/LOTPfHur59BaROSXQCAQCATNsCermIf/u8RvW4QlhGeuP0lUdhQIujlaUQbKFw/BoalZEfHozn2wWc+q1iL1GY2Wvxft4CaoqXYndRNPK+ePL3or8OkM6PqNQ9mzGnX/X3jWzcdw1BlN7xwaCbIOVAUppgeh//dZo11zrB5O+iWHRLOOc/qEc+2QBqJ/TPWjW2yte0EdiBQWjVbjVWa+/esmTeC7G1/ur2JRjo09FW7KnApGnUSSWc/YuBBm9QhlUoIJvVwnONb3GAo5+z6/SnhlToXP0qtYlmcny+qh2q0SqpfpFaZncoKJE8ucDD0klUmy1LsodnZc2l57IcekIE8+F8Pkc9HcTpTty3At+wCtJButLA/Hx3djvnEektw5Qp4U2xN0BlDcqAUH0FSl3SrFqiVZOD66A8llp1IXym39/819xw5jUkLronE823/3FkAA5KQBmC56KmhDdX+Rr7z5HWpF+hYcC8/mRd6oVcAw8axuEYFbi6Yq3qg0QAqLQTfsmKD37YxjFzBESZZPqJPiegV9LKNDdLw3I4GLfytgf5WbW1YV8f6MREbFdt55dKdJ8CUlJezfv7/JPnl5ebz22mvMnTuX22+/nU8++QSH4/CpHiAQCASCI4+SChv/fuMXHC7/yo6PXz2LngndM41DIBB4UQ9uRvnozkDhK7Evun8912HCF3h9vwDvc2sqRCUiRSV12PMFi2fHHyhbFgNgmH4RIWff7xW0ANeiN1HLC5rcX5IkpAivAKRZy5qNFlM0yLUpZFa7G2yXwusEErU8r8E+XUl9v6JaH6PDhQc3lLKiwEGRQ8Gjgc2jsb/KzVcHqpm7pgjXIebTUlTDr3VZro3Zv+Ty6o4Ktpa5KHepeDSodKtsK3Pxzu5KnttaHvD8cr3xupORfDBIhhD0o0/EfO27SFHJAGhFB1EPbuq8Oej0yMn9vX+4HagFgQUjWoNalovj/VvAWka1bOb/+tzBNTPHtl742r0S55cPewXxhD6YLnm+RUVDdPWKK9T3CGwITfH4TN5bUv3Vveor7wOjGf2Yk4PerzNQdvzh81HUjz8VSR985F1nHLtDUWsKuQBBp2fWEmXU8e70BBJMOuyKxnUrCsm1BW+Y31Y6LfLrqaeeYuHChdx5551cfPHFAe1Llixh7ty5OJ1O37YFCxbw8ccf8/HHHxMVFdVZUxUIBAKBAPBWdrzrrYUUlPl7bcy9YBrjBnUvo1SBQOCPunUJ6k+v+hkCA0j9xiOffidSSGi7P+eYn8p9j/VqCkvlEMyq99x2SchQlm20Mi3BwHFJIXS+24k3dcr1w/OAN6rEMPOfSHojxhOvw/XtU+C04fzuacyXvtDkOLqBE/Gs/Q6cNtS8PehSBrV6TrqeQ6l9h9Ss7RCER1BnohswCc/GnwFvNTVdM1UQu5pDi6lNSjBxbIqZBJOOKrdGns3DqkIHo2JCCNX7x0Ho+h/lTT3VNJSDmzFM+wc7y13curoIlwp6Ceb0sjAmNoRIo0ypUyWj2s0f+XYu6h/OocipwyHEAk4rSsZmNLczaHPsZqkfbdIO2bqKplFgV8i1ekix6EkJ9V4mSyYLuqHT8az8AvBGTOn6jm37EwaJbsBkn9igHtiArlYMayVqWS6O925GqyyiSg7l5r53ctSYsczq2XK/PatbZd2qZYxe8hgG1U26KZU7kv+NaaWdKYka5/QJp19E80KOFJ8GRjO47CgHNvn8B3/NsfHEplLy7d50vh3npKHm7fX5dskJfRscb22hg0v/qBPxJ1Rt441CbxDOl+FTeebHYqA4YL/Fs3vQwxIoj7y2vZw3dvqnnZ5ftJCLin7CpLr4NWoiL6dciFOui3RLCdXx68nBFfBwr64R5mQd+glnBLVPLfWP3e7N63iiaiK5Ng9lLoVIo44eoTqO7xHKmb3DiCxq/tjVsrXUyY+ZVtYUOSiyK1g9KrEmHf3CDdx+cB21Z8C6AZNaNF+ApFA9z02M4/I/Cih3qdy7rpj3ZyR2SjRep0R+ZWVlsWDBAtxud4N3h/Ly8rjjjjtwOBzeHNJ6//bv38/cuXM7Y5oCgUAgEPjQNI2n/vc72w/4R0Gcc8xwzpgxtItmJRAImkPTNNQ/P0X98cVA4WvMScjn3N8hwteheGQ9v0WOJ9cQR64hjl/MI/klz819m22cuqyc9EpXh8/hUJw/vuiL6Ak5da4vLUk/5mTkXiMAUNPX4V7/Q5Pj6Icd7XvsXv5Jm+Yk9x7l84Py7FyO1kjqo6YqeDYvbNNztQbdwElg8Bqdu9d8i+bq3lkpxY4635/LB0bw/oxELu4fwayeFs7uE8aNw6L4+Jgk7hwVHbCvHB6L3GskAMre1agFB/jPzgpcNdZdr06J54kJcZzbN5xZPS1c0C+cf4+KYcGJPTguJfAzJekN6IdM9/5hr8Kz7rt2e51SvXRZtaKwiZ6No6mKz4fu+wwrx/+Uw79+L2BN4SHvsdtZ74/OTZfTjz7Rl6Lm/iuwSm1LUEtrhK+KAsp1YdzY7984k4dw6/CoFo/1R56dhz//kZG/eoWvnebeXNPvHrIIY2+lm3l7qzhzcS7v7Greq0ySdegGegsHKbuWk19UxA0rCrl5VZFP+KrF89ePvsf6UScENdd/FNd9b3wRF9w+TXFM+Vpuz/2IZHcJ0UoV55b8yo15jad/N4WSuxs1YwsAuqEzkSPiWjaAJJOZPB6A5MxVZBQUUuhQcKve74LNpS6e31rOaYtyyVr+nW+3xo5dtVvl3vXFnL80n4/2VXlTpl0qLhXybAobcsuI2vc7AGpotO99aynj401cNjACgDVFTv63r6pV47SUThG/5s+fj6qqxMfHc/755we0v/3229hsNiRJYtasWbzxxhu88MILDBo0CE3TWLlyJRs2bOiMqQoEAoFAAMC8BWtZuGav37ajhvbk5nOmdNGMBAJBc2iKB/Wnl1GXfxzQJh9zKfKJN7SbZ05T3DjQxMvjLESdeTsH/vkO2//xNoPHT2dYpPe5i50aC7M719/Ks/13lK1e70LdyBPQ9Rvva5MkiZBT5/ousl2/vN6koKDrO84rCgHKtqW4fn0HTVUb7Du5cjPX533e6FhyeBy6WjHNXoVrwUsBN8s1txPnl4+g7u/86wEpJBTDsZd551GWi/Oz+9AaqeSoFh7E+d3TaK7ON3Kupdpd9z5c2EA0VnMYT7zOK0aqCo6P76I42xsx09OiZ2ZyncCl2Spx/vQKan56k+MZjr3cG5kCuBa/jWf7sgb7aR437j8/xbN7RVDzlEwWpLg0ANSsbY2mfGlK4ylVrh+ex/HuDSg5uxvto+Ts9vpF1aCrEYk7CzkmBd2QGYC3CqVSI5S0FLUkC8d7N6FVFFBhiuHq/vezI7Qf94yO8fN9C4bvM6r57KefuXvPi4RobvbHDOPAmc/x8LQ+PDE+llNSQ9FJ4NHgxW3l/G9fZbNjGqac533gdrLjg4dYmRMomnl2r8SzwSsASvG9GxVeBkYaeGNKPG9Miee9YS6mVXmreFb0GM2dx472tb0xJZ5eYd5IryijTJyp4d+GOb0sfvvcpd8Y0Ods61qenxiHruZQDogIzu/Ms7Ku8EiLjO7x3uh5eGMpDxiOA8CkufhP8bs8NsrCK5PjuW90DOPjvJGWQ4r+InrHL0Djx67KrXLFHwV8e9Drz9fToueawRE8NSGWlyfHc+vwKC6yrsKiesXhz2OPp0prXXEEgKuHRJJQc8xf31GBzdPwb0h70ilpj6tXr0aSJE444QSMRv+F4HK5mD9/PpIkMWXKFF555RVf26RJkzjhhBOw2WwsWLCAsWM7L8RUIBAIBH9flv21lze+Xu63rVdiFI9eeYKo7CgQdFM0pw31myfRDh5yYaLTI8+5DXnojE6by6hoHeNjAy8Krhlg4osMJ09utzebqaXZKlCytgVur4lC0dzOAKFAMkei6zU8cB9rOc6adEfM4YTMvimgj5zUD/3kc/Gs+AycVlzzn8H0r+canZ/x1NtxvH0tWlUx7t8/xLPjD/SjT0SOTfUadBdnErZ9Oa8U7gNgflZfmHBOw2Mdcxn2PavAZcez8WfUkiz0o09CMkegFmfhWf89WkUBcu9RqAc3NzqnjsIw+TxvUYADG1H2rsH24gUYxp6MnDIIJBmtogAlfT3KvrVeQ2lNI+TMuzp9noCfj1dt6l5L0KUOwzDjn7h/n4dWlsur5XexKGoyJckj8exIQbOWoWZsxbPjd3A7UNLXY772nUbTGeXoZIyn3Irru6fB48L52f24+01AP2Q6UngsmtOKmrsbZdtv3qhEczjy9e8jB+GPZ5h6Hq75z4LHhf3t6zBMPBM5vjea6kErzcWzfRm6tJGENFB10LN1CZ6aCEfHW1cyIXEol0tDyTXGk3ggGneeFWX/Xyh7Vvmq6OlGzUJO7NPiY9pWDNMvRNmxDDQN1y+vY7r6rRaliKkl2V7hq6oETWfgndg59HAVMs1YyriybDxlDe8nx/dGjvG3eNA0jbwNy3jy4CvoUfCExTHkhPMZIu+DmpoGc6LgQsXJW7sq0YCVy2GOI5bIfqN91QYPZaelP/tTZnFc7iImVm7h0z13UzRoFmuUePIrrRxVvR3nlpVe/0S9kZBzH0TSNby+o0J0HF0TiejcuABPTdXRhJnnkVIvQnFvhYvMaq84ek6fMEJ0DR/T3uEGeofXfZ87zAYOrato1MmUu1SUmo9fMMKzWlWCZ9tSwFskQJc2stl96lPiVPmr2Em6pT9/9JjFjJxF9CncSN8fb0I/djZybCrnRjrZum8l/TOWoUPDJRuIaOTY7S53kVFzPC7qH84dI6Mx1hNGNXsVtu++A6BaNvFexLGU7Czn36OCq/Z4KBa9zMX9w3lhWzmVbpWvD1TzzwERrRorWDpF/MrI8BocDh0amCby559/+qK+rr76ar+2mJgY5syZw+eff86mTZs6Y6oCgUAg+JuzJ7OQ+976gfqBB+GhITx7/UmEh4rKjgJBd0SrLEb58iEoPOjfYApHd859SKnDumJaDXJeWgi/Fbghv+l+asF+nP9rQkCxlgW0y71HY77i1YCuzh9eAKv3Ctd4wrVIYYEpb+AVoZStS9EqC1H2rsG9YQGGsac02FeOSsR0zVs4ProTrWA/WtFB3Iv/49en9kJjXdhQcqIb9wWTE3pjuvAJHP/7N3hcqJnbcGX6C3/6Caejn3AGjjcua3ScjkLS6TH96zmcXz+Osm0p2Cpw//lpw32jU9CPOK6TZ9i+GI+/EskchmvRWxhVD3PKlkPZcpw7DukYYsEw/jRopqqfYezJSOZwnF8/5vWJS1+HK31dYEdZh37YMUjm4C6ADeNPQ83ZjWf992CvxL1sXkAfT3Emhpn/CqjSqRt+LMbKIlzL5oGjmuiCHVxHzQvMBL+kZElGP+lsjCdeH9S82htdj8HoJ56FZ/XXqNk7gqvKWg8lY4u3uisgKW5uz/nQ1+bc2vh+xrPvDRC/JEniUm0znhr5R19djPPzBwL2HQj4OQfuB+32rxoUv+welSuXF2KNuwi73cacsj9JdRaQuuUjDg19kcLjCPnHY0F5n2kOq8+vT4pKRjdoql97baqdToIL+gUfJakffqz3e6AeuhHH+SLc0sL0TEs0NTuOZ+13oHgLgehbGPUFEGfS8dmxSXywp5Kj+/8b+QcZz6Zf0Eqzcf/6jq9f7TdvoT6aO3vfwmPmXjT0bTw+3sQXxyXxW66dSwYGfgZdi/8DVm/a/EspF1OhD2d+hpU7RkYjt9Kv65y+Yby6oxy3Ch/tq+Li/uEd6v3VKeJXeXk5AJGRgVWxfvvtNwCio6OZOHFiQHutYJabm9txExQIBAKBACirsjP35W+xO+uqkulkicevnkVqYlTXTUwgEDSKVrAf5cuHoebizkdUErrzHkaK7X7FKSbHGWg4ca4O96HO5a3Es3Upynbv+faW0AH0GjKbHkC5S+HrA9UsyraRUe3BpWr0sOi5esQVHLviSQBcP7+Grv9RyBHxDY4tRSSw5JSXyVn9MwOz/6S/LYNIpRpFF4I+OglP6kiurRzNNkt/zghr2lBb12885hv+S/bi/yEf+IswRwnVulD2hPZhWepsQntN4R+yQlOOOPesK+a7DCtXDorgthHRfHOwmvd3V5Jr85AWpueGoVEc3yMUVdN4f3clXx6optCu0D/SwB0jojkqofELVklvxHT+wyjj5uDe+DNq5ja06hKQJKSwWOTUYeiHTEc3dEbQqbUuVWNbqdN3IXrFH/lk7shmVGwI5/YJY0piV5RF8GKYegG6AZP476cfMaF6Bz1dRYRIClJoFHJyf3QDJnmj80zBGaXrh0xnzT/+S9GKb+mR9xc97TmEqk4c+lBc0T2JH3IUxnGnIEcnBz3HHKuHz/pcid0+mKOyf2WwNZ1IpRq3bMQemULkgLGEjT85QPgC+C7Dyr15k7H0H8XJZSuYXLWFfvYsIpVqDJqHSp2FzJBkNloG8UPMTHJsCbxb7GZKYvOXz8UOha8OVPFnvoP9VW6q3SpmvURMiI5RMSEcnWLm+JTQFqUbGk+4FmXvWrSSLFwL30DuORRdysCg928Ncmxqu43l0oUQGhH4PgCY9TLXDYnkg72VRJ13HyH2bXj+WoCatR1XVSlW2URWSCLjZs5GP/aUoCtJqsUZSJGJaIUH0E88A0mui9wvdyn8kOkNVTsm2dyiKEn9sJloJ9+Ce8WnaG4n+uHHsnbEvziwxpuqeWG/4AQczVbuTQnWG9GPPD7o56+PRS9zw9Ao7x9n34tu5PG+Y6dZyyAkFDmmB79GT+IRbRJWXSh7K90MimpYsO4VZuCSgYFRy56tS70iM6AbNJUt8cdDlYdyl0qxQyHB3DpZKcqoY2xsCGuKnGRbPewodzEsuuNuNEtac/WJ24ExY8bgcDh46aWXOPHEE/3aZsyYQVFREXPmzOHZZ58N2PfXX3/lxhtvRK/Xs21bYOi34PDHZa9C05rO8TWYwpBlHaqq4G7EZ0EgOBSxbgQtQdM07njjZ1Zu9fcNuf0f0zlrZveJGhF0X8R3TuejHtiI+s0TcKjHUsogdOfcj2SJatF4uTaFfIfG8EgdxkZSYBrjgc1WfsjxCufvTLQ0mPZYyzdZLh7d6vX8OrdPGA+PCyw7/8LWMt7d3bxXzok9Q3nmqDgMTVxI169+9tVxSeTaFB7eUEKJs+Hzr/FxIfx3ZiK6Ji7gPKrG3DXFLM5p2LvMrJO4Y2Q0j2z0RgqckWbhiQmNS1eKpvHgXyV8U+M30xAGGW4fEd1oakyt+HVunzDiTDrePKRCmwx8emwSH++r4vtM/+cJ1UssODGFxFZexLWUfJuHq/8sZF+lu9E+Z/W28PC42Cbfh9WFdhyeusu5F7eVs7dmzDemBIqWFoPMhPiGRT6HorK6wN/s/fqVRQAMiDDwfw0Yo/ew6BkQ2XTkl0vRuGtdMb804XM3PNrIW9MSiAkJTjj8Yn8Vj28qxd3EJYRZJ3Hr8KgGo0m+PVjNvetLGtmzYRqrBlifBZlWHtpQgtXT9CV2klnHHSOjmZ0afJVFNX8f9vduAkc1UkQCpmv/gxwevEF6VrWbE3/xBpQMizby5XHBC42tYWWBnSuXe70DZ/UI5aXJDYvo4P0+cSoaFoO/tcQly/JZV+xN9d5xTlqr5qGWZCNZov2E2rd3VfDStnIA3p+RwKSEtgnNVy0vYEWBg1C9xLJTehJmCM4iQ3M70cpykRM6Np32pW1lvL3L+3ty7+hoLuoffHqhkr0Tx/s3gduJFJuK+ao3uHitg40l3vdl/gnJzX4HNEX99+L2EVFcPigwYKq96JRv94SEBDIzM33pj7WsXbuWwsJCJEli+vTpDe5bVeUNR7RYWl5+VSAQCASCYPnyt20BwtfZM4cJ4Usg6KaoWxaj/vyaz4+nFmngJOTTbkcyNJ92Uoumabyx18F7+5xowJQ4Pa9MsDQpOrSFYmfdhXFsIxf7J6da+HhfFaNiQxgbG0KvMD2heplSp8Kuchc/Zlqp9niN85PN5Q1W72uIz/dX883BahTNe0E6I9mMWSextdTFJ+mVuFRYX+zkhwwrZ/RuPMLiwQ0lPuErVC9xbp8wRsSE4FY1/qrZ/9Ea4SsY7lpbzIIs73gJJh1n9wljQKQBl6KxpsjB9xlW3Co8ubkMi0HmrCbmtjzfTr5dYWK8iTN7W8io9vDmzgpU4JaaCnJHxYdwZu8wMmvabB6NBZnWDr3wqqXA7uHC3/J9leymJJg4vkcosSYd+TYP32VY2Vnu4puDVkw6mfvGNO6pc9/6EnJthzoQeakVruozPi6ED49u2E+rxKE2uA/A3kp3g23XDYls8sJX1TSuX1HIypoKin3DDZzZ20KqRU+VW+W3PDtLc+1sK3Nx1fJCPjs2qUkhF+CtneW8st0rbMrACT1DmZZoIsKoo8DuYXWhgz/y7NgVjUU5Ni7sH86hn7LJCSY/cXB1oYMPa9Lg/tU/nEkNRAEmhzYtzK0vcvDvtcWogF6CU9MsjIszEWmUsXs0CuweVhU4WFXoIN+u8HuevUXil5zUH9NFT+GYdxtaZSGOD27DfNlLSGHBeS7tLK9L5uwf0Xqj8mCpcNUpk1EhTYtBellqsfF+sMixPf3+9qgan6V73+v+EYY2C1/plW5W1ojGp6dZgha+ACRDCFIHC1/g/15EBykwA6j56Tj+d6dX+AqPw3TpC0iWKCpcOb4+US0YryHqr8Ud5R1bBblTxK8RI0aQkZHBDz/8wCWXXEJISAiapvH6668DYDAYOProoxvcd8+ePYDX/0sgEAgEgo5gb3Yxr3+zym/byP4p3HKeqOwoEHQ3NE1D/fMTtAY8l6RxpyIff2WLKjq6VY2Ht9hYkFsXgbOy2EOxQyPR3DEXY78X1J3gj49vOMVjcJSRNaenNnpBeN3QKM5fkke+XeHj9EquGxpJeBAXXV8eqCY2ROaJCXFMT6q76JudaiE5VMeTm73eYL/m2hoVvzYWO3wVwWJDZD46OsnPEPr0tDD+2T+c61YUNirM1GdZrs0nfA2JMvL+jAQijXXv4WlpYZzWK4xr/izApcLTm0uZmWQmtpHqbPl2hQv6hnH/mBhfxM93GdXk2ZQm23Z28IVXLU9sKiPfriABj42P5cxDjvNF/cN5aEMpXx2o5tP0Kk5ODWVsXPBiblP0bCZyqb3H+yS9yid8ndvHe9zrr+mz+4QzP6Oau9eVsLPcxX/3VHL14MYFyM0lTl6rEb7CDRKvT0lg/CGRbBf3jyDH6uH1HeXcPCyqQRE7KVRPUr1Ut7J64sCgKKPPML0lzNtbSe0oD48LfF8BrhgUyc5yFx/sqeSuIAXr+uh6jyLkH4/h/PQ+tMID2N+7GdNlLyFHNB8BlmWtq3yZFtbx4tf2srrP07BG0uy6gkU5Np/wfGELvL4a46N9lb4CJhf261jD9tayo957MTTI90LJ24vjg/8DWwVSWAymS55HjkrC6lZ9xvgJJh3xjXwPB0vvemsx29p4ddb2oFPEr9NOO40ff/yRffv2cc455zB9+nS2bt3KunXrfFUgIyIaXihLly5FkiRGjx7dGVMVCAQCwd8Mh8vNA+/+irteieWw0BAeveYU9Lq2/aALBIL2RVPcqD+/hrZ1ySEtEvJxVyBNOL1FZrmVbpW5f9lYX+p/wp1kkogwtr/wpWgab+1xsKPCe+E1LNrI5CZ8ppqKhIiviY56fUcFbtUrCkxLaj6CwaKXeG9GIgMbiNaZnWrxiV+1VdAaon464b1jYvyEr1oGRBp5bmI8F/7WjLM/8PL2cgAk4MkJsX7CVy0TE0z8a0AE7+6upMqt8dWBaq4Z0rBIEhsic8/oGL+1EG/SkWdTmmwrdzVtw9EebCx2+CLm/tEvvEGBRJYk7hsdw8oCO7k2hY/2VTUqfv16sn9US1vSxHpY9AH7DP3Km7kzIS6EeY1EjDWG3aPyas17OyjSwANjYxoUok5PC2N5vp2fsmx8vK+KywdGNLr2H99U6hOYnpgQFyB81X8tTaXZdgQHquoE9Fk9GxfPhkQZefqo1s9NP3Ay0qUv4vj4LrSyHLTCAxCE+FXsqBOio5uJxGorqqb51rleghnJXedfdygf7fWm/4UbJE5La1t2WYVL4YcM742AyQkm+nVCRF1Lyap2+4TIvuH6Br+vG0LN3OYVvmJ6eoWvmBQAFufYfFUtj0lp+/tafy0WOZq/WdIWOkX8mjFjBlOmTGHlypXs27ePffv2+dpMJhO33nprg/stWrSIjIwMJElqNDJMIBAIBIK28MqXq8jIL/fbdu+lJ5ISHyl8mwSCboTmsKJ++yTawU3+DToD8mlzkQdPa9F4uTaFG9dbOVDtL3hEGSWeGWvB3ELPr/psLlOw1WhHGmDzaKRXKyzJd3PQ6n2+JLOOFybGtamyVVI9f6pSZ3AXDRf1D29Q+AJv9TCzTsKuaNg9DQtBdo/K2iJvJE9siMysHo1f5AcTEZBj9bC7wisajIoJaXRuAGf3CfP5oP2SbW1U/ArRBaZQhdT83VSbS+lwK2R+rud7dX7fxlM3jTqJU1ItvLO7kmW5dtyq1mw6YHdjRYGDKrf3mJ7bJ7zJNOIz08L4KctGkUNhc6mTcQ2IfQer3GyruYgfFm3kuFZEZ3UkUUYd4P3gby5xdmjBAl3aSMxXvo5anIWu/4Sg9rHV8yFry/dbMPyUZfNFms1OtXSal15zbCl1srnUu4bO6h1GqL5tIuCX+6ux13xvXNS/7VFkHcG7u+siEi9roIpjYxgmngk6Hfoh05Es3ihFt6rx3h7vd7AMXNKI/2JLMOvr1qK9Ga+8ttJpq/Cll17i1ltvZeXKlb5tMTExPPPMM6SmBlaScLlcPP7440iSRK9evZg1a1ZnTVUgEAgEfxOWbdzPd8v9a7efOn04syYNQVU79u6TQCAIHq2yGOWLh6DooH+DOcJrbN9zSIvG21Hh4eZ1Vkpc/ifavUJlXp1goZelbVGfr+1xNNk+I8HAIxMSWlQhq9ypkGn1YHWruFQNTYO9FXWpLMHqNvpmxDaLQcauKDQ23MYSJ7UBUuPiTK0ucV/L6sK6YgVj45qu8pUWZiA2RKbEqbKv0o1DUTHpOjaCpb35Pc/7es06qVnfpSHRXiHQqWrsq3QzpBuljgVD7WsFGB7T9NxrXyt40+UaEr+W5NYJh8d2o0iiWo5JMbOhxgT85lVFXDM4krP7hAVt4t9S5IQ+LTJKV+rVuesofy3wVlJ8erPX78+i9xYd6C7URn1JeCMv24JH1fikxjusR6iOo7vhmvyr2MFXB7w3codFG5v0cWwIw/jT/P5+b3cl6TUFNS7qHx50FFlT1P9N8rRTleNGn6tDR69HREQE77//Prt27WL//v1ER0czevRozOaGF4nRaGTu3Lncd9993H///W26KyYQCAQCwaEUlFbz5Ee/+21LTYjk9ouO7aIZCQSChtAK9nuFr+pDzNOjktGd/xBSTI8WjfdHgZt/b7JyaHbFqGgdL46zEG3sODFldoqBi3qHMDzaiDEI4avIofDBnkoWZVvJCcI7qz1o7uXXeuUA9Apr+6VEXr3XlRrEeD0tekqcLhQNcq0KfSMOH/FL0zTyakICjTrJTxxqiIP10ugKbJ7DTvyq79+zq9xFaRMpTfVb8htZ6/VTcQd2w2Nxcf8I1hY5WJ7vwObReHFbOa9uL2dMbAgzks0clxLaLmJBazHWE7yqmyqT2QY0TePutXWVZO8cGU1yaPeI+iqwe1hYE3k5PclMrzb6ni2u5x12Qb/wNt8IaG/KnAp3ri1Gwxvd+lgzlWObY0Oxgzd2lAOQFqbnlnYSNeuvxZAOjkjs9JU4ePBgBg8eHFTf0047jQkTJpCc3LFlWAUCgUDw90JRVR757xKqbE7fNr1O5uErjifU1P1OqAWCvyvq/g2o3z4JrkNEgpRB6M59ACm0ZZX5vshw8vR2O4de9p2QZOCRUaGY2unE+52JFsbHei+svsl08ug27/yr3BrDooI7/f4t18Yda4v9UpW6A2X10itbUtWs0fFc9cYLIgWp/nNWddAFfEdR7lKpfTsrXI1XVmyIqkbSULszJfXWykMbgq/8Wd3Ia63vWRXVgSJ1awnRSbw5NYGvDlTz/p5KMqs9eDRYV+xkXbGT57eWMzzayD8HhDMn1dLpwR0Rxo7/7Ly6vYLf873fd2ekWTi3b/dJBfw0vcr3+WuPFMX/1VQHNekkzu7Tsoiqjsataty2ush3c+HBsTEMaoNgnG/zcOvqYjyat7rvK5Pj25wyWkv9tRjRwZ/r7iHDNoEQvgQCgUDQ3nz4y0Y27s3z23bt6UcxOC2+kT0EAkFno25ehPrL63BICrI0cDLyaXORDMFXv1M1jVd2O5i33xnQdknfEG4e1Pb0vcY4M9XI/GwXW8oV/izy8HOOi5N7Nj33PRUubl1dRO01wcT4EC7sH8GwaCOxITrf3fFvD1Zz7/qSDpl3Y9TLnKI9jlhLbbbqP38HBwl0K5TDT/tqNY2lPil+7333fPNlSeK8vuGc1zeczSVO/si382e+ne1lLlRgW5mLf68t4fsMK69Oie/UtN36HoHlzvZfUJ/vr+KtXd5iGOPjQnhobGy7P0drcSoaX+73pv+lhemZlti26qlbS51srElxndPLUuP31j3QNI171hWzpsg7vysGRrQ43bE+FS6Fq/4spNihoJfg2aPiGNCEN2NLqV9opKO94bq9+CUQCAQCQXuydX8+7/+43m/bUUN7csHxo7poRgKBoD6aqqAum4e25puANmn8ad6qjnLwFxpOReOBLTYW5bn9tsvAv4eZOS+taZ+ptiJJEvcMD+WiFVUoGjy7086UBCMJTdjDvL2rwid8zell4ekJsd3GAqT+nXlrO0QjRRhaNl79PjFBGOp3J6KMMnoJPBqkWvQsnN2ylN3DjdgQHfvwfu6WntyDpDamv8WaDq+ov1GxIYyKDeGmYVGUOBS+OVjNO7sqqPZorChw8PTmMh7sRIGofiXCXfX8AtuDxTk2Htvoje4bHGXg9akJGLuROv1DZjVlNSLLhf3C2/x9+lFN1FfteN2JpzeXsSDLm955Vm8Lc0dGt3osu0fl+hVFpFe6kYBHxsVyTDsXmthZXrcWO7paZveLFxUIBAKBoIOotjt56L0lKPXuKkeFm7j/kmORD7MqWgLBkYjmsqN+80QDwpeEfNxV6E64ukXCV7lL5dq11QHCl0kHL4yzdLjwVcugCB0X1DxXmUvj2R22JvuvLaqLULt1eFS3Eb7AWxGylpx6nk6tJdVSJ4hkBzFebQU5gwxxHWQk3lFIkkSi2TvnUqeCpnWvlNb2Jjm07v0pbsLvK+jx6kWF7K90N9Gz+xFr0nHV4EjmHZ3kuwD/9mA1jk4M6RsaZaS2sN7W0vYTv37Ps3H7miIUDfpHGHhnWiLh7ZAS3Z58tNcrVoXqJc5sQxQUQJHdwy9ZVgDGxYUwuBv5z720rYwPa4S5k1NDeXhc68VVp6Jxw8oiX4TbPaOj2xRB1hj11+KI6I49lt1rVQoEAoFA0EFomsYzHy8nr6TKb/t9/zqG2MjuVS5dIPg7olUUonx0J9reNf4N+hDks+5GPur0Fo2XZVW4dFU1m8r8L7pjjRLvTgxjZmLnGk9fN9BEgsl75bkgx8Wf+Y2bnZfXeCXpJUjpJmbRtYyMqRMMt7TDBXT98TYUB6al1udglZvSmnSt8XGmbhVZEizTk7whf1aP5hfxcCRS+1oB1jfz3rZ0vBUFTRcLaCn1V1JHSpJDoow+7yWX6l/woaOxGGRfRdVKt9ou6++PPDu3rPKmaA+MNPDBzERiu1lE5qoCO3trxNLT0yxt9ir8NL26Xb3D7B6VhzaUMPn7LI7/KZtP9lU1v1MDvLq9nLd3eatZnpIaytNHxbU6PdipaNy4spDVhQ4k4P4xMVzUP6JVYzXHumJvdWQZmJbUsRUzhfglEAgEgr8FP6/ew6/r9/ltO/eY4UwZkdZFMxIIBLVoObtR5t0GhQf8G8Ji0F38FPKgKS0ab0uZh0tWVZNh9Y+q6BMm8+GUsKBN59sTi17ijiF1J/YPbSjB1kiaX2RNaqFH81Z8bIwd9S5eOyuGKM6ko2+49/hlWT1sqLlwaYhvD1Y3O96gKCN9ayrgbSpxsq+y8Qvyrw/UjXdcO6fedBazetbN+73dlV04k45nRpIZc41A+Wl6FfY2psmOjDGSUhNNtrLAwfaytgtqtdRP5823tS6i0RWkgZ2zXrRXZ8u3Z6TVRe7U/zy1ht/zbNy8qhCX6o0q+++MRGK6YTSmf4pi2wQcp6LxxQHveIlmHce3w/fQ81vL+WJ/NRUulVybwmObSvk1p+no4EN5ZVs5b+70+q2dkWZpk/DlUFRuWFHIigIHMvDwuBj+0UGpnWsKHb4qrjOTzR2+foT4JRAIBIIjnqyCcp7/bLnftgE9Y7n+rEldNCOBQFCLuuN3lE/uBmu5f0NiP3SXvICUPKBF4y3Nd3H1mmrKXP4XouNidHwwOcx38dwVHJ9sZGq8VzjKtSm8vK28wX5j4+rMmD/aGyiQKJrG6zvK+bjeRV2hvfMiSC6uFwHw6MZSv1L1tfx3T6XvYqw5Lh/kHU8F7llX0uB4awodfLTPeyx6WvTdrrpasExKMDOjJrrh52wbL28rQ20k/XF5vp0Xt5Z15vTaFYtB5vqh3oqsWVYPt6wqatSrK73SzQN/NS4Igzdt9I4a/yIVuGVVUaNiaalT4bGNpeQGKWSNiDb6hKgFWdYGhSx3I0b84PWiu/C3fO5ZV0yBvfHn/GJ/FfurvO2xITK9wjpXiD+ll8WXevtDZnWrffuW5Nq4eVURLhUmxIXwwcxEoruh8JVR7eaPPG+U4KQEU5s9pX7MtPqiT8/vG4a+HSwzfsm2Bmz7KStwW2O8sLXMV2jgkgHhPD4+ttUFXGwelev+LGJloQODDM9NiuOcPh3nafbZ/rrfsMsGdkxkWX26Vxy1QCAQCATtjNuj8OB7S7A7605GQwx6Hr7ieEIM4mdQIOgqNE1D/fMTtD8/DWiTBk5GPnUukrFlFbk+PuDg+Z2OgCio2SkGHhoR2i3S5O4aZuacP6pwqvDxvipOTrUwKtbfe+xfA8L5NceGBry7u5KDVW6mJZmJMMocrPLwY2Y1+6s8DIkykmP1UOlW+SS9ignxIYyLa1sVs2A4q08Y/9tXxf4qN7sr3Jy5OJfz+4bTK0xPoUPhp0wbm0qdjIsL4a8g0t3OTLPwc5aVFQUOtpW5OG1RLuf0CaNfhAGnorG60MEPmVYUzZsK+sCYGF/Fy8ORB8bGcOHSfAodCv/ZVcmvuXZO62Whd7gBl6JxoMrN0jwbu8q9qVr9IgyclnZ4in2XDIhgeb6dtUVO/ixwcNLPOZzZO4xh0UZkyZv2t7LAzooC7+dW1TQeGx/X6Hgn9rRwZm873x60kmtTOGtxHnN6WZgQbyLcIFPiVPir2MmvOTYcisa2MicfHZ2EoRmRIt6s5+TUUBZk2ThQ5eGsX3M5p084yaE6Kl0q6ZVuFmRZuWd0DLNTLQH7P7eljB3lLnaUu1iQZWV6kpmj4k0kmHV4VG802eIcG1vL6sS6W4dHdViV2cYwyBL/GhDBs1vKqHJrvLmjgttbaIj+a46N21YX4dG80U8X9g9nfVHjEaC1jI0z+UXY1Sff5mFXA2mY9SsBLsv1j4ZKCtU367f1v31V1I7QHimK/6sR4A0ynNtOolBDKyDYVfHsljL+u8c7p6PiQ5gYb+L3vKZTgmVJYkZyYHqhU9G4enkhG2o8vs7rG45JlgKO+6HEmHR+6evBsrHYwaJs79hjYkMYH9/xv13irF8gEAgERzRvz1/Lrswiv223nDeF3smtr34jEAjahuZ2oi54GW3nHwFt0uRzkWf+E0kKPkFB0TSe32nn04OBF09X9gvh+oGmbmMa3zNUx5X9zby+x44KPPBXCV8dn+x3cT4uzsTtI6N5bksZGvBrrp1fc/0vaEbHhPDa1Hi+PVjN81vLKXYo/Jxl6xTxyyhLvDs9gX8uyyfHppBjU3jhkCi2UTFGXpsSz4k/51LZTGU+SZJ4eXI8t60u5o98O/l2hdd2BEaNmXUSL0yK73BfmI4mJVTPp8cmcd2KQvZUuEmvdPNiI1GAE+NDAsTRwwm9LPH2tETuXlfMz9k2ylwq7+9pON0z1aLn5AaEpUN5bFwsSWY9b+2swKPBdxlWvssIjJSx6CVOSbX4TN6b44GxsWRWe9ha5mJ/lYdntgRG3b2+o4KTeoYGfJ/cPiIaVfOm+rpVWJprZ2luwyJEqF7i/jExnN5FgubF/cNZkGllR7mLD/dWcnqahQGRwRuNL821+TyvCuwK/7e6OKj9lpzco1Hxa1Whg3vXlzS5//Ur/c/lzkiz8MSExoXSarfKdzWp1z1CdRzTgODTEtYUOthd4RWkZ/e0tJu32UmpFr8oXoCTezX/OQBYWC9qbG2Rk7VFRU309pJq0TMjObDSbLFD8Qlf4L05c+i8GuKs3pYWi18eVeOhDaVogFGGh8bGtGj/1iLEL4FAIBAcsazdkcXHizf7bTt6TB9Onzaki2YkEAi06jKUrx+D3N3+DbIeefZNyCOPa9F4dkXjnk1WlhX4pxrpJLhnuJmzUrufcHBpPxM/5bk5UOVhb6Wbd3dVcN3QKL8+lw2MYES0kY/2VbGh2EGFSyXSKDMkysicXhbm9LIgSxJXDIrEopf5374qjkvpPFEoKVTP18enMG9vJUtybWRUedDL0DfcwGlpFs7vG45elog365oVvwBC9TJvTUtgaa6NHzKtbC5xUupU0EkSPS16pieZubh/OEndrABAa0kO1fPlccn8kGnllywrO8tdVLhUTDqJFIue8XEmTu0VGBV4OGLUSTw/KZ6zC+x8e7CaTSVOihwKsiQRb9IxMsbI8T1COb5HaFA+RZIkcdOwKE7sGcqXB6pZW+gg2+rBrWpEh+gYEmVkepKJ09PCWmRuHm6Q+ejoJL48UMXPWTb2VbqxeVTCDDIDIgxMTTJzZu+wBoV0i0Hm4XGxXDEogh8zraws8M6p3OV9ndEhMoMjjUxKMHFG77AurYZokCWenBDLuUvycKnwf6uL+fTYpA6dk1knkWTu3LTI/VVukkP17Kt0c0G/8DZH2WVb3cSbdBQ5lHaJIqvltuFRuFWNhdk2LHqJywdGdqinYVo7p9r2Dmt5KumTm0t9RQhuGR7dIvG1LUjakV5jV9Dtcdmr0LSmT4oMpjBkWYeqKrgdbTNnFPx9EOvm701ZlZ1/PfolJZV14doJ0RY+vO9cIiyNR0aIdSNoLWLtNI9WsB/lq0eh8pC70+YIdGffi5Q6rEXjlThVbllvZXuFv99VqA6eHWthSnznVnQMFkmSMZo7zkdFIBAImuO7g9Xcu74EDZiaaOLNqQnt4mHV3ciodhMbomtzlUfwpuvvqnAzpJl0S0HjfLyvksc3eaMqZ/UI5YVJcZ2W/isM7wUCgUBwxKFpGo9/+Juf8CVJ8OBlxzUpfAkEgo5D3bsG5aM7A4WvuF5eY/sWCl8HqhUuWVkdIHwlmCTenxzebYUvgUAg6A6c0TuMuSOiAFhR4OCudcV4mjD1P1xJCzO0i/AF3qhDIXy1nh8yq3lqs1f4mhgfwjNHdZ7wBSLtUSAQCARHIF8s3crKrZl+2y6ZPZYxA1O6aEYCwd8XTdPQ1nyD+tsHcIgVvdR3HPLpdyKZgvM3qeWvUg+3/WWl0u0/3oBwmVfHh5FoFvd3BQKBoDkuHxSJ1aPx5s4Kfsqy4VGLeXZiXLMFAgSClvLdwWruW1+CSo1n5ZSETi9CI8QvgUAgEBxRbNmXx2tfr/bbNrxvIpefMr6LZiQQ/H3RFDfqL2+gbVkc0CaNPxX5uCuR5Jb5wPyc6+LBLTYOtZGaFKfn2TEWwgziok0gEAiC5aZhUcSEyDy5qYzNpV6vvUSzkAkE7cvv+d4iL0cnm3lhUhwmXeffpBKrWiAQCARHDKWVNu57ZzGKWndVbDEZeejy49B3wY+sQPB3RnNUo37zBFrGFv8GSUaedS3y2JNbNp6m8X66k9f2OALaTu9p5N7hZhGtIBAIBK3gov4RJJj19A03COFL0CE8fVQco2OquHhAeFCFLToCsbIFAoFAcETgUVQeePdXiitsftvvu/QYUuIiumhWAsHfE628AOXLh6HYP/2YEAvymXch9xnTovE8qsaT2+18k+UKaLt+oIkr+4U0WIFNIBAIBMFxQo+OqzAoEBhliUsGdu35uBC/BAKBQHBE8J/5a9mwJ9dv28Unjmbm6D5dNCOB4O+JlrsH5atHwFru3xCVhO68B5FiU1s0ntWjcedGKyuLPH7b9RI8NDKUU3oI82GBQCAQCARNI8QvgUAgEBz2/L7xAB8v2uS3beygFK4+7aiumZBA8DdF3bMKdf5z4HH6N/QYgu6c+5BCI1s0XqFD5aZ11eyp8jf4CtdLvDAulPGxoqKjQCAQCASC5hHil0AgEAgOazILynl03lK/bXGRoTxyxfHC50sg6CQ0TUNb9z3qkncJqOg4ZDrynP9D0rcsQmtPpcLN66spcPiPl2KWeXWChb5hLTPKFwgEAoFA8PdFiF8CgUAgOGyxO93c859F2Bxu3zadLPP41bOIiRDeFQJBZ6CpCuqv76D99WNAmzTpHOSj/4UktUyI/qPAzd2brNgU/+1DI3W8PN5CXIgQtgUCgUAgEASPEL8EAoFAcFiiaRpPf/wH+3NL/bbffO5kRvRL6qJZCQR/LzSXHXX+M2j71vk3SDLySdcjjz6pZeNpGv874OTFXY5D4sdgRoKep0ZbMOuFsb1AIBAIBIKWIcSvevz11198//33rF27luLiYpxOJ/Hx8YwePZqzzjqLqVOnBjVOdXU18+bNY/HixWRlZaGqKj169OC4447jkksuISYm5rAcRyAQCLoT3/y+nUVr9/ptO2FCf845engXzUgg+HuhVZWgfPkIFKT7NxjN3oqOfce1aDy3qvHENjvfZQdWdDw/zcgdQ81dVh5dIBAIBALB4Y2kadqhN9b+dtjtdh544AG+//77JvudddZZPPbYY+h0jXtMpKenc9VVV5GTk9Nge1xcHG+++SYjR45s8rm62zgdictehaapTfYxmMKQZR2qquB2VHfSzASHO2LdHLls21/A9c/Px6PUfXf0SY7mnX+fRaipbQbYYt0IWsvfae1ohQdRvnwYKov8G8LjvBUdE1pWZbXMpXL7BisbSv3zHGXgjqFmzk8zIh1BwpckyRjN4V09DYFAIBAI/jb87cUvl8vFZZddxvr165FlmfPPP5/TTz+dtLQ03G43O3fu5IUXXmD37t0AXHXVVdx+++0NjlVdXc3pp59OdnY2BoOBW2+9lTlz5mAymVi/fj1PP/00mZmZxMXF8d133xEfH39YjNPRCPFL0FGIdXNkUlZl57InvqKwzOrbFhpi4L27zyYtKarN44t1I2gtf5e1o+7fgPrtk+Cy+zck9kN37gNI4bEtGi+9SuHWv6xk2/zPBcL08PQYC1Pij7yKjkL8EggEAoGgc/nbu4UajUYuuugiEhISePfdd3nooYcYM2YMMTExJCYmcvTRR/P555+TmpoKwIcffkhZWVmDY7333ntkZ2cD8Mwzz3DllVeSlJREVFQUxx9/PDfccAMAxcXFvPHGG43OqbuNIxAIBN0FRVV58L1f/YQvgHv+dXS7CF8CgaBp1E2/oH7xUIDwJfWbgO7ip1osfK0scnPpqqoA4atnqMy8KeFHpPAlEAgEAoGg8+mSyK/09HQWL17Mtm3byM/Pp6qqClVVWbx4cUBfl8uF0diy0titwePxoNc3boH2wQcf8OSTTwLwyiuvcOKJJ/q1K4rC1KlTKSsrY8yYMXz22WcB7XPmzGH//v0AmEwmVq9ejdls7tbjdAYi8kvQUYh1c+Tx1ndr+PCXjX7b/nH8KG46Z3K7PYdYN4LWciSvHU1TUX//EG3VVwFt0thTkE+4Gklu3BYicDyNzzJcPLfDzqFnAGNjdDw/1kKU8ci9RysivwQCgUAg6Fw69awiKyuLK6+8kjlz5vDyyy+zZMkStm3bRkZGhi9CqT579uzh7LPP5uOPP+7wuTUlfAH06VPnXVFUVBTQvmHDBl9E2OzZswPav/76a/bv38/ZZ58NgMPh4M8//+z24wgEAkF3YfnmgwHC1+gByVx35sQumpFA8PdA87hR5z/XgPAlIR93FfKsa1skfLlVjSe323mmAeHr9J5G3joq7IgWvgQCgUAgEHQ+nXZmsWXLFs4++2xWrFiBpmnodDr69etHv379Gt3n66+/Zu/evbz00ktYrdZG+3UGNpvN9zgyMjKgfdu2bb7HY8aM8Wuz2+28+uqrjBo1iltuuaXBfbrrOAKBQNAdyC6s4NEPlvpti40I5ZErj0evExfJAkFHodmrUT6/H23nH/4N+hDks+5GPur0FhnRV7pVblxn5ctM/4qOEnDbYBMPjjBjkI8cY3uBQCAQCATdg6bDndqJqqoqrrvuOiorK4mMjOS2227jtNNOw2w2s2zZMq699toG97vuuuv44osvqK6uZv78+Vx44YWdMd0G2bJli+/x6NGjA9pr0wcBevbs6dc2b948CgsLee6550hMTESv1+PxePz26a7jdAb6kNBm+0iS7PvfYArr6CkJjhDEujkycDjd3PvOr1Tb6y6WdbLEkzecRnJiYrs/n1g3gtZypK0dtTwf18d3QdFB/wZLNCEXPoHcc0iLxjtY5ebGVSUcrPb4bQ/VSzwzIYajkzvfekEgEAgEAsHfg04Rv+bNm0dJSQkmk4kPP/yQQYMGBbVfVFQUs2bNYv78+fzxxx9dJn65XC5++OEHwBtFVWt+X5/S0lLf4+joaN/jsrIy3n33XWbMmMHEid7UnIiICEpLSxs0zu9u43QGcgtSJSRJQpKC7y8QgFg3hzOapvH0R0vYm+Wfbn7LBccwbkhahz63WDeC1nIkrB0lby+uj+5Aqyrx2y7F9cL0r2eRo1NaNN6qAjv/t7qYSrd/omNKqI43piYwMLLj/V0FAoFAIBD8fekU8Wvp0qVIksRZZ50VtPBVy9ixY5k/fz47d+7soNk1z9tvv+3z+br55psb7GO3e6seGY1Gv/D/t956i+rqaubOnevbVmvgXz+VsruO0xmoqtJsH0mSkSQJTdOaNccXCGoR6+bw55vfNvPjn/4p2ceNH8gFJ4wJ6rujNYh1I2gtR8raUfatxfX5gwEVHeVewzH+43EIjWzR5++L/dU8vrkc5ZASS6NjjLw8KZZYk67DPs/dmZbc/BMIBAKBQNA2OkX8ysrKAmD8+PEt3jc21lsyu34kU2eyYcMG3nrrLQDOPfdcpkyZ0mR/Wa7znsnJyeGTTz5hzpw5DB482LddVZs/Ie5u43QkHqctqGqPkqRD09QjroKWoOMQ6+bwZmdGIc99vMRvW1pSFHddPA2Ps+N8IMW6EbSWI2HtqFsWo/70KhzyuywNnop06lw8sg6CfG2qpvHyLgcfHnAGtM3pYeD+4WaM2HE72mXqhxWi2qNAIBAIBJ1Lp4hfTqf3pKe+EBMs1dXeE6zmqjF2BNnZ2dxwww243W6GDx/Offfd12jf0FCvb5Xb7fZte+mll9A0zc9UHuqOR+0+3XkcgUAg6AoqrQ7u/c8i3J66C3BziJ4nrp6FxSTSowSC9kbTNNQ/P0H789OANmnC6cjHXeHzNAsGh6Jx/2Ybv+a7/bZLwE2DTFzaN6RFRvkCgUAgEAgEbaFTSmQlJSUBsGPHjhbvu2bNGiDQtL2jKSgo4LLLLqO0tJTU1FTefPNNTCZTo/1jYmIAUBSFqqoqdu3axY8//sgFF1zg5xHmdrupqqry26c7jyMQCASdjapqPPLBUvJL/aNL7rr4aPqkiO8pgaC90RQP6k8vNyB8ScjHX4Xu+KtaJHyVOlWuWVMdIHyZdPD82FAu62cSwpdAIBB0M1Tt75d+LuhcunqNdYr4NWnSJDRN48svv6SioiLo/dLT0/nxxx+RJInJkyd34Az9KS4u5rLLLiMzM5MePXowb948EhISmtynb9++vsc5OTk899xzmM1mrr/+er9+eXl5vjTDPn36dPtxBAKBoLP5aOFGVm7N9Nt2ztHDOWFC/y6akUBw5KI5bahfPoK25Vf/Br0R+cy7kCec3qLxMqoVLl1VzZZy/xPcuBCJ9yaFcUySiNwUCASC7oZLsfH9jgdYm/VJV09FcISSX7Wb/224hsLqfV02h04Rvy6++GJ0Oh3l5eVcc801FBYWNrtPeno61113HW63G51OxwUXXNAJM/VGfF188cWkp6eTlpbGhx9+SI8ePZrdb/jw4b7H8+bNY/ny5Vx++eUB0VQbNmzwPR4xYkS3H0cgEAg6k/W7cnjn+3V+24b1SeCmczrvBohA8HdBqypB+fgutAMb/BtM4ej+8Tjy4KktGm9jqYdLVlWTZfP3C+sbJjNvSjhDIzvfwkIgEAgETWNzlfHttrvJrtjMXzlfUenI7+opCY5AVmb8l0pnPt9uu5vM8o1dModOOQsZOHAgt912G88++yybN2/mhBNO4JhjjmHEiBHk5eX5+v3www8UFxezbt06/vjjDxRFQZIkbr/9dr9Ipo4iKyuLSy65hJycHAYPHsx7771HXFxcUPuOGTOG6OhoysrK+Oabb4iNjeWyyy4L6PfLL78AYDKZmDo18KSyu40jEAgEnUVRWTUPvvcrqlZXEi7SYuLRq07AoBdV0QSC9kQrykD54iGoLPJviEpEd97DSLEts5tYmOvi/i023IfUrzkqVs9zY0MJN3TK/dYjApurjILqvY22mwzhJIcP6cQZCQSCIxW7u4Jvtt1FuSMHg2zilCH3E2FK6uppCY5AZg+6m+93PECRNZ0fdz7MKYPvJy16XKfOodNuwV1xxRU4HA7eeOMNnE4nCxcuZOHChQA+34c777zT11/TNGRZ5pprruHSSy/t8Pnt2bOHyy+/nKKiIqZMmcKrr75KWFhY0PvrdDr+8Y9/8MYbbwBw6aWXYrFY/PqsXLmSZcuWAXD22WdjNpu7/TgCgUDQGXgUhfvf/ZWyKrtvmyTBg5cfR1KMqIgmELQnasYW1K8fh0OrpiYNQHfeA0iW6KDH0jSND/Y7eWV3YMnGU3sYuH9EKAZZ+Hu1hPyqXfy0+/FG21MihnPW8Kc6cUYCgeBIpDbVsdyRg04ycMqQ++kZOaqrpyU4QjEbIjl96GN8ve1OyuxZ/LL7SU4f9jhJ4YM6bQ6dehvuhhtu4KuvvmLKlCnIsoymaQ3+Axg/fjyffvppQGXCjmDjxo1cfPHFFBUVMXv2bF599VUMBgNOp7PBfy6Xq8FxrrjiCp8x/8cff8xPP/1EaWkpxcXFfPrpp9xwww1omkZcXBzXXXddo/PpbuMIBAJBR/Pmt2vZku4fZn/ZyeOYNCy1kT0EAkFrUHcuR/38gQDhS+o3Ad1FT7ZI+PKoGo9vszcofF07wMTDI4XwJRAIBN0RTdP4efeTFFnTAYkTBt4uhC9Bh2MyhHP60EexGGNwqw5+3PkwVc7mLbHaC0nT6uWXdCJlZWUsX76c7OxsSkpKAIiNjSUlJYVp06YFnW7YHvzzn/9k7dq1Qffv3bu3L2rtUNLT07nqqqvIyclpsD0uLo4333yTkSNHNvkc3W2cjsRlr0LT1Cb7GExhyLIOVVVwO6qb7CsQ1CLWzeHBso37uec/i/y2HTW0J8/feDI6ufNTpcS6EbSW7r521L8WoC56C/A/9ZPGnIQ86zokOfj0YqtH486NVlYWefy26yV4YEQop/b8+xnb51btYEF6QxFbEgbZhEkfToypJ8lhQ+kfM5WoiJaJ+6+tnAOIyC+BQNB2NufOZ/nBdwAYk3IWU3tf3uYxi60H+S39VQqqdwNwxrAn6BnZsmvMSkc+OwuXcLBsLVXOItyqg1B9JEnhgxmccBxp0eNbNJ6maewpXsauoqWUWDNweqoINUSRGD6IoYkn0itqTLNjrMn8mHXZh1ZDbprwkAQuGfd+i/ZpK4rqZnfRb6SXrKTIug+Hp5oQfRhRphTSosczLPEkzIaIoMYqqNrDnuJlZFdsweoqxa3YCTVEER2aysC4oxkQNx2dbGj1XHMrt/Hd9ntRNYUeESM5Y9jjnVIFusucR6OjoznttNO66unbRFNVEfv168f333/PvHnzWLRoEVlZWWiaRkpKCscddxyXXnppgOn84TCOQCAQdARZBeU8Pm+Z37aEaAsPXX5clwhfAsGRiKZpqH9+gvZn4Mm7PPNfSJPPbdFJZ6FD5aZ11eyp8r9xFaaH58daOCqu9SfERyYabtWO22WnylVIRuUG1uV9zqiU05mYejE6WRQCEAgEnUeZPZtVmR8CEBOaxuS0S9o0nltxsC7rUzblfYeqKc3v0Ahb8n5kRcb7KKp/llWVq4iqkiL2liynf+w0ThgwNyjhxemp5pfdT5FVsanB8faV/MmwxJOY2fc6ZOnw9pYtqN7Lwt1PU+n0z6Kwu8uxu8vJq9rBhpyvmNn3OgbFH9PoOC6PjeUH32Zn4a8BbVWuIqpcRWSWb2Bz3nxOHHgnUebmCwM2RErEcMaknMVfOV+SU7mFLXnfMyqlZdWlW0OXRX4JBLWIyC9BRyHWTffG4XJz9dPfsS+nxLdNr5N5Y+7pDO+b2GXzEutG0Fq649rRVAV18dtoGxb4N8g65JNvQR5xbIvG21OpcNP6agod/qePyWaJV8eH0S/88L6AaAv1I79SwoYxPP4kX5tHdVLtLiGncis51dt829OiJ3DK4PuCuvASkV8CgaA9WLj7afaWLAdaF51Vn4yy9Szb/yZVzoKAtpaMvTnve5YfeBsAg2xicMLxJIUPQicZKLVnsr1gIVaX93xxYNzRzBp4e5PjaZrKDzsfIrPcW804IiSR4UmnEGFKpMpRwPaChZQ7vJlRo1POZFrvKxodq8yeQ7m94Syq+nhUB4v2PIeGSlr0BE4d8mBQr72tlNoy+XLLbbhVrwVBz8iRpEWNJzwkAau7lJyKrewvXVXTW+KEAXMZFH90wDhOj5X5O+6jsKbgSkRIIgPjjybK1AODzkSZPZsdBYt8AlukKZnzRr5IiD54n/T6uBQ7H2+8BqurlBB9GJeO+wCDztSqsYJF3GoSCAQCQaejaRrPffqnn/AFcNM5k7tU+BIIjiQ0jxv1xxfQdi73b9CHIJ95F3L/CS0ab2WRmzs3WrH6ZzoyNFLHy+MtxIWIaM1aLIYY0iLHBmwflTCHvOqdLNz/PG7VTkbZOrbm/8So5FO7YJYCgaClFFv3o5NDiG5lxEtXU+koZF/JCgASwwa1WviyukpZfuAd9pXU/b4MjJuJURfKtoKfWzRWmS2LFQe9KYKhhhjOGv4UUeYUvz4jk0/j2213UWI7yJ7iZQxOOJZeUYHfsbXsLPzVJ3zFW/pzxrDHCdHXFX8bkXQKX2/7N0XWfWzK/ZaBcTNJCOvf4FjR5h5Bvd9b8xag4Q3oGJk0p9n+7cUfB97yCV/H9LuRYYkn+bWPSj6NjLL1LNj1KKqmsPzA2/SLnYJe9rcnKLEdoMKeC8DIpFOZ2vvygAi7Ucmn8ePOh8mp3EqFI491WZ8xrc+VrZq3UWdmZNJprMr8AKenmh0FCzs8+kucpQgEAoGg0/lhxS5+WrXbb9tx4/pxztHDu2hGAsGRhea0oX75cKDwZQpD94/HWix8fZPp5Ob1gcLXzAQ9704ME8JXC0gOG8K01Mt8f2/N+7ELZyMQCBpCUd04PVbK7TlklK1nbdanfL75Vj7bfDNb8w/fz+yW/B98As2IpJNbPc6SfS/5hK9oc0/OGPY4swbegdkQ1eKxthX8jKp5f1ym9r4sQPgCMOnDOKbfTb6/N+R83eh4mqbxV86XAEjIzBow10/4AtDQqHYV+/5en/15i+d96HNuzv8BgEhTSpPCXHtic5WTXbEVgKTwIQHCVy1p0eMZEDcDAIenkoKq3QF9UiKGc96ol5jW+0pm9L2mwdRSg87Esf1vAbxWCbuKljabwdUUwxJPRJa88Vib876no5MSOyXy68UXX+TUU0+lf/+G1VSBQCAQ/H3YnVnMC5/96bctLSmKu/45s1PMLgWCIx3NVoHy+UOQv9e/ITwW3fmPIMWnBT2Wqmm8vMvBhwecAW0XpBm5fagZnfjctph+0VNYkT0Pl2Kl3JFDtauEMGNshz6nw13FgbK15FRsodi6nypnIS7Fjl4OISwkjpSIYYxIOpk4S98mx/njwH/Ykue9yDuu/60MSTi+yf5WVyn/XX8JoAWVsml3V7A573sOlq2jwp6LhobFGENq5BhGJZ9KdGjzhQK+2XYXuZXb/LZdNOYtos3eKuj5VbvYlPsduZU7sLvLfWLAjVM6R9SocORzoHQ1uZXbKbVlYnWV4lGdGPWhRJl60CtqDMOTTsFibLr66scbr6XMno2EzOUTPsJsiGyy/4HSNSzY9SgAY3ucw5S0S5vsX2w9yJb8H8ip2EK1sxidbCTSlESfmImMSj4tqHSn2nTdWkIN0Vw+4SPf33uKfmd7wUKKbftxeqw0t07a69jVx+YqZ1fRr6SXrKLKWYDdXelbEw1xoHQtM/pc0+SY7XHsOoL0mqgvCZm06JbdBKnPpF7/Iq9yB+N6nsuYlLPaZH6eXuJNyZMlPf1jpzXaLyl8EFGmHpQ7csip2IrNVU6oMSqgX2H1XioceQD0ihrT4HfGlrwfsbvL0UkGFM1NRtl6XIodo87cqteQWf4X5fZsAEYmz+m081lvuqlXMEoOH9Jk36TwIewu+g2AaldJg30iTcmMTjmjyXEiTUlEmXtQbs/G4anE6i5r9e+XyRBOcvhQciq3UOksoMia3mgEXnvQKeLXf/7zH95++2369+/Pqaeeysknn0zPnj0746kFAoFA0I2osjm59+1FuDx1hqgmo57Hr56FxfT3qw4nELQ3WnkByucPQOkh/iQxPdBd8ChSZELQY9kVjfs22Vha4PbbLgFzh5i4qE/HenN0NqX2TDbkf0OVq4TRiafSJ+qoDnsuWdIREZJAse0A4BWIOlr8+mHnQ74qbPVxq3bK7FmU2bPYUbCIKWmXMqbHWY2OMyB2uk/82l+6ulnx60DpGmovzgbETm+yb3bFFn7e9ThOxeq3vcKRR4Ujjx2Fi5jR5xqGJ81ucpyGqHIWEW3uyY6CRfyW/lqT4kZH4vLY+GTjdSiaO6DN6ammoHo3BdW72ZK/gNmD7m4yLW1A3AzWZn2Chsr+0tUMSzyxyedOL1npezww7ugm+27I+YZVGR/4HSdFcVNkTafIms7W/J84ZfD9JIUPanKcQ7G5y1FUN7KkZ8m+l9lVFGis3Rjteexq2Veygt/SX8PpqWq0T7S5J0adN3LIpA8nMXwgiupuVPDpqGPXVioc+VQ5CwGIs/QNuvJfQySE9eeS8R9gaqOIp2qKz8srytyjWREtOWII5Y4cNFQKq/fSOyZQwMss/8v3uKEILJdiY2PuN0SEeMXIzXnzUTQ32eWb6Bs7uVWvY1PefAAMspkh8U1/J7YnBl2o73FDn4v6uDw232OTPrxNz1t/f6e7qk2/X6lRo8mp3AJ4fwMOe/ELvKGA+/bt48UXX+TFF19k1KhRzJkzh9mzZxMb27E/9gKBQCDoejRN49EPfiO3uNJv+10Xz6Rviqg6KxC0Fa3oIMpnD0B1qX9D8gB05z2EFNp0VEh9ihwqt/5lZUeFf+UukwyPjw7l2KQjR6zWNJWtRT+zLu8LX+rNbxlvkhw2pM0XCE1Rm+rhnUPrK6QFy8C4GVQ68kmJGEZi+CDCQ+KRJB02VynZFZs5WLYOVVNYkfE+Ueae9IlpWPxLCh9CmDGOalcxWeUbcSuOJk2KD5SuBryRJv1ipzTaL7N8Iwt2PoKieYWRgXFH0zNyBHo5hFJ7Jtvyf8HmLmXZ/jcw6cPpH9d4hMjktEtwuL1ixoJdjwBQ7Swio2y9T/jqFTWOvjGTyancwt7iP5o9fu2FUR9KWvR4SmwH6RExgjhLH0KNMaiah2pnMeklKyio3oPTU8VPux7jwjFvNnphOSBuJmuzPgG8wlZT4peqKRwoWwtAjLkXcZbejfZdl/Upa7I+BsCkj2Bo4iziLf3QNJXcyu3sLPoVu7uc73c8wPmjXiLSlNzoWKcMfgCAEttBVmd+CDXpZtsLFrKr6FdkSc+g+GPoGTmSv3K+otSW0SnHDiCj7C8W7n4aDRUJmf5x00mNHIVRb6HKUUB66Sryq3bi8FQzJe0y+sRMbHSsjjh27U2RNd33OCa0V5vHa6vwBd5Iz1qRMERnaaa314S9llJ7Fr0JFL+KrQd8jxPCBgS0b86dj8NTydTel1ObvgdQbDvYKvGr1JZFVvkmAAYnHItRH9r0Du1IpCkJg2zCrTrILN+IqimNFlDJrql6GaIPIyViWJuet75YbGom4rQ5YkProtGLrPvaNFZzdIr49eabb7Jo0SKWLl1KRUUFAJs3b2bz5s08+eSTTJw4kVNOOYUTTzyRsLCuCQEVCAQCQcfy8aJN/LnloN+2M2cMZdZRgScmAoGgZWjZO1C+fBgc/hEzUu8xyGffg2QMPpVjb6XCzeuryT+komNciMRL4ywMizpy6iVVu4pZlvkWedU7/bYrmgu1DT4mwT53LaGt8MlpKSOS5zRqJjwy+VRyKrbx3fZ70FBZn/15o+KXJEn0i53K5rz5eFQnWeUbG71gdCl2siu8d/RTIoYT2kgqmltx8Nu+V1A0NyZ9BKcNfSTg7v/I5NOYv/0+iqz7+H3/m6RGjQnw8amlofSfMns267I/R5JkThgwl4FxMwF8USedyUmD7mr0AnVsj7NZn/05qzM/wqXY2JL3Q6PpidHmHsRb+lFkTSe7YjNOT3Wj6XTZFVt8F6wD42c2Orci637WZn0KQGLYQOYMedAvnXJg/EyGJ53Et9vvwempZtn+Nzh96KONjle7juoLpAfL1rEp91ssxhhOHfIwcZY+AGwvWNjoOLW017FTNYVl+1/3CS+zBt7BgDj/yMTRKWfyx4G32Jq/gJ93P8lpQx9pMpqsvY9de1NZkwoIdBvDfmP9yCW16cglwG99Oz0NV1Uuc9RFPoeH+Ec7Oz3VbMr9jkhTMoPijyG3cruvrTZtsaVszptPbXTriE40ugfQyQZGJM9hQ85XlNuzWbj7aY7ud0NACvSWvB/JqtiEhMzRfW9oU1VFl2KjvMYY32KMaVGKcUNEmeo83iodgVVD25NOcSc95phjePLJJ1m5ciXvv/8+F1xwAbGxsWiahqIorFq1ivvuu48pU6Zw44038vPPP+NyuTpjagKBQCDoBDbuyeWt79b6bRuSFs8t507tohkJBEcO6r51KJ/eHyh8DZmOfO4DLRK+VhS5uWx1VYDwNSBc5sMp4UeM8KVpGntL/+SrXXcFCF8AoxNPJ7SNd7ObosC6F5u7DACzIYrwkI6vctuYYFBLj8jhvmiAguo9eJRAn7da6kdd7a+J7GqIzLK/fKk4A5qI1Nqc9z1VriIAju57fYNpLyZ9GCcMmAtI2D0V7Cla1tTLCWBr/gKqnAVM7X25T/jqKpp7L7weSt7oypwaM+vGqDWxVjUPB0rXNtpvf72UxwFNvP6VB/+LhopOMjB70D0N+ojFWfoyudclAGSVb6TUltnkHA9lVcY8wBsVVit8BUt7Hbvsii2+FMDUqDEBwhd4hd7JaZegkwyomqcmcq1xOuPYtQWrq8z32KRvfcpje2LQmXwRXxXO/CD2qIvUcqv2BnvY3RW+x4cK7ptyv8OpWJnQ8x/Iks4ves3mLg9+4jU4PNU+H63UyNHEBOFJ2N5MTL2I3tFekTm9dCUfbriSpemvkl2xBYe7imXpr/PHgbcw6MycNOiuBtd6S0gvWeUTjftENx8N2Rymeum3NldpEz3bTqeW5tHpdEyZMoWHHnqI5cuX8/HHH3PppZeSnJyMpmm4XC6WLFnCbbfdxuTJk/n3v//N77//jqJ0fCi4QCAQCDqGwrJq7n93MWq9Ci7hoSE8dvUsjIamT2IFAkHTqFuXoH71KHj8hQpp7CnIp92OpA/ehPiLDCe3NFDRcWq8nvcnhZNsPjIqOjo8VSzJeJVlmW8GXDyF6Cwcm3YjE5LP67DndysOVmbP8/09JOH4blPsIywkruaRht1T2Wi/pLDBhBvjAXzpkg2x3y/lsfGbHbVph6GGqCZTI2NCU30+SemlKxvt1xAe1Um8pR8jOzkyozXoZANmvVc4qX8h3xBe8cu7fmrNzA9F01Tfe5EYNohIU1KD/ezuCrIrNgPQO+aoeushkEHxx/iEqPpeYsHgUZ2MSDqlQ7x9gj12ZfWifHpEjGi0n1EXSkTN8Sqo2tNodFJnHbu24FHrfifaEvnT3qRGjQG8qXR5lYE3I2qpchayLvsz39/1U8fr41a83+sSsp9YandXsilvPlHmnr7oR50cUm8/R4vnvj3/F99xHZl8aov3bw90soGTB9/L9D7XYNRZcCt2dhQs5Lvt9/DeuovYVvAzcZa+XDT6zSa/X4NBUT1srKm0KSE3a44fDAa5bi261cZvurQHXXb7TpIkxo0bx7hx47jrrrvYvn07ixYtYvHixezfvx+r1cr333/P999/T1RUFCeddBIPPvhgV01XIBAIBK3A6fZw91sLKa30v8B88LJjSY7tOC8dgeDvgLr2W9Ql7wVsl6dfhDT1gqAFFUXTeHGng48PBp50np9m5PYhZvRy9xBn2kpW5Rb+yPwPNk95QFuP8OHMTL0Gi7H9PQjdioNqdwl51TvYUrjAF+UUZ+nL+B4dJ7Q1RZWzkGpnCS7F5hOvrPXuujdVvr429XFT3nc4PJXkVm4PSAdTNYWM8vUA9Iwc2WglwmpnMSW2gwDEW/ohSU2LrPGWfuRX7aKwuuXeMGN6nBUw/uiU05s17e9IVE2hwp6L3VOBW3H40m1rI+aaM+YPD4knOXwIeVU7yKzY2GDFuryqnb5Iw4E1kWINkVm+wfd8iQ14JdXHoDMRZepBqT2Twhb69MiSjjEpgUUVThz4bxTV5Yvcao62HDu1noilryeANEStCbuGisNT3WCaV2cdu7ZQX6Ru7nPWmQyOP459Jd4q4H8ceIszhj0RkNJcYsvgx50PY68XndVYZcZagfJQ8/yNud/gVuxM6HmBTxSrL44passyz1RNYWv+AgDCQxLp3YbqmW3FozixOotRVBcSMtHmnpTaM31rsti6n2X7X2dy2qV+HlstZWPu15TavdGKI5PnENUO6bOyXCdJ1fpudhTdJnZ92LBhDBs2jP/7v/8jPT2dhQsXsnjxYnbu3ElZWRmfffaZEL8EAoHgMELTNJ7+3x/szCjy237pyWOZMqL1P7wCwd8dTVNRf/sAbc03h7RIyCdehzz25KDHsns07t5k5fdC/xNOCbh9iJl/9DZ2m6iktuBRnazJ/YwdxYsC2nSSgaNS/sGwuBPa7YJwb9ly9pYtb7JPUvgQThl8X6eaIxdW72Nz3nwOlq1r1C8nWPrHTWdT3ncA7C9dFSB+5VZu8z1HU+b0lfVSndyqs8nUPfBGbwC4FGuDQk9jGHWh9IsJjHoI0Yc16pPVkaSXrGR7wUJyKrY0W6WtOQbEzSCvageK6iKjbJ0vFbL+cwE1pu6Ni1+Vjrr3ospZ3Ox7odX4HFU7i5vsdyg9Ikc2GBkVrHdQexy7SHOdz1B9g/RDqRXYwBtp1FiFxM46dm1BJ9WJQS5PwymDXUHvmAn0jZnM/tJVFFnT+XTTDQxLPJHo0F44PdXkVe5gT/HvSEj0iBhBTqU3ndXciFeiTjbgUZ1+Ar7NVc7WvB+JNqf6CcD1I/mCFV1rSS9ZSXXNjYwRSSd3maBYbs/lh50PUuHII8rckxMH3EF8WD/K7bnsKlrCjoLF2NylHCxbR07FVmYNvCOo4g2Hkle5w+dpF2lKYVKvf7XL/J2eOssGfQvfg5bSbcSv+qSlpTF8+HBycnLIyMjAZrM1v5NAIBAIuhWfL9nCL2v2+G2bOiKNK+d03Z0xgeBwR3M5UH94Dm3PIT5Lsh75tNuRhzQuMhxKoUPl1vVWdlb6p6yZdfDkaAszE4NPmezOFNn281vGG1Q48wLa4sy9OTrteqJNnWP+bJBNJFoGMjjuWAYnd2600ZrM/7Eu+3NqjZnbSlL4IMJDEqhyFnKgdA0z+lzj116bZidLOvo2IDrVYnOV+x7nVm4jt3Jb0HNweaxBi19xlr4BkSBdgVtx8Mvup3xRce1B/9hpLD/wNhoq6SUrA8Sv/aWrAOgROaJJgam+59HW/B/Zmv9jUM/vUqzNd6pHUtjgFvWvpT2PXVrUOEz6CByeSvYUL2Ncz3OINvcM6Lcl7wfcqjcdrmfkyEY9xzrr2LWF+iJvZz5vMBzf///4ZY+TzPINVLuKfRUzazHpI5g18HavgFMjfjVWKdOgM+NRnSiax1f98K+cL3GrDo5K/YefSNWWVNDNed8D3sjBoQmzWrRve1HlLOLrbXdid5cTY+7FmcOf8gm0UeYUJvX6JxN6XsDmvB9YnfkhbtXBT7se59ShD9OrJt00GKqdxfy8+0lUzYNBNnPy4HvbLXXWpdRpPcYOvhHRbcQvl8vF8uXLWbhwIcuWLaOqyluNRKvxiImI6B6mfAKBQCBonnU7s3nta/+L816JUTx4+bHIR0j6lEDQ2WhVJShfPQr5h6TJGM3IZ92L3Gd00GPtrlS4ZX01BYcY28eHSLwy3sLgyG5zithqVE1hU8H3bMj/Fg1/gU9CYnTi6YxJPBOd3P6vNSVsGMPjTwJAlmSMOgshujAiQhKQJV2nRwhsy//Z55UjITMk4XgGxh9NbGgaIfow3wX9r3tfZFfRkqDH7R87jY2531DlLKSoOp34sH6+ttrIlx6RIxuNlmkrHV2RsyNYmv6KT7wx6MyMSTmT3tFHEWlKxqgz+9bGvL8u9xmyN0eoMYqekaPIqthIRtl6PIoTvc6byldYvc83TkcZ/XfW+9Cex04nGzi2/838vOsJVM3D/O33MTntElIjx2AyhGNzlbG76Ld6IozE+J7tn6LcmWu4frSdw924p19XYNSHMmfIg+wtXs7OwkWU2jJxKXbCjHH0iZnI6JQzsBhj2JhTF/Ecb+nb4Fihhqia9EgNp6caVVPYXvALMaFp9I/1N3uvTQf27hd81cKCqj3kV3n9yQbGzcRk6Borj5UZH/hSQWf2va7B71qdbGBsj7OIMCXyy+4n0VD5Y/9bXDTmraAiux2ear7f8QA2dxmypGPWwNvblDoZMH69tRhmjG23cRuiS89s7HY7y5YtY9GiRfz+++/Y7d7wy1rBy2w2c+yxxzJnzhymTQv+TqZAIBAIuo7sogrue8ff4N5iMvL0dScRZm7aV0MgEDSMVrAf5ctHoOqQFBlLNLpzH0RKDt44enmhm7s2WrEd4lE+KELHy+MsJB4BxvYVznyWZbxBoS09oC3CmMjRadeRaGnal6ctWAwxpEWO7bDxW4KmqazL/tT399H9rmdY4kntMnat+AXeSK9a8avYup8qp7dk/YDYpiuLhRqjfI+HJszi2P43t8vcuiNl9myfub9ONnL28GdaXO2wMQbEzSCrYiNu1UFm+Qb6xk4G6lIeZUnfrNl1aL00shMGzGVQ/DHtMrf2oCOOXd+YScwZ8gBL9r1MtauYxXufb6SnxNS0y0iJGN7oWN352NUSY66rRFhk29+FM2kYWdIxKP5oBsUf3WC7S7GTW7UDgLjQPo36CEaZe/h8BKucRews/BWP6uSo1AsDxJ5qZ501R3QL/Ktqo77A633VFSiqhwM1EbZGnaXJ9QnQP3YqsaG9KbEdpNyRQ4ntYLOfIbfi4MedD9f4fEkc0+/mVqVMNkWRtW4txph7tevYh9Lp4ld1dTVLly5l4cKFrFixAqfTG2pYK3gZjUamT5/OKaecwrHHHovJ1H0qUQgEAoGgaWwON3e9uZAqW10YuSTBw1ccR1pSVNdNTCA4jFH3rUOd/wy4DvFoSejtFb4i4oMe64sMJ09vtwfYQM9I0PPkaAuh+sM7MlPVVHYUL2Zd3ud+6Sy1DI49hkkpF3erSmcdTbkj12dkHxGS1G7CF0Bi+EAiQhKpdBawv3QVE3tdBNRPedTTN2Zyk2OEGRN8j631ojCORHIqtvoeD4yb0W7CF0C/2Cn8vv8NFM3NvpIVPvFrf01VzLTo8c16m4WF1HsvXN3rvejIY1eb1ihL+gDD7cSwgRyVehFp0eOaHKM7H7ta4sP6IUs6VE2hsHpvV0+nxWzL/8lnSj8ksfE0w7jQ3r7Kp5nlG9hRsJC40D4Nev4V1DsOsUGuKaur1GfQnxIxjLhGItA6Goen0vc7F2qMDiqKK9qc6icMNvU58qguFux61BfhNqPP1QxJOK7tEz+Ewuo6i5TE8IHtPn59OkX8Ki8v59dff2XRokWsWrUKj8f7pVIreOl0OiZNmsQpp5zCrFmzCAvrfNNJgUAgELQNVdV4bN5S9ueW+m2/5vSJwuBeIGgl6rrvUZe8C4ekxkh9xyGf8W+kkODM0jVN4/U9Dt5LDxSELuxt5LYhZnSHubF9ie0gy7PfazCiwayPYHrqVd0mGqszcbirfI8jTUntPn7/2GlsyP2aEttBKhz5RJqSOFC6BoCekaOaTQeKMCUQbU6lzJ5FQdVuFNXTIamo3QGHp/570bBfUWsJ0VvoFT2OA6WrOVi2DkV1U+HIo8yeDTRd5bGWXlFj8Za70Mit3MbYHoEVGbuKjjh21c5iftn9FG7Vwfie5zOux7kUWdNxK3YMOjPR5p6NRhcdSnc+drUYdaEkhw8lp3IrTk81Rdb9jaYOdjcKq/exNusTwBvlNLiJyLpe0eN96aprsz5B1TwNRn2pmkJW+SbAWwygZ+SooOayNX+BTyQdmXRqS19KAG7FwZ8H32VfyQqMOjNjUs4KKprMpA+nds0FW8DEWe9zFNrE2q4VvrIrNgMSM/tcy4jkU4J6jpZS6+EmIdd8jjqOTvllmTp1KqrqPWmrFbwkSWLs2LGccsopzJ49m5iY9i8rLRAIBILOY97PG1i20b9i0nHj+/HPE0d3zYQEgsMYTVVQF7+NtmFBQJs07lTk469Ekhs2Xj4Ut6rx6FYbP+T4V0WTgTuHmjm/9+GdjuxWHGzI/4atRT/7yrrXJy1iLNNTrwz6Ira7opONKKoLjxIoYDZF/WifKlfjleUU1U2pLbPeluCM8fvHTWdD7teA11i9f+xUiqzedNMBcU2nPPrGiJ3KuuzPcHgq2Vm4iOFJwVcsPZzwey+cRY32q3IW1omWWvAFCgbGzeBA6WpcipWsik0UVXv9AQ2ymT7RzacqWYzRpEQMJbdyOxll6ymxZbSrt09b6Ihjl166yhf1NTBuJgadiZSIYa2aX3c+dvUZnHC8T2zYUbCQmX2v6+IZNU+ZPYefdj3ui3Ka2ffaJqMYEyz9iTQlU+HIQ9U8xFv60SdmUkC/+tUa06InBFU8w6O62J7/CwAWY6wvwrItrMz4gO0F3jGdnir+OPAWFmNMs2nKOtlAjDmVUnsmdnc5BVW7SQwf1Gj/amcxuZXbAa9Jf3S9NNj6eBQnC3Y9RlbFRiRkju7nrb7ZEWRXbKHC4S1G0zt6Qof/TneKqYOiKGiahqZpDB06lDvuuIPffvuNTz75hIsuukgIXwKBQHCY88emA7zzwzq/bQN6xnLPP48OKgxbIBDUoTltqF8+Eih8STLyCdegm3VN0MKXzaNx63prgPBl0sFL4y2HvfCVVbmJr3bfxZaiBQHCl0E2Mz31Kk7oc9thL3wBRJlSACi1Z1LtbFzEOpRocw9Meq8Jcrk9m4yyvwL6ODzV/LL7KQqtdSlAtamSzZEQ1t8XiXOgdLUv6sub8hh4wdkQo1POJNTgvR5YfvBdX9rkoSiqhy15P7KrMHhT/u5EcvhQ3+N9JX82mB5Xasvk+x0P4Fa9ac52TyWK6gno1xC9o4/CIHtTetNLVpJeU+WxT8xEnwF+c0xJuwwJGQ2VBTsfpdSW1WA/h7uK5Qfeodh6MKhx20qHHLt6EbWb8uZjdZWitcGAvrseu/oMjJuJpcZUfHfRMlyKvZk9upbdRb/xxeZbfSLVsMSTmvVTkySJcT3O9f1d+91ZnwpHHssP/Mf394Se5wc1nz1Fy7B7KgAYnji70eqfLWFf8fKAbXsb2NYQ9SPElux7udHvbbu7gp93P4miec8FhibMwqgPjBx3Kw5+3PUwWRUbkSU9Jw68s8OEL/CmstYypseZHfY8tXRK5Fffvn05+eSTmTNnDr179+6MpxQIBAJBJ3Egt5RH/rvUb1tUmImnrj0Rc0jXl5UXCA4ntIpCr7F90UH/BqMZ+fQ7kftPCHqsEqfKTeus7Kz0d7aPMkq8Ot7C8KjDN7XM5i5nVc5H7C9vWCTpEzmByT0vwdKC6l3dnUHxx7Iy4308qpOvt/2bEUmziTAl43BXUWTdV3OH/vqA/SRJZnTK6azO/AiAn3Y9xrDEk0gI648kyRRVp7OraCkOTyU9IkaSU7kF8EYjnDBgLhGmxGbn1i92KhtyviKvciduxRtJkxo1plmPqVpC9BaO7X8TP+16HEV18dOux0iNHEPfmElYjDG4FBtF1vQa0aMUvRxCYvggos09Gxwvr2qnX7oneNPmaitQAiSFD+6wKpSNEWfpTWrkaLIqNuH0VPP55psYkXQKUeaeuBU72RVbSC9ZgaJ56BExgpzKrXhUJ8sP/IcpvS9vNjLFoDPRO2Yie4t/Z1/xnz4RqCVVHpPCBzOu57msz/6cSmc+n22+iYFxM+kRORKjzozdXUFe1Q7SS1biUZ1klW/kvFEvoZeNDY5Xe8xrfYbA60NX/73oE3NUs/PqiGPXN3YKqzM/wq062FGwkB0FC/3aJWTMhghflcAhCcc3mZLb3seuI9DJekYnn86KjPdxKVbWZX3K1N6Xt3gcj+Ikq2JzwPZyR67vcX7VLt/3AYBBFxJ0amFm+QbWZ39BbuU237ZxPc5jctq/gtp/cMJx7C1ZTlb5RvaWLKd6WwmD4o/BpA+nxHaQLfkLfCmAo1PO9KtU2xS1RveypG8//8QGbhIHe9t4aOKJHCxbx8GydZTaM/lk43UMjD+ahLCBhOgtuDxWCqr3sqd4mS81Mt7Sn0kNHEeP6uL7HQ+QV1NUYHjibHSy0e+z2hChhsgmI84aI69yJ/tqvNmSwoc0a9jfHkia1oJYWoGgA3DZq5q9y2IwhSHLOlRVwe0ILqdZIBDrpuOptDq58qmvyS6qK1OskyVevmUOYwcFXzWnOyHWjaC1tHXtaLl7UL56BKzl/g0R8ejOfQApIXiD5wyrwo3rrGTb/H9fe4bKvD7BQi9L2+9WdwWaprKrZBlr8z7FpdgC2i2GWKb2vLRLvL1yq3awIP1xAAZET+fotGsb7StJMkZz015Yh6KoHn7a9SgZ5YGRW+BNi7x8/EeE6C0Bbaqm8Mvup9hfEwnUEMMST2Jm3+tYsPMR33OcNPAu+sc1X3G9qDqdz7fc4rft+P7/x+AWmiNnV2zh591PNOlfIyEzNHEWU3tfjlHXsOfdN9vu8rtobogzhj1Bz8iRLZpfe2B1lfLt9nsor/HiOhS9HML0PlfRL2Yqn26+EaurBAmZy8Z/6FcZszEOlK5hwa5HfX+b9BFcNv7DFvuobcz5hpUZHzSYDoThhQAAr5FJREFUSlyLURfKxF4XMzLp1EajvF9b2bx30Y1TfgxqTh1x7LIrNrNk3yu+6qRNEWPuxZwhDxFhSmiyX3sdu45CUT18tXUuRdZ0ZEnH+SNfJtbSu0VjVDoK+HDDFS3aJzwkgUvGvd9oe4ktg/0lK9lV9BsV9US0GHMvZvS9tsWfV29E65M1vlUNMzTxRI7ue31QEVzZFVv4bvs9AAyKP4YTBsxt0Xwa44/9/2FL/g9+204efF/QkbO1nmHbCxbSXLr6gLiZzOhzTYPCf2veU4AhCSdwXP9bmu9YD1VT+GzzzZTaMtBJBs4b9VKnpAkfvrf8BAKBQNClKKrKA+8t9hO+AG45d+phK3wJBF2FumsF6g8vgOcQP6ekAejOvR8pLHiLiG3lHm5ab6Xc5X8SPDRSxyvjLcSGdIrrRbtT5shmedb7FFh3B7RJSAyLP5HxSecesZUcdbKeU4Y8wI6ChewsXEKpLQNFc2PShxNn6UufmEnopIZP7WVJx+xB97CraCk7CxdTYj2AR3URaowmOXwowxJPokek9677SYPuZm3WJ6SXrKBXMxXuaokP60ekKcV3waqTDA167DRHz8iRXDzmbbYX/MzBsnWU2bJwqw6MOgtR5h6kRo5iSMKsZsWH7ozFGMN5I19gc+580ktWUu7IRUIiLCSOXlHjGJk8x5dGevbwp1mVMQ+nYgtK+AKv8XqIPswnIPaLndKqAgJjepxFWvQEthX8RHb5ZiqdBaiagtkQQVxoX9KixzE4/rgGU6c6io44dj0jR/Gvse9Qas/C6irxS5N0KVYqHPnsLf6dMns2pfZM5u+4jwtHv45ObjyyvTseu/roZD3HD7iNLzbfiqK5+WXP05wz4rkGhfPOQlE9fL31Dr+bGolhgxiZPIcBcTNalV5o0odx+tBH2VP8O7sKl1Biy8DhqSLUEE1i2ACGJc2mV9SYoMerdOQTaojB5i5tF6P7WianXeKr0lpreB+s8AXeiM9j+t3I8KST2VO0jOyKzVhdJTg81YTow7AYY+gRMYKBcTNaFaHVHFGmlp/zLz/wNqW2DAAm9fpnp/njicgvQZcjIr8EHYVYNx3L61+v4uPF/nfTTp06mLsunnlY+3yJdSNoLa1ZO5qmoa3+GnXZBwFt0qApyKfehmQIXsxZXujmzo1WHP6ZjkyJ1/PsGAuh+sPvs+lRXWwqmM/mwh9QNSWgPdbcm+mpVxIfGnxkXFfTmsiv7o5HdfHf9f/C6ammf+w0Thp0V1dPSSBoFzRNZcm+V9hV9CsAx/a7maGJs7p4Vm1nZ+ESlux7CdBIjRrDqUMeahcPq9byy+6nKLYdpG/MJAbETg86FbEz0TSNYtuBw6ZKZndkS94P/FHjt9YvZgonDboLSeqcm3Ii8ksgEAgELWbR2r0BwtfwvonMvWD6YS18CQSdieZxoy58HW3LrwFt0qSzkY++pEUnhN9mOXl8mx3lkNuap/Uwct8IMwb58Pts5lZtZ3n2+1Q68wPa9HII45LOYXj8iV16wSbwsrtoqS/aqN28cASCDiK7YgtuxUFYSFyzQoYkyYxJOcMnftVWMz3cGZJwHHZ3BSsz3ierfCOL9z7PCQPmdtn36XH9b+32kbuSJAnhqw3sLvqN5QfeAaBHxEhmDbyj04QvOAzEr4qKCvbs2QPAhAnBm7wKBAKBoGPYlVHEEx8t89sWFxnKE9fMwmgQF6ACQTBo1aUoXz8OuYek8Mk65BOvRx4dfHUlTdN4e5+Tt/Y6Atqu7BfC9QNNh50o7fBUsyb3E/aU/t5ge2rEaKb2vJRwY3wnz0zQEDZXOWsyPwG8VflSo0Z37YQEgmZYefC/FFr3kho1htOHPtpsf4enroCCoZnCA4cTY3uchVuxsS77M/YW/4Gqepg18M5Wpcq2le4ufAnaxs7CJSzd9zIaKknhgzllyH1Npg93BN1e/Nq4cSPXXnstsiyzY8eOrp6OQCAQ/K0prbRz91sLcbnrUo+Meh1PXXsicZFd5xUhEBxOaLm7vcJX9SElyUMsyGfdjdx7dNBjeVSNp7bb+TrL5bddBv49zMx5aSFtn3AnomkaByrWsjJ7nq+cfH3M+igm9/gnfaMmHnaC3pFKpaOAn3c/gc1diizpmd7n6q6ekkDQLNGhqRRa95JTsZUi6/4mo3ns7kpWZnzg+zs1cnTHT7ATmdjrYsyGSJYfeIf86t3Y3eWEhcR19bQERxgZZevQUOkdPYGTBt6FXtf55yfdXvyqRViTCQQCQdfiURTufXsRBWX+XkZ3XjSDoX0Su2hWAsHhhbplCeovr4Hi9m+ITkZ3zgNIcalBj2VXNO7aaOWPQo/f9hAZnhwdyjFJxvaYcqdhdZWyIvu/ZFRuaLB9cOyxHJV8QZeaMgu8uBQbB8vWkVG2nn3Ff6Jo3vU8vc/VJIT17+LZCQTNMzRhFruLfkPVPHy1ZS7946aRGDYQsyEKvWxEUd1Y3aUUVu/jQOlqnxF735hJR2Rk48jkU7EYY4k2pwrhS9AhnDBgLknhgxmZfGqXpdYeNuKXQCAQCLqW175ezeZ9eX7bzjt2BCdPbv/KMQLBkYamKqhL30dbNz+gTeozBvn0fyOZw4Ier8ylcst6K1vL/Q3gIwwSL4+zMDrm8DnF0zSVnSVLWZv7GW7VHtAeZerB9J5XkBQmvmu6C9XOEhbtedb3t14O4Zh+NzIo/pgunJVAEDw9IoczrfcVrMz4AEVzs7voN3YX/dZofwmZ4Umzmdb7yk6cZefSL3ZKV09BcASjkw2MTjmjS+dw+JwZCQQCgaDLWLRuL18s3eq3bdygHtx49uQumpFAcPig2SpR5z+NdnBzQJs08Syvsb0c/F3QfVUK//eXlWybf6XkJJPE60eF0Tfs8PHeK3fksjzrXfKtuwPaZEnH6MTTGZ1wWqf7ggiaJtrcgxCdhQhTEmnR4xmZdCqhxqiunpZA0CJGp5xB7+ij2FbwM3mVO6h0FuD0VKNpKnrZiMkQQbS5JykRwxkQN4NIU1JXT1kgELSBdhO/HA4HkiQREhKYu/ndd9+1etxdu3a1YVYCgUAgaCvpOSU89ZG/6XRSTBiPXnU8el3nVWgRCA5HtMKDKF8/CuUF/g16I/Lsm5CHtyxSZmm+i/s227D7B3wxMFzm1QlhJJgOj8+kqnnYXPAjGwu+86XM1SchdAAzel1JtKlnF8xO0BySJHPFUZ+IKpuCw54ocwrTel/R1dMQCASdQLuIX59++imPP/44kiRx3333cf755/u133XXXcKUVCAQCA5Dqu1O7n5rIQ5XnaeQUa/j8WtmERV25FQ7Egg6AnXXCtQfXwT3IVUYw+PQnX0fUnLw3kiqpvFOIxUdj4rV89xYC+GGw+Ncq8iWzh+Z71DqyApo08shTEg+n6FxJyB3YvlzQcsRwpdAIBAIDifaRfx66aWX8Hi8F0YvvvhigPhVizCtFwgEgsMHVdV49IPfyC6q9Ns+9x/TGJKW0EWzEgi6P5qqovzxP7QVnwU29hyK7qy7kSzRQY9n9Wg8sNnG0oLACKlzehm5c6gZg9z9hS+34uCv/K/YVvQLGoHnhKnho5iWejlhRmG2LBAIBAKBoH1pF/ErPDycyspKNE0jIiKi0X6XXHIJgwcPbtHYu3btYt68eW2dokAgEAhayP8WbWT55oN+206dOphTpw7pmgkJBIcBmsOK66tH0XavCGiTxsxGPuFqJF3w/lXZNoX/W29lX7W/v5degjuHmjk3rfNLhbeG7Kqt/Jn1HlWuooA2ky6cyT3/Sb+oKSJTQCAQCAQCQYfQLuLXM888w9NPP40kSdx5552N9psyZQozZ85s0djLli0T4pdAIBB0Mmt3ZPH2/HV+2wanxXPbBdO6aEYCQfdHLcnG9em9aEUZ/g2yDnnWtchjZrdovDXFbv690UaF2z9KKtoo8dxYC2MPg4qOTo+V1bn/Y0/pHw2294+eyuQe/8SkD+/kmQkEAoFAIPg70S5nTWPHjuXzzz9vj6EEAoFA0MXkl1bx4HtLUOulqkdaTDx+9SxCDN3/Ylsg6ArU/X/hmf8sOKr9G0KjvGmOqcOCHkvTND496OKFXXaUQ7IDB0foeGGchWRz9/fDOlixnj+z/ovdUx7QFmaIZVrqFaRGjOr8iQkEAoFAIPjbIa5iBAKBQODD6fZwz38WUWGtM9WWJHj4iuNIjhWRGQJBQ6jrf0D99R3Q/FMTSernNbaPiA96LKei8cQ2O9/nuALaTkw28ODIUMy67p0a6PBUsTJ7HunlqxpolRgedyLjk8/FoDN1+twEAoFAIBD8PRHil0AgEAh8vPj5CnZl+HvyXH3aURw1NLWLZiQQdF80VUFd/DbahgUBbdKwo5Fn34RkCN6Tq9ChcvsGK1vLFf+xgJsGmbi0b0i398TaX76GFdkf4PBUBrRFm3oyPfVKEi0DumBmAoFAIBAI/s50ivh13nnnIUkSKSkpLd43KiqKCRMmdMCsBAKBQFCfH1bs5Ps/d/ptmzayN/88cUwXzUgg6L5oThvqd0+j7f/Lv0GS0Z9wNdrYU1okVG0t93DbX1aKnf55jmF6eGK0hekJwZvkdwU2dwUrs//LgYp1AW0SOkYnnsaYxNPRyd37dQgEAoFAIDgykTRNC6w1LRB0Ii57FdqhqSKHYDCFIcs6VFXBfaifikDQCGLdBM+ujCKuffY7XJ66iJOe8RG8d/fZhIceHtXk2guxbgTNoVUUonz5MBxqbG80E3L+w8j9j2rR2vk+28Vj22y4D/kpTLPIvDjOQp8wXTvMumPQNI19ZStYlfMRTiXwNcea05iZejWxob07f3LdGEmSMZpFKrlAIBAIBJ2FSHsUCASCvzkV1Q7u+c9CP+ErxKDnyWtP/NsJXwJBc2g5u1G+ehRs5f4NEfGEXPQU+pSBqKrS4L6H4lY1Xt7l4OODzoC2qfF6nhwdSrih+xrbW12l/Jn9PpmVGwPaZEnH2MSzGJU4B1kSp5sCgUAgEAi6FnE2IhAIBH9jFFXlofeXkF/qH7Fx18Uz6NcjtotmJRB0T9Sdy1F/fBE8h5jRJw9Ad879yHG9gh6r1Kly50Yrf5UGCmWX9g3hxkEmdN3U30vTNPaU/s7qnI9xqbaA9vjQvsxIvYYYc88umJ1AIBAIBAJBIEL8EggEgr8x7//4F2t2ZPltO+eY4Zw4cWAXzUgg6H5omoa26kvU3z8MaJMGT0We839IhuArF24v9zB3g5UCh7/zRIgMD44MZXaKsc1z7iiqXcX8kfUuOVVbA9p0koFxSWczIuFkZKn7pmoKBAKBQCD4+yHEL4FAIPibsmJLBv/9yd+se2S/JG46e3IXzUgg6H5oHjfqL6+hbV0S0CZNPhd55j+RpOBTE7/LcvLkdjuuQ/y9kkwSz4+zMDSye56aaZrKzpKlrM39FLfqCGhPtAxgRurVRJlaXtxIIBAIBAKBoKPpnmdYAoFAIOhQsgsrePi//hfzMRFmHr3qBAx6EbEhEABotkqUb56ArG3+DbIeefYNyCNPCHost6rxzA47X2W6AtomxOp5anQoMSHd09+r3JHH8qx3ybfuCmjTSUaOSjmfoXGzkFsgAgoEAoFAIBB0Jt1e/NI0jV9++YXZs2d39VQEAoHgiMDhcnPPfxZRba+7CNfJEo9edQLxUZYunJlA0H3QSnJQvnwIyvL8G0xhyGfdg5w2MuixCh1ef6/NZYH+Xv/sE8LNg0zo5e7n76VqClsLf+Kv/K9RNHdAe3LYEGakXkVESGIXzE4gEAgEAoEgeLq1+OV2uzn77LPZu3cv4eHhTJs2raunJBAIBIc1qqrx/+zdd3hU1dYG8PecmUlm0ivphA5SAqFIF6SDKCgKoiJYsHdRRLFhA8Vy9V7BiogNqaJIU3ovofcW0klCeiaZdvb3B5/Bw0kgQDIzSd7f89zHZO1zdla8xySzZu+13/puDU6knlPFH7+tC+KbcrsSEQAoZ/ZBWfguUKo+CAKBEdDd8Qak4KhKz7Unx44Xdhcj26Lu72WUgdfcuL/XOXMi1id/heySRM2YQTbi+sjRuC64zxVt+SQiIiJyFacUv+666y40aNAA48ePR8OGDSt9n8FgQHBwMI4dO4alS5ey+EVEdI2+XboTaxJOqWJ9OzTGqL6VX8VCVJsp+1ZBWfZfQLlolVZMa+huexmSl1+l5hFCYF6SFR8cKoFdXfdCtJeMD9t7o5mf+20xtitW7D67GHvP/g4BRTMe7RuHHjH3w9cj1AXZEREREV0dpxS/EhISsHv3bgwcOPCKil8A0KNHD2zZsgV79uypnuSIiOqIVTtO4Nul6gb3jSKDMGlMb0iS+225InImIQSUDT9CbPpFMya16Qt50BOQ9IZKzWVxCEzZX4LfUrT9vbqF6PFuOy/4e7jfiqmMoqNYn/wV8i3pmjFPnQ+6Ro1Bk8Du/HlBRERENY5bb3sEgIiICABARkaGizMhIqq5Dp0+i3e+X6OKBfga8cFjg+BlrNwLeqLaSjjsUJb/D2LfKs2Y3OteSF3vqHTBJ81sx9ObM3EwT9sj64HGnni0mRE6NyseWR0l2JE+F4eytd8/ADQO6IquUWNgMvg7OTMiIiKiquH2xa/S0vPHaSuKduk9ERFdXmZuESbOWAGr7cI2LoNexnsPD0RESOW2cBHVVsJaAmXRVIhT6lWR0HtAHvos5Ot6Vnqu7VmleH5bDnKt6r9ZvHTAlLZe6Bvufv29kgv2YEPytyi2ndOMeRkC0SP6PsT6d3BBZkRERERVx+2LX/9sd6xXr55rEyEiqoFKLDa8+PlynCswq+IT7+6Ftk0iXJQVkXsQxXlw/PomkHFcPWD0he6O1yBFX1e5eYTAj4kWfHKkFI6L+nvFep/v79XY1736e5XaC7EldQ5O5G4qd7xFcB90jhwND52XkzMjIiIiqnpuW/wSQuC3337DwoULIUkSrr/+elenRERUo5w/2XE1jiVnq+L3DGyHIV2buygrIvcgctLgmPs6kHdRfyv/MOhGvQkpOLpS85Q6BN7eb8bSNO02x1719HirrTd8De6zzVEIgVN5W7E59XuU2gs0434eYegZ8yAifVu6IDsiIiKi6lHlxa9t27bh5ZdfLnfslVdegaen52XnEEIgKysLdrsdQggYDAaMHTu2qlMlIqrVvv5jB9buPq2K9YhrgEeGdXZRRkTuQaQdg2Pem4A5Xz0Q1gi6kW9A8gmq1DzpJQqe31WMwwXqkyElAI80NeLBJp6Q3ai/l8VejI0p3+BU3jbNmAQJbeoNQYfwEdDLl/9bjYiIiKgmqfLiV2BgIFJTUyFJEoS4sPZfCIHs7OxL3Fk+vV6Pt956C82aNavKNImIarWV24/juz8TVLEmUcF4/f4+kGX3eTFO5GzKiR1QFk8FbBZVXGoQD/m2SZA8K7fNb1eOHS8kFCPXqt7n6GuQMLVjELoFOiq40zXSi45g7ZnPUVROb68gY33cUH88Qr0auSAzIiIioupX5cWvyMhIREZGqmJpaWmQJAlBQUGVWvklSRL8/f0RFxeHMWPGoHHjxlWdJhFRrXXw9Fm8+/1aVSzQ14Rpjw2Ct9H9Gm4TOYuydyWUZf8FhLohvdTqRsg3PQVJd/mTT4UQmJdkxQeHSmC/qL9XI189/tutHup7y7CVFlVl6ldNEQ4kZCzCnrOLIaBOWJb0aB92K9qGDYUsuW0nDCIiIqJrVuV/6fj4+GD16tWqWIsWLQAA7777Lnr16lXVX5KIiP7f2ZwiTJyxHFa7+mTHqY8ORESwrwszI3IdIQTEpl+gbPhRMyZ1vR1yr7GQKrE90eoQmHqoBIuSrZqxXvX0mNa5Hvw8DVAU91j1VWDJxJoznyPTfFwzFmyKxY2xjyHQWLneZkREREQ1Gd/mIyKqJcylNrz4+TLkFJSo4pPG9EabRuEuyorItYTigLJiBsSe5ReNSJD7PwS5482VmierVMGEhGLsy9MWth5u4omHmhrhaZCrIOOqcSJnEzamfAubUqoZaxM6BJ0iRkInX36lGxEREVFtwOIXEVEtoCgCU2b9jeMp6n4+9w6Kx6DO7JlIdZOwlUJZ/D7Eie3qAZ0B8rAXIDfvVql59uXa8XxCMbIt6m2DXjrg7bZeuDHcfbYTWx1mbEr5DidyN2nGTPoA9K7/MKL94lyQGREREZHrOKX49U8PMKPR6IwvR0RU53y5ZDvW701UxW5o2wAP3XK9axIicjFhzodj3hQg7ah6wOgD3e2vQoppVal5Fidb8O7BEtjUbcIQ4yXj4w7eaOyrq6KMr93Z4uNYc+Z/KLRmacbq+8XjhvoPwaT3c0FmRERERK7llOLXxT3AiIio6izfdgzfL9+tijWNDsZr9/XlyY5UJ4ncDDh+fR3ISVUP+IVCN+pNSCH1LzuHTRH48HAJ5p7R9vfqFqrHe+284Ocm2xwVoWDP2d+QkLEQAuoqnU4yoHPkXWgZ0r9Sfc2IiIiIaiNueyQiqsH2n8rAe3PWqmJBfudPdvQysp8P1T0i5RAc898GSgrUA/UaQDfyDUi+IZedI8ei4MXdxdiVo+3vNa6RJ55oboTOTQpJRdZsrDnzOTKKj2rGgowxuDH2CQSZ2NSeiIiI6jYWv4iIaqiMnEK8NGMFbPYLKz089DpMfWQQwoN4siPVPcqBNVD+/A/gsKviUmwc5NtegWT0vuwch/PteG5XMTJK1f29jDLwRpwXBka6T3+vk7lbsTH5G1gVs2asVchAXB95J/Sy++RLRERE5CosfhER1UAlFhsmzliO3EL1yY4v39sbrRuFuSgrItcQQoGy4SeITb9oxqSWvSDf9Awk/eVXQi5LteLN/WZYLurvFWGS8HEHbzT3c48/m0rtRdiS+n0FTe39cEP9h1Hfr53zEyMiIiJyU+7xVxwREVWaEALvfr8Wx5PVJzuOHdweA65v6qKsiFxD2CxQln4CcXiDZkzqPhpyz7su2+vKIQQ+PVKK709bNGOdgvWYFu+FQA/36O91Jj8BG5K/QYk9TzMW7RuHXvUfgZfB3/mJEREREbkxty9+JSQk4M8//0S/fv3QpUsXV6dDRORy3y/fjb93nVTFerVriPE3d3JRRkSuIYpzz/f3uvhER50e8pCnIbe+8bJz5FsVTNpjxpZsu2bsrgYeeLaFCXo3ODjiUqu9ZEmPzpGj0SpkACTJPYp0RERERO7E6cWvoqIi7N27F+fOnYOiKBVeJ4RAZmYmfvjhB2RnZ2Pr1q34448/nJgpEZH72bgvEV8u2a6KNYoMwqvj+vBkR6pTRGYiHPPeBAqy1ANe/tCNmAwp+rrLznGy0IFndxUj2az+e8RDBl5p7YVbot2jX9alVnsFGeujd+wjCDbFOj8xIiIiohrCacUvh8OBDz/8ED/88ANsNlul7xPifMPZMWPGVFdqREQ1QmJ6Lt749m+If/Xh9vP2xLRHebIj1S3KiR1QfnsfsKp73iGkPnR3vAYpIPyyc6zJsGLyXjPMFx3oWM8o4cP23mgd4PrF8Zda7SVBh/iwW9AubDh0sutzJSIiInJnTvtr6fnnn8eKFSvKilmV5e/vj/Hjx2PUqFHVlBkRkfsrKLbgxc+XwVx64c0DnSzh7fEDEBXq58LMiJxL2fk7lL++AoR6tZbUMB7y8Jcue6KjIgS+PF6KL05o+3u1DdRhentvhHi6fuvgmfxd2JD8bYWrvXrVfxghXg2cnhcRERFRTeSU4tfatWuxfPlySJKEiIgIjBgxAhERETh27Bhmz54NSZLw7rvvqu45ePAgfvjhB0RFRWHEiBHOSJOIyC3ZHQpe+2YVUrIKVPGn7uiGji2iXJQVkXMJxQFl1ZcQCUs1Y1L7myD3fwiSrLvkHEU2gVf3FWPtWW1/r9tiPDCxpQkeOtduH+ZqLyIiIqKq55S/nBYtWgQA8PHxwfz58xEcHAzgfFFs9uzZAIBbb71Vdc+tt96KgIAA/Pe//8Xjjz+On376yRmpEhG5nZmLt2H7oRRVbGi3Fri9d2sXZUTkXKK0GMriaRCnE9QDkgy574OQOt582RMdzxSf7+91uki9YkwvAS+0NOGO+h6XnaO6cbUXERERUfVwSvFr//79kCQJN998c1nhC8Bl/8h87LHHsHTpUuzevRu///47br755upOlYjIrSzbegw/rdqrirVuFIYJo3u6/IU6kTOIvAw45k0BspPUAx4myMNehNzk8qecbsqy4aXdxSi6aMFXoIeED9p7o0OQa1dRcbUXERERUfVySlOLc+fOAQCuu0598pKHx4VTlKxWq+Y+WZYxbNgwCCGwZMmS6k2SiMjNHErMxLQf1qlioQHeePfhAfAwXHp7F1FtIJIPwDH7eW3hyy8UujEfXLbwJYTAdydL8eQObeHrOj8dfuru69LClxACp/N2YP6RieUWvoKM9TG82RR0iLidhS8iIiKia+CUv6QcjvNHKQUFBani3t4XmtLm5OQgPFx7OlODBg0AAIcPH66+BImI3Ex2fjFemrEcVvuFo+g89Dq898hAhPhfuqE3UU0nHHYoG3+G2DJP09geEc2gu/1VSD6Bl5yjxCEwZZ8Zy9O1J0wPiTTg1TZeMLqwv1eBJRObU2cjuWCPZoyrvYiIiIiqllP+ovL390dOTg7MZrMqXr9+/bKPDxw4UG7xq6DgfIPn/Pz86k2SiMhNWG0OvPzFSmTnq39mTrynF1o2qOeirIicQ+SkwbFkOpB+TDMmXdcT8k3PQDJ4XnKOtBIFz+0qxtEChyouA3i6hRFjGnq6bNuwQ7Fjf9ZSJGQshkNoV72ztxcRERFR1XNK8SsmJgY5OTk4c+aMKh4QEICoqCikpaXhxx9/RL9+/TT3btiwAcD5AhoRUW0nhMAHP6/HgVNnVfHR/dpicJdmLsqKqPoJISD2rYKy6kvAVqoZl7qNgnzD3ZCkS3ds2JJlw6Q9ZuTbhCruZ5AwtZ0XuoYaqjTvK5FWeAibUmYhz5KmGZMgo13YMMRztRcRERFRlXNKz682bdpACIHdu3drxgYMGAAhBLZu3YqJEyciIyMDwPk+YR9//DFWrVoFSZLQvn17Z6RKRORS89cewNLNR1Wx61tG47HbOrsoI6LqJ8wFUBa9B+XPT7WFL+9AyKOmQNdrzCULX4oQ+PpEKR7fUawpfDX2kfFDNx+XFb5KbPlYc2YGlp58p9zCV5h3M9zW/B10ZG8vIiIiomohCSHE5S+7NmvXrsUjjzwCk8mEXbt2QZYv/PGanZ2NAQMGoKSkpCym1+tht5/vTCuEgCzLmDNnDjp06FDdqZILWEsKIS7u6XIRg9EHsqyDojhgKy1yUmZU09W052bnkRQ8++lSOJQLP5ajQ/3w9Usj4Od96W1eVHVq2nNT0ymJe6D8/hFQlKMZk5p2gTzkSUhel179XWgTeG1fMdaetWvG+oQZMKWtF7z11b/N8eJnRwgFh8+txo70ubA6zJrrPXU+6Bw5Gs2CbrjsijaqXSRJhofJ19VpEBER1RlOeXuxe/fueOihhzBkyBBV4QsAQkJCMH36dDz99NOw2c43pf3nnwAgSRJeeOEFpxe+0tPTMXXqVCxfvhwA8P3336Nz50uvvFi4cCEmTZpUqfnvv/9+TJw48ZLXFBUVYfbs2Vi1ahWSk5OhKAqioqLQt29fjB07VnOAQHXPQ0TVJzWrAJO/WqUqfHkZDZj26CAWvqhWEnYblHXfQ2xfpB00eELuNx5S24GX7c11otCB53cVI8msfhNFBvB4cyPGNfKE7IL+XtnmRGxM+RZZ5pPljjcP6o3rI++EUc8CCBEREVF1c0rxy2Aw4LnnnqtwvE+fPliwYAFmzpyJ7du3Iy8vD/7+/ujQoQPGjh3r1MKX1WrFrFmzMHPmTE2D/qrUqlWrS46fPHkS48ePR2pqqip+/PhxHD9+HPPnz8eMGTMQFxfnlHmIqPqYS22YOGM5CootZTFJAt64vy8aRrI4TbWPyDpzvql95mntYHhT6G6ZACk46rLzrEiz4o39ZpSq+9ojwCDhvXgvdAlx/jZHq92MLUnf40DGUghoF9cHGWPQPfo+hPs0d3puRERERHWV2zSWaNasGT766COX5rBhwwa8/fbbSExMBACEh4eX9SC7Uvv27bvkuMFQ8R/kRUVFeOihh5CamgqDwYBnnnkGQ4cOhdFoxM6dOzFt2jQkJSXh0UcfxeLFixEaGlqt8xBR9VEUgSmz/sapNPWWr4duuR494hq4JimiaiKEgNj1B5Q1swD7xScdSpC63QG5x12QdJf+88SmCPznSCl+TLRoxq7z02F6B29Empy7jVAIgRPnNmJj4jcw27RbOPWyJzqEj0Dr0IGQJbf584uIiIioTuBfXwDsdjueeeYZrFq1CgAQGhqKCRMmIDw8HGPHjr2qOT09r36b0jfffIOUlBQAwPvvv48hQ4aUjfXr1w9FRUWYOHEisrOz8fnnn+P111+v1nmIqPrMWLQV6/cmqmJ92jfCvYPiXZMQUTURxblQlv4H4uRO7aBfKHQ3Pw+pfuvLznPOouDF3cVIyHFoxoZHe+ClViZ46py7zbHIeg4bkr9GSmH5b3w18O+IrlH3wscj2Kl5EREREdF57K6K8w32/fz8YDAYMH78eKxYsQLDhw+/bJ+R6uBwOPDzzz8DAOLj41UFq3/Gv/jii7LPFy5cqDosoKrnIaLq89uGQ/hx1V5VrGl0MF4Ze6NLfv4QVRfl5E44vn6i3MKX1LIXdA98VqnC195cO0ZvLNQUvgwy8GprE16P83Jq4UsIgaPn1mL+kYnlFr58PEIxsOEE9G/4LAtfRERERC7E4tf/mzhxIv78809MmDAB3t7eLssjISEBubm5AIDBgwdrxhcsWIBTp05hxIgRAIDS0lJs3Lix2uYhouqx43AKpv+s/m8u2M8L0x4bBJOn8/sUEVUXZfcyKPOmAOZ89YCnF+Sbn4du2AuQjD6XnEMIgV/PWPDg1iJkWdR9tMKNEr7t4oPb6jv3YIhiaw5WnPoA65O/gk1Rv3kkS3q0CxuGO1pMQ31/ruIkIiIicjUWv/6fv78/6tevXy1zK4py+Yv+34EDB8o+jo9X/8FcUlKCzz77DG3btsXTTz9d7j1VPQ8RVb3E9Fy88uVKOP71s8HToMe0xwYhPIgnv1HtIISAsvFnKMv/B4iLfg9Gt4Tu/s8gt77xsvOUOARe22fGewdLYL+of/z1wXr82N0XrQOc18VBCIFjOesx/8hEJBfu1YxH+rXGyLhP0CliJPQyT2olIiIicgdu3/NLCIHNmzejWbNmNaoh+5IlS7B48WIcO3YM2dnZMJlMaNu2Le655x7069evwvtOnTpV9nF0dLRqbPbs2cjMzMT06dMRFhYGvV4Pu92uuqeq53EGvafXZa+RJLnsn4bLrBAg+oc7Pje5BWZM+Hw5ikrUzb6nPDwEbVs0clFW9G/u+NzUNEJxwPbnp1B2/KYekGXoe4+DvhJN7QEgudiOZ7aew9F8m2bs/mY+eKqlP/Sy87Y5FlvPYe2pGTiTt0Mzppc90bX+OMRF3ARAgri44EdERERELuP2xa97770XO3fuxJNPPonHHnvM1elU2gsvvKD63Gw2Y8uWLdiyZQvGjBmDyZMnl3tfTs6FE6ICAwPLPs7NzcXXX3+NG264AZ07dwYA+Pn5IScnp2x7Y3XM4wyyrKv0tZIkQZIqfz0R4D7PjcVqxwuf/Ya0LPX2r6dG9Ua/669zUVZUEXd5bmoaYbPAOv8tOA6tUw/oPeA5agr0LbpXap7lKcV4bec5FF203MtLL+HdjsEYEO28FgVCCBzLXov1p7+AxV6kGY/wbYm+TZ5BgCmyLMZnh4iIiMh9uH3xq127dtixYwc2bNjg9sWvqKgoDBw4EAaDAZ06dULnzp0RHh4Oq9WKrVu34oMPPkBycjLmzJmDli1b4rbbbtPM8U/TeQ8PD1XD65kzZ6KoqAjPP/98WczDwwPA+cJadc3jDIqiPbHrYpIkQ5IkCCH4bjpVmjs9N0IIvPn1Uuw9nqqKD7uhDe4Z1KFS/x2Qc7jTc1PTiNIiWH+eDCVxj3rA5AuPu96DXL/1ZZ/1UofAtL15mJdYrBlr6KvHf7oEo5GvwWn/zZituVh3egZO527TjOllD3SOGYO48KGQJBlCCD47VGlX8uYfERERXRu3L341btwYAFy2Je9KdO7cuWw11b+ZTCYMHDgQcXFxGDp0KIqKijBjxoxyi1//kOUL7dhSU1Px008/YejQoWjRokVZvDK9xKpqnupkt5gv+yLBYPSBJOkghAJbqfZdd6LyuNNz8/XvO7Bi6xFVrEPzKDw3sgvsFu2LfHIdd3puahJRlAPH3NeBzNPqAd8Q6Ea9CSU0Fspl/n2eLHTgpd3FOFGk/Z3QN9yAN+O84K23wFZqqcrUyyWEwMm8LdicMhsWhzbvMO+muCHmYQQYI2C3nH/ziM8OVZYkyfAwsccjERGRs7h98eufVUnFxTX/xWFERAQGDRqE+fPnIykpCcnJyYiJiVFd4+V1vv+VzXahv8knn3wCIYSqOT0AWCwW1T3VMQ8RXbsV247h26W7VLH6YQF456EBMOj5zj/VfCInFY65rwF5Z9UDwTHQ3TkFkt+le3YKIfBbihXTDpag9KK6l0EGnm1hwp2x6pXM1anElo+NKbOQmK/t7aWTDOgYMRKtQwdBlnhuEBEREVFN4PbFr4MHDwIAfHxqR9Phpk2bln2clJSkKX4FBQUBABwOBwoLC5Gamoo//vgDd999t+pam82GwsJC1T3VMQ8RXZt9J9Lx7py1qpi/txHTnxgMP2+eBEc1n0g/DsevbwBmdS87RDaH7o7XIXn5XfL+IpvAOwfMWJ6ubWof4yVjWrwXrvN3zp8rQgicytuGzSnfodRRqBmv59UYveo/ggBjZDl3ExEREZG7ctviV2lpKTZs2IBffvkFkiShXbt2rk6pSphMprKP/70q6x+NGl047S01NRXTp0+HyWTS9DtLT08v267YsGHDapuHiK5eSlY+Xpq5Ajb7haUsBr2MqY8ORHSovwszI6oayundUBa+C1hLVHGpcSfIt06EZDBe8v5D+Xa8tNuMZLN2m+OQSANebu0Fb71zVnsVWc9hU8p3SCpI0IzpJAM6hI9Am3o3cbUXERERUQ1UJcWvtWvX4tFHH62KqTT+aR577733Vsv8zpaVlVX2cVhYmGa8devWZR/Pnj0bGzZswJNPPqlZlZWQcOGP8zZt2lTbPER0dQqKLXjhf8uQV1Sqir88pjfaNolwUVZEVUc5tA7K7x8Dil0Vl9r0gzz4CUi6iv/EEELgp0QLPjlSiosOc4RRB7zU0oRbop2zzVERCg5lr8SO9F9hV7S9xEK9GqFX/YcRaIyu9lyIiIiIqHpU2covIcTlL7pKTz31FLp161Zt8zvT5s2bAQC+vr7lrrSKj49HYGAgcnNzsXDhQgQHB+O+++7TXLd8+XIAgNFoRPfu2mPjq2oeIrpydocDr3y5Emcy8lTx+2/qgIGdm7kmKaIqpOz4DcpfX2niUtfbIfcae8miVZ5Vwev7zFifadeMNfWVMTXeG418nNMLL9uciA3J3yC7RHuojizp0CF8BOLqDYUssTcfERERUU1WpdseJUlCx44dq2Quo9GI2NhYDBs2rEasSBJCYNq0aejYsSP69etX7jXLli3Drl3nm14PHz4cRqN2O4hOp8Po0aPx+eefAwDGjRsHb29v1TWbN2/G2rVrAQAjRoxQbaWs6nmI6MoIIfDBTxuw62iqKt6/UxM8MLRqfj4SuYoQAsq62RBb5mvG5L7jIV8/7JL3J+TYMWlPMTJLtW+Y3VHfA89dZ4JRV/2rvWyOUuzKWIADWcshoN1yGebdFD2iH0SQiau9iIiIiGqDKu/5NWfOnKqe0ikcDgfsdvW70P/uyWWz2cpORQQAWZZhMBjKPv/mm28wa9YszJo1C/369cOIESPQunVreHl5IS0tDUuWLMGsWbMAALGxsZoTF//tgQcewJIlS5CSkoIff/wR0dHR6NKlCxRFwapVq/D+++9DCIGQkJBLbjetqnmIqPJ+WrUXv286ooq1aRSGl+/t7bST6oiqg3DYoCz/H8S+v9QDsh7y0Gcgt+pd4b0OIfDNCQu+OF6qKTX56IHX2nihf4RHledcnuSCPdiYPAtFtmzNmEE24frIO3FdcB9I7O1FREREVGtIogr2K65duxaPPPIIJEnC4cOHqyIvp1u4cCEmTZpU6etvvfVWTJ06texzu92ODz/8EHPmzCm3kf0/4uLi8NFHH2lOebzYyZMnMX78eKSmppY7HhISghkzZiAuLs4p81Qna0khhNC+8/5vBqMPZFkHRXHAVlrkpMyopnP2c7N29ym88uVK/PunamSIL76aeBsCfbmysqbgzxstUZwLx8L3gJRD6gGDEfJtL0Nu1L7CewttCl5IMGPbOe02xzYBOrzXzgtRXtW/rdBsy8OW1Dk4lbe13PGG/teja/S98DYEXvXX4LNDlSVJMjxMvq5Og4iIqM5w29Meaxq9Xo+JEyfizjvvxLx587Bx40akpaWhpKQEoaGhaNasGYYOHYpBgwZBr7/8v/bGjRtjyZIlmD17NlauXInk5GQIIRAZGYm+ffti3Lhxmub11TkPEV3a4TOZePPb1arCl4/JA9MfH8LCF9VoIuMEHAveAQqy1AMmP+hGvgEpsuI+dilmB57aUYzTxdo3OMY28sTjzYwwyNW7IlIIBUdz1mJb2s+wOsyacW9DMLpHj0Osf8UFPCIiIiKq2bjyi1yOK7+oujjruTmbU4QHpy7EuYILL6x1soyPnxqCji3YM6im4c+bC5SD66D8+R/AblUPBIRBN3IKpOCoCu/dm2vHs7uKkWtV/5kR4CHhrTgv9KhnqODOqpNbmooNyd/gbPFRzZgECa1CB6Fj+O0w6LQ9OK8Gnx2qLK78IiIici6u/CIiugbFpVa88L9lqsIXAEwY3YOFL6qxhOKAsnY2xLaFmjGpQVvIwyZC8vKr8P4VaVa8ts8M60Xva8QF6PBBe2/UM1ZvPy27YsXes0uwJ3MJFOHQjAebGqBnzIMI9dKeukxEREREtU+VFL969uyJHTt2VMVUREQ1ht2h4LWvVuFE6jlV/O7+bTGsZ0sXZUV0bURJEZQlH0Cc2qUZkzoNg9znfkhy+T26hBD49qQF/z1WqhkbEGHAlDgveFbzaY4pBfuwKeU7FFjPasb0sic6hN+O1qEDIUvV32eMiIiIiNxDlRS/dDodfH25dJuI6pZP52/GloPJqljv+IZ49NYuLsqI6NqI7GQ45r8F5KapB3QGyIOegBzXt8J7bYrA2/tLsCTVqhl7sLEnHm1mhFyNJ54WW3OwNe0HnMrbVu54jF87dI8aB1/P0GrLgYiIiIjcE7c9EhFdhXlr9mP+mgOqWIvYULx2Xx/I1dzAm6g6KMe3QVkyHbCWqAd8gqAb8QqkyOYV3ltgUzAhwYwdF53oqJeAV9uYcEu0Z3WkDABQhAMHs1ZiV8Z82BTtijOT3h9do+5Fo4DOkKqx+EZERERE7ovFLyKiK7Rp/xn859fNqli9QG+8/9ggGD2qv4k3UVUSQkBsngtl/Y8ALjoDJ7L5+cKXT8WnAicXO/DUzmIkXnSio59BwoftvdAxuPr+mzhbfBybUmbhXMmZckYltAzpi47hI+Gp9662HIiIiIjI/bH4RUR0BY6nZOP1r/+C8q+Dcr08DZj++BCE+PMFNtUswloCZeknEEc2acakuP6QBz4GSV9x8WpPjh3PJhQj76ITHWO8ZHza0RsNfKqnr1apvQg70ufiyLk10BTsAISYGqJHzH0I9WpcLV+fiIiIiGoWpxS/Jk2adM1zSJKEd999twqyISK6Otn5xXjhf8tgttjKYrIkYcqD/dAkOtiFmRFdOZGXAceCt4HMRPWAJEPuNx5Sh6GX3Ca4LM2KN8o50bFdoA4fdfBGoEfVn+gohMDxnPXYlvYzSh2FmnGDbEKniJG4LqQfZKl6T5QkIiIioprDKcWvRYsWXVOfDSEEi19E5FIlFhte/N9yZOYWq+LPjOyObm1iXZQV0dVREvdCWTwNKClQD5j8IN/6EuTYuArvFULg65MWfF7OiY6DIw14vU31nOiYU5KMjSmzcLb4aLnjjQO7oUvk3fAyBFT51yYiIiKims1p2x6F0G5LuBxJkuDn54fg4GAEBVXcb4SIqDopisCUWatxJClLFb/9xta4/cbWLsqK6OooCX9CWTkTEBct2arXALoRkyEFhFd4r9Uh8NYBM/5ItWnGHmriiUeaGqu8qbzNUYqEswuxP3M5BByacX/PCHSPvg9Rvq2q9OsSERERUe3hlOLX33//fcX3fPfdd5gzZw6aNWuGL774Al5eXtWQGRHR5c1YtBXr9pxWxbq2ro+nbu/mooyIrpxQHFBWfwux4zfNmNSiB+SbnoHkYazw/hyLghd3F2NXjroApZeA1+O8MDTKo0rzVYQDJ3M3Y0f6PBTbzmnGdZIB8WHDEVfvJuhkHjRBRERERBVzSvErKirqiu955ZVXAAA//PADJk2ahP/85z9VnRYR0WX9tuEQfly1VxVrEhWMKQ/2g17HnkJUMwhrCZQl0yGOb7toRILcawykrndccsXW/jw7XkgoxtlS9Spuf4OEDzt4o0NQ1f05cb7otQW7zy5GviW93Gti/NqhW9RY+HnWq7KvS0RERES1l1uf9jhx4kT8/fffWLlyJbZs2YKuXbu6OiUiqkN2HE7B9J83qmLBfl744PHB8DZW7SoXouoiCrPhmPcWcPakesDgCfmWFyA361LxvUJgQbIV7x8qge2iXZL1vWR82skbsd5Vc6KjIhSczN18yaKXtyEIXaPuRQP/jlW+vZKIiIiIai+3Ln7p9XqMGjUKH3/8MRYsWMDiFxE5zem0HLzy5Uo4lAuv+D0Nerz/+CCEBfm4MDOiyhMZJ+GY9yZQlKMe8AmC7o7XIIU3qfDeUofAewdKsCTVqhnrGKTHB+29EFAFJzoqQsGp3C1IOLuowqKXBB3ahA5C+/DbYNBVvDWTiIiIiKg8bl38AoBmzZoBAHbt2uXiTIiorsgpKMELny9DUcmFF/2SBLzxQF9cF8ttVlQzKMe3QfntA8B20amMYY2hu+NVSL4hFd6bZnZgQoIZhwu0DebHNPTEU82N0MvXtvKqckUvGc2CbkC7sGHc4khEREREV83ti19msxkAkJ2d7eJMiKgusNjseGnmcqRlF6rij9/aBb3aNXRRVkSVJ4SA2LEEyt9fA1D36JKaXA952AuQPEwV3r85y4aX95iRb1Pfa9IBb8Z5oX/EtW35rWzRq2lQT8SHDWfRi4iIiIiumdsXv1asWAEA8PHhNiMiql5CCLz7/VocOHVWFb+lx3UY3b+ti7IiqjyhOKCs/AJi95+aManTMMh97ockl9+jSxEC35y0YMax0otKZkADbxnT23ujse/V9/dShIJTeVuQkMGiFxERERE5l1OKXzt27Lii6x0OB86ePYvly5djzZo1kCQJ7dq1q57kiIj+3zd/7MSqHSdUsU4tojBhdA821ya3JyxmKIumQpxOUA9IMuQBj0BuP6TCewttCibvNWN9pl0z1ifMgDfjvOBjuPr/Bs7k78K2tJ8rUfQaBj/PsKv+OkRERERE5XFK8WvMmDHX9MJRlmU88MADVZgREZHaim3H8O1SdW/B2PAAvP3QAOh1VXOaHVF1EfmZ5xvbZ51RD3iYIA9/CXLjDhXee7zAgecTipFsVh/nKAN4orkR4xp5XvXvcKujBFtS5+BYzrpyx1n0IiIiIiJncNq2RyEu3kRROf7+/njttdfQsWPHKs6IiOi8fSfS8e6ctapYgI8R0x8fAl8vT5fkRFRZIu0oHPPfAorz1AN+odCNfB1SaIMK712WZsWU/WaUXtTXPsBDwtR2XugcYrjqvDKKjmJt0gwUWrM0Y+eLXj3QLmwY/D3Dr/prEBERERFVhlOKX0888cQV3+Pl5YWGDRuia9euMBp5rDkRVY/UrAK8NHMFbPYLq14MehlTHxmIqFA/F2ZGdHnKkY1Qfv8IsFvVAxHNoLv9VUg+geXeZ1MEPj5Sgp8TrZqxVv46fNDeGxEm+apycih2JGQswN7M3yEubrjPohcRERERuYDbFr+IiKpbodmCF/63DHlFpar4y2N6I65JhIuyIro8IRSIzb9CWf+DZkxq0R3y0GchGcp/4+icRcELCcXYnevQjN0W44EXW5rgqbu6bY65palYe+ZzZJckasYCPCNxY+xjCPHiqalERERE5Fxuf9ojEVF1sDscmPzVKiRm5Kri99/UAQM7N3NRVkSXJyxmKH98DHFsi2ZM6noH5F5jIEnlr9o6UejAUzuLkF6iXpHlIQMvtTLh1pir2+YrhIKD2auwPe1nOIRNM94qZCCuj7wTetnjquYnIiIiIroWLH4RUZ0jhMBHv2zCjsMpqni/jk3wwFD2FyT3JXJS4VjwDpCdpB6QdZAHPwE5rn+F927MtOGlPcUovuhAx3CjhOntvdEq4Or+JCi25WJd0hdILdyvGfMyBKJX/YcR7dvmquYmIiIiIqoKLH4RUZ0z9+99WLzhkCrWqmEYXhnb+5pOpiWqTsqJHVCWTAcsxeoBkx/kW1+CHBtX4b0/J1ow/VAJlIvi1wfrMTXeC4EeV9ff61TeNmxM/hYWR5FmrGFAZ/SIvh9Gvc9VzU1EREREVFWcWvw6ePAgDh06hNzcXFit2ia7l8PeYUR0rTbuS8RnC9TbxcKDfDDt0YHwNPD9AHI/Qoh/9fe66OTksMbQjXgFkn+9cu+1KwLTD5dg7hnt79w76p/v76WXr7zga3WYsSllNk7kbtSMGWQTukePRZPAHiwmExEREZFbcMorvfT0dDzxxBM4dOjQ5S++BBa/iOhaHEvOxuvf/AXxr/qBt9ED058YgiA/L9clRlQBYTFDWfoJxNHNmjGpVW/Ig5+osLF9oU3gpT3F2Jyl3ucoA3i+pQmjYz2uqjiVXnQYa8/MRJEtWzMW4X0desU+DF+P0Cuel4iIiIioujil+PXmm2/i4MGDzvhSRETlysorxoufL0OJ5UIhQCdLeGt8fzSKDHJhZkTlq7C/lyRD7nM/pE7DKixepZodeHpnMU4WqTc6eumAqfHe6FnPcMX5OBQbdmbMx77Mpbh4BZos6dAxYiTahA6BXEGzfSIiIiIiV3FK8Wvbtm2QJAkDBw7EhAkTUK9ePXh48MQnInKOEosVEz9fjsxcda+kZ0Z2R5dWMS7Kiqhil+zvNXwi5AZtK7x3b64dz+4qRq5VXaAKN0r4T0cfNPPTXXE+WebTWJc0E7mlKZqxQGM0box9DMGm2Cuel4iIiIjIGZxS/PL29kZpaSkGDBiA6OhoZ3xJIiIAgKIIvP7lMhxJylLF77ixNUb0bu2irIjKJ4SA2DIPyro50Pb3agTdba9ACgir8P5lqVa8sd8M60Wd7Vv76/BxR2+EeF7ZqixF2LE74zfsPrsYQtMuH2gTOhgdI0ZCL/MNLSIiIiJyX07Zm3DjjTdCCIEtW7Zc/mIioir033nrsGbXcVWsa+v6eOqObi7KiKh8wmKGsug9KOu+x8WFL6llL+jGvF9h4UsIgZnHSvDyXm3ha0CEAV918bniwldOSRIWH3sdCWcXagpf3oYgDGk8CV2i7mHhi4iIiIjcnlNWfk2YMAF79uzBggUL0LVrVwwZMsQZX5aI6rglG/Zj9tJtqljjqCBMebAfdDL7EpH7uHR/r/sgdRpeYX8vi0PgjX1mLE+3acYebOKJR5saIV9BY3tFOLAv8w/sylgARTg0400De6Jr1Bh46r0rPScRERERkStJQghx+cuuXXZ2Nu644w6cPXsW/fr1g7f3lf3RLEkS3n333WrKjlzJWlIIIbTbaf7NYPSBLOugKA7YSouclBnVZPtOpOPxj3+Hw3Hh2QryM+Hrl25DeJCvCzMjd+fsnzfKyV1Qfnv/qvp7nbMoeHZXMfbnqYtUBhl4vY0Xboq6slVZeaVpWJc0E5nmk5oxk94fPWMeQKx/hyuasy7h7yqqLEmS4WHi7yIiIiJncUrx68SJExg3bhzOnTt3TfMcPny4ijIid8LiF1W1QrMF9749D2dzLjwrHgYdPn/uFrRsWHG/JCLAuT9vlIQ/oaycCVz8M7AS/b2OFTjwzK4ipJeof40HeEj4uL032gVVfnG3EAoOZK3AjvS5cAjtCrJGAV3QPXocjHq+WL8U/q6iymLxi4iIyLmcsu3xnXfeQXZ2tjO+FBERPvx5g6rwBQCvjevDwhe5DSEUKGu+g9i2UDMmtewFeciTkAzGCu9fkmLBuwdKYLmoZtbQR8anHb0R7VX5Ex0LLJlYl/QFMoqPaMY8dT7oHn0fGgd2qfR8RERERETuxinFrz179kCSJAwcOBATJkxAvXr14OHBBrlEVPVWbj+OlTtOqGJ3DeyAPh0auygjIjVhs0D54yOII5vUA5IM+cZxkK6/tcL+XqUOgfcPlWBRslUz1iVEj/fjveBrqFw/OyEEDp/7G9vSfoJdsWjGY/06oEfMA/Ay+FdqPiIiIiIid+WU4pe/vz9KS0sxYMAAREdHO+NLElEdlH6uEB/8tEEVaxoTisdG9ASUUhdlRXSBMOfDMW8KkHZUPWDwhDzsRchNO1d4b3KxAy/sNuNogbYJ/cj6HnihpQl6uXKN7Yus2Vif9BVSiw5oxjxkL3SLvhdNAntUWIQjIiIiIqpJnHLc2dChQyGEwLZt2y5/MRHRVXAoCqbMWo3i0gsrYjz0Orzz6M3w9HBKnZ/oksS5FDhmP68tfHkHQnf3tEsWvtZkWHHXpkJN4csoA1PivDCptVelCl+KUHAwayXmH3mp3MJXtG8cbm8xDU2DerLwRURERES1hlNeET711FM4cOAA5s+fjy5dumDw4MHO+LJEVIf8sGIP9p5IV8WeHNULjaNDoSjalTJEziSSDsCx4G3g4iboIfWhG/kGJP965d5nUwT+e7QU358uZ1uit4wP4r3R1K9y/b3OmROxIeVbZJVzkqNBNqJL1N1oHnQji15EREREVOs4pfi1fft2DB8+HImJiXj++eexbNkyeHt7X9EckiTh3XffraYMiagmO3wmE1//vlMV69IqBqP6xbsoI6ILlINroSz9BHDYVXGpQTvIt06CZCz/92FmqYKXdhdjd662eNs/3IDX2njBx3D5QpXNUYpdGQtwIGs5BLQn60b4tESvmIfg6xlauW+IiIiIiKiGkYQQ4vKXXZsWLVqUvZMshLjid5X/uefw4cPVkR65mLWkEEJoX5D9G4+Pp4qUWGwY9858JGfml8UCfIyY8+pIhIfV43NDV6yqft4IISA2z4Wy/gfNmBTXH/KgxyHpyn8Pasc5G17abUaOVf0rWi8Bz7YwYXQDj0r9Lj2TvwubUmaj2HZOM2aQjegUMQotQ/pBkpzSBaHW4+8qqixJkuFh8nV1GkRERHWGU1Z+RUZGOuPLEFEd9J95m1WFLwCYNKY3gv29XJQRESAcdijL/wux7y/NmHzDGEjdRpZbvFKEwKyTFnx+rFSzRivMKGFavDfaBl7+V3eR9Rw2p36PM/k7yx1v4N8JXaPGwMcjuFLfDxERERFRTeaU4tfq1aud8WWIqI5Zt+c0lmxUrwgd3rMlerZt4JqEiACI0iIoi96DSNyrHtDpId/0DORWvcu9L9+qYPJeMzZm2TVjXUL0eKetF4I8L71CSxEOHMxaiV0Z82Er54RTH0MwukWPQ6x/+0p/P0RERERENR2PQCOiGik7vxhT56xTxeqH+ePJ27u6KCMiQORnwvHrG0B2knrA6APdiMmQ6rcu976DeXa8sLsY6SXqbY4SgIeaeGJ8UyN0l9nmmGU+hY3J3yC7JFEzJkFGm9DBaB9+Gww64xV8R0RERERENR+LX0RU4yiKwNuz1yC/+MLKFp0s4437+8HkaXBhZlSXifQTcMx7EyjOVQ8EhJ8/0TE4utz7FiRZMO1QCWwX7XMMMEh4p50XuoVe+pm2OszYmT4fh7JXQkDbxrOeV2P0iHkAwabYK/p+iIiIiIhqCxa/iKjGmbdmP7YfSlHFxt/SCS1ieVoduYZyfDuU36YBNot6ILI5dHe8BsnLX3OPXRGYfrgEc89YNWNtAnR4P94b4aaKtzkKIZCYvwObU7+H2ZarGfeQvdApchRaBPeBzIb2RERERFSHOaX4lZaWViXzsHE+EZ1MPYcZi7apYu2aRuDuAW1dlBHVdcruZVBWzAAuOrVWatEd8tDnIBk8NfcU2BS8mGDGtnPa/l53NfDAMy1MMMgVb3O02IuxMeVbnMrbWu54o4Au6Bp1D7wMgVf43RARERER1T5OKX716dOnUkeyX4okSTh06FAVZURENZHFZscb3/4Nq91RFvMxeeC1+/pAJ3NlCzmXEAqUdd9DbJmvGZO6jIDceyykclZcnSly4OldxThTrC6WGXXAm3FeGBDhccmvm1F0FGvO/A9FtnOaMV+PUHSPvh8xfnFX+N0QEREREdVeTtv2KIS2DwkR0ZWYuWgbTqbmqGIT7uqJ8CBfF2VEdZWw26As/QTikPrQBUgy5AGPQG4/pNz7tmbZ8OJuMwrt6t+J4UYJn3T0RnO/in8tK8KB3RmLsPvsYk1vLwk6tK13E+LDh0Mva1eaERERERHVZU4pft16661XfM/q1atRUFCAXr164ZZbbkFQUFA1ZEZENcW2Q8mYu3q/Kjawc1MM6NTURRlRXSVKiuBY+DaQdEA9YPCEPGwi5KbXa+8RAnPPWDH9cAkcF70XFBegw0cdvBHsWfHqxQJLJtac+RyZ5uOasWBTLHrXfxRBppir+n6IiIiIiGo7pxS/3nvvvSu+Jzk5Gffeey82btyIUaNGoUuXLtWQGRHVBHlFJXhn9hpVLDzIB8/f2cNFGVFdJfIz4fj1DSA7ST3gFXC+sX1kM809NkXg/UMlmJ+kbWw/NMqAV1t7wUNXcWuAEzmbsDFlFmxKiWasTehgdIoYBZ3MU06JiIiIiCritk1yYmJi8Nlnn0EIgcmTJyM/P9/VKRGRCwghMO2H9cjON5fFZEnC6/f3hY+J27vIeUTGCThmP68tfAVFQXfv9HILX3lWBY/vKNYUviQATzc3YkpcxYUvq8OMNWc+x5qkzzWFL5PeH4MbTUSXqHtY+CIiIiIiugy3LX4BQOvWrTFgwADk5ORg7ty5rk6HiFzg901HsG7PaVXs3sHxaNskwkUZUV2knNwJxw8vAcW56oHoltCN+QBSYLjmnlNFDty7uQg7LjrR0UsHfNzBG+MaGys8DOZs8XEsPPoyTuRu0ozF+LXDiObvIZpN7YmIiIiIKsWti18A0KtXLwghsHLlSlenQkROdjI1Bx/PVb/4b9mgHu6/qYOLMqK6SNmzAsq8KYCtVBWXWvSAbvTbkLz8NPdsyrJh7OZCJJvVJzpGmmR819UXvcLKX62lCAUJGYvw+/EpKLRmqcZ0kgHdosZiYMMJMBn8r/G7IiIiIiKqO5x22uPVCgwMBACcOXPGxZkQkTOZS22Y/NVKWGwXVs2YPPV4/b4+0Ot0LsyM6gohBBzrf4DY9ItmTLr+Vsh97oMkyZp7fkq04KPDpVAuuic+UIfp7b0RVEFj+yJrNtac+RwZxUc1Y4HGaPSJfYJN7YmIiIiIroLbF79OnjwJALDZbC7OhIic6cNfNuBMRp4qNmF0T8SEBbgkH6pbhN0G2+KpEHsvXnUsQe7/EOSON2vusSkC7x0swaJkbWP7YdEeeKW1CQa5/G2OJ3O3YmPyN7AqZs1Yq5ABuD5yNPSyx1V9L0REREREdZ1bF78OHjyIb775BpIkISaG73YT1RVLNx/Bsq3HVLEhXZtjcJfmLsqI6hJRWgTL3NehnNqlHtB7QB72AuRmXTX3ZFsUvJhQjN25DlVcBvDsdUbc3cCz3P5eBZZMbE//BafztmnGjDpf3FD/IcT6t7+m74eIiIiIqK5zSvHr3nvvvaLrFUXB2bNnkZKSAiEEJEnCgAEDqik7InInp9JyMP3njapYw4hAPH9nDxdlRHWJyM+EZcHbEGdPqQdMftDd8RqkqBaae/bm2vFCQjGyLEIV99ED77XzRo962v5eVocZe84uwf6sZVCEXTMe5dsGves/Ai9DwDV9P0RERERE5KTi1/bt2ys80epShDj/QqJly5Z48MEHqzotInIzJRYbXv1qlarPl6dBj7fG94fJs/wG4URVRaQchmPBO4A5Tz0QGAHdyDchBUWqrxcC85Ks+OBQCezquhdivGR83MEbjX3V/ekU4cDRc2uxM2M+Su0FmhxkSY/rI+5E69CBmn5iRERERER0dZy27fGfQlZlmUwmNGzYEIMGDcLYsWPh6elZTZkRkbv4aO5GnE7PVcUmjO6BRpFBLsqI6gpl/99Qln0GOC5ahRXVArrbX4XkpT5dsdQh8N6BEixJ1fb3uj5Yj2nxXgjwUBevUgr2YWvaj8gtTSk3hxBTA/SMGY8QrwbX9L0QEREREZGaU4pfR44cccaXIaIabNnWo1i6WX3K3eAuzXBTN+02M6KqIoQCZe33EFvna8bkljdAGvI0JIP6zZe0EgUTdhXjcIFDc8+4Rp54vJkR+n81ts8tTcW21B+RXLi33By8DIHoFDEKTQO7c7UXEREREVE1cOuG90RUNySm5+KDnzaoYrHhAXj+zp4uyojqAmExQ/n9Q4jj2mbzht5joes1Fnar+vTFrVk2TNpjRp5NvZrZSwe8EeeF/hEXTmQstRdiV8YCHM7+GwKK5mvoJA+0rTcUcfVugkFnrKLvioiIiIiILsbiFxG5VKnVhle+WolSq7rP19vjB8DLyD5fVD1EfiYc86YAWYnqAZ0BhltfgkfbAVCUCyu7hBD47pQF/z1aqiljxXrL+LD9hf5eDsWGg9krsTtjMayKGeVpGtgTnSJGwtuDW3qJiIiIiKobi19E5FIfz92E02nqPl/P3dkdjaNYFKDqUWFje+9A6G6fDH2jDqpwsV3g9X1m/J1h08x1Y5gBU+K84GOQIIRAYv5ObE/7GQXWs+V+7XDv5ugSNQahXg2r6tshIiIiIqLLqLbiV3Z2NkJCQq55np9//hkjR46ETqe7/MVEVKMs33YMv29S9wQccH1TDGWfL6omFTa2D2t8vrG9n/r31ukiB57fVYzTxer1XhKAx5sZcV9jT8iShEJrFjYkfY3UogPlfl1fj3roHHkXGvh3vKrTj4mIiIiI6OpVS/Frzpw5+Oqrr/Dll1+iRYurexFrtVrxxBNPYMOGDcjMzMTTTz9dxVkSkSslZuTig5/Wq2L1wwLw4l03sDhAVe5Sje2l5t0gD30Okoe679ZfqSV4ZVchii+qk/kbJLzbzgvdQg0QQuDoubXYkjoHNqVUM7eH7IX48OFoFTIAOpnbeImIiIiIXKHKi19FRUX4z3/+g+LiYrz//vv49ttvr2oeDw8PGAznX1h89913GDNmDIKCuA2KqDawWO149atVKLFcqCp4GHR4e3x/9vmiKnepxvZS9zsh97xLdcqiQwj8Z38uvjpaoLm+uZ8OH7b3QpSXDsW2XGxI/hrJBXu080LGdSF90T78Npj0flX6/RARERER0ZWp8uLX4sWLUVRUBJ1Oh8mTJ1/TXC+//DI2bNiA0tJS/P777xg7dmwVZUlErvTxr5twMjVHFXt2ZHc0iQ52UUZUW12qsb180zOQW/VShXMsCibvzMaWTItmrpuiDJjc2gueMnAydws2pcyCxVGsuS7SpxW6Rd+LQGN0VX4rRERERER0leTLX3JlNm3aBADo1q0bGjVqdE1zRUVFoWfPnhBCYMOGDVWRHhG52Modx7Fk42FVrH+nJrilx3UuyohqK5FyGI7vntMWvrwDobtnqqbwteOcDaM2FmoKX3oJeKmlCW/FeQGiCH+f+Qyrz/xXU/jSy57oHn0fhjSexMIXEREREZEbqfKVX0ePHoUkSejatWuVzNe5c2f8/fffOHXqVJXMR0Suk3Q2D+//oO7zFVPPHy/ezT5fVLWUwxug/P5hpRrbO4TAV8dL8eUJC8RF84R4Svgg3hvtgvRIzN+JjcnfoMSu3Q4Z5t0cveo/BH/P8Gr4boiIiIiI6FpUefErLy8PABAZGVkl8/1zYmRubm6VzEdErmGxne/zZbbYymIeeh3eGt8f3kYPF2ZGtY2S8CeUFTOAi0pZ5TW2zyxV8PKeYuzKcWjmaR/sgaltjfDTl2Dtma9xPFe7AlknGdAx4g60Dh0MWaryxdRERERERFQFqrz4ZbVaAQA2m+0yV1aOEOdfvDgc2hcmRFRz/OfXzTieck4Ve3pkNzSLCangDqIrI4SA2PQLlA0/asbKa2y/MdOGV/eZkWe9qEgG4OEW/nikhQ+Ss7dgwckvUWzTvgETYmqE3rEPc4sjEREREZGbq/LiV2BgILKzs5GSklIl86WmpgIAT3okqsH+2HwEizccUsX6dmiM4T1buigjqm2EUKD89RXEzt/VA7IO8pCnIbfpUxayKQL/O1aK2ae0Te2DPSRMvT4YnUJlbDo9Ewczl2uukaBD+/Bb0S7sZshSlf8aJSIiIiKiKlblezSuu+46CCHw119/Vcl869atgyRJaNGiRZXMR0TOdeRMFqb/pN4uFhXqh5fu6cU+X1QlhMMO5fePtIUvvSfkEZNVha80swMPbC0qt/DVOViPX3r6ItZ4Er/seaLcwlegMRrDm01B+/BbWfgiIiIiIqohqvwv9z59+mD9+vU4dOgQdu7ciY4dO171XAcPHsSuXbsgSRL69Olz+RuIyK3kFZVg0hcrYLVf2LbsadDj3YcHwNvEPl907YStFMrC9yBO7VIPGL2hu+N1SNEXVhf+nWHFm/tKUGhXb3PUScCjTY24t6EOu8/+ir2Zf0DTLwwS4uoNRYfwEdDJhur6doiIiIiIqBpI4p+mWlXEbDajT58+yM/PR0REBH766SeEh1/56Vc5OTm4++67cfr0aQQGBmL16tUwmUxVmeolpaenY+rUqVi+/Pw7/99//z06d+5cqXuLioowe/ZsrFq1CsnJyVAUBVFRUejbty/Gjh1b6S2c7jZPdbGWFEII5ZLXGIw+kGUdFMUBW2mRkzKja2F3KHjus6XYeSRVFX/9vj4Y2LmZU3Lgc1O7iZIiOOa9CaQeVg/4BEE36k1I9RoCACwOgY+PlGDuGatmjjCjhPfaeaOhVxbWnPkc2SXak4X9PSPQq/7DCPNuWi3fB9Ue/JlDlSVJMjxMvq5Og4iIqM6o8uIXACxatAiTJk2CJEkICgrC5MmTMXjw4Erfv3r1akyZMgUZGRmQJAnvvPMObrvttqpOs1xWqxWzZs3CzJkzYTaby+KVLX6dPHkS48ePL+tVdrGQkBDMmDEDcXFxNWqe6sTiV+30+aKt+GHFHlVsZJ82eGZkd6flwOem9hKF5+CY+xqQdUY9EBAB3Z1vQQo8/6bLmSIHJu4x42iB9tCUG+rp8UYbE84WbcCW1O9hV7RbIVuHDEKnyJHQy57V8n1Q7cKfOVRZLH4RERE5V7UUvwDg7bffxg8//FDW06d+/foYOHAg4uLiEBMTg4CAABgMBthsNuTn5yMlJQX79u3DqlWrcOrUqbJTHu+55x5Mnjy5OlLU2LBhA95++20kJiYCAMLDw5GRkQGgcsWvoqIiDBs2DCkpKTAYDHjmmWcwdOhQGI1G7Ny5E9OmTUNSUhJCQkKwePFihIaG1oh5qhuLX7XPmoRTeOXLlapY2yYR+OzZodDrdE7Lg89N7SRy0uD45VUg/6x6oF5D6EZNgeQTCAD4M9WKtw+YUXJR3UsvAc+0MOK2aCs2pnyLxPwdmq/h7RGMvo2fQZhno+r6NqgW4s8cqiwWv4iIiJyr2rr1Tp48GSEhIfjss8/gcDiQlJSEr776qlL3CiGg0+nwxBNP4NFHH62uFMvY7XY888wzWLVqFQAgNDQUEyZMQHh4OMaOHVvpeb755puyUy7ff/99DBkypGysX79+KCoqwsSJE5GdnY3PP/8cr7/+eo2Yh+hKnE7LwTuz16hiIf5eeHt8f6cWvqh2Ehkn4Zj7OmDOUw/EtILu9lchGX1Q6hCYdrAEi1O02xyjvWRMbeeFAN1RLDo2A8W2XM01jYK64sbGT8JT580CBhERERFRLVDlpz3+2yOPPIKFCxeid+/ekCQJQojL/k+SJPTu3RsLFy50SuELAPR6Pfz8/GAwGDB+/HisWLECw4cPv6KT6BwOB37++WcAQHx8vKrQ9M/4F198Ufb5woULUVJS4vbzEF2JohILJn2xAmaLrSym18l45+EBCPb3cmFmVBuIpANw/DRJU/iSmlx/fsWX0QeJRQ7cu7mw3MLXgAgDfuhqQpH5V/x58j1N4Usve6JnzHgMbDoRJoNfdX4rRERERETkRNV+Tnvz5s0xc+ZMZGRkYN26ddi3bx/OnDmDvLw8WCwWeHp6IiAgALGxsWjbti169uyJiIiI6k5LY+LEiXjkkUdQv379q7o/ISEBubnnX0iV199swYIFOHXqFEaMGIEFCxagtLQUGzduRP/+/d16HqLKUhSBt75bg6Sz+ar4s6O6o02jKz/0gujflOPboCyeBtjVRS2pdR/IQ56CpNNjWaoVb5WzzdFTBl5oaUKf0HNYnfg/ZJckauYPMTXCjbGPIcAYcUVvfBARERERkfur9uLXP8LDwzFq1CiMGjXKWV/yivj7+8Pf3/+q7z9w4EDZx/Hx8aqxkpISfPbZZ2jbti2efvppLFiwoOyei4tN7jYPUWV9vzwBG/YmqmI3dWuO4T1buiYhqjWUfX9B+fNT4KLegNL1wyH3uR8WRcL0/WYsSNau9mrgfX6bo2Jbj0XH5sAhLr5GQtt6Q9Eh/HboZKf9SiQiIiIiIifiX/pV5NSpU2UfR0dHq8Zmz56NzMxMTJ8+HWFhYdDr9bDb7ap73HUeZ9B7Xn47nCTJZf80GH2qOyW6Qpv3ncZXv6ubhl/XIAwvjRsEDw+Di7Lic1Mb2LcuhLLsU01c32889D3uQlKxHc9ty8HRfJvmmptiTHihtR47kv6H07nbNOPeHsHo1/hZRPm3UcX53NDV4rNDRERE5J5Y/KoiOTk5ZR8HBgaWfZybm4uvv/4aN9xwQ9lpkX5+fsjJySnblujO8ziDLFe+CbokSZAkNk13JymZeXj1i6X497mx/j4mfPDUrfAyGl2X2L/wuamZbLv+gO3iwpckw+OW52HoeAuWJRfj1V3nYLarDy32kIGX2wWhc+AJ/HHoY5htObhYk+Ae6N34CRj1FRco+NzQ1eKzQ0REROReWPyqIv80i/fw8FD1i5k5cyaKiorw/PPPl8U8PDwAAGaz2e3ncQZFcVz2GkmS/3VognLZ68k5Si02TPjPQhQUl5bFZEnCO48ORViQT6X+v61OfG5qLvv+v2H77X11UGeAx+2TYW9+A97dlY25p4s198X66PF2ex3O5X2B3w+v1YzrZSNuaPAQmof2gSRJ5T6jfG7oavHZoStxJW/+ERER0bVh8auKyfKFAzRTU1Px008/YejQoWjRokVZXFEu/wexu81TnewW82VfJBiMPpAkHYRQYCstclJmdClCCLw1azWOJ2ep4o8Mvx7tGwe7xf9PfG5qJuX4NigL34VqOaFOD/n2yTgT1g4vrsnAkQJt0ap/uA7Dw9dix6mFsCsWzXioV2PcGPsY/D3DYbdoC2f/4HNDV4vPDlWWJMnwMPm6Og0iIqI6g8WvKuLldb5vlc12oe/MJ598AiEEnn76adW1FotFdY87z0NUkflrD2Dl9uOqWO/4Rrh7QDvXJES1gnJ6D5RF7wH/XpElyZCHv4S/TW0wZVMhiuzqewwScH/DTPg7ZuBgZmY5s0poF3YLOoTfBlnirz0iIiIiorqGrwKqSFBQEADA4XCgsLAQqamp+OOPP3D33XcjJiam7DqbzYbCwkLVPe48D1F59hxPx6fztqhiDcID8crY3qpttkRXQqQcgrLgLcDx7+qWBOWm5zDdFoe5u7VbsyNNCoaHzgdK16G8dTZBxhh0j74P4T7Nqy1vIiIiIiJybyx+VZFGjRqVfZyamorp06fDZDLhscceU12Xnp5ets2wYcOGbj8P0cWy8oox+auVcPxru6yX0YD3HhkIb6OHCzOjmkxknIDj1zcAm3q7YkHfx/BkQQccyrdq7on3T0UH0yeAXVsU89T5oGPEHWgRfCNkNh4nIiIiIqrTWPyqIq1bty77ePbs2diwYQOefPJJzWqqhISEso/btGnj9vMQ/Zvd4cDkL1cip6BEFX91XB/Ehge4Jimq8UR2Ehy/vAZY1EWsvJ73456ibjhbqu7vpZcU9PRfghamVbh4oaEEGdeF9EOH8BGXPMmRiIiIiIjqDha/qkh8fDwCAwORm5uLhQsXIjg4GPfdd5/muuXLlwMAjEYjunfv7vbzEP3b7GW7sf/UWVVs7OD26NWOqwbp6ojcdDh+ngyUFKji+Z1H4y5LX2RZhCoeoM9Dv4AvUM8jSTNXpE8rdI0agyBTjGaMiIiIiIjqLvnyl1Bl6HQ6jB49uuzzcePGwdvbW3XN5s2bsXbtWgDAiBEjYDKZ3H4eon8cSszEd3/uUsU6t4zBgzd3dFFGVNOJgmw4fn4FKMpRxQva34o7lZs0ha+Gxj0YEfK2pvDl6xGK/g2exZDGk1j4IiIiIiIiDRa//p/D4YDFYlH9798nJdpstgrH/vHAAw8gOjoaAPDjjz/izz//RE5ODrKzs/Hzzz/j8ccfhxACISEhePTRRyvMxd3mIbJY7ZgyazUcyoViRJCfCa/d1wc6mT9G6MqJ4rzzK77y1aczFrQejDvkEci+qMVXC9MWDAz8Gp7yhS23etkTHSNG4vYW76NBQEcetkBEREREROWShBDi8pfVfgsXLsSkSZMqff2tt96KqVOnauInT57E+PHjkZqaWu59ISEhmDFjBuLi4i45v7vNU52sJYUQQrnkNQajD2RZB0VxwFZa3pluVJ0+nrsR89YcUMU+eGwwusfFuiijyuFz455ESSEcP00CMhNV8cLmvTHC9wHk2tRFrOu8NqG3/8+QpAu/rpoE9sD1EaPg7VH1p9TyuaGrxWeHKkuSZHiYfF2dBhERUZ3Bnl9VrHHjxliyZAlmz56NlStXIjk5GUIIREZGom/fvhg3bpym6XxNmIfqrh2HUzSFr5u7t3D7whe5J2ExwzH3dU3hq6hRF4zwuV9T+GrltQE3+M8tK3yFejVC16h7Eebd1FkpExERERFRDceVX+RyXPnlvgrNFox561dk5haXxSJDfDF78h3wNnq4MLPK4XPjXoTNAuXXNyCS9qvixfXbY0TIUzjnUL8f08Z7LXr4zYMkATrJgG7R49A86AZIUvVuteVzQ1eLzw5VFld+ERERORdXfhFRhT78ZaOq8CVJwOSxfWpE4Yvci3DYoCx8V1P4Mke0wojgxzWFrzjv1ejutwCSBHjqvDGg4fMI92nuzJSJiIiIiKiWYPGLiMq1etdJrNx+XBW7q387tGsa4aKMqKYSDjuU3z6AOKU+LdQc2hR3hD2Nc4qnKt7O+y909VsESQK8DUEY3HgiAo3RzkyZiIiIiIhqERa/iEgjO78Y7/+0XhVrEhWM8Td3clFGVFMJhx3KkukQRzer4iVBsRgZ8TwyhZcq3t5nBTr7LoEkAQHGKAxuNBE+HsHOTJmIiIiIiGoZFr+ISEUIgfe+X4uCYktZzKCX8dp9feBh0LkwM6pphOI4X/g6slEVL/WPxJ1RL+Ks5KOKd/T5E518l0KSgDDvZhjQ8HkY9epriIiIiIiIrhSLX0Sk8tuGw9hyMFkVG39zJzSJ5uobqjyhOM5vdbyo8GXxDcPd0RORJvur4p18/0An32UAgFi/9ujT4EnoZfaWIyIiIiKia8fiFxGVScnMx6fz1dvT2jYJx+j+bV2UEdVEFa748g3D3fUnIUmvLqRe77sEHX1XAACaB/VGj5j7IUtcZUhERERERFWDxS8iAgDYHQqmfLcapVZ7WczL04DJY/tAJ8suzIxqkrLC1+ENqnipbxjuqj8JyfoQVbyr7yLE+/4FAIgPG44O4bdDkiSn5UtERERERLUfi19EBAD4adUeHDh1VhV76o5uiAr1c1FGVNNUVPgq9qmHe2ImIeWiwlc3vwVo57MagITu0WPRMqS/E7MlIiIiIqK6gsUvIsKx5Gx8/ftOVaxHXCxu7t7CRRlRTXO+8PWhpvBV4BWKu2NeRoZBXfjq4TcPcT5rIUt63Bj7GBoFdHZmukREREREVIew+EVUx1lsdrw562/YHUpZLMDHiJfu6cXtZ1QpQnFA+f0jiMPrVfFcUyjujX0FGR7/LnwpuMH/V7T23gCDbMKAhs8h0relcxMmIiIiIqI6hcUvojruy9924HRario28e5eCPLzclFGVJOUFb4OrVPFzxlDcF+Dl1WFLx2s6Bc4G41Ne2DSB2Bw4xcRbIp1dspERERERFTHsPhFVIftPpaGX/7eq4oN7tIMveIbuigjqkkqKnxleobgwYavIN0jtCxmlAsxJOgLhHuchp9nOAY3mgg/z3rOTpmIiIiIiOogFr+I6qjiEive+m41hLgQCwvywbOjursuKaoxKip8nfUIwfhG6sKXvy4TQ4M/h78+C+HeLdCv4dMw6XmQAhEREREROQeLX0R11CfzNiEjp0gVmzz2RviYPF2UEdUUQnFA+eNjTeErwyMYDzVWF77CDScxOOgLmHTFaBUyAF2i7oYs8VcPERERERE5D1+BENVBG/clYunmo6rYqL5x6NA8ykUZUU1RVvg6uFYVTzcE45GLVnw1Niagb+D38JSBHtEPoVlwLydnS0RERERExOIXUZ1TUGzB+z+qT+VrGBGIR4Zf76KMqKYQDjuUpf/RFL4yDMF4tPErSPtXD6923n+hq99i+HgEon/DZxDq1djJ2RIREREREZ3H4hdRHfPp/M3IzjeXfa6TJbx2Xx94GvjjgComrKVQFk+FOLlTFc8wBOORxq8g9f8LXxIU9PT/Fa29NyDcuzn6NngaXgZ/V6RMREREREQEgMUvojply4Ek/LlFvd3xnoHxaF4/tII7iABhzofj1zeB9GOq+MWFL71kwYDAb9HAeAAtQwagK/t7ERERERGRG+CrEqI6oqjEgmk/qhuUN4wMxH1DOrgoI6oJRF4GHHNfB3JSVfE0QwgeazyprPBlkgtwU9AMhHumoUf0Q2jO/l5EREREROQmWPwiqiP+u2ArMnOLyz6XJQmv3HsjPAw6F2ZF7kxknITj1zeA4lxV/JixPp5q9ALOGQIBAIH6dNwU9DkiTAL9GryGet7s70VERERERO6DxS+iOmDH4RQs2XhYFRvdvy1aNqhXwR1U1ymJe6AseAewlqjiO3xa4oUGz6BY5wUAiPQ4hkFBXyLWtz76NXgKXoYAF2RLRERERERUMRa/iGq54lIr3puzVhWrHxaAB2/u6JJ8yP0ph9ZB+f1jQLGr4isCuuDNmIdhkw0AgKam7egT8CPahPZGl8gx0Mn8lUJERERERO6Hr1SIarkZi7YhI6eo7HNJAl65tzdPd6RyKdsXQ/n7a038x5BB+E/kXRCSDADo6PMnOvutQI+Y+9AiuLeTsyQiIiIiIqo8vvolqsUSjqZi4bqDqtjIPnFo0zjcRRmRuxJCgbLmO4htCzVjn0TchR/rDQEA6GBFn8Af0Nb3JPo3fBX1vJs4O1UiIiIiIqIrwuIXUS1VYrHh3Tnq0x2jQ/3w8LBOLsqI3JVw2KAs/Q/EwbWquB06vFn/ISwP7A4A8JLzMDjoS1znJzCw0RT4eAS7IFsiIiIiIqIrw+IXUS31xW/bkZZdoIpNurc3jB4GF2VE7khYzFAWvgeRuFsVL5aNeLHB09ju2wYAEGJIwpCgL9AysCH6xD4Bg87oinSJiIiIiIiuGItfRLXQvhPpmLdmvyp2e+/WiG8a6aKMyB2J4lw4fn0DyDipip/T++Hphi/gqFdDAEAj4270Dfge8WF90Dnybsj/3/eLiIiIiIioJmDxi6iWsVjteHfOWghxIRYZ4otHhnd2WU7kfkROKhxzXwfyMlTxJI8wPNXoRaR6hgEAOvgsQ2ffZegecy9ahvRzRapERERERETXhMUvolrmq993IOlsvir20j294WXkdkc6TzmzD8riaYBZ/ZwcNDXCsw2fR67BHzrYcGPAj2jlcwB9G0xAjF+ci7IlIiIiIiK6Nix+EdUiB0+fxS9/7VPFhvdsiY4tolyUEbkTIRSILfOhrP8BEIpqbLNvHF6KfQolOiNMcgEGB32JJt6FGNjoDQSZol2TMBERERERURVg8YuolrDY7Hhn9loo/9rvGBbog8dv6+LCrMhdiJJCKL9/BHFyh2bsj8CeeDvmATgkPYL1KRgSNBON/YLQv+EUeBn8XZAtERERERFR1WHxi6iWmLV0FxIzclWxiff0grfJw0UZkbsQacfgWDwVyM9UxRVI+CrsVnwddisgSWhg3If+Ad+heVA79Kr/CPQynx0iIiIiIqr5WPwiqgWOnMnCjyv3qGJDu7VAl1YxrkmI3IIQAiLhTyh/fwU47KqxPJ0PXq3/GLb+fy+veJ+V6OK7BO3Dh6FD+AhIPNGRiIiIiIhqCRa/iGo4m92Bd75fA4dyYbtjiL8Xnry9qwuzIlcT1hIoy/4LcWidZmyfVxO8HPskznoEQ4YNvQN+RkvvnegZ8zCaBfV0QbZERERERETVh8Uvohpu9rIEnEzNUcUm3tMLvl6eLsqIXE1kJ8Ox8F3gXLJm7OeQgfg0YjTssh4+uhwMDPwG9U3Z6N9wEiJ8rnNBtkRERERERNWLxS+iGuxYcjZmL9utig3q3Azd28S6KCNyNeXgOijLPgNspap4sWzE2zEP4q+A8wcgNPDchz6BcxBm8sfARm/C3zPcFekSERERERFVOxa/iGooi9WON7/9Gw5FKYsF+3nhmZHdXJgVuYqw26D8/TVEwlLN2AljNF6KfQpnjJGQ4UAXv9/Q1vtvNA++Ad2ixsKgM7ogYyIiIiIiIudg8Yuohvrfwq04na4+3XHCXT3h581CRl0j8s7CsWgqkHFcM/ZHYA9Mjb4PFtkTProcDAj8FjHGdPSIeQxNAru7IFsiIiIiIiLnYvGLqAbavP8M5q89oIoN7tIMvdo1dFFG5CrKiR1Qfv8QKC1SxS2SAdOj7sXioN6AJKG+5wH0C/we9X3CcWPse/DzrOeahImIiIiIiJyMxS+iGianwIx3vl+rikWG+OG5UT1ckxC5hBAKxMZfoGz8STOW6hGKibFP4ahXQ0hwoIvvErTzWY348JvRIfw2yBJ/9BMRERERUd3BV0BENYgQAu/MXoPcwpKymE6W8Mb9feFt8nBhZuRMwloK5Y+PII5u1oyt82uPN2MeRqHeG95yLgYEzkJjnxz0rv8SonxbuSBbIiIiIiIi12Lxi6gGWbD2ILYcTFbF7r+pI1o3CnNRRuRsIj8TjvlvAZmnVXE7ZHweMRJzQm8CJAkxnofQL2A2WgQ2ww31X4BR7+uijImIiIiIiFyLxS+iGuJkag7+u2CLKhbXOBxjBsW7KCNyNpF0AI6F7wIlBap4rs4XLzV4Egk+LSFBwfW+v6OT7xp0iRqNliH9IUmSizImIiIiIiJyPRa/iGoAi82ON779C1a7oyzmbfTA6/f1gV4nuzAzchZl93IoK2cAikMVP2asjwkNn0W6Ryi85Dz0D5yFVv4l6Bv7JoJM9V2ULRERERERkftg8YuoBpi5aBtOpuaoYhNG90BEiJ+LMiJnEQ47lL++gkhYqhlb7d8Jb8Q8jBKdEdEeh9Ev8Dt0qNcZXaLuhl72dEG2RERERERE7ofFLyI3t/VgMuau3q+KDbi+KQZ2buaijMhZhDkfyqKpEEn7NWNfhN2Gb8KGQ0gyOvr8ie4B69Cr/oNoGNDJBZkSERERERG5Lxa/iNxYbmEJ3pm9RhULD/LBhNE9XJQROYvITDzf2D7/rCpeInvi9ZiHsSbgenhKxegXOBtdQgR6138XPh7BLsqWiIiIiIjIfbH4ReSmhBB4b85anCswl8VkScIb9/eFj4lb2moz5dgWKEs+BGylqniaIQQTGj6L46ZYhBrOYHDQd+gb0x9tQgdBktj7jYiIiIiIqDwsfhG5qcUbDmHjvjOq2Lgh7RHXJMJFGVF1E0JAbPoFyoYfNWMJ3i0wscFTyNP7oaXXRtxcbzP6N3wWwWxqT0REREREdEksfhG5ocT0XHw6b4sq1qphGMYN6eCijKi6CWsplKUfQxzZpBmbH9wXH0aOgZAV9AmYg9tjA9Ep4g3oZQ8XZEpERERERFSzsPhF5GasNgde//YvWGz2spiXpwGv398Heh23ttVGIj/zfH+vzNOquB06TI8agwUh/eCny8LwenMxsslwRPm2dlGmRERERERENQ+LX0Ru5ssl23E8+Zwq9vzoHogO9XdRRlSdlNN7oPz2PlBSoIrn6XwwscFTSPBpiQae+3B/g4PoH/sMjHofF2VKRERERERUM7H4ReRGdhxOwU+r9qpifTs2xqDOzVyUEVUXIQTE1gVQ1n0PCEU1dtwYgwkNnkW6Zwi6+S3FU9fVR7OgRyBJkouyJSIiIiIiqrlY/CJyE/lFpXjru9WqWFigD14YfQOLHrWMsJihLP0E4uhmzdga/454PeYRwGDD2IjFuL/FzfD1DHVBlkRERERERLUDi19EbkAIgak/rEN2vrksJknAa/f1gZ+3pwszo6omziXDseAd4FyKKq5Awszw2/FdvZsR5nEGL7Y4i17R4yBL7PNGRERERER0LVj8InIDv286gnV71M3OxwyMR3yzSBdlRNVBOboZyh8fA9YSVTxf543J9R/HVr84dPTbjjfbNUWkT7yLsiQiIiIiIqpdWPwicrHM3CJ8Ol+9/a1FbCgevLmjizKiqiYUB5T1cyC2zNeMHTXG4sUGTyPb6IMHYrbhkZa9oZe52o+IiIiIiKiqsPhF5EJCCHzw0waYS21lMZOnHm/e3xd6nc6FmVFVEeZ8KL99AJG4RzO2NLAH3ou+DwGemfg0rgSdwwY6P0EiIiIiIqJajsUvIhf6a+dJbNp/RhV7dHgXxIQFuCYhqlIi/QQcC98BCrJUcTt0+CjqHswL7oduQfvxTvs2CPAMdFGWREREREREtRuLX0Qukl9Uio9/3aiKtWkUhtt6tXJRRlSVlH2roCz/HHDYVPEsfQBeavAUjvpE4+lGRzG2WQ9IbGpPRERERERUbVj8InKR/8zbjLzC0rLPDXoZk8b0hixLLsyKrpWw26D89SXE7mWasd3ezTAp9il4+hTjm3Z2tAru4oIMiYiIiIiI6hYWv4hcYOvBJCzfdkwVGzekAxpEcOtbTSYKs+FY+B6QdlQz9kvIAHwSeRduCD2Nd9q3gUlvdEGGREREREREdQ+LX0ROVlxqxbQf16tijaOCcM+Adq5JiKqESDkE+4J3IJnzVfFSyQPvxDyANcHxmNgsC3c06uSiDImIiIiIiOomFr+InOyL37bjbE5R2eeyJGHSmN4w6Hm6Y02l7FkOx4oZkBSHKp7iUQ8vNngapYGe+KmjCY38Il2UIRERERERUd3F4heRE+0/lYEFaw+oYiP7tkHLBvVclBFdC+Gwwb5yJqQ9K3Bxp7aNvm3xWv3H0DMqD6+3awoPHYubRERERERErsDiF5GTWG0OvPf9OghxIRYZ4ofxN3MbXE0kivNQOv81GNJOaca+qTcM30cOxsutBW6K4emdRERERERErsTiF5GTzF6WgMSMXFXspXtugMnT4KKM6GrZ0w7DMu91eJrNqniJ7Ik3Yh7GqcgmmNspGNHeJhdlSERERERERP9g8YvICU6mnsP3y3erYkO7tUDHFtEuyoiuVm7CXJhW/QBPRajiqR6hmNDgWTRpGIK5bSPgobt4IyQRERERERG5AotfRNXMoSh4b846OBSlLBbs54UnRnR1YVZ0pez2Epz983WEHTykGdvh0xKTGzyOh9sEY2QDHxdkR0RERERERBVh8Yuoms1bvR+HEjNVsedH94Cft6eLMqIrlZ2zH6WL30b42WLN2M8hA/F9g1H4qGMQ2gbyRyoREREREZG74Ss1omqUmlWAL5fsUMV6xzdE7/hGLsqIroRDseHQ0VmIXPkHws2Kaswq6fFe9P1IbtQLP3fwRYin7KIsiYiIiIiI6FJY/CKqJkIIvP/jOpRa7WUxXy8PPHdnDxdmRZWVbU7E0a3vI35nMjwc6v5eWfoAvNDgGbRu2RJfXWeCQWZ/LyIiIiIiInfF4hdRNVm65Sh2HElVxZ4Y0RUh/t4uyogqQxEO7MlYDMfGX9D5RIlmfJ9XE7za6Gk8HB+JW6K5dZWIiIiIiMjdsfhFVA3O5Zvx2fzNqliH5lEY2q2FizKiyiiwZGL9yc/QYut+NDhr14z/FtQL3zW+D+93DECrAP74JCIiIiIiqgn46o2oGnw0dyMKzdayzz0Neky85wZIErfHuSMhBE7kbsTeY1+j5448BBc5VON2yPgo6h6cbjoYs9t7I4j9vYiIiIiIiGoMFr+q0MKFCzFp0qRKXXv//fdj4sSJFY4XFRVh9uzZWLVqFZKTk6EoCqKiotC3b1+MHTsWQUFBlfo6VTUPVd663aexJuGUKjb+lk6IDvV3UUZ0KVaHGRuTv4X55AYM3F0Ck03d2D5P54OXGjyFFq3jMaOFEXr29yIiIiIiIqpRWPxykVatWlU4dvLkSYwfPx6pqep+UcePH8fx48cxf/58zJgxA3FxcZf8GlU1D1VeodmCD3/ZoIq1iA3FyD5tXJQRXUpG0VGsSfwfok+kof9hC3RQN7Y/ZqyPVxo9i/EdYzEkysNFWRIREREREdG1YPGrmuzbt++S4waDodx4UVERHnroIaSmpsJgMOCZZ57B0KFDYTQasXPnTkybNg1JSUl49NFHsXjxYoSGhlbrPHRl/rdwK7LzzWWf62QZL4/pDb2O2+TciSIcSMhYhH1pi9DpoBXXpZZqrlnlfz2+bvYI3usUhBb+/FFJRERERERUU/EVeTXx9PS85P9kufx/9d988w1SUlIAAO+//z4efPBBhIeHIyAgAP369cPjjz8OAMjOzsbnn39e4devqnmo8o6nZOP3TYdVsTGD2qFJdLCLMqLyFFjO4vfjU3DkzAL02WrHdanqEx0VSPhf+B1Y3+U5fNcrlIUvIiIiIiKiGo7FLzficDjw888/AwDi4+MxZMgQzfgXX3xR9vnChQtRUqJ+4V6V89CVmbloG8S/ds3Fhgdg3OAOrkuIVIQQOJazAQuPvgx72jEM3GRHdEGx6poi2YiXGz2Lhv1H4914b/ga2N+LiIiIiIiopmPxy40kJCQgNzcXADB48GDN+IIFC3Dq1CmMGDECAFBaWoqNGzdW2zxUebuPpWHLwWRV7IkRXeFh0LkoI/o3i70Ia878D+uSZiL0jAODt5oRaFUXfJM8wvB2u7fw5E29cEu0B0/mJCIiIiIiqiVY/HICRVEufxGAAwcOlH0cHx+vGispKcFnn32Gtm3b4umnny73nqqehypHCIHPF21Vxdo2iUC31vVdlBH9W1rBAczd9wxO5W5GkwO+GHggGx7Cobpmi08bLOs3Fe/2a4FYHxYsiYiIiIiIahM2s6kmS5YsweLFi3Hs2DFkZ2fDZDKhbdu2uOeee9CvX79y7zl16lTZx9HR0aqx2bNnIzMzE9OnT0dYWBj0ej3sdrvqnqqex1n0nl6XvUaS5LJ/Gow+1Z3SFVmz6zgOns5UxZ6680Z4mHxdlBEB55vab0/+CbtS5wEWCR12+aFNformuvnhN6HhsMfwTKS3C7Ikd+TOP2/IvfHZISIiInJPLH5VkxdeeEH1udlsxpYtW7BlyxaMGTMGkydP1tyTk5NT9nFgYGDZx7m5ufj6669xww03oHPnzgAAPz8/5OTklG1vrI55nEWWK7/SRpIkSJL7rMyxOxR8Pn+DKtarfVO0axbjoowIACz2Yqw49j6S8nZByQvGoIQCRFnUhS+LZMD8Vo/gtmEjEGJ0n2eK3Ie7/byhmoPPDhEREZF7YfGrCkVFRWHgwIEwGAzo1KkTOnfujPDwcFitVmzduhUffPABkpOTMWfOHLRs2RK33Xab6v5/ms57eKj7Dc2cORNFRUV4/vnny2IeHh4AzhfVLlZV8ziLojgue40kyZAkCUIICFG5baTO8Pv6/UhMv1BslCUJj43oXqnviapHXkka/jz6DnJLUqAkN8fow/vgrZSqrskyBGJP38m4v0t7yFLlnkGqO9z15w25Pz47dCWu5M0/IiIiujYsflWhzp07l62o+jeTyYSBAwciLi4OQ4cORVFREWbMmKEpfv1Dli+0YktNTcVPP/2EoUOHokWLFmXxyvQRq6p5qpvdYr7siwSD0QeSpIMQCmylRU7K7NIsVju+WKQ+KGBw12aICTa6TY51TWrhAfyd+CmKrDZ4HYnDXUkbIUOorjni0xSGEZMwOLIeHJZisOxFF3PHnzdUM/DZocqSJJntEYiIiJyIDe+dKCIiAoMGDQIAJCUlITlZfTqgl9f53lc2m60s9sknn0AIoWpODwAWi0V1T3XMQ5e2YO0BZOUVl33uodfhwaGdXJhR3XYoexWWnZyGrBIvRCc0xD1JGzSFr93RN6LR+GloHlnPRVkSERERERGRs3Hll5M1bdq07OOkpCTExFzoDRUUFAQAcDgcKCwsRGpqKv744w/cfffdqutsNhsKCwtV9/xbVc1DFSs0WzB7+W5VbETv1ggLYoNjZ1OEHZtT5uDwub+QVtASA/bmoVPRdtU1Dsg43uk+dOw7XLUVmIiIiIiIiGo/Fr+czGQylX3875VZANCoUaOyj1NTUzF9+nSYTCY89thjquvS09PLtis2bNhQ8zWqah6q2I8r96DQbCn73NvogXsHxbswo7qp1F6IvxI/RWrhYZzKuhEPHtiOhpY01TXFOi9Yb3sNrZu0dlGWRERERERE5EosfjlZVlZW2cdhYWGqsdatL7w4nz17NjZs2IAnn3xSsyorISGh7OM2bdpovkZVzUPly8orxty/96ti9wxsB38fo4syqptyS1Ox8tSHOFtShKTkYZh4bCECHYXqa7zqIXDcBwgJi2X/HSIiIiIiojqKxS8n27x5MwDA19dXs9oqPj4egYGByM3NxcKFCxEcHIz77rtPM8fy5csBAEajEd27d9eMV9U8VL5ZS3fBYrOXfR7s54WRfVg8dKbkgj34O/G/SC0NhfVkV7x55id4CvVKyuyQ5oga9x70/qE8zZGIiIiIiKgOY8P7KiKEwNSpU/HXX39VeM2yZcuwa9cuAMDw4cNhNKpXCul0OowePbrs83HjxsHb21t1zebNm7F27VoAwIgRI1TbKKt6HtJKOpuH3zcdVsXuu6kDTJ4GF2VUtwghsC9zKVacmo69BW0ReKAxXk2crSl85TXuibD73oPsy152REREREREdR1XflWRb775BrNmzcKsWbPQr18/jBgxAq1bt4aXlxfS0tKwZMkSzJo1CwAQGxurOXXxHw888ACWLFmClJQU/Pjjj4iOjkaXLl2gKApWrVqF999/H0IIhISE4NFHH60wn6qah9S+/G07HMqFEwSjQ/1wS48WLsyo7nAoNmxM+RaHzm3G1tw7MOLYIQzJXaG5rqTznQi+8W42ticiIiIiIiIAgCSEEJe/jC7Hbrfjww8/xJw5czSN7P8tLi4OH330kerUxYudPHkS48ePR2pqarnjISEhmDFjBuLi4i6ZU1XNU92sJYUQQrnkNQajD2RZB0VxuKx30+EzmXjgvYWq2JQH+6FfxyYuyacuKbHlY1XixziRn43NmXdh4on5iC8+prrGIekgD3kKhri+ZTF3eG6o5uFzQ1eLzw5VliTJ8DD5ujoNIiKiOoPFryp25swZzJs3Dxs3bkRaWhpKSkoQGhqKZs2aYejQoRg0aBD0+ssvuCsqKsLs2bOxcuVKJCcnQwiByMhI9O3bF+PGjdM0r6/ueapTTSl+PfXJ79h55EIhsXn9EHzz0gjIMlcYVafM4hP4O/FTHCkKweH0wZh2cgZirJmqa6yePjDdPhlSffWJju7w3FDNw+eGrhafHaosFr+IiIici8UvcrmaUPzafigZz3y6VBX75KmbcH3Lilfw0bVxKHYknF2IPRlLkFDUD/b0JpiW+Cn8HGbVddaASJhGvQEpKFIzh6ufG6qZ+NzQ1eKzQ5XF4hcREZFzsecX0WUoisDMxdtVsY4tolj4qkbnSs5g7ZmZSDdnYnXeg2idlo+Xkz+AHupTGx0xbWAa8TIkvoAgIiIiIiKiCrD4RXQZaxJO4khSlir26K2dXZRN7aYIB/Zm/oGEjAXIstbDinMTcHfqeozL/F17cZu+8Bj8BCQdT9okIiIiIiKiirH4RXQJdocDX/ymXvXVp30jXBdbz0UZ1V55pelYlzQTmeYTOG7ugM25t+PVM7PQN3+H5lq5172Qut7BEx2JiIiIiIjoslj8IrqE3zcdQUpWQdnnOlnCQ8Oud2FGtY8QCg5mr8L2tF9gVRzYXHA70vLi8b/T09Gq5JT6Wp0HdDc/B/m6Hi7KloiIiIiIiGoaFr+IKlBiseHbP3apYjd3vw71wwJck1AtVGjNwvqkr5BWdBDFDn+syHkA3gUemHX6dUTYzqmuFV4B0N/+KqSo5i7KloiIiIiIiGoiFr+IKvDr6v04V3DhZEFPgx733dTBhRnVHkIIHMtZhy2pc2BTSpFqaYKVuQ8gPu803jnzGXyUUvUNIfWhH/kGJH9uNyUiIiIiIqIrw+IXUTnyi0rxw4o9qtiovm0QGuDtmoRqEbMtDxuSv0ZSwW4IAewt7ostBcNwe/bfeD51DnQQquulhu0hD58Iych/90RERERERHTlWPwiKsf3y3ejuNRa9rmvlyfuHtDOdQnVEidzt2JTyixYHEWwKp5Yk3cPEkva4rm0H3Fn9krN9VL7myD3fwiSrHNBtkRERERERFQbsPhFdJGsvGIsWHtAFRs7KB6+Xp4uyqjmK7JmY0vqHCTm7wQA5NjCsDz3IVgt/ph+5iP0KNyrvkGSIfd9EFLHm3miIxEREREREV0TFr+ILvLbhkOw2h1ln9cL9MaIG1u7MKOay6HYsT9rKRIyFsMhzq+kO1HSHqvz7kGwpRCfn56CpqXJ6psMRsjDXoTclKdqEhERERER0bVj8YvoX+wOB5ZsPKyKjRkYD08D/1O5UqmFB7Ap5TvkW9IBAA4hY2vBcOwt7ouW5pP46PRHCLbnq2/yDYHujtcghTVyQcZERERERERUG/EVPdG/rN+TiOz8Cyc8enkaMKhLMxdmVPMUW3OwNe0HnMrbVhbLtdfD37ljkWlrgBvztmNK0kwYhVV9Y3iT84UvnyAnZ0xERERERES1GYtfRP+ycP1B1eeDujSDt9HDRdnULIqw40DWCiRkLIRNKQUACCFhX3EvbC0YBocw4N6s3/Fk+lzNvVKzLpBvngDJw+jstImIiIiIiKiWY/GL6P8lpuci4WiaKnbrDa1clE3Nkl50GJtSvkNuaUpZrNAehNV59yDV2hz+9kJMTJmJ/vnbNfdKXUZA7j0WkiQ7M2UiIiIiIiKqI1j8Ivp/F6/6atc0Ao2juAXvUsy2PGxL+wkncjeVxYQAjpR0wcb822ETJtyYtx0vpX6HIHuB+mZZB3ngY5DbDXRy1kRERERERFSXsPhFBMBcasOyLcdUMa76qpgiHDiU/Rd2ps+DTSkpi5sdflibNxqJljj42wvxYup/MSBvq3YCT2/It02C3KCd85ImIiIiIiKiOonFLyIAK3ccR3HphQbsgb4m9I5v6MKM3NfZ4uPYlDIL50rOqOInS+KxLv9OlCo+uDFvByamzkLwxau9ACC8MXS3TIAUHOOkjImIiIiIiKguY/GL6jwhBBauVW95vKXHdTDodS7KyD2V2guxPe0XHM1Zq44rJmzIH4XjJZ3gby/E5NT/YmB5q71kPeQed0LqcjskHX/0EBERERERkXPwFSjVeQdOncWJ1HNln8uShGE9r3NhRu5FCAVHc9Zje9rPsDiKVGNJpddhTd4YFCv+6J2/Ay+lVLDaK6wxdEOfgVSPq+mIiIiIiIjIuVj8ojpvwTr1qq/ucbEID/J1UTbu5VzJGWxMnoVM83FV3KZ4YnPBrTho7gl/eyHeSv0cg/I2ayeQdZC73wmp6x1c7UVEREREREQuwVejVKflFJRgTcJJVey2Xmx0b3WYsStjAQ5mrYCAUI2lWppiXf5Y5NkD0St/JyalzEKwPV87SVgj6G56BlJYIydlTURERERERKTF4hfVaX9sPgKbXSn7PDrUD51aRLswI9cSQuBU3lZsTf0BZnueaqzAHoytBbfhRGm7y6/26jYKUreRXO1FRERERERELsdXplRnORQFi9ertzwOv6EVZFlyUUaulVeahk0p3yGtSP3vxKp4YlfRQOwr7geH0KFnfgJeTvkGIVztRURERERERDUAi19UZ209kIyMnAsN3D0MOtzUtbkLM3INu2LB7rO/YV/mH1CEoywuhIQjJV2wvWA4ihUfGB2leDHtO9yWs0Y7iayD1G0k5G4jIekMTsyeiIiIiIiI6NJY/KI6a+FFq776dWwCfx+ji7JxjTP5Cdic+j2KrFmqeJqlMTYV3IEsWwwAoKX5JKacmYFYa4Z2knoNoBv6HFd7ERERERERkVti8YvqpNSsAmw9mKSK1aVG98XWHGxOnY3E/J2qeIE9CFsKbsXJ0vYAAJ1wYFzmEjyYsQh6KOpJJBlSt1GQu3O1FxEREREREbkvFr+oTlq84RDEvw4xbBEbipYN6rkuIScRQsGRc2uxLe0n2JSSsrhN8cSuogHYW9QXDpwvZEVZzmJK0kzEmY9rJwqKgu7m5yFFNnNW6kRERERERERXhcUvqnMsNjv+2HREFasLq77yLRnYkPQ10osPl8WEkHC05HpsLRgGs+L/TxA3567H86lz4K2UauaR4gdD7vMAJI+6tUWUiIiIiIiIaiYWv6jOWb3rFPKLLxR1fL080a9jYxdmVL0U4cD+zD+xK2MBHMJWFk+3NsTG/DuQZYsti/nbCzEp5Vv0zd+hncjLH/KQpyA37eyMtImIiIiIiIiqBItfVOcsXKdudH9Tt+YwetTOnlXnzIlYn/wVsksSy2I2xQNbC2/B/uJeAOSyeOfC/Xg96QuE2vM080iNO0G+6SlI3oHVnzQRERERERFRFWLxi+qUo0lZOHj6rCp2a8+WLsqm+tgVKxIyFmJf5lKIfzWqT7M0xuq8MShwhJbFPBUrHk+fi9HZK7QT6T0h930AUvxgSJLkjNSJiIiIiIiIqhSLX1SnXLzqq9N10YgJC3BNMtUkvegwNiR/g3xLelmsotVeTUvO4K2kGWhcmqKdKLwJdLdMgBQc7YSsiYiIiIiIiKoHi19UZxSaLVi5/YQqVpsa3VsdZmxP+wWHz/2tiqdZmmB13j2q1V6yUHBX1p94LGM+DMKunkiSIXW9A3KP0ZB0/BFBRERERERENRtf2VKd8eeWo7DYLhR66gV6o3ub2EvcUXOcyU/AppRvUWzLLYtdWO11o+raGEsGXkv6Eu3Mx7QT+YdBd/NzkGJqT1GQiIiIiIiI6jYWv6hOEEJg0Xr1lsdhPVtCr5MruKNmsDrM2Jj8LU7mbVHFy1vtJQkFI7NX4cmMufBUrJq5pNZ9IPd/GJLRu9rzJiIiIiIiInIWFr+oTth1NBVJZ/PLPtfJMm7pfp0LM7p2Zls+lp96H+c0JzkOw/7i3qproyyZeDX5S3QoPqKdyOgDedDjkK/rWb0JExEREREREbkAi19UJ1zc6L53+4YI9vdyUTbXrsByFstOTkOB9cLJlamWJlhz0WovCIHbzq3GM+k/waRYNPNIjTtCHvwkJN9gZ6RNRERERERE5HQsflGtl5VbhA17E1WxmtzoPtt8GstPvY8SewGAild7hVmz8Wry1+hcdEA7iacX5H7jIbXpB0mSnJA1ERERERERkWuw+EW13m8bD8OhiLLPG0YGol2TCBdmdPVSCw9g1emPYVNKAQDnbBFYlvOwZrXXzTnr8Xz6D/B2lGjmkBrGQx7yFCS/UM0YERERERERUW3D4hfVanaHA0s2HlbFbruhVY1c7XQydwvWJs2AIhwAgBRLMyzPeQhWYSq7JtSWg5eTv0GPwr3aCTxMkPs8AKndwBr5/RMRERERERFdDRa/qFZbvycR2fnmss9NnnoM6tzMhRldnQNZK7AldQ6A8yvYjpo7YU3ePVD++U9YCAzO3YQX076Hj8OsuV+KjYM85GlIAWFOzJqIiIiIiIjI9Vj8olpt4Xp1o/tBnZvB2+ThomyunBACO9N/xZ7MJf//OZBQNADbCoeVXRNsy8NLKbPQu2CXdgKDJ+Te4yB1uAmSJDsrbSIiIiIiIiK3weIX1VqJ6blIOJqmit16Q81pdK8IBzYkf4NjOev+/3MZ6/NH4pC5Z9k1ffO24aWUWQhwFGkniG4J3U3PQAqKdFbKRERERERERG6HxS+qtfYcT1d93rZJOJpEB7somytjVyz4O/EzJBXsBgDYFE+szL0PZyxtAAC+9mK8mDobg/I2a2/We0DudS+kjjdDknXOTJuIiIiIiIjI7bD4RbVWeLCP6vO7+rdzTSJXqNRehBWnpiPTfBwAYHb4YmnOo8iyxQIAuhTsw6vJX6GePVd7c2Rz6IY+Cyk42pkpExEREREREbktFr+o1urSqj5evPsGbD2QhB5xDdCzbQNXp3RZRdZzWHZyKvIs57dr5trrYem5x1HgCIHRUYqn03/G7ef+1t6o00PueQ+kzrdytRcRERERERHRv0hCCOHqJKhus5YUQgjlktcYjD6QZR0UxQFbaTn9rWqBnJIULD81DcW2HABAuqUR/sx5GBbhg7jiY3gjaSZirJnaG+s1hO7m5yHVa+DchGuAuvDcUNXjc0NXi88OVZYkyfAw+bo6DSIiojqDK7+I3EBG0VGsPP0hLI5iAMDJknj8lTsWsgI8fnYuxmT+AR0uqlNLMqSut0PuMRqSzuCCrImIiIiIiIjcH4tfRC52Om871pz5HA5hAwDsLboRmwpuQ5OSFLyZNBPNSpO0NwVGnu/tFX2dk7MlIiIiIiIiqllY/CJyof2Zy7A17UcAAoqQsLngNhws6oVxmX/gobMLYBAOzT1S+5sg33gfJA+j8xMmIiIiIiIiqmFY/CJyASEUbE37CQeylgEAbIoBf+eNhS0/Al8mvY24/z/pUcU3GPJNz0BuGO/kbImIiIiIiIhqLha/iJzMrlixNmkmTudtAwCkWZpgTe5d6Je5H0+n/xcmxaK5R2p1I+T+D0My+Tg7XSIiIiIiIqIajcUvIicqtRdh5emPcLb4KGyKJ7YUDENKQTxeT/oSPQv3aG8w+UEe9DjkFt2dnisRERERERFRbcDiF5GTFFqysPzU+8izpCHZ0hxr8+5Gi7x0/JT0MkLteZrrpSbXQx78JCSfQOcnS0RERERERFRLsPhF5ATZ5tNYfmo68qwWbC64C8eKO+ORjAW4N/MPyBCqa4WHCbp+4yHF9YckSS7KmIiIiIiIiKh2YPGLqJolF+zBX4mf4oS5KdbljUZAiRVfJ72F1uaT2oujWkB/ywuQAsKcnygRERERERFRLcTiF1E1OnJuLf468zPW59+J4yXXY0DuZkxK+RY+SqnqOgEJcreRkHveBUnWuShbIiIiIiIiotqHxS+iaiCEQELGQsxLPI31+a8ANg+8lvoFbs7doL3YJwi6WyZAjo1zfqJEREREREREtRyLX0RVTBF2/Hn6R8xKrI9TpX3R3Hwa75z5H2KtGZprpaadIQ95CpKXvwsyJSIiIiIiIqr9WPwiqkIWuxkf7luOJWf7wqJ4Y3T2MjyZ/gsMwqG+UGeA3PcBSO1vYlN7IiIiIiIiomrE4hdRFThTZMMPJ0/h77M65Nr7IPD/2rvz6Kjq+//jr8lGFkggKxAiIC3hK0gSwILwLaWiUiAYKlIISyVKLIiICqeoVZC6HLFU4CAmuLXBsrRfiRr8IYtWFouIEhS0bEIiYVhDwpJ1huT+/qBMGTMJi2RmuPN8nMPxM/fzuTfvOb7PQV+593PtpzW7aI76nP267uKoBPkP/b0sse3dXygAAAAAAD6G8Au4SsXVtVpz2Kb3i85oX1mQpPNvaPzZ2Z3648FsRZ07XeccS/Kv5Hf7eFkCg91cLQAAAAAAvonwC7gCZXZD/zxm0yqrXV+ctKtWFklBkmEoqXyvRhSv1R2nP697YnCY/AZOll+n/3V7zQAAAAAA+DLCL+ASbDWG/nXCrg8P27XxuF3VtRdmLGpSa9OdpZ9pRPFaJVZ97/oCbW6S/13TZImIdVfJAAAAAADgPwi/ABdqDUP5JTX68LBNHx2164zdcJqPsxVrePFHSitZr+Y1ZfVcxSJLnxHy+990Wfz8G79oAAAAAABQB+EXcJHqGkP/77BNfztQrYLyWudJw1D38l0aUbxWfU9vk78M1xeRpKgE+Q2YKL+2XRu3YAAAAAAA0CDCL0DSGXut/u97m5YVVuukzTnUCq6p0sBT/9JvitfpJ1WHGriKRZaf3CJLjyGytEuWxWJp3KIBAAAAAMAlEX7Bpx2urNWSgiq9W2RTZY3zXHz1cQ0/uU5DSjYovKai/osEh8mSNEB+KYNkadGycQsGAAAAAABXhPALPmn36XPKOVCtdUftqvnPjV7R9lIll+9RUvleJZfvUcfKg/Jr6NHGmHby65EqS+d+sgQGu6dwAAAAAABwRQi/4DMMw9CW4vOh19Zim9pVH9FdF4Vd8bYTl76GxU9+HXvJr8cQKaELjzYCAAAAAODlCL9gevZaQ+sOVehfO3cp8sRuDS/fq+fK9zbwlsa6aoJDFZAyWP7dBskSHtOI1QIAAAAAgGuJ8AumZRiG8rdslP+2lepbtl93GvYrvkZVTJxCfjZCQTf1kyUgqBGqBAAAAAAAjYnwC6a1+9uvlbT+T5e9vsYinYwIUHWrBEXc2E/NO/RX07DmjVcgAAAAAABodIRfMK2zhwsbnLcFSMebB+hYpL/OxEQptsMAdYy9XSGBEe4pEAAAAAAANDrCLx9QVlamnJwcrVu3TkVFRaqtrVV8fLz69++ve++9V5GRkZ4usVFE/k9bHd3RQi3tpZKkkqAwnWhhUUnUOR1rEaBTzfzVJjxJ/xN9u24JT5afxc/DFQMAAAAAgGuN8Mvk9u/fr8zMTFmtVqfj+/bt0759+/TOO+8oKytLXbt29VCFjacq+JjW/9xPljM/kX/oadlDqyWLRU38I5QY1U93RvVXeJNYT5cJAAAAAAAaEeGXiZWVlemBBx6Q1WpVYGCgHnnkEaWmpio4OFhffvmlZs+erYMHD2rixIl67733FBNjrrcYJoQn64uQf+hckxOqlRQb2lE3RfdX++Y9FeDH5vUAAAAAAPgCwi8Te/PNN3Xo0CFJ0ksvvaRBgwY55m6//XaVlZVp+vTpKi4u1quvvqqZM2d6qtRGEdGkpYZ3eklHy/eoRXCCokJu8HRJAAAAAADAzdjkyKRqamq0bNkySVJKSopT8HVhftGiRY7Pubm5qqysdGuN7tA0KFo/adGH4AsAAAAAAB9F+GVS+fn5Ki09v9H7wIED68yvWLFCBw4c0LBhwyRJVVVV+vTTT91aIwAAAAAAQGMj/DKpb775xjFOSUlxmqusrNSCBQuUlJSkKVOmuDwHAAAAAADADNjzy6QOHDjgGLdp08ZpLicnR8ePH9ecOXMUFxengIAAnTt3zukcdwpoEnrJNRaLn+OfgcFNG7skmAR9g6tB3+Bq0TsAAADeifDLpEpKShzjFi1aOMalpaV644031LdvX/Xs2VOSFB4erpKSEsdjku7m5+d/2WstFosslstfD0j0Da4OfYOrRe8AAAB4F8Ivk7qweX1QUJAsFovjeHZ2tsrKyjR16lTHsaCgIElSRUWFe4v8j9ramkuusVj8ZLFYZBiGDKPWDVXBDOgbXA36BleL3sGVuJJf/gEAgB+H8Mvk/Pz+u62b1WrV0qVLlZqaqk6dOjmO19Z69j/Qz1VXXPJ/EgKDm8pi8Zdh1MpeVeamynC9o29wNegbXC16B5fLYvFTUEgzT5cBAIDPYMN7kwoNPb+Plt1udxybN2+eDMNw2uRekqqrq53OAQAAAAAAMAvu/DKpyMhISVJNTY3Onj0rq9WqDz74QKNHj1ZCQoJjnd1u19mzZ53OAQAAAAAAMAvu/DKpG2+80TG2Wq2aM2eOQkJC9OCDDzqtO3LkiOOxx/bt27u1RgAAAAAAgMZG+GVSXbp0cYxzcnK0adMm3XfffXXu7srPz3eMb775ZrfVBwAAAAAA4A6EXyaVkpKiFi1aSJJyc3MVFRWljIyMOutWr14tSQoODlafPn3cWiMAAAAAAEBjI/wyKX9/f6Wnpzs+jxs3TmFhYU5rNm/erPXr10uShg0bppCQEHeWCAAAAAAA0OgIv0zs/vvvV5s2bSRJS5Ys0apVq1RSUqLi4mItW7ZMkyZNkmEYio6O1sSJEz1cLQAAAAAAwLVnMQzD8HQRaDz79+9XZmamrFary/no6GhlZWWpa9eubq7sv2yVZ2UYtQ2uCQxuKj8/f9XW1sheVeamynC9o29wNegbXC16B5fLYvFTUEgzT5cBAIDPCPB0AWhcHTp0UF5ennJycrR27VoVFRXJMAy1bt1a/fv317hx4+psgg8AAAAAAGAW3PkFj+POLzQW+gZXg77B1aJ3cLm48wsAAPdizy8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkFeLoAwGK5sgz2StcDEn2Dq0Pf4GrRO2gI/QEAgHtZDMMwPF0EAAAAAAAA0Bj4tRMAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpBXi6AKAhZWVlysnJ0bp161RUVKTa2lrFx8erf//+uvfeexUZGenpEuEhR44c0YsvvqjVq1dLkhYvXqyePXte1rn0lW/Ztm2b8vLytHXrVhUXF6u6uloxMTFKTk7W3XffrT59+lzWdegb37Jz507l5ubq888/15EjR2QYhqKiopScnKwhQ4aoX79+l3Ud+gYAAMDzLIZhGJ4uAnBl//79yszMlNVqdTkfHR2trKwsde3a1c2VwZNsNpv+8pe/KDs7WxUVFY7jlxt+0Ve+o7KyUjNmzFBeXl6D6+6++24999xz8vf3r3cNfeM7zpw5o6efftoRrNenb9++mj9/vkJDQ+tdQ98AAAB4B8IveKWysjKlpaXp0KFDCgwM1COPPKLU1FQFBwfryy+/1OzZs3Xw4EFFR0frvffeU0xMjKdLhhts2rRJzz33nAoLCyVJLVu21NGjRyVdXvhFX/kOm82mjIwMffnll/Lz89OIESOUlpamtm3bym63a9euXXr55Ze1Z88eSVJmZqamTZvm8lr0jW+ZN2+esrKy1Lx5c40ZM0a33Xab2rRpo6qqKn333XdavHix1q9fL0m644479Morr7i8Dn0DAADgPdjzC17pzTff1KFDhyRJL730ksaPH6+WLVuqefPmuv322zVp0iRJUnFxsV599VVPlgo3OHfunB566CGNHz9ehYWFiomJ0ezZszV79uwrug595TuCgoI0evRoxcbG6o033tAzzzyjlJQURUZGKi4uTv369dPf//53JSQkSDofnpaWlrq8Fn3jW6ZMmaKZM2fqww8/1OTJk9W5c2dFREQoLi5Offr00aJFi5Seni5JWrdunfbu3evyOvQNAACA9yD8gtepqanRsmXLJEkpKSkaNGhQnflFixY5Pufm5qqystKtNcK9AgICFB4ersDAQGVmZmrNmjUaOnSoLBbLZV+DvvI9gwYN0ieffFLvnl4hISEaM2aMJKm6ulpbt26ts4a+8T0Wi0WjRo1qcC+ukSNHOsb79++vM0/fAAAAeBfCL3id/Px8xx0YAwcOrDO/YsUKHThwQMOGDZMkVVVV6dNPP3VrjXC/6dOna9WqVZo2bZrCwsKu+Hz6yjcFBDT8Xpf27ds7xidOnKgzT9/AFZvN5hjHxsbWmadvAAAAvAvhF7zON9984xinpKQ4zVVWVmrBggVKSkrSlClTXJ4Dc4qIiNANN9xw1efTV3Dl4pcmRERE1Jmnb+BKTk6OJOmnP/2punXrVmeevgEAAPAuDf9KHPCAAwcOOMZt2rRxmsvJydHx48c1Z84cxcXFKSAgQOfOnXM6B3CFvoIrO3bscIyTk5PrzNM3qK2tld1uV3l5uf7973/rr3/9qzZt2qTWrVtr/vz5Lh+/pm8AAAC8C+EXvE5JSYlj3KJFC8e4tLRUb7zxhvr27et4q194eLhKSkrq3agauIC+wg/ZbDatXLlS0vm7cy5sfn8x+gZ5eXmaPn2643NUVJQmT56s3/72twoPD3d5Dn0DAADgXXjsEV7nwqa/QUFBTr9Rz87OVllZmaZOneo4FhQUJMn50SXAFfoKP/Taa6859vl6+OGHXa6hb1BQUOD0+eTJk3r77beVlZVV779r+gYAAMC7EH7Ba/n5/bc9rVarli5dqtTUVHXq1MlxvLa21hOl4TpGX0E6vyF5dna2JGn48OHq3bt3g+vpG9/16KOPas+ePcrPz1deXp4eeOAB2Ww2vfXWWxoxYoTKysrqPZe+AQAA8A6EX/A6oaGhkiS73e44Nm/ePBmG4bQ5sCRVV1c7nQPUh77CBYcOHdKkSZNkt9vVpUsXPfXUU/WupW9wQVhYmBITEzV16lS99dZb8vPz0969ezVv3rw6a+kbAAAA70L4Ba8TGRkpSaqpqdHZs2e1e/duffDBBxo5cqTTnjx2u11nz551OgeoD30FSTp27JgyMjJUUlKihIQEZWVlKTg4uN719A1cSUlJUffu3SVJ7777bp15+gYAAMC7EH7B69x4442OsdVq1Zw5cxQSEqIHH3zQad2RI0ccj4u0b9/erTXi+kNfobi4WBkZGTp48KDi4+OVk5Oj2NjYBs+hb1Cfdu3aSZLKysqcNriX6BsAAABvQ/gFr9OlSxfHOCcnR5s2bdJ9991X57fi+fn5jvHNN9/stvpwfaKvfNuxY8c0ZswY7d+/X23bttXixYsVHx9/yfPoG9SnqqpKkmSxWBQWFuY0R98AAAB4F8IveJ2UlBTHq+Fzc3MVFRWljIyMOutWr14tSQoODlafPn3cWiOuP/SV7yoqKlJ6eroKCgrUqVMnLV26VG3atLmsc+kbuFJTU6Nt27ZJktq2basmTZo4zdM3AAAA3oXwC17H399f6enpjs/jxo2r81v1zZs3a/369ZKkYcOGKSQkxJ0l4jpEX/mmvXv3Kj09XVarVb1799aSJUsUHR192efTN77n9ddf19ixY3Xq1Kl612RlZenw4cOSpNGjR9eZp28AAAC8C+EXvNL999/vuDNjyZIlWrVqlUpKSlRcXKxly5Zp0qRJMgxD0dHRmjhxooerhTvU1NSourra6c/Fb1Kz2+31zl1AX/mW7du3a8yYMTpx4oQGDhyoBQsWKDAwsE4fXfhjs9lcXoe+8R27d+/WK6+8oq1bt2rAgAF65ZVX9O233+rMmTMqLS3Vli1b9PDDD2vBggWSpF69ejmFXBejbwAAALyHxTAMw9NFAK7s379fmZmZslqtLuejo6OVlZWlrl27urkyeEJubq6eeOKJy17/61//Wi+++GKd4/SV7xg7dqy2bt162evbtWunNWvWuJyjb3zHtm3b9OSTT6qwsLDBdampqZo1a5aaNm1a7xr6BgAAwDsEeLoAoD4dOnRQXl6ecnJytHbtWhUVFckwDLVu3Vr9+/fXuHHjeDU8rhh9hfo09LY9+sZ3dO/eXatWrdKqVav0z3/+Uzt27FBxcbECAgIUFxen7t27Ky0tTT169LjktegbAAAA78CdXwAAAAAAADAt9vwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQCAF7Pb7TIMw9NlAAAAANctwi8AALzYypUrlZSUpF/96lfauHGjp8sBAAAArjuEXwAAeLnq6moVFBSouLjY06UAAAAA150ATxcAALi+Pf7443r33XfrHA8MDFRYWJhiYmKUmJiovn376o477lBoaKgHqgQAAADgqwi/AACNwm6369SpUzp16pT27dunDz74QDExMXr66ac1YMAAT5cHAAAAwEcQfgEArpnHHntMHTt2lCQZhqHy8nJ9//33Wr9+vXbu3KkTJ05oypQp+tOf/qQhQ4Z4uFoAAAAAvoDwCwBwzSQnJ6tnz551jj/00ENaunSpZs2aJcMw9Oyzz+oXv/iFwsPDPVAlAAAAAF/ChvcAALcYNWqU+vTpI0k6ffq0PvnkEw9XBAAAAMAXEH4BANzmQvglSbt376533blz5/TOO+8oIyNDt956qzp37qxevXppxIgRys7O1pkzZy75sz7//HMlJiYqMTFRCxYsaHDtbbfdpsTERN122231rlmwYEGdNQUFBZo9e7YGDRqkpKQkde/eXSNHjnT5AoD6VFRUKDs7W2lpaUpKSlJKSoqGDh2q7OxsVVZWXvZ1AAAAALjGY48AALdp1qyZY1xeXu5yTUlJiTIzM/XNN984HS8tLVVpaam++uorLV68WPPmzdPPfvazRq3XlVOnTskwDC1cuFDZ2dmy2+1O89u3b9f27dtVWFioRx99tMFrnThxQmPHjlVBQYHT8V27dmnXrl1asWKF7rrrrmv+HQAAAABfQvgFAHCb48ePO8aRkZF15svKyjRq1ChHGHTTTTcpLS1NrVu3VklJidasWaPNmzfr5MmT+t3vfqfly5crMTHRbfVL50O7Z555RsuXL1doaKhGjhyp5ORknTt3Tp988olWr14tSXrttdd0zz33KCEhweV1KisrlZGR4fiu8fHx+s1vfqN27drp9OnT+vjjj7VhwwYtXLjQbd8NAAAAMCPCLwCA21y8z5eru7YWLlzoCIPuuece/fGPf5S/v79jfuTIkcrOztbcuXNVUVGhmTNnavny5Y1f+A8sX75cXbp00Z///Ge1a9fOcXzo0KGaNGmSPvroI9XW1urjjz/WuHHjXF4jJydH+/btkyT16NFDr7/+ukJDQx3zI0aM0Nq1a/XYY4/VubsMAAAAwOVjzy8AQKOrqanR3LlzHY8ydu7cWbfeeqvTmpMnT+rtt9+WJLVs2VIzZsxwCr4umDBhgpKTkyWdf8QwPz+/cYt3oWPHjsrJyXEKvi4YPHiwY3zw4EGX59tsNr355puSpCZNmmjOnDlOwdcFd955pyZPnnxtigYAAAB8FHd+AQCuma+++koVFRWSJMMwVF5eru+++05r1qxx3NHVsmVLzZ8/XxaLxencjRs3Ou5wSktLU5MmTer9Offcc4+++uorSdKHH36obt26NcK3qd/jjz+upk2bupy7+DHH+jas37Ztm2PT/n79+qlVq1b1/qyYmJgfUSkAAAAAwi8AwDXz8ssvNzj/y1/+UrNmzVJcXFyduc2bNzvG3bt3b/A6F4ddO3fuvMIqf7yAgPr/+gwLC3OMDcNwuWbLli2OsSc27QcAAAB8CeEXAKDRpaamaty4cbr55pvrXXP06FHHuL5N4l3NFxUV/fgCr6GgoKBLrrn4u7Zt27YxywEAAAB8Hnt+AQCumcWLF2vPnj3as2ePnn32Wcfxs2fPNhh8SVJJSYljXN8jhRcEBQUpMDBQkhyPD15PruS7AgAAAPhxCL8AAI1i+PDhSklJkSRt2LBBK1eubHB9TU3NVf2chh5B9FYXPw75w73PAAAAAFxbhF8AgEZhsVj0zDPPON7Y+MILL6i0tLTe9eHh4Y5xeXl5g9e22WyOzfEjIyOvQbXuFRER4Rhf6rsCAAAA+HEIvwAAjaZTp04aO3aspPOP+r3wwgv1rr2SfbwOHjzoGLdu3fpHVul+0dHRjrHVavVgJQAAAID5EX4BABrV5MmTHW93zMvL06ZNm1yuS0pKcoy3bdvW4DUvnu/du7fLNRc/Tni1j1Q2lou/6/bt2z1YCQAAAGB+hF8AgEbVtGlT/eEPf3B8njlzpioqKuqsGzBggOMRyby8PNlstnqvuWLFCse4f//+LteEhIQ4xseOHav3WuvWrdPhw4fr/wKNoEePHvLzO/9X8Mcff6yysjKX62pqavT++++7szQAAADAdAi/AACNbsCAAerbt6+k84/5zZ07t86auLg4DRkyRJJ0+PBhPf/886qtra2zLjs7W19//bUkafDgwerYsaPLn9muXTtHwLRx40aXgdt7772nadOmOW1A7w6xsbEaMGCAJOn06dN6/vnn69RQXV2tqVOnasuWLW6tDQAAADCb6+8VWQCA69KMGTM0ePBgVVdX629/+5tSU1OdHv+TpOnTp+uzzz7TsWPHtHz5cn377be666671KpVK508eVKrV6/WZ599Jul8gPT73/++3p/XrFkz9e7dW59++qmKi4s1atQojR49WrGxsbJarcrLy9P27dsVExOjjh07aseOHY36/X9o8uTJ2rBhgyoqKpSbm6uCggINHTpUERERKiws1D/+8Q8dPnxYt9xyi7744gu31gYAAACYCeEXAMAtEhISNGHCBM2fP1+1tbV66qmnlJubq8DAQMeayMhI5eTkaMKECSosLNTOnTu1c+fOOte64YYb9NZbb6lly5YN/swnn3xS6enpOn36tHbt2qWnnnrKaT4xMVFz587V4sWL3R5+dejQQQsXLtSECRNUXV2t7du319n/a+TIkUpPT1daWppbawMAAADMhMceAQBuM378eLVv316StHfvXr322mt11rRv314rV67UjBkz1KtXL0VHRysgIEDNmjVTt27d9MQTTygvL8/p7ZD16dChg1asWKFhw4apVatWCgwMVGRkpHr37q3nn39eubm56tChgyIjI6/5d70cvXv31vvvv6/hw4crPj5egYGBatGihX7+859r0aJFmjVrlmJjYz1SGwAAAGAWFsPdG50AAAAAAAAAbsKdXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFr/Hz4ejHaoWwlHAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 20,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 516.375
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: team-picking-backtest-champion\n",
- "# | warning: false\n",
- "champion = players.unique(\"round\").with_columns(\n",
- " score=pl.lit(3434.37), label=pl.lit(\"Champion (3434.37)\")\n",
- ")\n",
- "fig = add_line(fig, champion, linestyle=\"dashed\")\n",
- "fig"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c8e1fb5a",
- "metadata": {
- "cell_marker": "r\"\"\""
- },
- "source": [
- "## Score prediction\n",
- "\n",
- "For each round, we must predict $\\hat{s}$, the vector of score predictions,\n",
- "using data from previous rounds.\n",
- "\n",
- "However, during the first round, we don't have any previous data to train our\n",
- "model. In this case, we need to include prior information. One way to do that\n",
- "would be to use data from previous seasons. However, we know a variable where\n",
- "this information is already encoded: the player `value`. Each season starts with\n",
- "players valued according to their past performance. Knowing this, all our models\n",
- "start with $\\hat{s} = v$ in the first round.\n",
- "\n",
- "Let's use Bambi [@Capretto2022] and its default priors to fit our models. We\n",
- "won't delve into convergence diagnostics, since we are more interested in the\n",
- "average of the predictive posteriors and the backtest itself is measure of the\n",
- "prediction quality.\n",
- "\n",
- "One question that arises here is: why not use non-parametric models such\n",
- "as gradient boosted trees or neural nets? After some experimentation, I\n",
- "concluded they are not a good fit for this problem: either because they\n",
- "assume independence between observations, or because they are too data hungry.\n",
- "Also, tuning these models for backtests might lead us into a rabbit hole\n",
- "[@Bailey2013].\n",
- "\n",
- "### Player average\n",
- "\n",
- "$$\n",
- "\\begin{align*}\n",
- "\\mathbf{\\hat{s}} = \\mathbf{Z} \\mathbf{\\beta} \\\\\n",
- "\\mathbf{s} \\sim N(\\mathbf{\\hat{s}}, \\sigma),\n",
- "\\end{align*}\n",
- "$$\n",
- "\n",
- "where\n",
- "$\\mathbf{Z}$ is a dummy-encoded matrix of players;\n",
- "$\\mathbf{\\beta}$ is a vector of parameters for each player.\n",
- "\n",
- "In this model, $\\mathbf{\\beta}$ is simply a vector of player averages. Let's\n",
- "also consider that players that show up in the middle of the season have an\n",
- "average of zero before their first round. This will be our baseline model."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "b1238ec7",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAN6CAYAAABv/useAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3hUVf4G8HdKem8kIQkhQEhoCaFIk94hFEEpCioquOoi8GMVXdvqrg0VKSpWFAuISAu9904g9JBKeu+TOuX+/ggMuaRNysykvJ/n8XFy5t4z3yQnIXlzikQQBAFEREREREREREQtkNTYBRAREREREREREekLwy8iIiIiIiIiImqxGH4REREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4REREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4REREREREREVGLJTd2AUTKkkIIgqbGa+RmlpBKZdBo1FCVFhmoMmruOG6oPjhuqL44dkhXEokUJuZWxi6DiIio1WD4RUYnCJpaw6+HryeqK44bqg+OG6ovjh0iIiKipoPLHomIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4REREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4REREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiBpApdYYuwRqwTi+iBqO4RcREREREVE9CIKA1ZuOYfGKv6FUqY1dDrVAOQVFeOrdXxBy8rqxSyFq1hh+ERERERER1ZFKrcF73+/B+t3ncfZ6LI5cumPskqgF2nQwFFEJGXj/hz1Yt/OsscsharYYfhEREREREdWBWqPBv7/Zgd2nbwAAFs4YirH9uxq5KmqJFkx9FJMGdwcAfL35BL7detLIFRE1Twy/iIiIiIiI6uDjXw7g8MUIAMArjw/Bs8H9jVwRtVRSqQTvvTABY/t3AQD8sP0MNh0MNXJVRM0Pwy8iIiIiIiId/RRyBtuOXQUAzBzdG89NHmDkiqilk0gkeH/BRDzS1RsA8Pnvh3HiSpSRqyJqXiSCIAjGLoJat7LiAghCzSeYmJhbQyqVQaNRQ1miMFBl1Nxx3FB9cNxQfXHsEABk5xdh3/lInL52F0mZ+cgpKIaZiRy2Vubo7OWEPv6eGNuvMxwdnY1dKtXD7dhUPPPBb1CrNQj09cD3/34Sclnd5xNcDk/AvnO3cDk8AenZBVBpNHCytUJn7zYY0aczxvbvWq9+Y5Iy8dehy7h4Kw6pWQUQIMDN0RZ9urTDY8MC0cXHrdY+CopKEXLiGk5fjUZ0UhbyFMWwtjBDG0cbDOjhg+BHu8OnrVOt/Vy6HY8XP95Y5/dh5xf/QFsXuzrf1xBnrsVgz5mbuBaZhPQcBcxN5XBzssUjXb0xdVggOnjU/vXa++lP6/y6782fgMmDe+h8fU5+EZ5852ek5yjgYGOJvz5+Do62VnV+XaLWiOEXGR3DL9IXjhuqD44bqi+OHQo5dRtfbTkLRXFZjddZmZti7oRHMG/SgHoFHGQcZUoVnnr3F8QkZcHMRI6/P3mhziFNalY+PvhxD87fjKvxuo4ezvjolcno5Omic9/fbz+NH3ecgVpd9c/VEgnw7Ruz0adLu2r7+OvQZazdchL5hSXVXiOTSfHMhH545YkhNdbTHMKvnPwivPlNCC7eqv7zIZNKMHN0byyZPQJSqaTa6wwRfgHlQd3CzzcDAIb19sUXi6bV+XWJWiO5sQsgIiIiImruth6/ic83PtiIOsjXHYN6eMPV0RoqtQbJmQW4GJ6IsMgUFJaU4dutp5CQlosPXpxoxKqpLkJOXkdMUhYA4OmJj9Q5oMnMVWDue+uRnV8EAOjTpR0GBXaAm5MtypRqxKVkY+ep68jIUSA6KRMvffInfv3PM3B3tq2171V/HsWvey4AAJztrTFpcHd08nQpH3sZuThyKQKW5qbo7e9VbR9rt5zEjzvOAAAcbS0xsq8fuvq4wcrCDOk5Bbh4Mw4nwqKgVmuwbudZaAQBC2cMrba/Tp4u+HLJdJ0+Nis2HEFCWg7srC3gZGeYmUzFpUq8+PFGRCdlAgDauTpg4qPd4eVqj8LiMkTEpyPkxHWUKlXYsP8SSsqUeGveuGr70/V9DTlxHUdDy/eL66TDjLKHDQzogKFBnXD8ShSOhUbiamQiAn0969wPUWvD8IuIiIiIqAGy84vw1ZazAABzUzk+f2U8evl5VLpu3sTeiErMwhd/nkJqtgIvPz7Y0KVSPWk0AjbsuwQAMDc1wZNj+9a5D2d7a8wL7o9tx6/inefGI8C38hhZ8NggfPTzfoScvI7s/CL8sP0U3n1hQo39ngyL1gZf/bp549N/ToWNlflD/T6K4lIlJJLqZy49PjIIR0MjMLhnJ7wwZQAszExFz88e0wc3opPxz8/+QkFRKX7bewGPDQuEZxv7Kvuzt7HAkKBONdYOANGJGUhIywEATB0aADNTw/yK+vveC9rga9Lg7nhr3jiYyGWia+ZOeATzP9yAtOwCbD16FY8NDUTXDu5V9qfL+6pUqfHRL/sBAN07ulfbV23mTR6A4/f2/Pp1zwV8sYjhF1FtOM+aiIiIiKgBDl6MQkmZCgDw+PDuVQZf93XydMLXS6fgl3fnws2p9hk91DScuhqNuNRsAMCYfv6wfShc0tWT4/pi04fPVxl8AYCJXIY3nx2j7f/M9dga+9NoBKz44zAAwN3ZFp8ufKxS8HWfhZlJjX252Fvjz/89h4UzhlYKvu7r3rEt5k0q3+Bfrdbgws27Nfapi40Hyk8ulEkleGJkrwb3p6sD528DAMxM5fjXnFGVgi8A8HCxx4uPPap9+9TV6Aa95qELd5CRU74sfubo3vXup0fHtujSvnz/thOXo5CYntuguohaA878IiIiIiJqgMT0PO3jjm0da71eJpWijaONzv1rNAIOXQjHvnO3EX43Fdn5RTCRy+DiYI2evh4YP7Ab+t47Ba42+YUl+OvQZZy4EoW7KVkoLVPBwdYSnb3aYNQjfpj4aHfIpDX/fbyqvZzG9u+Cj16eDAAoKVNi4/5QHLwQjvjUbBSXKgEAC6YOwovTHq3UX0U5+UXYeOASToVFIz4tBxpBQBsHG/Tr1h6zxvTWaaN1fTh88Y728ZBetc/wqUlN+0YBgKmJHO3cHHAjOgWFtewfd+pq+ccJKJ/dZWNpptfaAMDX68E+ZIUlNddXmzxFMfacuQkAGBLkq9MSz8aSlFH+ddvJ0wXWFtV/3AI6tdU+Ts9p2H6OGw+Uzx50srPC6Ef8G9TXkF6dcPtuKjSCgKOhEZg7/pEG9UfU0jH8IiIiIiICkJFbiPzCEni7OdRpI3oriwezZBIqBGGNISuvEP+3cgtuRKeI2pWq8j2i4lKysePEdfTy88K7L4yHl6tDtX3diE7GohV/I7egWNSekaNARo4Cp6/F4M+Dl7Fq6eNwsbeuU52pWfkAysO1f3y8EXfi0+t0PwBcvBWH11ZvQ0FRqag9IS0HCWk52HHiGl6bMwrTR/Ssc98NdX9DdIkEOgeN9SUIAtKyCwCIg6aqnAorn4lkbmqCMf0aFqboKiUzX/u4s1ebBvW15WgYSu/Nmpwx2nCzvoDygydKy1QoU6pqvE5RIeCr74w/ALgWmYSbMeVfx48NC6xyplld9O/WHt9tPQUAuHQrnuEXUS0YfhERERFRq7f95C2s/Os0ypRqDO3pg49eHFPj/kgVdfF+EABsPnoDgwPbw6+d7qf0VSc1Kx8LPtqgnaHS1tkOkwZ3h4+HM5QqNSLi0nH44h0kZ+bhSkQCEtJyqg2/bsem4qVPN6Ho3i/yQ4M6YXBQJ9hamSMpPRc7TlzD3ZRs3IlLw0uf/Inf3n+m2mVyFTcy33f2Fvafu43UrHxoNAIWr/gbd+LT4WBjianDAuDn7Yo3vtpR6/t67kYslny5BWVKNeQyKcYP7Io+XbxhbipHTFImthy9isxcBT5evx+21uYNnjVTFzkFRdowytXRtsZZQo1h8+Er2qVxcyfUHGhcCo8HAPT294K56YPPV2J6LlIy82BuZgKvNg6wt7FolNryC0vwx76LAAA/b1c80q3+QaBKrcHfh68AKD/d8hE9h4oP6+Tpggu34hCbnIWkjFx4uNhXeV3FpZ1DGzDr7/6sL5lMiscbIcDt4Plgs/zbd1Mb3B9RS8fwi4iIiIhatR0nb2H5Hye0bx8Pi0VmbiFcHHSb/TQ4sD06ejgiOikbBUWleHH5djw+vDumD+sOdyfdlzc+7KNf9muDr3EDuuLd58eLNgOfMLAbXp05DLtO30BmrgIDAzpU2Y8gCPh4/QFt8PXe/AmYPLiH6JrZY/vgtdXbcDIsGrHJWfgp5Az++UTVJ/lV3Mj8dmz5L90ZOQpsPnwZVyOT0MvPC18snqadJfMGag6/ikvL8N+f9qFMqYa9jQW+em2Gdj+j+2aN6YOXP92E23dT8en6g+jf3afBS/x0lVRhPyVvt+pn1jVEcWkZohIzsf3YVew4cQ0A8MKUgRjeu3O19+TkFyEupXwfso73gpAjF+/g222nEJ2Yqb1OJpWgfw8fLHxiKHzb1X2mllqjQVZuIc7diMVPIWeRmJ4LDxc7fPrPKToHxFU5fDFcGyoaetYXUB4sXrgVB5Vag8Ur/sYnr0xBR09xaH09Ohnrd50HAMwc1avepyqmZefj8KXyEx5H9ukMF4f6f1+4z9rCDE52VsjKK0RWXiFKy1QGOyyAqDniVwcRERERtVq7Tofj0wrBFwA42lrAxkr3YEUqleDzVyZg4ZchSMzIR5lKjQ0Hr+LPQ9cQ2MkNQ3r6YGiQD9zqsM/XybBonL4aAwDo6uOGD16cWOVeXFKppFKQ9bBjlyO1y61G9vWr8noTuQzvvTABk//1HYpKyrD58BW8MGWgaDZRTTSCgFWbjsHDxQ4rFk+rdtP1qmzcH6pdNvnmM2MqBV9A+XKz/744EU/8+yfkFBRh75mbmDHKMIFJVl6h9rG9jWWj9v3b3gtYufGo9m0TuQyPdPXG3An9MKCHT4333g+OAMDFwQbf/H0CP4WcrXSdWiPg9NUYXLoVj//+Ixgj+/rpXN+QBV+K9vVyd7bFMxP74dng/g1aAgiUf94BwNrSDBMHdWtQX/UxMKADXnliCL7efAIxSVmY9dbPeLRnR0wY1A0De/gg5OR1fPXXCZQpVZg3qX+1YbAu/jp0BWq1BkDDNrp/mL21hXZ8ZuYpqp29RkQMv4iIiIioldp77g4+/v2YqM1ELsXbzwzXOfS5z9XRGr+89QR+2HkR247fRJlKDY0g4EpkCq5EpmD132fQ3ccV04d3x8jevqj6LL0Ktd3bBBwA5k8dVOsm9DU5fjlS+/ixYYHVXudga4mhvTph75lbUBSV4uz12BpnHj2stEyFJU+OqFPwBTw4dc/Jzgoj+lQfzPh4OKNHx7a4FpWMo5ciDBZ+3d+wHwDMazkxsa7uz9y6T63WIC27ANcik9C9g3uNH8v8wgd7tx0LjUBoeALaOtth3qT+6Ne9PVzsrZGalY+tR6/ij30XUapU4T8/7IGvlwvaudV+MENGTkGlDe0VRaWIScpEeFxag5Yp3ohOxvXoZADAlME9qj1dUt+emzQA/t6u+Pz3w4hLzcaJK1E4cSUKUokEGkGAtaUZvn79SfTsXL8ZX0D5ARDbjoYBKF8q2pC+HlZxPFYcp0RUGcMvIiIiImp1DlyIxIfrj0EQHrTJZVJ8tGAs+ndrV68+Lc1NsOiJgXh6XBB2nr6NgxejEJ1UHm4IAnA9Jg3XY9Lw694reH9BMLp2cK+yH7VGo93I3NREVusMoNpcuPlgs/aenT1qvDbQ1xN7z9wCANyMSalT+NXe3RHDevlWat/5xT8AoMplimnZ+YhMyAAA+Hu71nraoJ+3K65FJeOWAfc4Ums02sfyBoSQVZk2LBBDgjqhuLQMSel5OHIpArfvpuL77aex+8xNfPWvJ6oNqvIKS7SPQ8MT0LerNz5f9JhoT7J2bo5YPHs4XByssWLDERSVlOG3vRfw1rxxtdZmYW6KL5dMhyAISM9RIDI+HbtO38DJsGicDIvG85MH4OXHh9Tr/d6wv3z/K4kEeMJAIWZVNBoBqVn5KCgq/1i2d3dEYnouVPdmaSmKSvHx+gP45xNDMbhnx3q9xp7TN7Wfq5mN/L5WPJhDpdLUcCURMfwiIiIiolbl0KUofPDzEWgqJF8yqRT/nT8agwIavum2g40Fnh7XC0+P64WEtFwcuRyDAxcjEZucAwCISc7G/I82Yu2ymQjwrRxGZecXaWfc+Lg7NehUOI1G0G6e7mhrVesMGw8XO+3jintd6WLio92r3AOqbYU+H5ac8eB0zJIyJU5ciarxNe6fVKkoKkVRSRkszfU/Y6jix19RXFrDlXX3cAD63OQB2HnyOj74cS+S0nPx2prt+P39Z6ocAxXDDi9XB6xYPK3aj8eMUb3ww/bTKCgqxcHz4XjjmTG1zia0tjDT7u123z+mP4qlK7fiWlQyfgo5i46ezhjbv6uu7y4AID27AIcv3gFQvvSwphNK9am4tAzLvtqB01djYGluio9fnowx/bsgt6AYB87fxrZjVxERn46ohAwsXvE3XpgyEC9NH1zn17m/0b2dtQXGDajbx6o2Fccj9/siqhm/QoiIiIio1Th6OQbvrzv8UPAlwQcvjMLQng2bYVUVL1d7PDO+F54Z3wtnb8Tj840nkZJVgJIyJd7+bhe2LZ9fKYTIzFVoH9tZN+yUvjxFsfZ91eWUworXFBTVLejp0bFt3YqDeD+t0PAEhIYn6HyvoqjUIOFXxb2tGjv8qsqkwT1w4WYc9py5iaiEDBy/HIlRVZxuaV1hJt3c8Y/U+LEwkcvQpb0bLtyKQ0FRKbJyC9GmDnvQ3edoa4UPXgzGY69/D0EAftpxts7h1+bDV7Qzq2Y14v5XdaFSa/Dq53/j8p0EWJiZ4Ps3Z6OLT/lec/Y2FpgxqhdmjOqF45cj8eHP+5GVV4gfd5wBgDoFYOduxCImKQsAMHVoQKMHVIoKX6OGOgCCqLlq3Hm7RERERERN1ImwWLz74yGoNQ+CL6lEgveeG4nhvao+KbExDejeDt+9PhUONuWBVlJ6rnZT+4o0FeurZRlgbSou2dOFAPFsuLpoyMl/9VHX962+XCuczHd/5pm+DQ56sMTu7PXYKq+pGFTq8rFwsH2wWX/FgLWuvFwd0N7dCQAQnZSJ9Aob79emtEyFrcfCAADtXB0avKS3vkJOXMPlO+VB69MTHtEGXw8b2ssXv7w7Vxss/rzrHFIy86q8tir3l3fKpBI8MbJxlzwKgoD8e8sp5TIpnOysGrV/opaGM7+IiIiIqMU7fS0Ob/9wUBQSSCTAO88Ox6g+nWq4s3E521lhwgA//HEgDAAQm5xVaWmZo+2DX2IbOtPIxvLBrKWHNy+vSmHxg2scbRv3ZMOqVPyFfcrQALz7/Hi9v2Zdebo6wEQug1KlRnRiJtQaTYMOINCFa4VZWfeXrdZ0TU5+Ua19ChVnO8oaVn8bRxvEJpfPaErPKdB5FtmeMze1AeITo3oZPDC979C9ZZcAMDio5q//ti52mDykB/48EAq1WoNjlyMxe0yfWl8jLiUbZ67FaF/D3dm2YUU/JD41R7vJffu2Tkb7WBI1F5z5RUREREQt2rmb8fj39/u1S62A8uDrraeHY2w/3Td0byxtK/wSXFVo4Wxvpd3I+uHTAOvKzFQOFwdrAEBWnqLWE+ESK+zz5ebUuL+sV6Xia2TlFtZwpfGYyGXo3K4NgPJ9yaITM/X+mqVKtfaxlUXVyxnbuthpl8XGpdY+TrIqjLX7Y6K+ypSqCvXpvtzu/v5XluammDykR4NqaIjUzHztYxf72j8W92e6AUBqVn4NVz7w58FQ7YEaM/WwvPNmTIr2cbdqDs8gogcYfhERERFRi3XhVgLeWLsfyodOQntzzjBMGOBnlJoyKoQ8baoIIUzkMvTtWr7xfkFRKa5HJzfo9bp3KN+LSxCAa5FJNV4bFpGofdyve/sGva4u3J3t4NO2PFi4Hp0MpUpdyx3G8Wjgg2Wxl27F6f317sSlaR97tql+Q/ju90KPy3cSRDO7HqZUqbV9OtlZwcGm/rP61BoNou6d0CmTSnSe0XTh5l1tcDhxUDed9qCrzcYDlzBxyVqMfGU1Pll/ACVlNYe799lZP5gRWVDh1Mzq5Bc+WO5acWZmdQqKSrHr1A0AQEcPZzzSteEHaTzsUni89vGgAP0v2yZq7hh+EREREVGLdCk8Ca+v3YeyhwKV158aguBBlTcQr6+EtFwcvFjzKYX3KVVq7D8foX27RxWnPQLAmH4P6vt557kG1Vexr+3Hr1Z7XU5+EU6GRQMoD0gCOlVdW2Mb2bc8hMxTFGPHiWsGec26mjCoO2T39l/b3oAad568jpTMmmcOlSlV2HokTPv2mP5dqr12SK/yJXsZOQrt564qhy/e0W6OPrZ/lyqXyGXmKrD1aFil9oftPnVDexjCsN6+MDc1qfUe4MH+VwAwc1TD9786fPEOPv/9MFKz8pFbUIzNh69gzV/HdbrXz9tV+/hEDR83oHwPvgPnw7Vv+1e4tzrbj19F0b1lxjNGN+5eXwBQWFx+aidQvjz50cCOtdxBRAy/iIiIiKjFuRKRjNe+3osypTj4WjrrUUwdXLfT6WqSlVeEJWt2472fDuF/vxxBWnb1G4nnKUrwxrf7kZJVvkF4oK9HtSckThjUHX73ltodvxyJ1ZuOVbup+bHQyBoDsuF9OsPLtXz20MEL4dhz5mala8qUKrz/4x7tL+wvPvZogzfb19Wc8Y/A+d7SsxV/HMGx0Mgqr1Oq1Pjr0GXtjBpD8mxjj+F9ypfIRidm4sqdxFruqGzlxqP4zw97sOCjDbhczamWJWVKvP3tLsSn5QAAhgR1gq+XS7V9ThjYTTuL65P1B6oM1pIycvHlxqMAAHNTE8yoIniKScrEM+//hg9/3o/Pfj+kHQcPu3Q7Hp/9fhhA+b5hT0/oV8N7/EBCWo72cIdHunrDx8NZp/tqcuD87cpt5yq3VWXGqF64n//9tOMMrkZW/flUqtT4eP1+7Uw3Xy+XWmdEajQC/jp4GUD5iZwTB3XTqaa62H365oNwbVSvRj9Fkqgl4lcJEREREbUoV6NS8K+v96C0wr5EALB4xiBMH9a9UV8rLjUHBUXlv4TuOReBg5ei0NO3LXr7ecDF3hKWZqbIVRTjZmw6jl6O0W4672xvjf/9Y1K1/cplUvxnwUQs+GgDCopKsX73eZwMi8L4gd3g7eYIpUqNuylZOBoaqf3FvIOHE4b28q3Ul4lchrefG4dXlm+CSq3BO9/uwtFLERjcsyOsLcyQkJ6LHSeuafcX692lHR4bFlhtbbkFxbgWlXTv/X+w19S1qCTtL+T21hYIqGZW28NsLM3wzvPj8K9V21CqVGHpqq3o1709hvXyhYuDNQqLyxB+NxWHLt5BRo4C5qYm6N7RXbQPkyE8M6EfDl+8A0EAVv55BL+8O7dOm4w72Zcvl0vOzMP8jzagd5d2eDSgA9xd7KDRaBCZkIE9p28i7d7piR5t7PGf+RNq7NPS3BSvPz0Kb34dgrTsAsx6ex2mDAlAVx83SKUS3I5NxdZjV7Wzvv7vyRHaILQiawszmN8LUP48EIoD525jZF8/dPVxg7WlOTJzFTh3PRYnwqK0+1gtnjUc3asJbx+28UAoNPdubKz9rySo/LHX9fPRwcMZ/3xiKNb8dRyFJWWY/9FGDO/ti75dveFkZwWlUo2Y5EzsP3tbG0TaWpnjw5eq/5q971hoBJLvnQg5eXAPWJhVvWdbfRUUluDHHWcAAFbmpo1+iiRRSyURalocTmQAZcUFEISaj2c2MbeGVCqDRqOGsqT+RzNT68JxQ/XBcUP1xbHTNFyPScWSVbtR9NDG7gsfH4DZo6oPdBoiJasA32w7h2OXY6DW1P6jdR9/T7z9/IQqQ4iH3U3JwpIVW7S/gFend5d2eOe5cTX2eSw0Eu/9sFsbhFRlUGAHLF84tcalbJdux+PFjzfWXI+/F77/95M1XvOwi7fi8Pqa7civYQ8mmVSCqUMDsWjWsDpttN5Ylv92CJsOhgIA3nx2DB4fEVSn+w+cv42VG49qA67qDArogP8smKDT/lIAsOlgKFZsOCI61KEiE7kMbzwzGlOHVv81kJNfhM//OIz9526hpt8QrSxM8cYzYzBhoG4zmhTFpZiw6BsUlpShrbMddnz+YqPMKjxy8Q5eW7Nd1Pbk2D5Y+tRInfvYdDAUa/46XutBEF193PDuCxNqnIV33/wPN+DynQRIJMC25Qt0+jqvi49+3o8t95anvvP8uBo/p0T0AMMvMjqGX6QvHDdUHxw3VF8cO8YXHpeBhV/u1M6uuu+lx/ph7ti6hRT1kZSRj+NXYnA5Mhl3U3KRX1iCkjIV7KzM4WhngcBO7hja0wd9/L1gamGjc79lShV2nbqBo6ERuBOXjlxFMcxN5HBztkVv/3YYN6ALAn09deorK68Qfx26jFNXo5GckYfCkjLYW1ugS3s3TBrcHSP7+tU6e0Zf4RdQPqtsy9ErOBUWjdjkLBSVKmFjaQZvN0f07eqNqUMD4O5sV+d+G0txqRJPvfML4lKzYWFmgh/fegr+7WvfA6qikjIlDp4Px8mwaITHpSErtxByuRRtHKzRvUNbTBjUTXvgQV3EJGVi08HLuHg7DqlZ+ZBJpXB3tsWAHj6YMaoXPFzsdeonIj4dB87fxoWbcUjOyIOiuBSOtpbwcLHH8N6+GD+wGxxsdd8w/0Z0Mj74cS+ikzKxaOYwPD1Rt6WSuth44BJ+23MBJWUqjOnnj8Wzh+u8B9l96dkF2Hf2Fk6GRSMpIxc5BUUwM5HD0c4K3Tu4Y0QfPwwO6giZtPYdgwqLS7Hkyy0Ii0hE/x4+WL30ifq+a1U6cP42/v1NCAShfEnsl0umN2r/RC0Zwy8yOoZfpC8cN1QfHDdUXxw7xhWdlI1XVuxAfqF4VtOCyX3x7ITGWWbVWCQSaZ3CL2paIuPT8cJHG6AoKoWrow3W/+dpuNhXPrWTxBLScuBga9kopzw2dbkFxSguVep8EqYubsakYP5HG1BapoK3myN+euepBp3aSdTacMN7IiIiImrW4tNysWjVzkrB13MTeze54IuaP992bbByyXSYmciRll2AVz7dhKy8QmOX1eR5uTq0iuALAOxtLBo1+IpMyMCiL/5GaZkKLg7W+Pr1GQy+iOqI4RcRERERNVvJmfl4deVOZOcXi9qfGtMTzwf3MVJV1NIF+Xlh+atTYWYiR3RSJhZ8tAEZOTXv40VUH3fi0vDixxuRU1AEJzsrfPXaDKMu/SVqrhh+EREREVGzlJ6jwKsrdyI9Rzzr5vFh3fHyY/3qdBIfUV09GtgRX78+E7ZW5khMz0V0UqaxS6IW6GpkEvIUxfBydcC6d+agk2ftm+4TUWVyYxfQVFy/fh1bt27F+fPnkZKSAkEQ4OTkhJ49e2LSpEkYNmxYjfdv3boVb775pk6v9dxzz2HZsmU1XqNQKLB+/XocPHgQCQkJ0Gg08PDwwMiRI/HMM8/A0dFRp9dqrH6IiIiImpLs/CK8unInkjPFs22CB/pj8YxBDL7IIIL8PPHT20/hbko2+nf3MXY51ALNGNULcpkUw3t3rtNBA0Qk1uo3vM/Pz8c777yDffv21XjdkCFDsGrVKlhaVv0Npy7h1xdffIHg4OBqn4+Ojsb8+fORlJRU5fPOzs5Yu3YtAgICanydxupH37jhPekLxw3VB8cN1RfHjuHkKUrwzy9DEJ2ULWof3bcT3p03QqdT2YyJG94TEREZVquf+bVu3Trs27cP9vb2mDNnDkaMGAFPT0+UlJQgKioKv/76K44dO4YTJ07g9ddfx1dffVVrn9euXavxeROT6o/fVSgUWLBgAZKSkmBiYoLFixcjODgY5ubmuHTpEj799FPEx8fjpZdewvbt2+HiUvW018bqh4iIiKgpURSXYsnq3ZWCr6E9ffDOs8ObfPBFREREhtfqw69FixahTZs2GDdunGgJoJ2dHVxdXTFo0CD85z//wcaNG3Hw4EFERESgc+fONfZpZlb/U0x++uknJCYmAgCWL1+OCRMmaJ8bNWoUFAoFli1bhszMTHzzzTd477339NoPERERUVNRVKLE0jV7EB6fIWof0M0L7z8/CnKZzEiVERERUVPW6v80JpFI8OSTT9a499WsWbO0j6Ojo/VWi1qtxsaNGwEAQUFBosDq/vPfffed9u2tW7eiuFh8slFj9kNERETUVJSWqfD62r24HpMmau/l1xYfvTgWpiYMvoiIiKhqrT780kVZWZn2cZs2bfT2OpcvX0ZOTg4AYPz48ZWe37JlC2JiYjB9+nQAQElJCU6dOqW3foiIiIiagjKlGv/+bj8u30kWtffo4IrlL42HmWmrX8xARERENWD4pYP169cDAHx9fdGrV6863avR1LyRe0U3btzQPg4KChI9V1xcjDVr1iAwMBCLFi2q8p7G7oeIiIjI2FRqDd776RDO3kwQtfu3c8EXCyfA0rz6vVSJiIiIAO75VYlGo4FSqURhYSFu3bqFX375BSdPnkTbtm2xatUqnY7NDgkJwfbt2xEREYHMzExYWFggMDAQc+bMwahRo6q9LyYmRvvY09NT9Nz69euRnp6Ozz//HK6urpDL5VCpVKJ7GrsfQ5Gb1X5kr0Qi1f7fxNxa3yVRC8FxQ/XBcUP1xbHT+NQaDT78fi+Oh8WK2jt6OmPN6zNgb21hpMqIWi+NRgMpD5YgPeH4In1h+PWQkJAQLFu2TPu2k5MTFi5ciKeffhq2trY69fHaa6+J3i4qKsLZs2dx9uxZzJ07F2+//XaV92VnPzi1yMHBQfs4JycHP/74I4YMGYJ+/foBAGxtbZGdna1d3qiPfgxFKtV9jw6JRAKJhHt6UN1w3FB9cNxQfXHsNA6NRsDH6w9g/7nbonZvN0esXTYLjrZWRqqMqPWKjAzH6ZNHMe3xJ2Fra2fscqiFEQQBe/fsgJmZGUaMHMcQjBoVw6+HxMaK/7KYlZWF3377DYWFhVi4cCEsLauepeTh4YGxY8fCxMQEffv2Rb9+/eDm5oaysjKcO3cOn332GRISEvDbb7+ha9eumDZtWqU+7m86b2pqKpph9u2330KhUGDp0qXaNlNTUwDlwZq++jEUjUZd6zUSiRQSiQSCIEAQdF9KSq0bxw3VB8cN1RfHTuMRBAGf/34EO45fE7W3dbHD168/AQcbc51+fmjK6vLHP6Km4GpYKI4e2Q9BEHDh/GmMGj2h9puI6iAhIQ4Rd24BAIoKCzEh+DHI5YwsqHFwJD1kyZIlWLJkCQoLC5GYmIhdu3bh999/x7p163Dq1Cls3LgR1taVlzL069dPO5uqIgsLC4wdOxYBAQEIDg6GQqHA2rVrqwy/7quYcCclJWHDhg0IDg6Gv7+/tl2XvcQaqx99U5UW1fpLgom5NSQSGQRBA2WJwkCVUXPHcUP1wXFD9cWx0zgEQcCXm07j72Pi/UjbOFhh9aKJcLSUNPuPr0QihamFjbHLaDUEQcCB/bsQGREOlzauCJ40DVZWXJpcF5dDL+D4sYMAgI6dOmP4iLFGrohaonbt2mPU6Ak4fGgvoqMjsGPbX5g6bSZkMv6xgBqO8wirYWVlBT8/PyxduhTr1q2DVCpFREQEVq5cWa/+3N3dMW7cOABAfHw8EhISKl1zf1aZUqnUtq1cuRKCIIg2pweA0tJS0T366IeIiIjIkARBwIo/T1UKvhxtLbB68SS0ddZtC4qW4K9Nv2Hdj19j65aNxi6l2YuLi8Gtm9egVJYhOSkBVy5fNHZJzcrtW9e1wZePT0dMDJ7GMIL0pkdAEIaPLA9X4+NjsW/PDgiCYOSqqCVg+KWDoKAg9O7dGwCwbdu2evfj6+urfRwfH1/peUdHRwCAWq1GQUEBwsPDsWvXLsyaNQteXl7a65RKJQoKCkT36KMfIiIiIkPRaAR8vvEkthy/KWq3tzHHqkWT0M7V3jiFGUlSYjzy8nKhVqmMXUqzJ4H4wCodzq+iexIS4nBg/y4AgJt7WwRPms7gi/QuMLA3+vV/FAAQEXEbJ08cMXJF1BJw2aOO2rdvj4sXL0KhUCA7O7teYZGFxYMTiSrOyrqvQ4cO2sdJSUn4/PPPYWFhgZdffll0XUpKina5oo+Pj976ISIiIjIEjUbAF3+exLYTt0Tt9jbmWLN4Mjp6NL8/0imVZbgTEYG7d2ORmZmBkpISyGQymJmZw9nZGe19fNG1WwDMzMyMXWqL187bB127BSAy4jZcXFzRM6ivsUtqFkpLS3Fg305oNBqYm1sgOHg65CYmde4nNycbN29eRVxcLPJyc6FUlsHcwgIO9o7o0NEX3boFwtyifie3KpVl+HPDevj5d0WPHkGwqONqFo1Gg4g7txAdFYHU1GQUFhVCLpPB0tIaHp5e8PPvhnbt2terNgC4eOEMkpMTERTUF+28jf/7VmJiPO6E30RiQjwUinxoNBpYWlrBpY0rOvn6w9+/m06bzG/e9BsSEytP5qhJ124BGDtuks7XDxg4BGmpybh7Nwahl87Bx6cjvBrwuSBi+KWjkpISAOUnOFlZ1e90oYyMDO1jV1fXSs93795d+3j9+vU4efIkFi5cWClou3z5svZxjx499NYPERERkb5pNAI+23gCO06KT3V0sLHAmiWT0KFt8wu+wsNv48zZ09qfH+/TaDRQKpVQKApw924szpw+joGDhqJnUB/RIUXUuCQSCcaOm1SnX7wJOH7sIPLz8wAAI0aOg41t3ZYdq1QqnDh2CNevX6m0z3ChQoFChQKJifG4cP4MRo4ej86du9S5xls3ryMzMx2Zp9Lh6OiETr7+td90T2JCHA4d3IOcnGxRu1qlQmlpKXJysnDjehg6dPDFuAlT6hxUazQahF25BIWiAPn5eZj79Pw63d+YCvLzcWD/LsTHx1Z6Lj8/D/n5eYiOisClC2cxIXgqnJ3bGKFKMYlEgrHjJ+OXdWtRWlqK/ft2Yu4zC/gHA6o3hl86UKvVCA0NBQB4e3vX+wvuzJkzAAAbG5sqZ1oFBQXBwcEBOTk52Lp1K5ycnDBv3rxK1+3btw8AYG5ujkGDBumtHyIiIiJ90mgELN9wAiGnxMGXo60F1iyeBJ9mFnwJgoBTp0/i+vUHp1S6OLvAx6cDbGxtIZNKUVBQgKSkRCQkJqCsrBQXL5yBb2d/WFtzA3xqOrKyMnHzxlUAgIdnO/j5d63T/YIgYNuWjdrZQY5OzvD19YODozOkUiny83IRcecW0tPTUFJSjD27tsFkqgl8OnSq02uEXSnfv83W1g4dOnbW+d64uzHYvm0TNBoNZDIZOnXyg4dnO1haWqG4pAjpaam4fesGVColYmIisX3rn3hi5lydZkXdF3HnNhSK8i1mevbso/N9ja2wUIENf6xDUVEhAMDLyxvtfTrBxtYWapUKOTlZuHnzGgoVCmRlZWDL5g2Y/dQ82NraVdvnoMHDUVJcXOtrp6Ym4/y5UwAAJyeXOtduaWmF/gMG4/ixQygoyMfVsEt4pB9/b6X6afXh1w8//IATJ05gzZo1sLe3r/KatWvXIjk5GQDw1FNPVXpeEAR8+umn6NOnD0aNGlVlH3v37tUGaFOnToW5uXmla2QyGWbPno1vvvkGAPDss89WmmV25swZHDt2DAAwffp00VLKxu6HiIiISF80GgGf/nEcO0+Hi9odbS3w1ZLJaO/uYKTK6u/y5VBt8GVtbYORI0bCw8Oz0nW9evVBQVEpjh7Zj8FDRjD4oibn8qVz2seP9BtY5/slEgkGDBqKfXt2YOCgoejStUel2Y19HxmI69eu4NDBPRAEAceOHkB7n446z4KMuxuD7OwsAEBAYO86BVOeXt7o2MkPapWq2lltAwYOwfatfyI9PQ3JyYkID7+Jrl11Xy1z5coFAIC5uQW6dOley9X6Y2VlXf6xvn4Fo8dMRNu2lb8n9R8wBIcP7sHNm9dQVFSIc2dPYszY4Gr7rKqPqty6dR0AIJfL0b17YL3qDwjohfPnTqOkpBhXrlxEr979IJe3+hiD6qFVj5rw8HB89dVXKCkpwdixYzF37lwMHz4cXl5eUKvVuHPnDjZs2ID9+/cDAPr374/Zs2dX6uenn37Czz//jJ9//hmjRo3C9OnT0b17d1haWiI5ORkhISH4+eefAZTPHHv4xMWKnn/+eYSEhCAxMRF//PEHPD090b9/f2g0Ghw8eBDLly+HIAhwdnbGSy+9pPd+iIiIiBqbRiPgk9+PY9cZcfDlZGuJNf83Ce3dml/wlZWViQsXzwMALMwt8NjUx2BjU/0yMScnZzz+ROU/qhIZW3FREW7fLj9x1c7OHt7eHWq5o2qenu3w/Px/1hhm9QgIQlTUHdyNjUZubg5yc3Pg4KDbjM8rl8vDJblcjh49etapNplMhonBj9VYm5WVNUaOGo+NG34BAMTFRuscfqWkJCE1pXzyRPcePeu1V1pj6tX7EQT16lvt+yuTyTBi1HhERUegtKQEd+9GN/g1C/LzER11BwDg36V7vfd1k5uYoFu3AISGnkdRYSHuhN9Et3oGadS6terwy9/fH+vWrcO///1v3L17F2vWrMGaNWuqvDY4OBjvv/8+TKr4xvXss88iKysLv/32Gw4dOoRDhw5V2UdAQABWrFgBG5vq/7pnbW2N77//HvPnz0dSUhKWLFlS6RpnZ2esXbsWLi7VTx1trH6IiIiIGpNao8HHvx3HnrN3RO3OdpZYs2QyvN3sjVNYA507fw6CIAAAHn10cI3BV30IgoA74bdw+9Y1pGekobSkBJaWVvBu3wH9+w+udT+mkuJiRMdEIjEhDhnpqcjPz0dZWSnkchPY2NjCw9MLgYG94dKm8r609+Xl5WLdj18DABYuWobioiKcOHEY8XHl+wh16OiLYcPHwMzMDJkZ6Th58ghSkhMhlcrg598Vg4eMrHLGxv3Ns7t07YFx4ydDrVbjxvUw3Lp1DTnZWVCp1bCzs0eHDr7o23dArb9EFxYq8P23q6p93tbWDs/P/2eNfVSlpKQYV8NCERMdiezsLKhUSlhYWsLFxRWdO3dBl649ap19dPbMCZw7e1JUQ052Fq5fu4LY2Gjk5+dCKpXBydkFPQKC0K1bQJ3rbKiYmEio1WoA5Z/ThuxHp8u9zs5tcDe2PGwpKyvVqd/srEzcvRsDoP7Bik61uTz4eijVsTYAuBJ6QfsagT1717k2fajt/ZXL5XBwcERqSjLKSssa/HphYZe0e731DGrYss8OnTojNLT8jwuRkeEMv6heWnX4BQC9e/fGnj17sGfPHhw5cgTXrl1DZmYm5HI5XF1d0bt3b0yZMgV9+lT/BSuXy7Fs2TLMmjULmzdvxqlTp5CcnIzi4mK4uLigc+fOCA4Oxrhx43SaotmxY0eEhIRg/fr1OHDgABISEiAIAtq2bYuRI0fi2Wef1em0ycbqp7n7Zu1X9brPxdkFTzwxs8rnNm/ehIzMjCqfq83LL1X9w9axY0dw6/atKp+rzeOPz0Abl8obU968dQPHjx+rV59Dhw5Dt66Vp2inZ6Tj77//qlefXbt0xbBhI6p8Th+fp41//Iz09LR69cvPk+E+T03t62nWk8/C3d2jUjs/T03r88Svp+b5eVJrNPj412OIiAjHnEDNQ1fnY/e232vt09CfJ10UKAoQHx8HoDxY6dTJt959Vdl/fj727N6G5OREcXtBPm5cD0NMTCSemvN8jcsnt2/bhJSUpErtSmUZsrMzkZ2diRvXwzB4yAj07tO/1poy0tOwa+cW7Z5GAHDr5jWUFBdjwMAh2PzX76IgI+zKJUilUgwdNrraPouLCqEoyEfIjr+RlpYiei47KxPZWZmIuHMLM2c/Y/CloqkpSdi+7S8UFxeJ2u9v3H43NhphVy5iymMzdaqtpKQYgiDg3NmTuHjhjDZsKqdCSnIiUpITkZuThUGPDm/k96ZmCQlx2sft2un/hMKCe5vq3w9fdHHl3l5fQMODlZrc3/AfAFxcqg+GK1IU5CMysnxWa8eOnWvcO6spEQQBBQX5AACXKv59rQulUonr168AADw8vHT+2FXH3d0DJiYmUCqVSEqMhyAIPCSE6qzVh19A+TTPSZMmYdKkhp0A4+3tjX/961/417/+1eCarK2t8corr+CVV15pEv0QERERNYRao8GH649h3/kIdGphf3uLj4vTzvrq2FH3PYt0UVJagq1bNiA7Owuubu7o2rUHLC2tkZeXoz1JrqiwEGdOH69xj57O/l2Rm5sDD892cHdvCxsbO0ilUhQWFiA+/i5iY6Kg0Whw4vhhODg4oUPHmgO8XTu3QKksQ7/+j8LR0QmXLp5FRkY6YmIikZ6eCgCVnrt54xoGDxlZ7eyo/Pw8bNu2CZkZ6XBv6wk/v66wsrJGZmY6wsIuobSkBPn5edix7S88Oee5aj/OZmbmmDJ1RqX2gwd2azf9rou0tBT8vXkDlMry2TAdOvqiQwdfmJtbIC8vBzdvXEV2dhbS09OwZfMGPDnnuSpXi1RUVlaGI4f34drVyzAxMUGPgF5wd/eARqNGTEwUIiPKD4G4eOEsuvcIgp2dfZ3rrq/7nz8AcHLW7wqR9LRURN1bGtcjoBdMTWs/WKykpBi37+0l5enZrsHBSnUEQcDZ08cBAKampggI6KXTfWFhoQ9mPPXqq5fa9OFqWCgKFQoA0CkAr8mtW9dQeu+0255BDf8YyGQyODg4Ij09DWVlZcjJyYajo1OD+6XWheEXEREREemVWqPB/9Yfxf7zkcYuRS/SKswydq1h2WB9ZGakQyqV4tHBw9Gn7wBR4OPv3x2//PwtVColoqLuYPSYidUGQj179kGvXo9U/VxQXyQmxuPvv36HIAg4f/5UreGXSqXCzNnPwsnJGUD56egH9u8CAChVSsx68hnt6W73nystLUFebg4cqvmlNTs7CxKJBMOGj0FQhdCgs18XdO3aAxs2/IzSkhKkp6ciJiYSHas53U8ul1dZf302yRYEAYcP7dUGX2PGBldachXU6xHsDPkbsTFRyM7OxPlzp/Do4Npna127ehmuru4YP3GqaMZT124BCNmxGdFRERAEAdFREejVu+rPnT7k5eYCKA8c9DFrSa1WIy83B5GR4bh08SzUajW8vTvo9DEDgBvXw6BUKgE0TrDysJLiYiSnJCL00nkkJsRBLjfB+AlTa11aDAAqpRLXr5XPeHJ2bgMvL+9Gr68xKZVlyMzMwI3rYbhxPQxAeWjdydev3n0KgoCwy5cAlB/80ZC+KrJ3cNKu6MjPy2X4RXXG8IuIiIiI9Eat0eC/vxzFgQstM/gCgLy8B0uj9BEWjBo9oco9bmxsbeHe1gMJ8XdRWlKCkuJiWFhaVtlHbXtReXq2g4dnOyQmxCE1JRkqpbLGTbr7DxisDb6A8s3B7xswYIg2+Hr4ueKSYtR0nMGQYaNEwdd99g6OeOSRQTh54jAA4OaNq9WGX40pOioCaanlSzB9O/tX+XmQyWQYMzYY6378BkplGa5dDUX//o/Wusm5s3MbPD7jqSpnO/n5dUN0VAQAIDc3uxHeE92UlpZCpSoPlszMzRt1FmNaWgo2/L5O1Obi4ooeAUHoERCk02mNGo0GYVfKgxUbG1t07CQeAz/98BXy8/PQtVsAxo6r26qe7ds2ITYmSvu2mZk5/Lt0185g1MXt2zdQUlIMoPJyzJs3rmoD4udeeMWgs/keFnrpHE4cP6x9WyaToV07H/Tp2x/e7et3wMF9cXExyM7OBAAEBPaq0ymcNbGosK9bYaGiUfqk1oXhF7V41e1h0hDV7bXSEMOGjWjQfiNV6da1e5X7ojREG5c2evmY6qPP2U/Ng1Qqg0ajhrKkcf6R5Oep5X89mZhbV9nOz1PT+jxVx5ifJxNz6zp9z2kNnyeVWoP//nwEBy5GidoLBFtMfnwSPF0aLyjS19eTLkruLe8BAHNz80bt272tZ42bO1fcX0qpUqJ+56mVq7hJf3FxMWxqCG9MTU1Fb8sqzKqq6Tnx3laVVTc7DQD8/Ltqw6/7J+npW3R0hPZxjx5B1V5naWmFjp06I/z2DZSWluLu3ZhaZ7wMGTqy2mV+dvb22sf3ZzkZwv0ZbgBgYmJaw5V1l5OdVamtuLgI6empyMvL1Wm/r6ioO9p9qQICezdasAIAOTnikFGlUiIvNwfJSQlwcHDUKQi8vxeZmXl5cNZUZT/0udBoNFAo8pGcnAhXt7YN+j52f7N/mUyGHgHVf83UVcXxWHGcEumK4RcRERERNboypRrv/ngQJ67eFbW7OlrjqyWT4eHSuKchGpNardI+bsxfxgFAVkt/FX8hv7/vmC7y8/OgKChAmbIUGnX5/kQVN6/XCA8fSGB8Nja2sLK2Lt9kvlCBoqJCWFpa6fU1759kCQBtPTxrvLZtW0+E374BAEhNTa41/JLKZNU+p8veV/ogaB6MIamkcceye1tPTJk6A2qNGvl5eUhKjEd0dARuXA/DnfCbGD9haqWZXA/TBityOXoE9GzU+oaPGAONWoPi4iLk5GTj1q1rSElJQkpKEu7cuYUpU56ocTZfXFwssu4dONK9e89a930zph4BQejYsTOUyjLk5eUiMjIc6WmpOHf2JG7fuo7Hps/W+fCBirKzs7SncHb269qoX58Vv7fe31ONqC4YfhERERFRoyouVeKNb/fj4m3x6YRujtb46v8mo61zywm+AEAme/AjdVP+pSwtLQVXLl9ETEykdjPq5sbWxk67KXdJcbFewy9BELTLqyytrGqdCVVxtlZeXm6DXltWQzCmTzL5g9eteFpnY7Czsxct9evdpx/S0lKwfesmFBUVYu+e7Zgz9wXYVxO6pKWlaE889ffvBguLqpf41lf79h1Fb/cfMBgnjh3C1auhiI+LxbFjBzFq9IRq779yuTyYk0gkCOzZu1Fra2xubm1Fbz/SbxBu3ryGg/t3IS8vF7tCtuDJOc/VeRze/xgAjX8KZ1npg/Eoq8f+fUSNG+cTERERUatWUFSKJat3Vwq+3J1s8HULDL4A8VLHktKmGSqdOX0cG35fh9u3rjfb4AsQz4gqLW3ccOZhxcVF2tl0ZjrMxBLX1jw/xmZmD8ayvj++AODq6o5Bjw4DUL6883KF8ORhVy5f1D4O0sNG9w+Ty+UYNmIMbO8FdjdvXK12r6ncnGzcjY0GUH4aqDH386qvbt0C4OffDQCQmZkuWvKri5KSEu0pnG7ubSsFbA1VWiGMNTdr3OXl1DowMiUiIiKiRpFTUIwlq3cjIiFT1O7tZo/Vi4Lh4lD1nnrNnZ2dHVLu7UFVkJ8P5wobwTcF165exvlzpwCUz0rp1i0A/l26w8nZBebmFtrlRPv37cStm9eMWWqtBDxYlieRNt5m7FW+Vh2WkZbf8OBhYy9/NRSZTAZLSysUFRVCpVLWevBBY6h4MmfcvSVzDyssVCDizi0AgIeHF1wa+VTV6kilUrRv3wHXrl6GRqNBfPxddKliL68rVy5qx4s+TqA0lA4dfbVLd+PuxqBz5y4633vj+hU9n8JZpH1sbd3y/ohC+sfwi4iIiIgaLCNHgVdX7UJcaq6ovbOXM758dSIcbBqyFXvT5urqivDw2wCAtPQ0+Pg07LS0xiQIAs6dO6l9e+So8Y26CbWhKcsebHRtbq7fMVVxFlRZWe0bbJcpH8xMsWzkJXmG5OjkjKKiQgBAekYa2ratea+zhrK0tIJUKr236XpBldfExcVqD0tISkrAl198WGOft25e0wa59Tn5saKKB0EoCqqur+IpkVs2/1Frn+t+/Fr72NgnP1ZkUyFUqu5zURWNRoOrYaEAyj+fdQnNdJWekaZ97NTE/sBAzUPz/JMEERERETUZSRn5eOmLHZWCr4COblizZFKLDr4AoJ2Xt3bj+ZiYqmeuGEtOTrZ2jyw7O/tmHXwBQF5+LoDyGWxWVvrd7F4ul8PKuny2YmGhotZTF/Nyc7SPbWwb7yRTQ6u4XC01Vf+namo0Gu1eedVt9C8YcS89lerBgRamZlXv+1bnWYJNlKrC4R11OXQhKuoO8vPzAJRvpt/Ye9YVFOQ/+D5m7wBzi5b9bwrpB2d+EREREVG9xSZnY9GqXcjMKxK19/X3wCcvjYOFWdM98ayx2NjYoF07b8TF3UVubg5iY2OazOyvkuJi7WM7OwcjVtJweXm5KCosn5Hk0sa11g3oG4O7mweiou4AAJKTE+Ht7VPttUlJD/a5a1fDdU2dj09HXLp4FgCQGB+HXr0e0evrZVSY0WNnX/UYbeftgylTZ9Ta147tfwEAvNq119ZdceZWfaSnp2of21fzNTR6bDBUtYSj4eE3cSf8Zvn1YyZqD2uw0vHQhoT4uzh27CDy83LR1sMLI0eNh20jh6wZFd/XCgc41Ob+fmxSqRQBgb0atSYASEyI0z72eehgAiJdMfwiIiIionq5E5+BJat3I1ch3tx7cGB7fPDCKJiZtJ4fNfv164/4+DgIgoATJ4/D1dUNlpa1L31TqVSQ6/HkMrMKm/EXFORXe51arUZWZobe6tBVUVFhtSc4VtyPzNvbMOFiZ7+u2vDrxvWwasOvoqJCxERHAihf9qXvpYL65OHZDnb2DsjLzUFsbBQKCxWwsqr7fn3JyYlQKpU1BoaAeCN7f/+uVV5jY2NbpxDLxsZWtJfYw9RqNa6GhSIgsFeNX3852VnafcisrKzh6eVd5XXt2rWvtaa0tBTtY6927eu01DE/Pw/bt/0Flao8YLsbG42dOzbjyTnPa2ed1uTmzWvw8vKuMSxTqVS4du2K9m0/v2461ZaWloLkpAQAQCdff1hb2+h0X11cvx6mfdyte2Cj90+tA5c9EhEREVGdXY1KwT9X7KwUfI15xBcfLhjdqoIvAHB2ckbfvuUzTQoLC7F9x1akZ6RXe31+fh5CdmzGzpC/9bpkytHRCRb39p/KycnC3bvRla4pKSnGrp1bRL+c12W/n8a0fdumKl87NSUJly6eAwDI5HL0DOpjkHo6+frB/t5spIg7t3D73mbgFalUKhzYvwtKZfm+YAMGDtEpkGiqJBIJevcuH8sajQY3KgQPuoqIuI2/N/+BHdv/wvVrV6od46GXzmlPCLS2tkHXbgH1rltXpaWl2Lb1Txw/dhDbt21CXl5uldfl5+chJORv7ZLM3n36N/pyPl3FxkRqg6/70tPTkJ2dVeu9J44fxoF9O7F5029ITIyv8hqVUol9e3cgNycbANChgy+cXdroVFvF8LJnz8b/uszKykDSvbq92rVHG1e3Rn8Nah1a108lRERERNRg528l4I21+1GqVInaHxvSFUtnDYZUz6fwNVW9e/VBUVERbty4jtzcXPz9919wd3NHO29v2NrYAhIJioqKkJychPj4OO0G3teuhiJQD780AuVBRlCvvjhz+jgAIGT7ZvQICIKrqzskUinS01Jx+9Z1FBcXwcvLGwn3lhedOnkU48ZPNvhG3GmpKfj1l+/RtVsA3NzcAUiQnJSAGzfCtB+vvn0H1Di7pLi4CCnJSZXa7+/dpFKptLO07jO3sKhytpZMJsOoMROx9e8N0Gg02LdnB6Iiw9Ghgy9MzcyQm5ODmzeuIienPITw9PJu9vuqAUC3boE4d/YUiooKceniOXTrHlinGT2WFpaQSqRQKstw6OAeXA69AN/OfnB0dIZUJkNebi4iI25rA1eZTIbgydPrtM9Ufcnlcu1hBgnxd7H+l+/QoYMvvLy8YWVlhdLSUqSkJCH89g3tPm+dOvmhV2/9Lv+sWdXfU3X5Tnt/b7z8/Dxs3vQbPL284ePTEba29hAEDTIy0nH71nVt6GxnZ6/zAQEVT+F0cXGFh6eXTvfVxfGjh7SP+/Yd0Oj9U+vB8IuIiIiIdHb8Size/ekglCrxBtRPjQ7Ey9P6N+sZLw0lkUgwZPBQuDi74Oy5MygpKUFKagpSUlOqvF4uN0Gv3n3RvYd+w5K+jwxEeloqoqLuQK1WI+zKpUrX9AgIwoiR47Bj+1+4GxuN5KQEpKWlGDz8enTwcJw6eRRXLl+o8vmAwF4YMHBIjX1kZmZo936qSlFRYaXnPT3b4YmZc6u83svLG8GTpmH/vp0oLS1FVOQdREXeqXSdj09HBE+a3iK+BuQmJhgxahx2hWxBWVkpjh87hInBj+l8v6eXN2bMnIsjh/chJSUJ2dmZOH8us8prHRwcMX7iVLi6ujdW+TWSyWSYGPwYzp87hdBL56BUKhEZcRuREbcrXSuRSNC7T38MHDTUqJ/XDh18cfLEYdGhC23auMHB0anWe3v36Q9rG1ucPH4YBQX5SEyIE+2hVVF7n44YO26SzhvKXw0L1YbS+piNeSf8JuLiyped+nfpDu/2TWMvRWqeGH4RERERkU72nY/Ah+uPQq0RL2FaMLkvnhnfq0X80t8YunTpik6dOiEiIgKxd2ORlZWJ4uJiSKVSmJtbwMHBAR06doaff7d67aVUV1KpFMGTp+PWreu4deMqMjLSoVIpYWVljbYeXugREARPz3YAgOBJ03D2zElERoajvRE2lu77yEB4eXnjcugFJCbFo7ioCCampnBzbYsegUHw9fU3eE0A0LGTH56Z54GrYaGIjYlCXn4ulGVlMDe3gKubO7p2C4Cvr3+L+hrw9fWHf5fuCL99AxF3bqFdu/Z1mtXWxtUNs558FndjoxEVdQdJSQkoVBRArVbD2toGjo7O8PPvhk6+fnrd964qUqkUAwYOQY+AINwJv4nY2GjkZGehuLgIZmbmsLa2QTtvH3TrFgBHJ2eD1lYVG1tbTJ46A8ePHURebi48PDwxcvQEncebn19XdOzgizsRtxEbE4n0tFQUFhZCJpPCytoG7m5t0aVrD3jpsHdZRcXFRTAxMYFMJod/l+71eM+ql5OdhcOH9gEoXxI7fMTYRu2fWh+J0FLOZaVmq6y4AIJQ8/HFJubWkEpl0GjUUJYoDFQZNXccN1QfHDdUXy197Gw9fhOfbzxZqX3REwMxc6T+9+lpSSQSKUwtGn9T6Oaq4l5ES5a+ZeRqqKLS0lJs3vQrMjLSIZVK8dj02Tpt7k6th0qlQl5eDpycXBqtz5KSYmzc8Atyc7Ihl5tg+hNPNutDJKhp4Ib3RERERFSjLcduVAq+pBIJ/j13GIMvohbMzMwMj02fDTt7B2g0Guzc8TeSkxKNXRY1IXK5vFGDr9LSEmzfugm5Odnls1YnTWPwRY2C4RcRERERVWv3mXB88ecpUZtMKsX7z49E8CDjLEEjIsOxsrLGtOmzYWtrh7KyUmzdsrHaUwOJGqKkpBhbNm9ASkoSpFIpxo6bDJ8OnYxdFrUQDL+IiIiIqEpHQqPx8W/HRW2mJjJ8+tJYjOzDX0iIWgt7ewfMnP0MXFzaQKksQ0L8XWOXRC1Qbm4OsrIyYWJigilTZ8C/Szdjl0QtCDe8JyIiIqJKTl+Pw3s/HYamwvawcpkUn/xjLPp3a2fEyojIGKytbfDEzKdx6+Y1BPXqa+xyqAVyc2uLyVMeh5mZGdzcPYxdDrUwDL+IiIiISCT0ThLe+u4A1JoHB9JIJRK8//woBl9ErZiZmRmDL9Ir7/YdjF0CtVAMv4iIiIhI60ZMGl7/Zi/KVGpR+1vPDMfwXvylhBqfV7v2cHV1h62dnbFLISKiForhFxEREREBACISMrH0q90oLlWJ2v81ezDG9+9spKqopes/YLCxSyAiohaOG94TEREREe6m5mDx6l0oKCoTtb8yrT+mDeWmw0RERNR8MfwiIiIiauWSM/OxaOUu5BaUiNrnTeiNp8b0NE5RRERERI2E4RcRERFRK5aRo8CrK3ciI7dQ1D5zZABemNTHSFURERERNR6GX0REREStVE5BMV5dtQvJmQWi9smPdsGrjw+ARCIxUmVEREREjYfhFxEREVErVFBUisWrdyEuNVfUPqZvJ7z25GAGX0RERNRiMPwiIiIiamWKSpRY+tUeRCZkidoHB7bH288Oh0zKHxGJiIio5eBPNkREREStSKlShWVr9+FGTJqovW8XT3zwwijIZTIjVUZERESkHwy/iIiIiFoJlVqNt78/iNA7SaL2wE5u+OQfY2FmIjdSZURERET6w/CLiIiIqBVQqTV4f90RnL4eJ2r3b+eCz14ZDwszEyNVRkRERKRfDL+IiIiIWjiNRsBHvx7D4dBoUbuPuwNWvDoB1hZmRqqMiIiISP8YfhERERG1YIIgYPmGE9h3PkLU7uFii1WLg2FvbWGkyoiIiIgMg+EXERERUQslCAK+/Os0Qk7dFrW7OVpjzZJJcLazMlJlRERERIbD8IuIiIioBRIEAd9sO4+/j94QtTvbWWL1kklwc7QxUmVEREREhsXwi4iIiKgF+mnXJfxxIEzU5mBjgdVLJsHTxc44RREREREZAcMvIiIiohbmt/1XsG53qKjN1soMqxcHo72bg5GqIiIiIjIOhl9ERERELcimw9ewdtt5UZu1hSlWLQpGRw8nI1VFREREZDwMv4iIiIhaiO0nbmHV5jOiNkszE6xYOBF+7VyMVBURERGRcTH8IiIiImoB9py9g+UbTojazEzk+Oyf49G9g6uRqiIiIiIyPoZfRERERM3coUtR+OjXY6I2U7kMy18ehyDftsYpioiIiKiJYPhFRERE1IwdD4vF++sOQyMI2ja5TIoPXxyDvl08jVgZERERUdPA8IuIiIiomTp7Ix7v/HAQas2D4EsmleCDF0ZhUA9vI1ZGRERE1HQw/CIiIiJqhi6FJ+LN7/ZDpdZo2yQS4J15IzAsqIMRKyMiIiJqWhh+ERERETUzV6NS8Po3+1CmVIva/z13GMb09TVSVURERERNE8MvIiIiombkZmwaln61ByVlKlH7v2YPxsSB/kaqioiIiKjpYvhFRERE1Ezcic/AktW7UVSiFLW/+vgATBvazUhVERERETVtDL+IiIiImoHopCwsXrUbiuIyUfs/pj6CWaMCjVQVERERUdPH8IuIiIioibubmoNXV+5CXmGJqP25ib3x9LheRqqKiIiIqHlg+EVERETUhCWm5+HVL3cip6BY1P7UmJ54PriPkaoiIiIiaj4YfhERERE1USlZBVi4cicy84pE7U8M746XH+sHiURipMqIiIiImg+GX0RERERNUHqOAgu/3Im0bIWofergrlg8YxCDLyIiIiIdMfwiIiIiamKy8orw6sqdSM7MF7VPGOCHf80ezOCLiIiIqA4YfhERERE1ITkFxXh15U7Ep+WJ2kf16YQ35w6FVMrgi4iIiKguGH4RERERNRH5haVYvHoXYlNyRO1De/rg3XnDIZPyRzciIiKiuuJPUERERERNQGFxGZas3oXIhCxR+8Ae7fDBC6Mgl8mMVBkRERFR88bwi4iIiMjIikqUWPrVHtyOyxC19/X3wIcLxsBEzuCLiIiIqL4YfhEREREZUUmZEq9/sxfXolNF7T193fHpy+NgZiI3UmVERERELQPDLyIiIiIjKVWq8Ma3+3E5IlnU3r2DKz57ZTzMTU2MVBkRERFRy8Hwi4iIiMgIlCo13vnhIC7cShS1+3u7YMXCCbAyNzVSZUREREQtC8MvIiIiIgNTqTV4f91hnLoWJ2rv5OGEla9OhLWFmZEqIyIiImp5GH4RERERGZBGI+CjX4/hyOUYUbuPuwNWLQ6GrZW5kSojIiIiapkYfhEREREZiCAI+GzjCew7HyFq93SxxarFwXCwsTBSZUREREQtF8MvIiIiIgMQBAGrNp/BjpO3Re1ujtZYvWQSnO2sjFQZERERUcvG8IuIiIjIAL7bcQF/HbkuanO2s8TqJZPg5mhjpKqIiIiIWj6GX0RERER69sueUPy674qozd7GHKuXTIKni52RqiIiIiJqHRh+EREREenRn4eu4vuQi6I2G0szrF40Ce3dHIxUFREREVHrwfCLiIiISE+2nbiJ1X+fFbVZmZti5aKJ6OTpZKSqiIiIiFoXhl9EREREerDn7B18tuGkqM3cVI4v/jkeXbzbGKkqIiIiotaH4RcRERFRIzt8KQof/XpM1GYql2H5y+MQ0MndOEURERERtVIMv4iIiIga0fErUfjPuiPQCIK2TS6T4qMXx6CPv6cRKyMiIiJqnRh+ERERETWSs9dj8ebXO6HWaLRtMqkE7z8/CgN7eBuxMiIiIqLWi+EXERERUSO4fCcBS1dthVKl1rZJJMDbzwzH8F4djFgZERERUesmN3YBTcX169exdetWnD9/HikpKRAEAU5OTujZsycmTZqEYcOG6dSPQqHA+vXrcfDgQSQkJECj0cDDwwMjR47EM888A0dHx2bZDxEREVXvZmwalqzahdIylaj9jTlDMbZfZyNVRUREREQAIBGEChtStEL5+fl45513sG/fvhqvGzJkCFatWgVLS8tqr4mOjsb8+fORlJRU5fPOzs5Yu3YtAgICanytptaPvpUVF0AQNDVeY2JuDalUBo1GDWWJwkCVUXPHcUP1wXFDdRWRkImFX4agoKhM1L5k5iA8MbyHkaqipkwikcLUwsbYZRAREbUarT78WrlyJdauXQt7e3vMmTMHI0aMgKenJ0pKShAVFYVff/0Vx44dAwCMHj0aX331VZX9KBQKTJkyBYmJiTAxMcHixYsRHBwMc3NzXLp0CZ9++ini4+Ph7OyM7du3w8XFpVn0YwgMv0hfOG6oPjhuqC7upuTg5RU7kFtQImp/+bF+mDM2yEhVUVPH8IuIiMiwWv2eX4sWLcJ7772HvXv3YuHChejWrRvs7Ozg6uqKQYMG4bvvvsPs2bMBAAcPHkRERESV/fz0009ITEwEACxfvhwvvPAC3NzcYG9vj1GjRuGVV14BAGRmZuKbb76ptp6m1g8RERFVLSkjH6+u3Fkp+Jo/ZQCDLyIiIqImpNWHXxKJBE8++WSNe1/NmjVL+zg6OrrS82q1Ghs3bgQABAUFYcKECZWe/+6777Rvb926FcXFxU2+HyIiIqpaeo4Ci1btRGZekah9zvi+mD91oJGqIiIiIqKqtPrwSxdlZQ/28GjTpk2l5y9fvoycnBwAwPjx4ys9v2XLFsTExGD69OkAgJKSEpw6darJ90NERESVZecX49WVu5CcWSBqnz48EItnDYdEIjFSZURERERUFYZfOli/fj0AwNfXF7169ar0/I0bN7SPg4LEyxyKi4uxZs0aBAYGYtGiRVXe01T7ISIiIrH8wlIsWb0L8Wm5ovax/Xzx+txRDL6IiIiImiC5sQtoajQaDZRKJQoLC3Hr1i388ssvOHnyJNq2bYtVq1ZV+UNtTEyM9rGnp6foufXr1yM9PR2ff/45XF1dIZfLoVKpRPc01X6IiIjogcKSMiz9ajciE7NE7UN7+uCtp4dDKmXwRURERNQUMfx6SEhICJYtW6Z928nJCQsXLsTTTz8NW1vbKu/Jzs7WPnZwcNA+zsnJwY8//oghQ4agX79+AABbW1tkZ2drlyU25X4MRW5mWes1EolU+38Tc2t9l0QtBMcN1QfHDVWlpEyJN77djZux6aL2AT3a46NXpsDURM6xQ0RERNREMfx6SGxsrOjtrKws/PbbbygsLMTChQthaVk5qLm/WbypqaloZti3334LhUKBpUuXattMTU0BAEVF4g1ym2I/hiKVynS+ViKRQCLR/XoigOOG6ofjhu5TqtR446udCA1PELX38vPCZ69Og7mZiaidY4eIiIioaWH49ZAlS5ZgyZIlKCwsRGJiInbt2oXff/8d69atw6lTp7Bx40ZYW1f911yp9MEWaklJSdiwYQOCg4Ph7++vbddoNLXW0NT60TeNRl3rNRKJFBKJBIIgQBCMXzM1Dxw3VB8cN1SRSq3B22t34fQ18fYAXX3c8MXiqTAzkWr/HePYobqoyx//iIiIqGEYflXDysoKfn5+8PPzw4gRI/Dkk08iIiICK1euxNtvvy269v5sMKVSqW1buXIlBEEQbSoPAKWlpaJ7mnI/hqIqLar1lwQTc2tIJDIIggbKEoWBKqPmjuOG6oPjhu7TaAR8+OtRHL4UIWrv6OGIFf8cBzOJEsqSB//WcuyQriQSKUwtbIxdBhERUavB0x51EBQUhN69ewMAtm3bVul5R0dHAIBarUZBQQHCw8Oxa9cuzJo1C15eXtrrlEolCgoKRPc05X6IiIhaK0EQsGLTKew9Jw6+2rnaYdWiYNhamRupMiIiIiKqK4ZfOmrfvj0AQKFQiDaUB4AOHTpoHyclJeHzzz+HhYUFXn75ZdF1KSkp2mWGPj4+lV6jqfVDRETUGgmCgG+2ncfW4zdF7W6O1li1aBIcbY03W5qIiIiI6o7hl45KSkoAlG9ia2VlJXque/fu2sfr16/HyZMn8dxzz1WaTXX58mXt4x49elR6jabWDxERUWv0y97L+ONAmKjNydYSqxdPgqsjT3EkIiIiam4YfulArVYjNDQUAODt7Q0zMzPR80FBQXBwcAAAbN26FU5OTpg3b16lfvbt2wcAMDc3x6BBgyo939T6ISIiam02Hb6GH0IuitrsrMyxanEwPNvYGakqIiIiImqIVh9+/fDDD5g7dy5yc3OrvWbt2rVITk4GADz11FOVnpfJZJg9e7b27WeffbbS7LAzZ87g2LFjAIDp06fDwsKiyfdDRETUmuw6HY5Vm8+I2qzMTbFy0UR0aMu9MYmIiIiaK4kgCIKxizCW8PBwzJw5EyUlJbC3t8fcuXMxfPhweHl5Qa1W486dO9iwYQP2798PAOjfvz9+/PFHmJiYVOpLoVBgypQpSExMhJubG5YtW4b+/ftDo9Hg4MGDWL58OYqKiuDs7Izt27fDxcWlypqaWj+GUFZcoNNpj1KpDBqNmidokc44bqg+OG5ap+NhsXjruwPQVPixyNxUjpWvTkRAJ3ed+uDYIV3xtEciIiLDatXhFwCEhobi3//+N+7evVvjdcHBwXj//fdhbV39Xh/R0dGYP38+kpKSqnze2dkZa9euRUBAQI2v1dT60TeGX6QvHDdUHxw3rc/lO0n4vzV7UKZSa9tM5FJ8/soE9O3iqXM/HDukK4ZfREREhtXqwy+gfE+vPXv24MiRI7h27RoyMzMhl8vh6uqK3r17Y8qUKejTp49OfSkUCqxfvx4HDhxAQkICBEFA27ZtMXLkSDz77LOVNp1vLv3oE8Mv0heOG6oPjpvW5U58Jl5ZsQNFJUptm1QiwYcvjsHQnnU7CZljh3TF8IuIiMiwGH6R0TH8In3huKH64LhpPRLScvGPz3cgp6BY1P7m3KGYNKhLnfvj2CFdMfwiIiIyrFa/4T0RERG1Phm5hVi8enel4Oulx/rVK/giIiIioqaL4RcRERG1KvmFpViyejdSsgpE7bNHBWLOmJ7GKYqIiIiI9IbhFxEREbUaJWVKvP7NXsQkZ4vaJ/TvjFem9YdEIjFSZURERESkLwy/iIiIqFVQqdV4+4eDuBadKmof1MMbb8wdCqmUwRcRERFRS8Twi4iIiFo8jUbAR78ex5nr8aL2wE5u+N/80ZDLZEaqjIiIiIj0jeEXERERtWiCIGDNlrPYdz5C1N7JwwnLXx4PM1O5kSojIiIiIkNg+EVEREQt2m/7r2DT4WuitrbOtljx6gTYWJoZqSoiIiIiMhSGX0RERNRi7Th5C99uvyBqc7S1wMpFE+FsZ2WkqoiIiIjIkBh+ERERUYt07EoMPttwUtRmZW6KFQsnwtPFzkhVEREREZGhMfwiIiKiFif0ThLe++kQNIKgbTM1kWH5K+PQ2cvZiJURERERkaEx/CIiIqIWJTwuA8vW7oNSpdG2yaQS/PeF0QjybWvEyoiIiIjIGBh+ERERUYsRlZiFxat3oahEKWp/Y85QDA5sb5yiiIiIiMioGH4RERFRixCbnI1XV+1EfmGpqP2f0/pj4kB/I1VFRERERMbG8IuIiIiavfi0XLy6chdyC0pE7XPHBuHJMT2NUxQRERERNQkMv4iIiKhZS8rIx8IvdyIrv0jUPnNED/xj6iNGqoqIiIiImgqGX0RERNRspWYXYOGXIcjILRS1PzakK159YiAkEomRKiMiIiKipoLhFxERETVLGTkKLPxyJ1KzFaL2SYP8sXTWYAZfRERERASA4RcRERE1Q1l5RVi4cheSMvJF7eP6dcbrTw2BVMrgi4iIiIjKMfwiIiKiZiWnoBivrtqJ+LRcUfvI3h3x76eHQSbljzdERERE9AB/OiQiIqJmI7+wBItX7UJsco6ofUhge7z33AjIZfzRhoiIiIjE+BMiERERNQuK4lIsXr0bkYlZovYB3dvhgxdGQy6TGakyIiIiImrKGH4RERFRk1dYUob/W7MH4XEZova+XTzx0YtjYGrC4IuIiIiIqsbwi4iIiJq04lIlXvt6L27EpInag3zd8elLY2FmIjdSZURERETUHDD8IiIioiartEyFZWv3ISwyRdTeo4MrPntlAsxNTYxUGRERERE1Fwy/iIiIqEkqU6rx5nf7cSk8SdTexdsFXyycAEtzBl9EREREVDuGX0RERNTkqNRqvPPjQZy7mSBq7+zljC9fDYa1hZmRKiMiIiKi5obhFxERETUpao0G//3lKE5evStq79DWESsXTYStFYMvIiIiItIdwy8iIiJqMjQaAcv/OIGDF6NE7d5u9li9OBj21hZGqoyIiIiImiuGX0RERNQkCIKAVZtPY+fpcFF7W2dbrF4UDEdbSyNVRkRERETNGcMvIiIiahK+D7mIzUdviNraOFhhzeJguDhYG6kqIiIiImruGH4RERGR0f267zLW770sanO0tcDqxZPg7mxrpKqIiIiIqCVg+EVERERGtfnodXy7/YKozcbSDKsWBaOdq71xiiIiIiKiFoPhFxERERnNrtPh+HLTaVGbpbkJvnx1Ijp6OBmpKiIiIiJqSRh+ERERkVEcvBiFj38/JmozM5Hj81cmoGv7NsYpioiIiIhaHIZfREREZHAnr97FBz8fgSA8aDORS/HJS2PR09fdeIURERERUYvD8IuIiIgM6uLtRLz9wwGoNRptm0wqwQcvjEa/rl5GrIyIiIiIWiKGX0RERGQwV6NSsGztPihVD4IviQR459kRGNrTx4iVEREREVFLxfCLiIiIDOJ2XDr+9dVelJSpRO3LnhqKMY/4GqkqIiIiImrpGH4RERGR3kUnZWPJ6t0oLCkTtS96YiAmP9rFSFURERERUWvA8IuIiIj0KiEtF4tW7UR+YamofcHkvpg5MsBIVRERERFRa8Hwi4iIiPQmJTMfr67chez8YlH73LFBeGZ8LyNVRUREREStCcMvIiIi0ou0bAX++eVOpOUoRO2PD+uOf0x9BBKJxEiVEREREVFrwvCLiIiIGl1mXiEWfhmClKwCUfvEgX5YPGMQgy8iIiIiMhiGX0RERNSosvOL8eqXu5CYkS9qH923E96YMxRSKYMvIiIiIjIchl9ERETUaPIUJVi0aifupuaI2ocFdcA7z46ATMofPYiIiIjIsPgTKBERETWK/MJSLFq1C9FJ2aL2RwO88f7zIyGX8ccOIiIiIjI8/hRKREREDVZYXIb/W7MbEQmZovb+3bzwv/ljYCKXGakyIiIiImrtGH4RERFRgxSVKLH0qz24dTdd1N7bzwMfvzgWpiYMvoiIiIjIeBh+ERERUb2VlCnx+jd7cS06VdQe2Mkdy18eBzNTuZEqIyIiIiIqx/CLiIiI6qVUqcKytftxOSJZ1N7NxxWf/3M8LMxMjFQZEREREdEDDL+IiIiozpQqNd76/gAu3k4Utfu3c8GKhRNgZW5qpMqIiIiIiMQYfhEREVGdqNRqvPvjIZy5Hi9q7+ThhJWLJsLG0sxIlRERERERVcbwi4iIiHSmUmvw/s9HcDwsVtTu4+6AVYuDYWtlbqTKiIiIiIiqxvCLiIiIdKLWaPDRr8dw+FK0qL2dqx1WL54EBxsLI1VGRERERFQ9hl9ERERUK41GwPI/TmDf+QhRe1tnW6xZPAlOdpZGqoyIiIiIqGZGO39crVYjMjISaWlpKCgogEqlwtSpU41VDhEREVVDEAR8tfUsdp4OF7W7OlpjzZJJcHGwNlJlRERERES1M3j4deXKFfz66684evQoSktLRc9VFX6FhIQgKCgIXl5eBqqQiIiIKvptfxj+PHRN1OZib4U1SybB3cnGSFUREREREenGYOGXIAj48MMPsWHDBgiCAEEQRM9LJJJK93z55Zf4/vvv0b9/f/z888+GKpWIiIjuCTl1G99uPy9qc7CxwOrFk+DpYmekqoiIiIiIdGew8Oudd97Bli1bIAgC2rZti0mTJqFLly6IjY3FqlWrqrynd+/eEAQB586dw7Vr1xAQEGCocomIiFq9Y1disPyPE6I2K3NTrFg4Ed5u9sYpioiIiIiojgwSfp05cwZ///03JBIJZsyYgbfffhumpqYAgGPHjlV735AhQ9ClSxeEh4cjJCSE4RcREZGBhN5Jwns/HYKmwkxtU7kMy18eB792zkasjIiIiIiobgxy2uNff/0FAOjSpQs++OADbfCli5EjR0IQBFy8eFFf5REREVEFd+IzsGztPihVGm2bVCLBBy+MQlDntkasjIiIiIio7gwSfoWFhUEikeCxxx6r870+Pj4AgOTk5MYui4iIiB4Sn5aLJWt2o6hEKWp/Y+5QDOnpY6SqiIiIiIjqzyDhV1ZWFgDA3d29zvfenyVWXFzcqDURERGRWEaOAotX7UJuQYmo/ZVp/RE80N9IVRERERERNYxBwi8LCwsAD0KwuoiNjQUA2NvbN2ZJREREVEF+YQkWr96N1GyFqP2p0YF4akxP4xRFRERERNQIDBJ++fn5AQAOHjxYp/sEQUBISAgkEgm6du2qj9KIiIhaveJSJZZ+tRexKTmi9uCB/nh5Wn8jVUVERERE1DgMEn5NmDABgiDg9OnT2L59u873rV69GlFRUQCA8ePH66k6IiKi1kupUuOt7w/gZmyaqH1IYHu8/tQQSCQSI1VGRERERNQ4DBJ+Pf744+jUqRMEQcC///1v/O9//0N0dHS119++fRtLly7Ft99+C4lEgs6dO2Py5MmGKJWIiKjV0GgE/G/9UZy7mSBqD/J1x/svjIJcZpAfE4iIiIiI9EoiCIJgiBdKTU3FrFmzkJqaqv0rsrm5OczMzJCbmwuJRIJ27dohKysLhYWFAMqXPbq6uuKvv/6Cq6urIcokIygrLoAgaGq8xsTcGlKpDBqNGsoSRY3XEt3HcUP10VrGjSAI+PKv0/j76A1Ru6+XE77+v8mwtjAzUmXNV2sZO9RwEokUphY2xi6DiIio1TDYn3Td3NywadMmjB49GoIgQBAEFBcXIy8vTxuGxcfHQ6FQaJ8fOnQo/vzzTwZfREREjeyXPZcrBV+eLrb4cuFEBl9ERERE1KIYbOZXRVeuXMGePXtw/PhxJCcnQ6VSAQDkcjlcXV0xZMgQjB07Fv37c5Pd1oAzv0hfOG6oPlrDuNl6/CY+33hS1OZsZ4lvX5uKts62Rqqq+WsNY4caB2d+ERERGZZRwq+H5eSUny7l4OBg5ErIGBh+kb5w3FB9tPRxc+xKDN76/gAq/utvY2mKb5ZOQUcPJ+MV1gK09LFDjYfhFxERkWHJjV0AwNCLiIjIEG7HpeP9dUdEwZeZiRyfvzKBwRcRERERtVg8xomIiKgVSMtW4PWv96FUqdK2yaRSfLhgNHp0dDNiZURERERE+sXwi4iIqIUrKlHi9W/2Iiu/SNT++lODMbCHt5GqIiIiIiIyDIZfRERELZhao8F7Px1CZGKWqP2p0YGYNKiLkaoiIiIiIjIcg+z59fTTT1dqk0gkWLFiBZycms4eI6GhoQgJCcGFCxeQmZmJ0tJSuLi4oGfPnpg2bRoGDRpU4/1bt27Fm2++qdNrPffcc1i2bFmN1ygUCqxfvx4HDx5EQkICNBoNPDw8MHLkSDzzzDNwdHTU6bUaqx8iImp+vtpyDqevx4nahgS2x0uP8URlIiIiImodDBJ+XbhwARKJBBUPlpRIJCgtLTXEy9equLgY7777LkJCQio9l5iYiMTEROzatQvTpk3D//73P8hksga/Zrdu3Wp8Pjo6GvPnz0dSUpKoPTIyEpGRkfj777+xdu1aBAQEGKQfIiJqfrafuIVNh6+J2vzaOeO950ZCKpUYqSoiIiIiIsMySPglkZT/gO3r6wt7e3ttu5mZmSFevkZlZWV44YUXcOnSJUilUsycORNTpkyBt7c3lEolbt++jRUrVuDOnTvYunUrnJyc8K9//avWfq9du1bj8yYmJtU+p1AosGDBAiQlJcHExASLFy9GcHAwzM3NcenSJXz66aeIj4/HSy+9hO3bt8PFxUWv/RARUfNz8XYivvjzpKjN2c4Sy18aBwuz6v8NIiIiIiJqaQwSftna2iI/Px8LFizApEmTDPGSOjM1NcVTTz2F+Ph4fPLJJ5WWNrq6uqJfv36YNGkSEhIS8Ouvv+L555+Hg4NDjf02JNj76aefkJiYCABYvnw5JkyYoH1u1KhRUCgUWLZsGTIzM/HNN9/gvffe02s/RETUvNxNycFb3x+AWvNgxrW5qRyfvTIeLg7WRqyMiIiIiMjwDLLhvb+/P4Dy5Y9N0YQJE3D06NFq9/SysLDAnDlzAAClpaV6fT/UajU2btwIAAgKChIFVvef/+6777Rvb926FcXFxXrrh4iImpdcRTH+9fVeKIrLtG0SCfCf50bCrx1n+BIRERFR62OQ8OuJJ56AIAjYsWMHIiMj63TvsWPH0KVLF3Tt2lVP1ZWTy2ueBOfj46N9nJGRobc6Ll++jJycHADA+PHjKz2/ZcsWxMTEYPr06QCAkpISnDp1Sm/9EBFR81GmVOPNb/cjOTNf1P7KY/0xpKdPNXcREREREbVsBgm/goOD8dhjj6GsrAzz58/H7du363S/IAiizfKNoaioSPvYzs6uTvdqNBqdr71x44b2cVBQkOi54uJirFmzBoGBgVi0aFGV9zR2P0RE1DwIgoCPfz+Gq1GpovZJg/wxe3SgkaoiIiIiIjI+g+z5BQAff/wxnJ2d8fPPP+OJJ57AnDlzMG/ePLi6uhqqhAapuIF9z549a70+JCQE27dvR0REBDIzM2FhYYHAwEDMmTMHo0aNqva+mJgY7WNPT0/Rc+vXr0d6ejo+//xzuLq6Qi6XQ6VSie5p7H4MQW5mWes1EolU+38Tc+5XQ7rhuKH6aK7j5qeQs9h/Xjy7uk8XL7w5bzxM5A0/pZhq11zHDhEREVFLZ7DwS6VSYcaMGWjTpg2++OILrF+/Hr///jv69+9fY5h09+5dQ5VYrbKyMuzcuRNA+SwqLy+vWu957bXXRG8XFRXh7NmzOHv2LObOnYu33367yvuys7O1jytuqp+Tk4Mff/wRQ4YMQb9+/QCUHySQnZ2tXd6oj34MQSrV/ZcyiUQCiYS/xFHdcNxQfTSncXPg/G18u/W0qM3bzRGfvToNZqamRqqq9WpOY4eIiIioNTBI+DV48GBkZWVVWrqoUqlw+vRpnD59upo7m4bvv/9eu8/Xq6++Wu11Hh4eGDt2LExMTNC3b1/069cPbm5uKCsrw7lz5/DZZ58hISEBv/32G7p27Ypp06ZV6uP+pvOmpqaQSCTa9m+//RYKhQJLly7Vtpne+4Wm4pLMxu7HEDQada3XSCRSSCSSe0tgdV9GSq0bxw3VR3MbNzeiU/Cf7/eI2uyszPHlksdgbWGi0/dYahzNbeyQcdXlj39ERETUMAYJv2raIN7Ye3nV5vLly/j2228BlG/cP3DgwGqv7devn3Y2VUUWFhYYO3YsAgICEBwcDIVCgbVr11YZft0nlT7Yji0pKQkbNmxAcHCw9uRMQLe9xBqrH31SlRbV+kuCibk1JBIZBEEDZYnCQJVRc8dxQ/XRnMZNSlYB/m/lVpQqVdo2uUyKj/4xBm52Jk2+/pamOY0dMi6JRApTCxtjl0FERNRqGGzZo0QiwZIlS3TaL6uisLAwrFixQj9F1SIxMRGvvPIKlEolunfvXu1SRV25u7tj3Lhx+PvvvxEfH4+EhIRKSygtLcv3v1Iqldq2lStXQhAE0eb0AFBaWiq6Rx/9EBFR01RYXIbXvt6LnIJiUfsbc4YiyLetkaoiIiIiImp6DBZ+AYCfnx8eeeSROt1jrKV4aWlpmDdvHrKzs+Hl5YW1a9fC3Ny8wf36+vpqH8fHx1cKvxwdHQEAarUaBQUFSEpKwq5du/DUU0+JrlUqlSgoKBDdo49+iIio6REEAR/8cgQxydmi9qfHBWHCAD8jVUVERERE1DRJa7+kcTT15Y0VZWZmYt68eYiPj4eHhwfWr1+PNm3aNErfFhYW2scVZ2Xd16FDB+3jpKQkfP7557CwsMDLL78sui4lJUW7XNHHx0dv/RARUdOz+egNnLx6V9Q2LKgDFkyu2x+YiIiIiIhaA4PM/AoPD6/3vcOGDWvQ/XWVlpaGZ555BrGxsfD29sa6devg4eHRaP1X3P/M1dW10vPdu3fXPl6/fj1OnjyJhQsXVpqVdfnyZe3jHj166K0fIiJqWu7EZ+DrrWdFbf7tXPDuvOGQSiXV3EVERERE1HoZbOZXc5CQkIDZs2cjNjYW/v7+2LBhAzw9PRv1Nc6cOQMAsLGxqXKmVVBQEBwcHAAAW7duhZOTE+bNm1fpun379gEAzM3NMWjQIL31Q0RETUdhSRne+eEglKoHh4RYW5jifwtGw9zUxIiVERERERE1XQy/7omIiMDs2bORlJSEgQMH4o8//oCzs7PO9wuCgE8++QSHDh2q9pq9e/ciNDQUADB16tQq9xCTyWSYPXu29u1nn30WVlZWomvOnDmDY8eOAQCmT58uWkrZ2P0QEVHTIAgClv9xAokZ+aL2N+YMRVtnWyNVRURERETU9EmE5rQZl55cuXIFL774IvLy8jB+/Hj873//g4lJ9X9Bl0gkMDU1FbX9+OOP+OyzzwAAo0aNwvTp09G9e3dYWloiOTkZISEh+Pnnn6FSqeDt7Y0tW7bAxqbqI64VCgWmTJmCxMREuLm5YdmyZejfvz80Gg0OHjyI5cuXo6ioCM7Ozti+fTtcXFz02o++lRUXQBA0NV5jYm4NqVQGjUbN4+NJZxw3VB9NddzsPH0bH/92XNT22JCueO3JIUaqiB7WVMcONT0SiRSmFlX/HEhERESNj+EXgLlz5+LChQs6X9++fXvs379f1KZSqfDFF1/gt99+q3Ij+/sCAgKwYsWKSqc8Piw6Ohrz589HUlJSlc87Oztj7dq1CAgIMEg/+sTwi/SF44bqoymOm5jkbDz/8VaUKlXatk4eTvhh2WMwMzXowc1Ug6Y4dqhpYvhFRERkWPyJuR6q2qtLLpdj2bJlmDVrFjZv3oxTp04hOTkZxcXFcHFxQefOnREcHIxx48ZBLq/9w96xY0eEhIRg/fr1OHDgABISEiAIAtq2bYuRI0fi2WefrbR5vT77ISIi4ygpU+KdHw+Kgi9zUzk+mD+KwRcRERERkQ6MMvMrLCwMe/fuxbVr15CQkICCggLIZDI4OTnB3d0dgwYNwsiRI9GpUydDl0ZGwJlfpC8cN1QfTW3cfPL7cYScui1qe+vpYZg40N9IFVF1mtrYoaaLM7+IiIgMy6DhV2RkJN59912EhYWJ2u+XIJGIj2ifOHEiXnvtNbi6uhqqRDIChl+kLxw3VB9NadwcuhSFd38UH6Qytp8v3n12RKV/M8n4mtLYoaaN4RcREZFhGey0x4sXL2LWrFkICwuDIAii/0xMTCCXyyu17969GzNnzqx2vyoiIqKWKjEjD5/8Lt7g3quNHf41ezCDLyIiIiKiOjDIZiEFBQVYvHgxCgsLAQA9e/bE9OnT0atXL3h5eWlPTiwrK0NCQgJCQ0OxZcsWXL16FampqXjuuecQEhICMzMzQ5RLRERkVEqVGu/+eAhFJQ8OUDGVy/Df+aNhZW5aw51ERERERPQwg8z82rBhA7KysiCRSPB///d/+PPPP/HEE0+gY8eO2uALAExNTdGxY0fMmDEDmzZtwuLFiwEA8fHx2LRpkyFKJSIiMrpvtp1HeFyGqG3h4wPQ2cvZSBURERERETVfBgm/jh49ColEgoEDB2LBggU63/ePf/wDAwYMgCAI2L9/vx4rJCIiahpOXbuLTYevidqG9vTBtKHdjFQREREREVHzZpDwKy4uDgAwduzYOt87btw4AOWb5RMREbVkadkK/G/9UVGbm6M13pw7jPt8ERERERHVk0HCr4KCAgCAo6Njne91cnICABQVFTVqTURERE2JSq3Bf9YdQn5hqbZNJpXg/RdGwdaKe14SEREREdWXQcIvW1tbAKjXqY0pKSkAAHt7+8YsiYiIqElZt/sSrkalitoWTHkEPTq4GakiIiIiIqKWwSDhl7+/PwRBwI4dOyAIgs73CYKAkJAQSCQS+Pr66rFCIiIi47kUnoj1ey+L2vp19cJTo3sapyAiIiIiohbEIOHXhAkTAAC3b9/Ge++9h7KyslrvUalU+OCDD3D9+nUAwJgxY/RaIxERkTFk5xfh/XVHUPFvQ062lnjn2RGQSrnPFxERERFRQ0mEukzFqie1Wo0ZM2bg5s2bkEgkcHNzw+TJk9G7d2+0a9cO1tbWAIDCwkIkJCQgNDQUO3bsQEpKCgRBQPv27bFr1y7I5XJ9l0pGUFZcAEHQ1HiNibk1pFIZNBo1lCUKA1VGzR3HDdWHIceNWqPB0q/24MKtRG2bRAKsWjQJffw99Pra1Pj4PYd0JZFIYWphY+wyiIiIWg2DhF8AkJ2djSeffBJ3797V+cQqQRDg6uqKX3/9Fd7e3nqukIyF4RfpC8cN1Ychx833IRfwyx7xcsd5E3pj/uS+en1d0g9+zyFdMfwiIiIyLIMsewTKT3r8+++/MW/ePMhkMgiCUON/UqkUU6dOxbZt2xh8ERFRi3Pq2t1KwVdgJ3fMm9jbSBUREREREbVMBpv5VVF2djZOnDiBM2fOICUlBTk5OVCr1bC1tYWXlxcCAwMxduxYtGnTxtClkRFw5hfpC8cN1Ychxk1ieh6e+3gLFMUP9sB0tLXAz/9+HC72Vnp5TdI/fs8hXXHmFxERkWEZJfwiqojhF+kLxw3Vh77HTXGpEguWb0N0Ura2TSaVYPWSSQjybdvor0eGw+85pCuGX0RERIZlsGWPRERErZ0gCPj09+Oi4AsA/jl9AIMvIiIiIiI9YfhFRERkIH8fu4EDF6NEbSP7dMSMET2MVBERERERUcvH8IuIiMgArkalYPXms6I2n7YOeHPOMJ1PQSYiIiIiorpj+EVERKRnmXmFePv7g1BrHuxvaGVuio9fHAtLcxMjVkZERERE1PIZLPw6e/YsVq5cCY2m5o3NK1Kr1fj0009x9uzZ2i8mIiJqglRqNd754SCy8otE7e88OxztXO2NUxQRERERUSsiN8SLqFQqvPXWW0hJSUFWVhb++9//6nTfhx9+iA0bNuDw4cPYv38/l4UQEVGz89WWc7galSpqe3pcEIb09DFSRURERERErYtBZn7t2bMHycnJAICpU6fqfN/MmTMhkUiQkJCAgwcP6qk6IiIi/ThwMRJ/Hbkuauvr74H5k/saqSIiIiIiotbHIOHXoUOHAACBgYHo3bu3zvf5+flh4MCBAMDwi4iImpXopCx88ttxUZurozXef2EUZFJuuUlEREREZCgG+en7+vXrkEgkGD58eJ3vffTRRyEIAq5evaqHyoiIiBqforgUb367HyVlKm2biVyKj14cA3trCyNWRkRERETU+hgk/MrKygIAtG/fvs73tm3bFgCQkZHRmCURERHphUYj4IOfjyIxI1/UvnTWYHTxbmOkqoiIiIiIWi+DhF/Se8s7lEplne9Vq9UAUKdTIomIiIzlt/1XcOraXVHbpEH+mPxoF+MURERERETUyhkk/HJzcwOAei1dvHHjBgCgTRv+tZyIiJq287cS8H3IBVGbv7cL/m/Wo0aqiIiIiIiIDBJ+9e7dG4IgYNu2bXVavlhQUIBt27ZBIpEgMDBQjxUSERE1TEpmPt776RAE4UGbnZU5PlwwBmYmcuMVRkRERETUyhkk/Hr88ccBAIWFhZg/fz7S0tJqvaewsBCLFy9GTk4OAGDy5Ml6rZGIiKi+SstUeOv7g8gvLNW2SSUSfPDCKLg72RixMiIiIiIiMkj4FRQUhMcffxyCIODOnTuYOHEiPvvsM4SGhkKhUGivKysrQ3h4OH788UdMmjQJZ86cgUQiwdChQzFkyBBDlEpERFQngiDgw1+PITxePLN5wZS+6NvF00hVERERERHRfRJBqLhAQ3/UajUWLFiA06dPQyKRiJ6TyWSQSqWVNsQXBAF+fn7YsGEDrKysDFEmGUFZcQEEoeYDDUzMrSGVyqDRqKEsUdR4LdF9HDdUH3UdNz/vDsUPOy+K2oYEtsfH/xhb6d87atn4PYd0JZFIYWrBWaFERESGYpCZX0B5wPXDDz9g6dKlMDMzgyAI2v9UKhXKyspEbQDw1FNPYePGjQy+iIioSTp6OaZS8OXj7oC3nx3O4IuIiIiIqIkw2MyvirKzs3Hw4EEcOXIEcXFxyMjIgEajgZOTE9zd3TF48GCMHz8eXl5ehi6NjIAzv0hfOG6oPnQdN3fiM/CPz3agVKnSttlZmePHN6bBw8XWEKVSE8PvOaQrzvwiIiIyLKOEX0QVMfwifeG4ofrQZdxk5hXihU+2Ij2nUNsmk0qxenEwgjq3NVSp1MTwew7piuEXERGRYRls2SMREVFLUKpU4c1v94uCLwB47cnBDL6IiIiIiJoghl9EREQ6EgQBH/96DDdj00XtM0f0wORHuxipKiIiIiIiqgnDLyIiIh39uu8KDlyMErX17+aFV6YPMFJFRERERERUG4ZfREREOjh+JRbf7bggamvv5oAPXhgFuYz/nBIRERERNVX8aZ2IiKgWEQmZeP/nw6I2WyszLH95HKwtzIxUFRERERER6UJuqBfKyspCXl4eOnToUO01KSkp2LJlC2JjYyGRSNCrVy9MmzYN5ubmhiqTiIhIJCuvCMu+2YeSMpW2TSaV4sMFY+DZxs6IlRERERERkS4MFn598skn2L9/P15//XXMmTOn0vOHDx/G0qVLUVpaqm3bvXs3/vjjD/zxxx+wt7c3VKlEREQAyk92fOPb/UjLUYjal856FL39PIxUFRERERER1YVBlj0mJCRg9+7dUCqVEASh0vMpKSl47bXXUFJSAkEQRP/FxMRg6dKlhiiTiIhISxAEfPL7cdyMTRO1Pz68O6YO6WqkqoiIiIiIqK4MEn7t2LEDGo0GLi4umDlzZqXnv//+exQVFUEikWDMmDH45ptvsGLFCvj5+UEQBJw5cwaXL182RKlEREQAgPW7L2D/+UhR2yNdPfHq4wONVBEREREREdWHQZY9njt3DhKJBKNHj4apqanoubKyMuzYsQMSiQQDBw7E6tWrtc/1798fo0ePRlFREXbv3o1evXoZolwiImrljoVG4pstJ0Vt7Vzt8d8XRvNkRyIiIiKiZsYgP8HHxcUBALp2rbxM5NSpUygqKgIALFiwQPSco6MjgoODIQgCwsLC9F4nERFRRHw63v52Jyqu0rexNMNnL4+DjSVPdiQiIiIiam4MEn7l5uYCAOzsKp+KdfToUQCAg4MD+vXrV+n5+4FZcnKy/gokIiICkFNQjKWrtqG4VKltk0kl+HDBGHi52huvMCIiIiIiqjeDhF9yefnqSrVaXem548ePQyKRYNCgQVXe6+TkBAAoKCjQX4FERNTqCYKAD389itQs8b83S2Y+ij7+PNmRiIiIiKi5Mkj41aZNGwAPlj/ed+HCBaSnpwMABg8eXOW990MvKysrPVZIRESt3eajN3DmeryobfrQbpg2tJuRKiIiIiIiosZgkPCrR48eEAQBO3fuRGlpKYDyv7B//fXXAAATExMMGzasynsjIiIAlO//RUREpA+RiZn4eutZUVtAp7ZYNIMnOxIRERERNXcGOe1x8uTJ2LVrF6KiovD4449j8ODBuH79Oi5evKg9BdLW1rbKe48cOQKJRIKePXsaolQiImplSsqUePfHQ1CqNNo2a0sz/PfFiZDLZEasjIiIiIiIGoNBwq8hQ4Zg4MCBOHPmDKKiohAVFaV9ztzcHIsXL67yvgMHDiAuLg4SiaTamWFEREQNsXrzWcSl5ora3np2LNq62EFZojBOUURERERE1GgMsuwRAFauXImBAwdCEATtf46OjlizZg28vLwqXV9WVoYPP/wQEokE7dq1w5gxYwxVKhERtRLHrsRg+8lborZJg7tjTP8uRqqIiIiIiIgam0FmfgGAra0t1q1bh/DwcMTExMDBwQE9e/aEhYVFldebmppi6dKlePvtt/HOO+9AIpEYqlQiImoF0rIV+Pi346I2rzZ2+NdTI4xUERERERER6YNEEATB2EXUJCUlBe7u7sYug/SorLgAgqCp8RoTc2tIpTJoNGouQyKdcdxQddQaDV79cieuRKZo2+QyKb5//TH08PPhuKF64fcc0pVEIoWphY2xyyAiImo1DLbssb4YfBERUWP7dd8VUfAFAP+Y8gj8vV2MVBEREREREelLkw+/iIiIGtP1mFSs23VJ1PZIV0/MGhVopIqIiIiIiEifGH4REVGroSguxX9+Ogy15sGKf3sbc7zzzAhIpdxbkoiIiIioJWL4RURErYIgCFj+x0mkZBWI2t9+ejic7CyNVBUREREREekbwy8iImoV9p6LwKFLUaK2J4Z3x8Ae3kaqiIiIiIj+n737Do+qSv8A/r1Tkpn03kMIgdADEZDeO2LFuhaKomBfy2Lhp7v2tquuu4BdRFFXQcVCEwiE3ntPSO89k0yf+/sjZMg4qTAzd5J8P8+zz07ec+fkdbiEzDvnvIfIFVj8IiKiDi+7sAL//DbVJtYjJhgP3jRMooyIiIiIiMhVWPwiIqIOzWgy48VPN0GrN1ljnkoF/nHvJHgqFRJmRkRERERErsDiFxERdWgf/bwXp7OKbWKP3ToCXSMDJcqIiIiIiIhcicUvIiLqsPaezMbXG4/YxMYlx+P6Ub0lyoiIiIiIiFyNxS8iIuqQyqu1ePmLLTaxsEBvPHPXWAiCIFFWRERERETkaix+ERFRhyOKIl79cgtKq2qtMUEAXpw7EX7eKgkzIyIiIiIiV2Pxi4iIOpz/bT6GnceybGKzp1+F5MQoiTIiIiIiIiKpsPhFREQdytHz+fjPqt02sX7dwjHvmsESZURERERERFJi8YuIiDqMsqpaLP54I8wWizXmrfLA3+dNhELOf/KIiIiIiDojvhMgIqIOwWS24IVP/kBJZa1NfPGc8YgK8ZMoKyIiIiIikhqLX0RE1CF8+PNeHDybZxO7a+pAjB0YL1FGRERERETkDlj8IiKidm/roQv4esNhm9hVPaNw/3VXS5MQERERERG5DRa/iIioXcsqrMDLyzfbxEL8vfDSvZPY54uIiIiIiFj8IiKi9kurN+K5DzegVme0xuQyGV69fwqC/LwkzIyIiIiIiNwFi19ERNQuiaKIN7/ehvS8Mpv4o7cMR/+ECImyIiIiIiIid6OQOgF3cuDAAaxZswZ79+5FSUkJ9Ho9QkNDMXDgQNx0000YOXJkq+bRaDRYvnw5Nm7ciOzsbFgsFkRHR2PixImYPXs2goKC2uU8RETuZPXWE9iw95xNbPKQ7rh5XD+JMiIiIiIiInckiKIoSp2E1LRaLV544QWsWbOm2etuuukmvPLKK5DL5U1ek5aWhvnz5yM3N7fR8ZCQECxduhRJSUnNfi93m8eZDNpqiKKl2WuUKh/IZHJYLGYYdRoXZUbtHe+bjut4eiEe/OfPMJkv/eyIjwzEx4tugpdKeUVz876hy8V7h1pLEGTwUPtKnQYREVGn0em3PRoMBtx3331Ys2YNZDIZ7rjjDnz77bfYtWsXtm3bhg8//BA9e/YEAKxevRrvvvtuk3NpNBrcf//9yM3NhVKpxNNPP42tW7diz549+O9//4suXbqgpKQECxcuRHFxcbuZh4jInZRXa7H44w02hS8vTyVee2DqFRe+iIiIiIio4+n0xS8PDw/ceeedCAsLwyeffIK///3vSE5ORlBQEMLDwzFu3Dh89913iI2NBQB8+eWXKC8vb3SuTz/9FDk5OQCAt956C/fddx8iIiIQEBCASZMm4aGHHgIAlJSUYMmSJU3m5G7zEBG5C7PFghc//QNF5TU28efuGYe4iABpkiIiIiIiIrcmybbHtLQ0bNy4EcePH0dBQQGqq6thsViwceNGu2sNBgM8PDycnpPJZIJC0XQLtC+++AKvv/46AODf//43pk6dajNuNpsxcuRIlJeXIzk5Gd9++63d+MyZM5Geng4AUKlU2L17N9RqtVvP4wrc9kjOwvum41n20x58ue6QTeyOSQPwyM3DHfY9eN/Q5eK9Q63FbY9ERESu5dKVX9nZ2bjvvvswc+ZMvP/++9i0aROOHz+OzMxM6wqlhs6ePYtZs2bh66+/dnpuzRW+ACA+Pt76uLEtggcPHrSuCJs+fbrd+KpVq5Ceno5Zs2YBAHQ6HbZv3+728xARuYvUIxl2ha+BPSKx8MahEmVERERERETtgcuKX0ePHsWsWbOwY8cOiKIIuVyOhIQEJCQkNPmcVatW4dy5c3jvvfdQU1PT5HWuUFtba33s7+9vN378+HHr4+TkZJsxrVaLDz74AAMGDMBjjz3W6HPcdR4iIneQU1SJl7/YbBML9vPCS/dNgkLe6XfwExERERFRM5pf7uQg1dXVWLhwIaqqquDv748nnngC1113HdRqNVJSUrBgwYJGn7dw4UL873//g0ajwc8//4y//OUvrki3UUePHrU+HjhwoN14/fZBAIiJibEZW758OYqKivDOO+8gPDwcCoUCJpPJ5jnuOo8rKDy9WrxGEGTW/1eqfJydEnUQvG86Bp3eiOc//gMarcEak8sEvP7QdYgMD3f49+N9Q5eL9w4RERGRe3JJ8Wv58uUoLS2FSqXCl19+aT09sSUBAQGYMmUKfv75Z2zbtk2y4pfBYMAvv/wCoG4VVX3z+4bKysqsjwMDA62Py8vL8cknn2DMmDEYOrRua46fnx/KysoabZzvbvO4gkwmb/W1giBAEFp/PRHA+6Y9E0URb67YhHPZttvNH7t9PAb1jnPq9+Z9Q5eL9w4RERGRe3FJ8Wvz5s0QBAE33XRTqwtf9a666ir8/PPPOHXqlJOya9lHH31k7fP16KOPNnqNVqsFUHd6pCAI1viyZcug0Wjw5JNPWmP1DfwbbqV013lcwWIxt3iNIMggCAJEUWyxOT5RPd437d/qLUfw63bbLdkTByfi9snJrfrZcTl439Dl4r1DbdGWD/+IiIjoyrik+JWdnQ0AGDx4cJufGxwcDMB2JZMrHTx4EMuWLQMA3HLLLRgxYkSz18tkl3rP5ObmYuXKlZg5cyZ69epljVssLf9C7G7zOJNJX9uq0x4FQQ5RtPAELWo13jft26nMIrzz9SabWFxEAJ65axRMeuf1geR9Q5eL9w61Fk97JCIici2XdAnW6/V130zW9m+n0dT98tjSaYzOkJOTg4ceeghGoxH9+vXD4sWLm7zWy6uub5XRaLTG3nvvPYiiaNNUHrj0etQ/x53nISKSQlWNDs9/uAFG06XCuNpTgdfunwJvlYeEmRERERERUXvjkuJXREQEAODkyZNtfu6ePXsA2Ddtd7bCwkLMnTsXZWVliI2NxdKlS6FSqZq8PigoCABgNptRXV2N06dP49dff8Xtt99u0yPMaDSiurra5jnuPA8RkatZLCJe+mIzCspsV848c9c4xEfx5xQRERGRo1lE57STIKon9T3mkuLXsGHDIIoivv/+e1RWVrb6eWlpafj1118hCAKGDx/uxAxtlZSUYO7cucjKykJ0dDSWL1+OsLCwZp/TrVs36+Pc3Fy88847UKvVePDBB22uy8/Pt24zjI+Pd/t5iIhcbcX6Q9h5LMsmdvO4fpg8pLtEGRERERF1XAZzLdacfAF7s1dKnQp1UAXVZ/DVwQdQpDkvWQ4uKX7dddddkMvlqKiowAMPPICioqIWn5OWloaFCxfCaDRCLpfj9ttvd0GmdSu+7rrrLqSlpSEuLg5ffvkloqOjW3xev379rI+XL1+O1NRUzJs3z2411cGDB62P+/fv7/bzEBG50v7Tufh4zT6bWN/4MDxys+s+ACEiIiLqLGoN5fjx+LPIqTyCA7k/oEpXIHVK1AHtzPwcVfoC/Hj8WWRVHJIkB5c00kpMTMQTTzyBt99+G0eOHMHkyZMxfvx49O/fH/n5+dbrfvnlF5SUlGDfvn3Ytm0bzGYzBEHAU089ZbOSyVmys7Mxe/Zs5ObmolevXvj0008REhLSqucmJycjMDAQ5eXlWL16NYKDgzF37ly769atWwcAUKlUGDlypNvPQ0TkKsXlGrz46R+wiKI15u+twsvzJ0Op4KloRNQ51BrKUag51+S4SumLSN/eLsyIiDoqrbESq48/gwpdLpQyFa7p/X/wU0VInRZ1QNN7Pos1J19AcU0afj31D1zT6/8QFzjIpTm4rIv8vffeC51OhyVLlkCv12P9+vVYv349AEAQBADA3/72N+v1oihCJpPhgQcewJw5c5ye39mzZzFv3jwUFxdjxIgR+OCDD+Dj49Pq58vlctxxxx1YsmQJAGDOnDnw9va2uWbnzp1ISUkBAMyaNQtqtdrt5yEicgWT2Yz/++QPlFdrrTFBAF6cNxERQTwRjYg6j4Lq0/j9zKtNjkf59cNN/d5wYUZE1BHVb3Ws0OVCLihxTe//Q4z/AKnTog5KrfTH9X1ewarjf0O5NhvrzryO6/u+igjfni7LwSXbHus99NBD+OGHHzBixAjIZDKIotjo/wBg8ODB+Oabb+xOJnSGQ4cO4a677kJxcTGmT5+ODz74AEqlEnq9vtH/GQyGRue59957rY35v/76a/z+++8oKytDSUkJvvnmGzz00EMQRREhISFYuHBhk/m42zxERM629Me9OJpmu8x+7oxBGNY3tolnEBEREdHlEEURa8+8juKaNAACJic+xcIXOZ1K6Yvr+7wMb48gGC06/HrqH6jWt9wSy1EEUWywv8SFysvLkZqaipycHJSWlgIAgoODERUVhVGjRrV6u6Ej3H333di7d2+rr+/atat11dqfpaWlYf78+cjNzW10PCQkBEuXLkVSUlKz38Pd5nEmg7Yaomhp9hqlygcymRwWixlGnabZa4nq8b5pH1IOpeO5DzfYxK7uE4N/PjwDcplLP6MBwPuGLh/vnc4tr/okfktrbMWWAKVMBZXCF0GqGET69EH3oJEI8Gtbcf8/O2cC4MovIrpyR/J+RmrGxwCA5KibMLLrvCues6QmA1vSPkCh5gwA4Ia+ryHGv23vMat0BThVtAkZ5XtRrS+G0aKDl8IfEb690CtsIuICB7dpPlEUcbYkBaeLN6O0JhN6UzW8lAEI9+2JPuFT0SUgucU59mR9jX0537Tp+/p6hmH2oM/a9JwrZbYYcaZ4C9JKd6K45jx0Jg08FT4IUEUhLnAw+oZPg1rp16q5CqvP4mxJCnIqj6LGUAajWQsvZQACvWKRGDIOPUJGQy5TXnaueVXH8dOJ52ERzYj2S8INfV+17gZ0Jpdte/yzwMBAXHfddVJ9+yvS3KmICQkJWLNmDZYvX44NGzYgOzsboigiKioKEydOxJw5c+yazreHeYiInCG7sAKvLk+xiYUFeuPv8yZKUvgiInI8EUaLFkaDFtWGImRWHcS+/O8wIOp6DI29C3KZZL+OE1EnVK7Nwa6sLwEAQV5xGB43+4rmM5p12Jf9DQ7n/wSLaL7seY7m/4odmZ/BbLHdZVVtKEZ1aTHOlaaie/AoTO7xZKsKL3qTBuvOvIHsysONzne+dDv6hk/D2G4LIRPad2/ZQs05rD/zJqr0trsotMYKaI0VyK8+iYO5P2Bst4XoGTq+yXkMplqkZnyEU0V/2I1VG4pRbShGVsVBHMn/GVMT/4YAdcsHAzYmyq8fkqNuwoHc75FbdRRH89dgQNT1lzVXW0i28ouoHld+kbPwvnFvOoMR97/5E87nllpjCrkMS568Hv26hUuWF+8buly8dzq3hiu/onz6ol/oNOuYyaKHxliK3KpjyNUct8bjAofgml6LW/XGiyu/iMgR1p95E+dKUwFc3uqshjLL9yMlfSmq9YV2Y22Z+0j+GqRe+AgAoJSp0CtsEiJ8e0IuKFGmzcKJwvWoMdT9vpgYMg5TEp9qdj5RtOCXU39HVsVBAICfZzj6RVwDP1U4qnWFOFG4HhW6up1RA6NuxKiu9zY5V7k2FxXaxndRNWSy6LDh7DsQYUFc4BBc2/vFVv23X6my2ix8f/QJGC06AECMfxLiAgbD1zMMNcYy5FYeQ3rZrotXC5jc40n0DB1nN4/eVIOfTy5G0cUDV/w8w5EYOg4Bqmgo5SqUa3NwsnCDtcDmr4rErUnvwlPR+j7pDRnMWnx96AHUGMrgqfDBnEFfQClXXdZcrcWPmoiIyOVEUcQ732y3KXwBwCM3D5e08EVE5AjeyiDE+V9lFx8QNhP5mlNYn/5PGC1aZJbvw7GC3zEg8loJsiSitiqpSYdc5onAy1zxIrUqXRHOl+4AAIT79LzswleNoQypFz7G+YtFNABIDBkLD7kXjheubdNc5bXZ2JFRt0XQSxmEm/q9gQB1lM01SZHX4cfjz6C0NgNnS1LQK2wCugTY/4ytd6roD2vhK9S7O27o+yo8FZcOf+sfcQ1WHV+E4przOJz3IxJDxiLMp3ujcwWqo1v1530s/zeIqFvQkRQxs8XrHWXbhWXWwtf4hIfRN3yazfiAyOuQWb4fv51+GRbRjNQLHyEheAQUMg+b60prL6BSmwcASIq4FiO7zrNbYTcg8jr8euofyK06hkpdPvZlf4tR8fddVt4ecjWSIq7DrqwvoDdpcLJwvdNXf3FPCRERudwvO07j911nbGITByXg5nH9JMqIiMg1In16Y1TsXOvXx/J/lTAbImqM2WKE3lSDCm0uMsv3Y2/2N/juyOP49sijOFbQfv/OHi34xVqg6R8x47Ln2XT+PWvhK1Adgxv6voopiU9DrQxo81zHC9fCIpoAACO7zrUrfAGASuGD8QmPWL8+mLuqyflEUcSB3O8BAAJkmNLjSZvCFwCIEKExlFi/3p/zXZvz/vP3PFLwCwDAXxXVbGHOkWoNFcipPAYAiPDtbVf4qhcXOBg9QsYAAHSmKhRWn7G7JsqvH24d8B5Gdb0PY7o90OjWUqVchQndHwNQ15/rdPHmFndwNadv+FTIhLr1WEfy18DZmxJdsvLr3XffxbXXXovu3RuvphIRUedxJqsE//p2u00sLiIAz9w91iXNLomIpJYQOAI7cpbDYK5BhS4XGkMpfDyCnfo9dcZqXCjfi9zKoyipSUe1vggGsxYKmSd8PEMQ5dcX/SNmIMS7W7PzbLvwIY7m173Jm9j9cfQOm9Ts9TWGMny+fzYAsVVbNrXGShzJX4OM8n2o1OZBhAhvjyDE+idjQOS1CPRq+aCA1cefQV7VcZvYncnLEKiuOwW9oPo0Duf9hLyqk9AaK6zFgIdHuKaoUakrwIWy3cirOoGy2izUGMpgsujhofBCgCoaXQKS0S/iGnh7BDY7z9eHFqBcmwMBMswbsgJqpX+z118o24PfTr8MALgq+maMiJvT7PUlNRk4WvALciuPQqMvgVzmAX9VBOKDhmJA5HWt2u5Uv123npcyEPOGrLB+fbZ4K04UrkdJbTr0phq0dJ846rVrqNZQgdPFfyCtdBeq9YXQGqus90RjLpTtxZj4B5qd0xGvnTOkXVz1JUCGuMAhlz3PsC73IL/qJAbF3ILkqJuuqPl5WmndljyZoED34FFNXhfh2xMBqmhU6HKRW3kMtYYKeHkE2F1XpDmHSl0+AKBLQHKjPzOO5v8KrbECckEJs2hEZvl+GMxaeMjVl/XfkFVxABXaHABAUuRMl/0+W7fdtK5gFOnbu9lrI3x740zxFgCAxlDa6DX+qkgMjLqh2Xn8VREIUEejQpsDnakKNcbyy/73S6X0RaRvH+RWHUWVvhDFNWlNrsBzBJcUvz788EN89NFH6N69O6699lrMmDEDMTExrvjWRETkRqpr9Xj+ow0wmC41RFV5KPDq/VPgrfJo5plERM5Vps3CwYLVqDaUYmD4tYgPuNpp30smyOHnGYaS2gsA6gpEzi5+/XLq79ZT2BoyWrQo12ajXJuNk4UbMCJuDpKjb2pynh7Bo63Fr/Sy3S0Wvy6U7UH9m7MewaObvTan8ijWnn4VenONTbxSl49KXT5OFm3AmPgH0C9ierPzNKZaX4xAdQxOFm7AlrT/NFvccCaDqRYrDy2EWTTajelNGhRqzqBQcwZHC37D9J7PNrstrUfIGOzNXgkRFqSX7Ubf8KnNfu+00p3Wx4kh45q99mDuauzK/MLmdTKbjSiuSUNxTRqOFfyOa3r9HyJ8ezY7z5/VGitgthghExTYdP59nC62b6zdFEe+dvXOl+7AlrT/QG+qbvKaQHUMPOR1K4dUCl+E+ybCbDE2WfBx1mt3pSp1BajWFwEAQry7tfrkv8aE+XTH7MFfQHWFRTyLaLb28gpQR7dYRIv0640KXS5EWFCkOYeuQfYFvKyKA9bHja3AMphrcShvNfw864qRR/J/hlk0IqfiMLoFD7+s/47D+T8DAJQyNXqHNv8z0ZGUci/r48b+XjRkMNVaH6sUvlf0fRs+X2+svqJ/v2IDBiK36iiAun8D2n3xC6hbCnj+/Hm8++67ePfddzFgwADMnDkT06dPR3Cwc/+xJyIi6YmiiJe/2IK8kiqb+DN3jUW3KJ46S0TSEEULjhWvxb78/1m33mzJXIpIn95X/AahOfVbPepyuPwT0lorMWQMqnQFiPLri3DfnvD1DIUgyFFrKENO5RFklO+DRTRjR+ZnCFDHID6o8eJfhG9v+HiEQGMoQXbFIRjNumabFF8o2w2gbqVJQvCIJq/LqjiE3069BLNYVxhJDBmHGP/+UMg8UabNwvGCdag1liElfQlUCl90D2l6hcjwuNnQGeuKGb+dfgkAoNEXI7N8v7Xw1SVgELoFDUdu1VGcK9nW4uvnKB4KL8QFDkZpbQai/fojxDseXh5BsIgmaPQlSCvdgULNWehN1fj99Cv4S/LSJt9Y9ggZi73ZKwHUFbaaK35ZRDMulO8FAASpuyDEu2uT1+7L/gZ7sr8GAKgUfugTPgWh3gkQRQvyqk7gVPEf0BorsObkC7htwHvwV0U2Odc1vV4AAJTWZmB31pfAxe1mJwrX43TxH5AJCvQMHY8Y/yQcyP0BZbWZLnntACCz/ADWn3kTIiwQIEP3kNGI9R8AD4U3qnWFSCvbhYLqU9CZNBgRNxfxQUObnMsZr52jFdekWR8HeXW54vmutPAF1K30rC8Sesq9W7i6rgl7vTJtNrrCvvhVUnPB+jjMp4fd+JG8n6EzVWFk13mo374HACW1GZdV/CqrzUZ2xWEAQK+wCfBQeDX/BAfyV0VAKVPBaNEhq+IQLKK5yQNUci6eeump8EGUX98r+r4Ni8WqFlactiTYK876uLjm/BXN1RKXFL+WLl2KDRs2YPPmzaisrAQAHDlyBEeOHMHrr7+OoUOH4pprrsHUqVPh4yPNElAiInKurzccxvajGTaxG8f0wZSr7X8xISJyBY2hBClZy5CvOWUTN4sGWK6gj0lrv3c9r8vok9NW/SNnNtlMOCnyWuRWHsdPJ56DCAv253zXZPFLEAQkBI/EkfyfYbLokV1xqMk3jAazFjmVdZ/oR/n1g1cTW9GMZh22nP83zKIRKoUfruvzkt2n/0mR1+HnE4tRXHMeW9OXIjYg2a6PT73Gtv+Ua3OwL+c7CIIMk3s8icSQsQBgXXXiStN6PtPkG9Sromdhf8532J21AgZzLY7m/9Lk9sRAdTRCvRNQXJOGnMoj0Js0TW6ny6k8an3Dmhg6tsncimvSsTf7GwBAuE8iZvZ+0WY7ZWLoWPSLmIYfTzwHvUmDlPQluL7Py03OV38fNSyQZpTvw+G8H+HtEYRre/8DId7xAIATheubnKeeo147i2hGSvp/rYWXKYlPo0eI7crEgVE3YtuFZThW8BvWnnkd1/V5qdnVZI5+7Ryt6uJWQABu07Dfo+HKJUvzK5cA2NzfelPjpyqX6y6dzOjrGWYzpjdpcDjvJ/irItEzdDzyqk5Yx+q3LbbVkfyfUb+6tb8LG90DgFymRP/ImTiY+wMqtDlYf+ZNjEt4yG4L9NH8X5FdeRgCZBjX7aErOlXRYK5FxcXG+N4eQW3aYtyYANWlHm9VOvtTQx3JJQ3vx48fj9dffx07d+7EZ599httvvx3BwcEQRRFmsxm7du3C4sWLMWLECDz88MNYu3YtDAaDK1IjIiIXOHQ2D8t+2msT6x0XisduGSlRRkTUmYmiiHNl2/HD6WfsCl8AMDD8enhd4afZzSmsOYdaYzkAQK0MgK+n80+5bapgUC/av591NUCh5ixMZn2T1zZcdZV+cWVXY7LKD1i34vRoZqXWkfw1qDYUAwDGdXuw0W0vKoUPJvd4EoAArakSZ4tTmvvPsXOs4DdU6wsxsus8a+FLKi39WdT1UKprBZB7sZl1U+qbWFtEEy6U7W3yuvQGWx57NPPfvzPjc4iwQC4oMb3nc432EQvx7obhXWYDALIrDqGsNqvZHP9sV+ZyAHWrwuoLX63lqNcup/KodQtgbECyXeELqCv0Do+bDbmghEU0XVy51jRXvHZXosZQbn2sUlz+lkdHUspV1hVflfqCVjzj0koto0Xb6BVaY6X18Z8L7ofzfoLeXIMhMXdAJshtVq/VGitan/hFOpPG2kcr1n8gglrRk9DRhsbeia6BdUXmtLKd+PLgfdic9gFyKo9CZ6xGStp/se3CMijlakzr+Uyj93pbpJXushaN4wNbXg3ZElWD7be1hrIrnq85Lj3tUS6XY8SIEfj73/+O1NRUfP3115gzZw4iIyMhiiIMBgM2bdqEJ554AsOHD8eiRYuwdetWmM3OXwpORETOUVSuwf99shGWBie4+Hp54pX7p8BD2fwvsUREjqYzVWNT5gdIyVpq9+bJU+6NCXEPY0jkrU77/kazDjtzllu/7h02yW0O+/DxDLn4SITWVNXkdRE+veDrEQoA1u2SjUm32fLY9Icd9dsOvZQBzW6NDPKKtfZJSivb2eR1jTFZ9Aj1TkCSi1dmXA65TAm1oq5w0vCNfGPqil919099M/M/E0WL9c8i3Kcn/FURjV6nNVYip/IIAKBr0NUN7gd7PUPHWwtRDXuJtYbJokf/iGuc0tunta9deYNVPtF+/Zu8zkPuBb+Lr1dh9dkmVye56rW7EibLpYL2laz8cbTYgGQAdVvp8qvsP4yoV60vwr6cb61fN9w63pDRXPdzXYDMpliqNVbhcP7PCFDHWFc/ymWeDZ6na3PuJwrWWV/XpMhr2/x8R5DLlJjR63mMjn8AHnJvGM1anCxcj59OPIdP992J44VrEeLdDXcOXNrsz9fWMFtMOHTxpE0Bshab47eGUnbpXjRamv7QxRFc1vPrzwRBwKBBgzBo0CA888wzOHHiBDZs2ICNGzciPT0dNTU1WLNmDdasWYOAgABMmzYNL774olTpEhHRZdAbTXh22XqUVdm+wXxx7gREBjuvlw4RUWOyq45iW9aHqDVV2I1F+/bD2NgH4O3h+B6ERrMOGmMp8jUncbToN+sqpxDvbhgc7bxCW3Oq9UXQ6EthMNdai1c1DT51b+74+vqtj4fzf4LOVIW8qhN228EsohmZFfsBADH+SU2eRKjRl6C0NgMAEOqdAEFo/rP5UO8EFFSfRpGm7b1hkqNvspt/YNT1LTbtdyaLaEalNg9aUyWMZp11u239irmWGvP7eoYi0rc38qtPIqvyUKMn1uVXn7KuNEy8uFKsMVkVB63fL7yRXkkNKeUqBKiiUabNQlEb+/TIBDmSo+wPVZiauAhmi8G6cqslV/LaWRoUsRQNCiCNqW/CLsICnUnT6DYvV712V6Jhkbqlv2eu1Ct0Is6X1p0Cvu3CMtzQ9zW7Lc2ltZn49dQ/oG2wOqupkxnrC5R/bp5/KG81jGYthsTcbi2KNSyOmS1t23lmEc04VvAbAMDXMxxdr+D0zCtlMutRoy+B2WKAABkC1TEo02ZZ78mSmnSkpP8Xw+Pm2PTYaqtDeatQpq1brZgUORMBDtg+K5NdKknV9910FsmKX3/Wt29f9O3bF3/961+RlpaG9evXY+PGjTh16hTKy8vx7bffsvhFRNSOiKKIN7/ahlOZxTbxOTOuwoj+l/8PLxFRW5kseuzJ+xYnSzbYjckFJa6OugN9QyY77A3hufJUnCtPbfaaCN/euKbXYpc2Ry7SnMeR/J+RUb6vyX45rdU9ZDQO5/8EAEgv22VX/MqrOm79Hs01p69qsNXJaNE3u3UPqFu9AQAGc02jhZ6meMi9kBBkv+rBU+HTZJ8sZ0or3YkTheuRW3m0xVPaWtIjZAzyq0/CbDEgs3yfdStkw+8F4GJT96aLX1W6S38W1fqSFv8sxIt9jjT6kmav+7No/6RGV0a1tneQI147f/WlPkMNG6T/WX2BDahbadTUCYmueu2uhFy4VAwymBrfMiiFrkFD0C1oONLLdqG4Jg3fHH4IfcOnItCrC/QmDfKrTuJsyVYIEBDt1x+5VXXbWdVN9EqUy5QwWfQ2BfxaQwWO5f+KQHWsTQG44Uq+1hZd66WV7oTm4gcZ/SNmSFZQrNDm4ZdTL6JSl48AdQym9ngaoT4JqNDm4XTxJpws3IhaYxkyyvcht/IYpiQ+3arDG/4sv+qktaedvyoKw7rc45D89aZLp/sq2vhn0FZuU/xqKC4uDv369UNubi4yMzNRW1vb8pOIiMitfLfpKNbtOWsTG9k/DvfNlO6TMSLqfIpr07Elcwkq9fl2YyHqrhgX9yACVa5p/qyUqRDunYheIRPQK9K1q432ZH2FfTnfob4x85WK8O0JX88wVOuLcKFsD8bEP2AzXr/NTibI0a2RolO9WkOF9XFe1XHkVR1vdQ4GU02ri18h3t3sVoJIwWjWYd2ZN6yr4hyhe/AopF74CCIsSCvdaVf8Si/bBQCI9u/fbIGpYc+jYwW/4ljBr636/gZzTcsXNRDh06tN19dz5GsXFzAIKoUfdKYqnC1JwaCYmxGojrG77mj+LzBa6rbDxfgnNdlzzFWv3ZVoWOR15fdtjUnd/4p1Z/XIqjgIjaHEemJmPZXCD1MSn6or4FwsfjV1UqZSrobJoodZNFlPPzyQ+z2MFh2ujr3Dpkh1JVtBj+SvAVC3crBP2JQ2PddRqvXFWHX8b9AaKxCk7oIb+71hLdAGqKMwrMvdGBJzO47k/4LdWV/CaNHh99Ov4to+/0CXi9tNW0OjL8HaM6/DIpqglKkxo9fzDts6azBfqvV4OPmDCLcpfhkMBqSmpmL9+vVISUlBdXXdaSTixR4xfn7u0ZSPiIhatu9UDv6zyrYJcpfwALw4bwJkMvfobUNEHZtFNONw4RocLPgRImx7UgkQMDD8eiSH3wi5zPG/Dkf59EW/0GkAAJkgg4fcG55yH/h5hkEmyF2+QuB4wVprrxwBMvQOm4TE0HEI9oqDp8LH+ob+j3Pv4nTxplbP2z14FA7lrUa1vgjFmjSE+iRYx+pXvkT7JzW5WuZKOftETmfYnPZva/FGKVcjOepGdA28Gv6qSHjI1dZ7Y/mBedaG7C3x8ghAjP8AZFceQmb5fpjMeijkdVv5ijTnrfM4q9G/q/4cHPnayWVKTOj+KNaefg0W0YSfTyzG8LjZiPVPhkrpi1pDOc4Ub2lQhBEwOMbxW5RdeQ83XG2nMzbd008KHgovzOz9Is6VpOJU0QaU1WbBYNbCxyME8UFDMTDqBnh7BOFQ7mrrc0K9uzU6l5cy4OL2SBF6kwYW0YwThesQ5BWH7sG2zd7rtwPXPa/1pxYWVp9FQXVdf7LEkLFQKaVp5bEz8wvrVtCx3RY2+rNWLlPiquib4KcKx7ozr0OEBdvSl+HO5GWt6jepM2mw5uQLqDWWQybIMSXxqSvaOmk3f4N70ccj2GHzNkbS4pdWq0VKSgo2bNiArVu3QqutW35ZX/BSq9WYMGECZs6ciVGjml4uTURE7iOnuBKLP7ZtcO+t8sCbC6fBR918Xw0iIkeo1BcgJXMJimrT7Mb8PMIxLm4hwr2b78tzJbyVQYjzv8pp87eFKFqwL+cb69fjEh5E3/BpDpm7vvgF1K30qi9+ldSko1pfd2R9j+DmTxbz8giwPu4TNgUTuj/qkNzcUbk2x9rcXy7zwKx+b7X5tMOm9AgZg+zKQzBadMiqOIhuwcMBXNryKBMULTa79mqwjWxyjyfRM3S8Q3JzBGe8dt2ChmFm7xew6fz70BhKsPHcP5u4UsDIuLmI8uvX5Fzu/NrVC1JfOomwuDZdwkwaJxPk6Bk6Dj1DxzU6bjBrkVd9EgAQ4hXfZB/BAHW0tY9gtb4Yp4r+gMmix9Wxf7Er9mj0l1pzBLahf1X9qi+grveVFMwWEy5cXGHrIfdu9v4EgO7BIxHs1RWltRmo0OWitDajxb9DRrMOv576x8U+XwLGJzx6WVsmm1Ncc+leDFJ3cejcf+by4pdGo8HmzZuxfv167NixA3p93VLD+oKXh4cHRo8ejWuuuQYTJkyASuU+J1EQEVHzanVGPLN0PaprLy0jFwTgH/dORFxEgHSJEVGnYBEtOFmyEfvyv7PZzlKvV/B4DIu6y61OOnO2Cl2etZG9n2eEwwpfABDumwg/z3BU6QuRXrYLQ7vcCaDhlkcFugUNb3YOH48w6+OaBqswOqLcymPWx4khYxxW+AKAhOAR2Jq+BGbRiPOlO6zFr/SLp2LGBQ5usbeZj2eDPwuDe/1ZOPO1q9/WKBMUdg23w30ScXXsnYgLHNTsHO782tUL9UmATJDDIppRpDkndTptdrzgd2tT+t7hTW8zDPHqaj35NKviIE4WrkeIV3yjPf8KG7wOwa28p2oMZdYG/VF+fRHSxAo0Z9OZqqz/znl5BLZqFVegOtamMNjc3yOTxYDfTr9sXeE2Jv5+9A6beOWJ/0mR5lKLlHDfRIfP35BLil8VFRX4448/sGHDBuzatQsmU90PlfqCl1wux7Bhw3DNNddgypQp8PFxfdNJIiK6MhaLiFeWb0Z6XplN/IHrh7LBPRE5XWltBlJzPm10RYNa4YfRsfPdZjWWK+mM1dbH/qoIh8/fPXgUDuatQmltBip1BfBXReBC2R4AQIz/gBa3A/mpwhCojkW5NhuF1WdgtpicshXVHehMDf8sGu9XdLk8Fd7oEjgIF8p2I6N8H8wWIyp1+SjX5gBo/pTHel0CrgIgABCRV3UcV0Xbn8goFWe8dhp9CdadeQNGiw6DY27DoOhbUFyTBqNZC6VcjUB1TJOri/7MnV+7eh5yL0T69kFu1THoTRoU16Q3uXXQ3RRpzmNv9koAdaucejWzsq5L4GDrdtW92SthEU2NrvqyiGZkVxwGUHcYQIz/gFblcqzgN2uRNCni2rb+p9gxmnXYnvEJzpfugIdcjeSom1q1mkyl8EX9PdfaA0z0Df4eeTVzb9cXvnIqjwAQMDZ+AfpHXtOq79FW9T3cBMgu/j1yHpf8yzJy5EhYLHX7mesLXoIg4KqrrsI111yD6dOnIyjI8cdKExGR6yxfexAph2xPTJo4OAF3Tx0oTUJE1CkYzTocLFiNY8Vrrce6NxTndxVGx97X6jex7kou84DZYoDJbL+irTkNV/tUG5o+Wc5sMaKsNqtBpHWN8buHjMbBvFUA6hqrdw8eieKauu2mPUKa3/JonSN4JPblfAudqQqnijagX8SMVj2vvbH5s9AXN3ldtb7oUtFSbP0BBYkhY3ChbDcM5hpkVx5GseY8AEApUyM+sOWtSt4egYjy64O8qhPILN+P0tpMh/b2uRLOeO3SynZZV30lhoyFUq5ClF/fy8rPnV+7hnqFTbIWG04WrsfYbgslzqhl5dpc/H76Vesqp7HdFjS7ijHMuzv8VZGo1OXDIpoQ6p2A+KBhdtc1PK0xLnBIqw7PMFkMOFGwDgDg7RFsXWF5JXZmfoEThXVz6k3V2HZhGbw9glrcpiyXKRGkjkWZNgtaYwUKq88g3Ldnk9dr9CXIqzoBoK5Jf2CDbbANmcx6/Hb6FWRXHoIAGcYl1J2+6Qw5lUdRqas7jKZr4BCn/zvtkm6bZrMZoihCFEX06dMHTz/9NLZs2YKVK1fizjvvZOGLiKid23b4Aj7+ZZ9NrEdMMJ67e1yrlmETEV2O7KrD+OHMMzha/Jtd4UspU2N07HxMjn+i3Re+ACBAFQUAKNNmQaNvuoj1Z4HqaKgUdU2QK7Q5yCw/YHeNzqTBujNvoKjm0hag+q2SLQnz6W5diXOhbLd11Vfdlkf7N5yNGRh1I7yUde8HUjM+sW6b/DOzxYSj+b/idFHrm/K7k0jfPtbH50u3N7o9rqw2C2tOvgCjpa4XstZUBbPFZHddY7oGXg2lrG5Lb1rpTqRdPOUxPmiotQF+S0bEzYUAGURY8Nupl1FWm93odTpjNVIvfIySmoxWzXulnPLaNWg2fzj/Z9QYyiBeQQN6d33tGkoMGQvvi03FzxSnwGDWujyHtjhTvAX/O/K4tUjVN3xai/3UBEHAoOhbrF/X/+xsqFKXj9QLH1q/HhJzW6vyOVucAq2pEgDQL3x6k6d/tsX5klS72LlGYo1puEJs0/n3m/y5rTVWYu2Z12EWjQDq+it6KLzsrjOadfj19D+QXXkIMkGBqYl/c1rhC6jbylovOfpGp32fei5Z+dWtWzfMmDEDM2fORNeuXV3xLYmIyEUu5JXhpc8328QCfFR4Y8FUqD2lP1aeiDqeWmMFduWuQHpF40WSeP8hGB4zG95tOL3L3fUMnYCdmZ/BZNFj1fFF6B8xHX6qSOiM1SiuOX/xE/oH7Z4nCDIMjLoeu7NWAAB+P/0K+oZPQ5hPdwiCDMWaNJwu3gydqQrRfknIrToKoG41wuQeT8JPFd5ibgnBI3Ew9wfkV52C0Vy3kiY2ILnFHlP1PBXemND9Efx++lWYLQb8fvoVxPono1vQMHh7BMFgrkVxTdrFokcZFDJPhPv2RKA6ptH58qtP2Wz3BOq2zdWfQAkAEb69nHYKZVNCvLsi1n8gsisPQ2/S4Lsjj6B/xDUIUMfAaNYip/Io0kp3wCyaEO3XH7lVx2Cy6JF64UOM6DqvxZUpSrkKXYOG4lzJVpwv2W4tArXllMcI314YFHML9ud8hyp9Ab498ggSQ8Yi2j8JHnI1tMZK5FefRFrpTpgsemRXHMKtA96DQubR6Hz1r3l9nyGgrg9dwz+L+KCrW8zLGa9dt+AR2J21AkaLDicL1+Nk4XqbcQEyqJV+1lMCe4dNanZLrqNfO2eQyxQYGHk9dmR+BoO5Bvuyv8HIrvPaPI/JrEd25RG7eIUuz/q4oPq09ecBACjlnq3eWphVcRD7c/6HvKrj1tig6FsxPO6eVj2/V9hEnCtNRXbFIZwrTYXmeCl6ho6HSuGL0toMHC34zboFcGDUjTYn1TanvtG9TFA4rn9iIx8St/Zj4z7hU5FRvg8Z5ftQps3CykMLkRg6DmE+ifBUeMNgqkGh5hzOlqRYt0aGenfHsEZeR5PFgDUnX0D+xUMF+oVPh1zmYfN3tTFeSv9mV5w1Jb/qFM5f7M0W4du7xYb9jiCIYhvW0hI5gUFb3eKnLEqVD2QyOSwWM4y61u1pJuJ943xVNXrc98Yq5BRfOqZYLhPw/mMzcVXP1p+a405439Dl4r3jfKJowenSFOzN/wYGc63duLcyGCNj5kjS2yuv+iR+S3sVANAjcDTGxS1o8lpBkMFD3XwvrD8zW0z4/fTLyKywX7kF1G2LnDd4BTwV3nZjFtGMdWfeQPrFlUCN6Rs+DWO7LcRvp16yfo9pic+ge0jLJ64Xa9Lw3dHHbGKTuv8VvdrYHDmn8ijWnnmt2f41AmToEz4FI7vOg4fcfuUCAKw+/ozNm+bG3ND3NcT4J7UpP0eoMZThxxPPoeJiL64/U8g8MTp+PhKCRuKbIw+jxlAKATLMHfylzcmYTblQtge/nX7Z+rVK4Ye5g79scx+1Q7mrsTPzi0a3EtfzkHthaJe7kBRxbZOrvP+zs+XeRQ+P+LVVOTnjtcupPIJN5/9tPZ20OUHqLpjZ++/wU4U1e52jXjtnMVtM+OHYkyiuSYNMkOO2pPcR7N21TXNU6Qrx5cF72/QcX88wzB70WZPjpbWZSC/didPFW1DZoIgWpO6CMd0WtPnva92K1tcv9q1qXJ/wqRjX7cFWreDKqTyKn048BwDoGToek3s82aZ8mrIt/UMcLfjFJjaj1+JWr5yt7xl2onA9Wtqu3iNkLMbEP9Bo4f9y/kwBoHfYZEzs/ljLFzZgEc349sijKKvNhFxQ4tYB77lkm3DH7CZJREROZ7ZY8MKnG20KXwDw2C0j223hi4jcV7kuB6nZn6Gw5ozdmAABfUOnYnDELR32JEe5TIFrer+Ak4XrcapoE8pqM2EWjVApfBHi3Q3xQcMgFxr/1V4myDG953M4XbwZp4o2orTmAkwWA7w8AhHp2wd9w6ch2r/uU/dpPZ/F3uyVSCvdgS4tnHBXL9QnAf6qKOsbVrmgbLTHTkti/JNwV/JHOFG4Fhnl+1Bemw2jRQcPuTcC1NGI9R+A3mFTWiw+uDNvjyDcmvQvHMn7GWmlO1Ghy4MAAT6eIegSMAhJkTOt20hn9XsTuzKXQ2+ubVXhC6hrvO6p8LEWEBOCR1zWAQLJ0TchLnAIjhf+jpyKI6jSF8IimqFW+iHEqxviAgehV+jERrdOOYszXrsY/wG456qPUabNRo2h1GabpMFcg0pdAc6VbEW5Ngdl2iz8fHIx/jLwv5DLml7Z7o6vXUNymQKTejyB/x15HGbRiHVn38TN/d9ptHDuKmaLCauOPW3zoUa4T08kRc5Ej5Axl7W9UKXwwfV9XsbZkq04XbQJpbWZ0Jmq4aUMRLhPD/SNmI4uAcmtnq9KVwAvZRBqjWUOaXRfb3jcbOsprfUN71tb+ALqVnyOT3gY/SJm4GxxCnIqj6DGUAqdSQNPhQ+8PYIQ7dcfiSFjLmuFVksCVG3/nT/1wkcoq80EAAzrcrfL+uNx5RdJjiu/yFl43zjXf1ftwtcbbT9Nu3ZkLzxz19h23eeL9w1dLt47zmGyGHC48GccKfoFFtFsNx6s7orRsfch1Kt1x9S7g8tZ+eXuTBYDPt9/D/QmDboHj8K0ns9InRKRQ4iiBZvO/xuni/8AAExIeBR9wqdInNWVO1W0CZvOvwdARGxAMq7t/XeH9LC6XOvOvIGS2gx0CxqGHsGjW70V0ZVEUURJ7YV2c0qmOzqa/wu2Xey3lhA0AtN6PgNBcEkreq78IiKittuw95xd4atft3A8efvodl34IiL3kld9Aqk5n6FKX2A3ppB5YlDEzegXOlXSN2xU50zxZutqI4f1wiFykpzKozCadfDxDGmxkCEIMiRH3WAtftWfZtre9Q6bCK2xEjszP0N2xSFsPPdPTO7xpGQ/Tyd2f9ztV+4KgsDC1xU4U7wFqRc+BgBE+yVhSuLTLit8Ae2g+FVZWYmzZ88CAIYMGSJxNkREdDqzGK+tSLGJhfh74bUHpsBDyTegRHTldCYN9uStxNmyrY2Ox/oNxMiYOfD1CHVxZtSYWkMF9mStBFB3Kl9swEBpEyJqwc6Mz1FUcw6xAcm4vs/LLV6vM106QEHZwsED7clV0TfBaK7Fvpxvca5kGywWE6Yk/u2ytspeKXcvfNGVOVW0CZvPvw8RFkT49sI1vRc3u33YGdy++HXo0CEsWLAAMpkMJ0+elDodIqJOraxKi2eXrYfBeGnrkYdCjjcWTEWIv3S9IoioYxBFERcq92JnznLrcfINqRUBGB59N7oFDOUqUzdRpSvE2jOvodZYBpmgwOj4+6VOiahFgV6xKKo5h9zKYyiuSW92NY/WWIWdmV9Yv471H+j8BF1oaJe7oFb6I/XCxyjQnIHWWAEfzxCp06IOJrN8H0RY0DVwCKYlPgOF3NPlObh98aseW5MREUnLZDbj+Y82oLDctpfR3+4cgz7x4RJlRUQdRY2hDDtyPkdm1cFGx3sFT8DVkbdL2pSZ6hjMtcgo34fM8v04X7IdZtEIABgdfz/CfLpLnB1Ry/qETcGZ4i2wiCb8cPRJdA8ZhXCfRKiVAVDIPGC2GFFjLEOR5jwulO22NmLvFjSsQ65sTIq8Ft4ewQhUx7LwRU4xuceTiPDthaTIayXbWttuil9ERCSt/6zajSPn821it07ojxnDHX9yDBF1HqJowanSzdib9y2MFq3deIAqGqNj7kWED3/WuAuNvhQbzr5t/Voh88T4hIfRM3S8hFkRtV60fz+M6novdmZ+AbNoxJniLThTvKXJ6wXI0C9iOkZ1vc+FWbpWQvAIqVOgDkwuU2Jg1A2S5sDiFxERtWjDvnP43+ZjNrFBPaPx8KzhEmVERB1BhS4PqdmfoKDmjN2YTJBjYPj1GBh2ncv7glDzAtXR8JR7w08VgbjAwUiKuBZeHgFSp0XUJgOjbkDXwKtxvHAt8qtOokpfCL1JA1G0QCHzgErph0B1DKL8+qFHyBj4qyKkTpmIroDDil86nQ6CIMDT037v5k8//XTZ854+ffoKsiIioiuVlluKN1bYNp2OCPLBy/MnQSF33QktRNRxWEQTjhT+ikOFP1m3zDUU5tUDY7rch0BVjATZUUsEQYZ7r17JUzap3QtQR2FU13ulToOIXMAhxa9vvvkGr776KgRBwOLFi3HbbbfZjD/zzDNsSkpE1A5ptHo8u2w9dAaTNeahkOPVB6YgwKfjnHZERK5TXJuGbVkfo0yXbTemkHliSORt6BMyGTIXHn9ObcfCFxERtScOKX699957MJnq3hi9++67dsWvemxaT0TUflgsIl7+Ygtyiqts4k/eMQq948IkyoqI2iujWYcDBT/gePE6iLD/nTDWdwBGxc6DjwebLRMREZFjOaT45evri6qqKoiiCD8/vyavmz17Nnr16tWmuU+fPo3ly5dfaYpERNRGX204hNQjGTaxa0f2wrUje0uTEBG1WznVx7A9+1NUG4rtxlRyXwyPuRsJASO4U4CIiIicwiHFr7feegtvvvkmBEHA3/72tyavGzFiBMaOHdumuVNSUlj8IiJysb0ns/HRz/tsYr3iQvHE7aMkyoiI2iO9qQa7877C2bJtjY53DxyJ4dF3Q6XwdXFmRERE1Jk4pPh11VVX4bvvvnPEVEREJLGCsmq8+OkmWBpsVff3VuHV+6fAU8lDgomodTIq92N79ufQmirsxnyUwRgVey9i/Qa4PjEiIiLqdPguhoiIrPRGE577cAMqa3TWmCAA/7h3IiKDuTKDiFqmM1VjZ85ypFXsamRUQL+QqRgceQuUcpXLcyMiIqLOicUvIiKyeve7HTidaduT5/7rrsbVfWIlyoiI2pP0ij3YkfMFdKYqu7FAVQxGx96HcO8eEmRGREREnZlLil+33norBEFAVFRUm58bEBCAIUOGOCErIiJq6Jcdp7Bm+ymb2Kikrrh7arJEGRFRe1FrrMTOnM9xoXKf3ZgAOQaGX4fk8OshlyklyI6IiIg6O0EURfuzpolcyKCthihamr1GqfKBTCaHxWKGUadxUWbU3vG+ab3TmcVY8PZPMJjM1lhMqB8+fXYWfL08JczM9Xjf0OXqjPeOKIo4X74Du3JXQG+2/28OVsdhbOz9CPbq6vrk3JggyOCh5lZyIiIiV+G2RyKiTq5So8NzH663KXx5KhV4fcHUTlf4IqLWqzGUYXvOZ8iqOmQ3JhPkuCr8JgwInwmZwF83iYiISFr8bYSIqBMzWyz4+2ebUFBmu2LjmbvGICE6WKKsiMidiaKIs2VbsTv3axgstXbjoV7dMCb2AQSpYyTIjoiIiMgei19ERJ3YZ78ewJ6T2Taxm8f3w9ShiRJlRETuTGMowbbsT5BbfcxuTC4oMShiFvqHzYBMkEuQHREREVHjWPwiIuqkdhzNxOe/H7CJJSVE4JFZwyXKiIjclShacKp0M/bmfQOjRWc3Hu7dA2Ni70eAqu2HGxERERE5G4tfRESdUE5RJf7x+SabWJCfGi/Pnwylgis2iOiSCl0+UrM/QUHNabsxueCBq6NuQ5+QKZAJMgmyIyIiImqZ2xe/RFHEunXrMH36dKlTISLqEHQGI577cAM0WoM1JpcJeHn+ZIQGeEuYGRG5E4toxrGi33GgYBXMotFuPNKnN8bEzoefZ7gE2RERERG1nlsXv4xGI2bNmoVz587B19cXo0aNkjolIqJ2zWIR8fIXW3A+t9Qm/tBNw5Dcg9uViKhOaW0GtmV/jBJtht2YUqbC1VF3oHfwBAhc7UVERETtgEt+Y/nLX/6C5557DhcuXGjT85RKJYKDgyGKIn777TcnZUdE1Hl89tt+bDmYbhObOCgBt01MkigjInInJosB+/L/hx/P/l+jha8Y3yTM6vUG+oRMYuGLiIiI2g2XrPw6ePAgDh06hKlTpyI+Pr5Nzx01ahR27dqFw4cPOyc5IqJOYuO+8/jsN9sG992igvDs3eMgCIJEWRGRuyjQnMG27I9Rqc+3G/OU+2B49N3oHjiSPy+IiIio3XHrbY8AEBkZCQAoKCiQOBMiovbr5IVCvPrlFptYgK8Kbz84DV4qpURZEZE7MJi12Jf/HU6WbGx0PCFgOIZH3w210t/FmRERERE5htsXv3S6uuO0LRaLxJkQEbVPReUaLFq6Hgaj2RpTKmR4/YGpiAzxkzAzIpJadtVhpGZ/hhpjqd2YlzIQo2LmIs5/kASZERERETmO2xe/6rc7hoWFSZsIEVE7pNUb8bcl61BaVWsTX3TnWAzoHilRVkQkNZ2pGrtyV+B8+Y5Gx3sFT8DQqDvgIfdycWZEREREjue2xS9RFPHzzz9j9erVEAQBV199tdQpERG1K3UnO27G2ewSm/hdUwdixvCeEmVFRFISRRHpFbuxM/dL6ExVduN+HuEYHXsfonz7SJAdERERkXM4vPi1Z88ePPfcc42OPf/88/D09GxxDlEUUVxcDJPJBFEUoVQqMXv2bEenSkTUoX3y6z6kHLI9ZXdUUlcsuH6oRBkRkZT0phpsz/kU6RV77MYECOgfNgODImZBIWv5dzUiIiKi9sThxa/AwEDk5uZCEASIomiNi6KIkpKSZp7ZOIVCgZdffhmJiYmOTJOIqEPbsPccvvj9oE2se3QwXpw3ATIZT2oj6mzyNaeRkrkEmkZ6ewWpumBMl/kI9eomQWZEREREzufw4ldUVBSioqJsYnl5eRAEAUFBQa1a+SUIAvz9/ZGUlIS7774bCQkJjk6TiKjDOnGhEK99mWITC/RV480Hp8Fb5SFNUkQkCYtoxsGCH3G48CeIEG3GZIICV4XfiAHhMyET3LYTBhEREdEVc/hvOj4+Pti8ebNNrFevXgCA1157DWPHjnX0tyQioosKyzRYtHQdDCbbkx3fWDgVkcG+EmZGRK5WpS/ClswlKKo9ZzcWrI7D+LgHEaiKkSAzIiIiItfix3xERB1Erc6Ivy1Zi7IqrU382bvHoX+3CImyIiIpnC/bge05n8Fo0dmN9Q+dgSGRt0IuU0qQGREREZHrsfhFRNQBWCwiXvp8E87l2PbzuWdaMqYNZc9Eos7CYK7FjpwvcL58h92YWhGAcV0eQIxfkgSZEREREUnHJcWv+h5gKpXKFd+OiKjT+WjNXmw7kmETGzOgK+6/7mppEiIilyusOYctmf9FtaHYbqyLXzLGdLkfaoWfBJkRERERScslxa8/9wAjIiLHWbfnLL5cd8gm1iMmGC/MnciTHYk6AYtoweHCn3GwYDVEWGzG5IISQ6P+gj4hkyEI/HlAREREnRO3PRIRtWPH0gvw+ooUm1iQX93Jjl4q9vMh6ug0hhJsyVyCgpozdmNBqliMj3sYQWo2tSciIqLOjcUvIqJ2qqCsGs8sXQ+j6dJKDw+FHG8smIaIIJ7sSNTRpZXvxvbsT2Gw1NqN9Q2ZiqujbodC5iFBZkRERETuhcUvIqJ2SKs3YtHSdSivtj3Z8bl7xqFft3CJsiIiV9CZNNiV+2UTTe39MKbLA+jiN9D1iRERERG5KRa/iIjaGVEU8dqXKTiXbXuy4+zpV2HK1T0kyoqIXCGz8iBSsz+F1lRhNxbjm4SxXRbAS+nv+sSIiIiI3JjbF78OHjyI33//HZMmTcKwYcOkToeISHJfrjuETQfSbGJjB8Zj/rVDJMqIiJytudVeMkGBoVF3oG/IFAiCTILsiIiIiNyby4tfGo0GR44cQWlpKSwWS5PXiaKIoqIifPXVVygpKcHu3bvx66+/ujBTIiL3s/1oBj5as9cm1i0qCP83ZwJPdiTqoJpb7RWk6oJxcQsQrI5zfWJERERE7YTLil9msxn//Oc/8dVXX8FoNLb6eaIoAgDuvvtuZ6VGRNQuZOSX4++fbcLFH4sAAD9vT7y5kCc7EnVEza32EiBHcvh1GBh+A+Qyt1/IT0RERCQpl/229OSTT2L9+vXWYlZr+fv7Y/78+bjtttuclBkRkfurqtHjb0vWolZ36cMDuUzAK/OnIDrUT8LMiMgZMisPIDX7syZXe43t8gBCvLq6PC8iIiKi9sglxa+UlBSsW7cOgiAgMjISs2bNQmRkJM6ePYvly5dDEAS89tprNs85ceIEvvrqK0RHR2PWrFmuSJOIyC2ZzBa88OlG5BRX2cQfvWUEBveKligrInIGrvYiIiIicjyX/Ob0448/AgB8fHzwww8/IDg4GEBdUWz58uUAgBtvvNHmOTfeeCMCAgLwn//8Bw899BBWrlzpilSJiNzOsp/2YO/JHJvYzBG9cPO4fhJlRETOwNVeRERERM7hkiOBjh07BkEQcO2111oLXwAgCM03Z37wwQcRHx+PQ4cO4ZdffnF2mkREbmft7rNYufGITaxft3A8dcfoFn+GElH7oDNpsCVzCTZc+Jdd4UuAHFeF34gbEl9m4YuIiIjoMrmk+FVaWgoA6N27t03cw8PD+thgMNg9TyaT4frrr4coilizZo1zkyQicjMnM4rw5ldbbWKhAd547YEp8FDKJcqKiBxFFEVcqNiHH04vanSbY5CqC25IfAmDIm/mNkciIiKiK+CS36TMZjMAICgoyCbu7e1tfVxWVoaIiAi753bt2hUAcOrUKeclSETkZkoqa/DM0nUwmMzWmIdCjtcXTEWIv3czzySi9qBKX4SducuRXXXYboy9vYiIiIgcyyW/Ufn7+6OsrAy1tbU28S5dulgfHz9+vNHiV1VVXYPnyspK5yZJROQmDEYznvtwA0oqbX9mLrprLPp0DZMoKyJyBLPFhGPFv+FgwU8wi/ar3tnbi4iIiMjxXLLtMTY2FgCQmZlpEw8ICEB0dN1JZV9//XWjz01NTQVQV0AjIuroRFHE299sw/H0Qpv4HZMGYPqwRImyIiJHyKs+idVnnsW+/P/ZFb4EyJDM3l5ERERETuGS4lf//v0hiiIOHTpkNzZlyhSIoojdu3dj0aJFKCgoAFDXJ+zdd9/Fxo0bIQgCrrrqKlekSkQkqR9SjuO3nWdsYlf3icGDNw2VKCMiulJaYyW2ZC7Fb2mvokKfZzce7p2Im3q+isHs7UVERETkFIIoiqKzv0lKSgoWLFgAtVqNAwcOQCa7VHMrKSnBlClToNVqrTGFQgGTyQSgbhWETCbDihUrMGjQIGenShIwaKshipZmr1GqfCCTyWGxmGHUaVyUGbV37e2+2X86B3/9928wWy79WI4J9cMnz8yCn7enhJl1Lu3tviH38ed7RxQtOFW6Gfvyv4PBXGt3vafcB0Oj7kBi0BgIgks+jyQ3IQgyeKh9pU6DiIio03DJx4sjR47E/fffjxkzZtgUvgAgJCQE77zzDh577DEYjUYAsP4/AAiCgKefftrlha/8/Hy88cYbWLduHQDgyy+/xNChza+8WL16NZ599tlWzT9v3jwsWrSo2Ws0Gg2WL1+OjRs3Ijs7GxaLBdHR0Zg4cSJmz55td4CAs+chIufJLa7C4o832hS+vFRKvLlwGgtfRO1QSW0Gtud8huLatEbHewaNw9VRt0OlYAGEiIiIyNlcUvxSKpV44oknmhyfMGECVq1ahWXLlmHv3r2oqKiAv78/Bg0ahNmzZ7u08GUwGPD5559j2bJldg36Halv377NjqelpWH+/PnIzc21iZ87dw7nzp3DDz/8gKVLlyIpKckl8xCR89TqjFi0dB2qavTWmCAAf583EfFRLE4TtScGUy12ZX2J4wW/QYT94vogVSxGxsxFhE9PCbIjIiIi6pzcprFEYmIi/vWvf0maQ2pqKl555RVkZGQAACIiIqw9yNrq6NGjzY4rlcomxzQaDe6//37k5uZCqVTi8ccfx8yZM6FSqbB//368+eabyMrKwsKFC/HTTz8hNDTUqfMQkfNYLCJe+nwT0vPKbOL3X3c1RiV1lSYpImozURRxvnQ7tmd8ilpjmd24QuaJQRGz0C90KmSC2/z6RURERNQp8LcvACaTCY8//jg2btwIAAgNDcVTTz2FiIgIzJ49+7Lm9PS8/G1Kn376KXJycgAAb731FmbMmGEdmzRpEjQaDRYtWoSSkhIsWbIEL774olPnISLnWfrjbmw7kmETm3BVN9wzLVmahIiozTSGUqRmf4Kc6sY/+OrqPxjDo++Bj0ewizMjIiIiIsBFpz26O4VCAT8/PyiVSsyfPx/r16/HDTfcAEEQXJ6L2WzGN998AwBITk62KVjVj3/44YfWr1evXm1zWICj5yEi5/k59SS+3njEJtYjJhjPzx4vyc8fImobURRxpjQFP5xe1Gjhy8cjFFPjn8Lk+L+y8EVEREQkIRa/Llq0aBF+//13PPXUU/D29pYsj4MHD6K8vBwAMH36dLvxVatWIT09HbNmzQIA6HQ6bN++3WnzEJFz7DuVg3e+sf07F+znhTcfnAa1Z9PboonIPdQYyrA+/W1sy/4YRovth0cyQYGB4dfjll5voos/V3ESERERSY3Fr4v8/f3RpUsXp8xtsVhafe3x48etj5OTbX9h1mq1+OCDDzBgwAA89thjjT7H0fMQkeNl5Jfj+Y82wNzgZ4OnUoE3H5yGiCCe/EbkzkRRxNmybfjh9CJkVx+xG4/y64dbk97DkMhboZDxpFYiIiIid+D2Pb9EUcTOnTuRmJjYrhqyr1mzBj/99BPOnj2LkpISqNVqDBgwAHfddRcmTZrU5PPS09Otj2NiYmzGli9fjqKiIrzzzjsIDw+HQqGAyWSyeY6j53EFhadXi9cIgsz6/0qVj7NTog7CHe+b8qpaPLVkHTRag038pQdmYECvbhJlRQ25431D7qHGUIqU9KXIrNhnN6aQeWJ4lzlIirwGgABRbP0HX0RERETkXG5f/Lrnnnuwf/9+PPLII3jwwQelTqfVnn76aZuva2trsWvXLuzatQt33303Fi9e3OjzysounRAVGBhofVxeXo5PPvkEY8aMwdChQwEAfn5+KCsrs25vdMY8riCTyVt9rSAIEITWX08EuM99ozeY8PQHPyOvuNIm/uht4zDp6t4SZUVNcZf7hqQniiLOlqRg24UPoTdp7MYjfftgYvfHEaCOssZ47xARERG5D7cvfg0cOBD79u1Damqq2xe/oqOjMXXqVCiVSgwZMgRDhw5FREQEDAYDdu/ejbfffhvZ2dlYsWIF+vTpg5tuuslujvqm8x4eHjYNr5ctWwaNRoMnn3zSGvPw8ABQV1hz1jyuYLGYW7xGEGQQBAGiKPLTdGo1d7pvRFHEPz75DUfO5drErx/TH3dNG9SqvwfkGu5035D0ag3l2HphKS6U77EbU8g8MDT2biRFzIQgyCCKIu8darW2fPhHREREV8bti18JCQkAINmWvLYYOnSodTVVQ2q1GlOnTkVSUhJmzpwJjUaDpUuXNlr8qieTXWrHlpubi5UrV2LmzJno1auXNd6aXmKOmseZTPraFt8kKFU+EAQ5RNECo87+U3eixrjTffPJL/uwfvdpm9igntF44tZhMOlrJMqKGuNO9w1JRxRFpFXsws6c5dCb7e+DcO8eGBP7AAJUkTDp6z484r1DrSUIMnio2eORiIjIVdy+4X39qqSamvb/5jAyMhLTpk0DAGRlZSE7O9vuGi+vuv5XRqPRGnvvvfcgiqJNc3oA0Ov1Ns9xxjxEdOXW7zmLz347YBPrEh6AV++fAqWCn/wTuRutsRJ/ZLyPLZn/tSt8yQUlhkbdiZndX0CAKlKiDImIiIioLdx+5deJEycAAD4+HaPpcI8ePayPs7KyEBsbazMeFBQEADCbzaiurkZubi5+/fVX3HnnnTbXGo1GVFdX2zzHGfMQ0ZU5ej4fr61IsYn5e6vwzsPT4efNk+CI3Ikoikiv2IOdOV9AZ662Gw/zSsDYLgsQoIpq5NlERERE5K7ctvil0+mQmpqKb7/9FoIgYODAgVKn5BBqtdr6uOGqrHrdul067S03NxfvvPMO1Gq1Xb+z/Px863bF+Ph4p81DRJcvp7gSzyxbD6Pp0rZepUKGNxZORUyov4SZEdGfaQyl2JHzBbKqDtqNyQUlBkXMQv+wayAT3H7RPBERERH9iUOKXykpKVi4cKEjprJT3zz2nnvuccr8rlZcXGx9HB4ebjfer18/6+Ply5cjNTUVjzzyiN2qrIMHL/1y3r9/f6fNQ0SXp6pGj6f/uxYVGp1N/Lm7x2FAd26VInIXFtGCkyUbsC//fzBZ9HbjoV7dMLbLAwhUxUiQHRERERE5gsNWfomi6Kip7Dz66KMYMWKE0+Z3pZ07dwIAfH19G11plZycjMDAQJSXl2P16tUIDg7G3Llz7a5bt24dAEClUmHkyJFOm4eI2s5kNuP5jzYgs6DCJj7vmkGYOjRRmqSIyE5JbQZSsz9Fidb+UB2ZIMegiFlICpsJmcDefERERETtmUO3PQqCgMGDBztkLpVKhbi4OFx//fXtYkWSKIp48803MXjwYEyaNKnRa9auXYsDB+qaXt9www1QqVR218jlctxxxx1YsmQJAGDOnDnw9va2uWbnzp1ISUkBAMyaNctmK6Wj5yGithFFEW+vTMWBM7k28clDuuPemY75+UhEV8Zo1uFAwSocL14HEfanDYd798ComPsQpOZqLyIiIqKOwOE9v1asWOHoKV3CbDbDZDLZxBr25DIajdZTEQFAJpNBqVRav/7000/x+eef4/PPP8ekSZMwa9Ys9OvXD15eXsjLy8OaNWvw+eefAwDi4uLsTlxs6N5778WaNWuQk5ODr7/+GjExMRg2bBgsFgs2btyIt956C6IoIiQkpNntpo6ah4hab+XGI/hlx2mbWP9u4XjunnEQBEGirIioXnbVYWzP/hwaY4ndmFKmxtVRt6N38AQI7O1FRERE1GEIogP2K6akpGDBggUQBAGnTp1yRF4ut3r1ajz77LOtvv7GG2/EG2+8Yf3aZDLhn//8J1asWNFoI/t6SUlJ+Ne//mV3yuOfpaWlYf78+cjNzW10PCQkBEuXLkVSUpJL5nEmg7Yaomj/yXtDSpUPZDI5LBYzjDpNs9cS1XP1fZNyKB3Pf7QBDX+qRoX44uNFNyHQlysr2wv+vOmYao0V2JW7AukVuxsdj/e/GsNj7oG3MvCyvwfvHWotQZDBQ+0rdRpERESdhtue9tjeKBQKLFq0CLfffju+//57bN++HXl5edBqtQgNDUViYiJmzpyJadOmQaFo+WVPSEjAmjVrsHz5cmzYsAHZ2dkQRRFRUVGYOHEi5syZY9e83pnzEFHzTmUW4R+fbbYpfPmoPfDOQzNY+CKSkChacKYsBXvyvoHBXGs37q0MxsiYOYjzv0qC7IiIiIjIFbjyiyTHlV/kLK66bwrLNLjvjdUorbr0xlouk+HdR2dgcC/2DGpv+POm4yjX5SI1+1MU1pyxGxMgoG/oNAyOuBlKuX0PzsvBe4daiyu/iIiIXIsrv4iIrkCNzoCn/7vWpvAFAE/dMYqFLyKJmCwGHClcg8NFa2ARzXbjwequGB17H0K97E9dJiIiIqKOxyHFr9GjR2Pfvn2OmIqIqN0wmS144eONOJ9bahO/c/IAXD+6j0RZEXVuOVVHsSPnC1QZCu3GFDJPDIq4Gf1Cp0ImyCXIjoiIiIik4JDil1wuh68vl24TUefy7x92YteJbJvYuOR4LLxxmEQZEXVeNYYy7M77CukVexodj/UbiJHRc+DrGerizIiIiIhIatz2SER0Gb7fcgw/bDluE+sVF4oX5k6ATCZIlBVR52MRzThRvAEHCn6A0aKzG1cr/DE8+h50CxgKQeDfTSIiIqLOiMUvIqI22nEsE+//b6dNLCzQG289OA0qD6VEWRF1PoU157Aj53OUajMbGRXQJ2QiBkfcCk+Ft8tzIyIiIiL3weIXEVEbnMspwYuf/AFLg4NyvTyVeOehGQjx5xtsIlfQmTTYl/8dTpduAWB/aHWIOh6jYuci1CvB9ckRERERkdtxSfHr2WefveI5BEHAa6+95oBsiIguT0llDZ7+71rU6o3WmEwQ8NJ9k9A9JljCzIg6B1EUca5sG/bkfQOdudpuXClTY0jkregdMgkyQSZBhkRERETkjlxS/Prxxx+vqM+GKIosfhGRpLR6I/7233UoKq+xiT9+60iM6B8nUVZEnUeZNhvbcz5HYc2ZRscTAkdgWNSd8FIGuDYxIiIiInJ7Ltv2KIr22xJaIggC/Pz8EBwcjKCgICdkRUTUMotFxEufb8bprGKb+M3j++Hm8f0kyoqoczCadThYuBrHitZBhNlu3N8zEiNj5iLat68E2RERERFRe+CS4temTZva/JwvvvgCK1asQGJiIj788EN4eXk5ITMiopYt/XE3th6+YBMb3q8LHr15hEQZEXV8FtGMtPKd2Jf/PWqMpXbjckGJ5PAbkBR2DeQyHjRBRERERE1zSfErOjq6zc95/vnnAQBfffUVnn32Wbz//vuOTouIqEU/p57E1xuP2MS6RwfjpfsmQSFnTyEiR6sreu3CocKfUKnPb/SaWL+BGBE9G36eYS7OjoiIiIjaI7c+7XHRokXYtGkTNmzYgF27dmH48OFSp0REnci+Uzl455vtNrFgPy+8/dB0eKs8JMqKqGOyiBakle9stujlrQzC8Oh70NV/8BX1EiUiIiKizsWtly0oFArcdtttEEURq1atkjodIupELuSV4fmPNsBssVhjnkoF3npoGsKDfCTMjKhjsYgWnC/bgR9O/w0pWUsbLXwJkCMp9Brc0uttxAcMYeGLiIiIiNrErVd+AUBiYiIA4MCBAxJnQkSdRVmVFk8vWQuN1mCNCQLw93snoncct1kROYJFtCC9fBcOFv7Y5EovATIkBo3BwPDrucWRiIiIiC6b2xe/amtrAQAlJSUSZ0JEnYHeaMIzy9Yhr6TaJv7QjcMwdmC8RFkRdRytLXr1CBqN5PAbWPQiIiIioivm9sWv9evXAwB8fLjNiIicSxRFvPZlCo6nF9rErxvVG3dMHiBRVkQdg0W0IL1iFw4WsOhFRERERK7lkuLXvn372nS92WxGYWEh1q1bhy1btkAQBAwcONA5yRERXfTpr/uxcd95m9iQXtF46o5R7DFEdAUyKw9gT943rSh6XQ8/z3AXZ0dEREREHZ1Lil933333Fb1xlMlkuPfeex2YERGRrfV7zuKz32x7C8ZFBOCV+6dAIZdLlBVR+2Ywa7ErdwXOlm1tdJxFLyIiIiJyBZdtexRF8bKe5+/vjxdeeAGDBw92cEZERHWOns/HaytSbGIBPiq889AM+Hp5SpITUXtXoDmDlKylqDYU243VFb1GYWD49fD3jJAgOyIiIiLqTFxS/Hr44Yfb/BwvLy/Ex8dj+PDhUKlUTsiKiAjILa7CM8vWw2iyWGNKhQxvLJiK6FA/CTMjap/MFhMOFqzCkaJfIML2gy8WvYiIiIhICm5b/CIicrbqWj2e/u9aVGh0NvHn7h6HpO6REmVF1H6V63KRkrkEJdoMu7EAzyiMj3sQIV48NZWIiIiIXMvtT3skInIGk9mMxR9vREZBuU183jWDMHVookRZEbVPomjBiZKN2Jv3Dcyi0W68b8hUXB11OxQyDwmyIyIiIqLOjsUvIup0RFHEv77dgX2ncmzikwZ3x70z2V+QqC1qjOXYmvUhcquP2Y15KQMxtssDiPHtL0FmRERERER1WPwiok7nu01H8VPqSZtY3/hwPD973BWdTEvU2aRX7MH27M+gN2vsxuIDhmJUzDyoFD4SZEZEREREdIlLi18nTpzAyZMnUV5eDoPB0Obns3cYEV2p7Ucz8MGqXTaxiCAfvLlwKjyV/DyAqDUM5lrsyFmO8+Xb7caUMjVGxsxG98BRLCYTERERkVtwyTu9/Px8PPzwwzh58mTLFzeDxS8iuhJns0vw4qd/QGxwAJ23ygPvPDwDQX5e0iVG1I7ka04hJXMZNMYSu7FI794YG/cAfD1CJciMiIiIiKhxLil+/eMf/8CJEydc8a2IiBpVXFGDvy1ZC63eZI3JZQJenj8Z3aKCJMyMqH0wW4zYX/ADjhb9BkC0GZMJcgyOvBX9Q2dAJsikSZCIiIiIqAkuKX7t2bMHgiBg6tSpeOqppxAWFgYPD574RESuodUbsGjJOhSV19jEH791JIb1jZUoK6L2o7j2ArZmLUO5LsduLFAVg/FxDyJYHSdBZkRERERELXNJ8cvb2xs6nQ5TpkxBTEyMK74lEREAwGIR8eJHa3E6q9gmfsv4fpg1rp9EWRG1DxbRhEMFP+NQ4U8QYbEb7x86HYMjb4VCxg+0iIiIiMh9uWRvwvjx4yGKInbt2tXyxUREDvSf77diy4FzNrHh/brg0VtGSJQRUftQps3CT2dfxMHC1XaFL29lEGYkPIth0Xex8EVEREREbs8lK7+eeuopHD58GKtWrcLw4cMxY8YMV3xbIurk1qQew/Lf9tjEEqKD8NJ9kyCXsS8RUWMsohlHi37FgYJVsIhmu/EegaMxPPpueCq8JciOiIiIiKjtBFEUxZYvu3IlJSW45ZZbUFhYiEmTJsHbu22/NAuCgNdee81J2ZGUDNpqiKL9dpqGlCofyGRyWCxmGHUaF2VG7dnR8/l46N1fYDZfureC/NT45JmbEBHkK2Fm5O4688+bCl0etmYtQ1Ftmt2YWuGP0bH3Is5/kASZtQ+d+d6hthEEGTzU/LeIiIjIVVxS/Dp//jzmzJmD0tLSK5rn1KlTDsqI3AmLX+Ro1bV63PPK9ygsu3SveCjlWPLEdegTHy5hZtQedMafN6JowfHi9diX/x3MotFuvFvAMIyMmQOVgm/Wm9MZ7x26PCx+ERERuZZLtj2++uqrKCkpccW3IiLCP79JtSl8AcALcyaw8EXUiCp9EbZmfYiCmtN2Y55yH4yMmYuEwGESZEZERERE5BguKX4dPnwYgiBg6tSpeOqppxAWFgYPDzbIJSLH27D3HDbsO28T+8vUQZgwKEGijIjckyiKOFW6CXvyVsJk0duNx/kNwqjYe+Gl9JcgOyIiIiIix3FJ8cvf3x86nQ5TpkxBTEyMK74lEXVC+aXVeHtlqk2sR2woHpw1GrDoJMqKyP1oDCXYlvUxcjXH7cY8ZF4YEXMPugeOgiAIEmRHRERERORYLjnubObMmRBFEXv27Gn5YiKiy2C2WPDS55tRozNYYx4KOV5deC08PVxS5ydyexbRghPFG/DD6WcaLXzF+Cbh5l5vokfQaBa+iIiIiKjDcMk7wkcffRTHjx/HDz/8gGHDhmH69Omu+LZE1Il8tf4wjpzPt4k9cttYJMSEwmIxS5QVkfsorc1Aas5nKG7kJEelTIVh0XeiZ9B4Fr2IiIiIqMNxSfFr7969uOGGG5CRkYEnn3wSa9euhbe3d5vmEAQBr732mpMyJKL27FRmET75Zb9NbFjfWNw2KVmijIjch9Gsw4GCVThevA4i7E/WjfTpg7Gx98PXM1SC7IiIiIiInE8QRVF09jfp1auX9ZNkURTb/Kly/XNOnTrljPRIYgZtNUTR/g1ZQzw+npqi1Rsx59UfkF1UaY0F+Kiw4v9uRUR4GO8barOO9PMms/IAduQsR42x1G5MKVNhSORt6BMyCYLgki4IHV5HunfIuQRBBg+1r9RpEBERdRouWfkVFRXlim9DRJ3Q+9/vtCl8AcCzd49DsL+XRBkRSU9jKMXO3C+RWbm/0fGu/kMwPPpu+HgEuzgzIiIiIiLXc0nxa/Pmza74NkTUyWw9fAFrttuuCL1hdB+MHtBVmoSIJGYRzThRvAEHCn6AsZETTn2UwRgRMwdx/ldJkB0RERERkTR4BBoRtUsllTV4Y8VWm1iXcH88cvNwiTIiklZxbTq2Z3+KEm2G3ZgAGfqHTsdVETdBKVe5PjkiIiIiIgmx+EVE7Y7FIuKV5VtQWXNpZYtcJsPf502C2lMpYWZErmcw12J//g84WbIBIuzbeIZ5JWBU7L0IVsdJkB0RERERkfRY/CKiduf7Lcew92SOTWz+dUPQK46n1VHnIYoiMir3YWful6g1ltuNe8i8MCTqNvQKngAZG9oTERERUSfmkuJXXl6eQ+Zh43wiSsstxdIf99jEBvaIxJ1TBkiUEZHr6U012J7zGdIrdjc63i1gGIZH3wUvZaCLMyMiIiIicj8uKX5NmDABgiBc0RyCIODkyZMOyoiI2iO90YS/f7YJBpPZGvNRe+CFuRMgl3FlC3UOBZoz2JL5X2iMpXZjvh6hGBkzD7F+SRJkRkRERETknly27VEU7fuQEBG1xbIf9yAtt8wm9tRfRiMiyFeijIhcxyKacajgRxwq/Mmut5cAOQaEXYPkiBugkHlKlCERERERkXtySfHrxhtvbPNzNm/ejKqqKowdOxbXXXcdgoKCnJAZEbUXe05m47vNx2xiU4f2wJQhPSTKiMh1qvRF2JK5BEW15+zGgtVxGNdlIYLUsRJkRkRERETk/lxS/Hr99dfb/Jzs7Gzcc8892L59O2677TYMGzbMCZkRUXtQodHi1eVbbGIRQT548vZREmVE5Drny3Zge87nMFq0dmP9Q6djSORtkMt4yikRERERUVPctklObGwsPvjgA4iiiMWLF6OyslLqlIhIAqIo4s2vtqGkstYakwkCXpw3ET5qbu+ijstgrsWWzCXYkrXErvClVvhjerdFGBZ9FwtfREREREQtcNviFwD069cPU6ZMQVlZGb777jup0yEiCfyy4zS2Hr5gE7tnejIGdI+UKCMi5yusOYfVZ57D+fIddmOxfgMxq+friGFTeyIiIiKiVnHr4hcAjB07FqIoYsOGDVKnQkQulpZbhne/s33z36drGOZdM0iijIicyyJacLDgR/xy7iVUG4ptxuSCEiOiZ2Nq/FNQK/0lypCIiIiIqP1x2WmPlyswMBAAkJmZKXEmRORKtTojFn+8AXqjyRpTeyrw4twJUMjlEmZG5BwaQwm2ZC5BQc0Zu7FAVQwmxD3MpvZERERERJfB7YtfaWlpAACj0ShxJkTkSv/8NhWZBRU2safuGI3Y8ABJ8iFyprTy3die/SkMllq7sb4hU3B11B1QyDwkyIyIiIiIqP1z6+LXiRMn8Omnn0IQBMTG8tNuos7it52nsXb3WZvYjOE9MX1YT4kyInKOKn0R9uZ/iwsVe+zGVHJfjOlyP+L8r5IgMyIiIiKijsMlxa977rmnTddbLBYUFhYiJycHoihCEARMmTLFSdkRkTtJzyvDO99st4nFRwbiydtHSZQRkeMZzLU4XLgGx4rXwiKa7MajfftjXJcF8FIGuD45IiIiIqIOxiXFr71790IQhDY/TxRFAECfPn1w3333OTotInIzWr0R//fxRps+X55KBV6ePxlqT6WEmRE5hkU040xpCvYX/ACdqcpuXCYocHXk7egXOhWC4PZn0hARERERtQsu2/ZYX8hqLbVajfj4eEybNg2zZ8+Gp6enkzIjInfxr++240J+uU3sqTtGoVtUkEQZETlOTtVR7M77GuW6nEbHQ9RdMTp2PkK8uro2MSIiIiKiDs4lxa/Tp0+74tsQUTu2dvcZ/LbT9pS76cMScc2IXhJlROQY5bpc7Mn9GtnVRxod91IGYkjkbegROJKrvYiIiIiInMCtG94TUeeQkV+Ot1em2sTiIgLw5O2jJcqI6MrpTNU4ULAKp0o2QYTFblwueGBA2EwkhV0DpVwlQYZERERERJ0Di19EJCmdwYjnP94AncG2z9cr86fAS8U+X9T+mC1GnCjZgEMFP8FgqW30mh6BozEk8lZ4e3BLLxERERGRs7H4RUSSeve7HbiQZ9vn64nbRyIhmkUBal9EUURG5X7szfsGVYbCRq+J8O6JYdF3I9Qr3sXZERERERF1Xk4rfpWUlCAkJOSK5/nmm29w6623Qi6XOyArInIn6/acxS87bHsCTrm6B2ayzxe1M9WGYqRmfYJczfFGx309wjA06i/o6j/4sk4/JiIiIiKiy+eU4teKFSvw8ccf46OPPkKvXpf3JtZgMODhhx9GamoqioqK8Nhjjzk4SyKSUkZBOd5euc0m1iU8AH/7yxgWB6jdEEURZ8u2YlfuChgtOrtxD5kXkiNuQN+QKZDLuI2XiIiIiEgKDj9WSqPR4P3330dxcTHeeuuty57Hw8MDSqUSoijiiy++QFlZmQOzJCIp6Q0m/N/HG6HVX+rz5aGU45X5k9nni9qNGmM51l94B9uyP7YrfAmQoU/IZNza559ICruGhS8iIiIiIgk5vPj1008/QaPRQCaTYfHixVc013PPPQcPDw/odDr88ssvDsqQiKT27v92IC3XtqD911tHontMsEQZEbWeKIpIK9+FVacXIbvqsN14lE9fzOr1OkbGzIFa4ef6BImIiIiIyIbDi187duwAAIwYMQLdunW7ormio6MxevRoiKKI1NRUR6RHRBLbsO8c1mw/ZRObPKQ7rhvVW6KMiFpPZ6rGpswPsDnzP9Cba2zGFDJPjIyZixkJzyJQFSNRhkRERERE9GcO7/l15swZCIKA4cOHO2S+oUOHYtOmTUhPT3fIfEQknazCCrz1lW2fr9gwf/ztTvb5IveXUbkf27M/hdZUZTcW7t0TY7vcD3/PCAkyIyIiIiKi5ji8+FVRUQEAiIqKcsh89SdGlpeXO2Q+IpKG3ljX56tWb7TGPBRyvDx/MrxVHhJmRtQ8vakGu3JX4Fy5/QpkuaDE4Mhb0C90OmSCwxdTExERERGRAzi8+GUwGAAARqOxhStbRxRFAIDZbHbIfEQkjff/txPnckptYo/dOgKJsSESZUTUspyqo9iW/RFqjPYfwISou2Fc3APc4khERERE5OYcXvwKDAxESUkJcnJyHDJfbm4uACAoKMgh8xGR6/268zR+Sj1pE5s4KAE3jO4jUUZEzTOYtdhx4VOcKFpnNyZAjqsibsTA8GshExz+zygRERERETmYw/do9O7dG6Io4o8//nDIfFu3boUgCOjVq5dD5iMi1zqdWYx3VtpuF4sO9cMzd41lny9yS3lVJ/Dt4YcbLXwFqmJwQ+JLuCriRha+iIiIiIjaCYcXvyZMmAAAOHnyJPbv339Fc504cQIHDhywmZeI2o8KjRbPfrgeBtOlbcueSgVee2AKvNXs80XuxWwxYW/et/jp5POo0hfajAkQMCDsWtyY+ApCvLpKkyAREREREV0WQaxvquUgtbW1mDBhAiorKxEZGYmVK1ciIqLtp1+VlZXhzjvvxIULFxAYGIjNmzdDrVY7MtVm5efn44033sC6dXWf/H/55ZcYOnRoq56r0WiwfPlybNy4EdnZ2bBYLIiOjsbEiRMxe/bsVm/hdLd5nMWgrYYoWpq9RqnygUwmh8VihlGncVFmdCVMZgue+OA37D+daxN/ce4ETB2a6JIceN9Qa1Xo8rElcwlKtPYnC/t7RmJslwcQ7t1DgsyoPeHPHGotQZDBQ+0rdRpERESdhsOLXwDw448/4tlnn4UgCAgKCsLixYsxffr0Vj9/8+bNeOmll1BQUABBEPDqq6/ipptucnSajTIYDPj888+xbNky1NbWWuOtLX6lpaVh/vz51l5lfxYSEoKlS5ciKSmpXc3jTCx+dUxLftyNr9YftondOqE/Hr91pMty4H1DLRFFEWfKtmJX7pcwWfR24/1CpmFI1K1QyDwlyI7aG/7ModZi8YuIiMi1nFL8AoBXXnkFX331lbWnT5cuXTB16lQkJSUhNjYWAQEBUCqVMBqNqKysRE5ODo4ePYqNGzciPT3desrjXXfdhcWLFzsjRTupqal45ZVXkJGRAQCIiIhAQUEBgNYVvzQaDa6//nrk5ORAqVTi8ccfx8yZM6FSqbB//368+eabyMrKQkhICH766SeEhoa2i3mcjcWvjmfLwXQ8/9EGm9iA7pH44K8zoZDLXZYH7xtqjs5UjdTsT5FRuc9uzNsjGBMTHke4ZzcJMqP2ij9zqLVY/CIiInItp3XrXbx4MUJCQvDBBx/AbDYjKysLH3/8caueK4oi5HI5Hn74YSxcuNBZKVqZTCY8/vjj2LhxIwAgNDQUTz31FCIiIjB79uxWz/Ppp59aT7l86623MGPGDOvYpEmToNFosGjRIpSUlGDJkiV48cUX28U8RG1xIa8Mry7fYhML8ffCK/Mnu7TwRdSc3OoT2Jq1FDXGcruxbkHDMT7hEXjKvVnAICIiIiLqABze8L6hBQsWYPXq1Rg3bhwEQYAoii3+TxAEjBs3DqtXr3ZJ4QsAFAoF/Pz8oFQqMX/+fKxfvx433HBDm06iM5vN+OabbwAAycnJNoWm+vEPP/zQ+vXq1auh1Wrdfh6ittBo9Xj2w/Wo1RutMYVchlcfmIJgfy8JMyOqY7aYsCdvJX5Pe92u8KWQeWJ07HxM7bEIaqWfRBkSEREREZGjOf2c9p49e2LZsmUoKCjA1q1bcfToUWRmZqKiogJ6vR6enp4ICAhAXFwcBgwYgNGjRyMyMtLZadlZtGgRFixYgC5dulzW8w8ePIjy8ro3Uo31N1u1ahXS09Mxa9YsrFq1CjqdDtu3b8fkyZPdeh6i1rJYRLz8xRZkFVbaxP9620j079b2Qy+IHK1Cl4ctmf9FiTbDbixE3Q3j4x5EgCqyTR98EBERERGR+3N68ateREQEbrvtNtx2222u+pZt4u/vD39//8t+/vHjx62Pk5OTbca0Wi0++OADDBgwAI899hhWrVplfc6fi03uNg9Ra3257iBSj2TYxK4Z0RM3jO4jTUJEF4miiNOlW7ArdwXMouFPowIGhM3EoIibIZe57J9EIiIiIiJyIf6m7yDp6enWxzExMTZjy5cvR1FREd555x2Eh4dDoVDAZDLZPMdd53EFhWfL2+EEQWb9f6XKx9kpURvtPHoBH/9i2zS8d9dwPDNnGjw8lBJlxfuGAK2xCinp/8GF8j12Y94ewZiU8FdE+/e3ifO+ocvFe4eIiIjIPbH45SBlZWXWx4GBgdbH5eXl+OSTTzBmzBjraZF+fn4oKyuzbkt053lcQSZrfRN0QRAgCGya7k5yiirwfx/+hobnxvr7qPH2ozfCS6WSLrEGeN90TlkVh/DHuXdRayyzG+sePArjEh6GStF0gYL3DV0u3jtERERE7oXFLwepbxbv4eFh0y9m2bJl0Gg0ePLJJ60xDw8PAEBtba3bz+MKFou5xWsEQdbg0ASLC7Ki1tDpjXjq/dWoqtFZYzJBwKsLZyI8yKdVf7bOxPumc6oxlGJX1pc4W5JiN6aQqTCm6/3oGToBgiA0eo/yvqHLxXuH2qItH/4RERHRlWHxy8FksksHaObm5mLlypWYOXMmevXqZY1bLC3/Quxu8ziTSV/b4psEpcoHgiCHKFpg1GlclBk1RxRFvPz5ZpzLLraJL7jhalyVEOwWf068bzoXk8WAY8VrcbjwZ5gservxUK8EjI97EP6eETDpa5qch/cNXS7eO9RagiCDh9pX6jSIiIg6DRa/HMTLq65vldFotMbee+89iKKIxx57zOZavV5v8xx3noeoKT+kHMeGvedsYuOSu+HOKQOlSYg6LVEUkVl5ALvzvka1oaiRKwQMDL8OgyJugkzgP3tERERERJ0N3wU4SFBQEADAbDajuroaubm5+PXXX3HnnXciNjbWep3RaER1dbXNc9x5HqLGHD6Xj39/v8sm1jUiEM/PHmezzZbI2cq0OdiV+yXyNCcaHQ9SxWJkzFxE+PR0cWZEREREROQuWPxykG7dulkf5+bm4p133oFarcaDDz5oc11+fr51m2F8fLzbz0P0Z8UVNVj88QaYG2yX9VIp8fqCqfBWeUiYGXUmOpMGBwpW4VTJHxBhv23aU+6DwZG3oFfweMjYeJyIiIiIqFNj8ctB+vXrZ328fPlypKam4pFHHrFbTXXw4EHr4/79+7v9PEQNmcxmLP5oA8qqtDbx/5szAXERAdIkRZ2KRTTjdOkW7M//HnqzfU8lATL0DpmEQRGzmj3JkYiIiIiIOg8WvxwkOTkZgYGBKC8vx+rVqxEcHIy5c+faXbdu3ToAgEqlwsiRI91+HqKGlq89hGPphTax2dOvwtiBXDVIzpdXfRK7clegTJfV6HiUT18Mj74bQerYRseJiIiIiKhzkrV8CbWGXC7HHXfcYf16zpw58Pb2trlm586dSElJAQDMmjULarXa7echqncyowhf/H7AJja0Tyzuu3awRBlRZ1GtL8YfF97Hb2mvNlr48vUIxeSuf8WMhGdZ+CIiIiIiIjtc+XWR2WyGyWSyiTU8KdFoNFpPRQQAmUwGpVJpc/29996LNWvWICcnB19//TViYmIwbNgwWCwWbNy4EW+99RZEUURISAgWLlzYZC7uNg+R3mDCS59vhtkiWmNBfmq8MHcC5DLW0Ml5Tpduwc6c5TCLRrsxhcwTA8OvR//Q6VDI2G+OiIiIiIgaJ4iiKLZ8Wce3evVqPPvss62+/sYbb8Qbb7xhF09LS8P8+fORm5vb6PNCQkKwdOlSJCUlNTu/u83jTAZtNUTRvmF1Q0qVD2QyOSwWM4w6+z4/5Fzvfrcd3285bhN7+8HpGJkUJ1FGrcP7pv0SRREHC1fjYMHqRse7B47C1ZG3wdvD8afU8r6hy8V7h1pLEGTwUPtKnQYREVGnwZVfDpaQkIA1a9Zg+fLl2LBhA7KzsyGKIqKiojBx4kTMmTPHrul8e5iHOq99p3LsCl/Xjuzl9oUvar8sogU7cj7H6dLNdmOhXt0wPPoehHv3kCAzIiIiIiJqj7jyiyTHlV/uq7pWj7tf/h+KymussagQXyxffAu8Ve6/zYz3TftjshiwJXMJMir32cTlghIjYuagZ9AYCIJzt9ryvqHLxXuHWosrv4iIiFyLK7+IqEn//Ha7TeFLEIDFsye0i8IXtT96Uw02XPgXCmpO28Q95d6YEv8kInx6SpQZERERERG1Zyx+EVGjNh9Iw4a952xif5k8EAN7REqUEXVkNcZyrEt7E2W6bJu4tzII0xMWIVAVI1FmRERERETU3rH4RUR2Sipr8NbKbTax7tHBmH/tEIkyoo6sQpeHtWlvQGMstYkHqKIxvdsi+HgES5QZERERERF1BCx+EZENURTx+pcpqKrRW2NKhQwvzJ0AD6VcwsyoIyqqOY916W9Db7btjxTunYgp8U9CpfCRKDMiIiIiIuooWPwiIhs/p57CrhO2W8/mXzsE3WO4+oYcK6vqMDZl/Bsmi94mHud3FSZ0fQQKGXvLERERERHRlWPxi4iscooq8e8fdtrEBnSPwB2TB0iUEXVUZ8u2YVvWxxBhe9Jrz6BxGBU7DzKBqwyJiIiIiMgxWPwiIgCAyWzBS19shs5gssa8PJVYPHsC5DKZhJlRRyKKIo4U/Yp9+d/ajSWH34BBETdDEAQJMiMiIiIioo6KxS8iAgCs3HgYx9MLbWKP3jIC0aF+EmVEHY0oWrA792scL1n3pxEBI2Nmo0/IZEnyIiIiIiKijo3FLyLC2ewSfPLLfpvYqKQ4XDuyl0QZUUdjtpiwNWsZ0ip22cRlggLj4x5Et4ChEmVGREREREQdHYtfRJ2c3mjCPz7fBJP5Uu+lAB8VnrlrLLefkUNoTVXYlPFv5GtO2cSVMjWmxD+BKN8+EmVGRERERESdAYtfRJ3cRz/vw4W8cpvYojvHIsjPS6KMqCMpqc3Axgv/gsZYahNXKwIwPeFvCFbHSZQZERERERF1Fix+EXVih87m4dtNR2xi04clYmxyvEQZUUdyvnwHtmV9ArNosIn7eUZgerdF8PMMkygzIiIiIiLqTFj8IuqkarQGvPzFZojipVh4kA/+ettI6ZKiDsEimrEn7xscL15rNxbh3QuT4h+DWsGDFIiIiIiIyDVY/CLqpN77fgcKyjQ2scWzx8NH7SlRRtQR6EzV2JTxAfI0J+zG+oZMwbDoOyET+E8PERERERG5Dt+BEHVC249m4LedZ2xit01MwqCe0RJlRB1BaW0GNlx4FxpjiU1cLigxKmYuEoPHSpQZERERERF1Zix+EXUyVTV6vPX1NptYfGQgFtxwtUQZUUdwvnwntmV9bNffy1sZhMnxjyPUK0GizIiIiIiIqLNj8Yuok/n3DztRUllr/VouE/DC3AnwVPLHAbWdRTRjb963OFb8u91YhHdPTOz6GLyU/hJkRkREREREVIfvdok6kV3Hs/D7LtvtjndNTUbPLqESZUTtWXP9vfqETMFw9vciIiIiIiI3wHclRJ2ERqvHm19vtYnFRwVi7oxBEmVE7VmpNrOuv5eh2CYuExQYFTMPPdnfi4iIiIiI3ASLX0SdxH9W7UZReY31a5kg4Pl7xsNDKZcwK2qP0sp3YWvWR4309wrEpK5/RZg3+3sREREREZH7YPGLqBPYdyoHa7afsondMXkA+nQNkygjao8sogX78r/D0aJf7cbCvXtiUtdH4aUMcH1iREREREREzWDxi6iDq9EZ8PqKFJtYl/AA3HftYEnyofbJaNZhS+YSZFYdsBvrEzIJw6LuhlzGf1KIiIiIiMj98J0KUQe39Mc9fdWCpQAAPjFJREFUKCjTWL8WBOD5e8bxdEdqtRpDGdZf+CdKtRk2cZmgwMiYuegVPE6SvIiIiIiIiFqD736JOrCDZ3KxeqvtSXy3TkhC/4QIiTKi9qakNgPrL7yDWmO5TdxLEYDJ8X9FmHd3iTIjIiIiIiJqHRa/iDoord6I11bYnu4YE+qHB64fIlFG1N5kVh7A5sz/wmTR28SDVF0wtdtT8PEIligzIiIiIiKi1mPxi6iD+vDnvcgrqbKJPXvPOKg8lBJlRO2FKIo4VrwWe/JWAhBtxrr4JWNC3MNQylXSJEdERERERNRGLH4RdUBHz+fj+y3HbGI3j+uH5B5REmVE7YVFNGFHznKcLt1sN9YvdBqGRt0JmSCTIDMiIiIiIqLLw+IXUQejN5jw2ooUiA0W7ESF+GLBDUMly4naB72pBpsy/43c6uM2cQEyjIiZjT4hkyTKjIiIiIiI6PKx+EXUwXz8yz5kFVbaxJ65axy8VNzuSE2r0hdhffrbqNDn2cSVMjUmdn0UsX5JEmVGRERERER0ZVj8IupATlwoxLd/HLWJ3TC6Dwb3ipYoI2oPCmvOYsOFd6Ez2faI81GGYGq3pxGkjpEoMyIiIiIioivH4hdRB6E3mvDq8hRYGux3DA/0wUM3DZMwK3J358t3YlvWRzCLRpt4mFcCJsc/CS+lv0SZEREREREROQaLX0QdxOe/HUBGQblNbNFdY+Gt9pAoI3JnoijiUOGPOFCwym6sW8BQjO2yAAoZ7x0iIiIiImr/WPwi6gBOZxbj6w2HbWIzR/TCsL6x0iREbs1k0SM1+1OcL99hN5YcfgMGRcyCwBMdiYiIiIiog2Dxi6idM5rMePXLLTBbLm13DPH3wiM3D5cwK3JXpdosbM74wK6xvUyQY3TsfCQGjZYoMyIiIiIiIudg8YuonVu+9iDScstsYovuGgtfL0+JMiJ3JIoiTpRswN68b+z6e3nKfTA5/nFE+vSWKDsiIiIiIiLnYfGLqB07m12C5WsP2cSmDU3EyP5xEmVE7khnqsbWrI+QVXXQbszfMxJTuz0Ff88ICTIjIiIiIiJyPha/iNopvcGEf3y2CWaLxRoL9vPC47eOkDArcje51SeQkrkEtaYKu7HEoDEYET0bSrnK9YkRERERERG5CItfRO3Uf1fvxoV829Mdn/rLaPh5s5BBgEU04UD+Khwu+gWAaDOmlKkwKnYeugeOlCY5IiIiIiIiF2Lxi6gd2nksEz+kHLeJTR+WiLED4yXKiNxJlb4IWzL/g6LaNLuxMK8EjI97GH6eYRJkRkRERERE5HosfhG1M2VVtXj1yxSbWFSIH564bZQ0CZFbOV++A9uzP4PRovvTiICB4ddhUMRNkAn80U9ERERERJ0H3wERtSOiKOLV5VtQXq21xuQyAX+fNxHeag8JMyOpGcxa7MxZjnPlqXZjXspAjOuyENG+fSXIjIiIiIiISFosfhG1I6tSTmDXiWyb2LxrBqNft3CJMiJ3UFx7AZszPkCVodBuLM7vKozpcj9UCl8JMiMiIiIiIpIei19E7URabhn+s2qXTSwpIQJ3T0uWKCOSmihacKx4LfblfweLaLYZkwtKDI36C/qETIYgCBJlSEREREREJD0Wv4jaAb3RhL9/9gcMpksFDm+VB16cOwEKuUzCzEgqGkMptmZ9iDzNCbuxAFU0JsY9jCB1FwkyIyIiIiIici8sfhG1A8t+3IO03DKb2FN3jEJkiJ9EGZGU0sp3Y0fOZ9Cba+zGegdPxLDoO6GQeUqQGRERERERkfth8YvIze0+kY3vNh+ziU25ugemDk2UKCOSisFcix05y3G+fLvdmKfcG6Nj5yM+YIgEmREREREREbkvFr+I3Fh5tRavLt9iE4sI8sFTd4ySKCOSSr7mNFIyl0JjLLEbi/Tpg3FdFsDHI1iCzIiIiIiIiNwbi19EbkoURby+IgWlVbXWmEwQ8Pd5E+Gj5pa2zsJsMeFAwQ84UvQrANFmTCYoMCTyNvQPnQZBYO83IiIiIiKixrD4ReSmfko9ie1HM21ic2ZchaTukRJlRK5WrsvFlswlKNVm2I0FqmIwPu4hBLOpPRERERERUbNY/CJyQxn55fj397tsYn3jwzFnxiCJMiJXEkURJ0s2Yk/eSphFo914v9DpGBJ5KxQyDwmyIyIiIiIial9Y/CJyMwajGS9+9gf0RpM15uWpxIvzJkAh59a2jq7WWI6tWR8hp/qo3Zi3MhBjuyxAtG8/CTIjIiIiIiJqn1j8InIzH63Zi3PZpTaxJ+8YhZhQf4kyIle5ULEPqdmfQG/W2I3FBwzFqJh5UCl8JMiMiIiIiIio/WLxi8iN7DuVg5Ubj9jEJg5OwLShiRJlRK5gNOuwK3cFzpSl2I0pZSqMjJmD7oGjIAiC65MjIiIiIiJq51j8InITlRodXv5is00sPNAHT98xhkWPDqyoJg1bMv+LKkOh3ViEd0+M67IQvp6hEmRGRERERETUMbD4ReQGRFHEG19tRUllrTUmCMALcyfAz9tTwszIWSyiBUeKfsGB/FUQYbYZEyDH4MibkRQ2EzKBfd6IiIiIiIiuBItfRG7glx2nsfXwBZvY3VOTkZwYJVFG5EwaQym2ZC5BQc1pu7EAzyiMi3sQoV7xEmRGRERERETU8bD4RSSxonIN/v3DTptYr7hQ3HftYIkyImdKr9iD1OxPYDDX2o31Dp6EYdF/gULG1X5ERERERESOwuIXkYREUcTbK1NRqzNaY2pPBf4xbyIUcrmEmZGjGcxa7MpdgbNlW+3GVHJfjOkyH3H+gyTIjIiIiIiIqGNj8YtIQn/sT8OOY5k2sYU3DENseIA0CZFTNNfUPtq3H8Z1WQAvZaAEmREREREREXV8LH4RSaRSo8O7/9tuE+vfLRw3je0rUUbkaM01tZcJClwdeTv6hU6FwKb2RERERERETsPiF5FE3v9+JyqqddavlQoZnr17HGQyQcKsyFFaamo/Ie4hBHt1dX1iREREREREnQyLX0QS2H0iC+v2nLWJzZkxCF0jufWtI2BTeyIiIiIiIvfB4heRi9XoDP/f3r2HR1Wd7R+/Z5LJmQA5EMiBowLKMaKCoEiFCgoKFa0gUEHFV6VoW22t/Vmtbe0rlioWlWBFG6xIW4kaqHKQyklAKoEKioBATJhASEiATM6Z2b8/fBkZZxICJLOTme/nury693rW7DzRZWxu9l5bc97c4DHWIyVOU68faE5DaDK1ziptti9mU3sAAAAAaEEIvwA/W/jeNhWWONznVotFj00bIVsob3dszY449mh93kKV1RR51djUHgAAAADMQ/gF+NGug0e1bN1uj7EfjuynS7t2MKkjXKhaZ5X+c+Qf+rx4lVeNTe0BAAAAwHyEX4Cf1NQ69b+L18swvh1LTojVzJuuMK8pXJCjjr1an7dQp2oKvWpsag8AAAAALQPhF+AnmR/kKPdoqcfYL6cOV2S4zaSOcL7qXDX69Mg/tavoA0mGV71PwvW6MnkSm9oDAAAAQAtA+AX4wQH7cS1eucNjbNzQ3rq8d6pJHeF8FZbv1/q8hTpZfcSr1iYsUdd2/h91irnEhM4AAAAAAL4QfgHNzOly6X/fWC+ny+Uei4+N0o8nXmViVzhXda4a5RzN0mfHVsjwcbfXpQmjdGWnybKFRJjQHQAAAACgPoRfQDP757936YvcYx5jD0++WrHRPBLXWhRVHNC6vIU6UWX3qsXY4jW8871KadPXhM4AAAAAAGdD+AU0I3vRKb2S/R+PsRHp3TQivbtJHeFcOF21yil8R/8tXC5DLq967/jrNDh5ssJCokzoDgAAAADQGIRfQDMxDEPPvrleVTV17rE2UWH62aSrTewKjVVckav1eRkqqcr3qkXb4nRN2kylxfY3oTMAAAAAwLkg/AKayb+27NV/vvR8TO7HE69SQttokzpCY7gMp3YWvqeco+/KkNOr3jPuWl2VMpW7vQAAAACglSD8AprB8ZMVmv/2Zo+xQb1SNG5ob5M6QmOcqj6mj75+Wccq9nvVokLb6Zq0e9S5bboJnQEAAAAAzhfhF9AMnvv7JpVV1LjPw22henTqcFksFhO7Qn0Mw9BXpZv08eG/qtZV5VW/qP3VGpryI4WHctceAAAAALQ2hF9NKCsrS4899lij5t5111169NFH6607HA5lZmZqzZo1ys/Pl8vlUkpKikaOHKk777xTcXFxjfo6TXUdNN76HYf0Uc5Bj7GZN1+h1MS2JnWEhtQ4K7Qp/zUdOLHFqxYZGqur0+5W17aXm9AZAAAAAKApEH6ZpE+fPvXWDhw4oJkzZ8pu99wvav/+/dq/f7/efvttLViwQP37N7zZdlNdB41XVlGtPy3d6DHWu0uifnhdP5M6QkOOOvbqo69flqO22KvWOTZdw9NmKtJGaAkAAAAArRnhVzP57LPPGqzbbDaf4w6HQ/fee6/sdrtsNpt+8pOfaNy4cYqIiNCnn36qOXPmKC8vT/fff7/effddJSYmNut1cG5eytqq4pMV7vMQq1W/mjZCoSFWE7vCd7kMp3KOvqOdhe/KkOFRC7HYNCRlii6JH8VjqgAAAAAQAPiNvJmEh4c3+JfV6vtv/aJFi3T48GFJ0rPPPqt77rlHHTt2VLt27TRq1CjNmjVLklRcXKyXX3653q/fVNdB4+0/XKzlH+/xGJs2ZqAuSo03qSP4cqq6UMv3/1Y7Ct/xCr7iIjprQs/f69KE7xN8AQAAAECAIPxqQZxOp9566y1JUnp6um688Uav+sKFC93nWVlZqqysbLbr4NxkvPOJjDOylC4d22n6DYPMawgeDMPQvpKNytr7Kx2r+Mqr3jfxBk3o+VvFRaaa0B0AAAAAoLkQfrUgOTk5Ki0tlSTdcMMNXvVly5bp4MGDmjhxoiSpqqpKmzZtarbroPF27CvQls/zPcZ+PPEqhdlCTOoIZ6quc+ijr1/S+rwMr7c5Roa205juj+qqlKkKsfp+HBkAAAAA0HoRfvmBy+Vq1Lzdu3e7j9PT0z1qlZWVmj9/vgYMGKCHHnrI52ea+jpoHMMw9PI7Wz3GBlzUSUP7djapI5yp4NRu/f2zn/h8m2Pn2Ms0sff/Ki2Wlz4AAAAAQKBiw/tmkp2drXfffVf79u1TcXGxIiMjNWDAAE2dOlWjRo3y+ZmDBw+6j1NTPR+9yszM1LFjxzR37lwlJSUpNDRUdXV1Hp9p6uv4S2h41FnnWCxW9//aImKau6Vz8tH2/fr80DGPsQcnfU9hkW1M6gjSN5vab8tfou32f8qQZwAdYgnTsC53qU/SGPb2gpeW/PMGLRtrBwAAoGUi/GomP//5zz3OKyoqtGXLFm3ZskXTpk3T448/7vWZkpIS93H79u3dx6WlpXr11Vc1fPhwDR48WJIUGxurkpIS9+ONzXEdf7FaG/9ooMVikcXSch4lrHO69PLbGz3Grr3sYg3smWZSR5Ck6rpyrdr3rPJObPeqJUR10/U9f6G4KP4ZoWEt7ecNWg/WDgAAQMtC+NWEUlJSNHr0aNlsNl1xxRUaPHiwOnbsqJqaGm3dulV//OMflZ+frzfeeEOXXnqpbrnlFo/Pn950PiwszONulIyMDDkcDj388MPusbCwMEnfhGrf1VTX8ReXy3nWORaLVRaLRYZhyDAa9xipPyzfsEu5R74NG60Wix6YOKxR3xOax4nKAr2/92mdqDrsVRvQabyGpE1TiNXGPyPUq6X+vEHLx9rBuTiXP/wDAAAXhvCrCQ0ePNh9R9WZIiMjNXr0aPXv31/jxo2Tw+HQggULvMKv06zWb7dis9vtWrJkicaNG6fevXu7xxuzj1hTXae51VVXnPWXBFtEjCyWEBmGS7VVDj911rDqmjotfMfzRQE3XNVTafERLabHYGMv2621uX9WtbPcYzzK1l7Xpt2r1Nj+ctVUy6VqkzpEa9ASf96gdWDtoLEsFivbIwAA4EdseO9HnTp10pgxYyRJeXl5ys/3fDtgVNQ3e1/V1ta6x+bNmyfDMDw2p5ek6upqj880x3XQsGXrdqvoxLchS1hoiO4Zd4WJHQW3L4rX6IMDc7yCr6SYnrqt33NKZVN7AAAAAAhK3PnlZxdffLH7OC8vT2lp3+47FBcXJ0lyOp0qKyuT3W7XihUrNGXKFI95tbW1Kisr8/jMmZrqOqhfWUW1Mlfu8BibOKKvkuLY4NjfXEadNh9+Q3uOf+hVuzjhWo3s8aCsllDuwgAAAACAIEX45WeRkZHu4zPvzJKk7t27u4/tdrvmzp2ryMhIPfDAAx7zjhw54n5csVu3bl5fo6mug/q9uXqnyiq+fXQuOiJMPxqTbmJHwamqrkwf5v5ZRxxffKdi0RWdfqjLO09WSEgo+3sBAAAAQBAj/PKzoqIi93FSUpJHrW/fvu7jzMxMbdy4UbNnz/a6KysnJ8d93K9fP6+v0VTXgW9FJ8r197W7PMamjh6otjERJnUUnEqr7Fp98E86VVPoMR5qDdf3ujygrm0v93jhAwAAAAAgOBF++dnmzZslSW3atPG62yo9PV3t27dXaWmpsrKyFB8frxkzZnhdY+XKlZKkiIgIDRs2zKveVNeBb6//a7uqa+vc5/GxUfrhdYSH/pR/aqfW5r6oWlelx3iMLUHXd39Y8ZGdTeoMAAAAANDSsOF9EzEMQ88884w+/NB736HTPvjgA23fvl2SNGHCBEVEeN4pFBISosmTJ7vPp0+frujoaI85mzdv1rp16yRJEydO9HiMsqmvA295hSe0/OM9HmMzxg5SZLjNpI6Ci2EY+uzYv7Tq4Fyv4Cspupcm9PodwRcAAAAAwAN3fjWRRYsW6fXXX9frr7+uUaNGaeLEierbt6+ioqJUUFCg7Oxsvf7665KkLl26eL118bS7775b2dnZOnz4sN58802lpqZqyJAhcrlcWrNmjZ599lkZhqGEhATdf//99fbTVNeBp1fe2yany3CfpybG6uare5vYUfBwumq16fBr2leywavWK26EhqXOUIiVH2kAAAAAAE8WwzCMs0/D2dTV1elPf/qT3njjDa+N7M/Uv39/Pffccx5vXfyuAwcOaObMmbLb7T7rCQkJWrBggfr3799gT011neZWU1kmw3A1OMcWESOrNUQul9O0t/bt+fqY7v7fLI+x394zSqMuv8iUfoJJZe1Jrcl9XoXl+z3GLbJoSMpU9UkY7XN/r5awbtD6sG5wvlg7aCyLxaqwyDZmtwEAQNAg/GpiX3/9tf75z39q06ZNKigoUGVlpRITE9WzZ0+NGzdOY8aMUWjo2e9OcTgcyszM1OrVq5Wfny/DMJScnKyRI0dq+vTpXpvXN/d1mlNrCb8enLdcn375bZDYq3OCFv1yoqxWNlVvTsfKv9La3D/LUXvcYzzMGqXrus5WWmz94W1LWDdofVg3OF+sHTQW4RcAAP5F+AXTtYbwa9sX+frJn//lMTbvwbG68tL67+DDhXG66pRTmKX/FmbLkOePqdiwJI3u/ojaRSQ3eA2z1w1aJ9YNzhdrB41F+AUAgH+xQQ5wFi6XoYx3t3mMXd47heCrGR2v/Frrvs5QSVWeVy05po9Gdn1QEaExJnQGAAAAAGhtCL+As/go54C+zCvyGLv/B4NN6iawuQyn/ntshXKOLpPLcHrV+ySM1pCUO2S18KMLAAAAANA4/AYJNKDO6dTC9zzv+rrusu66pEsHkzoKXCeqjmh9XoaOVXzlVYuytdfwtJlKix1gQmcAAAAAgNaM8AtowPKPv9TholPu8xCrRfeOv9LEjgKPYbj0efEabStYKqdR41W/qP0wDU25U+Gh0SZ0BwAAAABo7Qi/gHpUVtfqtRXbPcZuGnaJOie1M6ehAFRWU6QNeX9RgeNzr1pESBtdnXaXurUjbAQAAAAAnD/CL6Ae//j3Lh0/VeE+D7eFasbYQSZ2FDgMw9C+kvXaYn9Dta4qr3qX2EG6Ou1uRdnamtAdAAAAACCQEH4BPpx0VOlvq3Z6jN0+sp8S2/Ho3YWqqD2hjfmvKu/UDq+azRqpoak/0sXtr5HFYjGhOwAAAABAoCH8AnxYvHKHyqu+3X+qTVS4plw/0LyGAsSB0q36+PDrqnY6vGrJMX10bed7FROWYEJnAAAAAIBARfgFfEfRiXItW7fbY+zOMelqExVuUketn6OmWFvsbyj35KdetRBLmAYnT9alCaNksVhN6A4AAAAAEMgIv4DveG/jF6qpc7rPO7SP1sTv9TWxo9bL6arTrqJ/Kefouz7f5Ngh6mKN6HKf2oZ3NKE7AAAAAEAwIPwCzlDndCp70x6PsWmj0xVu41+Vc2Uv262PD/9VJ6uPeNWsllAN6nir+ncYKyt3ewEAAAAAmhG/0QNn2LAzV8Unv33DY1S4TWOG9DSxo9anvKZEWwv+poMnPvFZT4zqoeFp9ygusrOfOwMAAAAABCPCL+AMWRs+9zgfM6SnoiPCTOqmdXEZddpdtEo5R7NU66ryqoeHxOjK5NvVK24Ee3sBAAAAAPyG8Av4P7lHSpWzt8Bj7AfD+5jUTetyxLFHHx/+q0qrDvus947/nq7odLsiQtv4uTMAAAAAQLAj/AL+z3fv+hp4cSf1SIkzqZvWoaL2hD4pWKKvSj/2WU+I7KphqTPUIfoiP3cGAAAAAMA3CL8ASRVVtfpgyz6PMe76qp/LcOqL4g/16ZF/qtZV6VUPs0bpiuQfqnf8SDa0BwAAAACYivALkLT6P/tVXlXjPm/fJlIj0ruZ2FHLVVi+Xx8ffl3HK7/2Wb+4/TUanDxZkba2fu4MAAAAAABvhF8IeoZhKGud5yOPN199iWyhISZ11DJV1ZVpW8FS7S1Z57MeF5GmYakz1DGml38bAwAAAACgAYRfCHq7DxbqK/tx97nVYtH4ay4xsaOWxTBc2luyQdsK3lK10+FVt1kjNKjjreqTeL2sFgJDAAAAAEDLQviFoLdsveddX8P6d1HHON5KKEnHK7/WpvzXdaxiv896j3ZXaXDKFEXb2vu5MwAAAAAAGofwC0Gt5FSlPso54DF2y7VsdF/jrND2o8v0edEqGTK86u3CkzU0dbpS2vD3CgAAAADQshF+Iait2Pylautc7vPUxFhd0TvVxI7MZRiGDp7Yqq32v6mi7oRXPcQSpss6/kD9Em9UiJUfHwAAAACAlo/fXhG0nC6X3t3g+cjjhOF9ZLVaTOrIXCeqCvTx4b+qwPG5z3qX2EG6KmWa2oQn+rkzAAAAAADOH+EXgtbW3fk6WvLtBu5hthCNvSr43lRY56rWjsL39NmxFXIZTq96TFiihqb8SF3aXmZCdwAAAAAAXBjCLwStrO/c9TXq8ovUNibCpG7M8fXJHG22L5ajpsirZrWEqH+HcUpPGq9Qa7gJ3QEAAAAAcOEIvxCU7EWntPXzPI+xYNrovrymRJvtmco9+anPenJMHw1Lna52Ecl+7gwAAAAAgKZF+IWg9O7GL2Sc8RLD3l0SdWnXDuY15CeG4dKXx9fpk4IlqnVVetUjQ9vpqpSp6t5uiCyW4Nz7DAAAAAAQWAi/EHSqa+u04uMvPcaC4a6vk9VHtTHvVR0p3+NVs8iiPgmjNajTRIWFRJnQHQAAAAAAzYPwC0Hn39sP6mR5lfu8TVS4Rl3ew8SOmpfLcGrXsfe1/egyOY1ar3qHqB66OvUuxUd19X9zAAAAAAA0M8IvBJ2s9Z4b3Y8d2ksRYTaTumlexytytSH/LyquzPWqhVrDdUWnH+rShOtltVj93xwAAAAAAH5A+IWgsjevSJ8fKvQY+8E1l5rUTfOpc9Uo52iWPjv2LxlyedVT2vTTNal3q014ogndAQAAAADgP4RfCCrfvevriktSlZbUzpxmmskRxx5tzF+kk9VHvGrhITEakjJVF7e/mg3tAQAAAABBgfALQaOsolqrt33lMRZIG93XOCu0rWCp9hxf67Pevd0QXZXyI0XZ2vq5MwAAAAAAzEP4haDx/pa9qq6tc593aB+tYf26mNhR0/n6ZI4+PvyaymtLvWrRtvYaljpDXdoOMqEzAAAAAADMRfiFoGAYht7Z4PnI4/hrLlVoSOve6L3GWaFN+a/pwIktPuu946/T4OTJCguJ8nNnAAAAAAC0DIRfCArb99qVV3jSfR5itermYZeY2NGFq6g9qZUHn9VxH29yjA3vqOFp96hTTOv+HgEAAAAAuFCEXwgK393ofsRl3RTftvXeDXWqulAfHJijUzWeb660yKr+Hcbqso63KNQaZlJ3AAAAAAC0HIRfCHhFpQ5t/G+ux1hr3ui+uOKQVh58VpV1pzzG4yI669rO/6OEqK7mNAYAAAAAQAtE+IWA996mPXK6DPd5t+T2GnhRJxM7On/2st1ac+h51bqqPMZT2/TXqK4PyRYSYVJnAAAAAAC0TIRfCGh1TqeyN+3xGLtleB9ZLBaTOjp/B0q3aF3eArkMp8f4Re2H6drO98pq4V9nAAAAAAC+i9+WEdA27MxV8ckK93lkeKjGDO5pYkfnZ3fRKm2xvyHJ8BjvnzhWVyZPksXSut9aCQAAAABAcyH8QkDL2uC50f2YwT0VHdl6NoI3DEOfHvmHdh7L9qoNTr5D/TuMNaErAAAAAABaD8IvBKzcI6XK2VvgMfaD4a1no3uX4dTG/EXaV7LeY9yiEF3b+V5dHHe1SZ0BAAAAANB6EH4hYO3cf8TjfMBFHXVRarxJ3ZybOle11ubOV96pHR7jodZwjer6kNJiB5jUGQAAAAAArQvhFwJWx/gYj/M7vj/QnEbOUVWdQ6sOztWxiv0e4xEhbTS6+8/VIbqHSZ0BAAAAAND6EH4hYA3p01m/mDJcW3fn6er+XXXNgK5mt3RWjprj+uDAMzpR7fm4ZkxYom7o/qjaRXQyqTMAAAAAAFoni2EYxtmnAc2nprJMhuFqcI4tIkZWa4hcLqdqqxx+6sy/SioPa+XBOSqvLfEYj4vorBt6/EJRtvYmddZ6BcO6QdNj3eB8sXbQWBaLVWGRbcxuAwCAoMGdX0ALcNSxV6sP/UnVznKP8U7Rl+j67j9TWEiUSZ0BAAAAANC6EX4BJjt0Yps++vplOY1aj/Fuba/QiC4PKNQaZlJnAAAAAAC0foRfgIl2HftAWwvelOT59PEl8aM0NPVOWS1WcxoDAAAAACBAEH4BJjAMl7YWLNHuog+8aoM6TlR60g9ksVhM6AwAAAAAgMBC+AX4WZ2rRuvyMnToxCce4xaF6Jq0u9Ur/lqTOgMAAAAAIPAQfgF+VFXn0OpDz6mwfK/HuM0aoZFdH1JabH+TOgMAAAAAIDARfgF+UlZdpJUHn9WJ6gKP8cjQdhrT/edKiOpqTmMAAAAAAAQwwi/AD4orDmnlwbmqrDvhMd4uPFljevxCbcISzWkMAAAAAIAAR/gFNLP8Uzv1Ye6fVeeq9hjvGN1b13f7mcJDo03qDAAAAACAwEf4BTSjL4+v06b8RTLk8hjv3m6wru18n0KtYSZ1BgAAAABAcCD8ApqBYRjKOZqlnMIsr1r/xLG6MnmSLBarCZ0BAAAAABBcCL+AJuYy6rQx/zXtK1n/nYpFV6VMVd/EMab0BQAAAABAMCL8AppQjbNSa3P/rMNln3mMh1hs+l6XWerW7gqTOgMAAAAAIDgRfgFNwDBc2l/6sT498neV15Z61MJDYjS6+8NKiu5pUncAAAAAAAQvwi/gAh1x7NFW+99UXJnrVWsTlqgx3X+hdhHJ/m8MAAAAAAAQfgHn62T1UW0reEu5Jz/1WU+I7K7R3R9RlK2tnzsDAAAAAACnEX4B56i6rlw5he/oi+LVchlOr7rVEqq+iaN1WdItsoVEmNAhAAAAAAA4jfALaCSXUacvij9UztF3VO10+JzTvd1gXdFpkmLDO/i5OwAAAAAA4AvhF3AWhmEo79QOfVKwRCerj/ickxjVQ0OSp6hjTC8/dwcAAAAAABpC+AU04HhFrrYWLFGB43Of9WhbvK5Mvl092l0li8Xq5+4AAAAAAMDZEH4BPjhqjmv70WXaV7JBkuFVt1kjNCDpZvVLvEGh1jD/NwgAAAAAABqF8Av4P4bhkr1st744vlZ5J7fL8BF6WWRRr/gRGtTxVkXZ2vm/SQAAAAAAcE4IvxD0quoc2leyQXuKP9SpmsJ656XE9NXglCmKj+zsx+4AAAAAAMCFIPxC0CqqOKAvitfqQOlmOY3aeue1C0/W4JQpSmszQBaLxY8dAgAAAACAC0X4haBS56rWgdKt+qL4QxVXHmxwblxEmvokXq+eccNltfCvCgAAAAAArRG/0SMonKg6oj3H12p/yQZVO8vrnWe1hKhbu8G6NH6UkqJ7cqcXAAAAAACtHOEXAlph+T5tP7pM9rLdDc6LsSXokoTr1CtuhCJtbf3UHQAAAAAAaG6EX0HA4XAoMzNTa9asUX5+vlwul1JSUjRy5EjdeeediouLM7vFZlFUcUgrvvq9XIaznhkWpbXpr0sSRiktdqCsFqtf+wMAAAAAAM2P8CvAHThwQDNnzpTdbvcY379/v/bv36+3335bCxYsUP/+/U3qsPkUlu/1GXyFh8SoV/wIXRI/UrHhHUzoDAAAAAAA+Au3ugQwh8Ohe++9V3a7XTabTT//+c+1fv16ffLJJ3rppZfUuXNnFRcX6/7771dRUZHZ7Ta5tNiBCrWGu887RF2sEZ3v0x195mtw8mSCLwAAAAAAggB3fgWwRYsW6fDhw5KkZ599VjfeeKO7NmrUKDkcDj366KMqLi7Wyy+/rCeffNKsVptF2/COuq33szpavlftI9IUH9nZ7JYAAAAAAICfcedXgHI6nXrrrbckSenp6R7B1+n6woUL3edZWVmqrKz0a4/+EBOWoIvaDyP4AgAAAAAgSBF+BaicnByVlpZKkm644Qav+rJly3Tw4EFNnDhRklRVVaVNmzb5tUcAAAAAAIDmRvgVoHbv3u0+Tk9P96hVVlZq/vz5GjBggB566CGfnwEAAAAAAAgE7PkVoA4ePOg+Tk1N9ahlZmbq2LFjmjt3rpKSkhQaGqq6ujqPz/hTaHjUWedYLFb3/9oiYpq7JQQI1g3OB+sG54u1AwAA0DIRfgWokpIS93H79u3dx6WlpXr11Vc1fPhwDR48WJIUGxurkpIS92OS/ma1hjR6rsVikcXS+PmAxLrB+WHd4HyxdgAAAFoWwq8AdXrz+rCwMFksFvd4RkaGHA6HHn74YfdYWFiYJKmiosK/Tf4fl8t51jkWi1UWi0WGYcgwXH7oCoGAdYPzwbrB+WLt4Fycyx/+AQCAC0P4FeCs1m+3dbPb7VqyZInGjRun3r17u8ddLnP/D3pddcVZf0mwRcTIYgmRYbhUW+XwU2do7Vg3OB+sG5wv1g4ay2KxKiyyjdltAAAQNNjwPkBFRX2zj1Ztba17bN68eTIMw2OTe0mqrq72+AwAAAAAAECg4M6vABUXFydJcjqdKisrk91u14oVKzRlyhSlpaW559XW1qqsrMzjMwAAAAAAAIGCO78CVPfu3d3Hdrtdc+fOVWRkpB544AGPeUeOHHE/9titWze/9ggAAAAAANDcCL8CVN++fd3HmZmZ2rhxo+666y6vu7tycnLcx/369fNbfwAAAAAAAP5A+BWg0tPT1b59e0lSVlaW4uPjNWPGDK95K1eulCRFRERo2LBhfu0RAAAAAACguRF+BaiQkBBNnjzZfT59+nRFR0d7zNm8ebPWrVsnSZo4caIiIyP92SIAAAAAAECzI/wKYHfffbdSU1MlSW+++abef/99lZSUqLi4WG+99ZZmzZolwzCUkJCg+++/3+RuAQAAAAAAmp7FMAzD7CbQfA4cOKCZM2fKbrf7rCckJGjBggXq37+/nzv7Vk1lmQzD1eAcW0SMrNYQuVxO1VY5/NQZWjvWDc4H6wbni7WDxrJYrAqLbGN2GwAABI1QsxtA8+rRo4eys7OVmZmp1atXKz8/X4ZhKDk5WSNHjtT06dO9NsEHAAAAAAAIFNz5BdNx5xeaC+sG54N1g/PF2kFjcecXAAD+xZ5fAAAAAAAACFiEXwAAAAAAAAhYhF8AAAAAAAAIWIRfAAAAAAAACFiEXwAAAAAAAAhYhF8AAAAAAAAIWIRfAAAAAAAACFiEXwAAAAAAAAhYhF8AAAAAAAAIWIRfAAAAAAAACFiEXwAAAAAAAAhYhF8AAAAAAAAIWIRfAAAAAAAACFihZjcAWCznlsGe63xAYt3g/LBucL5YO2gI6wMAAP+yGIZhmN0EAAAAAAAA0Bz4YycAAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAELMIvAAAAAAAABCzCLwAAAAAAAAQswi8AAAAAAAAErFCzGwAa4nA4lJmZqTVr1ig/P18ul0spKSkaOXKk7rzzTsXFxZndIkxy5MgRPfPMM1q5cqUkafHixRo8eHCjPsu6Ci7bt29Xdna2tm3bpuLiYlVXVysxMVEDBw7ULbfcomHDhjXqOqyb4LJr1y5lZWXpk08+0ZEjR2QYhuLj4zVw4EDddNNNGjFiRKOuw7oBAAAwn8UwDMPsJgBfDhw4oJkzZ8put/usJyQkaMGCBerfv7+fO4OZampq9PrrrysjI0MVFRXu8caGX6yr4FFZWaknnnhC2dnZDc675ZZb9Pvf/14hISH1zmHdBI9Tp07p17/+tTtYr8/w4cP1wgsvKCoqqt45rBsAAICWgfALLZLD4dD48eN1+PBh2Ww2/eQnP9G4ceMUERGhTz/9VHPmzFFeXp4SEhL07rvvKjEx0eyW4QcbN27U73//e+Xm5kqSOnbsqKNHj0pqXPjFugoeNTU1mjFjhj799FNZrVbdfvvtGj9+vLp06aLa2lrt2bNHzz33nPbu3StJmjlzph555BGf12LdBJd58+ZpwYIFateunaZOnarrrrtOqampqqqq0ldffaXFixdr3bp1kqTvf//7evHFF31eh3UDAADQcrDnF1qkRYsW6fDhw5KkZ599Vvfcc486duyodu3aadSoUZo1a5Ykqbi4WC+//LKZrcIP6urq9OMf/1j33HOPcnNzlZiYqDlz5mjOnDnndB3WVfAICwvTlClT1KFDB7366qv6zW9+o/T0dMXFxSkpKUkjRozQ3//+d6WlpUn6JjwtLS31eS3WTXB56KGH9OSTT+qDDz7Q7Nmz1adPH7Vt21ZJSUkaNmyYFi5cqMmTJ0uS1qxZo3379vm8DusGAACg5SD8QovjdDr11ltvSZLS09N14403etUXLlzoPs/KylJlZaVfe4R/hYaGKjY2VjabTTNnztSqVas0YcIEWSyWRl+DdRV8brzxRn300Uf17ukVGRmpqVOnSpKqq6u1bds2rzmsm+BjsVh0xx13NLgX16RJk9zHBw4c8KqzbgAAAFoWwi+0ODk5Oe47MG644Qav+rJly3Tw4EFNnDhRklRVVaVNmzb5tUf436OPPqr3339fjzzyiKKjo8/586yr4BQa2vB7Xbp16+Y+Lioq8qqzbuBLTU2N+7hDhw5eddYNAABAy0L4hRZn9+7d7uP09HSPWmVlpebPn68BAwbooYce8vkZBKa2bduqc+fO5/151hV8OfOlCW3btvWqs27gS2ZmpiTp4osv1mWXXeZVZ90AAAC0LA3/kThggoMHD7qPU1NTPWqZmZk6duyY5s6dq6SkJIWGhqqurs7jM4AvrCv48tlnn7mPBw4c6FVn3cDlcqm2tlbl5eX64osv9Ne//lUbN25UcnKyXnjhBZ+PX7NuAAAAWhbCL7Q4JSUl7uP27du7j0tLS/Xqq69q+PDh7rf6xcbGqqSkpN6NqoHTWFf4rpqaGi1fvlzSN3fnnN78/kysG2RnZ+vRRx91n8fHx2v27Nn60Y9+pNjYWJ+fYd0AAAC0LDz2iBbn9Ka/YWFhHn+inpGRIYfDoYcfftg9FhYWJsnz0SXAF9YVvuuVV15x7/P14IMP+pzDusGhQ4c8zo8fP6433nhDCxYsqPefNesGAACgZSH8QotltX67PO12u5YsWaJx48apd+/e7nGXy2VGa2jFWFeQvtmQPCMjQ5J02223aejQoQ3OZ90Er5/+9Kfau3evcnJylJ2drXvvvVc1NTV67bXXdPvtt8vhcNT7WdYNAABAy0D4hRYnKipKklRbW+semzdvngzD8NgcWJKqq6s9PgPUh3WF0w4fPqxZs2aptrZWffv21eOPP17vXNYNTouOjlavXr308MMP67XXXpPVatW+ffs0b948r7msGwAAgJaF8AstTlxcnCTJ6XSqrKxMX375pVasWKFJkyZ57MlTW1ursrIyj88A9WFdQZIKCws1Y8YMlZSUKC0tTQsWLFBERES981k38CU9PV2DBg2SJL3zzjteddYNAABAy0L4hRane/fu7mO73a65c+cqMjJSDzzwgMe8I0eOuB8X6datm197ROvDukJxcbFmzJihvLw8paSkKDMzUx06dGjwM6wb1Kdr166SJIfD4bHBvcS6AQAAaGkIv9Di9O3b132cmZmpjRs36q677vL6U/GcnBz3cb9+/fzWH1on1lVwKyws1NSpU3XgwAF16dJFixcvVkpKylk/x7pBfaqqqiRJFotF0dHRHjXWDQAAQMtC+IUWJz093f1q+KysLMXHx2vGjBle81auXClJioiI0LBhw/zaI1of1lXwys/P1+TJk3Xo0CH17t1bS5YsUWpqaqM+y7qBL06nU9u3b5ckdenSReHh4R511g0AAEDLQviFFickJESTJ092n0+fPt3rT9U3b96sdevWSZImTpyoyMhIf7aIVoh1FZz27dunyZMny263a+jQoXrzzTeVkJDQ6M+zboLPX/7yF02bNk0nTpyod86CBQtUUFAgSZoyZYpXnXUDAADQshB+oUW6++673XdmvPnmm3r//fdVUlKi4uJivfXWW5o1a5YMw1BCQoLuv/9+k7uFPzidTlVXV3v8deab1Gpra+utnca6Ci47duzQ1KlTVVRUpBtuuEHz58+XzWbzWken/6qpqfF5HdZN8Pjyyy/14osvatu2bRo9erRefPFFff755zp16pRKS0u1detWPfjgg5o/f74kaciQIR4h15lYNwAAAC2HxTAMw+wmAF8OHDigmTNnym63+6wnJCRowYIF6t+/v587gxmysrL02GOPNXr+D37wAz3zzDNe46yr4DFt2jRt27at0fO7du2qVatW+ayxboLH9u3b9atf/Uq5ubkNzhs3bpyeeuopxcTE1DuHdQMAANAyhJrdAFCfHj16KDs7W5mZmVq9erXy8/NlGIaSk5M1cuRITZ8+nVfD45yxrlCfht62x7oJHoMGDdL777+v999/X//+97/12Wefqbi4WKGhoUpKStKgQYM0fvx4XX755We9FusGAACgZeDOLwAAAAAAAAQs9vwCAAAAAABAwCL8AgAAAAAAQMAi/AIAAAAAAEDAIvwCAAAAAABAwCL8AgAAAAAAQMAi/AIAAAAAAEDAIvwCAAAAAABAwCL8AgAAAAAAQMAi/AIAAAAAAEDAIvwCAAAAAABAwCL8AgAAAAAAQMAi/AIAAAAAAEDAIvwCAAAAAABAwCL8AgAAAAAAQMAi/AIAAAAAAEDAIvwCAKAFq62tlWEYZrcBAAAAtFqEXwAAtGDLly/XgAEDNGbMGG3YsMHsdgAAAIBWh/ALAIAWrrq6WocOHVJxcbHZrQAAAACtTqjZDQAAWrdf/vKXeuedd7zGbTaboqOjlZiYqF69emn48OH6/ve/r6ioKBO6BAAAABCsCL8AAM2itrZWJ06c0IkTJ7R//36tWLFCiYmJ+vWvf63Ro0eb3R4AAACAIEH4BQBoMj/72c/Us2dPSZJhGCovL9fXX3+tdevWadeuXSoqKtJDDz2kP/7xj7rppptM7hYAAABAMCD8AgA0mYEDB2rw4MFe4z/+8Y+1ZMkSPfXUUzIMQ7/73e907bXXKjY21oQuAQAAAAQTNrwHAPjFHXfcoWHDhkmSTp48qY8++sjkjgAAAAAEA8IvAIDfnA6/JOnLL7+sd15dXZ3efvttzZgxQ1dddZX69OmjIUOG6Pbbb1dGRoZOnTp11q/1ySefqFevXurVq5fmz5/f4NzrrrtOvXr10nXXXVfvnPnz53vNOXTokObMmaMbb7xRAwYM0KBBgzRp0iSfLwCoT0VFhTIyMjR+/HgNGDBA6enpmjBhgjIyMlRZWdno6wAAAADwjcceAQB+06ZNG/dxeXm5zzklJSWaOXOmdu/e7TFeWlqq0tJS7dy5U4sXL9a8efN05ZVXNmu/vpw4cUKGYeill15SRkaGamtrPeo7duzQjh07lJubq5/+9KcNXquoqEjTpk3ToUOHPMb37NmjPXv2aNmyZbr55pub/HsAAAAAggnhFwDAb44dO+Y+jouL86o7HA7dcccd7jDo0ksv1fjx45WcnKySkhKtWrVKmzdv1vHjx/U///M/Wrp0qXr16uW3/qVvQrvf/OY3Wrp0qaKiojRp0iQNHDhQdXV1+uijj7Ry5UpJ0iuvvKJbb71VaWlpPq9TWVmpGTNmuL/XlJQU/fCHP1TXrl118uRJrV27VuvXr9dLL73kt+8NAAAACESEXwAAvzlzny9fd2299NJL7jDo1ltv1W9/+1uFhIS465MmTVJGRoaef/55VVRU6Mknn9TSpUubv/HvWLp0qfr27as//elP6tq1q3t8woQJmjVrlj788EO5XC6tXbtW06dP93mNzMxM7d+/X5J0+eWX6y9/+YuioqLc9dtvv12rV6/Wz372M6+7ywAAAAA0Hnt+AQCandPp1PPPP+9+lLFPnz666qqrPOYcP35cb7zxhiSpY8eOeuKJJzyCr9Puu+8+DRw4UNI3jxjm5OQ0b/M+9OzZU5mZmR7B12ljx451H+fl5fn8fE1NjRYtWiRJCg8P19y5cz2Cr9Ouv/56zZ49u2maBgAAAIIUd34BAJrMzp07VVFRIUkyDEPl5eX66quvtGrVKvcdXR07dtQLL7wgi8Xi8dkNGza473AaP368wsPD6/06t956q3bu3ClJ+uCDD3TZZZc1w3dTv1/+8peKiYnxWTvzMcf6Nqzfvn27e9P+ESNGqFOnTvV+rcTExAvoFAAAAADhFwCgyTz33HMN1r/3ve/pqaeeUlJSkldt8+bN7uNBgwY1eJ0zw65du3adY5cXLjS0/v98RkdHu48Nw/A5Z+vWre5jMzbtBwAAAIIJ4RcAoNmNGzdO06dPV79+/eqdc/ToUfdxfZvE+6rn5+dfeINNKCws7Kxzzvxeu3Tp0pztAAAAAEGPPb8AAE1m8eLF2rt3r/bu3avf/e537vGysrIGgy9JKikpcR/X90jhaWFhYbLZbJLkfnywNTmX7xUAAADAhSH8AgA0i9tuu03p6emSpPXr12v58uUNznc6nef1dRp6BLGlOvNxyO/ufQYAAACgaRF+AQCahcVi0W9+8xv3Gxv/8Ic/qLS0tN75sbGx7uPy8vIGr11TU+PeHD8uLq4JuvWvtm3buo/P9r0CAAAAuDCEXwCAZtO7d29NmzZN0jeP+v3hD3+od+657OOVl5fnPk5OTr7ALv0vISHBfWy3203sBAAAAAh8hF8AgGY1e/Zs99sds7OztXHjRp/zBgwY4D7evn17g9c8sz506FCfc858nPB8H6lsLmd+rzt27DCxEwAAACDwEX4BAJpVTEyM/t//+3/u8yeffFIVFRVe80aPHu1+RDI7O1s1NTX1XnPZsmXu45EjR/qcExkZ6T4uLCys91pr1qxRQUFB/d9AM7j88stltX7zn+C1a9fK4XD4nOd0OvXee+/5szUAAAAg4BB+AQCa3ejRozV8+HBJ3zzm9/zzz3vNSUpK0k033SRJKigo0NNPPy2Xy+U1LyMjQ//9738lSWPHjlXPnj19fs2uXbu6A6YNGzb4DNzeffddPfLIIx4b0PtDhw4dNHr0aEnSyZMn9fTTT3v1UF1drYcfflhbt271a28AAABAoGl9r8gCALRKTzzxhMaOHavq6mr97W9/07hx4zwe/5OkRx99VFu2bFFhYaGWLl2qzz//XDfffLM6deqk48ePa+XKldqyZYukbwKkX/ziF/V+vTZt2mjo0KHatGmTiouLdccdd2jKlCnq0KGD7Ha7srOztWPHDiUmJqpnz5767LPPmvX7/67Zs2dr/fr1qqioUFZWlg4dOqQJEyaobdu2ys3N1T/+8Q8VFBToiiuu0H/+8x+/9gYAAAAEEsIvAIBfpKWl6b777tMLL7wgl8ulxx9/XFlZWbLZbO45cXFxyszM1H333afc3Fzt2rVLu3bt8rpW586d9dprr6ljx44Nfs1f/epXmjx5sk6ePKk9e/bo8ccf96j36tVLzz//vBYvXuz38KtHjx566aWXdN9996m6ulo7duzw2v9r0qRJmjx5ssaPH+/X3gAAAIBAwmOPAAC/ueeee9StWzdJ0r59+/TKK694zenWrZuWL1+uJ554QkOGDFFCQoJCQ0PVpk0bXXbZZXrssceUnZ3t8XbI+vTo0UPLli3TxIkT1alTJ9lsNsXFxWno0KF6+umnlZWVpR49eiguLq7Jv9fGGDp0qN577z3ddtttSklJkc1mU/v27XXNNddo4cKFeuqpp9ShQwdTegMAAAAChcXw90YnAAAAAAAAgJ9w5xcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAAIW4RcAAAAAAAACFuEXAAAAAAAAAhbhFwAAAAAAAALW/werRfNd4AVWNgAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 17,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 516.375
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: score-prediction-player-average\n",
- "# | warning: false\n",
- "def predict_average(data: pl.DataFrame, candidates: pl.DataFrame):\n",
- " candidates = candidates.with_columns(\n",
- " prediction=pl.when(pl.col(\"round\") == 1)\n",
- " .then(pl.col(\"value\"))\n",
- " .otherwise(pl.col(\"average\"))\n",
- " )\n",
- " return candidates\n",
- "\n",
- "\n",
- "teams = backtest(players, predict_average)\n",
- "fig = add_backtest(fig, teams, \"Player average\")\n",
- "fig"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4438a520",
- "metadata": {
- "cell_marker": "r\"\"\""
- },
- "source": [
- "### Player random effects\n",
- "\n",
- "$$\n",
- "\\begin{align*}\n",
- "\\mathbf{\\hat{s}} = \\alpha + \\mathbf{Z} \\mathbf{b} \\\\\n",
- "\\mathbf{b} \\sim N(0, \\sigma_b),\n",
- "\\end{align*}\n",
- "$$\n",
- "\n",
- "where\n",
- "$\\alpha$ is an intercept and\n",
- "$\\mathbf{b}$ is a vector of player random effects.\n",
- "\n",
- "This model performs significantly better than the average model, possibly\n",
- "because of the partial pooling between the random effects, that pulls large\n",
- "effects towards the overall mean [@clark2019shrinkage]. In our dataset, it's\n",
- "common for players that played one or two games to have large averages by\n",
- "chance."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "20e48cec",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n",
- "Compiling...\n",
- "Compilation time = 0:00:15.348142\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.736367\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.106630\n",
- "Compiling...\n",
- "Compilation time = 0:00:02.471332\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.263076\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.099559\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.570329\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.436223\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090894\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.581795\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.499836\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.087544\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.474472\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.679640\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086805\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.597276\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.730077\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086566\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.476114\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.974780\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.083834\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.484789\n",
- "Sampling...\n",
- "Sampling time = 0:00:02.951227\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090246\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.626126\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.073210\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086071\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.488828\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.159322\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.087983\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.639227\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.413968\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088858\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.493007\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.382153\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.094958\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.657848\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.589810\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088574\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.495813\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.988393\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086442\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.674194\n",
- "Sampling...\n",
- "Sampling time = 0:00:03.989928\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092058\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.500662\n",
- "Sampling...\n",
- "Sampling time = 0:00:04.551274\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090595\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.693080\n",
- "Sampling...\n",
- "Sampling time = 0:00:04.646941\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092757\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.506404\n",
- "Sampling...\n",
- "Sampling time = 0:00:04.869855\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092713\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.706206\n",
- "Sampling...\n",
- "Sampling time = 0:00:04.670018\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090660\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.510140\n",
- "Sampling...\n",
- "Sampling time = 0:00:05.954047\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.091404\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.726372\n",
- "Sampling...\n",
- "Sampling time = 0:00:05.583064\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092434\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.513472\n",
- "Sampling...\n",
- "Sampling time = 0:00:06.669829\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092793\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.515148\n",
- "Sampling...\n",
- "Sampling time = 0:00:06.961459\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088096\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.532672\n",
- "Sampling...\n",
- "Sampling time = 0:00:07.167323\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.093192\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.535939\n",
- "Sampling...\n",
- "Sampling time = 0:00:07.055900\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092713\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.542286\n",
- "Sampling...\n",
- "Sampling time = 0:00:07.803232\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092944\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.544685\n",
- "Sampling...\n",
- "Sampling time = 0:00:08.286128\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.102901\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.816501\n",
- "Sampling...\n",
- "Sampling time = 0:00:08.437252\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088628\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.559032\n",
- "Sampling...\n",
- "Sampling time = 0:00:08.789750\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.087069\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.798131\n",
- "Sampling...\n",
- "Sampling time = 0:00:09.200497\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092206\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.542523\n",
- "Sampling...\n",
- "Sampling time = 0:00:09.187203\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.099589\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.561396\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.291747\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.093139\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.581599\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.123574\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.110857\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.555584\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.120113\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.113047\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.857569\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.850128\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090888\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.599466\n",
- "Sampling...\n",
- "Sampling time = 0:00:11.018571\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090562\n",
- "Compiling...\n",
- "Compilation time = 0:00:00.894909\n",
- "Sampling...\n",
- "Sampling time = 0:00:11.113421\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.068803\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAN6CAYAAABv/useAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3SU1doF8D0lvTfSCQECoSWEIk16h9BEKQoqKnjVi8BFxe7V79pQkaJiQRQLiFJD772T0CE9pPc+SSaZ8n5/BIYMaZMyMyn7t5bLyZn3PfMkOQnJzikiQRAEEBERERERERERtUBiYxdARERERERERESkLwy/iIiIiIiIiIioxWL4RURERERERERELRbDLyIiIiIiIiIiarEYfhERERERERERUYvF8IuIiIiIiIiIiFoshl9ERERERERERNRiMfwiIiIiIiIiIqIWi+EXERERERERERG1WAy/iIiIiIiIiIioxWL4RURERERERERELRbDLyIiIiIiIiIiarEYfhERERERERERUYvF8IuIiIiIiIiIiFoshl9ERERERERERNRiMfwiIiIiIiIiIqIWi+EXERERERERERG1WAy/iIiIiIiIiIioxWL4RURERERERERELZbU2AUQKeRFEAR1jddIzSwhFkugVqugLC02UGXU3HHcUH1w3FB9ceyQrkQiMUzMrYxdBhERUavB8IuMThDUtYZfD19PVFccN1QfHDdUXxw7RERERE0Hlz0SEREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4REREREREREVGLxfCLiIiIiIiIiIhaLIZfRERERERERETUYjH8IiIiIiIiIiKiFovhFxERERERERERtVgMv4iIiIiIiIiIqMVi+EVERERERERERC0Wwy8iIiIiIiIiImqxGH4RERERERE1gFKlNnYJ1IJxfBE1HMMvIiIiIiKiehAEAas3H8fiFVugUKqMXQ61QLmFxXjq/V8RcuqGsUshatYYfhEREREREdWRUqXGBz/uxYY9F3DuRhyOXo4wdknUAm0+FIroxEx8+NNerN91ztjlEDVbDL+IiIiIiIjqQKVW4+3vdmLPmZsAgIUzhmJs/65GropaogVTH8Wkwd0BAN/+cxLfbztl5IqImieGX0RERERERHXw6a8HceRSJADglceH4Nng/kauiFoqsViED16YgLH9uwAAftpxFpsPhRq5KqLmh+EXERERERGRjn4OOYvtx68BAGaO7o3nJg8wckXU0olEIny4YCIe6eoDAPjyjyM4eSXayFURNS8iQRAEYxdBrVtZSSEEoeYTTEzMrSEWS6BWq6CQywxUGTV3HDdUHxw3VF8cOwQAOQXF2H8hCmeu30VyVgFyC0tgZiKFrZU5Onk7oY+/F8b26wRHR2djl0r1cCcuDc989DtUKjUC/Tzx49tPQiqp+3yCsPBE7D9/G2HhicjIKYRSrYaTrRU6+bTBiD6dMLZ/13r1G5uchb8Ph+HS7XikZRdCgAA3R1v06dIW04YFoouvW619FBaXIuTkdZy5FoOY5Gzky0pgbWGGNo42GNDDF8GPdoevh1Ot/Vy+k4AXP91U5/dh11f/goeLXZ3va4iz12Ox9+wtXI9KRkauDOamUrg52eKRrj6YOiwQ7T1r/3rt/fTndX7dD+ZPwOTBPXS+PregGE++9wsycmVwsLHE358+B0dbqzq/LlFrxPCLjI7hF+kLxw3VB8cN1RfHDoWcvoNvtp6DrKSsxuuszE0xd8IjmDdpQL0CDjKOMoUST73/K2KTs2FmIsWWz16oc0iTll2Aj9btxYVb8TVe18HTGZ+8MhkdvVx07vvHHWewbudZqFRV/1wtEgHfvzkbfbq0rbaPvw+HYe3WUygokld7jUQixjMT+uGVJ4bUWE9zCL9yC4rx1nchuHS7+s+HRCzCzNG9sWT2CIjFomqvM0T4BZQHdQu//AcAMKy3H75a9FidX5eoNZIauwAiIiIiouZu24lb+HLTg42og/zcMaiHD1wdraFUqZGSVYhL4Um4GpWKInkZvt92GonpefjoxYlGrJrqIuTUDcQmZwMAnp74SJ0Dmqw8GeZ+sAE5BcUAgD5d2mJQYHu4OdmiTKFCfGoOdp2+gcxcGWKSs/DSZ3/ht/8+A3dn21r7XvXXMfy29yIAwNneGpMGd0dHL5fysZeZh6OXI2Fpbore/t7V9rF26yms23kWAOBoa4mRfTujq68brCzMkJFbiEu34nHyajRUKjXW7zoHtSBg4Yyh1fbX0csFXy+ZrtPHZsXGo0hMz4WdtQWc7Awzk6mkVIEXP92EmOQsAEBbVwdMfLQ7vF3tUVRShsiEDIScvIFShRIbD1yGvEyBd+aNq7Y/Xd/XkJM3cCy0fL+4jjrMKHvYwID2GBrUESeuRON4aBSuRSUh0M+rzv0QtTYMv4iIiIiIGiCnoBjfbD0HADA3leLLV8ajV2fPStfNm9gb0UnZ+Oqv00jLkeHlxwcbulSqJ7VawMb9lwEA5qYmeHJs3zr34WxvjXnB/bH9xDW899x4BPhVHiMLpg3CJ78cQMipG8gpKMZPO07j/Rcm1NjvqasxmuCrXzcffP7vqbCxMn+o30dRUqqASFT9zKXHRwbhWGgkBvfsiBemDICFmanW87PH9MHNmBT8+4u/UVhcit/3XcS0YYHwamNfZX/2NhYYEtSxxtoBICYpE4npuQCAqUMDYGZqmF9R/9h3URN8TRrcHe/MGwcTqUTrmrkTHsH8jzciPacQ245dw7Shgeja3r3K/nR5XxVKFT759QAAoHsH92r7qs28yQNw4t6eX7/tvYivFjH8IqoN51kTERERETXAoUvRkJcpAQCPD+9eZfB1X0cvJ3y7dAp+fX8u3Jxqn9FDTcPpazGIT8sBAIzp5w/bh8IlXT05ri82f/x8lcEXAJhIJXjr2TGa/s/eiKuxP7VawIo/jwAA3J1t8fnCaZWCr/sszExq7MvF3hp//e85LJwxtFLwdV/3Dh6YN6l8g3+VSo2Lt+7W2KcuNh0sP7lQIhbhiZG9Gtyfrg5euAMAMDOV4rU5oyoFXwDg6WKPF6c9qnn79LWYBr3m4YsRyMwtXxY/c3TvevfTo4MHurQr37/tZFg0kjLyGlQXUWvAmV9ERERERA2QlJGvedzBw7HW6yViMdo42ujcv1ot4PDFcOw/fwfhd9OQU1AME6kELg7W6OnnifEDu6HvvVPgalNQJMffh8Nw8ko07qZmo7RMCQdbS3TyboNRj3TGxEe7QyKu+e/jVe3lNLZ/F3zy8mQAgLxMgU0HQnHoYjgS0nJQUqoAACyYOggvPvZopf4qyi0oxqaDl3H6agwS0nOhFgS0cbBBv27tMGtMb502WteHI5ciNI+H9Kp9hk9Nato3CgBMTaRo6+aAmzGpKKpl/7jT18o/TkD57C4bSzO91gYAft4P9iErktdcX23yZSXYe/YWAGBIkJ9OSzwbS3Jm+ddtRy8XWFtU/3EL6OiheZyR27D9HDcdLJ896GRnhdGP+DeoryG9OuLO3TSoBQHHQiMxd/wjDeqPqKVj+EVEREREBCAzrwgFRXL4uDnUaSN6K4sHs2QSKwRhjSE7vwj/WbkVN2NStdoVyvI9ouJTc7Dz5A306uyN918YD29Xh2r7uhmTgkUrtiCvsESrPTNXhsxcGc5cj8Vfh8KwaunjcLG3rlOdadkFAMrDtX99ugkRCRl1uh8ALt2Ox+urt6OwuFSrPTE9F4npudh58jpenzMK00f0rHPfDXV/Q3SRCDoHjfUlCALScwoBaAdNVTl9tXwmkrmpCcb0a1iYoqvUrALN407ebRrU19ZjV1F6b9bkjNGGm/UFlB88UVqmRJlCWeN1sgoBX31n/AHA9ahk3Iot/zqeNiywyplmddG/Wzv8sO00AODy7QSGX0S1YPhFRERERK3ejlO3sfLvMyhTqDC0py8+eXFMjfsjVdTF50EA8M+xmxgc2A6d2+p+Sl910rILsOCTjZoZKh7Odpg0uDt8PZ2hUKoQGZ+BI5cikJKVjyuRiUhMz602/LoTl4aXPt+M4nu/yA8N6ojBQR1ha2WO5Iw87Dx5HXdTcxARn46XPvsLv3/4TLXL5CpuZL7/3G0cOH8HadkFUKsFLF6xBREJGXCwscTUYQHo7OOKN7/ZWev7ev5mHJZ8vRVlChWkEjHGD+yKPl18YG4qRWxyFrYeu4asPBk+3XAAttbmDZ41Uxe5hcWaMMrV0bbGWUKN4Z8jVzRL4+ZOqDnQuByeAADo7e8Nc9MHn6+kjDykZuXD3MwE3m0cYG9j0Si1FRTJ8ef+SwCAzj6ueKRb/YNApUqNLUeuACg/3fIRPYeKD+vo5YKLt+MRl5KN5Mw8eLrYV3ldxaWdQxsw6+/+rC+JRIzHGyHAbe/1YLP8O3fTGtwfUUvH8IuIiIiIWrWdp25j+Z8nNW+fuBqHrLwiuDjoNvtpcGA7dPB0RExyDgqLS/Hi8h14fHh3TB/WHe5Oui9vfNgnvx7QBF/jBnTF+8+P19oMfMLAbnh15jDsPnMTWXkyDAxoX2U/giDg0w0HNcHXB/MnYPLgHlrXzB7bB6+v3o5TV2MQl5KNn0PO4t9PVH2SX8WNzO/Elf/SnZkrwz9HwnAtKhm9Onvjq8WPaWbJvImaw6+S0jL838/7UaZQwd7GAt+8PkOzn9F9s8b0wcufb8adu2n4fMMh9O/u2+AlfrpKrrCfko9b9TPrGqKktAzRSVnYcfwadp68DgB4YcpADO/dqdp7cguKEZ9avg9Zh3tByNFLEfh++2nEJGVprpOIRejfwxcLnxgKv7Z1n6mlUquRnVeE8zfj8HPIOSRl5MHTxQ6f/3uKzgFxVY5cCteEioae9QWUB4sXb8dDqVJj8Yot+OyVKejgpR1a34hJwYbdFwAAM0f1qvepiuk5BThyufyEx5F9OsHFof7fF+6ztjCDk50VsvOLkJ1fhNIypcEOCyBqjvjVQURERESt1u4z4fi8QvAFAI62FrCx0j1YEYtF+PKVCVj4dQiSMgtQplRh46Fr+OvwdQR2dMOQnr4YGuQLtzrs83XqagzOXIsFAHT1dcNHL06sci8usVhUKch62PGwKM1yq5F9O1d5vYlUgg9emIDJr/2AYnkZ/jlyBS9MGag1m6gmakHAqs3H4elihxWLH6t20/WqbDoQqlk2+dYzYyoFX0D5crP/e3Einnj7Z+QWFmPf2VuYMcowgUl2fpHmsb2NZaP2/fu+i1i56ZjmbROpBI909cHcCf0woIdvjffeD44AwMXBBt9tOYmfQ85Vuk6lFnDmWiwu307A//0rGCP7dta5viELvtba18vd2RbPTOyHZ4P7N2gJIFD+eQcAa0szTBzUrUF91cfAgPZ45Ykh+Pafk4hNzsasd37Boz07YMKgbhjYwxchp27gm79PokyhxLxJ/asNg3Xx9+ErUKnUABq20f3D7K0tNOMzK19W7ew1ImL4RURERESt1L7zEfj0j+NabSZSMd59ZrjOoc99ro7W+PWdJ/DTrkvYfuIWypQqqAUBV6JScSUqFau3nEV3X1dMH94dI3v7oeqz9CrUdm8TcACYP3VQrZvQ1+REWJTm8bRhgdVe52BriaG9OmLf2duQFZfi3I24GmcePay0TIklT46oU/AFPDh1z8nOCiP6VB/M+Ho6o0cHD1yPTsGxy5EGC7/ub9gPAOa1nJhYV/dnbt2nUqmRnlOI61HJ6N7evcaPZUHRg73bjodGIjQ8ER7Odpg3qT/6dW8HF3trpGUXYNuxa/hz/yWUKpT470974eftgrZutR/MkJlbWGlDe1lxKWKTsxAen96gZYo3Y1JwIyYFADBlcI9qT5fUt+cmDYC/jyu+/OMI4tNycPJKNE5eiYZYJIJaEGBtaYZv33gSPTvVb8YXUH4AxPZjVwGULxVtSF8PqzgeK45TIqqM4RcRERERtToHL0bh4w3HIQgP2qQSMT5ZMBb9u7WtV5+W5iZY9MRAPD0uCLvO3MGhS9GISS4PNwQBuBGbjhux6fht3xV8uCAYXdu7V9mPSq3WbGRuaiKpdQZQbS7eerBZe89OnjVeG+jnhX1nbwMAbsWm1in8aufuiGG9/Cq17/rqXwBQ5TLF9JwCRCVmAgD8fVxrPW2ws48rrken4LYB9zhSqdWax9IGhJBVeWxYIIYEdURJaRmSM/Jx9HIk7txNw487zmDP2Vv45rUnqg2q8ovkmseh4Yno29UHXy6aprUnWVs3RyyePRwuDtZYsfEoiuVl+H3fRbwzb1yttVmYm+LrJdMhCAIycmWISsjA7jM3cepqDE5djcHzkwfg5ceH1Ov93nigfP8rkQh4wkAhZlXUagFp2QUoLC7/WLZzd0RSRh6U92ZpyYpL8emGg/j3E0MxuGeHer3G3jO3NJ+rmY38vlY8mEOpVNdwJREx/CIiIiKiVuXw5Wh89MtRqCskXxKxGP83fzQGBTR8020HGws8Pa4Xnh7XC4npeTgaFouDl6IQl5ILAIhNycH8TzZh7bKZCPCrHEblFBRrZtz4ujs16FQ4tVrQbJ7uaGtV6wwbTxc7zeOKe13pYuKj3avcA8qjQp8PS8l8cDqmvEyBk1eia3yN+ydVyopLUSwvg6W5/mcMVfz4y0pKa7iy7h4OQJ+bPAC7Tt3AR+v2ITkjD6+v2YE/PnymyjFQMezwdnXAisWPVfvxmDGqF37acQaFxaU4dCEcbz4zptbZhNYWZpq93e771/RHsXTlNlyPTsHPIefQwcsZY/t31fXdBQBk5BTiyKUIAOVLD2s6oVSfSkrLsOybnThzLRaW5qb49OXJGNO/C/IKS3Dwwh1sP34NkQkZiE7MxOIVW/DClIF4afrgOr/O/Y3u7awtMG5A3T5Wtak4HrnfF1HN+BVCRERERK3GsbBYfLj+yEPBlwgfvTAKQ3s2bIZVVbxd7fHM+F54ZnwvnLuZgC83nUJqdiHkZQq8+8NubF8+v1IIkZUn0zy2s27YKX35shLN+6rLKYUVryksrlvQ06ODR92Kg/Z+WqHhiQgNT9T5XllxqUHCr4p7WzV2+FWVSYN74OKteOw9ewvRiZk4ERaFUVWcbmldYSbd3PGP1PixMJFK0KWdGy7ejkdhcSmy84rQpg570N3naGuFj14MxrQ3foQgAD/vPFfn8OufI1c0M6tmNeL+V3WhVKnx6pdbEBaRCAszE/z41mx08S3fa87exgIzRvXCjFG9cCIsCh//cgDZ+UVYt/MsANQpADt/Mw6xydkAgKlDAxo9oJJV+Bo11AEQRM1V487bJSIiIiJqok5ejcP76w5DpX4QfIlFInzw3EgM71X1SYmNaUD3tvjhjalwsCkPtJIz8jSb2lekrlhfLcsAa1NxyZ4uBGjPhquLhpz8Vx91fd/qy7XCyXz3Z57p2+CgB0vszt2Iq/KaikGlLh8LB9sHm/VXDFjrytvVAe3cnQAAMclZyKiw8X5tSsuU2Hb8KgCgratDg5f01lfIyesIiygPWp+e8Igm+HrY0F5++PX9uZpg8Zfd55GalV/ltVW5v7xTIhbhiZGNu+RREAQU3FtOKZWI4WRn1aj9E7U0nPlFRERERC3emevxePenQ1ohgUgEvPfscIzq07GGOxuXs50VJgzojD8PXgUAxKVkV1pa5mj74JfYhs40srF8MGvp4c3Lq1JU8uAaR9vGPdmwKhV/YZ8yNADvPz9e769ZV16uDjCRSqBQqhCTlAWVWt2gAwh04VphVtb9Zas1XZNbUFxrn0LF2Y6ShtXfxtEGcSnlM5oycgt1nkW29+wtTYD4xKheBg9M7zt8b9klAAwOqvnr38PFDpOH9MBfB0OhUqlxPCwKs8f0qfU14lNzcPZ6rOY13J1tG1b0QxLScjWb3LfzcDLax5KoueDMLyIiIiJq0c7fSsDbPx7QLLUCyoOvd54ejrH9dN/QvbF4VPgluKrQwtneSrOR9cOnAdaVmakULg7WAIDsfFmtJ8IlVdjny82pcX9Zr0rF18jOK6rhSuMxkUrQqW0bAOX7ksUkZen9NUsVKs1jK4uqlzN6uNhplsXGp9U+TrIrjLX7Y6K+yhTKCvXpvtzu/v5XluammDykR4NqaIi0rALNYxf72j8W92e6AUBadkENVz7w16FQzYEaM/WwvPNWbKrmcbdqDs8gogcYfhERERFRi3XxdiLeXHsAiodOQntrzjBMGNDZKDVlVgh52lQRQphIJejbtXzj/cLiUtyISWnQ63VvX74XlyAA16OSa7z2amSS5nG/7u0a9Lq6cHe2g69HebBwIyYFCqWqljuM49HAB8tiL9+O1/vrRcSnax57tal+Q/ju90KPsIhErZldD1MoVZo+neys4GBT/1l9KrUa0fdO6JSIRTrPaLp4664mOJw4qJtOe9DVZtPBy5i4ZC1GvrIan204CHlZzeHufXbWD2ZEFlY4NbM6BUUPlrtWnJlZncLiUuw+fRMA0MHTGY90bfhBGg+7HJ6geTwoQP/LtomaO4ZfRERERNQiXQ5Pxhtr96PsoUDljaeGIHhQ5Q3E6ysxPQ+HLtV8SuF9CqUKBy5Eat7uUcVpjwAwpt+D+n7Zdb5B9VXsa8eJa9Vel1tQjFNXYwCUByQBHauurbGN7FseQubLSrDz5HWDvGZdTRjUHZJ7+6/taECNu07dQGpWzTOHyhRKbDt6VfP2mP5dqr12SK/yJXuZuTLN564qRy5FaDZHH9u/S5VL5LLyZNh27Gql9oftOX1TcxjCsN5+MDc1qfUe4MH+VwAwc1TD9786cikCX/5xBGnZBcgrLME/R65gzd8ndLq3s4+r5vHJGj5uQPkefAcvhGve9q9wb3V2nLiG4nvLjGeMbty9vgCgqKT81E6gfHnyo4EdarmDiBh+EREREVGLcyUyBa9/uw9lCu3ga+msRzF1cN1Op6tJdn4xlqzZgw9+Poz//XoU6TnVbySeL5Pjze8PIDW7fIPwQD/Pak9InDCoOzrfW2p3IiwKqzcfr3ZT8+OhUTUGZMP7dIK3a/nsoUMXw7H37K1K15QplPhw3V7NL+wvTnu0wZvt62rO+EfgfG/p2Yo/j+J4aFSV1ymUKvx9OEwzo8aQvNrYY3if8iWyMUlZuBKRVMsdla3cdAz//WkvFnyyEWHVnGopL1Pg3e93IyE9FwAwJKgj/Lxdqu1zwsBumllcn204WGWwlpyZh683HQMAmJuaYEYVwVNschae+fB3fPzLAXzxx2HNOHjY5TsJ+OKPIwDK9w17ekK/Gt7jBxLTczWHOzzS1Qe+ns463VeTgxfuVG47X7mtKjNG9cL9/O/nnWdxLarqz6dCqcKnGw5oZrr5ebvUOiNSrRbw96EwAOUnck4c1E2nmupiz5lbD8K1Ub0a/RRJopaIXyVERERE1KJci07Fa9/uRWmFfYkAYPGMQZg+rHujvlZ8Wi4Ki8t/Cd17PhKHLkejp58Henf2hIu9JSzNTJEnK8GtuAwcC4vVbDrvbG+N//1rUrX9SiVi/HfBRCz4ZCMKi0uxYc8FnLoajfEDu8HHzREKpQp3U7NxLDRK84t5e08nDO3lV6kvE6kE7z43Dq8s3wylSo33vt+NY5cjMbhnB1hbmCExIw87T17X7C/Wu0tbTBsWWG1teYUluB6dfO/9f7DX1PXoZM0v5PbWFgioZlbbw2wszfDe8+Pw2qrtKFUosXTVNvTr3g7DevnBxcEaRSVlCL+bhsOXIpCZK4O5qQm6d3DX2ofJEJ6Z0A9HLkVAEICVfx3Fr+/PrdMm40725cvlUrLyMf+TjejdpS0eDWgPdxc7qNVqRCVmYu+ZW0i/d3qiZxt7/Hf+hBr7tDQ3xRtPj8Jb34YgPacQs95djylDAtDV1w1isQh34tKw7fg1zayv/zw5QhOEVmRtYQbzewHKXwdDcfD8HYzs2xldfd1gbWmOrDwZzt+Iw8mr0Zp9rBbPGo7u1YS3D9t0MBTqezc21v5XIlT+2Ov6+Wjv6Yx/PzEUa/4+gSJ5GeZ/sgnDe/uhb1cfONlZQaFQITYlCwfO3dEEkbZW5vj4peq/Zu87HhqJlHsnQk4e3AMWZlXv2VZfhUVyrNt5FgBgZW7a6KdIErVUIqGmxeFEBlBWUghBqPl4ZhNza4jFEqjVKijk9T+amVoXjhuqD44bqi+OnabhRmwalqzag+KHNnZf+PgAzB5VfaDTEKnZhfhu+3kcD4uFSl37j9Z9/L3w7vMTqgwhHnY3NRtLVmzV/AJend5d2uK958bV2Ofx0Ch88NMeTRBSlUGB7bF84dQal7JdvpOAFz/dVHM9/t748e0na7zmYZdux+ONNTtQUMMeTBKxCFOHBmLRrGF12mi9sSz//TA2HwoFALz17Bg8PiKoTvcfvHAHKzcd0wRc1RkU0B7/XTBBp/2lAGDzoVCs2HhU61CHikykErz5zGhMHVr910BuQTG+/PMIDpy/jZp+Q7SyMMWbz4zBhIG6zWiSlZRiwqLvUCQvg4ezHXZ++WKjzCo8eikCr6/ZodX25Ng+WPrUSJ372HwoFGv+PlHrQRBdfd3w/gsTapyFd9/8jzciLCIRIhGwffkCnb7O6+KTXw5g673lqe89P67GzykRPcDwi4yO4RfpC8cN1QfHDdUXx47xhcdnYuHXuzSzq+57aVo/zB1bt5CiPpIzC3DiSizColJwNzUPBUVyyMuUsLMyh6OdBQI7umNoT1/08feGqYWNzv2WKZTYffomjoVGIiI+A3myEpibSOHmbIve/m0xbkAXBPp56dRXdn4R/j4chtPXYpCSmY8ieRnsrS3QpZ0bJg3ujpF9O9c6e0Zf4RdQPqts67ErOH01BnEp2SguVcDG0gw+bo7o29UHU4cGwN3Zrs79NpaSUgWeeu9XxKflwMLMBOveeQr+7WrfA6oieZkChy6E49TVGITHpyM7rwhSqRhtHKzRvb0HJgzqpjnwoC5ik7Ow+VAYLt2JR1p2ASRiMdydbTGghy9mjOoFTxd7nfqJTMjAwQt3cPFWPFIy8yErKYWjrSU8XewxvLcfxg/sBgdb3TfMvxmTgo/W7UNMchYWzRyGpyfqtlRSF5sOXsbvey9CXqbEmH7+WDx7uM57kN2XkVOI/edu49TVGCRn5iG3sBhmJlI42lmhe3t3jOjTGYODOkAirn3HoKKSUiz5eiuuRiahfw9frF76RH3ftSodvHAHb38XAkEoXxL79ZLpjdo/UUvG8IuMjuEX6QvHDdUHxw3VF8eOccUk5+CVFTtRUKQ9q2nB5L54dkLjLLNqLCKRuE7hFzUtUQkZeOGTjZAVl8LV0QYb/vs0XOwrn9pJ2hLTc+Fga9kopzw2dXmFJSgpVeh8EqYubsWmYv4nG1FapoSPmyN+fu+pBp3aSdTacMN7IiIiImrWEtLzsGjVrkrB13MTeze54IuaP7+2bbByyXSYmUiRnlOIVz7fjOz8ImOX1eR5uzq0iuALAOxtLBo1+IpKzMSir7agtEwJFwdrfPvGDAZfRHXE8IuIiIiImq2UrAK8unIXcgpKtNqfGtMTzwf3MVJV1NIFdfbG8lenwsxEipjkLCz4ZCMyc2vex4uoPiLi0/Hip5uQW1gMJzsrfPP6DKMu/SVqrhh+EREREVGzlJErw6srdyEjV3vWzePDuuPlaf3qdBIfUV09GtgB374xE7ZW5kjKyENMcpaxS6IW6FpUMvJlJfB2dcD69+ago1ftm+4TUWVSYxfQVNy4cQPbtm3DhQsXkJqaCkEQ4OTkhJ49e2LSpEkYNmxYjfdv27YNb731lk6v9dxzz2HZsmU1XiOTybBhwwYcOnQIiYmJUKvV8PT0xMiRI/HMM8/A0dFRp9dqrH6IiIiImpKcgmK8unIXUrK0Z9sED/TH4hmDGHyRQQR19sLP7z6Fu6k56N/d19jlUAs0Y1QvSCViDO/dqU4HDRCRtla/4X1BQQHee+897N+/v8brhgwZglWrVsHSsupvOHUJv7766isEBwdX+3xMTAzmz5+P5OTkKp93dnbG2rVrERAQUOPrNFY/+sYN70lfOG6oPjhuqL44dgwnXybHv78OQUxyjlb76L4d8f68ETqdymZM3PCeiIjIsFr9zK/169dj//79sLe3x5w5czBixAh4eXlBLpcjOjoav/32G44fP46TJ0/ijTfewDfffFNrn9evX6/xeROT6o/flclkWLBgAZKTk2FiYoLFixcjODgY5ubmuHz5Mj7//HMkJCTgpZdewo4dO+DiUvW018bqh4iIiKgpkZWUYsnqPZWCr6E9ffHes8ObfPBFREREhtfqw69FixahTZs2GDdunNYSQDs7O7i6umLQoEH473//i02bNuHQoUOIjIxEp06dauzTzKz+p5j8/PPPSEpKAgAsX74cEyZM0Dw3atQoyGQyLFu2DFlZWfjuu+/wwQcf6LUfIiIioqaiWK7A0jV7EZ6QqdU+oJs3Pnx+FKQSiZEqIyIioqas1f9pTCQS4cknn6xx76tZs2ZpHsfExOitFpVKhU2bNgEAgoKCtAKr+8//8MMPmre3bduGkhLtk40asx8iIiKipqK0TIk31u7Djdh0rfZenT3wyYtjYWrC4IuIiIiq1urDL12UlZVpHrdp00ZvrxMWFobc3FwAwPjx4ys9v3XrVsTGxmL69OkAALlcjtOnT+utHyIiIqKmoEyhwts/HEBYRIpWe4/2rlj+0niYmbb6xQxERERUA4ZfOtiwYQMAwM/PD7169arTvWp1zRu5V3Tz5k3N46CgIK3nSkpKsGbNGgQGBmLRokVV3tPY/RAREREZm1Klxgc/H8a5W4la7f5tXfDVwgmwNK9+L1UiIiIigHt+VaJWq6FQKFBUVITbt2/j119/xalTp+Dh4YFVq1bpdGx2SEgIduzYgcjISGRlZcHCwgKBgYGYM2cORo0aVe19sbGxmsdeXl5az23YsAEZGRn48ssv4erqCqlUCqVSqXVPY/djKFKz2o/sFYnEmv+bmFvruyRqIThuqD44bqi+OHYan0qtxsc/7sOJq3Fa7R28nLHmjRmwt7YwUmVErZdarYaYB0uQnnB8kb4w/HpISEgIli1bpnnbyckJCxcuxNNPPw1bW1ud+nj99de13i4uLsa5c+dw7tw5zJ07F++++26V9+XkPDi1yMHBQfM4NzcX69atw5AhQ9CvXz8AgK2tLXJycjTLG/XRj6GIxbrv0SESiSAScU8PqhuOG6oPjhuqL46dxqFWC/h0w0EcOH9Hq93HzRFrl82Co62VkSojar2iosJx5tQxPPb4k7C1tTN2OdTCCIKAfXt3wszMDCNGjmMIRo2K4ddD4uK0/7KYnZ2N33//HUVFRVi4cCEsLauepeTp6YmxY8fCxMQEffv2Rb9+/eDm5oaysjKcP38eX3zxBRITE/H777+ja9eueOyxxyr1cX/TeVNTU60ZZt9//z1kMhmWLl2qaTM1NQVQHqzpqx9DUatVtV4jEokhEokgCAIEQfelpNS6cdxQfXDcUH1x7DQeQRDw5R9HsfPEda12Dxc7fPvGE3CwMdfp54emrC5//CNqCq5dDcWxowcgCAIuXjiDUaMn1H4TUR0kJsYjMuI2AKC4qAgTgqdBKmVkQY2DI+khS5YswZIlS1BUVISkpCTs3r0bf/zxB9avX4/Tp09j06ZNsLauvJShX79+mtlUFVlYWGDs2LEICAhAcHAwZDIZ1q5dW2X4dV/FhDs5ORkbN25EcHAw/P39Ne267CXWWP3om7K0uNZfEkzMrSESSSAIaijkMgNVRs0dxw3VB8cN1RfHTuMQBAFfbz6DLce19yNt42CF1YsmwtFS1Ow/viKRGKYWNsYuo9UQBAEHD+xGVGQ4XNq4InjSY7Cy4tLkuggLvYgTxw8BADp07IThI8YauSJqidq2bYdRoyfgyOF9iImJxM7tf2PqYzMhkfCPBdRwnEdYDSsrK3Tu3BlLly7F+vXrIRaLERkZiZUrV9arP3d3d4wbNw4AkJCQgMTExErX3J9VplAoNG0rV66EIAham9MDQGlpqdY9+uiHiIiIyJAEQcCKv05XCr4cbS2wevEkeDjrtgVFS/D35t+xft232LZ1k7FLafbi42Nx+9Z1KBRlSElOxJWwS8YuqVm5c/uGJvjy9e2AicGPMYwgvekREIThI8vD1YSEOOzfuxOCIBi5KmoJGH7pICgoCL179wYAbN++vd79+Pn5aR4nJCRUet7R0REAoFKpUFhYiPDwcOzevRuzZs2Ct7e35jqFQoHCwkKte/TRDxEREZGhqNUCvtx0CltP3NJqt7cxx6pFk9DW1d44hRlJclIC8vPzoFIqjV1KsyeC9oFVOpxfRfckJsbj4IHdAAA3dw8ET5rO4Iv0LjCwN/r1fxQAEBl5B6dOHjVyRdQScNmjjtq1a4dLly5BJpMhJyenXmGRhcWDE4kqzsq6r3379prHycnJ+PLLL2FhYYGXX35Z67rU1FTNckVfX1+99UNERERkCGq1gK/+OoXtJ29rtdvbmGPN4sno4Nn8/kinUJQhIjISd+/GISsrE3K5HBKJBGZm5nB2dkY7Xz907RYAMzMzY5fa4rX18UXXbgGIirwDFxdX9Azqa+ySmoXS0lIc3L8LarUa5uYWCA6eDqmJSZ37ycvNwa1b1xAfH4f8vDwoFGUwt7CAg70j2nfwQ7dugTC3qN/JrQpFGf7auAGd/buiR48gWNRxNYtarUZkxG3EREciLS0FRcVFkEoksLS0hqeXNzr7d0Pbtu3qVRsAXLp4FikpSQgK6ou2Psb/fSspKQER4beQlJgAmawAarUalpZWcGnjio5+/vD376bTJvP/bP4dSUmVJ3PUpGu3AIwdN0nn6wcMHIL0tBTcvRuL0Mvn4evbAd4N+FwQMfzSkVwuB1B+gpOVVf1OF8rMzNQ8dnV1rfR89+7dNY83bNiAU6dOYeHChZWCtrCwMM3jHj166K0fIiIiIn1TqwV8sekkdp7SPtXRwcYCa5ZMQnuP5hd8hYffwdlzZzQ/P96nVquhUCggkxXi7t04nD1zAgMHDUXPoD5ahxRR4xKJRBg7blKdfvEm4MTxQygoyAcAjBg5Dja2dVt2rFQqcfL4Ydy4caXSPsNFMhmKZDIkJSXg4oWzGDl6PDp16lLnGm/fuoGsrAxknc6Ao6MTOvr5137TPUmJ8Th8aC9yc3O02lVKJUpLS5Gbm42bN66ifXs/jJswpc5BtVqtxtUrlyGTFaKgIB9zn55fp/sbU2FBAQ4e2I2EhLhKzxUU5KOgIB8x0ZG4fPEcJgRPhbNzGyNUqU0kEmHs+Mn4df1alJaW4sD+XZj7zAL+wYDqjeGXDlQqFUJDQwEAPj4+9f6CO3v2LADAxsamyplWQUFBcHBwQG5uLrZt2wYnJyfMmzev0nX79+8HAJibm2PQoEF664eIiIhIn9RqAcs3nkTIae3gy9HWAmsWT4JvMwu+BEHA6TOncOPGg1MqXZxd4OvbHja2tpCIxSgsLERychISkxJRVlaKSxfPwq+TP6ytuQE+NR3Z2Vm4dfMaAMDTqy06+3et0/2CIGD71k2a2UGOTs7w8+sMB0dniMViFOTnITLiNjIy0iGXl2Dv7u0wmWoC3/Yd6/QaV6+U799ma2uH9h066Xxv/N1Y7Ni+GWq1GhKJBB07doanV1tYWlqhRF6MjPQ03Ll9E0qlArGxUdix7S88MXOuTrOi7ouMuAOZrHyLmZ49++h8X2MrKpJh45/rUVxcBADw9vZBO9+OsLG1hUqpRG5uNm7duo4imQzZ2ZnY+s9GzH5qHmxt7artc9Dg4ZCXlNT62mlpKbhw/jQAwMnJpc61W1paof+AwThx/DAKCwtw7eplPNKPv7dS/bT68Ounn37CyZMnsWbNGtjb21d5zdq1a5GSkgIAeOqppyo9LwgCPv/8c/Tp0wejRo2qso99+/ZpArSpU6fC3Ny80jUSiQSzZ8/Gd999BwB49tlnK80yO3v2LI4fPw4AmD59utZSysbuh4iIiEhf1GoBn/95ArvOhGu1O9pa4Jslk9HO3cFIldVfWFioJviytrbByBEj4enpVem6Xr36oLC4FMeOHsDgISMYfFGTE3b5vObxI/0G1vl+kUiEAYOGYv/enRg4aCi6dO1RaXZj30cG4sb1Kzh8aC8EQcDxYwfRzreDzrMg4+/GIicnGwAQENi7TsGUl7cPOnTsDJVSWe2stgEDh2DHtr+QkZGOlJQkhIffQteuuq+WuXLlIgDA3NwCXbp0r+Vq/bGysi7/WN+4gtFjJsLDo/L3pP4DhuDIob24des6iouLcP7cKYwZG1xtn1X1UZXbt28AAKRSKbp3D6xX/QEBvXDh/BnI5SW4cuUSevXuB6m01ccYVA+tetSEh4fjm2++gVwux9ixYzF37lwMHz4c3t7eUKlUiIiIwMaNG3HgwAEAQP/+/TF79uxK/fz888/45Zdf8Msvv2DUqFGYPn06unfvDktLS6SkpCAkJAS//PILgPKZYw+fuFjR888/j5CQECQlJeHPP/+El5cX+vfvD7VajUOHDmH58uUQBAHOzs546aWX9N4PERERUWNTqwV89scJ7D6rHXw52VpizX8moZ1b8wu+srOzcPHSBQCAhbkFpk2dBhub6peJOTk54/EnKv9RlcjYSoqLcedO+Ymrdnb28PFpX8sdVfPyaovn5/+7xjCrR0AQoqMjcDcuBnl5ucjLy4WDg24zPq+ElYdLUqkUPXr0rFNtEokEE4On1ViblZU1Ro4aj00bfwUAxMfF6Bx+paYmIy21fPJE9x4967VXWmPq1fsRBPXqW+37K5FIMGLUeETHRKJULsfduzENfs3CggLEREcAAPy7dK/3vm5SExN06xaA0NALKC4qQkT4LXSrZ5BGrVurDr/8/f2xfv16vP3227h79y7WrFmDNWvWVHltcHAwPvzwQ5hU8Y3r2WefRXZ2Nn7//XccPnwYhw8frrKPgIAArFixAjY21f91z9raGj/++CPmz5+P5ORkLFmypNI1zs7OWLt2LVxcqp862lj9EBERETUmlVqNT38/gb3nIrTane0ssWbJZPi42RunsAY6f+E8BEEAADz66OAag6/6EAQBEeG3cef2dWRkpqNULoelpRV82rVH//6Da92PSV5SgpjYKCQlxiMzIw0FBQUoKyuFVGoCGxtbeHp5IzCwN1zaVN6X9r78/DysX/ctAGDhomUoKS7GyZNHkBBfvo9Q+w5+GDZ8DMzMzJCVmYFTp44iNSUJYrEEnf27YvCQkVXO2Li/eXaXrj0wbvxkqFQq3LxxFbdvX0duTjaUKhXs7OzRvr0f+vYdUOsv0UVFMvz4/apqn7e1tcPz8/9dYx9VkctLcO1qKGJjopCTkw2lUgELS0u4uLiiU6cu6NK1R62zj86dPYnz505p1ZCbk40b168gLi4GBQV5EIslcHJ2QY+AIHTrFlDnOhsqNjYKKpUKQPnntCH70elyr7NzG9yNKw9byspKdeo3JzsLd+/GAqh/sKJTbS4Pvh5KdawNAK6EXtS8RmDP3nWuTR9qe3+lUikcHByRlpqCstKyBr/e1auXNXu99Qxq2LLP9h07ITS0/I8LUVHhDL+oXlp1+AUAvXv3xt69e7F3714cPXoU169fR1ZWFqRSKVxdXdG7d29MmTIFffpU/wUrlUqxbNkyzJo1C//88w9Onz6NlJQUlJSUwMXFBZ06dUJwcDDGjRun0xTNDh06ICQkBBs2bMDBgweRmJgIQRDg4eGBkSNH4tlnn9XptMnG6qe5+27tN/W6z8XZBU88MbPK5/75ZzMyszKrfK42L79U9Q9bx48fxe07t6t8rjaPPz4DbVwqb0x56/ZNnDhxvF59Dh06DN26Vp6inZGZgS1b/q5Xn127dMWwYSOqfE4fn6dNf/6CjIz0evXLz5PhPk9N7etp1pPPwt3ds1I7P09N6/PEr6fm+XlSqdX49LfjiIwMx5xA9UNXF2DP9j9q7dPQnyddFMoKkZAQD6A8WOnY0a/efVXZf0EB9u7ZjpSUJO32wgLcvHEVsbFReGrO8zUun9yxfTNSU5MrtSsUZcjJyUJOThZu3riKwUNGoHef/rXWlJmRjt27tmr2NAKA27euQ15SggEDh+Cfv//QCjKuXrkMsViMocNGV9tnSXERZIUFCNm5BenpqVrP5WRnISc7C5ERtzFz9jMGXyqalpqMHdv/RklJsVb7/Y3b78bF4OqVS5gybaZOtcnlJRAEAefPncKli2c1YVM5JVJTkpCakoS83GwMenR4I783NUtMjNc8bttW/ycUFt7bVP9++KKLK/f2+gIaHqzU5P6G/wDg4lJ9MFyRrLAAUVHls1o7dOhU495ZTYkgCCgsLAAAuFTx72tdKBQK3LhxBQDg6emt88euOu7unjAxMYFCoUByUgIEQeAhIVRnrT78AsqneU6aNAmTJjXsBBgfHx+89tpreO211xpck7W1NV555RW88sorTaIfIiIiooZQqdX4eMNx7L8QiY4t7G9vCfHxmllfHTrovmeRLuSlcmzbuhE5OdlwdXNH1649YGlpjfz8XM1JcsVFRTh75kSNe/R08u+KvLxceHq1hbu7B2xs7CAWi1FUVIiEhLuIi42GWq3GyRNH4ODghPYdag7wdu/aCoWiDP36PwpHRydcvnQOmZkZiI2NQkZGGgBUeu7WzesYPGRktbOjCgrysX37ZmRlZsDdwwudO3eFlZU1srIycPXqZZTK5SgoyMfO7X/jyTnPVftxNjMzx5SpMyq1Hzq4R7Ppd12kp6diyz8boVCUz4Zp38EP7dv7wdzcAvn5ubh18xpycrKRkZGOrf9sxJNznqtytUhFZWVlOHpkP65fC4OJiQl6BPSCu7sn1GoVYmOjERVZfgjEpYvn0L1HEOzs7Otcd33d//wBgJOzfleIZKSnIfre0rgeAb1galr7wWJyeQnu3NtLysurbYODleoIgoBzZ04AAExNTREQ0Eun+65eDX0w46lXX73Upg/XroaiSCYDAJ0C8Jrcvn0dpfdOu+0Z1PCPgUQigYODIzIy0lFWVobc3Bw4Ojo1uF9qXRh+EREREZFeqdRq/G/DMRy4EGXsUvQivcIsY9calg3WR1ZmBsRiMR4dPBx9+g7QCnz8/bvj11++h1KpQHR0BEaPmVhtINSzZx/06vVI1c8F9UVSUgK2/P0HBEHAhQunaw2/lEolZs5+Fk5OzgDKT0c/eGA3AEChVGDWk89oTne7/1xpqRz5eblwqOaX1pycbIhEIgwbPgZBFUKDTp27oGvXHti48ReUyuXIyEhDbGwUOlRzup9UKq2y/vpski0IAo4c3qcJvsaMDa605Cqo1yPYFbIFcbHRyMnJwoXzp/Ho4Npna12/FgZXV3eMnzhVa8ZT124BCNn5D2KiIyEIAmKiI9Grd9WfO33Iz8sDUB446GPWkkqlQn5eLqKiwnH50jmoVCr4+LTX6WMGADdvXIVCoQDQOMHKw+QlJUhJTULo5QtISoyHVGqC8ROm1rq0GACUCgVuXC+f8eTs3Abe3j6NXl9jUijKkJWViZs3ruLmjasAykPrjn6d692nIAi4GnYZQPnBHw3pqyJ7ByfNio6C/DyGX1RnDL+IiIiISG9UajX+79djOHixZQZfAJCf/2BplD7CglGjJ1S5x42NrS3cPTyRmHAXpXI55CUlsLC0rLKP2vai8vJqC0+vtkhKjEdaagqUCkWNm3T3HzBYE3wB5ZuD3zdgwBBN8PXwcyXyEtR0nMGQYaO0gq/77B0c8cgjg3Dq5BEAwK2b16oNvxpTTHQk0tPKl2D6dfKv8vMgkUgwZmww1q/7DgpFGa5fC0X//o/Wusm5s3MbPD7jqSpnO3Xu3A0x0ZEAgLy8nEZ4T3RTWloKpbI8WDIzN2/UWYzp6anY+Md6rTYXF1f0CAhCj4AgnU5rVKvVuHqlPFixsbFFh47aY+Dnn75BQUE+unYLwNhxdVvVs2P7ZsTFRmveNjMzh3+X7poZjLq4c+cm5PISAJWXY966eU0TED/3wisGnc33sNDL53HyxBHN2xKJBG3b+qJP3/7waVe/Aw7ui4+PRU5OFgAgILBXnU7hrIlFhX3diopkjdIntS4Mv6jFq24Pk4aobq+Vhhg2bESD9hupSreu3avcF6Uh2ri00cvHVB99zn5qHsRiCdRqFRTyxvlHkp+nlv/1ZGJuXWU7P09N6/NUHWN+nkzMrev0Pac1fJ6UKjX+75ejOHgpWqu9ULDF5Mcnwcul8YIifX096UJ+b3kPAJibmzdq3+4eXjVu7lxxfymFUoH6nadWruIm/SUlJbCpIbwxNTXVeltSYVZVTc9p721VWXWz0wCgs39XTfh1/yQ9fYuJidQ87tEjqNrrLC2t0KFjJ4TfuYnS0lLcvRtb64yXIUNHVrvMz87eXvP4/iwnQ7g/ww0ATExMa7iy7nJzsiu1lZQUIyMjDfn5eTrt9xUdHaHZlyogsHejBSsAkJurHTIqlQrk5+UiJTkRDg6OOgWB9/ciMzMvD86aqpyHPhdqtRoyWQFSUpLg6ubRoO9j9zf7l0gk6BFQ/ddMXVUcjxXHKZGuGH4RERERUaMrU6jw/rpDOHntrla7q6M1vlkyGZ4ujXsaojGpVErN48b8ZRwAJLX0V/EX8vv7jumioCAfssJClClKoVaV709UcfN6tfDwgQTGZ2NjCytr6/JN5otkKC4ugqWllV5f8/5JlgDg4elV47UeHl4Iv3MTAJCWllJr+CWWSKp9Tpe9r/RBUD8YQ2JR445ldw8vTJk6Ayq1CgX5+UhOSkBMTCRu3riKiPBbGD9haqWZXA/TBCtSKXoE9GzU+oaPGAO1So2SkmLk5ubg9u3rSE1NRmpqMiIibmPKlCdqnM0XHx+H7HsHjnTv3rPWfd+MqUdAEDp06ASFogz5+XmIigpHRnoazp87hTu3b2Da9Nk6Hz5QUU5OtuYUzk6duzbq12fF763391QjqguGX0RERETUqEpKFXjz+wO4dEf7dEI3R2t885/J8HBuOcEXAEgkD36kbsq/lKWnp+JK2CXExkZpNqNubmxt7DSbcstLSvQafgmCoFleZWllVetMqIqztfLz8xr02pIagjF9kkgfvG7F0zobg52dvdZSv959+iE9PRU7tm1GcXER9u3dgTlzX4B9NaFLenqq5sRTf/9usLCoeolvfbVr10Hr7f4DBuPk8cO4di0UCfFxOH78EEaNnlDt/VfCyoM5kUiEwJ69G7W2xubm5qH19iP9BuHWres4dGA38vPzsDtkK56c81ydx+H9jwHQ+KdwlpU+GI+SeuzfR9S4cT4RERERtWqFxaVYsnpPpeDL3ckG37bA4AvQXuooL22aodLZMyew8Y/1uHP7RrMNvgDtGVGlpY0bzjyspKRYM5vOTIeZWNq1Nc+PsZnZg7Gs748vALi6umPQo8MAlC/vDKsQnjzsStglzeMgPWx0/zCpVIphI8bA9l5gd+vmtWr3msrLzcHduBgA5aeBGnM/r/rq1i0Anf27AQCysjK0lvzqQi6Xa07hdHP3qBSwNVRphTDW3Kxxl5dT68DIlIiIiIgaRW5hCZas3oPIxCytdh83e6xeFAwXh6r31Gvu7OzskHpvD6rCggI4V9gIvim4fi0MF86fBlA+K6VbtwD4d+kOJ2cXmJtbaJYTHdi/C7dvXTdmqbUS8GBZnkjceJuxV/ladVhGWn7Dg4eNvfzVUCQSCSwtrVBcXASlUlHrwQeNoeLJnPH3lsw9rKhIhsiI2wAAT09vuDTyqarVEYvFaNeuPa5fC4NarUZCwl10qWIvrytXLmnGiz5OoDSU9h38NEt34+/GolOnLjrfe/PGFT2fwlmseWxt3fL+iEL6x/CLiIiIiBosM1eGV1ftRnxanlZ7J29nfP3qRDjYNGQr9qbN1dUV4eF3AADpGenw9W3YaWmNSRAEnD9/SvP2yFHjG3UTakNTlD3Y6NrcXL9jquIsqLKy2jfYLlM8mJli2chL8gzJ0ckZxcVFAICMzHR4eNS811lDWVpaQSwW39t0vbDKa+Lj4zSHJSQnJ+Lrrz6usc/bt65rgtz6nPxYUcWDIGSFVddX8ZTIrf/8WWuf69d9q3ls7JMfK7KpECpV97moilqtxrWroQDKP591Cc10lZGZrnns1MT+wEDNQ/P8kwQRERERNRnJmQV46audlYKvgA5uWLNkUosOvgCgrbePZuP52NiqZ64YS25ujmaPLDs7+2YdfAFAfkEegPIZbFZW+t3sXiqVwsq6fLZiUZGs1lMX8/NyNY9tbBvvJFNDq7hcLS1N/6dqqtVqzV551W30LxhxLz2l8sGBFqZmVe/7VudZgk2UssLhHXU5dCE6OgIFBfkAyjfTb+w96woLCx58H7N3gLlFy/43hfSDM7+IiIiIqN7iUnKwaNVuZOUXa7X39ffEZy+Ng4VZ0z3xrLHY2NigbVsfxMffRV5eLuLiYpvM7C95SYnmsZ2dgxErabj8/DwUF5XPSHJp41rrBvSNwd3NE9HREQCAlJQk+Pj4VnttcvKDfe7a1nBdU+fr2wGXL50DACQlxKNXr0f0+nqZFWb02NlXPUbb+vhiytQZtfa1c8ffAADvtu00dVecuVUfGRlpmsf21XwNjR4bDGUt4Wh4+C1EhN8qv37MRM1hDVY6HtqQmHAXx48fQkF+Hjw8vTFy1HjYNnLImlnxfa1wgENt7u/HJhaLERDYq1FrAoCkxHjNY9+HDiYg0hXDLyIiIiKql4iETCxZvQd5Mu3NvQcHtsNHL4yCmUnr+VGzX7/+SEiIhyAIOHnqBFxd3WBpWfvSN6VSCakeTy4zq7AZf2FhQbXXqVQqZGdl6q0OXRUXF1V7gmPF/ch8fAwTLnbq3FUTft28cbXa8Ku4uAixMVEAypd96XupoD55erWFnb0D8vNyERcXjaIiGays6r5fX0pKEhQKRY2BIaC9kb2/f9cqr7Gxsa1TiGVjY6u1l9jDVCoVrl0NRUBgrxq//nJzsjX7kFlZWcPL26fK69q2bVdrTenpqZrH3m3b1WmpY0FBPnZs/xtKZXnAdjcuBrt2/oMn5zyvmXVak1u3rsPb26fGsEypVOL69Suatzt37qZTbenpqUhJTgQAdPTzh7W1jU731cWNG1c1j7t1D2z0/ql14LJHIiIiIqqza9Gp+PeKXZWCrzGP+OHjBaNbVfAFAM5Ozujbt3ymSVFREXbs3IaMzIxqry8oyEfIzn+wK2SLXpdMOTo6weLe/lO5udm4ezem0jVyeQl279qq9ct5Xfb7aUw7tm+u8rXTUpNx+dJ5AIBEKkXPoD4GqaejX2fY35uNFBlxG3fubQZekVKpxMEDu6FQlO8LNmDgEJ0CiaZKJBKhd+/ysaxWq3GzQvCgq8jIO9jyz5/YueNv3Lh+pdoxHnr5vOaEQGtrG3TtFlDvunVVWlqK7dv+wonjh7Bj+2bk5+dVeV1BQT5CQrZolmT27tO/0Zfz6SouNkoTfN2XkZGOnJzsWu89eeIIDu7fhX82/46kpIQqr1EqFNi/byfycnMAAO3b+8HZpY1OtVUML3v2bPyvy+zsTCTfq9u7bTu0cXVr9Neg1qF1/VRCRERERA124XYi3lx7AKUKpVb7tCFdsXTWYIj1fApfU9W7Vx8UFxfj5s0byMvLw5Ytf8PdzR1tfXxga2MLiEQoLi5GSkoyEhLiNRt4X78WikA9/NIIlAcZQb364uyZEwCAkB3/oEdAEFxd3SESi5GRnoY7t2+gpKQY3t4+SLy3vOj0qWMYN36ywTfiTk9LxW+//oiu3QLg5uYOQISU5ETcvHlV8/Hq23dAjbNLSkqKkZqSXKn9/t5NSqVSM0vrPnMLiypna0kkEowaMxHbtmyEWq3G/r07ER0Vjvbt/WBqZoa83FzcunkNubnlIYSXt0+z31cNALp1C8T5c6dRXFyEy5fOo1v3wDrN6LG0sIRYJIZCUYbDh/YiLPQi/Dp1hqOjM8QSCfLz8hAVeUcTuEokEgRPnl6nfabqSyqVag4zSEy4iw2//oD27f3g7e0DKysrlJaWIjU1GeF3bmr2eevYsTN69dbv8s+aVf09VZfvtPf3xisoyMc/m3+Hl7cPfH07wNbWHoKgRmZmBu7cvqEJne3s7HU+IKDiKZwuLq7w9PLW6b66OHHssOZx374DGr1/aj0YfhERERGRzk5cicP7Px+CQqm9AfVTowPx8mP9m/WMl4YSiUQYMngoXJxdcO78WcjlcqSmpSI1LbXK66VSE/Tq3Rfde+g3LOn7yEBkpKchOjoCKpUKV69crnRNj4AgjBg5Djt3/I27cTFISU5EenqqwcOvRwcPx+lTx3Al7GKVzwcE9sKAgUNq7CMrK1Oz91NViouLKj3v5dUWT8ycW+X13t4+CJ70GA7s34XS0lJER0UgOiqi0nW+vh0QPGl6i/gakJqYYMSocdgdshVlZaU4cfwwJgZP0/l+L28fzJg5F0eP7EdqajJycrJw4XxWldc6ODhi/MSpcHV1b6zyaySRSDAxeBounD+N0MvnoVAoEBV5B1GRdypdKxKJ0LtPfwwcNNSon9f27f1w6uQRrUMX2rRxg4OjU6339u7TH9Y2tjh14ggKCwuQlBivtYdWRe18O2DsuEk6byh/7WqoJpTWx2zMiPBbiI8vX3bq36U7fNo1jb0UqXli+EVEREREOtl/IRIfbzgGlVp7CdOCyX3xzPheLeKX/sbQpUtXdOzYEZGRkYi7G4fs7CyUlJRALBbD3NwCDg4OaN+hEzr7d6vXXkp1JRaLETx5Om7fvoHbN68hMzMDSqUCVlbW8PD0Ro+AIHh5tQUABE96DOfOnkJUVDjaGWFj6b6PDIS3tw/CQi8iKTkBJcXFMDE1hZurB3oEBsHPz9/gNQFAh46d8cw8T1y7Goq42GjkF+RBUVYGc3MLuLq5o2u3APj5+beorwE/P3/4d+mO8Ds3ERlxG23btqvTrLY2rm6Y9eSzuBsXg+joCCQnJ6JIVgiVSgVraxs4Ojqjs383dPTrrNd976oiFosxYOAQ9AgIQkT4LcTFxSA3JxslJcUwMzOHtbUN2vr4olu3ADg6ORu0tqrY2Npi8tQZOHH8EPLz8uDp6YWRoyfoPN46d+6KDu39EBF5B3GxUchIT0NRUREkEjGsrG3g7uaBLl17wFuHvcsqKikphomJCSQSKfy7dK/He1a93JxsHDm8H0D5ktjhI8Y2av/U+oiElnIuKzVbZSWFEISajy82MbeGWCyBWq2CQi4zUGXU3HHcUH1w3FB9tfSxs+3ELXy56VSl9kVPDMTMkfrfp6clEYnEMLVo/E2hm6uKexEtWfqOkauhikpLS/HP5t+QmZkBsViMadNn67S5O7UeSqUS+fm5cHJyabQ+5fISbNr4K/JycyCVmmD6E08260MkqGnghvdEREREVKOtx29WCr7EIhHenjuMwRdRC2ZmZoZp02fDzt4BarUau3ZuQUpykrHLoiZEKpU2avBVWirHjm2bkZebUz5rddJjDL6oUTD8IiIiIqJq7Tkbjq/+Oq3VJhGL8eHzIxE8yDhL0IjIcKysrPHY9NmwtbVDWVkptm3dVO2pgUQNIZeXYOs/G5GamgyxWIyx4ybDt31HY5dFLQTDLyIiIiKq0tHQGHz6+wmtNlMTCT5/aSxG9uEvJESthb29A2bOfgYuLm2gUJQhMeGusUuiFigvLxfZ2VkwMTHBlKkz4N+lm7FLohaEG94TERERUSVnbsTjg5+PQF1he1ipRIzP/jUW/bu1NWJlRGQM1tY2eGLm07h96zqCevU1djnUArm5eWDylMdhZmYGN3dPY5dDLQzDLyIiIiLSEhqRjHd+OAiV+sGBNGKRCB8+P4rBF1ErZmZmxuCL9MqnXXtjl0AtFMMvIiIiItK4GZuON77bhzKlSqv9nWeGY3gv/lJCjc+7bTu4urrD1s7O2KUQEVELxfCLiIiIiAAAkYlZWPrNHpSUKrXaX5s9GOP7dzJSVdTS9R8w2NglEBFRC8cN74mIiIgId9NysXj1bhQWl2m1v/JYfzw2lJsOExERUfPF8IuIiIiolUvJKsCilbuRVyjXap83oTeeGtPTOEURERERNRKGX0REREStWGauDK+u3IXMvCKt9pkjA/DCpD5GqoqIiIio8TD8IiIiImqlcgtL8Oqq3UjJKtRqn/xoF7z6+ACIRCIjVUZERETUeBh+EREREbVChcWlWLx6N+LT8rTax/TtiNefHMzgi4iIiFoMhl9ERERErUyxXIGl3+xFVGK2VvvgwHZ499nhkIj5IyIRERG1HPzJhoiIiKgVKVUosWztftyMTddq79vFCx+9MApSicRIlRERERHpB8MvIiIiolZCqVLh3R8PITQiWas9sKMbPvvXWJiZSI1UGREREZH+MPwiIiIiagWUKjU+XH8UZ27Ea7X7t3XBF6+Mh4WZiZEqIyIiItIvhl9ERERELZxaLeCT347jSGiMVruvuwNWvDoB1hZmRqqMiIiISP8YfhERERG1YIIgYPnGk9h/IVKr3dPFFqsWB8Pe2sJIlREREREZBsMvIiIiohZKEAR8/fcZhJy+o9Xu5miNNUsmwdnOykiVERERERkOwy8iIiKiFkgQBHy3/QK2HLup1e5sZ4nVSybBzdHGSJURERERGRbDLyIiIqIW6Ofdl/HnwatabQ42Fli9ZBK8XOyMUxQRERGRETD8IiIiImphfj9wBev3hGq12VqZYfXiYLRzczBSVURERETGwfCLiIiIqAXZfOQ61m6/oNVmbWGKVYuC0cHTyUhVERERERkPwy8iIiKiFmLHydtY9c9ZrTZLMxOsWDgRndu6GKkqIiIiIuNi+EVERETUAuw9F4HlG09qtZmZSPHFv8eje3tXI1VFREREZHwMv4iIiIiaucOXo/HJb8e12kylEix/eRyC/DyMUxQRERFRE8Hwi4iIiKgZO3E1Dh+uPwK1IGjapBIxPn5xDPp28TJiZURERERNA8MvIiIiombq3M0EvPfTIajUD4IviViEj14YhUE9fIxYGREREVHTwfCLiIiIqBm6HJ6Et344AKVKrWkTiYD35o3AsKD2RqyMiIiIqGlh+EVERETUzFyLTsUb3+1HmUKl1f723GEY09fPSFURERERNU0Mv4iIiIiakVtx6Vj6zV7Iy5Ra7a/NHoyJA/2NVBURERFR08Xwi4iIiKiZiEjIxJLVe1AsV2i1v/r4ADw2tJuRqiIiIiJq2hh+ERERETUDMcnZWLxqD2QlZVrt/5r6CGaNCjRSVURERERNH8MvIiIioibublouXl25G/lFcq325yb2xtPjehmpKiIiIqLmgeEXERERUROWlJGPV7/ehdzCEq32p8b0xPPBfYxUFREREVHzwfCLiIiIqIlKzS7EwpW7kJVfrNX+xPDueHlaP4hEIiNVRkRERNR8MPwiIiIiaoIycmVY+PUupOfItNqnDu6KxTMGMfgiIiIi0hHDLyIiIqImJju/GK+u3IWUrAKt9gkDOuO12YMZfBERERHVAcMvIiIioiYkt7AEr67chYT0fK32UX064q25QyEWM/giIiIiqguGX0RERERNREFRKRav3o241Fyt9qE9ffH+vOGQiPmjGxEREVFd8ScoIiIioiagqKQMS1bvRlRitlb7wB5t8dELoyCVSIxUGREREVHzxvCLiIiIyMiK5Qos/WYv7sRnarX39ffExwvGwETK4IuIiIiovhh+ERERERmRvEyBN77bh+sxaVrtPf3c8fnL42BmIjVSZUREREQtA8MvIiIiIiMpVSjx5vcHEBaZotXevb0rvnhlPMxNTYxUGREREVHLwfCLiIiIyAgUShXe++kQLt5O0mr393HBioUTYGVuaqTKiIiIiFoWhl9EREREBqZUqfHh+iM4fT1eq72jpxNWvjoR1hZmRqqMiIiIqOVh+EVERERkQGq1gE9+O46jYbFa7b7uDli1OBi2VuZGqoyIiIioZWL4RURERGQggiDgi00nsf9CpFa7l4stVi0OhoONhZEqIyIiImq5GH4RERERGYAgCFj1z1nsPHVHq93N0Rqrl0yCs52VkSojIiIiatkYfhEREREZwA87L+Lvoze02pztLLF6ySS4OdoYqSoiIiKilo/hFxEREZGe/bo3FL/tv6LVZm9jjtVLJsHLxc5IVRERERG1Dgy/iIiIiPTor8PX8GPIJa02G0szrF40Ce3cHIxUFREREVHrwfCLiIiISE+2n7yF1VvOabVZmZti5aKJ6OjlZKSqiIiIiFoXhl9EREREerD3XAS+2HhKq83cVIqv/j0eXXzaGKkqIiIiotaH4RcRERFRIztyORqf/HZcq81UKsHyl8choKO7cYoiIiIiaqUYfhERERE1ohNXovHf9UehFgRNm1QixicvjkEffy8jVkZERETUOjH8IiIiImok527E4a1vd0GlVmvaJGIRPnx+FAb28DFiZUREREStF8MvIiIiokYQFpGIpau2QaFUadpEIuDdZ4ZjeK/2RqyMiIiIqHWTGruApuLGjRvYtm0bLly4gNTUVAiCACcnJ/Ts2ROTJk3CsGHDdOpHJpNhw4YNOHToEBITE6FWq+Hp6YmRI0fimWeegaOjY7Psh4iIiKp3Ky4dS1btRmmZUqv9zTlDMbZfJyNVRUREREQAIBKEChtStEIFBQV47733sH///hqvGzJkCFatWgVLS8tqr4mJicH8+fORnJxc5fPOzs5Yu3YtAgICanytptaPvpWVFEIQ1DVeY2JuDbFYArVaBYVcZqDKqLnjuKH64LihuopMzMLCr0NQWFym1b5k5iA8MbyHkaqipkwkEsPUwsbYZRAREbUarT78WrlyJdauXQt7e3vMmTMHI0aMgJeXF+RyOaKjo/Hbb7/h+PHjAIDRo0fjm2++qbIfmUyGKVOmICkpCSYmJli8eDGCg4Nhbm6Oy5cv4/PPP0dCQgKcnZ2xY8cOuLi4NIt+DIHhF+kLxw3VB8cN1cXd1Fy8vGIn8grlWu0vT+uHOWODjFQVNXUMv4iIiAyr1e/5tWjRInzwwQfYt28fFi5ciG7dusHOzg6urq4YNGgQfvjhB8yePRsAcOjQIURGRlbZz88//4ykpCQAwPLly/HCCy/Azc0N9vb2GDVqFF555RUAQFZWFr777rtq62lq/RAREVHVkjML8OrKXZWCr/lTBjD4IiIiImpCWn34JRKJ8OSTT9a499WsWbM0j2NiYio9r1KpsGnTJgBAUFAQJkyYUOn5H374QfP2tm3bUFJS0uT7ISIioqpl5MqwaNUuZOUXa7XPGd8X86cONFJVRERERFSVVh9+6aKs7MEeHm3atKn0fFhYGHJzcwEA48ePr/T81q1bERsbi+nTpwMA5HI5Tp8+3eT7ISIiospyCkrw6srdSMkq1GqfPjwQi2cNh0gkMlJlRERERFQVhl862LBhAwDAz88PvXr1qvT8zZs3NY+DgrSXOZSUlGDNmjUIDAzEokWLqrynqfZDRERE2gqKSrFk9W4kpOdptY/t54c35o5i8EVERETUBEmNXUBTo1aroVAoUFRUhNu3b+PXX3/FqVOn4OHhgVWrVlX5Q21sbKzmsZeXl9ZzGzZsQEZGBr788ku4urpCKpVCqVRq3dNU+yEiIqIHiuRlWPrNHkQlZWu1D+3pi3eeHg6xmMEXERERUVPE8OshISEhWLZsmeZtJycnLFy4EE8//TRsbW2rvCcnJ0fz2MHBQfM4NzcX69atw5AhQ9CvXz8AgK2tLXJycjTLEptyP4YiNbOs9RqRSKz5v4m5tb5LohaC44bqg+OGqiIvU+DN7/fgVlyGVvuAHu3wyStTYGoi5dghIiIiaqIYfj0kLi5O6+3s7Gz8/vvvKCoqwsKFC2FpWTmoub9ZvKmpqdbMsO+//x4ymQxLly7VtJmamgIAiou1N8htiv0Yilgs0flakUgEkUj364kAjhuqH44buk+hVOHNb3YhNDxRq71XZ2988epjMDcz0Wrn2CEiIiJqWhh+PWTJkiVYsmQJioqKkJSUhN27d+OPP/7A+vXrcfr0aWzatAnW1lX/NVcsfrCFWnJyMjZu3Ijg4GD4+/tr2tVqda01NLV+9E2tVtV6jUgkhkgkgiAIEATj10zNA8cN1QfHDVWkVKnx7trdOHNde3uArr5u+GrxVJiZiDX/jnHsUF3U5Y9/RERE1DAMv6phZWWFzp07o3PnzhgxYgSefPJJREZGYuXKlXj33Xe1rr0/G0yhUGjaVq5cCUEQtDaVB4DS0lKte5pyP4aiLC2u9ZcEE3NriEQSCIIaCrnMQJVRc8dxQ/XBcUP3qdUCPv7tGI5cjtRq7+DpiBX/HgczkQIK+YN/azl2SFcikRimFjbGLoOIiKjV4GmPOggKCkLv3r0BANu3b6/0vKOjIwBApVKhsLAQ4eHh2L17N2bNmgVvb2/NdQqFAoWFhVr3NOV+iIiIWitBELBi82nsO68dfLV1tcOqRcGwtTI3UmVEREREVFcMv3TUrl07AIBMJtPaUB4A2rdvr3mcnJyML7/8EhYWFnj55Ze1rktNTdUsM/T19a30Gk2tHyIiotZIEAR8t/0Ctp24pdXu5miNVYsmwdHWeLOliYiIiKjuGH7pSC6XAyjfxNbKykrrue7du2seb9iwAadOncJzzz1XaTZVWFiY5nGPHj0qvUZT64eIiKg1+nVfGP48eFWrzcnWEqsXT4KrI09xJCIiImpuGH7pQKVSITQ0FADg4+MDMzMzreeDgoLg4OAAANi2bRucnJwwb968Sv3s378fAGBubo5BgwZVer6p9UNERNTabD5yHT+FXNJqs7Myx6rFwfBqY2ekqoiIiIioIVp9+PXTTz9h7ty5yMvLq/aatWvXIiUlBQDw1FNPVXpeIpFg9uzZmrefffbZSrPDzp49i+PHjwMApk+fDgsLiybfDxERUWuy+0w4Vv1zVqvNytwUKxdNRHsP7o1JRERE1FyJBEEQjF2EsYSHh2PmzJmQy+Wwt7fH3LlzMXz4cHh7e0OlUiEiIgIbN27EgQMHAAD9+/fHunXrYGJiUqkvmUyGKVOmICkpCW5ubli2bBn69+8PtVqNQ4cOYfny5SguLoazszN27NgBFxeXKmtqav0YQllJoU6nPYrFEqjVKp6gRTrjuKH64LhpnU5cjcM7PxyEusKPReamUqx8dSICOrrr1AfHDumKpz0SEREZVqsOvwAgNDQUb7/9Nu7evVvjdcHBwfjwww9hbV39Xh8xMTGYP38+kpOTq3ze2dkZa9euRUBAQI2v1dT60TeGX6QvHDdUHxw3rU9YRDL+s2YvypQqTZuJVIwvX5mAvl28dO6HY4d0xfCLiIjIsFp9+AWU7+m1d+9eHD16FNevX0dWVhakUilcXV3Ru3dvTJkyBX369NGpL5lMhg0bNuDgwYNITEyEIAjw8PDAyJEj8eyzz1badL659KNPDL9IXzhuqD44blqXiIQsvLJiJ4rlCk2bWCTCxy+OwdCedTsJmWOHdMXwi4iIyLAYfpHRMfwifeG4ofrguGk9EtPz8K8vdyK3sESr/a25QzFpUJc698exQ7pi+EVERGRYrX7DeyIiImp9MvOKsHj1nkrB10vT+tUr+CIiIiKipovhFxEREbUqBUWlWLJ6D1KzC7XaZ48KxJwxPY1TFBERERHpDcMvIiIiajXkZQq88d0+xKbkaLVP6N8JrzzWHyKRyEiVEREREZG+MPwiIiKiVkGpUuHdnw7hekyaVvugHj54c+5QiMUMvoiIiIhaIoZfRERE1OKp1QI++e0Ezt5I0GoP7OiG/80fDalEYqTKiIiIiEjfGH4RERFRiyYIAtZsPYf9FyK12jt6OmH5y+NhZio1UmVEREREZAgMv4iIiKhF+/3AFWw+cl2rzcPZFitenQAbSzMjVUVEREREhsLwi4iIiFqsnadu4/sdF7XaHG0tsHLRRDjbWRmpKiIiIiIyJIZfRERE1CIdvxKLLzae0mqzMjfFioUT4eViZ6SqiIiIiMjQGH4RERFRixMakYwPfj4MtSBo2kxNJFj+yjh08nY2YmVEREREZGgMv4iIiKhFCY/PxLK1+6FQqjVtErEI//fCaAT5eRixMiIiIiIyBoZfRERE1GJEJ2Vj8erdKJYrtNrfnDMUgwPbGacoIiIiIjIqhl9ERETUIsSl5ODVVbtQUFSq1f7vx/pj4kB/I1VFRERERMbG8IuIiIiavYT0PLy6cjfyCuVa7XPHBuHJMT2NUxQRERERNQkMv4iIiKhZS84swMKvdyG7oFirfeaIHvjX1EeMVBURERERNRUMv4iIiKjZSsspxMKvQ5CZV6TVPm1IV7z6xECIRCIjVUZERERETQXDLyIiImqWMnNlWPj1LqTlyLTaJw3yx9JZgxl8EREREREAhl9ERETUDGXnF2Phyt1IzizQah/XrxPeeGoIxGIGX0RERERUjuEXERERNSu5hSV4ddUuJKTnabWP7N0Bbz89DBIxf7whIiIiogf40yERERE1GwVFcixetRtxKbla7UMC2+GD50ZAKuGPNkRERESkjT8hEhERUbMgKynF4tV7EJWUrdU+oHtbfPTCaEglEiNVRkRERERNGcMvIiIiavKK5GX4z5q9CI/P1Grv28ULn7w4BqYmDL6IiIiIqGoMv4iIiKhJKylV4PVv9+FmbLpWe5CfOz5/aSzMTKRGqoyIiIiImgOGX0RERNRklZYpsWztflyNStVq79HeFV+8MgHmpiZGqoyIiIiImguGX0RERNQklSlUeOuHA7gcnqzV3sXHBV8tnABLcwZfRERERFQ7hl9ERETU5ChVKry37hDO30rUau/k7YyvXw2GtYWZkSojIiIiouaG4RcRERE1KSq1Gv/36zGcunZXq729hyNWLpoIWysGX0RERESkO4ZfRERE1GSo1QKW/3kShy5Fa7X7uNlj9eJg2FtbGKkyIiIiImquGH4RERFRkyAIAlb9cwa7zoRrtXs422L1omA42loaqTIiIiIias4YfhEREVGT8GPIJfxz7KZWWxsHK6xZHAwXB2sjVUVEREREzR3DLyIiIjK63/aHYcO+MK02R1sLrF48Ce7OtkaqioiIiIhaAoZfREREZFT/HLuB73dc1GqzsTTDqkXBaOtqb5yiiIiIiKjFYPhFRERERrP7TDi+3nxGq83S3ARfvzoRHTydjFQVEREREbUkDL+IiIjIKA5disanfxzXajMzkeLLVyaga7s2ximKiIiIiFochl9ERERkcKeu3cVHvxyFIDxoM5GK8dlLY9HTz914hRERERFRi8Pwi4iIiAzq0p0kvPvTQajUak2bRCzCRy+MRr+u3kasjIiIiIhaIoZfREREZDDXolOxbO1+KJQPgi+RCHjv2REY2tPXiJURERERUUvF8IuIiIgM4k58Bl77Zh/kZUqt9mVPDcWYR/yMVBURERERtXQMv4iIiEjvYpJzsGT1HhTJy7TaFz0xEJMf7WKkqoiIiIioNWD4RURERHqVmJ6HRat2oaCoVKt9weS+mDkywEhVEREREVFrwfCLiIiI9CY1qwCvrtyNnIISrfa5Y4PwzPheRqqKiIiIiFoThl9ERESkF+k5Mvz7611Iz5VptT8+rDv+NfURiEQiI1VGRERERK0Jwy8iIiJqdFn5RVj4dQhSswu12icO7IzFMwYx+CIiIiIig2H4RURERI0qp6AEr369G0mZBVrto/t2xJtzhkIsZvBFRERERIbD8IuIiIgaTb5MjkWrduFuWq5W+7Cg9njv2RGQiPmjBxEREREZFn8CJSIiokZRUFSKRat2IyY5R6v90QAffPj8SEgl/LGDiIiIiAyPP4USERFRgxWVlOE/a/YgMjFLq71/N2/8b/4YmEglRqqMiIiIiFo7hl9ERETUIMVyBZZ+sxe372Zotffu7IlPXxwLUxMGX0RERERkPAy/iIiIqN7kZQq88d0+XI9J02oP7OiO5S+Pg5mp1EiVERERERGVY/hFRERE9VKqUGLZ2gMIi0zRau/m64ov/z0eFmYmRqqMiIiIiOgBhl9ERERUZwqlCu/8eBCX7iRptfu3dcGKhRNgZW5qpMqIiIiIiLQx/CIiIqI6UapUeH/dYZy9kaDV3tHTCSsXTYSNpZmRKiMiIiIiqozhFxEREelMqVLjw1+O4sTVOK12X3cHrFocDFsrcyNVRkRERERUNYZfREREpBOVWo1PfjuOI5djtNrbutph9eJJcLCxMFJlRERERETVY/hFREREtVKrBSz/8yT2X4jUavdwtsWaxZPgZGdppMqIiIiIiGpmtPPHVSoVoqKikJ6ejsLCQiiVSkydOtVY5RAREVE1BEHAN9vOYdeZcK12V0drrFkyCS4O1kaqjIiIiIiodgYPv65cuYLffvsNx44dQ2lpqdZzVYVfISEhCAoKgre3t4EqJCIioop+P3AVfx2+rtXmYm+FNUsmwd3JxkhVERERERHpxmDhlyAI+Pjjj7Fx40YIggBBELSeF4lEle75+uuv8eOPP6J///745ZdfDFUqERER3RNy+g6+33FBq83BxgKrF0+Cl4udkaoiIiIiItKdwcKv9957D1u3boUgCPDw8MCkSZPQpUsXxMXFYdWqVVXe07t3bwiCgPPnz+P69esICAgwVLlERESt3vErsVj+50mtNitzU6xYOBE+bvbGKYqIiIiIqI4MEn6dPXsWW7ZsgUgkwowZM/Duu+/C1NQUAHD8+PFq7xsyZAi6dOmC8PBwhISEMPwiIiIykNCIZHzw82GoK8zUNpVKsPzlcejc1tmIlRERERER1Y1BTnv8+++/AQBdunTBRx99pAm+dDFy5EgIgoBLly7pqzwiIiKqICIhE8vW7odCqda0iUUifPTCKAR18jBiZUREREREdWeQ8Ovq1asQiUSYNm1ane/19fUFAKSkpDR2WURERPSQhPQ8LFmzB8VyhVb7m3OHYkhPXyNVRURERERUfwYJv7KzswEA7u7udb73/iyxkpKSRq2JiIiItGXmyrB41W7kFcq12l95rD+CB/obqSoiIiIiooYxSPhlYWEB4EEIVhdxcXEAAHt7+8YsiYiIiCooKJJj8eo9SMuRabU/NToQT43paZyiiIiIiIgagUHCr86dOwMADh06VKf7BEFASEgIRCIRunbtqo/SiIiIWr2SUgWWfrMPcam5Wu3BA/3x8mP9jVQVEREREVHjMEj4NWHCBAiCgDNnzmDHjh0637d69WpER0cDAMaPH6+n6oiIiFovhVKFd348iFtx6VrtQwLb4Y2nhkAkEhmpMiIiIiKixmGQ8Ovxxx9Hx44dIQgC3n77bfzvf/9DTExMtdffuXMHS5cuxffffw+RSIROnTph8uTJhiiViIio1VCrBfxvwzGcv5Wo1R7k544PXxgFqcQgPyYQEREREemVSBAEwRAvlJaWhlmzZiEtLU3zV2Rzc3OYmZkhLy8PIpEIbdu2RXZ2NoqKigCUL3t0dXXF33//DVdXV0OUSUZQVlIIQVDXeI2JuTXEYgnUahUUclmN1xLdx3FD9dFaxo0gCPj67zPYcuymVruftxO+/c9kWFuYGamy5qu1jB1qOJFIDFMLG2OXQURE1GoY7E+6bm5u2Lx5M0aPHg1BECAIAkpKSpCfn68JwxISEiCTyTTPDx06FH/99ReDLyIiokb2696wSsGXl4stvl44kcEXEREREbUoBpv5VdGVK1ewd+9enDhxAikpKVAqlQAAqVQKV1dXDBkyBGPHjkX//txktzXgzC/SF44bqo/WMG62nbiFLzed0mpztrPE969PhYezrZGqav5aw9ihxsGZX0RERIZllPDrYbm55adLOTg4GLkSMgaGX6QvHDdUHy193By/Eot3fjyIiv/621ia4rulU9DB08l4hbUALX3sUONh+EVERGRYUmMXADD0IiIiMoQ78Rn4cP1RreDLzESKL1+ZwOCLiIiIiFosHuNERETUCqTnyPDGt/tRqlBq2iRiMT5eMBo9OrgZsTIiIiIiIv1i+EVERNTCFcsVeOO7fcguKNZqf+OpwRjYw8dIVRERERERGQbDLyIiohZMpVbjg58PIyopW6v9qdGBmDSoi5GqIiIiIiIyHIPs+fX0009XahOJRFixYgWcnJrOHiOhoaEICQnBxYsXkZWVhdLSUri4uKBnz5547LHHMGjQoBrv37ZtG9566y2dXuu5557DsmXLarxGJpNhw4YNOHToEBITE6FWq+Hp6YmRI0fimWeegaOjo06v1Vj9EBFR8/PN1vM4cyNeq21IYDu8NI0nKhMRERFR62CQ8OvixYsQiUSoeLCkSCRCaWmpIV6+ViUlJXj//fcREhJS6bmkpCQkJSVh9+7deOyxx/C///0PEomkwa/ZrVu3Gp+PiYnB/PnzkZycrNUeFRWFqKgobNmyBWvXrkVAQIBB+iEiouZnx8nb2HzkulZb57bO+OC5kRCLRUaqioiIiIjIsAwSfolE5T9g+/n5wd7eXtNuZmZmiJevUVlZGV544QVcvnwZYrEYM2fOxJQpU+Dj4wOFQoE7d+5gxYoViIiIwLZt2+Dk5ITXXnut1n6vX79e4/MmJibVPieTybBgwQIkJyfDxMQEixcvRnBwMMzNzXH58mV8/vnnSEhIwEsvvYQdO3bAxcVFr/0QEVHzc+lOEr7665RWm7OdJZa/NA4WZtX/G0RERERE1NIYJPyytbVFQUEBFixYgEmTJhniJXVmamqKp556CgkJCfjss88qLW10dXVFv379MGnSJCQmJuK3337D888/DwcHhxr7bUiw9/PPPyMpKQkAsHz5ckyYMEHz3KhRoyCTybBs2TJkZWXhu+++wwcffKDXfoiIqHm5m5qLd348CJX6wYxrc1MpvnhlPFwcrI1YGRERERGR4Rlkw3t/f38A5csfm6IJEybg2LFj1e7pZWFhgTlz5gAASktL9fp+qFQqbNq0CQAQFBSkFVjdf/6HH37QvL1t2zaUlJTorR8iImpe8mQleO3bfZCVlGnaRCLgv8+NROe2nOFLRERERK2PQcKvJ554AoIgYOfOnYiKiqrTvcePH0eXLl3QtWtXPVVXTiqteRKcr6+v5nFmZqbe6ggLC0Nubi4AYPz48ZWe37p1K2JjYzF9+nQAgFwux+nTp/XWDxERNR9lChXe+v4AUrIKtNpfmdYfQ3r6VnMXEREREVHLZpDwKzg4GNOmTUNZWRnmz5+PO3fu1Ol+QRC0Nss3huLiYs1jOzu7Ot2rVqt1vvbmzZuax0FBQVrPlZSUYM2aNQgMDMSiRYuqvKex+yEiouZBEAR8+sdxXItO02qfNMgfs0cHGqkqIiIiIiLjM8ieXwDw6aefwtnZGb/88gueeOIJzJkzB/PmzYOrq6uhSmiQihvY9+zZs9brQ0JCsGPHDkRGRiIrKwsWFhYIDAzEnDlzMGrUqGrvi42N1Tz28vLSem7Dhg3IyMjAl19+CVdXV0ilUiiVSq17GrsfQ5CaWdZ6jUgk1vzfxJz71ZBuOG6oPprruPk55BwOXNCeXd2nizfemjceJtKGn1JMtWuuY4eIiIiopTNY+KVUKjFjxgy0adMGX331FTZs2IA//vgD/fv3rzFMunv3rqFKrFZZWRl27doFoHwWlbe3d633vP7661pvFxcX49y5czh37hzmzp2Ld999t8r7cnJyNI8rbqqfm5uLdevWYciQIejXrx+A8oMEcnJyNMsb9dGPIYjFuv9SJhKJIBLxlziqG44bqo/mNG4OXriD77ed0WrzcXPEF68+BjNTUyNV1Xo1p7FDRERE1BoYJPwaPHgwsrOzKy1dVCqVOHPmDM6cOVPNnU3Djz/+qNnn69VXX632Ok9PT4wdOxYmJibo27cv+vXrBzc3N5SVleH8+fP44osvkJiYiN9//x1du3bFY489VqmP+5vOm5qaQiQSadq///57yGQyLF26VNNmeu8XmopLMhu7H0NQq1W1XiMSiSESie4tgdV9GSm1bhw3VB/NbdzcjEnFf3/cq9VmZ2WOr5dMg7WFiU7fY6lxNLexQ8ZVlz/+ERERUcMYJPyqaYN4Y+/lVZuwsDB8//33AMo37h84cGC11/br108zm6oiCwsLjB07FgEBAQgODoZMJsPatWurDL/uE4sfbMeWnJyMjRs3Ijg4WHNyJqDbXmKN1Y8+KUuLa/0lwcTcGiKRBIKghkIuM1Bl1Nxx3FB9NKdxk5pdiP+s3IZShVLTJpWI8cm/xsDNzqTJ19/SNKexQ8YlEolhamFj7DKIiIhaDYMtexSJRFiyZIlO+2VVdPXqVaxYsUI/RdUiKSkJr7zyChQKBbp3717tUkVdubu7Y9y4cdiyZQsSEhKQmJhYaQmlpWX5/lcKhULTtnLlSgiCoLU5PQCUlpZq3aOPfoiIqGkqKinD69/uQ25hiVb7m3OGIsjPw0hVERERERE1PQYLvwCgc+fOeOSRR+p0j7GW4qWnp2PevHnIycmBt7c31q5dC3Nz8wb36+fnp3mckJBQKfxydHQEAKhUKhQWFiI5ORm7d+/GU089pXWtQqFAYWGh1j366IeIiJoeQRDw0a9HEZuSo9X+9LggTBjQ2UhVERERERE1TeLaL2kcTX15Y0VZWVmYN28eEhIS4OnpiQ0bNqBNmzaN0reFhYXmccVZWfe1b99e8zg5ORlffvklLCws8PLLL2tdl5qaqlmu6Ovrq7d+iIio6fnn2E2cunZXq21YUHssmFy3PzAREREREbUGBpn5FR4eXu97hw0b1qD76yo9PR3PPPMM4uLi4OPjg/Xr18PT07PR+q+4/5mrq2ul57t37655vGHDBpw6dQoLFy6sNCsrLCxM87hHjx5664eIiJqWiIRMfLvtnFabf1sXvD9vOMRiUTV3ERERERG1Xgab+dUcJCYmYvbs2YiLi4O/vz82btwILy+vRn2Ns2fPAgBsbGyqnGkVFBQEBwcHAMC2bdvg5OSEefPmVbpu//79AABzc3MMGjRIb/0QEVHTUSQvw3s/HYJC+eCQEGsLU/xvwWiYm5oYsTIiIiIioqaL4dc9kZGRmD17NpKTkzFw4ED8+eefcHZ21vl+QRDw2Wef4fDhw9Ves2/fPoSGhgIApk6dWuUeYhKJBLNnz9a8/eyzz8LKykrrmrNnz+L48eMAgOnTp2stpWzsfoiIqGkQBAHL/zyJpMwCrfY35wyFh7OtkaoiIiIiImr6REJz2oxLT65cuYIXX3wR+fn5GD9+PP73v//BxKT6v6CLRCKYmppqta1btw5ffPEFAGDUqFGYPn06unfvDktLS6SkpCAkJAS//PILlEolfHx8sHXrVtjYVH3EtUwmw5QpU5CUlAQ3NzcsW7YM/fv3h1qtxqFDh7B8+XIUFxfD2dkZO3bsgIuLi1770beykkIIgrrGa0zMrSEWS6BWq3h8POmM44bqo6mOm11n7uDT309otU0b0hWvPznESBXRw5rq2KGmRyQSw9Si6p8DiYiIqPEx/AIwd+5cXLx4Uefr27VrhwMHDmi1KZVKfPXVV/j999+r3Mj+voCAAKxYsaLSKY8Pi4mJwfz585GcnFzl887Ozli7di0CAgIM0o8+MfwifeG4ofpoiuMmNiUHz3+6DaUKpaato6cTflo2DWamBj24mWrQFMcONU0Mv4iIiAyLPzHXQ1V7dUmlUixbtgyzZs3CP//8g9OnTyMlJQUlJSVwcXFBp06dEBwcjHHjxkEqrf3D3qFDB4SEhGDDhg04ePAgEhMTIQgCPDw8MHLkSDz77LOVNq/XZz9ERGQc8jIF3lt3SCv4MjeV4qP5oxh8ERERERHpwCgzv65evYp9+/bh+vXrSExMRGFhISQSCZycnODu7o5BgwZh5MiR6Nixo6FLIyPgzC/SF44bqo+mNm4+++MEQk7f0Wp75+lhmDjQ30gVUXWa2tihposzv4iIiAzLoOFXVFQU3n//fVy9elWr/X4JIpH2Ee0TJ07E66+/DldXV0OVSEbA8Iv0heOG6qMpjZvDl6Px/jrtg1TG9vPD+8+OqPRvJhlfUxo71LQx/CIiIjIsg532eOnSJcyaNQtXr16FIAha/5mYmEAqlVZq37NnD2bOnFntflVEREQtVVJmPj77Q3uDe+82dnht9mAGX0REREREdWCQzUIKCwuxePFiFBUVAQB69uyJ6dOno1evXvD29tacnFhWVobExESEhoZi69atuHbtGtLS0vDcc88hJCQEZmZmhiiXiIjIqBRKFd5fdxjF8gcHqJhKJfi/+aNhZW5aw51ERERERPQwg8z82rhxI7KzsyESifCf//wHf/31F5544gl06NBBE3wBgKmpKTp06IAZM2Zg8+bNWLx4MQAgISEBmzdvNkSpRERERvfd9gsIj8/Ualv4+AB08nY2UkVERERERM2XQcKvY8eOQSQSYeDAgViwYIHO9/3rX//CgAEDIAgCDhw4oMcKiYiImobT1+9i85HrWm1De/risaHdjFQREREREVHzZpDwKz4+HgAwduzYOt87btw4AOWb5RMREbVk6Tky/G/DMa02N0drvDV3GPf5IiIiIiKqJ4OEX4WFhQAAR0fHOt/r5OQEACguLm7UmoiIiJoSpUqN/64/jIKiUk2bRCzChy+Mgq0V97wkIiIiIqovg4Rftra2AFCvUxtTU1MBAPb29o1ZEhERUZOyfs9lXItO02pbMOUR9GjvZqSKiIiIiIhaBoOEX/7+/hAEATt37oQgCDrfJwgCQkJCIBKJ4Ofnp8cKiYiIjOdyeBI27AvTauvX1RtPje5pnIKIiIiIiFoQg4RfEyZMAADcuXMHH3zwAcrKymq9R6lU4qOPPsKNGzcAAGPGjNFrjURERMaQU1CMD9cfRcW/DTnZWuK9Z0dALOY+X0REREREDSUS6jIVq55UKhVmzJiBW7duQSQSwc3NDZMnT0bv3r3Rtm1bWFtbAwCKioqQmJiI0NBQ7Ny5E6mpqRAEAe3atcPu3bshlUr1XSoZQVlJIQRBXeM1JubWEIslUKtVUMhlBqqMmjuOG6oPQ44blVqNpd/sxcXbSZo2kQhYtWgS+vh76vW1qfHxew7pSiQSw9TCxthlEBERtRoGCb8AICcnB08++STu3r2r84lVgiDA1dUVv/32G3x8fPRcIRkLwy/SF44bqg9DjpsfQy7i173ayx3nTeiN+ZP76vV1ST/4PYd0xfCLiIjIsAyy7BEoP+lxy5YtmDdvHiQSCQRBqPE/sViMqVOnYvv27Qy+iIioxTl9/W6l4CuwozvmTextpIqIiIiIiFomg838qignJwcnT57E2bNnkZqaitzcXKhUKtja2sLb2xuBgYEYO3Ys2rRpY+jSyAg484v0heOG6sMQ4yYpIx/PfboVspIHe2A62lrgl7cfh4u9lV5ek/SP33NIV5z5RUREZFhGCb+IKmL4RfrCcUP1oe9xU1KqwILl2xGTnKNpk4hFWL1kEoL8PBr99chw+D2HdMXwi4iIyLAMtuyRiIiotRMEAZ//cUIr+AKAf08fwOCLiIiIiEhPGH4REREZyJbjN3HwUrRW28g+HTBjRA8jVURERERE1PIx/CIiIjKAa9GpWP3POa02Xw8HvDVnmM6nIBMRERERUd0x/CIiItKzrPwivPvjIajUD/Y3tDI3xacvjoWluYkRKyMiIiIiavkMFn6dO3cOK1euhFpd88bmFalUKnz++ec4d+5c7RcTERE1QUqVCu/9dAjZBcVa7e89OxxtXe2NUxQRERERUSsiNcSLKJVKvPPOO0hNTUV2djb+7//+T6f7Pv74Y2zcuBFHjhzBgQMHuCyEiIianW+2nse16DSttqfHBWFIT18jVURERERE1LoYZObX3r17kZKSAgCYOnWqzvfNnDkTIpEIiYmJOHTokJ6qIyIi0o+Dl6Lw99EbWm19/T0xf3JfI1VERERERNT6GCT8Onz4MAAgMDAQvXv31vm+zp07Y+DAgQDA8IuIiJqVmORsfPb7Ca02V0drfPjCKEjE3HKTiIiIiMhQDPLT940bNyASiTB8+PA63/voo49CEARcu3ZND5URERE1PllJKd76/gDkZUpNm4lUjE9eHAN7awsjVkZERERE1PoYJPzKzs4GALRr167O93p4eAAAMjMzG7MkIiIivVCrBXz0yzEkZRZotS+dNRhdfNoYqSoiIiIiotbLIOGX+N7yDoVCUed7VSoVANTplEgiIiJj+f3AFZy+flerbdIgf0x+tItxCiIiIiIiauUMEn65ubkBQL2WLt68eRMA0KYN/1pORERN24Xbifgx5KJWm7+PC/4z61EjVURERERERAYJv3r37g1BELB9+/Y6LV8sLCzE9u3bIRKJEBgYqMcKiYiIGiY1qwAf/HwYgvCgzc7KHB8vGAMzE6nxCiMiIiIiauUMEn49/vjjAICioiLMnz8f6enptd5TVFSExYsXIzc3FwAwefJkvdZIRERUX6VlSrzz4yEUFJVq2sQiET56YRTcnWyMWBkRERERERkk/AoKCsLjjz8OQRAQERGBiRMn4osvvkBoaChkMpnmurKyMoSHh2PdunWYNGkSzp49C5FIhKFDh2LIkCGGKJWIiKhOBEHAx78dR3iC9szmBVP6om8XLyNVRURERERE94kEoeICDf1RqVRYsGABzpw5A5FIpPWcRCKBWCyutCG+IAjo3LkzNm7cCCsrK0OUSUZQVlIIQaj5QAMTc2uIxRKo1Soo5LIaryW6j+OG6qOu4+aXPaH4adclrbYhge3w6b/GVvr3jlo2fs8hXYlEYphacFYoERGRoRhk5hdQHnD99NNPWLp0KczMzCAIguY/pVKJsrIyrTYAeOqpp7Bp0yYGX0RE1CQdC4utFHz5ujvg3WeHM/giIiIiImoiDDbzq6KcnBwcOnQIR48eRXx8PDIzM6FWq+Hk5AR3d3cMHjwY48ePh7e3t6FLIyPgzC/SF44bqg9dx01EQib+9cVOlCqUmjY7K3Ose/MxeLrYGqJUamL4PYd0xZlfREREhmWU8IuoIoZfpC8cN1QfuoybrPwivPDZNmTkFmnaJGIxVi8ORlAnD0OVSk0Mv+eQrhh+ERERGZbBlj0SERG1BKUKJd76/oBW8AUArz85mMEXERERNUtKNefEkH4Ze4wx/CIiItKRIAj49LfjuBWXodU+c0QPTH60i5GqIiIiIqq/IoUaC05n4NvbecYuhVqoa9mlmHggBbdyS41WA8MvIiIiHf22/woOXorWauvfzRuvTB9gpIqIiIiI6i9LrsLTJ9JxPkOOdeEFSCpSGLskaoG+upGLxCIlnjmRjrPpJUapgeEXERGRDk5cicMPOy9qtbVzc8BHL4yCVMJ/TomIHqYWBKMvcyGi6uWUqvD08TTcySuDhUSEtY+6wMvKxNhlUQu0aoALutibolgp4F+nM3A6zfABmNTgr0hERNTMRCZm4cNfjmi12VqZYfnL42BtYWakqoiImrbUYhXG7U+Gq4UEj/va4F9d7IxdUquhUAvYcVeGg8nFiMxXILdUBVOJCG4WUvRyNsMYT0v0b2MOqVikU3+5pSr8FVOI46klSCxSQqZQw1IqRltrKQa0McdYL0t0deC/h81JkUKNBacycFemhKkY+HaQC/q3sTB2WdRCOZhJ8POQNphzLB2xhQosOpeJ9UNcEehkuO8bBgu/srOzkZ+fj/bt21d7TWpqKrZu3Yq4uDiIRCL06tULjz32GMzNzQ1VJhERkZbs/GIs+24/5GVKTZtELMbHC8bAqw1/kSMiqolKAFKKVUiQcSmVoSTIFHj5TAZiC5Va7UqlgNhCBWILFTiQVIRjE710Cr+OpxTjzUvZKFBon85eoFDjZm4ZbuaW4UZuGdYPcW3U94P0RxAELD6fidt5ZRABWP6IM4Mv0jt7UwnWDW6DWUfTkCFX4aUzGdgyyh0eloaJpQwWfn322Wc4cOAA3njjDcyZM6fS80eOHMHSpUtRWvpgA7Q9e/bgzz//xJ9//gl7e3tDlUpERASg/GTHN78/gPRcmVb70lmPondnTyNVRURN0fvXirAruXLAIxUBVlIRnM1E8LOR4NE2JhjpZgZTI9RILZ9cpcYLpzKQVFQefPVvY44RHhZoYy5BoUJAarES5zLkCHQ0g6W09iX7d/LKsPh8JsrU5WM5uK0VgpzMYGcqRk6pGvEyBU6mleCpjjb6ftf0SiUISC9RIaVICQ8rqcF+GTeWP6ILcSZdDgCY18kWY7ys6txHkUKNvYlFOJRcjLhCBbJL1TAVi+BqIcFAV3M87muDDrb1X0J5OLkYn1zNQVqJCgBw+3Efne67mCHHsyfT6/x6h8Z7wtOq8uf9m1t5+O5Ofp368rCU4PAErzrXUF/JRUrsSijCydQSpBQrkVumgp2pBJ6WEozytMS0dtZwNJPo3N+NnFLsTijChUw5MktUKFKq4WQuQQcbEwS3tcI4byuY6jhr9GFullJ82c8Zz51MR16ZGu9cysL6Ia4QierXX10Y5Ks6MTERe/bsgSAIEITK6/5TU1Px+uuvQy6XV3ouNjYWS5cuxc8//2yIUomIiACU/1X0sz9O4Fac9g9Qjw/vjqlDuhqpKiJqbpQCkK8QkK8QECNTY3+qAivDS/BukKRev3AS1WRrnEwTfD3XyRavBThUuubf3XTv74c7+Si7N+FrzUAXDHW3rHTNssB6ldqkhMQX4Z3L2QCAj/s4YVo7ayNXpD9xhQp8fTMPAOBna4LF3e3r3MfJ1BL8NyxbE0zdJ1cJKFCoEVWgwJ/RhVjYzR7z/es2Sz61WIn/XcnBsVTjbIrenAiCgF8iC/DN7XzIVdo5S5ZchSy5CtdyyvBLZAE+6eOMIe41z+6TKdT49FoOtt8tqvRcarEKqcUqnE6XY0NUIb7q54x2NvULN/u4mGNeJ1v8FFGAC5ml+CO6EHP9bOvVV10YJPzauXMn1Go12rRpg5kzZ1Z6/scff0RxcTFEIhFGjx6NqVOnQi6X44cffkBERATOnj2LsLAw9OrVyxDlEhERYcOeizhwIUqr7ZGuXnj18YFGqoiImot/dzKHn035X9kFAMVKAQnFapzKUOBWvgpZpQKWnM/C54+Uz6QhaixXsx+sonmyEWZjXbnXn5eVtMrgi5qfb27laYKSt3s66rzv230h8TK8fSkbapTPBhzqboGBrhZwMhOjWCngTHoJ9icVQykAX9/Mg4VUhDkdaw82VML/s3fX8U1dbRzAfzcudfdCgWKlFHfZYNjY2GBuMB/zdwZzFybv7N2YsgFjPjZs2JAhRQotRUqBCnVPJW73vn+kTRuSeqzwfD+ffZaec3NySG/S3CfPeQ6HH84p8WlWHTSmrm+UkegvxOfjQzt07DvHa1GoMiFAxEOIxHFm1Nw4OZIC28/V1Zo5PHO4GmYO6Ofn+txejuPwaoYCv+ZZVif4CXmYFStDUqAIASI+KrVmbClW40i1Hgo9i0cPVOKHqRFICnJcY0tpZHHPngqcqDUAsLzmr4yVobevEFIBD/lKI/7IV6FIbcLpOgPu31eJ36ZFwk/UtU2f7hvoj3UFalTqzPgsqx4Levt0KBu1O9wS/Dp48KA1sCUS2Z4IBoMB69atA8MwGD9+PD755BNr39ixY3HFFVdAo9Fg06ZNFPwihBDiFruPnsPnf+y1aYsLD8Dr91xBOzsSQto1NJCPkcH234jf30+CXwv0ePuUFhyANzIUmBwh7fLFAyEXqtI1Z+I4Y+le03iR0o4vmSLeq0RtwrYSDQBgaJAIY8I6V1ub4zjsLNWCBRAh5eOjcaFIviCYck0vH8yJ1eCR1CqwAN4/XosrY+UIbGPZ3UmFHq+kK5BVZwm8iHkM7h3gh73lWmQqDJ2aY4CYj6lR7Qdqz9UbUKiyZEle19sHYr7jIGAvX2GHMpx+ylWiKfnKGYHn9tToWRyttgSnR4WI8f7YUIReEMC7pa8v3j9eixVnG2BggVfSFfh9eqTD8c7UGVDQ+Hzc2tcXTycH2i1tvL2vLxbvr8ThKj2K1CYsP12HJUODujR/uYCH2/r64r8n69BgZPFHvsrl2V9u+UtbUFAAABg0yH6ZyL59+6DRWF6A9913n01fUFAQ5s6dC47jcOzYMZfPkxBCCDlbWIkXvtiAlqv0fWVivPfgLPjKaCcrQkj33BAvxtgQS1Ciwchid5nGwzMiFxMHFWYIsVqT0xygualP5wM0DMPgo3GhWDo0EN9NCbcLfDW5LEqGq+ItWa0GFthYaL+MronWZKlT1xT4mhguwboZkXhwUECX60p1xA85SgAAn+nac9ESx3H4IacBABDvI8DEcNdv2Bci4ePnyyPw0CB/fDkpzC7w1eQ/QwIQ01jLLKvOgDN1joOJI0Ml+HVaBJYkB+L5lCCHz71UwMPrI4LR1LOuQA22G2861yX4QNgYkVqdo3RYIsuZ3JL5VVdXBwDw97df77tr1y4AQGBgIMaMGWPX3xQwKy0tdd0ECSGEEAC1Si2e/PhPaPXNRav5PAZv3jcDseEBnpsYIeSiMi5EiIPVlm/Yz9Q73gXRwHJILdcitVKHkwoDitRG1BtY8BkGwRIekgLFuCZe3qEMh5YFoJuKOtcZzPgjX4VtxRoUqEwwsByi5QLMjJbh7v5+kHZg+QnHcdhQqMba8yqcrjNAb+YQLhVgUoQUd/Xv2jf4qRVa/J6vQqZCj2qdGRI+gzCpABPCJLipj2+bGRjPpVXjrwI17unvhyeGBGLteRVWnGlAqcaEeB8BHhoUgOnRMrAchxVnGvBbvgqVWjP6+gvx9JBAjO5kFkx3GVgOa/NV2Fykxpl6I7RmFsFiPoYGi3F9bx+MD7+4dt/7t0yDP/JVyFQYUKs3w0/EQz8/IebEyjG/tw/4nSx4XaI24edcJQ5U6lCgMkJv5uAv4qGvnwgTIyRY0NsHASLHAYE/z6usNb4u9PyRGod930wK69DvpFpnxu/5Suwr1yFPaYTKyEIqYBAk5mNokBhTo6SYHiXr9HJDZ9hWYglC8QBMiej6+XVHBzJ0JkVIsa7A8ng5Da3v9ioV8LB4oD++P9eApUMDMdMNtRDrDGZsaAzIXRYp7XaW5N5yHfIbd1e9pY+vW4q3A5bsqYcGBbR5DJ9hMD5cYl0eea7BiP4BjpdlxvkIsTCx7Sy3WB8hevkKkK80oc7AolpnRpi0a89fgIiP4cFiHKrSo1htQladAYMDXfdFs1uCXwKBACaTCWaz2a7v33//BcMwmDBhgsP7BgcHAwCUSqVL50gIIeTSxnEc3ly1C+U1tn9v/nPjRIwcQDs7EnIpKNWYUa7jkOTPh6iVJTDO4CNsHltlZB0e879TdfjmTINdu4njUKoxo1SjwbYSDWbGyPDu6BAIO3ghXW8w43SdAa+m16BGb/vYuQ1GfN5Qj8NVOnw3JbzNYISJ5fDkoWpsL7HNXCtSm/BjrhJ/nlfhaQfF1ltj5ji8fLQGay8otGxkOSiNRuQ2GPFTnhJPDQlsd2lMvYHFp6fqsLzFDm1n6o14/EAVfro8AmtylFjfIhPlVK0BD6ZWYtPMKIR38SKus8o1Jty3r9IuKFCuNaO8WIOtxRrM7yXHqyOC2/w9HKzUQteiPlKdofl3urvUPqtQLuRhVKjjIJ/OzOJghf0GZE3jOhovWi5AP/+26xsZzByWplVjS7Ht/RV6Foeq9DhUpcdv+Sp8MTGswzvS/ZqnxJvHFLjw5VOjZ1FTpcOhKh0+z6rH40kBuK2vc4IR8T7tL33bVKjGK+k1UF9Qs0pp5KA0mlCgMmF9oRoRUj6eTg7E7Fj31fwrUhlRqrFcjw8MFCGgE7v/dUVAi+Xc9QbH73NNbu3ri+t6+0AudM8S8F/zVNa6Z85Yori6MetLJmC8crME29+FfUym8+PxAZgax2MR1o04/bhwKQ5VWZZvHqrU9fzgV1hYGAoLC63LH5scPnwYlZWVYBgGkyZNcnjfpqCXXE7FQAkhhLjOb7tOIvVEoU3bgimDMX9KJ7bFIoT0SBzH4fNzOnybowcHYHyIAJ+Mknc6E6WjqvXNF8bBrVyAzomVY02OEkODxRgeLEacjwAyAQ8KvRnZdQZsLFRDZeKwtViDSGkdnhnasUDTL3kqrD2vgpkDZkTLMDlSCimfwQmFAT/mWurCHKnWY0OBGte0cRH3cnqNNfAlEzC4vrcPhgSJYWQ5HG28/+sZig4/J0sPV2NTkWW8MAkfC3r7oJ+/EAYzh0NVOqwvUMPIAm9n1kIu5GF+G3PbW65FudaMMaESXNtLjgKVCctP14MF8NiBKpRrzRgdKsa1vXxQ2NinMXHYVKjGXf07tzNdV1RoTbhlV7l1p7zxYRJMj5YhWMJHucaEvwrUOF1nwNrzakj4PLwwrPWaOi8cqbEGNC70YGqVXdvIEDFWTY1weHyNjnV4H8CSLeKob/FA/zaDXyzH4cH9lUittATVEnyFuLaXHLFyAZRGFrvKtNhZqsXJWgPu3VuJny+PaDeQ+8XpOnxyyhLY5AG4IkaGieES+In4qNCacLBShz1lWmjNHLaVaHBLX19c+CobFyaxKYp+sFKHVY3L4O7o64uxDrIAI2VtB4uOVOmw5HC1tRD8VfFyjAiRwF/Eg9bEoUJrwoEKHQ5U6lCuNePfMq1bg1+nWyx36+vXtV36OqNlwCtA3HZQS8Bj3JYJZ2I5/Jxr+V339RNibHciN7B8aZDaGDSeFy+Hj5sCeJ3R8nfRVu21jo/X/J7T3SBqy3Mxq5Ulmc7iluDXkCFDUFBQgA0bNmDhwoUQi8XgOA6fffYZAEAoFGLq1KkO73v27FkAlvpfhBBCiCucK67GZ2sP2LQl943CYzfQzo6EXOyMLIdXj2uwqbQ5Aye12oRqHYdwqWsuxv6taP6APzLU8bfcAwJEODQvttULwsWDAnDjjjKUa81Yk9uAxYP84duBi67f8lUIFvPw1qgQTGqx7Gl2rByRMj7ezqwFAPxTqmk1+JVRrcOfjRlawWIeVk+NsFmOOC/ex1oYubXATEu7SzXWwNfAABFWTA6Df4vlalfH++DqOB/cv68CBhZYlqnAlAgpglupcVOuNeOmBB+8OCzImvHzV4EKZRpzm32nXXzh1eStY7Uo15rBAHhjZLBdpsitfX0thanzVfgpV4k5sTIMD3HOksym2j/O0t54P+YqrYGv63tbnveW5/SC3r5YV6DCs2k1OF1nwHdnG3DfgNYDkJk1evyvMfDlK2Tw2fgwjLwgk+22vn4oUZvwWVYdHh0c4DCIHSETIKLFUrfaFsGB/gGiDi0nvtDKcw1oGuXVEfa/VwC4u78/TtcZ8P1ZyxI/dypSm6y3O5LF1l2naptfT4NbWWbnCdtKNNbA8y3drPUFWLK+mr7OuKWPawu2d1VWi9/FoG7+LtRG1loYP0zCb7XWWEf1anEuFrc4R13BLcGvq6++Ghs3bkROTg6uu+46TJo0CSdOnEBaWpp1F0g/P8cnys6dO8EwDFJSUtwxVUIIIZcYncGIl775B0ZT8wdfH5kYr99/JQR82t2KkItZg5HFk0c1OKKw/cAdIWHgJ3J+4MvMcfjirA5Z9ZYLr8GBIoxro85UW5kQoY3ZUZ9l1cPIWoICEztQw0cuYPDt5HAkOsjWmR0rtwa/mnZBc6TlcsLnhwU5rMPVz1+E98eE4pZd5e3O6eNTdQAABsDbo4JtAl9NxoRJcEc/P3xzpgFKI4ff81W4f6DjIEmwmIfnUoJslrqFSvgo05jb7KtrZ2mWM2RU66wZczf38XUYIOExDF5ICUJqhRalGjNW5yhbDX79MyfG5ueFu8uR1rgDXNZ18Z2aW7RcYHefQb9bVu6MChFjZSsZY63RmizLTwGgv78QLw0PchiImhfvg73lWvxdpMGaHCXuSvRr9dx/85jCGmB6a1SIXeCr5b/lrVEhnZpvd+UrmwPoM2JaD54NDBBh2Wj3zg2w1CJrEthOJlZ3sRxnPc8FDDA50nvq160+Z1mi6CtkcHV89zLv6g1mbGisazYuTII+bsio66wildEaiEzwFXRo58q2bC/RWDdNuCyq+7/Xludiy91qXcEtwa/Jkydj/PjxSE1NRU5ODnJycqx9EokEjz/+uMP7bdu2DQUFBWAYptXMMEIIIaQ7PvntAArK62zanl80E1Gh/jDqVJ6ZFCHE5Uo1Zjx8RI18lW3AI0DE4N3hcki7UfMrs9YMTWPsiAOgMXHIVZmxo9yI82rL40VI+fjvmJBu1SKKaFGfSqHv2EXDrX19HQa+AMvuYVI+A62Zg9bkOBCkNbE4XGXJ5AkW8zAjuvWL/I5kBJSoTdai/0ODxK3ODQAW9Pax1kHbUqxuNfgl5tsvoRI3/txWn8Hs+q0SN7eoe3VjQutLN0V8BlfGyvH1mQbsLtXCyHIdruvmLfZX6KA0Wp7T63v7trmM+Np4H/xdpEGVzoxMhR4jHAT7ziuNONl4ET84UIRpXcjOcqWWdZAya/Ret2GBpkUdsu68v3XE30Uaa6bZ7Fi522rptee4Qo9MheUcmt/LB7IObOzRlt/yVNA2vm/c6oTaYa7wzZnmjMQ7E7uXmWZkOXx71vIezAOwsAMbH7RHKmg+F7Wmi2C3RwD46KOP8PjjjyM1NdXaFhQUhHfffRexsbF2xxsMBrz55ptgGAZxcXGYMWOGu6ZKCCHkErE7Iw9/7c2yabtqUhJmjB0IlnXtt0+EEM/Jqjfh0TQ1agy2H7TjZDx8OkqOOHn3sj7/d9Zx0fAmk8OEeG1UWKd2yKrTm1GoNkFtZGFgOXAccK6+eSlLR+M2gnaCbXIhD1qzGa0Nl1GjR1OC1IgQCXjdrIt2sFJrvT08pO1Cx/E+QgSLeajRs8hpMEJnZiHhe199nbb8W2b590r5TLt1lwYGWgKBepZDToMRA71o6VhHNP1bASApqO25N/1bActyOUfBrx0tCu5f7kWZRE0ui5IivcaSdffogSrcP8AfC3r7dLiIv6uZueZXtSvra9UZzFiWaan3JxcweDwpwGWP1VlNWV8MLJmX3WFiOfzYWDssWsbHVC88J49W6/B7vuWL3MGBojbrOHbEt2cakNu4ScetfdvefbejWv5NMrEXSfDLz88PK1asQHZ2NvLy8hAYGIiUlBRIpY5PEpFIhCeffBIvvPACXnzxRbdtF0oIIeTSUKFQ4e3V/9q0xYb546lbL/fQjAgh7rCnwoglx9S4cHXF0EA+PhwhR6DIdcGU2VFC3NpLjKRAEUQdCHxV6cz4/mwDthWrUdKB2lnO0N4/v6lWDgDE+XT/UqKsxb8rtgPjxcgFqNEbYOaAUrUZCX49J/jFcRzKGlMCRXzGJjjkyPkWy+gqNKYeF/xqWb8nu84ARRtLmlr2lLdyrrdcipvohc/FbX39cLhKh73lOmhMHD48WYdPT9VhWLAYkyOlmBYlc0qwoKtELQJere0y210cx+HZw807yT6THIhImXdkfVVoTdjamHk5KUKKuG7WPdveonbYTX18u/1FgLPV6s145nA1OFiyW99oZ+fY9qRX6/B5Vh0AIN5HgMecFNRseS6KXZyR6PYzccCAARgwYECHjr366qsxatQoREZGunhWhBBCLiVmlsVr3+2AUqO3tgn4PLx693TIJN73gZoQ4hy/Fuix7JQWF172XREhxGtDZZA46YP312PkGBlsubBaW6jH6yctQQ6lkcPggI59/N5VqsHTh6ttlip5g9oWyyudsatZbYtdw3w6sASp5WMqXXQB7yp1BhZNv856Q+s7KzqibGUZqjeraXGuvJLe8Z0/Va38W1vWrApwYZC6q8R8BssnhOH3fBVWnG1AocoEEwekVeuRVq3HByfqkBQowu39fDE3Vu725A4/ketfO5+eqse/5Zb3u2vi5bg+wXuWAv6Uq7S+/pyxRPGHxt1BJXwGC3p3L6PK2YwshycOVlm/XHh5eBD6dyNgXK4x4fGD1TBxlt19PxkX2u0lo01anot+Ln5de0cYtg0U+CKEEOJsq7ZkIONcmU3bA/NGY0B8aCv3IIT0ZCzH4ZMzOqzM09v1LUwQ49H+3V++15prY0VYV2zA8Toz9lWZsLnEgDkxbe/cd7begMcPVqHpmmBMqBi39PXD4EARgsV867fjf55X4fkjNS6Zd2tarJyCM56xzpbZavn4Lk4S8Crmnhf76rLWlj6ZbX733vnL5zEMbkjwxQ0Jvsis0WNPuRb7yrU4VWsAC+BkrQFLDtdgfYEan44Pdeuy3ZY1Auv0zj+hfslT4otsy2YYI0PEeGV4sNMfo6v0Zg6/5VmW/8X7CDAxvHu7p55Q6JHRuMR1bpy8sd6bd+A4Ds+lVeNQlWV+dyf6dWu5Y73BjHv3VaJaZ4aAAd4bHYJ+bdRm7KyWG424ujac1we/CCGEEGc6kVeOFRuP2LSNHhSDm6YP9dCMCCGupDdzeOm4BtvKjDbtPABLBktxQ3zbdaa6i2EYPJckw637lTBzwHuntRgfJkJYG+Vhvsqutwa+5sbJsWxUsNeUAGn5zbzaCdlIfsLOjdfymKAOFNT3JgEiHgQMYOKAWLkAW2dHe3pKLhUs5iMHltfdzjnRiOjm8rdgSc/K+hsaLMbQYDEeGRyAGp0Za8+r8HV2PVQmDvsrdFiWWYuX3RggarkTYXaLeoHOsL1EgzcyLNl9AwKE+GxCGEReFJ3eUKhCbWOQ5ZY+vt1+P13dmPXVNJ43WZZZi01FluWd83vJ8WRyYJfH0ppYPLi/CrkNRjAAXhsRjMucvNHE6brmc9HVu2V6X74oIYQQ4iIqrR6vfLsD5hbfKgf4SvDiwsvB62G7aBFC2ldnYPHAYZVd4EvCB/47Qu7ywFeT/n583NT4WLUGDu9lado8/nBVc4ba40kBXhP4Aiw7QjYpaVHTqati5c0BkeIOjNe0g5yQB4R4SSHxjmIYBuFSy5wVejM4zruWtDpbpKz591PdRr2vDo/XIiskr8HYxpHeJ1jCx70D/LFyaoT1AvzP8yro3JjSNyhAhKaN9U4onBf8+rdMg6cOVcHMAX39hPh6Yjh8nbAk2plWn7MEq2QCBtd2s+h7ldaELUVqAMCIEDEGeFH9uY9O1mJVY2BuTqwMr47oenBVb+bwUGqVNcPtuZTAbhfMd6TluTgk0LXPpXedlYQQQoiLcByHd9fsRVmN0qb9hTsuQ7C/d22XTgjpviK1GYsOqHCs1vaiO1jE4JsxPpgS7t7C04sTJQiTWK48N5UYsK+89WLndY21kgQMEOUlxaKbJAc1BwyPO+ECuuV46dX2y1JbOq80QtG4XGtkiMSrMks6alKEJeVPbeJsMh4uRk3/VgA40s7vtrPj7a9oe7OAzmp5JrkyJDkwQGStvWRgbTd8cDW5kGfdUbXByDrl/NtTpsVjByxLtBP9hfh+SjiCvSwj80CFFucag6Xz4uXdrlX4U67KqbXDtCYWr6TXYNz6Ikz/uxg/5ijbv5MDn56qw1fZlt0sr4yVYdnokC4vD9abOTycWomDlTowAF4cFoRb+/p1aaz2pFVbdkfmAZgY4dodMyn4RQgh5JKw+eBZ/HMkx6bt+suSMH5IvIdmRAhxleO1Jiw8oEKB2jarorcPD6vG+3S46LwzyQUMnh7Y/MH+lfQaaFpZ5uffuLTQxFl2fGxNVouLV3flEIVI+EjwtTx/RWoT0hsvXBz587yq3fH6B4iQ0LgD3rEaPXIaWr8g/yO/ebxpTl564y4zYprn/e2ZBg/OxPUmR0ghbQxQ/pSrhLaby2STg0SIaswmS63Q4VRt9wNqTVou5y3XdC2j0dDBAnb6Ftle7g7fXhPfnLnT8vXUFf+WafDogUoYWEtW2XeTwxHkhdmYtksUuxfA0Zs5/JpvGS9cysd0J7wPfXCiDr/mqVBvYFGqMeONYwr8U9J2dvCFPjlZh+WnLfXWromXdyvwpTOzeGh/JfZX6MAD8OqIINzsoqWdhyp11l1cp0RKXX7+UPCLEELIRa+oog4f/LzXpq1fTDAenD/WQzMihLjKznID7jukQq3B9kJ0RBAf34/zsV48e8L0SBEmhFoCR6UaMz4+WefwuOEhzcWYV5+zD5CYOQ6fZdVhTYuLukqt+zJIbmuRAfB6hsJmq/om351tsF6Mteeu/pbxWADPpdU4HO9QpQ6rcyzPRYxc4HW7q3XU2DApJjdmN2wu1uDjk7VgW1n+uLdciw9P1Lpzek4lF/Lw4CB/AJZA6WMHqlqt1ZXbYMRLR1sPCAOWZaNPN9YvYgE8dqCq1WCpQm/GGxkKlHYwkDUkUGQNRG0qUjsMZBlbKcQPWGrR3bKrHM+lVaNC2/pj/pqnRJ7S0h8s5iHOx72B+Cvj5NaltxsKVV2u27ejVINHD1TBwAKjQsT4fko4Ar0w8FWgMmJPmSVLcGyYpNs1pTYWqq3Zpzcm+EDghJIZW4rVdm1/F9m3tea/J2qtGw0s7OeLN0cGd3kDF42JxeJ9VUit1EHIA94fG4LreruuptnPec1/w+5MdE1mWUvelUdNCCGEOJnRZMbL3+6AVt/8YVQsFODVu6dDLKQ/g4RcTNbk6/DBaZ1dFtTsKCFeGSLzimVySwdLcd0eJfQssCZHiTmxcgwNtq09dkc/X/xTogEH4JszDTivNGJihBR+Ih7OK03YWKhCntKEgQEilKhNaDCy+DFXiVGhYowI6d4uZh0xv7cPfshRIk9pxJl6I67dXoobE3wR5yNApc6Mvws1OKbQY0SIGEc7sNzt2ng5Nhepsb9Ch5O1Bly9rRTX9fZBHz8h9GYOByt12FCohpmzLAV9aViQdcfLnuil4UG4ZWc5KnVmfJndgH9Ktbg6To5evkIYzBzylUbsLNMgu86yVKuPnxBXx/fMYN/Cfn7YW67F4So99lXoMGtzCa7t5YPBgSLwGMuyv9QKLfZXWF63LMfhjZEhrY43M0aOa3tp8ed5NUo1ZszfXoa5cXKMCpXAV8hDjd6Mo9V6/FOigc7M4WStHqunRkDYTpAiVCrAnFgZNhVpkK80Yf4/pbiuty8iZXw0GFjkNhixqUiN51KCMDtWbnf/94/XIqvOgKw6AzYVqTEpQorRoRKESfkwsZZssu0lGpyobQ7WPZ4U4LJdZlsj5DG4o58f3jteC6WRw/KsejzVyYLo/5Ro8MTBKpg4S/bTLX19caSq9QzQJsNDJDYZdi2Va0zIdrAMs+VOgLtLbbOhImSCdutt/ZCjRNMIzlii+ENjAF7IA653UlDI0RnQ0bPiveO1+O6sZU6jQ8UYEyrBv2VtLwnmMQwmR9ovL9SbOdy3txLpjTW+bkjwhYTH2D3vFwqS8G2Wr3dURrUO24otYw8LFmNkqOv/dtGnfkIIIRe1r9YdRnZhlU3bYzeMR6/Iru9+QwjxLmaOwwentfjpvP3F0z19xHgwUeI1ReNjZHzc01eKz85qwQJ46WgNfp8eaXNxPiJEgqeSA/H+8VpwAP4p1eKfUtsLmpQgMf43IRR/nlfhgxN1qNaZsblI45bgl4jH4JtJYbh9dzlKNGaUaMz47wVZbEODRPjf+FDM3FyKhnZ25mMYBh+PC8UTB6uxp1yLcq0Z/8uyzxqT8hn8d2yoy+vCuFqUTICfLo/A4v2VOFtvRG6DER+2kgU4JlRsFxztSQQ8Bl9NDMezadXYXKxBrYHFirOOl3vGygWY4yCwdKE3RgQjQirAF6frYeKAvwrU+KvAPlNGLmBwZazcWuS9PS8ND0ahyoQTtQbkKU1497h91t1nWfWYFSOzez95akggWM6y1NfIAjtLtdhZ6jgIIRMweHFYEOZ5KKB5W19fbCpUI6vOgFXnGjAvXo5+/h0vNL6zVGOteVWhNeM/B6s7dL8dc6JbDX4dqNTh+SM1bd7/wVTbz3LXxMvx1qjWA6UqI4u/GpdeR8v4uMxBwKczDlXqcKbeEpCeHSN3Wm2zWbFymyxeAJgT1/7rAAC2tsgaO1ylx+GqqjaOtoiVCzA50n6n2Wqd2Rr4Aixfzlw4L0fm95J3OvhlYjm8kq4AB0DEA14ZHtSp+3cVBb8IIYRctA5nFWHN9kybtqnDemPexIEemhEhxNm0Zg7PHVNjd4XtUiM+AzyXJMX8WO8LHCzqI8HfZUbkK00412DEN9n1WDwowOaYOxP9MCRQhNU5SqRX61BvYOEv4mFggAhz4+SYGycHj2Fwd39/yAU8/JCjxLQo9wWFImQC/DE9CivPNWBHqQYFShMEPCDBV4ir4+W4McEXAh6DUCm/3eAXAMgEPHwxMQw7SzXYUKhGZo0eCr0ZfIZBjFyASRFS3NbXFxFetgFAV0XKBPhtWiQ2FKqxpUiN03UG1BtYSPgMouQCjAyR4Ko4+6zAnkjEZ/DB2FAsqNDiz/MqHKvRo0pnBo9hECrhIzlIhOnRMkyPlnWoThHDMHhkcABmxsjwW74Khyt1KFabYGQ5BIr5GBggwqQICebF+3SquLmvkIfVUyPwW74Sm4s0yGkwQmNi4SPkoZ+fEBMipLi2l4/DQLpcyMOrI4Jxd38/bCxUI7XCMqc6g+XfGSjmYYC/CGPDJLiml49Hd0MU8hi8PSoY1+8og4EF/nOwGj9dHuHSOUn5DCKk7l0Wmac0IlImQE6DETf18e12ll2x2ohQCR9VOrNTssiaPJEUACPLYWuxBnIBg7sS/V1a0zDeyUtte/l0finp25kK6yYEjyUFdir42h0Md7HvsUu8nkGrBMe1/aFIKPEBj8cHy5ph1HWvOCO5dNB5c2mrVWpxx+u/oaahOV07LFCOVS9cDz9565kRdN6QrqJzx/1q9CweO6LGqXrbelcyPvDecDnGh7p3R8eOYhgeRFLX1VEhhJD2/HVeheeP1IADMCFcguUTwpxSw8rbFKiMCBbzu73LI2DZOTy73oiB7Sy3JK1bk9OAN49ZsipnRMvw37Ehblv+SwXvCSGEXHQ4jsObq3bZBL4YBnj5zmltBr4IIT1HvsqMhakqu8BXmITBinG+Xhv4IoQQb3BNLx88OSQAALC/QoeladUwtVHUv6eK9xE6JfAFWLIOKfDVdRsKVXgn0xL4GhMqxruj3Rf4Aij4RQgh5CL0684TSD1RaNO2cPZwDEuM8tCMCCHOdFRhwqIDKpRobTPH+/nysGqcL/r7ed+uY4QQ4m3u6u+PxQMtO3L+XaTBU4eq29zVkpCu+uu8Cs8eroGZa6xZOT7M7ZvQUPCLEELIReV4Thn+98dBm7akhHDcdeVID82IEOJMm0sNWHxYhQaj7QXa2BABVoz1RbiUPt4SQkhHPTI4AM+nBIIHIFNhqbVHiLP9W27Z5GVqpBQrpoRB7oG6dxdHxUhCCCEEgKJBgxe+3g4z25wNIpeI8Mpd0yDg0wUxIT0Zx3FYkavH/87q7PrmxYjwfJLUZsdEQgghHXNrXz+ESQVI8BUiXEohAuJ8y0aHICVIidv6+XZoYwtXoDObEELIRcFkZvHSN/+gul5j0/7CossQFeLnoVkRQpzBxHJ4+5QWa4sMdn0PJkpwTx+xwx3YCCGEdMwV0a7bYZAQEY/BwkTPfh6n4BchhJCLwpfrDiP9bKlN220zUzAlpbeHZkQIcQa1icMzGWqkVpls2gUM8EqyDFdGU/FhQgghhLSNgl+EEEJ6vH8z8rFm2zGbtuH9o3Df1aM9MyFCiFNU6lg8kqbCWaVtYXtfAYP/jpBhZDDt6EgIIYSQ9lHwixBCSI9WWFGH11futGkL8ZfhtbunU50vQnqwsw1mPHpEhQqdbWH7KCkPn46SI8GHdnQkhBBCSMdQ8IsQQkiPpdUb8dyX26DRGa1tfB4Pb943A0F+VLuCkJ5qT4URzx5TQ3PBpmOD/Pn4eKQcIWIKbBNCCCGk4yj4RQghpEfiOA7L1uxBXqnCpv3R68dhSJ8ID82KENIdHMfhh3w9PszWgbugb3KYAO+kyCEVUGF7QgghhHQOBb9aOHr0KNavX4/Dhw+juroaer0eoaGhSElJwfz58zFhwoQOjaNSqbBy5Ups374dRUVFYFkW0dHRmDZtGhYuXIigoKAeOQ4hhHiTtf+ewrbD52zarhjVF9dNTfLQjAgh3WFkObx1Uou/iu13dLwxXoSnB0k9tj06IYQQQno2huO4C79Yu+RotVq89NJLWL9+fZvHzZ8/H2+88Qb4/NZrTOTm5uLee+9FSUmJw/6QkBAsX74cycnJbT6Wt43jSgatEhzHtnmMUOIDHo8PljXDqFO5aWakp6Pz5uJ1Mq8CD36wDiZz83tH78hAfL1kPmSS7hXApvOGdBWdO11Xa2DxVLoa6QrbdY48AE8PkuLGeBGYiyjwxTA8iKS+np4GIYQQcsm45AsmGAwG3HPPPVi/fj14PB5uvvlm/Pzzzzhw4AD27NmDL7/8Ev379wcArF27Fh9++GGrY6lUKtx3330oKSmBUCjE008/jX///ReHDh3CZ599hri4OFRXV2Px4sWoqqrqMeMQQog3qVVq8cLX22wCXzKxEG/dP7PbgS9CiPvlKs24I1VlF/jyEQCfjpLjpl7iiyrwRQghhBD3u+SDXyKRCLfeeivCwsLwzTff4JVXXsGwYcMQFBSE8PBwTJ06Fb/88gtiY2MBAKtWrUJtba3Dsb799lsUFxcDAN59913cc889iIiIQEBAAKZPn46HHnoIAFBdXY3PP/+81Tl52ziEEOItzCyLl7/9B5W1apv25+6YiviIAM9MihDSZalVRiw6oESxxjYDPEbGw8rxvhgfSgFtQgghhHSfR5Y95ubmYvv27Th58iTKy8uhVCrBsiy2b99ud6zBYIBIJHL5nEwmEwSC1kugff/993j77bcBAJ988glmzpxp0282mzFhwgTU1tZi2LBh+Pnnn+36586di7y8PACARCLBwYMHIZVKvXocd6Blj8RV6Ly5+Hzx1yGs2pJh03bz9KF45LpxTnsMOm9IV9G503Ecx+HnAgPez9Liwk8Aw4P4+GC4HAGii/c7Wlr2SAghhLiXWz9VFBUV4Z577sHcuXPx8ccfY8eOHTh58iQKCgqsGUotnT17FgsWLMCaNWtcPre2Al8A0Lt3b+ttR0sE09PTrRlhs2fPtuv/448/kJeXhwULFgAAdDod9u3b5/XjEEKIt9ibed4u8JXSLxKLrx3joRkRQrrCyHJ4+5QW7zoIfM2LEeGL0T4XdeCLEEIIIe7ntk8Wx48fx4IFC7B//35wHAc+n48+ffqgT58+rd7njz/+wLlz5/DRRx9BrVa3epw7aDQa621/f3+7/pMnT1pvDxs2zKZPq9Xi008/xdChQ/HYY485vI+3jkMIId6guLIer3+/06Yt2E+G1+6ZDgGfLpIJ6SkajCweTlPjt0LbHR0ZAE8MkODlIVIIeVTfixBCCCHO1Xa6k5MolUosXrwYDQ0N8Pf3xxNPPIGrr74aUqkUu3fvxgMPPODwfosXL8avv/4KlUqFdevW4ZZbbnHHdB06fvy49XZKSopdf9PyQQCIiYmx6Vu5ciUqKyvx/vvvIzw8HAKBACaTyeY+3jqOOwjEsnaPYRie9f9CiY+rp0QuEnTeXBx0eiOe//ofqLTNF8t8HoO3H7oakeHhTn88Om9IV9G507bzSiMePlCD8yqTTbtMwODdUUGYGun+0guEEEIIuTS4Jfi1cuVK1NTUQCKRYNWqVdbdE9sTEBCAGTNmYN26ddizZ4/Hgl8GgwEbNmwAYMmiaip+35JCobDeDgwMtN6ura3FN998g8mTJ2PMGMvSHD8/PygUCoeF871tHHfg8fgdPpZhGDBMx48nBKDzpifjOA7LVu/AuSLb5eaP3XQZRgyMd+lj03lDuorOHXsHKrT4z8FqNBhtFzpGyfj4fEIYEv1dX9+VEEIIIZcutwS/du7cCYZhMH/+/A4HvpoMHz4c69atw+nTp100u/Z99dVX1jpfjz76qMNjtFotAMvukS234/7iiy+gUqnw5JNPWtuaCvi3XErpreO4A8ua2z2GYXhgGAYcx7VbHJ+QJnTe9Hxrd2Vi4z7bJdnTRibipiuGdei9oyvovCFdReeOY7/mqfBmZh3MF2yxlBIkwsdjgxEs4bvs9ezNOvPlHyGEEEK6xy3Br6KiIgDAyJEjO33f4OBgALaZTO6Unp6OL774AgBw/fXXY/z48W0ez+M1154pKSnBjz/+iLlz52LAgAHWdpZt/wOxt43jSia9pkO7PTIMHxzH0g5apMPovOnZThdU4v01O2za4iMCsPS2iTDpXVcHks4b0lV07thiOQ4fZ+uwKl9v1zc3WogXk6QQQQujzgOT8zDa7ZEQQghxL7cEv/R6y4eeloGYjlKpLB8e29uN0RWKi4vx0EMPwWg0IikpCS+88EKrx8pklrpVRqPR2vbRRx+B4zibovJA8/PRdB9vHocQQjyhQa3D819ug9HUHBiXigV4674ZkEtoeRQh3k5n5vBipgb/lBtt2hkAj/SXYFGC2CYznRBCCCHEldyyRVZERAQAICsrq9P3PXToEAD7ou2uVlFRgTvvvBMKhQKxsbFYvnw5JBJJq8cHBQUBAMxmM5RKJbKzs7Fx40bcdNNNNjXCjEYjlEqlzX28eRxCCHE3luXw2vc7Ua6wzZxZettU9I6i9ylCvJ1Cz+L+Qyq7wJeED3wwXIY7+0go8EUIIV6G5S695efEvTx9jrkl+DV27FhwHIfffvsN9fX1Hb5fbm4uNm7cCIZhMG7cOBfO0FZ1dTXuvPNOFBYWIjo6GitXrkRYWFib90lISLDeLikpwfvvvw+pVIoHH3zQ5riysjLrMsPevXt7/TiEEOJuq7dmIPVEoU3bdVOTcMWovh6aESGkowpUZiw6oMLxOtsPuCFiBt+O9cFlEZS5SQgh3sZg1mB91ks4XPSjp6dCLlLlyjP4If1+VKpyPDYHtwS/brvtNvD5fNTV1eH+++9HZWVlu/fJzc3F4sWLYTQawefzcdNNN7lhppaMr9tuuw25ubmIj4/HqlWrEB0d3e79kpKSrLdXrlyJvXv34q677rLLpkpPT7feHjJkiNePQwgh7nQkuwRfr0+zaRvcOwyPXOe+L0AIIV2ToTBh4QEVijS2dTwTfHhYOd4Xg/zdX8KCEEJI2zSGWvx58lkU12fiaMnvaNCVe3pK5CKUWvAdGvTl+PPksyisy/DIHNzyKSQxMRFPPPEE3nvvPWRmZuKKK67AZZddhiFDhqCsrMx63IYNG1BdXY20tDTs2bMHZrMZDMPgqaeesslkcpWioiIsXLgQJSUlGDBgAL799luEhIR06L7Dhg1DYGAgamtrsXbtWgQHB+POO++0O27Lli0AAIlEggkTJnj9OIQQ4i5VtSq8/O0/YLnmLeH85RK8fu8VEApoVzRCvNnWUgNePK6B8YL9a0YHC/D+cBl8hW75vvWioDHUokJ1rtV+idAXkb4D3TgjQsjFSmusx9qTS1GnK4GQJ8GVA1+EnyTC09MiF6HZ/Z/F+qyXUKXOxcbTr+LKAS8iPnCEW+fgtq/g7r77buh0Onz++efQ6/XYunUrtm7dCgDWug/PPPOM9XiO48Dj8XD//fdj0aJFLp/f2bNncdddd6Gqqgrjx4/Hp59+Ch8fnw7fn8/n4+abb8bnn38OAFi0aBHkcrnNMampqdi9ezcAYMGCBZBKpV4/DiGEuIPJbMaL3/yDWqXW2sYwwMt3TUNEEO2IRoi34jgO3+fp8ckZ+y0br4oW4sUhMgh5VN+rM8qV2fj7zJut9kf5JWF+0jtunBEh5GLUtNSxTlcCPiPElQNfRIz/UE9Pi1ykpEJ/zBv0Bv44+QxqtUXYcuZtzBv8JiJ8+7ttDm79Gu6hhx7C77//jvHjx4PH44HjOIf/AcDIkSPx008/2e1M6AoZGRm47bbbUFVVhdmzZ+PTTz+FUCiEXq93+J/BYHA4zt13320tzL9mzRr8/fffUCgUqK6uxk8//YSHHnoIHMchJCQEixcvbnU+3jYOIYS42vI/D+N4rm2a/Z1zRmDs4NhW7kEI8TQTy+HNk1qHga8H+knwajIFvgghxBtxHIfNZ95GlToXAIMrEp+iwBdxOYnQF/MGvQ65KAhGVoeNp1+FUt9+SSxnYTiuxfoSN6qtrcXevXtRXFyMmpoaAEBwcDCioqIwceLEDi83dIbbb78dhw8f7vDxvXr1smatXSg3Nxf33nsvSkpKHPaHhIRg+fLlSE5ObvMxvG0cVzJoleA4ts1jhBIf8Hh8sKwZRp2qzWMJaULnTc+wOyMPz325zaZt9KAYfPDwHPB57l8qRecN6apL6dxRmzg8k6FGapXJpl3AAC8NkeGqmEuvsH2pMgubch1lbDEQ8iSQCHwRJIlBpM8g9A2agAC/zgX3/5c6FwBlfhFCui+zdB32nv8aADAsaj4m9Lqr22NWq89jV+6nqFCdAQBcM/gtxPh37hqzQVeO05U7cL72MJT6KhhZHWQCf0T4DsCAsGmIDxzZqfE4jsPZ6t3IrtqJGnUB9CYlZMIAhPv2x6DwmYgLGNbuGIcK1yCt+KdOPa6vOAwLR6zo1H26y8wacaZqF3JrUlGlzoHOpIJY4IMASRTiA0dicPgsSIV+HRqrQnkWZ6t3o7j+ONQGBYxmLWTCAATKYpEYMhX9QiaBzxN2ea6lDSfx16nnwXJmRPsl45rBb7plF2iPVR4NDAzE1Vdf7amH75a2dkXs06cP1q9fj5UrV2Lbtm0oKioCx3GIiorCtGnTsGjRIrui8z1hHEIIcYWiijq8uXK3TVtYoByv3DXNI4EvQkj7KnUsHklT4azS9osrHwHwwXA5Rod0/QPxxYmDkdXCaNBCaahEQUM60sp+wdCoeRgTexv4PNoIgBDiPrXaYhwoXAUACJLFY1z8wm6NZzTrkFb0E46V/QWWM7d/h1YcL9uI/QUrYGZtV1kpDVVQ1lThXM1e9A2eiCv6PdmhwIvepMKWM++gqP6Yw/FyavZhcPgsTElYDB7Ts2vLVqjOYeuZZWjQ266i0BrroDXWoUyZhfSS3zElYTH6h17W6jgGkwZ7z3+F05X/2PUpDVVQGqpQWJeOzLJ1mJn4DAKk7W8M6EiUXxKGRc3H0ZLfUNJwHMfL1mNo1LwujdUZHsv8IqQJZX4RV6HzxrvpDEbct+wv5JTUWNsEfB4+f3IekhLCPTYvOm9IV10K587ZBjMeOaJCpc7242OklMGnI33Qx7dnX0B0R8vMryifwUgKnWXtM7F6qIw1KGk4gRLVSWt7fOAoXDnghQ5deFHmFyHEGbaeWYZzNXsBdC07q6WC2iPYnbccSn2FXV9nxs4sW4+9+V8BAIQ8CQaETUeEb3/wGSEU2kKcqtgKtcHyeTExZCpmJD7V5ngcx2LD6VdQWJcOAPAThyMp4kr4ScKh1FXgVMVW1OksK6NSoq7FxF53tzpWrbYEdVrHq6haMrE6bDv7PjiwiA8chasGvtyhf3t3KTSF+O34EzCylhIEMf7JiA8YCV9xGNRGBUrqTyBPcaDxaAZX9HsS/UOn2o2jN6mxLusFVDZuuOInDkdi6FQESKIh5EtQqy1GVsU2a4DNXxKJG5I/hFjQ8TrpLRnMWqzJuB9qgwJigQ8WjfgeQr6kS2N1FH3VRAghxO04jsP7P+2zCXwBwCPXjfNo4IsQ0rrUKiOeyVBDbbvSEYP8+fh4pBwhYsrWbCIXBiHef7hd+9CwuShTncbWvA9gZLUoqE3DifK/MTTyKg/MkhDSWdXqPPB5YgR2MePF0xp0lcip2Q8ACPfp3+XAl9qgwN78r5HTGEQDgMSQKRDxZThZsblTY9VqirD/vGWJoEwYhPlJ7yBAGmVzTHLk1fjz5FLUaM7jbPVuDAi7HHEB9u+xTU5X/mMNfIXK++KawW9CLGje/G1IxJX44+QSVKlzcKz0TySGTEGYT1+HYwVKozv0+z5RtgkcLAkdyRFz2z3eWfbkf2ENfF3W52EMDp9l0z808moU1B7BpuzXwXJm7M3/Cn2Cx0PAsy1PUKPJR722FACQHHEVJvS6yy7Dbmjk1dh4+lWUNJxAva4MaUU/Y2Lve7o0bxFfiuSIq3Gg8HvoTSpkVWx1efYXfUohhBDidhv2Z+PvA2ds2qaN6IPrpiZ5aEaEkLasLdTj0SP2ga8pYQJ8M8aHAl+dEOkzEBNj77T+fKJsowdnQwhxxMwaoTepUactQUHtERwu+gm/ZD6OnzMfxYnynvuaPV6+wRqgGRIxp8vj7Mj5yBr4CpTG4JrBb2JG4tOQCgM6PdbJis1gOcsflwm97rQLfAGAROCDy/o8Yv05veSPVsfjOA5HS34DADDgYUa/J20CXwDAgYPKUG39+UjxL52e94WPmVm+AQDgL4lqMzDnTBpDHYrrTwAAInwH2gW+msQHjkS/kMkAAJ2pARXKM3bHRPkl4YahH2Fir3swOeF+h0tLhXwJLu/7GABLfa7sqp3truBqy+DwmeAxlnyszLL1cPWiRLdkfn344Ye46qqr0Lev42gqIYSQS8eZwmr89+d9Nm3xEQFYevsUtxS7JIR0HMtx+Dhbh1X5eru+m+JFeGqQFHx63XZan8Dx2F+8EgazGnW6EqgMNfARBbv0MXVGJfJrD6Ok/jiq1XlQ6ithMGsh4InhIw5BlN9gDImYgxB5Qpvj7Mn/EsfLLBd50/o+joFh09s8Xm1Q4LsjCwFwHVqyqTXWI7NsPc7XpqFeWwoOHOSiIMT6D8PQyKsQKGt/o4C1J5eitOGkTdutw75AoNSyC3q5MhvHSv9CaUMWtMY6azDg4fHuCWrU68qRrziI0oZTUGgKoTYoYGL1EAlkCJBEIy5gGJIiroRcFNjmOGsyHkCtthgMeLhr1GpIhf5tHp+vOIRN2a8DAIZHX4fx8YvaPL5afR7HyzegpP44VPpq8Hki+Esi0DtoDIZGXt2h5U5Ny3WbyISBuGvUauvPZ6v+xamKrajW5EFvUqO988RZz11LGkMdsqv+QW7NASj1FdAaG6znhCP5isOY3Pv+Nsd0xnPnCrmNWV8MeIgPHNXlccbG3YGyhiyMiLkew6Lmd6v4eW6NZUkejxGgb/DEVo+L8O2PAEk06nQlKKk/AY2hDjJRgN1xlapzqNeVAQDiAoY5fM84XrYRWmMd+IwQZs6IgtojMJi1EPGlXfo3FNYdRZ22GACQHDnXbZ9nLctNLQGjSN+BbR4b4TsQZ6p2AQBUhhqHx/hLIpESdU2b4/hLIhAgjUadthg6UwPUxtou//2SCH0R6TsIJQ3H0aCvQJU6t9UMPGdwS/Dryy+/xFdffYW+ffviqquuwpw5cxATE+OOhyaEEOJFlBo9nv9qGwym5oKoEpEAb943A3LJpbc7HCHeTGvm8MIxDXZWGG3aGQBPDpTg1t6urc3hbgptIdLL10JpqEFK+FXoHTDaZY/FY/jwE4ehWpMPwBIgcnXwa8PpV6y7sLVkZLWo1RahVluErIptGB+/CMOi57c6Tr/gSdbgV57iYLvBr3zFITRdnPULntTmscX1x7E5+03ozWqb9npdGep1Zciq3IbJve9HUsTsNsdxRKmvQqA0BlkV27Ar939tBjdcyWDS4MeMxTBzRrs+vUmFCtUZVKjO4Hj5Jszu/2yby9L6hUzG4aIfwYFFnuIgBofPbPOxc2tSrbcTQ6a2eWx6yVocKPje5nkym42oUueiSp2LE+V/48oBLyLCt3+b41xIY6yDmTWCxwiwI+djZFfZF9ZujTOfuyY5NfuxK/d/0JuUrR4TKI2BiG/JHJIIfBHumwgza2w14OOq56676nXlUOorAQAh8oQO7/znSJhPXywc+T0k3QzisZzZWssrQBrdbhAt0m8g6nQl4MCiUnUOvYLsA3iFdUettx1lYBnMGmSUroWf2BKMzCxbBzNnRHHdMSQEj+vSv+NY2ToAgJAnxcDQtt8TnUnIl1lvO3pdtGQwaay3JQLfbj1uy/vrjcpu/f2KDUhBScNxAJa/AT0++AVYUgFzcnLw4Ycf4sMPP8TQoUMxd+5czJ49G8HBrv1jTwghxPM4jsPr3+9CaXWDTfvS26YgIYp2nSXEm1TpWDx+VI2setuduyQ84M0UGS6PuHiC1RzH4kTVZqSV/WpderOrYDkifQZ2+wKhLU1LPSxz6PoOaR2VGDIZDbpyRPkNRrhvf/iKQ8EwfGgMChTXZ+J8bRpYzoz9BSsQII1B7yDHwb8I34HwEYVAZahGUV0GjGZdm0WK8xUHAVgyTfoEj2/1uMK6DGw6/RrMnCUwkhgyFTH+QyDgiaHQFuJk+RZojArszvscEoEv+oa0niEyLn4hdEZLMGNT9msAAJW+CgW1R6yBr7iAEUgIGoeShuM4V72n3efPWUQCGeIDR6JGcx7RfkMQIu8NmSgILGeCSl+N3Jr9qFCdhd6kxN/Zb+CWYctbvbDsFzIFh4t+BGAJbLUV/GI5M/JrDwMAgqRxCJH3avXYtKKfcKhoDQBAIvDDoPAZCJX3AcexKG04hdNV/0BrrMP6rJdw49CP4C+JbHWsKwe8BACo0ZzHwcJVQONys1MVW5Fd9Q94jAD9Qy9DjH8yjpb8DoWmwC3PHQAU1B7F1jPLwIEFAx76hkxCrP9QiARyKHUVyFUcQLnyNHQmFcbH34neQWNaHcsVz52zValzrbeDZHHdHq+7gS/AkunZFCQU8+XtHG0pwt5EoS1CL9gHv6rV+dbbYT797PozS9dBZ2rAhF53oWn5HgBUa853Kfil0BShqO4YAGBA2OUQCWRt38GJ/CUREPIkMLI6FNZlgOXMrW6gUty466VY4IMov8HdetyWwWJJOxmn7QmWxVtvV6lzujVWe9wS/Fq+fDm2bduGnTt3or6+HgCQmZmJzMxMvP322xgzZgyuvPJKzJw5Ez4+nkkBJYQQ4lprth3DvuPnbdqunTwIM0bbfzAhhHjOuQYzHj2iQvkFOzqGiBl8NEKOwQEXz35JKkM1dhd+gTLVaZt2M2cA2406Jh197CayLtTJ6awhkXNbLSacHHkVSupP4q9Tz4EDiyPFv7Qa/GIYBn2CJyCzbB1MrB5FdRmtXjAazFoU11u+0Y/yS4KslaVoRrMOu3I+gZkzQiLww9WDXrP79j858mqsO/UCqtQ5+DdvOWIDhtnV8WniaPlPrbYYacW/gGF4uKLfk0gMmQIA1qwTd5rVf2mrF6jDoxfgSPEvOFi4GgazBsfLNrS6PDFQGo1QeR9UqXNRXJ8JvUnV6nK64vrj1gvWxNAprc6tSp2Hw0U/AQDCfRIxd+DLNsspE0OnICliFv489Rz0JhV2532OeYNeb3W8pvOoZYD0fG0ajpX+CbkoCFcNfBUh8t4AgFMVW1sdp4mznjuWM2N33mfWwMuMxKfRL8Q2MzEl6lrsyf8CJ8o3YfOZt3H1oNfazCZz9nPnbA2NSwEBeE3BflHLzCW27cwlADbnt97keFflWl3zzoy+4jCbPr1JhWOlf8FfEon+oZehtOGUta9p2WJnZZatQ1N26xA3FroHAD5PiCGRc5Fe8jvqtMXYemYZpvZ5yG4J9PGyjSiqPwYGPExNeKhbuyoazBrUNRbGl4uCOrXE2JEASXONtwad/a6hzuSW6qSXXXYZ3n77baSmpmLFihW46aabEBwcDI7jYDabceDAAbzwwgsYP348Hn74YWzevBkGg8EdUyOEEOIGGWdL8cVfh23aBsaH4rHrJ3hoRoQQR/ZXGXHnQaVd4KufLw+rxvteNIEvjuNwTrEPv2cvtQt8AUBK+DzIuvltdlsq1OegMdYCAKTCAPiKXb/LbWsBgybR/knWbIAK1VmYzPZ13pq0zLrKa8zscqSw9qh1KU6/NjK1MsvWQ2moAgBMTXjQ4bIXicAHV/R7EgADrakeZ6t2t/XPsXOifBOU+gpM6HWXNfDlKe39Liw1lCzZlSWNxaxb01TEmuVMyFccbvW4vBZLHvu18e9PPf8dOLDgM0LM7v+cwzpiIfIEjItbCAAoqsuAQlPY5hwvdKBgJQBLVlhT4KujnPXcFdcfty4BjA0YZhf4AiyB3nHxC8FnhGA5U2PmWuvc8dx1h9pQa70tEXR9yaMzCfkSa8ZXvb68A/doztQyslqHR2iN9dbbFwbcj5X+Bb1ZjVExN4PH8G2y1zTGuo5PvJHOpLLW0Yr1T0FQB2oSOtuY2FvRK9ASZM5VpGJV+j3YmfspiuuPQ2dUYnfuZ9iT/wWEfClm9V/q8FzvjNyaA9agce/A9rMh2yNpsfxWY1B0e7y2uHVrHj6fj/Hjx+OVV17B3r17sWbNGixatAiRkZHgOA4GgwE7duzAE088gXHjxmHJkiX4999/YTa7PhWcEEKIa1TWqvDiN9vBttjBxVcmxhv3zYBI2PaHWEKI+/xaoMdjDnZ0nBAqwIqxvoiUXhw7OupMSuwo+BS7C5fbXTyJ+XJcHv8wRkXe4LLHN5p1SC1eaf15YNh0r9nsw0cc0niLg9bU0OpxET4D4CsKBQDrcklH8myWPLb+ZUfTskOZMKDNpZFBslhrnaRcRWqrxzliYvUIlfdBspszM7qCzxNCKrAETlpeyDtiCX5Zzp+mYuYX4jjW+rsI9+kPf0mEw+O0xnoU12cCAHoFjW5xPtjrH3qZNRDVspZYR5hYPYZEXOmS2j4dfe5qW2T5RPsNafU4EV8Gv8bnq0J5ttXsJHc9d91hYpsD2t3J/HG22IBhACxL6coa7L+MaKLUVyKt+Gfrzy2XjrdkNFve1xnwbIKlWmMDjpWtQ4A0xpr9yOeJW9xP1+m5nyrfYn1ekyOv6vT9nYHPE2LOgOcxqff9EPHlMJq1yKrYir9OPYdv027FyYrNCJEn4NaU5W2+v3aEmTUho3GnTQa8dovjd4SQ13wuGtnWv3RxBo99fccwDEaMGIERI0Zg6dKlOHXqFLZt24bt27cjLy8ParUa69evx/r16xEQEIBZs2bh5Zdf9tR0CSGEdIHeaMKzX2yFosH2AvPlOy9HZLDraukQQjrOzHH48LQOa87bf+i8MV6EpwZKIeB5R3Cmu4oajmNP4ZfQmOrs+qJ9kzAl9n7IRc6vQWg066Ay1qBMlYXjlZusWU4h8gSMjHZdoK0tSn0lVPoaGMwaa/BK3eJb97a2r29a+nis7C/oTA0obThltxyM5cwoqDsCAIjxT251J0KVvho1mvMAgFB5HzBM20HWUHkflCuzUanqfG2YYdHz7cZPiZrXbtF+V2I5M+q1pdCa6mE066zLbZsy5torzO8rDkWk70CUKbNQWJ/hcMe6MuVpa6ZhYmOmmCOFdenWxwt3UCupJSFfggBJNBTaQlR2sk4Pj+FjWJT9pgozE5fAzBqsmVvt6c5zx7YIYglaBEAcaSrCzoGFzqRyuMzLXc9dd7QMUrf3OnOnAaHTkFNj2QV8T/4XuGbwW3ZLmms0Bdh4+lVoW2RntbYzY1OA8sLi+Rmla2E0azEq5iZrUKxlcMzMdm7lGcuZcaJ8EwDAVxyOXt3YPbO7TGY91PpqmFkDGPAQKI2BQltoPSer1XnYnfcZxsUvsqmx1VkZpX9AobVkKyZHzkWAE5bP8njNIammupuu4jW564MHD8bgwYPxn//8B7m5udi6dSu2b9+O06dPo7a2Fj///DMFvwghpAfhOA7LftiD0wVVNu2L5gzH+CFd/8NLCHEerYnDs8fU+LfS9gMnA+CpgVLc3EvkNVlJ3WFi9ThU+jOyqrfZ9fEZIUZH3YzBIVc47YLwXO1enKvd2+YxEb4DceWAF9xaHLlSlYPMsnU4X5vWar2cjuobMgnHyv4CAOQpDtgFv0obTlofo63i9A0tljoZWX2bS/cAS/YGABjMaoeBntaI+DL0CbLPehALfFqtk+VKuTWpOFWxFSX1x9vdpa09/UImo0yZBTNrQEFtmnUpZMvHAtBY1L314FeDrvl3odRXt/u74BrrHKn01W0ed6Fo/2SHmVEdrR3kjOfOX9pcZ6hlgfQLNQXYAEumUWs7JLrruesOPtMcDDKYHC8Z9IReQaOQEDQOeYoDqFLn4qdjD2Fw+EwEyuKgN6lQ1pCFs9X/ggGDaL8hKGmwLGeVtlIrkc8TwsTqbQL4GkMdTpRtRKA01iYA3DKTr6NB1ya5NalQNX6RMSRijscCinXaUmw4/TLqdWUIkMZgZr+nEerTB3XaUmRX7UBWxXZojAqcr01DSf0JzEh8ukObN1yorCHLWtPOXxKFsXF3OGX+elPz7r6CTv4OOstrgl8txcfHIykpCSUlJSgoKIBGo2n/ToQQQrzKLzuOY8uhszZtE4bE4565nvtmjBDSrFLH4vEjapxusF2yJuUDb6fIMSW87S3ne4oqTR52FXyOen2ZXV+ItBemxj+IQIl7ij8LeRKEyxMxIORyDIh0b7bRocIfkFb8C5oKM3dXhG9/+IrDoNRXIl9xCJN732/T37TMjsfwkeAg6NREY6iz3i5tOInShpMdnoPBpO5w8CtEnmCXCeIJRrMOW868Y82Kc4a+wROxN/8rcGCRW5NqF/zKUxwAAET7D2kzwNSy5tGJ8o04Ub6xQ49vMKvbP6iFCJ8BnTq+iTOfu/iAEZAI/KAzNeBs9W6MiLkOgdIYu+OOl22AkbUsh4vxT2615pi7nrvuaBnkdefjdsT0vv/BlrN6FNalQ2Wotu6Y2UQi8MOMxKcsAZzG4FdrO2UK+VKYWD3MnMm6++HRkt9gZHUYHXuzTZCqO0tBM8vWA7BkDg4Km9Gp+zqLUl+FP04+A62xDkHSOFyb9I41QBsgjcLYuNsxKuYmZJZtwMHCVTCyOvyd/SauGvQq4hqXm3aESl+NzWfeBsuZIORJMWfA805bOmswN8d6RC7+IsJrgl8GgwF79+7F1q1bsXv3biiVlt1IuMYaMX5+3lGUjxBCSPvSThfjf3/YFkGOCw/Ay3ddDt5FsnyKkJ7sTIMZjx1RoeKCwvahYgafjJRjgL/XfETsMpYz41jFeqSX/wkOtgE+BgxSwudhWPi14POc/2+N8hmMpNBZAAAew4OIL4eY7wM/cRh4DN/tGQInyzdba+Uw4GFg2HQkhk5FsCweYoGP9YL+n3MfIrtqR4fH7Rs8ERmla6HUV6JKlYtQnz7WvqbMl2j/5FazZbrL1TtyusLO3E+swRshX4phUdeiV+Bo+EsiIeJLrefGyqN3WQuyt0cmCkCM/1AU1WegoPYITGY9BHzLUr5KVY51HFcV+nfX78GZzx2fJ8TlfR/F5uy3wHImrDv1AsbFL0Ss/zBIhL7QGGpxpmpXiyAMg5Exzl+i7M5zuGW2nc7Yek0/TxAJZJg78GWcq96L05XboNAUwmDWwkcUgt5BY5ASdQ3koiBklKy13idUnuBwLJkwoHF5JAe9SQWWM+NUxRYEyeLRN9i22HvTcmDL/Tq+a2GF8izKlZb6ZIkhUyAReqaUR2rB99aloFMSFjt8r+XzhBgePR9+knBsOfM2OLDYk/cFbh32RYcyu3UmFdZnvQSNsRY8ho8ZiU91a+mk3fgtzkUfUbDTxnXEo59stFotdu/ejW3btuHff/+FVmtJv2wKeEmlUlx++eWYO3cuJk5sPV2aEEKI9yiuqscLX9sWuJdLRFi2eBZ8pG3X1SCEuN7eSiOWZqihuaBGeX8/Pj4eIUf4RVDYvl5fjt0Fn6NSk2vX5ycKx9T4xQiXt12XpzvkwiDE+w932fidwXEs0op/sv48tc+DGBw+yyljNwW/AEumV1Pwq1qdB6XesmV9v+C2dxaTiQKstweFzcDlfR91yty8Ua222Frcn88TYUHSu53e7bA1/UImo6g+A0ZWh8K6dCQEjwPQvOSRxwjaLXYta7GM7Ip+T6J/6GVOmZszuOK5Swgai7kDX8KOnI+hMlRj+7kPWjmSwYT4OxHll9TqWN783DUJkjbvRFilyfPgTBzjMXz0D52K/qFTHfYbzFqUKrMAACGy3q3WEQyQRlvrCCr1VThd+Q9MrB6jY2+xC/ao9M2lOQI7Ub+qKesLsNS+8gQza0J+Y4atiC9v8/wEgL7BExAs64UazXnU6UpQoznf7mvIaNZh4+lXG+t8Mbisz6NdWjLZlip187kYJI1z6tgXcnvwS6VSYefOndi6dSv2798Pvd6SatgU8BKJRJg0aRKuvPJKXH755ZBIvGcnCkIIIW3T6IxYunwrlJrmNHKGAV69exriIwI8NzFCCADLjo7LTmntykBPDhPg7RQ5ZIKenZnJciyyqrcjrewXm+UsTQYEX4axUbd51U5nrlanK7UWsvcTRzgt8AUA4b6J8BOHo0FfgTzFAYyJuxVAyyWPAiQEjWtzDB9RmPW2ukUWxsWopP6E9XZiyGSnBb4AoE/wePyb9znMnBE5Nfutwa+8xl0x4wNHtlvbzEfc4ndh8K7fhSufu6ZljTxGYFdwO9wnEaNjb0V84Ig2x/Dm565JqE8f8Bg+WM6MStU5T0+n006W/20tSj8wvPVlhiGyXtadTwvr0pFVsRUhst4Oa/5VtHgegjt4TqkNCmuB/ii/wQhpJQPN1XSmBuvfOZkosENZXIHSWJvAYFuvIxNrwKbs160ZbpN734eBYdO6P/ELVKqaS6SE+yY6ffyW3BL8qqurwz///INt27bhwIEDMJksbypNAS8+n4+xY8fiyiuvxIwZM+Dj4/6ik4QQQrqHZTm8sXIn8koVNu33zxtDBe4J8TCO4/DZWR2+zbUPCN3SS4QnBkrB7+GF7Ws057G3+FuHGQ1SgR8mxd7rNdlY7qQzKq23/SURTh+/b/BEpJf+gRrNedTryuEviUC+4hAAIMZ/aLvLgfwkYQiUxqJWW4QK5RmYWZNLlqJ6A52p5e/Ccb2irhIL5IgLHIF8xUGcr02DmTWiXleGWm0xgLZ3eWwSFzAclu0uOJQ2nMTwaPsdGT3FFc+dSl+NLWfegZHVYWTMjRgRfT2q1LkwmrUQ8qUIlMa0ml10IW9+7pqI+DJE+g5CScMJ6E0qVKnzWl066G0qVTk4XPQjAEuW04A2MuviAkdal6seLvoRLGdymPXFcmYU1R0DYNkMIMZ/aIfmcqJ8kzVImhxxVWf/KXaMZh32nf8GOTX7IeJLMSxqfoeyySQCXzSdcx3dwETf4nUka+Pcbgp8FddnAmAwpfcDGBJ5ZYceo7Oaargx4DW+jlzHLX9ZJkyYAJa1fMfYFPBiGAbDhw/HlVdeidmzZyMoyPnbShNCCHGflZvTsTvDdsekaSP74PaZKZ6ZECEEAGBkObx+QoMNJba7ovEAPDNIiht79ezlyEazDunla3GiarN1W/eW4v2GY1LsPR2+iPVWfJ4IZtYAk9k+gNmWltk+SkPrO8uZWSMUmsIWLR0rjN83ZBLSS/8AYCms3jd4AqrUluWm/ULaXvJoHSN4AtKKf4bO1IDTlduQFDGnQ/fraWx+F/qqVo9T6iubg5ZcxzcoSAyZjHzFQRjMahTVH0OVKgcAIORJ0Tuw/aVKclEgovwGobThFApqj6BGU+DU2j7d4YrnLldxwJr1lRgyBUK+BFF+g7s0P29+7loaEDbdGmzIqtiKKQmLPTyj9tVqS/B39pvWLKcpCQ+0mcUYJu8Lf0kk6nVlYDkTQuV90DtorN1xLXdrjA8c1aHNM0ysAafKtwAA5KJga4Zld6QWfI9TFZYx9SYl9uR/AbkoqN1lynyeEEHSWCi0hdAa61ChPINw3/6tHq/SV6O04RQAS5H+wBbLYFsymfXYlP0GiuozwICHqX0su2+6QnH9cdTrLJvR9Aoc5fK/024p6mA2m8FxHDiOw6BBg/D0009j165d+PHHH3HrrbdS4IsQQnq4Pcfy8fWGNJu2fjHBeO72qR1KwyaEuIbGxOHxI2q7wJeED3w0Ut7jA19FDcfw+5mlOF61yS7wJeRJMSn2XlzR+4keH/gCgABJFABAoS2ESt96EOtCgdJoSASWIsh12mIU1B61O0ZnUmHLmXdQqW5eAtS0VLI9YT59rZk4+YqD1qwvy5JH+wtOR1KiroVMaLke2Hv+G+uyyQuZWROOl21EdmXHi/J7k0jfQdbbOTX7HC6PU2gKsT7rJRhZSy1krakBZtZkd5wjvQJHQ8izLOnNrUlFbuMuj72DxlgL4LdnfPydYMADBxabTr8OhabI4XE6oxJ7879Gtfp8h8btLpc8dy2KzR8rWwe1QQGuGwXovfW5aykxZArkjUXFz1TthsGsdfscOuNM1S78mvm4NUg1OHxWu/XUGIbBiOjrrT83vXe2VK8rw978L60/j4q5sUPzOVu1G1pTPQAgKXx2q7t/dkZO9V67tnMO2hxpmSG2I+fjVt+3tcZ6bD7zNsyc5bPAoLAZEAlkdscZzTpszH4VRfUZ4DECzEx8xmWBL8CylLXJsOhrXfY4TdyS+ZWQkIA5c+Zg7ty56NWrlzsekhBCiJvklyrw2nc7bdoCfCR454GZkIo9v608IZeqGj2LR9LUON1gW9k+QMTg05FyJAX03KVlGmMdDpSsRl6d4yBJb/9RGBezEPJO7N7l7fqHXo7UghUwsXr8cXIJhkTMhp8kEjqjElXqnMZv6B+0ux/D8JASNQ8HC1cDAP7OfgODw2chzKcvGIaHKlUusqt2QmdqQLRfMkoajgOwZCNc0e9J+EnC251bn+AJSC/5HWUNp2E0WzJpYgOGtVtjqolYIMflfR/B39lvwswa8Hf2G4j1H4aEoLGQi4JgMGtQpc5tDHooIOCJEe7bH4HSGIfjlSlP2yz3BCzL5pp2oASACN8BLtuFsjUh8l6I9U9BUf0x6E0q/JL5CIZEXIkAaQyMZi2K648jt2Y/zJwJ0X5DUNJwAiZWj735X2J8r7vazUwR8iXoFTQG56r/RU71PmsQqDO7PEb4DsCImOtxpPgXNOjL8XPmI0gMmYJo/2SI+FJojfUoU2YhtyYVJlaPoroM3DD0Iwh4IofjNT3nTXWGAEsdupa/i95Bo9udlyueu4Tg8ThYuBpGVoesiq3Iqthq08+AB6nQz7pL4MCw6W0uyXX2c+cKfJ4AKZHzsL9gBQxmNdKKfsKEXnd1ehyTWY+i+ky79jpdqfV2uTLb+n4AAEK+uMNLCwvr0nGk+FeUNpy0to2IvgHj4u/o0P0HhE3DuZq9KKrLwLmavVCdrEH/0MsgEfiiRnMex8s3WZcApkRda7NTbVuaCt3zGIHz6ic6+JK4o18bDwqfifO1aThfmwaFthA/ZixGYuhUhPkkQiyQw2BSo0J1Dmerd1uXRobK+2Ksg+fRxBqwPusllDVuKpAUPht8nsjmteqITOjfZsZZa8oaTiOnsTZbhO/Adgv2OwPDcZ3IpSXEBQxaZbvfsgglPuDx+GBZM4y6jq1pJoTOG9drUOtxzzt/oLiqeZtiPo/Bx4/NxfD+Hd81x5vQeUO6ypvOnQK1GQ+nqVGssf37GiPj4bNRcsTJu/9ttSdwHIvsmt04XPYTDGaNXb9cGIwJMYs8UturVJmFTblvAgD6BU7C1PgHWj2WYXgQSduuhXUhM2vC39mvo6DOPnMLsCyLvGvkaogFcrs+ljNjy5l3kNeYCeTI4PBZmJKwGJtOv2Z9jFmJS9E3pP0d16tUufjl+GM2bdP7/gcDOlkcubj+ODafeavN+jUMeBgUPgMTet0FEd8+cwEA1p5canPR7Mg1g99CjH9yp+bnDGqDAn+eeg51jbW4LiTgiTGp973oEzQBP2U+DLWhBgx4uHPkKpudMVuTrziETdmvW3+WCPxw58hVna6jllGyFqkF3ztcStxExJdhTNxtSI64qtUs7/+ltl+76OHxGzs0J1c8d8X1mdiR84l1d9K2BEnjMHfgK/CThLV5nLOeO1cxsyb8fuJJVKlzwWP4uDH5YwTLe3VqjAZdBVal392p+/iKw7BwxIpW+2s0BcirSUV21S7UtwiiBUnjMDnhgU6/Xi0ZrW831q1ybFD4TExNeLBDGVzF9cfx16nnAAD9Qy/DFf2e7NR8WrMn70scL99g0zZnwAsdzpxtqhl2qmIr2luu3i9kCib3vt9h4L8rv1MAGBh2Bab1faz9A1tgOTN+znwUCk0B+IwQNwz9yC3LhHvuV36EEEI8ysyyeOnb7TaBLwB47PoJPTbwRcjF4GSdCY8cUaPOYPsheJA/H5+MlCNY7JaqF05XqyvG3qIVqFCfsetjwGBw6EyMjLj+ot3Jkc8T4MqBLyGrYitOV+6AQlMAM2eEROCLEHkCegeNBZ9x/NGex/Axu/9zyK7aidOV21GjzoeJNUAmCkSk7yAMDp+FaH/Lt+6z+j+Lw0U/IrdmP+La2eGuSahPH/hLoqwXrHxG6LDGTnti/JNx27CvcKpiM87XpqFWUwQjq4OIL0eANBqx/kMxMGxGu8EHbyYXBeGG5P8is3QdcmtSUacrBQMGPuIQxAWMQHLkXOsy0gVJy3CgYCX0Zk2HAl+ApfC6WOBjDSD2CR7fpQ0EhkXPR3zgKJys+BvFdZlo0FeA5cyQCv0QIktAfOAIDAid5nDplKu44rmL8R+KO4Z/DYW2CGpDjc0ySYNZjXpdOc5V/4tabTEU2kKsy3oBt6R8Bj6v9cx2b3zuWuLzBJje7wn8mvk4zJwRW84uw3VD3ncYOHcXM2vCHyeetvlSI9ynP5Ij56JfyOQuLS+UCHwwb9DrOFv9L7Ird6BGUwCdSQmZMBDhPv0wOGI24gKGdXi8Bl05ZMIgaIwKpxS6bzIufqF1l9amgvcdDXwBlozPy/o8jKSIOThbtRvF9ZlQG2qgM6kgFvhALgpCtN8QJIZM7lKGVnsCJJ3/zL83/ysoNAUAgLFxt7utPh5lfhGPo8wv4ip03rjWZ38cwJrttt+mXTVhAJbeNqVH1/mi84Z0lTecO3srjXgmQw2d7UpHjA8V4L1hcsgEPe+1aWINOFaxDpmVG8ByZrv+YGkvTIq9B6Gyjm1T7w26kvnl7UysAd8duQN6kwp9gydiVv+lnp4SIU7BcSx25HyC7Kp/AACX93kUg8JneHhW3Xe6cgd25HwEgENswDBcNfAVp9Sw6qotZ95BteY8EoLGol/wpA4vRXQnjuNQrcnvMbtkeqPjZRuwp7HeWp+g8ZjVfykYxj1fylHmFyGEkE7bdvicXeArKSEcT940qUcHvgjpyf4s0uPNk1qYL/ha8+poEV4YIoWQ1/Nem6XKU9hbvAIN+nK7PgFPjBER1yEpdKZHL9iIxZmqndZsI6fVwiHERYrrj8No1sFHHNJuIINheBgWdY01+NW0m2lPNzBsGrTGeqQWrEBRXQa2n/sAV/R70mPvp9P6Pu71mbsMw1DgqxvOVO3C3vyvAQDRfsmYkfi02wJfQA8IftXX1+Ps2bMAgFGjRnl4NoQQQrILqvDW6t02bSH+Mrx1/wyIhHQBSoi7cRyHr3L0+OKczq7vnj5iPJgo6XFBaZ1JhUOlP+Ks4l+H/bF+KZgQswi+olA3z4w4ojHU4VDhjwAsu/LFBqR4dkKEtCP1/HeoVJ9DbMAwzBv0ervH60zNGygI29l4oCcZHj0fRrMGacU/41z1HrCsCTMSn+nSUtnu8vbAF+me05U7sDPnY3BgEeE7AFcOfKHN5cOu4PXBr4yMDDzwwAPg8XjIysry9HQIIeSSpmjQ4tkvtsJgbF56JBLw8c4DMxHi77laEYRcqkwsh3dOafFHkcGmnQdgyWApbogXe2ZiXcRxHPLrDyO1eKV1O/mWpIIAjIu+HQkBY3pcQO9i1aCrwOYzb0FjVIDHCDCp932enhIh7QqUxaJSfQ4l9SdQpc5rM5tHa2xAasH31p9j/VNcP0E3GhN3G6RCf+zN/xrlqjPQGuvgIw7x9LTIRaagNg0cWPQKHIVZiUsh4Lv/84nXB7+aUGkyQgjxLJPZjOe/2oaKWttaRs/cOhmDeod7aFaEXLq0Zg5LM9TYU2myaRfzgLdTZLgsQuShmXWN2qDA/uLvUNCQ7rB/QPDlGB15k0eLMhMLg1mD87VpKKg9gpzqfTBzRgDApN73Icynr4dnR0j7BoXNwJmqXWA5E34//iT6hkxEuE8ipMIACHgimFkj1EYFKlU5yFcctBZiTwgae1FmNiZHXgW5KBiB0lgKfBGXuKLfk4jwHYDkyKs8trS2xwS/CCGEeNb//jiIzJwym7YbLh+COeOcv3MMIaRttQYWjx1R40SdbQF4PyGDj0fIkRLUcz7icRyL0zU7cbj0ZxhZrV1/gCQak2LuRoQPvdd4C5W+BtvOvmf9WcAT47I+D6N/6GUenBUhHRftn4SJve5GasH3MHNGnKnahTNVu1o9ngEPSRGzMbHXPW6cpXv1CR7v6SmQixifJ0RK1DUenUPP+WRECCHEY7alncOvO0/YtI3oH42HF4zz0IwIuXTlKM34z1E1ijW2OyVHSBh8NtoHCT49p/Zena4Ue4u+Qbn6jF0fj+EjJXweUsKudntdENK2QGk0xHw5/CQRiA8cieSIqyATBXh6WoR0SkrUNegVOBonKzajrCELDfoK6E0qcBwLAU8EidAPgdIYRPkloV/IZPhLIjw9ZUJINzgt+KXT6cAwDMRi+7Wbf/31V5fHzc7O7sasCCGEdFduSQ3eWW1bdDoiyAev3zsdAr77dmghhAA7yw14IVMDrW3CFxJ9efh0lA/CJD3jNclyJmRWbERGxV/WJXMthcn6YXLcPQiUxHhgdqQ9DMPD3aN/pF02SY8XII3CxF53e3oahBA3cErw66effsKbb74JhmHwwgsv4MYbb7TpX7p0KRUlJYSQHkil1ePZL7ZCZ2iuKSQS8PHm/TMQ4HPx7HZEiLdjOQ5ft7Kj4+hgAd4fLoevsGd81qrS5GJP4ddQ6Irs+gQ8MUZF3ohBIVeA58btz0nnUeCLEEJIT+KU4NdHH30Ek8lyYfThhx/aBb+aUNF6QgjpOViWw+vf70JxVYNN+5M3T8TA+DAPzYqQS4/axOGlTA12VthnSF0XJ8Izg6QQ8rw/8GU063C0/HecrNoCDvafCWN9h2Ji7F3wEVGxZUIIIYQ4l1OCX76+vmhoaADHcfDz82v1uIULF2LAgAGdGjs7OxsrV67s7hQJIYR00g/bMrA387xN21UTBuCqCQM9MyFCLkHFGjP+c0SNHJVtfS8BAzwzSIrr492/VXhXFCtPYF/Rt1Aaquz6JHxfjIu5HX0CxtNKAUIIIYS4hFOCX++++y6WLVsGhmHwzDPPtHrc+PHjMWXKlE6NvXv3bgp+EUKImx3OKsJX69Js2gbEh+KJmyZ6aEaEXHoOVRuxJEODeqNtllSgiMH7w+UY3gN2dNSb1DhY+gPOKvY47O8bOAHjom+HRODr5pkRQggh5FLilE9Nw4cPxy+//OKMoQghhHhYuUKJl7/dAbbFUnV/uQRv3jcDYqH3X2wT0tNxHIefzhvw32wtzBesDhzgx8d/R8gRKfX+eljn649gX9F30Jrq7Pp8hMGYGHs3Yv2Gun9ihBBCCLnk0FUMIYQQK73RhOe+3IZ6dXNRbYYBXr17GiKDKTODEFfTmzm8dVKL9SUGu76ZkUK8nCyDlO/dSwN1JiVSi1cit+6Ag14GSSEzMTLyegj5ErfPjRBCCCGXJgp+EUIIsfrwl/3ILrCtyXPf1aMxelCsh2ZEyKWjUsfiqXQ1TtSZbdoZAI/0l2BRgtjra2Ll1R3C/uLvoTM12PUFSmIwKfYehMv7eWBmhBBCCLmUuSX4dcMNN4BhGERFRXX6vgEBARg1apQLZkUIIaSlDftPY/2+0zZtE5N74faZwzw0I0IuHSfqTHjiqBrVett1jj4C4K0UOSaFCT00s47RGOuRWvwd8uvT7PoY8JESfjWGhc8Dn+fd/w5CCCGEXJwYjuPs95omxI0MWiU4jm3zGKHEBzweHyxrhlGnctPMSE9H503HZRdU4YH3/oLB1JxxEhPqh2+fXQBfWc/YTc5Z6LwhXdXVc2d9sQFvnNTAeMGfwng5Dx+OkKO3D9/JM3UejuOQU7sfB0pWQ2+2/zcHS+MxJfY+BMt6uX9yXoxheBBJaSk5IYQQ4i607JEQQi5x9Sodnvtyq03gSywU4O0HZl5ygS9C3MnIcvg4W4c15/V2fRNCBXg7RQZfofcWtlcbFNhXvAKFDRl2fTyGj+Hh8zE0fC54DH3cJIQQQohn0acRQgi5hJlZFq+s2IFyhW3GxtLbJqNPdLCHZkXIxU+hZ/FMhhpHFWa7vkUJYjzcXwK+l9b34jgOZxX/4mDJGhhYjV1/qCwBk2PvR5A0xgOzI4QQQgixR8EvQgi5hK3YeBSHsops2q67LAkzxyR6aEaEXPxO1ZnwZLoaFTrbyhNiHvBysgyzo0Qemln7VIZq7Cn6BiXKE3Z9fEaIERELMCRsDniM9y7VJIQQQsilh4JfhBByidp/vADf/X3Upi25TwQeWTDOQzMi5OL3V5Eeb5/SwnBBfa8ICYMPRsgxyN87P5pxHIvTNTtxuPQnGFmdXX+4vB8mx96HAEnnNzcihBBCCHE17/yERQghxKWKK+vx6nc7bNqC/KR4/d4rIBRQxgYhzmZkObybpcXvhQa7vlHBAryTIkOQ2Dvre9XpyrC36BuUq7Pt+viMCKOjbsSgkBngMd45f0IIIYQQrw9+cRyHLVu2YPbs2Z6eCiGEXBR0BiOe+3IbVNrmi3A+j8Hr916B0AC5B2dGyMWpUmep75VZa1/f6/beYjzaXwIBz/vqe7GcGScq/8bR8j9g5ox2/ZE+AzE59l74icM9MDtCCCGEkI7z6uCX0WjEggULcO7cOfj6+mLixImenhIhhPRoLMvh9e93Iaekxqb9ofljMawfLVcixNmOKUx4OkONar1tfS8JD3jJi+t71WjOY0/R16jWnrfrE/IkGB11MwYGXw6Gsr0IIYQQ0gO4Jfh1yy23oFevXrj33nvRu3fvDt9PKBQiODgYZ8+exaZNmyj4RQgh3bRi0xHsSs+zaZs2og9unJbsoRkRcnHiOA6/FRrwXpYWJtu4F2JkPHwwXI5EP+9bYmxiDcio+AuZFRvAgbXrj/FNxsTYu+ArCvXA7AghhBBCusYtwa/09HRkZGRg5syZnQp+AcDEiRNx4MABHDt2zDWTI4SQS8T2tBys2GRb4D4hKgjP3j4VDON9S64I6an0Zg6vndBiXbF9fa/xIQK8lSKDv8j7MqbKVWewp+hr1OvL7PrEfB+Mi74dfQMn0PsFIYQQQnocr172CACRkZEAgPLycg/PhBBCeq6s/Aq8uWqXTVuArwTvPTgLMonQQ7Mi5OJTqjHhsdRKnKqzr5F1dx8xFidKwPey4JHBrEVa2S/Iqt7usL9PwDiMi74dUqG/m2dGCCGEEOIcXh/80uks22mzrH3qPSGEkPZV1qqwZPlWGIzNxbaFAh7evn8mIkP8PDgzQi4uh6t0ePKQArUG288sMj7w2lAZpkV4X32vooZj2Fu0AmpjjV2fTBiIiTF3It5/hAdmRgghhBDiPF4f/Gpa7hgWFubZiRBCSA+k1RvxzOdbUNOgsWlfcusUDO0b6aFZEXJx4TgOa87r8VG2DuYL6nvFyy31vfr4eld9L51JiQMlq5FTu99h/4DgyzEm6maI+DI3z4wQQgghxPm8NvjFcRzWrVuHtWvXgmEYjB492tNTIoSQHsWys+NOnC2qtmm/bWYK5ozr76FZEXJx0Zk5vHFCg02l9sscp4QJ8PpQOXyF3rPMkeM45NUdRGrJKuhMDXb9fqJwTIq9B1G+gzwwO0IIIYQQ13B68OvQoUN47rnnHPY9//zzEIvF7Y7BcRyqqqpgMpnAcRyEQiEWLlzo7KkSQshF7ZuNadidkW/TNjG5Fx6YN8ZDMyLk4lKmZfHkUTVON5ht2hkAD/ST4J6+YvC8qL6X3qTGvuJvkVd3yK6PAYMhYXMwImIBBLz2P6sRQgghhPQkTg9+BQYGoqSkBAzDgOOac/85jkN1dXUb93RMIBDg9ddfR2JiojOnSQghF7Vth8/h+7/Tbdr6Rgfj5bsuB4/nPRfjhPRURxUmPJ2uRq3Bdp2jr5DBOyODMD7Q3Mo9PaNMlY3dBZ9D5aC2V5AkDpPj7kWoLMEDMyOEEEIIcT2nB7+ioqIQFRVl01ZaWgqGYRAUFNShzC+GYeDv74/k5GTcfvvt6NOnj7OnSQghF61T+RV4a9Vum7ZAXymWPTgLcon3FdwmpCfhOA6/FRrwXpYWpgvqeyX4CvC/8WGIk/Ng1Kk8M8ELsJwZ6eV/4ljFX+BgO2EeI8Dw8GsxNHwueIzXVsIghBBCCOk2p3/S8fHxwc6dO23aBgwYAAB46623MGXKFGc/JCGEkEYVChWWLN8Cg8l2Z8d3Fs9EZLCvB2dGSM9nMHN4J0uLP4sMdn1TwgRYNiYMfmIhWNY7sr4a9JXYVfA5KjXn7PqCpfG4LP5BBEpiPDAzQgghhBD3oq/5CCHkIqHRGfHM55uhaNDatD97+1QMSYjw0KwIuThU6Vg8la7G8Tr7wNb9fcW4r58EYiHPAzNzLEexH/uKV8DI6uz6hoTOwajIG8DnCT0wM0IIIYQQ96PgFyGEXARYlsNr3+3AuWLbej53zBqGWWOoZiIh3XG81oQn09Wo1tsuG5TxgTeGynBZhPcsJzaYNdhf/D1yavfb9UkFAZgadz9i/JI9MDNCCCGEEM9xS/CrqQaYRCJxx8MRQsgl56v1h7En87xN2+ShvXDf1aM9MyFCLhJ/Fenx1iktjKxte6yMhw9HyNHHl++ZiTlQoT6HXQWfQWmosuuL8xuGyXH3QSrw88DMCCGEEEI8yy3BrwtrgBFCCHGeLYfOYtWWDJu2fjHBeOnOabSzIyFdZGQ5fHBai18K7Ot7jQ8V4O0UGfy8ZJkjy7E4VrEO6eVrwcE2SsdnhBgTdQsGhVwBhqH3A0IIIYRcmmjZIyGE9GAn8srx9urdNm1BfpadHWUSqudDSFco9CyeyVDjqMK+vteiBDEe7i8B30sCSSpDNXYVfI5y9Rm7viBJLC6LfxhBUipqTwghhJBLGwW/CCGkhypXKLF0+VYYTc2ZHiIBH+88MAsRQbSzIyFdcbrehCeOqlGus63vJeEBryTLMDPKe+p75dYexL6ib2FgNXZ9g0NmYnTUTRDwvGe+hBBCCCGeQsEvQgjpgbR6I5Ys34Jape3Ojs/dMRVJCeEemhUhPdvmEgNePaGB/oL6XpFSBh+OkKO/n3d8bNKZVDhQsqqVovZ+mBx3P+L8Utw/MUIIIYQQL+Udn+IIIYR0GMdxeGvVbpwrst3ZceHs4Zgxup+HZkVIz2XmOHySrcOqfL1d36hgAZYNkyFQ5B31vQrq07G36FtoTXV2fTG+yZgS9wBkQn/3T4wQQgghxIt5ffArPT0df//9N6ZPn46xY8d6ejqEEOJxq7ZkYMfRXJu2KSm9ce9Vozw0I0J6rnoDi2ePaXCg2mTXd0svEf4zQAqBF2wc0Va2F48RYEzUzRgcMgMM4x1BOkIIIYQQb+L24JdKpUJmZiZqamrAsmyrx3Ech8rKSvzwww+orq7GwYMHsXHjRjfOlBBCvM++4+fx1frDNm0JUUF4cdHltLMjIZ2UqzTjP0fVKNLYfh4R8YDnk2S4OsY76mW1le0VJInD1PgHECyNd//ECCGEEEJ6CLcFv8xmMz744AP88MMPMBqNHb4fx1kKzt5+++2umhohhPQI58tq8cqKHeBa1OH2k4uxbDHt7EhIZ+0qN+CFTA00F2zoGCZh8MFwOZICPJ8c31a2FwM+hoVfjZTwa8DneX6uhBBCCCHezG2flp588kls3brVGszqKH9/f9x777248cYbXTQzQgjxfg1qPZ75fDM0uuYvD/g8Bm/cOwPRoX4enBkhPQvLcfjqnA5f5tjX9xoayMf7w+UIEXt+6WBB/VHsLVrRarbXlLj7ESLr5fZ5EUIIIYT0RG4Jfu3evRtbtmwBwzCIjIzEggULEBkZibNnz2LlypVgGAZvvfWWzX1OnTqFH374AdHR0ViwYIE7pkkIIV7JZGbx0rfbUVzVYNP+6PXjMXJAtIdmRUjPozJyePG4Grsr7Ot7zY8VYckgKUR8zy4fpmwvQgghhBDnc8snpz///BMA4OPjg99//x3BwcEALEGxlStXAgCuvfZam/tce+21CAgIwP/+9z889NBD+PHHH90xVUII8Tpf/HUIh7OKbdrmjh+A66YmeWhGhPQ8BWpLfa98lW19LwEDPD1IiuvjRGAYzwa+KNuLEEIIIcQ13BL8OnHiBBiGwVVXXWUNfAFo90Pmgw8+iE2bNiEjIwMbNmzAVVdd5eqpEkKIV9l88Cx+3J5p05aUEI6nbp7k8Qt1QnqK/VVGLM1QQ3VBwlegiMF7w+UYEeTZLCrK9iKEEEIIcS23FLWoqakBAAwcONCmXSRq3kXJYDDY3Y/H42HevHngOA7r16937SQJIcTLZJ2vxLIf/rVpCw2Q4637Z0Ak5HtoVoT0HBzH4ftcHR5Jsw98DfTj48cJvh4NfHEch/y6NPyevcRh4CtIEodrEl/DiMjrKPBFCCGEENINbvkkZTZbtlIKCgqyaZfL5dbbCoUCERERdvft1asXAOD06dOumyAhhHiZ6no1li7fAoOpeSs6kYCPtx+YiRB/eRv3JIQAgNbM4bXjGmwps99hek6UEC8OkUHiwfpeDfpKpJasRFHDMbs+yvYihBBCCHEut3yi8vf3h0KhgEajsWmPi4uz3j558qTD4FdDg6XAc319vWsnSQghXsJgNOO5L7ehut72PXPJbVMwqFeYh2ZFSM9RqmXxxFE1zjSYbdp5AB4bIMHtvcUeWzZsZk04UbUJ6eV/wczZZ71TbS9CCCGEEOdzS/ArNjYWCoUCBQUFNu0BAQGIjo5GaWkp1qxZg+nTp9vdd+/evQAsATRCCLnYcRyH937ag5N5FTbtN08fitljEz00K0J6jgNVRjx7TIN6I2fT7idk8E6KDONChR6aGVCqzML+4u9Qpy+162PAQ0r4PAyjbC9CCCGEEKdzS82vIUOGgOM4ZGRk2PXNmDEDHMfh4MGDWLJkCcrLywFY6oR9+OGH2L59OxiGwfDhw90xVUII8ajfd5/EptQzNm2jB8XgwfljPDQjQnoGluPwTY4OD6Wp7QJffXx4+GG8j8cCX1pjPXYVLMem3DcdBr7C5YmY3/9NjKTaXoQQQgghLsFwHMe1f1j37N69Gw888ACkUimOHj0KHq855lZdXY0ZM2ZAq9Va2wQCAUwmS2VajuPA4/GwevVqjBgxwtVTJR5g0CrBcWybxwglPuDx+GBZM4w6lZtmRnq6nnbeHMkuxn8+2QQz2/y2HBPqh2+WLoCfXOzBmV1aetp5QwClkcNLx9XYXWGy67s8XIjXhsogF7h+meOF5w7HsThdsxNpZb/AYNbYHS/m+2BM1M1IDJoMhnHL95HESzAMDyKpr6enQQghhFwy3PL14oQJE3Dfffdhzpw5NoEvAAgJCcH777+Pxx57DEajpSht0/8BgGEYPP30024PfJWVleGdd97Bli1bAACrVq3CmDFtZ16sXbsWzz77bIfGv+uuu7BkyZI2j1GpVFi5ciW2b9+OoqIisCyL6OhoTJs2DQsXLrTbQMDV4xBCXKekqgEvfL3dJvAlkwixbPEsCnwR0oYcpRlPHlWjUGP7JQoPwEP9JViUIAbPA/W9qjXnsa94Bao0uQ77+wdNxeiomyARUACEEEIIIcTV3BL8EgqFeOKJJ1rtv/zyy/HHH3/giy++wOHDh1FXVwd/f3+MGDECCxcudGvgy2Aw4LvvvsMXX3xhV6DfmQYPHtxmf25uLu69916UlJTYtJ87dw7nzp3D77//juXLlyM5Odkt4xBCXEejM2LJ8i1oUOutbQwDvHLXNPSOouA0Ia3ZWmrAKyc00NnWtUeAkMHbw2QYG+L+ZY4GkwYHClfhZPkmcLBPrg+SxGJCzJ2I8Onv9rkRQgghhFyqvKawRGJiIv773/96dA579+7FG2+8gfPnzwMAIiIirDXIOuv48eNt9guFrX8gV6lUuO+++1BSUgKhUIjHH38cc+fOhUQiwZEjR7Bs2TIUFhZi8eLF+OuvvxAaGurScQghrsOyHF77bgfyShU27fddPRoTk3t5ZlKEeDkjy+HjbB3WnNfb9Q304+P9EXJESd27jJDjOOTU7MO+899CY1TY9Qt4YoyIWICk0JngMV7z8YsQQggh5JJAn74AmEwmPP7449i+fTsAIDQ0FE899RQiIiKwcOHCLo0pFnd9mdK3336L4uJiAMC7776LOXPmWPumT58OlUqFJUuWoLq6Gp9//jlefvlll45DCHGd5X8exJ7M8zZtlw9PwB2zhnlmQoR4uRo9i2cy1EhXmO36rokRYelgKcR89y5zVBlqsLfoGxQrHX/x1ct/JMZF3wEfUbBb50UIIYQQQiyouiosBfb9/PwgFApx7733YuvWrbjmmmvAeKBGiNlsxk8//QQAGDZsmE3Aqqn/yy+/tP68du1am80CnD0OIcR11u3NwprtmTZt/WKC8fzCyzzy/kOIt8usNeHmfUq7wJeQB7yYJMXLyTK3Br44jsOZmt34PXuJw8CXjygUM3s/hSt6/4cCX4QQQgghHkTBr0ZLlizB33//jaeeegpyudxj80hPT0dtbS0AYPbs2Xb9f/zxB/Ly8rBgwQIAgE6nw759+1w2DiHENdJOF+P9n2xfc8F+Mix7cBakYvfXKSLEm3Ech18L9LjnoApVets6WhESBivG+mB+nHs3hlAbFNia9x72FH0NI2v75RGPESAlfB6uH7AMcf6UxUkIIYQQ4mkU/Grk7++PuLg4l4zNsmz7BzU6efKk9fawYbYfmLVaLT799FMMHToUjz32mMP7OHscQojznS+rxfNfbYO5xXuDWCjAsgdnISKIdn4jpCWtmcNLxzV4+5QWpgvqx48OFmDNBF8kBbivigPHcTir2IPfs5egSJlp1x/ll4Qbkj/CqMgbIODRTq2EEEIIId7A62t+cRyH1NRUJCYm9qiC7OvXr8dff/2Fs2fPorq6GlKpFEOHDsVtt92G6dOnt3q/vLw86+2YmBibvpUrV6KyshLvv/8+wsPDIRAIYDKZbO7j7HHcQSCWtXsMw/Cs/xdKfFw9JXKR8MbzprZBg6c+3wKV1mDT/tr9czB0QIKHZkVa8sbz5lJVpDbh8YM1OFNvtOu7K9EHjw7yh4DnvmWOakMNductR0Fdml2fgCfGuLhFSI68EgADjuv4F1+EEEIIIcS1vD74dccdd+DIkSN45JFH8OCDD3p6Oh329NNP2/ys0Whw4MABHDhwALfffjteeOEFh/dTKJp3iAoMDLTerq2txTfffIPJkydjzJgxAAA/Pz8oFArr8kZXjOMOPB6/w8cyDAOG6fjxhADec97oDSY8/ek6lFbV27Q/euNUTB890EOzIq3xlvPmUrWlWI2XjtRAdUG6l0zA4K2RwZgR474SBRzH4Wz1buzJ/xJ6k8quP9J3EKb1fRwB0ihrG507hBBCCCHew+uDXykpKUhLS8PevXu9PvgVHR2NmTNnQigUYtSoURgzZgwiIiJgMBhw8OBBvPfeeygqKsLq1asxaNAgzJ8/326MpqLzIpHIpuD1F198AZVKhSeffNLaJhKJAFgCa64axx1Y1n7HrgsxDA8Mw4DjOPo2nXSYN503HMfh1W82IfNciU37vMlDcNusER16HRD38Kbzo3buKwAAeb1JREFU5lKkM3NYllmH386r7fp6+wrw8dhgJPgK3faa0Rhq8W/+cuTXHrLrE/BEGBN7O5Ij5oJheOA4js4d0mGd+fKPEEIIId3j9cGvPn36AIDHluR1xpgxY6zZVC1JpVLMnDkTycnJmDt3LlQqFZYvX+4w+NWEx2sux1ZSUoIff/wRc+fOxYABA6ztHakl5qxxXMmk17R7kSCU+IBh+OA4Fkad/bfuhDjiTefNNxvSsPVgtk3biP7ReOKGsTDp7S/yied403lzqclVmrE0Q40clf3fhGkRQryaLINcoIdRp3f5XDiOQ27dAaQWr4TebH8ehMv7YXLs/QiQRMKkt3x5ROcO6SiG4UEkpRqPhBBCiLt4ffCrKStJre75F4eRkZGYNWsWfv/9dxQWFqKoqAixsbE2x8hklvpXRmNzfZOPPvoIHMfZFKcHAL1eb3MfV4xDCOm+rYfOYsWmozZtceEBePO+GRAK6Jt/QjiOw7piA5ad0kJ3QdxLyAP+M0CKm+JtM5ldSWusx77i73C+3r62F58RYmTkDUgKnQUeQ/sGEUIIIYT0BF4f/Dp16hQAwMfn4ig63K9fP+vtwsJCu+BXUFAQAMBsNkOpVKKkpAQbN27ErbfeanOs0WiEUqm0uY8rxiGEdM/xnDK8tXq3TZu/XIL3H54NPzntBEeIysjhzZMabCmzL2ofK+Nh2TAZBvq75+MKx3HIqzuE1OLvoTMr7frDZH0wJe4BBEiiHNybEEIIIYR4K68Nful0Ouzduxc///wzGIZBSkqKp6fkFFKp1Hq7ZVZWk4SE5t3eSkpK8P7770MqldrVOysrK7MuV+zdu7fLxiGEdF1xVT2WfrEVRlNzKotQwMM7i2ciJtTfgzMjxDtk1ZuwNEODIo39Msc5UUI8lySDXOCebC+VoQb7i79HYUO6XR+fEWJExAIMCbuSsr0IIYQQQnogpwS/du/ejcWLFztjKDtNxWPvuOMOl4zvblVVVdbb4eHhdv1JSUnW2ytXrsTevXvxyCOP2GVlpac3fzgfMmSIy8YhhHRNg1qPpz/bjDqVzqb9udunYmjfSA/NihDvwHEcfjyvx0fZOlywmSMkfGDpICmujnHPMkeWY5FVvQ1pZb/CxNrXEguVJWBK3P0IlMS4fC6EEEIIIcQ1nJb5xXFc+wd10aOPPorx48e7bHx3Sk1NBQD4+vo6zLQaNmwYAgMDUVtbi7Vr1yI4OBh33nmn3XFbtmwBAEgkEkyYMMFl4xBCOs9kNuP5r7ahoLzOpv2uK0dg5phEz0yKEC9RZ2Dx8nEN9lSa7Pr6+fLwzjA5EnzcUwuvWnMee4u+RbXWflMdHsPHiIgFSA6bCx5DtfkIIYQQQnoypy57ZBgGI0eOdMpYEokE8fHxmDdvXo/ISOI4DsuWLcPIkSMxffp0h8ds3rwZR49ail5fc801kEgkdsfw+XzcfPPN+PzzzwEAixYtglwutzkmNTUVu3fvBgAsWLDAZimls8chhHQOx3F478e9OHqmxKb9ilF9cfdc57w/EtJTpStMePaYGpU6+y/Mro8T4YmBUkj4rs/2Mpp1OFr+B05WbQEH+yWX4fJ+mBhzD4KklO1FCCGEEHIxcHrNr9WrVzt7SLcwm80wmWy/hW5Zk8toNFp3RQQAHo8HoVBo/fnbb7/Fd999h++++w7Tp0/HggULkJSUBJlMhtLSUqxfvx7fffcdACA+Pt5ux8WW7r77bqxfvx7FxcVYs2YNYmJiMHbsWLAsi+3bt+Pdd98Fx3EICQlpc7mps8YhhHTcj9szsWF/tk3bkIRwPHfHVLftVEeItzFzHL7N0ePLczq7UJOPAHhpiAxXRIrcMpeihmPYV/QdVMZquz4hT4rRUTdhYPDlYKi2FyGEEELIRYPhnLBecffu3XjggQfAMAxOnz7tjHm53dq1a/Hss892+Phrr70W77zzjvVnk8mEDz74AKtXr3ZYyL5JcnIy/vvf/9rt8nih3Nxc3HvvvSgpKXHYHxISguXLlyM5Odkt47iSQasEx9l/896SUOIDHo8PljXDqFO5aWakp3P3ebM7Iw/Pf7UNLd9Vo0J88fWS+Qj0pczKnoLeb5xLaWTxdLoGh2rslzkOCeDj7RQZomWuX1aoMdbhQMlq5NUddNjf2380xsXcAbkwsMuPQecO6SiG4UEk9fX0NAghhJBLhtfu9tjTCAQCLFmyBDfddBN+++037Nu3D6WlpdBqtQgNDUViYiLmzp2LWbNmQSBo/2nv06cP1q9fj5UrV2Lbtm0oKioCx3GIiorCtGnTsGjRIrvi9a4chxDSttMFlXh1xU6bwJePVIT3H5pDgS9yySrWmPFomhr5avsvOBYmiPFQogRCnmszIjmOxRnFbhwq/QkGs8auXy4MxoSYRYj3H+7SeRBCCCGEEM+hzC/icZT5RVzFXedNhUKFe95Zi5qG5gtrPo+HDx+dg5EDqGZQT0PvN86RWWvCf46qUWuw/ZgRIGLwerIME8OErdzTeWp1Jdhb9C0q1Gfs+hgwGBw6CyMjroOQb1+Dsyvo3CEdRZlfhBBCiHtR5hchhHSDWmfA059ttgl8AcBTN0+kwBe5ZG0tNeCl4xoYLvheIzmAj/eGyxEmcW09LRNrQGbFehyrXA+WM9v1B0t7YVLsPQiV2e+6TAghhBBCLj5OCX5NmjQJaWlpzhiKEEJ6DJOZxUtfb0dOSY1N+61XDMW8SYM8NCtCPIfjOKzI1eN/Z3V2fTMihXgtWQaxi3dzLG44jv3F36PBUGHXJ+CJMSLiOiSFzgSPcX2dMUIIIYQQ4h2cEvzi8/nw9aXUbULIpeWT31Nx4FSRTdvUYb2x+NqxHpoRIZ5jZDm8cUKL9SUGu757+oixOFECngt3PFUbFDhY+gPy6g457I/1S8GE6EXwFYe6bA6EEEIIIcQ70bJHQgjpgt92ncDvu07atA2ID8VLd14OnosLeBPibRqMLJ5K1yDtgh0dBQzw4hApro4Ru+yxWc6MU1XbcLT8dxhZ+4wzqcAf46LvQELAGDAuDL4RQgghhBDvRcEvQgjppP0nCvDxr6k2bWGBcrz74CxIRK4v4k2INylSm/HoETXOX7Cjo5+QwQfDZRgZ7LrXRIX6HPYXf4cabYGDXgaDQqZhZMQNEAvkLpsDIYQQQgjxfhT8IoSQTjhXXI2Xv/kHbIuNcmViId5/aA5C/OkCm1xajilM+E+6GnUX7OgYK+Phk5Fy9PJxTV0tnUmFtLJfkF2zC4D9ptUh0t6YGHsnQmV9XPL4hBBCCCGkZ3FL8OvZZ5/t9hgMw+Ctt95ywmwIIaRrquvVePqzzdDojdY2HsPgtXumo29MsAdnRoj7bS414BUHOzqmBPLx3xFyBIqcv6Mjx3E4p9iDQ6U/QWdW2vULeVKMirwBA0Omg8e4dkdJQgghhBDSc7gl+PXnn392q84Gx3EU/CKEeJRWb8Qzn21BZa3apv3xGyZg/JB4D82KEPfjOA7f5OrxuYMdHWdHCfHyENfs6KjQFmFf8XeoUJ9x2N8ncDzGRt0KmTDA6Y9NCCGEEEJ6Nrcte+Q4+2UJ7WEYBn5+fggODkZQUJALZkUIIe1jWQ6vfbcT2YVVNu3XXZaE6y5L8tCsCHE/g5nD6yc12FhitOu7r68YD/STOL2ovNGsQ3rFWpyo3AIOZrt+f3EkJsTciWjfwU59XEIIIYQQcvFwS/Brx44dnb7P999/j9WrVyMxMRFffvklZDKZC2ZGCCHtW/7nQfx7LN+mbVxSHB69bryHZkSI+yn0LJ7JUOOowjYAJWCAl5NlmBstcurjsZwZubWpSCv7DWpjjV0/nxFiWPg1SA67EnwebTRBCCGEEEJa55bgV3R0dKfv8/zzzwMAfvjhBzz77LP4+OOPnT0tQghp17q9WVizPdOmrW90MF67ZzoEfKopRC4NJ+pMeDpdjQqdbRa3v5DBByPkGBHkvI8TlqDXAWRU/IV6fZnDY2L9UjA+eiH8xGFOe1xCCCGEEHLx8urdHpcsWYIdO3Zg27ZtOHDgAMaNG+fpKRFCLiFpp4vx/k/7bNqC/WR476HZkEucm+VCiDfiOA5/FBnwbpYWxgsK28fJePhklBzxcufs6MhyLHJrU9sMesmFQRgXfQd6+Y90+vJKQgghhBBy8fLq4JdAIMCNN96IDz/8EH/88QcFvwghbpNfqsDzX22DmW2+4hcLBXj3oVkID/Lx4MwIcQ+dmcPbJ7VYX2Kw6xsZJMB7w2UIcMKOjizHIq/2ANIr/mw16MWAjyGhszA8Yj6EfEm3H5MQQgghhFxavDr4BQCJiYkAgKNHj3p4JoSQS4WiQYunP98Mlbb5op9hgFfunoaB8bTMilz8SjVmPJWuwekG+wLzt/cW49H+Egh43cu86ljQi4fEoMlICZ9HSxwJIYQQQkiXeX3wS6PRAACqq6s9PBNCyKVAbzRh6RdbUFqttGl/6NqxmJLS20OzIsR9UquMeO6YBvVG2/peUj7warIMV0R2b8lvR4Ne/YImYVj4NRT0IoQQQggh3eb1wa+tW7cCAHx8aJkRIcS1OI7DW6t242RehU371RMH4uYrhnpoVoS4B8tx+DZXj+VndeAu6Osl5+H94XL08e16fS+WY5FXdwDp5RT0IoQQQggh7uWW4FdaWlqnjjebzaioqMCWLVuwa9cuMAyDlJQU10yOEEIafbvxCLan5di0jRoQjadunkjFtclFTWlk8UKmBnsqTXZ9l4cL8WqyDD7Crr8GCuqP4lDpTx0Ies2Dnzi8y49DCCGEEEKII24Jft1+++3dunDk8Xi4++67nTgjQgixtfXQWazYZFtbMD4iAG/cNwMCvnN2syPEG51rMOPJdDWKNLbbOfIAPNxfgkUJ4i7/DTeYtThQshpnFf867KegFyGEEEIIcQe3LXvkuAsXUXSMv78/XnrpJYwcOdLJMyKEEIvjOWV4a/Vum7YAHwnef2gOfGVij8yJEHfYXGrAayc00F1Q1z5AxOCdFBnGhAi7PHa56gx2Fy6H0vD/9u47PMoqb+P4PZPMJJNKQgIBEnqTHkBpiggIoigoKmIFV1x737Wsa1v7sqsuKtgNrm0VVCwgKEU60qQXqSHUkDopk8nM8/7h68gwCQRIZiaT7+e6vHbmnPM8+eEeEufOOec57NP3W+h1tro1HKH4iJRT/hoAAABAVfgl/LrjjjtO+pqoqCi1aNFCffr0UWQkjzUHUDOyDhfoocnfy1n+x6oXS7hZz98yVE2S4wJYGVBznG5DL20u0ce7ynz6OsaH6Z/do9XIZj6le7vc5Vp1YKp+OfS1jGNODyP0AgAAQCAEbfgFADWtsNihv7w2Q3n2Uq/2R64boC6tGwWoKqBmHXG49ZdVRVqd6/LpuyzNqr92sCki7NS2OeaWZmne7teVXbLLp69eRGOd1+w2JUXx1FQAAAD4V9A/7REAakK5y6VH35qtXQdyvdpvvKiHhvZqG6CqgJr1a6FLd62wa3+J94osq1l6qKNNl6ad2jZfw3BrQ/ZsLd/3sVyG06e/Y9JQndX4KoWbrad0fwAAAOB0EH4BqHMMw9C/P1mknzft9Wof3LO1/jSc8wURmhYecuqhNUUqOuaBjimRJk3oHq2O9U7tPwmKnLmav+cNZRWu8+mLsiTo3KZ/Vmps51O6NwAAAFAdCL8A1Dmf/rhWXy7Y6NXWsUVD/e2GAaf1ZFogWH28y6EJG0vkPqb9rPrhej49SgnWUzvfa0feMi3MfFcOl92nr0W9Xjo79UZFhsec0r0BAACA6uLX8GvDhg3auHGjcnNzVVbme8juiXB2GIDTtXDtLk2cusSrLSUxRi/cOlQRFn4fgNBS7jY0YVOJPt3t+zP3iqa/ne8Vbj75wLfMVaxFezP0a+5Cnz6L2aZ+qTeodcLZhMkAAAAICn75pLd//37dcccd2rhx44kHHwfhF4DTsTUzW4+/84OMo447io60asIdFyoxLipwhQE1oNBp6KE1RVp82Hufo1nS/R1sGtPMekrh1H77Js3bPVl2Z7ZPX6PoM3Rusz8r1pp8qmUDAAAA1c4v4deTTz6pDRs2+ONLAUCFDucV6a+vz1CJ448gIMxs0j/Gn6+WjRMDWBlQ/bKKXbp7RZG22703OkaFSc+nR+ucBpaTvqfL7dSKA59r7aFvJXkfmG82halnoyvVOflCmU2ntoUSAAAAqCl+Cb+WLVsmk8mkoUOH6oEHHlCDBg1ktfLEJwD+UeIo04Ovz9Sh3CKv9nuu7KfeHdMCVBVQM37JLde9K4uUW+YdUKVEmvRKzxi1jQs76XseLt6p+XsmK7d0r09fQmSqzmt2m+rbmp1yzQAAAEBN8kv4FR0drdLSUg0ZMkSpqan++JIAIElyuw09/uYMbd5z2Kv9ivM6adSATgGqCqgZM7LK9MS6YpUdc7J9p/gwvdQzWkkRJ7cqy22Ua/WBr7T64JcyfI7LlzonD1PPRlcq3MwvtAAAABC8/LI34bzzzpNhGFqyZMmJBwNANXr1s/mau3KbV1ufTk111xV9A1QRUP0Mw9DkrSV65Bff4GtII4ve6h1z0sFXTskefbn1ca06OM0n+Iq2JOrCVg+rd5NrCb4AAAAQ9Pyy8uuBBx7QmjVrNHXqVPXp00cXXnihP74sgDpu+oJ1yvh2mVdbqyaJeuqmwQozcy4RQoPDZeiJtcWaud/p03dT6wjd2iZS5pM42N5tuLT20DdaeWCq3IbLp79Nwjnq0+Q6RYRHn1bdAAAAgL+YDMMwTjzs9GVnZ+uKK67QwYMHNXjwYEVHn9x/NJtMJj377LM1VB0CqaykUIbhu53maJbIGJnNYXK7XXKW2v1UGWqztb/u1+0vfS2X64+5lRhn09sPXaaUxNgAVoZgV5u+3xxxuHXvyiKty/MOqSxm6fHOUbqoycmtysor3af5eybrUPF2nz5beLzOSfuTmsX3OK2aQ1ltmjsILJPJLKuNn0UAAPiLX8KvX3/9VWPHjtWRI0dO6z6bNm2qpooQTAi/UN0Kix26/unPdDDnj7litYTp9fsuUYcWDQNYGWqD2vL9ZmuBS/estGt/ifeP8XpWk17qHq1uiVVf3G0Ybq0//L1+3v+pXIbvCrKW9XqrX+pYRYbzYf14asvcQeARfgEA4F9+2fb4zDPPKDs72x9fCgD0r48XeAVfkvTY2IEEXwgZ0/c69Oz6EjmO+b1Bixiz/tMzWqlRVX+iY4HjkObveUMHijb79EWExahf6ji1Suh9uiUDAAAAAeOX8GvNmjUymUwaOnSoHnjgATVo0EBWKwfkAqh+s5Zv06yff/Vqu3poDw3s0SpAFQHVp9Rl6MWNJfois8ynr3dSuF5Mj1KspWrn2RmGoU1HftSyfR+p3O3w6W8W10Nnp/1JUZb4064bAAAACCS/hF/x8fEqLS3VkCFDlJqa6o8vCaAO2n+kUP/8aIFXW5u0ZN026hzJXRqgqoDqkVnk0l9WF2tLge8h9Fc2teovHWwKN1ftYHt7WbZ+2vOWsuzrffqs5ij1Tb1erRPOlukkDsoHAAAAgpVfHnc2fPhwGYahZcuWnXgwAJwCl9utp96bo6LSP1bEWMPD9MytFyvC6pecH6gxcw+U6epFhT7BV6RZeqpLlB7uFFWl4MttuLXh8Cx9vvmhCoOv1Nguurz9C2qTeA7BFwAAAEKGXz4R3nXXXVq/fr0+//xz9e7dW8OGDfPHlwVQh/z3+zX65df9Xm13jj5XrVKT5Xb7rpQBagOn29CrW0o1ZWcF2xKjzfpnerTaxFXtfK8jxbu0YO+7OlzBkxwt5kj1bnKN2iWeR+gFAACAkOOX8Gv58uUaOXKkdu3apfvvv18zZsxQdHT0Sd3DZDLp2WefraEKAdRmm3Yf0ttfr/Bq690xTaMHpweoIuD0HSp166HVRVqd6xvenp9i0WOdoxRjOXFQ5XSVauWBqVp/eKYM+T5Zt1FMB52bdrNiI5KrpW4AAAAg2JgMwzBOPOz0tG/f3vObZMMwTvq3yr9fs2nTppooDwFWVlIow/D9QHY0Hh+PypQ4nBr7zOfKPJTvaasXE6kP/n6lUho2YN7gpAXD95ufjzj10Opi5ZR5/4gON0n3trdpTHNrlX6W7s5fqUV7M1TkPOLTZzFH6sxGo9UhabBMJr+cghDygmHuoHYwmcyy2mIDXQYAAHWGX1Z+NW7c2B9fBkAd9Mpni72CL0l6+LoBqh8fFaCKgFPnNgy9t92h17eW+qzRahhp0gvp0eqacOIf3fayI1qcNUW781dU2N88/kz1aXKdYqz1q6FqAAAAILj5JfyaM2eOP74MgDpm/pqdmr7Qe0XoyHM66JyuzQNTEHAa8svcevSXYi08XO7T1zspXM90jVJixPFXaLkNlzYcnqWVBz6Xs4InnMZY6qtv6lg1i+9ebXUDAAAAwY5HoAGolbLzi/T8B/O92po2jNedl/cJUEXAqduQV66/rC7S/hLvbY4mSTe3jtD4NpEKO8E2x8PFO7Qw8x1ll+zy6TPJrM7Jw9Q95TJZwiKrsXIAAAAg+BF+Aah13G5DT2fMVX7RHytbwsxmPXHjYNkiLAGsDDh5U/c49MLGEjmP2edYz2LSM92i1Df5+HO6zFWsFfs/18bsWTLke4xng6hWOjvtT6pva1adZQMAAAC1BuEXgFrns7nrtHzjXq+28ZecqfbNeFodao9yt6EJm0r06e4yn77O9cL0Ynq0UmyVb3M0DEO78n/W4qwpKnbm+vRbzVE6s/Fota8/UGYOtAcAAEAd5pfwa9++fdVyHw7OB7A964gmfbHMq61bm0a6ZkjXAFUEnLwCp1t/XVWsZUd8z/e6urlV97S3yWKufJujo7xIC/e+qx15Syvsb1mvt/o0uVZRloRqqxkAAACorfwSfg0cOLBKj2Q/HpPJpI0bN1ZTRQBqI4ezXE+8+6PKyl2ethibVY+NG6gwMytbUDvstrt098oi7S7y3ucYGSY92SVKQxpZj3v9AfsWzd39muzOIz59sdZk9Uu9UWlxXaq1ZgAAAKA289u2R8PwPYcEAE7G5C+WaXtWjlfbA1efo5TE2ABVBJycpYed+uvqYhWWe/9MTIk06eWe0WoXV/mPZbfh0uoDX2j1wS99zvYyKUxdG1yk9JSRCjdH1EjtAAAAQG3ll/Dr0ksvPelr5syZo4KCAp177rm65JJLlJiYWAOVAagtlm3M1Kdz1nm1De3VRkPObBOgioCqMwxDn+4u04RNJXId87ugLvXC9O8e0aofUfnqxQLHIc3d/boOFW/z6atva6YBTW9Voi2tussGAAAAQoJfwq/nnnvupK/JzMzU9ddfr4ULF2r06NHq3bt3DVQGoDbIs5fomYy5Xm0piTG6/6qzA1QRUHVOt6EXN5bo8z2+B9sPb2LR3ztFyRpW+dEAv+Ys0sK978npLvHp65w8TGc2Gq0wM085BQAAACoTtIfkpKWlaeLEiTIMQ48++qjy8/MDXRKAADAMQy/89ydl5xd72swmkx6/cZBibGzvQnDLK3Pr9p+LfIIvk6S720XqqS6VB19lrmLN3f265u553Sf4soXHa1jLB9W7ybUEXwAAAMAJBG34JUmdOnXSkCFDlJOTo08//TTQ5QAIgK8Xbdb8NTu92q4flq6urRsFqCKganbYXbp+sV0/H/NEx6gw6aUe0RrbKrLSh8EcLNqmaVse0a+5i3z60uK6aVS755TKofYAAABAlQR1+CVJ5557rgzD0KxZswJdCgA/256Vo5c+9f7w36F5A914UY8AVQRUzaLDTt2wuFCZxd5PdGxsM+v9PrE6t2HFq7XchlurDnyhr7c9pcKyw159YSaL+ja5QUNbPCCbJb7GagcAAABCjd+e9niqEhISJEm7d+8OcCUA/Km41KlH35olh/OPVTO2iHA9Pm6gwsPCAlgZUDnDMPTRLof+valU7mP60hPCNKF7tBIrOdjeXpatubtf14GiLT59CZGpGtjsDg61BwAAAE5B0Idf27dvlyQ5nc4AVwLAn/71yQLtPpDn1fbAmHOU1rBeQOoBTsTpNvTchhJ9kel7sP2IVKv+1skmi7nibY7bc5dqYeY7KnMX+/R1TBqisxqPUbjZWu01AwAAAHVBUIdfGzZs0DvvvCOTyaS0NH7bDdQV3y7erBlLt3q1XdinnYb1bhegioDjy3a49ddVRVqd6/JqN0u694xIXdM8osLzvQoch7R8/yfambfMpy8yLFb9m96sZvHda6psAAAAoE7wS/h1/fXXn9R4t9utgwcPau/evTIMQyaTSUOGDKmh6gAEkx37cjTh44VebS0aJej+q84OUEXA8f2SW66/rCrSYYfh1R4TLj3XLVpnN/A936vMVaw1B6dr3eEZchvlPv1NYjtrQNNbFGWpV1NlAwAAAHWGX8Kv5cuXV/pEq+MxjN8+SHTo0EE33XRTdZcFIMiUOJz6+1uzvc75irCE6x/jz5ctouIDwoFAMQxDn+0p0z83lqjcO/dSWpRZL/WIVqtY7/Pp3IZLW47M04oDn6u0vMDnnmZTuM5qdJU6JQ+VyRT0z6QBAAAAagW/bXv8PciqKpvNphYtWuiCCy7QDTfcoIiIiBqqDECw+PenC7Vzf65X2wNjzlbLxokBqgioWKnL0HPrSzQ9y/d8r7Pqh+uF9CjVs3qHV3sL1mrpvg+VW7q3wnsm2ZrrnLTxSopqXhMlAwAAAHWWX8KvzZs3++PLAKjFZizdom8Xez/lbljvtrqob/sAVQRUbF+JWw+sLNKmApdP39iWEbq9baTCjzrYPrc0S8uyPlRm4S8V3i/KkqAzG41Wm4R+rPYCAAAAakBQH3gPoG7YtT9X//xogVdbs5R6uv+qcwJUEVCxpYedenhNsfKc3quZo8KkJ7pE6fxGfzyRsbS8UCsPTNWm7B9lyO1zrzCTVV0bDFeXBhfJEhZZ47UDAAAAdRXhF4CAKi1z6m9vzVJpmfc5X0+PH6KoSM75QnAwDEPv73Do1S2lPjFWs2iz/tX9j/O9XG6nNmTP0uoDX6rMXVzh/doknKMzG12paCtbegEAAICaRvgFIKBe+nSRdu7zPufrvqv6qVUTQgEEh6JyQ4+vLdaPB5w+fec1tOipLlGKsZhkGIZ25a/Q8n0fq6DsYIX3Solup95NrlNyVIuaLhsAAADA/6ux8Cs7O1tJSUmnfZ+PP/5YV155pcLCwk48GECtMnPZVn29yPtMwCFntdFwzvlCkNhpd+n+lUXaWeS93ssk6fa2kRrXKkJmk0mFZYe1YM/byrKvr/A+sdYG6tX4ajWP73lKTz8GAAAAcOpqJPz64IMP9NZbb+nNN99U+/an9iG2rKxMd9xxhxYsWKBDhw7p7rvvruYqAQTSrgO5+udHP3m1NW1YT3+9uj/hAILCD1kl+tvKQhWVe7fHW0x6tluU+iZbZBiGthyZpyVZH8jpLvW5h9UcpfSUkeqYNERhZrbxAgAAAIFQ7Y+VstvteuWVV3T48GG9+OKLp3wfq9Uqi+W3Dxbvv/++cnJyqrFKAIHkKCvX39+arRLHH6mC1RKmp8efzzlfCDiXYeildbm6Z9kRn+CrXVyYPuwXo77JFhU5c/X9zgn6KfMtn+DLJLM6JJ2vKzv8S10aXETwBQAAAARQtYdfX375pex2u8xmsx599NHTutcjjzwiq9Wq0tJSff3119VUIYBAe+l/i7Q9yzvQvvfKfmqdWj9AFQG/yXG4dcuibL21pcCn76ImFr3fJ0aNbWZtz12iqZsfVGbBGp9xjWM6alT759Qvdaxs4XF+qBoAAADA8VR7+LVo0SJJUt++fdWyZcvTuleTJk10zjnnyDAMLViwoDrKAxBgs37epukLN3m1nX9ma11y9hkBqgj4zc9HnBq9sFBLDjm82sNN0kMdbPpHlyjJsOvH3RM1Z/ercriKvMeZI9QvdZwubPWwEiJT/Vk6AAAAgOOo9jO/tmzZIpPJpD59+lTL/Xr16qUff/xRO3bsqJb7AQicPQfz9OJ/vc/5SmsQr79ewzlfCByXYeitbaV681eHjGP6kiJM+md6tLolhmtX/gotzHxHJeW+q8IaRrfTuU1vVnxEin+KBgAAAFBl1R5+5eXlSZIaN25cLff7/YmRubm51XI/AIHhcP52zlexw+lps4aH6R/jz1d0pDWAlaEuO1Tq1iNrirQyx+XT172+Vc93jVRceInm7X5b23J9VyCHmSzq2egKdUoeJrOp2hdTAwAAAKgG1R5+lZWVSZKcTucJRlaNYfz2e3iXy/eDCYDa45X/Lda2vUe82u6+sq/apiUFqCLUdQsPOfX3tcXKK/Ne72WS9Of28bqlfYwys5do6vY3VeT0/QVMkq2lBjT7M1scAQAAgCBX7eFXQkKCsrOztXfv3mq5X1ZWliQpMTGxWu4HwP++WbxZXy7Y6NU2qEcrjTynQ4AqQl3mdBt6bWupMnY4fPrqW016/qz6OjPZrEU7J2vDoZk+Y0wKU/eUS9Wt4cUym6r9xygAAACAalbtezTOOOMMGYahH374oVruN3/+fJlMJrVv375a7gfAvzbvPqwJH3lvF2uSHKeHrj2Xc77gd/uKXfrTUnuFwVev+uH65JxYNYvcrk/W3FFh8JUQmaqRbZ9S95RLCb4AAACAWqLaw6+BAwdKkjZu3KgVK1ac1r02bNiglStXet0XQO2RZy/Rw298r7LyP7YtR1jC9eyfhyjaxjlf8K8fD5TpqoV2rcvz3kYfZpLuaBupiT0jtOPI//Tlxr+pwHHQa4xJJnVtcLEubfu0kqKa+7FqAAAAAKfLZPx+qFY1KS4u1sCBA5Wfn69GjRrpo48+UkrKyT/9KicnR9dcc4127typhIQEzZkzRzabrTpLPa79+/fr+eef18yZv/3mf8qUKerVq1eVrrXb7crIyNDs2bOVmZkpt9utJk2aaNCgQbrhhhuqvIUz2O5TU8pKCmUY7uOOsUTGyGwOk9vtkrPU7qfKcDrKXW7dN/Fbrdic5dX++LiBGtqrrV9qYN5AkhwuQy9tLtGnu8t8+hpGmvRct2i1iDqsubtfV3aJ75OF4yMa6dymf1bD6Db+KBe1GN9zUFUmk1lWW2ygywAAoM6o9vBLkr744gs9/PDDMplMSkxM1KOPPqphw4ZV+fo5c+boqaee0oEDB2QymfTMM8/osssuq+4yK1RWVqb33ntPkydPVnFxsae9quHX9u3bNX78eM9ZZcdKSkrSpEmT1KVLl1p1n5pE+BWaXv9iqf77/RqvtisHdtY9V/bzWw3MG+y2u/TgmmJtKfB9aEr/BuF6orNNB+0LtCRrisrdvlshOyVdoDMbX6lwc4Q/ykUtx/ccVBXhFwAA/lUj4ZckPf300/rvf//rOdOnadOmGjp0qLp06aK0tDTVq1dPFotFTqdT+fn52rt3r9auXavZs2drx44dnqc8XnvttXr00UdrokQfCxYs0NNPP61du3ZJklJSUnTgwAFJVQu/7Ha7RowYob1798piseiee+7R8OHDFRkZqRUrVuiFF17Qnj17lJSUpC+//FLJycm14j41jfAr9MxdtUN/e3OWV1vX1o008d7hCg8L81sdzJu67busMj29vlglx+Re4SbpnvaRuiy1TAv3vqtd+T/7XBttra9Bre5Rw4iWfqoWoYDvOagqwi8AAPyrxk7rffTRR5WUlKSJEyfK5XJpz549euutt6p0rWEYCgsL0x133KFbb721pkr0KC8v1z333KPZs2dLkpKTk/XAAw8oJSVFN9xwQ5Xv884773iecvniiy/qwgsv9PQNHjxYdrtdDz74oLKzs/X666/r8ccfrxX3AU7Gzn05eiZjrldbUnyUnh5/vl+DL9RdpS5DL2wo0Zd7fbc5pkaZ9Xy3KNUL26Ivtk5SkTPXZ0zLxD46r9WdigiLJsAAAAAAQkC1H3h/tFtuuUXTpk3TgAEDZDKZZBjGCf8xmUwaMGCApk2b5pfgS5LCw8MVFxcni8Wi8ePH6/vvv9fIkSNP6kl0LpdLH3/8sSQpPT3dK2j6vf+NN97wvJ82bZpKSkqC/j7AybCXOPTwG9+r2OH0tIWHmfXMn4eofnxUACtDXbHL7tL1iwsrDL6GNLLov31sshf/T99tf84n+Ao3R+ictPEa2uZB2Sxx/ioZAAAAQA2r8ee0t2vXTpMnT9aBAwc0f/58rV27Vrt371ZeXp4cDociIiJUr149NWvWTF27dtU555yjRo0a1XRZPh588EHdcsstatq06Sldv2rVKuXm/vZBqqLzzaZOnaodO3Zo1KhRmjp1qkpLS7Vw4UKdf/75QX0foKrcbkP/eH+u9hzM92q/d3Q/dW558g+9AE7WjKwy/aOCbY4RZukvHWwamHxEc3a9puySXT7XJtla6rxmt6leZKOT+sUHAAAAgOBX4+HX71JSUjR69GiNHj3aX1/ypMTHxys+Pv6Ur1+/fr3ndXp6uldfSUmJJk6cqK5du+ruu+/W1KlTPdccGzYF232Aqpoyc5UW/LLLq+2ivu008pwOgSkIdUapy9CEjSWamum72qt59G/bHN3On/TF1g/kMo4dY1LXBsPVI+VyhZn99iMRAAAAgB/xX/rVZMeOHZ7XqampXn0ZGRk6dOiQJkyYoIYNGyo8PFzl5eVe1wTrffwhPOLE2+FMJrPnfy2RMTVdEk7S4rU79dbX3oeGn9G8oR4ae4GsVkuAqmLe1AW77U7dtyxHW/KdPn0Xpdn0l07h+nnPa9qZu8ynP9paX4Nb3asm8Z292pk3OFXMHQAAgOBE+FVNcnJyPK8TEhI8r3Nzc/X222+rf//+nqdFxsXFKScnx7MtMZjv4w9mc9UPQTeZTDKZODQ9mOw9lKe/v/Gtjn5ubHyMTf+861JFRUYGrrCjMG9C04zMIv195REVl3s/tNhqlh7plqheCb/qm40vqdiZ43Nt6/pna0CrOxQZXnlAwbzBqWLuAAAABBfCr2ry+2HxVqvV67yYyZMny2636/777/e0Wa1WSVJxcXHQ38cf3G7XCceYTOajHprg9kNVqIpSh1MPvDJNBUWlnjazyaRnbh2uhokxVfr/tiYxb0KTw2XoxbV5+nRnkU9fs5hwPd09TEfy3tDXm+b59IebI9W/+c1qlzxQJpOpwjnKvMGpYu7gZJzML/8AAMDpIfyqZmbzHw/QzMrK0kcffaThw4erffv2nna3+8T/QRxs96lJ5Y7iE35IsETGyGQKk2G45Sy1+6kyHI9hGPrHe3O0LfOwV/stI89S91b1g+L/J+ZN6Mkscumvq4u1ucA3tDo/JUwjU+bp5x3TVO52+PQnR7XSec1uU3xEisodvsHZ75g3OFXMHVSVyWSW1RYb6DIAAKgzCL+qSVTUb+dWOZ1/nDvz8ssvyzAM3X333V5jHQ6H1zXBfB+gMp/PW69Zy7d5tQ1Ib6lrhnQLTEEIebP3l+mpdcWyl3u3W0zSjS0OKd41SRsOHargSpO6NbxEPVIuk9nEjz0AAACgruFTQDVJTEyUJLlcLhUWFiorK0vffPONrrnmGqWlpXnGOZ1OFRYWel0TzPcBKrJm237957MlXm3NUxL0txsGeG2zBapDmcvQvzeX6NPdvk9zbGxza2Ty51LpfFW0ziYxMk39UscpJaZdzRcKAAAAICgRflWTli1bel5nZWVpwoQJstlsuu2227zG7d+/37PNsEWLFkF/H+BYh/OK9Ohbs+Q6artsVKRFz90yVNGR1gBWhlC0r8Stv6wq0sZ8322O6fFZ6mF7WSr3Pa8wIixGPRtdofb1z5OZg8cBAACAOo3wq5p06tTJ8zojI0MLFizQnXfe6bOaatWqVZ7XnTt3Dvr7AEcrd7n06JuzlFNQ4tX+97ED1SylXmCKQsjaXeTSn5fZdbDU+2mO4Sa3zomfrva22Tp2oaFJZp2RNFg9UkYd90mOAAAAAOoOwq9qkp6eroSEBOXm5mratGmqX7++xo0b5zNu5syZkqTIyEj169cv6O8DHC1jxmqt23HQq+2GYd11bjdWDaJ67bK7dPMyuw47vIOveuF5GlzvDTWw7vG5pnFMR/Vpcp0SbWk+fQAAAADqLvOJh6AqwsLCNGbMGM/7sWPHKjo62mvM4sWLNW/ePEnSqFGjZLPZgv4+wO827jqk979b6dXWq0Oabrq4Z4AqQqjaYXdpfAXBV4vINRqV9LRP8BVrTdb5ze/Vha0eJvgCAAAA4IPw6/+5XC45HA6vf45+UqLT6ay073d/+tOflJqaKkn68MMP9d133yknJ0fZ2dn6+OOPdfvtt8swDCUlJenWW2+ttJZguw/gKCvXU+/Nkcv9RxiRGGfTY+MGKszMtxFUn18LXRq/1K7sY4Kv9rYlGprwtiLMf2y5DTdHqGejK3V5+xfVvF5PHrYAAAAAoEImwzCMEw8LfdOmTdPDDz9c5fGXXnqpnn/+eZ/27du3a/z48crKyqrwuqSkJE2aNEldunQ57v2D7T41qaykUIbhPu4YS2SMzOYwud0uOUsreqYbatJLny7UZ3PXe7X987Zh6telWYAqqhrmTe2ytcClPy+3K6/M+8fSGVGLNCD+Y5lMf7S3TjhbZzUarWhr9T+llnmDU8XcQVWZTGZZbbGBLgMAgDqDM7+qWatWrTR9+nRlZGRo1qxZyszMlGEYaty4sQYNGqSxY8f6HDpfG+6DuuvnTXt9gq+L+7UP+uALtcvm/HLdsrxI+U7v4Ktj1AL1j//UE3wlR7VUnybXq2F0m0CUCQAAAKAWYuUXAo6VX8GrsNih6/7xPx3KLfK0NU6KVcajVyg60hrAyqqGeVM7bMwv163Li1RwTPDVOXqezo77TCaTFGayqG/qWLVL7C+TqWa32jJvcKqYO6gqVn4BAOBfrPwCUKl/fbLQK/gymaRHbxhYK4Iv1A7r88p163K77OXe7V2i56hf3FSZTFJEWLSGtLhfKTHtAlMkAAAAgFqN8AtAheas3K5Zy7d5tV19fjd1a9MoQBUh1PySW647fvYNvrpF/6A+cV/IZJKiLYka1upBJUSmBqZIAAAAALUe4RcAH9n5RXrxo5+82lo3qa/xF58ZoIoQalbn/BZ8Fbu827vHfK9esdNlMkn1IptoWMsHFWOtH5giAQAAAIQEwi8AXgzD0HNT5qmgyOFps4Sb9di4gbJawgJYGULFiiPlumuFXSXHBF89Y77TmbHfymSSGka31ZAW9ysyPCYwRQIAAAAIGYRfALx8tWCTlmzI9Gobf/GZap3K6hucvuXZTt29okilxzzj4szYb3Rm7AxJUrO47hrY/E6FmzlbDgAAAMDpI/wC4LH3UL7+8/lir7aurVM05vyuAaoIoWTJYafuXVkkxzHB11mx09Uz9ntJUrvEATo77UaZTawyBAAAAFA9CL8ASJLKXW499f4clZb9cfp4VIRFj94wUGFmcwArQyhYeMip+1cVqeyY4KtP7BdKj/1BkpTecKR6pFwuk8kUgAoBAAAAhCrCLwCSpI9mr9H6HQe92u66oq+aJMcFqCKEii8zHXpmfYnKDe/2vnFT1S1mjiST+qXeoA5J5wekPgAAAAChjfALgLZmZuvtr1d4tZ3dpZku7tc+QBUhFBiGoUnbSvXWrw6fvrPjPlOXmHkym8J1XrPb1LJerwBUCAAAAKAuIPwC6jiHs1xPvvejyl1/7EerFxOph649l+1nOGVOt6En1xXr2yznMT1u9Y//nzpFL5DFbNOQFvepcWyHgNQIAAAAoG4g/ALquDe/+lk79+V6tT14zblKjIsKUEWo7Qqdbt2/qlg/Hyn3ag9TmQYnZKiVbY1s4fU0rNVfVd/WLEBVAgAAAKgrCL+AOmz11n365MdfvNqG9W6rc9NbBKgi1Hb7Sty682e7dti9T7aPNBfqwsQ3lGLdqbiIFA1r+aDiIhoEqEoAAAAAdQnhF1BHFZWU6R/vz5Fx1CHkDRNjdO/ofoErCrXaxvxy3b2iSNkO75Pt48MOaXj91xUfflgp0e01uMXdsoXzIAUAAAAA/kH4BdRRL3+2SAdy7F5tj95wnmJsEQGqCLXZgkNO/XV1kUpd3u0plu0alviGbGFF6pg0RL2bXCOziR89AAAAAPyHTyBAHbRw7S59u3iLV9voQV3Uo12TAFWE2ux/ux16YUOJ3Me0t4pcpUEJUxRhls5OvVlt658bkPoAAAAA1G2EX0AdU1Dk0Isf/uTV1qJRgm4ZeVaAKkJt5TYM/WdLqTJ2OHz6ukX/oD5xXyrGmqDzW9yj5KhWAagQAAAAAAi/gDrnP58vVnZ+sed9mNmkx8YNVISFbweoOofL0GNrizVrv9Or3SS3zon/nzpFL1BKdDsNan63oizxAaoSAAAAAAi/gDplyfo9+m6J93bHa4emq13T5ABVhNoor8yte1cWaU2u9wFf4SaHhiS8q+aR69UhaYj6cL4XAAAAgCDApxKgjrCXOPTCh/O92lo0TtC4C3sEqCLURplFLt3xc5H2FHuf8GUzF+iixElKidins1NvVjvO9wIAAAAQJAi/gDri1alLdSi3yPPebDLpb9efJ6slLIBVoTZZnVOu+1YVKa/M8GpPCN+vixJfVyObocHNH1ODaM73AgAAABA8CL+AOuDnTXs1feEmr7Yx53dVh+YNAlQRapvpex36x7oSlXvnXmps3aoLEt9Us9imGtz8LkVZ6gWkPgAAAACoDOEXEOKKSsv03AfzvNqaNqynmy7uGZB6ULu4DEOvbinV+xU80bGNbbkG1vtQnZMHqHfj6xRm5kcKAAAAgODDJxUgxE36YpkO5Ng9700m6W/XD+Dpjjih4nJDj6wp0vxD5T59PWO+U6+473V22ji1rz/A/8UBAAAAQBXx6RcIYau2ZGna/A1ebVcO7KLOrVICVBFqi30lbt2zwq5thd4H24epTAMT/quusdt1fou/q0F06wBVCAAAAABVQ/gFhKgSh1PPfuD9dMfU5Dj9ecSZAaoItcUvueW6b2WRco452D7KnKdhiW/qjDhDQ1s+pRhr/QBVCAAAAABVR/gFhKg3vlqufdkFXm0PXz9AkVZLgCpCbfBtVpmeXFss5zEH2ydZ9ujCxDfUIaGFBja7Q5awyMAUCAAAAAAnifALCEFrf92vz+au82q7fEAnpbdpHKCKEOzchqHXt5bqne2+B9u3jFytQfWmKL3hQPVqfI3MJnMAKgQAAACAU0P4BYQYR1m5nv1gnoyjVu40TorVLSN7BawmBLeSckOP/lKsOQedPn09YmaoV+wM9Uu7Xh2SBgegOgAAAAA4PYRfQIh56+uftedgvlfbQ9cOUFQk2x3h62CJW/esLNLmApdXe5icOq/eh+oYs16Dmj+gtLguAaoQAAAAAE4P4RcQQjbsPKhPfljr1TbynA7q2b5JgCpCMFufV657VxYp2+F9wJfNXKBhiW+qdXShhrZ8Qom21MAUCAAAAADVgPALCBEOZ7meyZgn91H7HRsmxOj2y3oHsCoEq+/3lenxtcVyuL3b64fv1YWJk9UqLlHnt3hKUZb4wBQIAAAAANWE8AsIEe99u1K7DuR6tT147bmKtlkDVBGCkdNt6JXNpfpwl+/B9s0j1+r8eu+rXWI3ndv0FoWbmTsAAAAAaj/CLyAEbN59WB/OWuPVNrxve/XumBaYghCU9pW49dDqIq3Lc/n0pcfMUu/Y6eqeMkI9UkbJxBMdAQAAAIQIwi+glnOWu/TMlLlyuf/Y7pgUH6U7L+8TwKoQbOYfdOqxtcUqcHqf72WWUwPqfawO0St0Ttqf1TbxnABVCAAAAAA1g/ALqOUyZqzS9qwcr7YHrz1XsVERAaoIwcTpNvTqllJN2em7zTEmLEdDE95RU1u2zm/xsBrFnBGACgEAAACgZhF+AbXY1sxsZcxY7dV2Qa+26te5WYAqQjA5UOLWg6uLtLaCbY7NI9ZqYMIHamiL19CWTyo+IiUAFQIAAABAzSP8AmopR1m5nnz3R7ncfzyur35clO65sm8Aq0KwWHDIqb//Uqx8n22OLvWO+0pdo39Uu/r91bfJDbKERQaoSgAAAACoeYRfQC312rSl2rnf++mOD1x9juKiCTLqMqfb0OtbS/X+joq3OQ5JeFdpkft1dtptap3QLwAVAgAAAIB/EX4BtdDidbv1+bz1Xm3DerfVud1aBKgiBIODJW49tKZIa3J9tzk2jVivwQlT1DQmRec1e05xEQ0CUCEAAAAA+B/hF1DL5BQU65kp87zaGifF6b7RZwemIASFRYedevSXYuWVeW9zNMml3rHT1S1mjtJTLlaPlMtkNvGtHwAAAEDdwScgoBYxDEPPZMxVbmGJpy3MbNITNw5StM0awMoQKOVuQ5O3leqd7b7bHKPNuRqS8J5axeRoQNOH1CS2YwAqBAAAAIDAIvwCapGp8zZoyYZMr7YbL+qpTi0bBqgiBNKhUrceXlOkVTm+2xzTIjZqcL0MtU9oq/5N/6LI8NgAVAgAAAAAgUf4BdQS27Ny9OrUJV5tXVql6LoL0gNUEQJpxZFyPbS6SEd8tjm6dVbsNzozdq56NxmjDknny2QyBahKAAAAAAg8wi+gFnA4y/XEuz+orPyPFT7RkVY9Pm6gwsPMAawM/mYYhqbsdGjilhK5DO9QK8qcp/MT3lPH+BINavakEm1NA1QlAAAAAAQPwi+gFpj8xTJtz8rxantgzNlqlBQXoIoQCIVOQ4+vLdbcg05J3sFXqnWTBie8rx4Neql3k2sUbo4ITJEAAAAAEGQIv4Agt3RDpj6ds86rbchZbTS0V9sAVYRA2Frg0v2rCrW32LevZ8x36ldvvs5tepNa1DvT/8UBAAAAQBAj/AKCWG5hiZ7JmOvVlpIYowfGnB2gihAI32SV6el1RXK4vVd7RZiKNDghQ72TDA1o+qxirPUDVCEAAAAABC/CLyBIGYah5z6YpyMFfyz1MZtMeuLGQYqxsaWtLihzGXpxY5GmZpbr2G2OyZbdGpb4vgalna/OyRfIZOLsNwAAAACoCOEXEKS+XLBRC9fu9mobe2F3dWndKEAVwZ/2lbh134pcbSkM8+nrELVQFzdYrPNb3Kv6HGoPAAAAAMdF+AUEoV37c/Wfz5Z4tXVs0VBjL+wRoIrgT4sOlemh1QWyu7y/RYepTOfW+1SXN0vQmY2eULjZGqAKAQAAAKD2IPwCgkyZ06XH3/1BDme5py0qwqLHbxyo8DC2toUyt2Ho9S15eneHZBzz7Tku7LBGNvhUV7YeqSaxnQJUIQAAAADUPoRfQJB5c/pybcs84tV2/5izlZocH6CK4A95ZW7dt2K/VudF+/Q1j1irG5tv0PnN7lFkeEwAqgMAAACA2ovwCwgiP2/aq49m/+LVNqhnK13Qq22AKoI//JJTrPtW5irH6R18meRWn7gZuuuMpmqbeItMJlMldwAAAAAAVIbwCwgS+fZS/eP9OV5tDRNi9Jcx/Qk9QpRhGHpz6z69uT1SbnkHXzZzoUY3mq0b21+s2IjkAFUIAAAAALUf4RcQBAzD0PP/na/s/GJPm8kkPTZuoOKiIwJYGWpKXplL963YqdV5ST59KZad+mv7gzo3dazMJs55AwAAAIDTQfgFBIGvF23W/DU7vdquG5qu9LaNA1QRatKyw0f00Ooi5ZX7Bl8945bryW5t1DgmPQCVAQAAAEDoIfwCAuxQrl3/+XyxV1v7Zsm66eKeAaoINcUwDL2yaZs+2FVfbsV59VlNxboubZ1u6TBA4WZW+wEAAABAdSH8AgLIMAz986MFKi51etpsEeF68sZBCg8LC2BlqG6HS4p174qd2lDYxKevoSVTT3Zxq1fDoQGoDAAAAABCG+EXEEA/rNiuRet2e7XdOrK30hrWC0xBqBHz9u3W4+ukApdv8NU3Ya2e6d5Z9SISAlAZAAAAAIQ+wi8gQPLtpXrpfwu92jq3bKjLzu0YoIpQ3crdLr24bo2mZjWXW94r+SJMxbql5R7d0PZsmTjUHgAAAABqDOEXECCvfLZYeYWlnveWcLMevm6AzGZTAKtCddlrP6L7V+zR1uJWPn2NI7L0YrdYdazfOwCVAQAAAEDdQvgFBMDSDXs0c9lWr7axF/ZQ80ZsfQsF3+1Zq+c2xcnuauHTd17SNj3TvbNs4ZEBqAwAAAAA6h7CL8DPikrL9MKHP3m1tWqSqGuHdAtMQag2jvISPf3Lz/r2YEcZx25zNBfr/rb5uqLlmQGqDgAAAADqJsIvwM/e+Gq5DubYPe/NJpMevm6ALOE83bE225q7WY+sKdD2ki4+fWmRB/Ryz4ZqGdc4AJUBAAAAQN1G+AX40bodBzR13nqvtisHdVaH5g0CVBFOl9NVqq92ztDE7Z1U4Grr039hwyw93q29rGGEmwAAAAAQCIRfgJ+UOV16bsp8GcYfbY2T4jT+YrbB1VYH7Fv0xqaf9E32JSo3Irz6bOZi/a2jWxel8fROAAAAAAgkwi/ATzJmrNKuA7lebQ9d21+2CEuAKsKpKneXafm+z/T2DqtW26/w6W8elaOJZzZSarQtANUBAAAAAI5G+AX4wfasI5oyc7VX2/C+7dWzfWqAKsKpOli0TTN2TtHUgxdqr+MMn/4LUor1ZNcWsoaZAlAdAAAAAOBYhF9ADXO53Xrug/lyud2etvpxUbpjVJ8AVoWTVe4u06oD0/Rj1mrNyBmvQleSV3+Yya2/nmHVlc051B4AAAAAggnhF1DDPpuzTht3HfJqu3/M2YqLjqjkCgSbw8XbNW/PG1qe01jz8u9XuWH16k+0uvTvHvHqmsC3VAAAAAAINnxSA2pQ1uECvTn9Z6+2AektNCC9ZYAqwslwuZ1adfALrTrwrRYXjNDaooE+Y7rWM2lCjwQlRZgDUCEAAAAA4EQIv4AaYhiGXvxwvkrLyj1tsVFW3XfV2QGsClWVXbxL8/dM1t6iXM3KvV37ytr6jBndzKr7z7DJYuZ8LwAAAAAIVoRfQA35dskW/bw5y6vtjlF9lBQfHaCKUBVuw6U1B7/SqgNf6kBZE83MeUhF7gSvMVaz9LdONl2SytZVAAAAAAh2hF9ADTiSX6yJny/2auvRromG920foIpQFQWOQ5q7+3UdKt6mTcW99VPeVXLJ4jUmJdKkCd2j1bEe3z4BAAAAoDbg0xtQA/796UIVFpd53kdYwvXgtf1lMrE9LhgZhqFfcxdq0d73VeIq16L80dpQ3N9nXM/EcL2QHqVEzvcCAAAAgFqD8KsaTZs2TQ8//HCVxt5444168MEHK+232+3KyMjQ7NmzlZmZKbfbrSZNmmjQoEG64YYblJiYWKWvU133QdXNX71Tc1ft8Gobf8mZSk2OD1BFOJ4yV7EWZr6r7XlLlONM0ezccTpSnuoz7prmEbqnfaTCOd8LAAAAAGoVwq8A6dixY6V927dv1/jx45WV5X1e1LZt27Rt2zZ9/vnnmjRpkrp06XLcr1Fd90HVFRY79K9PFni1tW+WrCsHdg5QRTieA/Ytmrv7dRWWZWtTcV8tLLhC5YbVa0ykWfp75yhd2MRayV0AAAAAAMGM8KuGrF279rj9Foulwna73a6bb75ZWVlZslgsuueeezR8+HBFRkZqxYoVeuGFF7Rnzx7deuut+vLLL5WcnFyj98HJeW3aUmXnF3veh5nNeuS6AQoPY5tcMHEbLq068IXWHPxSJe5Izcu7STtK033GNbGZNaF7lNrH860SAAAAAGorPpHXkIiIiOP+YzZX/K/+nXfe0d69eyVJL774om666SalpKSoXr16Gjx4sG6//XZJUnZ2tl5//fVKv3513QdVt21vtr5etMmr7boLuql1av0AVYSKFDgO6uttT2n1wS+0z9FS/zv8SIXB1wWNLPr47FiCLwAAAACo5Qi/gojL5dLHH38sSUpPT9eFF17o0//GG2943k+bNk0lJSU1dh+cnMlfLJNh/PG+WUo9jR3WI3AFwYthGNqas0DTtjyiA0U79HPhhfryyD2yu7zPvbOFSU92idKz3aIUa+F8LwAAAACo7Qi/gsiqVauUm5srSRo2bJhP/9SpU7Vjxw6NGjVKklRaWqqFCxfW2H1Qdau37tOSDZlebXeM6iOrJSxAFeFojnK75u5+TfP3TFZOmU1fHblbPxdeJOOYb4FnxIXp436xuiTVypM5AQAAACBEEH75gdvtrtK49evXe16np3tvwyopKdHEiRPVtWtX3X333RVeU933QdUYhqHXv1jq1da1dSP17dQ0QBXhaPsK1uvTtfdoe94SbS/ppv8dfkT7y1r7jLuuRYTe7xOjZjEElgAAAAAQSjjMpoZMnz5dX375pbZu3ars7GzZbDZ17dpV1157rQYPHlzhNTt27PC8Tk1N9erLyMjQoUOHNGHCBDVs2FDh4eEqLy/3uqa67+Mv4RFRJxxjMpk9/2uJjKnpkk7K3JXbtGHnIa+2u646T1ZbbIAqgvTbofbLMz/SyqzPVOYO06KCMdpYfLbPuMQIs57tkaizUyIDUCWCUTB/v0FwY+4AAAAEJ8KvGvKXv/zF631xcbGWLFmiJUuW6LrrrtOjjz7qc01OTo7ndUJCgud1bm6u3n77bfXv31+9evWSJMXFxSknJ8ezvbEm7uMvZnPVV9qYTCaZTMGzMqfc5dbrny/waju3ext1a5sWoIogSY7yIn2/9UXtyVupbGdjzc69UbnljXzGnd0wUs+emaSkyOCZUwgewfb9BrUHcwcAACC4EH5VoyZNmmjo0KGyWCw688wz1atXL6WkpKisrExLly7VP//5T2VmZuqDDz5Qhw4ddNlll3ld//uh81ar93lDkydPlt1u1/333+9ps1qtkn4L1Y5VXffxF7fbdcIxJpNZJpNJhmHIMKq2jdQfvv5pnXbt/yNsNJtMum1Uvyr9mVAz8kr26bstzyi3ZK/WF5+rxfmXyiWL15hwk3Rvp3hd1zpGZlPV5iDqjmD9foPgx9zByTiZX/4BAIDTQ/hVjXr16uVZUXU0m82moUOHqkuXLho+fLjsdrsmTZrkE379zmz+4yi2rKwsffTRRxo+fLjat2/vaa/KOWLVdZ+aVu4oPuGHBEtkjEymMBmGW85Su58qOz5HWbne+ML7QQHD+rRVWv3IoKmxrskqXK8fd/1Hdme55uaN06+lPX3GNI0y67n0KHWIN8nlKBKxF44VjN9vUDswd1BVJpOZ4xEAAPAjDrz3o0aNGumCCy6QJO3Zs0eZmd5PB4yK+u3sK6fT6Wl7+eWXZRiG1+H0kuRwOLyuqYn74Pimzluvw3lFnvfW8DDdNPzMAFZUt23Mnq0Z21/QQUe0pmY/UGHwdUkTqz4+O1Yd4sn9AQAAAKCu4BOgn7Vp08bzes+ePUpL++NsqMTEREmSy+VSYWGhsrKy9M033+iaa67xGud0OlVYWOh1zdGq6z6oXGGxQxkzV3u1jRrQSQ0TOeDY39xGuRbv/UCbjvygHSVd9GPe9XIaNq8x0eEm/a2jTcOaWANUJQAAAAAgUAi//Mxm++ND+dErsySpZcuWntdZWVmaMGGCbDabbrvtNq9x+/fv92xXbNGihc/XqK77oHIfzlqjwmKH5310pFXXX5AewIrqptLyQv2w6z/KKtyk5YWXaJV9qM+YNnEWvdw7UY3DHRXcAQAAAAAQ6gi//Ozw4cOe1w0bNvTq69Spk+d1RkaGFixYoDvvvNNnVdaqVas8rzt37uzzNarrPqjY4bwiffrjOq+2a4d2U3xMZIAqqptyS7M0a8e/dLDErtl5t2uv4wyfMRel2fRkjyRFmg05Swm/AAAAAKAuIvzys8WLF0uSYmNjfVZbpaenKyEhQbm5uZo2bZrq16+vcePG+dxj5syZkqTIyEj169fPp7+67oOKvfftSjmc5Z739eOidOVAwkN/yixYox93vaqs0mTNzL1Ddpd3sBtuku47w6br2iUqLMzM0xwBAAAAoA7jwPtqYhiGnn/+ef3www+VjpkxY4ZWrlwpSRo5cqQiI71XCoWFhWnMmDGe92PHjlV0dLTXmMWLF2vevHmSpFGjRnlto6zu+8DXnoN5+nrRJq+2cRf1kC3CEqCK6hbDMLT20Lf6fscE/VLYTV9k3+cTfCVFmPRmrxiNaR4hk8kUoEoBAAAAAMGClV/V5J133tF7772n9957T4MHD9aoUaPUqVMnRUVFad++fZo+fbree+89SVKzZs18nrr4uz/96U+aPn269u7dqw8//FCpqanq3bu33G63Zs+erRdffFGGYSgpKUm33nprpfVU133g7c2vlsvlNjzvU5PjdMnZ7QNYUd3hcju1cO+72nhksRbmX6WNxWf7jElPCNML6dFKjiTXBwAAAAD8xmQYhnHiYTiR8vJy/etf/9IHH3zgc5D90bp06aJ///vfXk9dPNb27ds1fvx4ZWVlVdiflJSkSZMmqUuXLsetqbruU9PKSgplGO7jjrFExshsDpPb7ZKz1O6nyrxt2n1If3pumlfbUzcN1uCerQNST11S4szX7F0v6df8bM3MHa/DzmY+Y65ubtU97W2ymP9Y7RUM8wa1D/MGp4q5g6oymcyy2mIDXQYAAHUG4Vc12717tz777DMtXLhQ+/btU0lJiZKTk9W2bVsNHz5cF1xwgcLDT7zgzm63KyMjQ7NmzVJmZqYMw1Djxo01aNAgjR071ufw+pq+T02qLeHXXS9/rRWb/wgS2zVN0jsPjZLZzNa6mnSo6Ff9uOs/2mxP0qzccSp1e39YiAyTHuscpWGNrT7XBsO8Qe3DvMGpYu6gqgi/AADwL8IvBFxtCL+Wb8zUPf/51qvt5bsu0lkdKl/Bh9Pjcpdr1cFpWnNgulbZB2tZ4SUyjjmmMC3KrH91j1abuLAK7xHoeYPaiXmDU8XcQVURfgEA4F+c+QWcgNttaPKXy73aerZvQvBVg46U7Na83ZO1v/iQ5uTdpJ2l3XzG9G8Qrqe7RinWwvleAAAAAIDKEX4BJzB31XZt3nPYq+3WS3sFqJrQ5jZc+uXQN1p1YKoOlzXQzJy/Kt/V0GuMSdJtbSN1Y6sImXmaIwAAAADgBAi/gOMod7n0xlfeq74Gdm+pM5o1CFBFoSuvdL/m75msQ8W/altxD83Nv0blRoTXmHiLSc92i1LfZEuAqgQAAAAA1DaEX8BxfL1os/YeLvC8DzObdPOIswJYUegxDLc2ZM/W8n2fqMzt0uKCy7Wu6DyfcWfEhWlC9yg1jqr4fC8AAAAAACpC+AVUosTh1LvfrPRqu7jfGWrasF5gCgpBhWWH9dOet7TPvkFFrnh9n/MnHXC28hk3MtWqhzraFBHGNkcAAAAAwMkh/AIq8b8563SkoNjzPsISrnEX9QhgRaHDMAxtzZmvJVkfyOkuVZajtWbl/kkl7jivcVaz9GBHmy5Li6jkTgAAAAAAHB/hF1CBfHup/vv9Gq+20YM6K7ledGAKCiHFzjwtyHxbewpWyzCkX4oGaUnBCBny3s7YyGbShO7R6hDPtykAAAAAwKnjUyVQgSkzV6uotMzzPjYqQtcM6Ra4gkLE9tylWrT3PTlcdpW5IzQ371ptL+3uM65vUrie6RalelZzAKoEAAAAAIQSwi/gGIfzijR13nqvthsuSFdsFFvvTpW9LFtLsj7QrvwVkqQcZ0PNzL1ZeeUpPmNvbh2hm9tEKszE+V4AAAAAgNNH+AUc46sFG1VW7vK8b5AQrVHndQpgRbWXy12udYe/1aoDX8pl/LaS7teS7pqTd63KDe8wMTbcpKe7Rql/Q0sgSgUAAAAAhCjCL+Ao5S6Xpi/c5NV23dB0RVj4q3KysgrXa9He95Xv2C9JchlmLS0YqV+KBvmMbRtr1r96RCs1KsynDwAAAACA08EneuAoP63Zpez8P57wGBVh0QW92wawotqnqCxHS/f9Vzvylnnacssb6MfcG3TI2dxn/MVNLHq4U5RsYWxzBAAAAABUP8Iv4CjTftrg9f6C3m0VHWkNUDW1i9so1/rD32vVgWlyukslSYZh0tqic7W0YIRc8v73aDFLf+1g06g0q0yc7wUAAAAAqCGEX8D/27U/V6u27PNqu7R/xwBVU7vst2/Sor3vK7d0r6etsDxRc/KuVVZZO5/xKZEm/bN7tDrV41sQAAAAAKBm8ckT+H/Hrvrq1qaRWjVJDFA1tUOxM0/L9n2kX3MXedoMQ9pc0lsL8y+X07D5XHNeQ4se7WRTYoTZn6UCAAAAAOoowi9AUnGpUzOWbPVqY9VX5dyGSxuzf9CK/Z/J6S7xtBe74jQvb4x2Obr4XBMTLv21Q5SGN7GwzREAAAAA4DeEX4CkWT9vU1Fpmed9QqxNA9JbBLCi4HWwaJsW7X1PR0p2e7VvL0nX/PyrVOqO8bmmV/1wPdElSik2VnsBAAAAAPyL8At1nmEYmjbPe8vjJWefIUt4WIAqCk6l5YVavu8TbcmZ593utmlB/mhtKznT55pIs3RPe5uuaGaVmdVeAAAAAIAAIPxCnbd+x0H9mnXE895sMmnEOWcEsKLgYhhubcn5Scv3fSyHy+7Vt6f0DM3Nu05F7nif67rUC9NTXaPULJoQEQAAAAAQOIRfqPOmzvde9dWvSzOlJMYGqJrgcqRktxZmvqdDxdu82p3uCC0uuFQbis/xuSbcJN3aNlI3tIxQGKu9AAAAAAABRviFOi2noERzV233arvsXA66L3MVa+WBqdpw+HsZMrz6shxtND//BuWVJ/hc1ybWrKe7RqttHKu9AAAAAADBgfALddo3izfLWe72vE9NjtOZ7VMDWFFgGYahHXlLtTTrvyouz/PqKyivr6UFl+nX0m4+15kljWsVoT+3iZTFzGovAAAAAEDwIPxCneVyu/XlT95bHkf27yhzHQ1v8kr3adHe97XP7v3vpMwdoZX2oVpbNFguw3dFV9Mos57qGqWuCXw7AQAAAAAEHz6tos5auj5TB3L+OMDdagnTRX3aBbCiwCh3O7T64Fdae+gbuQ2Xp90wTNpc0lvLC0aqyB1T4bWjm1l1dzubbOF1MzAEAAAAAAQ/wi/UWdOOWfU1uGdrxcdEBqiawNidv0qLs6bIXnbYq32fo5UWFVyhw860Cq/rEB+mv5xhU7dEvoUAAAAAAIIbn1xRJ2UdLtDSDXu82urSQfdFZTlanJWhXfkrvNoLyhO1pOBSbS/tXuF1SREm3dXOpouaWGTmSY4AAAAAgFqA8At10pcLNso46iGG7Zslq0PzBoEryE8Mw63NR+Zp2b6P5HSXeNqd7gittA/RL/ZBcsnic53VLF3fIkLjWkUqii2OAAAAAIBahPALdY7DWa5vFm32aqsLq77yHQe0YM/b2l+0ydNmGCZtKTlLSwtGqNgdX+F1QxpZdHd7mxrbzP4qFQAAAACAakP4hTpnzsodyi8q9byPjYrQ4J6tAlhRzXIbLq079J1WHpgql+H0tO8va6GF+VfosLNZhdedERemv3SwKZ1zvQAAAAAAtRifalHnTJvvfdD9RX3bKdLqu9UvFBwp3qWfMt9SdskuT5vTbdXSwku0ruhcSb6ruZIiTLqjbaQuTrVyrhcAAAAAoNYj/EKdsmXPYW3YedCr7dJzOgSomppT7i7TqgPTtPbQtzLk9rTvc7TSnLzrVOBK9rnGapaubRGhG1tFKppzvQAAAAAAIYLwC3XKsau+zjwjVWkN6wWmmBqy375JCzLfUb5jv6ftRKu9BqdYdE/7SDWJCvNjpQAAAAAA1DzCL9QZhcUOzVr+q1dbKB10X+Yq1vJ9n2jTkR+92vc5WmtO3rUVrvZqbDPrsc429UoKzW2fAAAAAAAQfqHO+G7JFjmc5Z73DRKi1a9zxYe91za781dp0d53VeTM9bT9sdrrvAqvubKpVXe3tymKLY4AAAAAgBBG+IU6wTAMffGT95bHEed0UHiY7xbA2qTMVayFme9qe94Sr/bjrfZqYjPr8S42nVmf1V4AAAAAgNBH+IU6YeWWLO05mO95H2Y265J+ZwSwotNX7MzXzB0v6ojPkxxHaF3RgAqvGd3MqrvasdoLAAAAAFB3EH6hTjj2oPsB3VuofnxUgKo5fQWOg5qx/QUVlP3x5MosR2vNPc5qrye62NST1V4AAAAAgDqG8Ash73CuXQt+2eXVVpsPus8u3qmZO15USXmBJFZ7AQAAAABwPIRfCHlfLdwkl9vwvG/ROEHdWjcKYEWnLqtwvWbvfElOd6kk6YizkWbk/LnC1V6pUWY93pnVXgAAAACAuo3wCyGt3OXS9IWbvNou699RJlPtWwW1PXeJ5u2ZJLfhkiTtdbTVzJybVWbYfMaObmbV3e1ssrHaCwAAAABQxxF+IaT9tGaXsvOLPe9tEeG6oFfbAFZ0atYf/l5Lsj6Q9NsKti3FZ2pu3rVyH/NX+LfVXlHqWZ+/2gAAAAAASIRfCHHTfvI+6P6CXm0VbbMGqJqTZxiGVuz/n9Ycmv7/76VV9iFaVjjCZ+xlaVY9cAarvQAAAAAAOBrhF0LWrv25WrVln1fbpf1rz0H3bsOlBZnvaGvO/P9/b9ZP+VdqY/E5PmPvaR+p61tE1MrtnAAAAAAA1CTCL4SsNdv2e73v2jpFrVPrB6iak1PudujHXRO1p2C1JMnpjtCs3HHa7ejsNc5ilp7qEqULGtee1WwAAAAAAPgT4RdCVkr9GK/3V5/fLTCFnKTScru+3zFBh4q3SZKKXbH6NudWHXY28xoXG27Sv3tEc74XAAAAAADHwadmhKzeHZvqr9f019L1e3R2l+Y6p2vzQJd0QvayI5qx/XnlOX7brplb3kDfHrldBa4kr3EpkSa9emaMWsWGBaJMAAAAAABqDZNhGEagi0DdVlZSKMNwH3eMJTJGZnOY3G6XnKV2P1XmXzklezVzxwsqcuZIkvY7Wuq7nD/LYXivYGsXF6b/9IxWg0hzIMqsVerCvEH1Y97gVDF3UFUmk1lWW2ygywAAoM5g5RcQBA7Yt2jWzn/J4SqSJG0vSdcPuTfIJYvXuL5J4Xqxe7SieaIjAAAAAABVQvgFBNjOvOWau/t1uQynJOkX+3laVHCZJO+VXSNSrfpbJ5ssZoIvAAAAAACqivALCKB1h2Zo6b4PJRlyGyYtLrhMa4sG+oy7pU2kbm4dIZOJ4AsAAAAAgJNB+AUEgGG4tXTfR1p/eIYkyem26Me8G7SjNN1rXLhJ+ntnmy5JjQhEmQAAAAAA1HqEX4CflbvLNG/PZO3MWyZJ2udorbl51yjf1cBrXHS49M/0aPVJtlR0GwAAAAAAUAWEX4AflZbbNWvnv3WwaIuc7ggtKRih9cXn+oxLijDp1TOj1S6Ov6IAAAAAAJwOPlkDflLoOKyZO15UnmOfMh3tNC/vGhW66vuMaxVj1sQzY9TIZq7gLgAAAAAA4GQQfgF+kF28UzN3TFBemUOLC67WpuJ+FY67oqlVd7e3KTqcg+0BAAAAAKgOhF9ADcssWKMfdv1Hvxa30fy8MSpy1/MZkxZl1mOdbepZn/O9AAAAAACoToRfQA3afGSeftj9sX7Kv0rbSs7y6TdJuqZFhG5rGylbGKu9AAAAAACoboRfQA0wDEOrDkzTZ7t26qf8v6nEHeczpkW0WY93iVLXBP4aAgAAAABQU/jUDVQzt1Gu73Z+qPd2NdWO0kE+/WEmaWzLCI1vHakIVnsBAAAAAFCjCL+AauQoL9a/1s7U9IOD5DBifPrbxJr1ZJconRHPXz0AAAAAAPyBT+BANdhtd+q/23fox4Nhyi0f6NMfbjJ0U2ubbmwVIYuZ1V4AAAAAAPgL4RdwirIdbn2/r0xfZRZom90qqWGF49rHuvSPbvXUOjbMvwUCAAAAAADCL+Bk2J2G5hws03dZTv18xCm3TJKsFY4NM5Xrz63DNa5VosJZ7QUAAAAAQEAQfgEnUOYytOiwUzP2OfXTIacc7t97Kg60zCpX1/jDeqRzM7WOi/JbnQAAAAAAwBfhF1ABt2FoVY5LM/aV6YcDThU4jRNdocbWX9W3/hGNbdNDTWLO8EudAAAAAADg+Ai/gKM4XIa+3Vem/+5waGeR+4Tj64fvVduon9Ur4bCGNhuhlJiz/FAlAAAAAACoKsIvQFKB063Pdpfp410OHSk7/iqv2LBstbGtUFvbCqVFlemsxqPVqt4NMpnMfqoWAAAAAABUFeEX6rR9JW59uLNUX2SWqcRV+bhIs12tIlepre1npVh3yBoWqa4NL1Hn5GEKN1d84D0AAAAAAAg8wi/USZvzy5Wxw6HZB5xyVbLQyySXWkauUbuoZUqL2KQwk1smmdSu/nnqkXK5oiz1/FozAAAAAAA4eYRfqDMMw9DS7N9Cr2VHyisdZzGVqkPUInWJnqvY8FxPe5OYTurV5BrVtzX1R7kAAAAAAKAaEH4h5Dndhmbtd2rKjlJtLaz8EPsoc766RM9Vh+iFijSXeNrrRTRWrybXKC22q0wmkz9KBgAAAAAA1YTwCyFtxr4y/WdziQ6UVn6IfUL4fnWL+VFtbT8rzPTHirDEyDR1TB6iton9ZTbxVwUAAAAAgNqIT/QIWSuOOPXImuJK+xtbt6lbzA9qFrFBJtNv4ZjZFKYW9XqpQ/3BahjdlpVeAAAAAADUcoRfCFnbKtjiaJJbLSPXqFvMj2po3eVpj7Ek6YykgWqXOEA2S7wfqwQAAAAAADWJ8KsOsNvtysjI0OzZs5WZmSm3260mTZpo0KBBuuGGG5SYmBjoEmtE9/j9ijZLRe56ClOZzohaoq4xcxQfnv3/I0xKi+2iM5IGKy2um8wmc0DrBQAAAAAA1c9kGEblhyGh1tu+fbvGjx+vrKysCvuTkpI0adIkdenSxc+V/aGspFCGUflB9JJkiYyR2Rwmt9slZ6m9Svddf3imfsr8VEfKGysh/KAi/v8Q+4iwGLWrP0Bn1B+kuIgGp10/gtepzBuAeYNTxdxBVZlMZlltsYEuAwCAOoOVXyHMbrfr5ptvVlZWliwWi+655x4NHz5ckZGRWrFihV544QXt2bNHt956q7788kslJycHuuRqlRbXTbbw/ynFvEuS1CCqjTokDVKLer0UbrYGtjgAAAAAAOAXhF8h7J133tHevXslSS+++KIuvPBCT9/gwYNlt9v14IMPKjs7W6+//roef/zxQJVaI+IjUnRF+xd1oGiLEiLTVN/WNNAlAQAAAAAAP+OQoxDlcrn08ccfS5LS09O9gq/f+9944w3P+2nTpqmkpMSvNfpDjDVJrRP6EXwBAAAAAFBHEX6FqFWrVik3N1eSNGzYMJ/+qVOnaseOHRo1apQkqbS0VAsXLvRrjQAAAAAAADWN8CtErV+/3vM6PT3dq6+kpEQTJ05U165ddffdd1d4DQAAAAAAQCjgzK8QtWPHDs/r1NRUr76MjAwdOnRIEyZMUMOGDRUeHq7y8nKva/wpPCLqhGNMJrPnfy2RMTVdEkIE8wangnmDU8XcAQAACE6EXyEqJyfH8zohIcHzOjc3V2+//bb69++vXr16SZLi4uKUk5Pj2Sbpb2ZzWJXHmkwmmUxVHw9IzBucGuYNThVzBwAAILgQfoWo3w+vt1qtMplMnvbJkyfLbrfr/vvv97RZrVZJUnFxsX+L/H9ut+uEY0wms0wmkwzDkGG4/VAVQgHzBqeCeYNTxdzByTiZX/4BAIDTQ/gV4szmP451y8rK0kcffaThw4erffv2nna3O7D/gV7uKD7hhwRLZIxMpjAZhlvOUrufKkNtx7zBqWDe4FQxd1BVJpNZVltsoMsAAKDO4MD7EBUV9ds5Wk6n09P28ssvyzAMr0PuJcnhcHhdAwAAAAAAECpY+RWiEhMTJUkul0uFhYXKysrSN998o2uuuUZpaWmecU6nU4WFhV7XAAAAAAAAhApWfoWoli1bel5nZWVpwoQJstlsuu2227zG7d+/37PtsUWLFn6tEQAAAAAAoKYRfoWoTp06eV5nZGRowYIFuvHGG31Wd61atcrzunPnzn6rDwAAAAAAwB8Iv0JUenq6EhISJEnTpk1T/fr1NW7cOJ9xM2fOlCRFRkaqX79+fq0RAAAAAACgphF+haiwsDCNGTPG837s2LGKjo72GrN48WLNmzdPkjRq1CjZbDZ/lggAAAAAAFDjCL9C2J/+9CelpqZKkj788EN99913ysnJUXZ2tj7++GPdfvvtMgxDSUlJuvXWWwNcLQAAAAAAQPUzGYZhBLoI1Jzt27dr/PjxysrKqrA/KSlJkyZNUpcuXfxc2R/KSgplGO7jjrFExshsDpPb7ZKz1O6nylDbMW9wKpg3OFXMHVSVyWSW1RYb6DIAAKgzwgNdAGpWq1atNH36dGVkZGjWrFnKzMyUYRhq3LixBg0apLFjx/ocgg8AAAAAABAqWPmFgGPlF2oK8wangnmDU8XcQVWx8gsAAP/izC8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACErPBAFwCYTCeXwZ7seEBi3uDUMG9wqpg7OB7mBwAA/mUyDMMIdBEAAAAAAABATeDXTgAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZ4YEuADgeu92ujIwMzZ49W5mZmXK73WrSpIkGDRqkG264QYmJiYEuEQGyf/9+Pf/885o5c6YkacqUKerVq1eVrmVe1S0rV67U9OnTtXz5cmVnZ8vhcCg5OVndunXTZZddpn79+lXpPsybumXdunWaNm2ali1bpv3798swDNWvX1/dunXTxRdfrAEDBlTpPswbAACAwDMZhmEEugigItu3b9f48eOVlZVVYX9SUpImTZqkLl26+LkyBFJZWZnee+89TZ48WcXFxZ72qoZfzKu6o6SkRI899pimT59+3HGXXXaZnn76aYWFhVU6hnlTdxQUFOjvf/+7J1ivTP/+/fXKK68oKiqq0jHMGwAAgOBA+IWgZLfbNWLECO3du1cWi0X33HOPhg8frsjISK1YsUIvvPCC9uzZo6SkJH355ZdKTk4OdMnwgwULFujpp5/Wrl27JEkpKSk6cOCApKqFX8yruqOsrEzjxo3TihUrZDabNXr0aI0YMULNmjWT0+nUpk2b9O9//1tbtmyRJI0fP14PPPBAhfdi3tQtL7/8siZNmqR69erp2muv1cCBA5WamqrS0lL9+uuvmjJliubNmydJOv/88/Xqq69WeB/mDQAAQPDgzC8EpXfeeUd79+6VJL344ou66aablJKSonr16mnw4MG6/fbbJUnZ2dl6/fXXA1kq/KC8vFx33HGHbrrpJu3atUvJycl64YUX9MILL5zUfZhXdYfVatU111yjBg0a6O2339YTTzyh9PR0JSYmqmHDhhowYIA+/fRTpaWlSfotPM3Nza3wXsybuuXuu+/W448/rhkzZujOO+9Ux44dFR8fr4YNG6pfv3564403NGbMGEnS7NmztXXr1grvw7wBAAAIHoRfCDoul0sff/yxJCk9PV0XXnihT/8bb7zheT9t2jSVlJT4tUb4V3h4uOLi4mSxWDR+/Hh9//33GjlypEwmU5Xvwbyqey688ELNnTu30jO9bDabrr32WkmSw+HQ8uXLfcYwb+oek8mkq6+++rhncV111VWe19u3b/fpZ94AAAAEF8IvBJ1Vq1Z5VmAMGzbMp3/q1KnasWOHRo0aJUkqLS3VwoUL/Voj/O/BBx/Ud999pwceeEDR0dEnfT3zqm4KDz/+c11atGjheX348GGffuYNKlJWVuZ53aBBA59+5g0AAEBwIfxC0Fm/fr3ndXp6uldfSUmJJk6cqK5du+ruu++u8BqEpvj4eDVt2vSUr2deoSJHPzQhPj7ep595g4pkZGRIktq0aaPu3bv79DNvAAAAgsvxfyUOBMCOHTs8r1NTU736MjIydOjQIU2YMEENGzZUeHi4ysvLva4BKsK8QkXWrl3red2tWzeffuYN3G63nE6nioqKtHHjRr3//vtasGCBGjdurFdeeaXC7dfMGwAAgOBC+IWgk5OT43mdkJDgeZ2bm6u3335b/fv39zzVLy4uTjk5OZUeVA38jnmFY5WVlenrr7+W9NvqnN8Pvz8a8wbTp0/Xgw8+6Hlfv3593Xnnnbr++usVFxdX4TXMGwAAgODCtkcEnd8P/bVarV6/UZ88ebLsdrvuv/9+T5vVapXkvXUJqAjzCsd68803Ped83XXXXRWOYd5g586dXu+PHDmiDz74QJMmTar0/2vmDQAAQHAh/ELQMpv/mJ5ZWVn66KOPNHz4cLVv397T7na7A1EaajHmFaTfDiSfPHmyJOmKK65Q3759jzueeVN33XvvvdqyZYtWrVql6dOn6+abb1ZZWZneffddjR49Wna7vdJrmTcAAADBgfALQScqKkqS5HQ6PW0vv/yyDMPwOhxYkhwOh9c1QGWYV/jd3r17dfvtt8vpdKpTp0569NFHKx3LvMHvoqOj1a5dO91///169913ZTabtXXrVr388ss+Y5k3AAAAwYXwC0EnMTFRkuRyuVRYWKjNmzfrm2++0VVXXeV1Jo/T6VRhYaHXNUBlmFeQpIMHD2rcuHHKyclRWlqaJk2apMjIyErHM29QkfT0dPXo0UOS9MUXX/j0M28AAACCC+EXgk7Lli09r7OysjRhwgTZbDbddtttXuP279/v2S7SokULv9aI2od5hezsbI0bN0579uxRkyZNlJGRoQYNGhz3GuYNKtO8eXNJkt1u9zrgXmLeAAAABBvCLwSdTp06eV5nZGRowYIFuvHGG31+K75q1SrP686dO/utPtROzKu67eDBg7r22mu1fft2NWvWTFOmTFGTJk1OeB3zBpUpLS2VJJlMJkVHR3v1MW8AAACCC+EXgk56errn0fDTpk1T/fr1NW7cOJ9xM2fOlCRFRkaqX79+fq0RtQ/zqu7KzMzUmDFjtHPnTrVv314fffSRUlNTq3Qt8wYVcblcWrlypSSpWbNmioiI8Opn3gAAAAQXwi8EnbCwMI0ZM8bzfuzYsT6/VV+8eLHmzZsnSRo1apRsNps/S0QtxLyqm7Zu3aoxY8YoKytLffv21YcffqikpKQqX8+8qXveeustXXfddcrLy6t0zKRJk7Rv3z5J0jXXXOPTz7wBAAAILoRfCEp/+tOfPCszPvzwQ3333XfKyclRdna2Pv74Y91+++0yDENJSUm69dZbA1wt/MHlcsnhcHj9c/ST1JxOZ6V9v2Ne1S2rV6/Wtddeq8OHD2vYsGGaOHGiLBaLzzz6/Z+ysrIK78O8qTs2b96sV199VcuXL9fQoUP16quvasOGDSooKFBubq6WLl2qu+66SxMnTpQk9e7d2yvkOhrzBgAAIHiYDMMwAl0EUJHt27dr/PjxysrKqrA/KSlJkyZNUpcuXfxcGQJh2rRpevjhh6s8/tJLL9Xzzz/v0868qjuuu+46LV++vMrjmzdvru+//77CPuZN3bFy5Uo98sgj2rVr13HHDR8+XE8++aRiYmIqHcO8AQAACA7hgS4AqEyrVq00ffp0ZWRkaNasWcrMzJRhGGrcuLEGDRqksWPH8mh4nDTmFSpzvKftMW/qjh49eui7777Td999pzlz5mjt2rXKzs5WeHi4GjZsqB49emjEiBHq2bPnCe/FvAEAAAgOrPwCAAAAAABAyOLMLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAAAAAAIQswi8AAAAAAACELMIvAAAAAAAAhCzCLwAAgpjT6ZRhGIEuAwAAAKi1CL8AAAhiX3/9tbp27aoLLrhAP/30U6DLAQAAAGodwi8AAIKcw+HQzp07lZ2dHehSAAAAgFonPNAFAABqt4ceekhffPGFT7vFYlF0dLSSk5PVrl079e/fX+eff76ioqICUCUAAACAuorwCwBQI5xOp/Ly8pSXl6dt27bpm2++UXJysv7+979r6NChgS4PAAAAQB1B+AUAqDb33Xef2rZtK0kyDENFRUXavXu35s2bp3Xr1unw4cO6++679c9//lMXX3xxgKsFAAAAUBcQfgEAqk23bt3Uq1cvn/Y77rhDH330kZ588kkZhqF//OMfOvfccxUXFxeAKgEAAADUJRx4DwDwi6uvvlr9+vWTJOXn52vu3LkBrggAAABAXUD4BQDwm9/DL0navHlzpePKy8v1+eefa9y4cerTp486duyo3r17a/To0Zo8ebIKCgpO+LWWLVumdu3aqV27dpo4ceJxxw4cOFDt2rXTwIEDKx0zceJEnzE7d+7UCy+8oAsvvFBdu3ZVjx49dNVVV1X4AIDKFBcXa/LkyRoxYoS6du2q9PR0jRw5UpMnT1ZJSUmV7wMAAACgYmx7BAD4TWxsrOd1UVFRhWNycnI0fvx4rV+/3qs9NzdXubm5WrNmjaZMmaKXX35ZZ511Vo3WW5G8vDwZhqHXXntNkydPltPp9OpfvXq1Vq9erV27dunee+897r0OHz6s6667Tjt37vRq37RpkzZt2qSpU6fqkksuqfY/AwAAAFCXEH4BAPzm0KFDnteJiYk+/Xa7XVdffbUnDOrQoYNGjBihxo0bKycnR99//70WL16sI0eO6M9//rM++eQTtWvXzm/1S7+Fdk888YQ++eQTRUVF6aqrrlK3bt1UXl6uuXPnaubMmZKkN998U5dffrnS0tIqvE9JSYnGjRvn+bM2adJEV155pZo3b678/Hz9+OOPmj9/vl577TW//dkAAACAUET4BQDwm6PP+apo1dZrr73mCYMuv/xyPfXUUwoLC/P0X3XVVZo8ebJeeuklFRcX6/HHH9cnn3xS84Uf45NPPlGnTp30r3/9S82bN/e0jxw5Urfffrt++OEHud1u/fjjjxo7dmyF98jIyNC2bdskST179tRbb72lqKgoT//o0aM1a9Ys3XfffT6rywAAAABUHWd+AQBqnMvl0ksvveTZytixY0f16dPHa8yRI0f0wQcfSJJSUlL02GOPeQVfv7vlllvUrVs3Sb9tMVy1alXNFl+Btm3bKiMjwyv4+t1FF13keb1nz54Kry8rK9M777wjSYqIiNCECRO8gq/fDRkyRHfeeWf1FA0AAADUUaz8AgBUmzVr1qi4uFiSZBiGioqK9Ouvv+r777/3rOhKSUnRK6+8IpPJ5HXtTz/95FnhNGLECEVERFT6dS6//HKtWbNGkjRjxgx17969Bv40lXvooYcUExNTYd/R2xwrO7B+5cqVnkP7BwwYoEaNGlX6tZKTk0+jUgAAAACEXwCAavPvf//7uP3nnXeennzySTVs2NCnb/HixZ7XPXr0OO59jg671q1bd5JVnr7w8Mp/fEZHR3teG4ZR4ZilS5d6Xgfi0H4AAACgLiH8AgDUuOHDh2vs2LHq3LlzpWMOHDjgeV3ZIfEV9WdmZp5+gdXIarWecMzRf9ZmzZrVZDkAAABAnceZXwCAajNlyhRt2bJFW7Zs0T/+8Q9Pe2Fh4XGDL0nKycnxvK5sS+HvrFarLBaLJHm2D9YmJ/NnBQAAAHB6CL8AADXiiiuuUHp6uiRp/vz5+vrrr4873uVyndLXOd4WxGB19HbIY88+AwAAAFC9CL8AADXCZDLpiSee8Dyx8dlnn1Vubm6l4+Pi4jyvi4qKjnvvsrIyz+H4iYmJ1VCtf8XHx3ten+jPCgAAAOD0EH4BAGpM+/btdd1110n6bavfs88+W+nYkznHa8+ePZ7XjRs3Ps0q/S8pKcnzOisrK4CVAAAAAKGP8AsAUKPuvPNOz9Mdp0+frgULFlQ4rmvXrp7XK1euPO49j+7v27dvhWOO3k54qlsqa8rRf9bVq1cHsBIAAAAg9BF+AQBqVExMjP72t7953j/++OMqLi72GTd06FDPFsnp06errKys0ntOnTrV83rQoEEVjrHZbJ7XBw8erPRes2fP1r59+yr/A9SAnj17ymz+7Ufwjz/+KLvdXuE4l8ulr776yp+lAQAAACGH8AsAUOOGDh2q/v37S/ptm99LL73kM6Zhw4a6+OKLJUn79u3TM888I7fb7TNu8uTJ+uWXXyRJF110kdq2bVvh12zevLknYPrpp58qDNy+/PJLPfDAA14H0PtDgwYNNHToUElSfn6+nnnmGZ8aHA6H7r//fi1dutSvtQEAAAChpvY9IgsAUCs99thjuuiii+RwOPTf//5Xw4cP99r+J0kPPviglixZooMHD+qTTz7Rhg0bdMkll6hRo0Y6cuSIZs6cqSVLlkj6LUD661//WunXi42NVd++fbVw4UJlZ2fr6quv1jXXXKMGDRooKytL06dP1+rVq5WcnKy2bdtq7dq1NfrnP9add96p+fPnq7i4WNOmTdPOnTs1cuRIxcfHa9euXfrf//6nffv26cwzz9TPP//s19oAAACAUEL4BQDwi7S0NN1yyy165ZVX5Ha79eijj2ratGmyWCyeMYmJicrIyNAtt9yiXbt2ad26dVq3bp3PvZo2bap3331XKSkpx/2ajzzyiMaMGaP8/Hxt2rRJjz76qFd/u3bt9NJLL2nKlCl+D79atWql1157TbfccoscDodWr17tc/7XVVddpTFjxmjEiBF+rQ0AAAAIJWx7BAD4zU033aQWLVpIkrZu3ao333zTZ0yLFi309ddf67HHHlPv3r2VlJSk8PBwxcbGqnv37nr44Yc1ffp0r6dDVqZVq1aaOnWqRo0apUaNGslisSgxMVF9+/bVM888o2nTpqlVq1ZKTEys9j9rVfTt21dfffWVrrjiCjVp0kQWi0UJCQk655xz9MYbb+jJJ59UgwYNAlIbAAAAECpMhr8POgEAAAAAAAD8hJVfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWYRfAAAAAAAACFmEXwAAAAAAAAhZhF8AAAAAAAAIWf8H9jkeftZEmykAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 18,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 516.375
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: score-prediction-player-random-effects\n",
- "# | message: false\n",
- "# | warning: false\n",
- "from functools import partial\n",
- "import arviz as az\n",
- "import bambi as bmb\n",
- "\n",
- "\n",
- "def predict_model(\n",
- " data: pl.DataFrame, candidates: pl.DataFrame, **kwargs\n",
- ") -> pl.DataFrame:\n",
- " if data.height == 0:\n",
- " predictions = candidates.get_column(\"value\")\n",
- " else:\n",
- " model = bmb.Model(data=data.to_pandas(), **kwargs)\n",
- " inference = model.fit(\n",
- " inference_method=\"nuts_numpyro\", random_seed=37, progressbar=False\n",
- " )\n",
- " predictions = model.predict(\n",
- " inference,\n",
- " data=candidates.to_pandas(),\n",
- " sample_new_groups=True,\n",
- " inplace=False,\n",
- " )\n",
- " summary = az.summary(predictions, var_names=[\"score_mean\"])\n",
- " predictions = summary[\"mean\"].values\n",
- " candidates = candidates.with_columns(prediction=pl.lit(predictions))\n",
- " return candidates\n",
- "\n",
- "\n",
- "predict_random_effects = partial(predict_model, formula=\"score ~ (1 | player)\")\n",
- "teams = backtest(players, predict_random_effects)\n",
- "fig = add_backtest(fig, teams, \"Random effects\")\n",
- "fig"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "821c47a1",
- "metadata": {
- "cell_marker": "r\"\"\""
- },
- "source": [
- "### Fixture mixed effects\n",
- "\n",
- "$$\n",
- "\\mathbf{\\hat{s}} = \\alpha + \\mathbf{X} \\mathbf{\\beta} + \\mathbf{Z} \\mathbf{b},\n",
- "$$\n",
- "\n",
- "where\n",
- "$\\mathbf{X}$ is a matrix of the dummy-encoded fixture variables: the player\n",
- " `team`, whether they are playing at `home`, and their `adversary` team\n",
- " variables;\n",
- "$\\mathbf{\\beta}$ is a vector of fixed effects.\n",
- "\n",
- "This model brings more context to our predictions. It also provides a reasonable\n",
- "way to predict a new player, by setting their $b = 0$ (the mean of the random\n",
- "effects). However, it does not improve significantly over our random effects\n",
- "model."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "613ee872",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Compiling...\n",
- "Compilation time = 0:00:07.905601\n",
- "Sampling...\n",
- "Sampling time = 0:00:40.474963\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.101650\n",
- "Compiling...\n",
- "Compilation time = 0:00:02.563196\n",
- "Sampling...\n",
- "Sampling time = 0:00:15.965689\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.081567\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.121964\n",
- "Sampling...\n",
- "Sampling time = 0:00:06.425227\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088375\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.109532\n",
- "Sampling...\n",
- "Sampling time = 0:00:07.657055\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.085445\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.138635\n",
- "Sampling...\n",
- "Sampling time = 0:00:08.078478\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.084024\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.142378\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.012693\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.080147\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.494229\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.154541\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.081909\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.159511\n",
- "Sampling...\n",
- "Sampling time = 0:00:10.580360\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086075\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.512785\n",
- "Sampling...\n",
- "Sampling time = 0:00:11.477954\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086296\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.169140\n",
- "Sampling...\n",
- "Sampling time = 0:00:12.247918\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.084582\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.150253\n",
- "Sampling...\n",
- "Sampling time = 0:00:12.878032\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.499189\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.235270\n",
- "Sampling...\n",
- "Sampling time = 0:00:14.371604\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.082805\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.162771\n",
- "Sampling...\n",
- "Sampling time = 0:00:15.366639\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.083889\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.565987\n",
- "Sampling...\n",
- "Sampling time = 0:00:16.674839\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086589\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.177655\n",
- "Sampling...\n",
- "Sampling time = 0:00:17.277517\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090385\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.160624\n",
- "Sampling...\n",
- "Sampling time = 0:00:20.335498\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.098216\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.276130\n",
- "Sampling...\n",
- "Sampling time = 0:00:20.817625\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.096836\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.183428\n",
- "Sampling...\n",
- "Sampling time = 0:00:20.134373\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092602\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.585903\n",
- "Sampling...\n",
- "Sampling time = 0:00:20.545590\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.091502\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.167017\n",
- "Sampling...\n",
- "Sampling time = 0:00:22.932675\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088934\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.759577\n",
- "Sampling...\n",
- "Sampling time = 0:00:23.422531\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088727\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.251229\n",
- "Sampling...\n",
- "Sampling time = 0:00:24.212809\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.093909\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.162820\n",
- "Sampling...\n",
- "Sampling time = 0:00:25.859220\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.079607\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.199369\n",
- "Sampling...\n",
- "Sampling time = 0:00:26.590709\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.087804\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.197172\n",
- "Sampling...\n",
- "Sampling time = 0:00:27.408158\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088161\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.657817\n",
- "Sampling...\n",
- "Sampling time = 0:00:28.746087\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.090272\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.192098\n",
- "Sampling...\n",
- "Sampling time = 0:00:29.634159\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.087828\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.182441\n",
- "Sampling...\n",
- "Sampling time = 0:00:34.215767\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.091198\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.210951\n",
- "Sampling...\n",
- "Sampling time = 0:00:36.042148\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.089578\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.234012\n",
- "Sampling...\n",
- "Sampling time = 0:00:36.489777\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.092242\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.723651\n",
- "Sampling...\n",
- "Sampling time = 0:00:38.450233\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.085619\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.224424\n",
- "Sampling...\n",
- "Sampling time = 0:00:38.919846\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.088513\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.729140\n",
- "Sampling...\n",
- "Sampling time = 0:00:42.741515\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.101450\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.356056\n",
- "Sampling...\n",
- "Sampling time = 0:00:44.794694\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.105902\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.444282\n",
- "Sampling...\n",
- "Sampling time = 0:00:49.125387\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.697565\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.540290\n",
- "Sampling...\n",
- "Sampling time = 0:00:48.307869\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.086775\n",
- "Compiling...\n",
- "Compilation time = 0:00:01.261389\n",
- "Sampling...\n",
- "Sampling time = 0:00:49.365798\n",
- "Transforming variables...\n",
- "Transformation time = 0:00:00.095134\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n",
- "/Users/assuncaolfi/Projects/site/blog/fantasy-football/.venv/lib/python3.11/site-packages/seaborn/_core/plot.py:1644: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.\n",
- " df_subset = grouped_df.get_group(pd_key)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAN6CAYAAABv/useAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd3RU1doG8Gdaei8kpBAChISWEIo06R1CVwQFFRW96kXgs3DtV68VFSkqVhQLiPSAdKR3AiGU9IT03uvU8/0RGDKkTdpMyvNb66472XPOnpfkJGae7PNukSAIAoiIiIiIiIiIiNogsbELICIiIiIiIiIiai4Mv4iIiIiIiIiIqM1i+EVERERERERERG0Wwy8iIiIiIiIiImqzGH4REREREREREVGbxfCLiIiIiIiIiIjaLIZfRERERERERETUZjH8IiIiIiIiIiKiNovhFxERERERERERtVkMv4iIiIiIiIiIqM1i+EVERERERERERG0Wwy8iIiIiIiIiImqzGH4REREREREREVGbxfCLiIiIiIiIiIjaLIZfRERERERERETUZjH8IiIiIiIiIiKiNovhFxERERERERERtVkMv4iIiIiIiIiIqM1i+EVERERERERERG2W1NgFECnLSyAImlqPkZpaQCyWQKNRQyUvNVBl1NrxuqGG4HVDDcVrh/QlEokhM7M0dhlERETtBsMvMjpB0NQZft1/PFF98bqhhuB1Qw3Fa4eIiIio5eBtj0RERERERERE1GYx/CIiIiIiIiIiojaL4RcREREREREREbVZDL+IiIiIiIiIiKjNYvhFRERERERERERtFsMvIiIiIiIiIiJqsxh+ERERERERERFRm8Xwi4iIiIiIiIiI2iyGX0RERERERERE1GYx/CIiIiIiIiIiojaL4RcREREREREREbVZDL+IiIiIiIiIiKjNYvhFRERERERERERtFsMvIiIiIiIiIiJqsxh+ERERERERERFRm8Xwi4iIiIiIiIiI2iyGX0RERERERI2gUmuMXQK1Yby+iBqP4RcREREREVEDCIKAtVuOY9mqbVCq1MYuh9qgvKJSPPbOLwg+dd3YpRC1agy/iIiIiIiI6kml1uDd7/dh498XcO56PP65HGnskqgN2nI4BDFJWXjvh33YsOecscsharUYfhEREREREdWDWqPBG9/sxt9nbgAAlswdiYmDexq5KmqLnp35IKYN7w0A+HrrSXy745SRKyJqnRh+ERERERER1cPHvxzC0UtRAIAXHxqBJ4MGG7kiaqvEYhHefWYKJg7uAQD4YddZbDkcYuSqiFofhl9ERERERER6+in4LHYevwYAeGR8fzw1fYiRK6K2TiQS4b1np+KBnl4AgM9/P4qTV2OMXBVR6yISBEEwdhHUvinKiiAIte9gIjOzglgsgUajhrK82ECVUWvH64YagtcNNRSvHQKA3MJSHLgQjTNht5GSXYi8ojKYyqSwsTRDd09HDPDzwMRB3eHg4GTsUqkBwuPT8cT7v0Gt1iDAxx3fv/EopJL6rye4EpGEA+dv4UpEEjJzi6DSaOBoY4nuXh0wZkB3TBzcs0HzxqVk468jV3DpVgLSc4ogQICrgw0G9OiEWaMC0MPbtc45ikrlCD4ZhjPXYhGbkoOC4jJYmZuig4M1hvTxRtCDveHt5ljnPJfDE/Hcx5vr/W/Y88W/4OZsW+/zGuNsWBz2nb2JsOgUZOYVw8xECldHGzzQ0wszRwWgi3vd36/9H/+03q/77uIpmD68j97H5xWW4tG3f0ZmXjHsrS3w18dPwcHGst6vS9QeMfwio2P4Rc2F1w01BK8baiheOxR8OhxfbT+H4jJFrcdZmplg4ZQHsGjakAYFHGQcCqUKj73zC+JScmAqk2LbJ8/UO6RJzynE+z/uw4WbCbUe19XdCR+9OB3dPJz1nvv7XWfw4+6zUKur/71aJAK+/c98DOjRqcY5/jpyBeu3n0JhSXmNx0gkYjwxZRBefHhErfW0hvArr7AUr38TjEu3av56SMQiPDK+P5bPHwOxWFTjcYYIv4CKoG7J51sBAKP6++CLpbPr/bpE7ZHU2AUQEREREbV2O07cxOeb7zWiDvTpiGF9vODiYAWVWoPU7CJcikhGaHQaSsoV+HbHaSRl5OP956YasWqqj+BT1xGXkgMAeHzqA/UOaLLzi7Hw3Y3ILSwFAAzo0QnDArrA1dEGCqUaCWm52HP6OrLyihGbko3nP/kTv/73CXR0sqlz7jV/HsOv+y4CAJzsrDBteG9083CuuPay8vHP5ShYmJmgv59njXOs334KP+4+CwBwsLHA2IG+6OntCktzU2TmFeHSzQScDI2BWq3Bhj3noBEELJk7ssb5unk448vlc/T63Kza9A+SMvJga2UOR1vDrGQqkyvx3MebEZuSDQDo5GKPqQ/2hqeLHUrKFIhKzETwyeuQK1XYdPAyyhVKvLloUo3z6ftvDT55HcdCKvrFddNjRdn9hvp3wcjAbjhxNQbHQ6JxLToZAT4e9Z6HqL1h+EVERERE1Ai5haX4avs5AICZiRSfvzgZ/Xzdqxy3aGp/xCTn4Is/TyM9txgvPDTc0KVSA2k0AjYduAwAMDOR4dGJA+s9h5OdFRYFDcbOE9fw9lOT4e9T9Rp5dtYwfPTzQQSfuo7cwlL8sOs03nlmSq3zngqN1QZfg3p54dN/z4S1pdl98z6IMrkSIlHNK5ceGhuIYyFRGN63G56ZMQTmpiY6z8+fMAA3YlPx78/+QlGpHL/tv4hZowLg0cGu2vnsrM0xIrBbrbUDQGxyFpIy8gAAM0f6w9TEMG9Rf99/URt8TRveG28umgSZVKJzzMIpD2Dxh5uQkVuEHceuYdbIAPTs0rHa+fT5typVanz0y0EAQO+uHWucqy6Lpg/BiTs9v37ddxFfLGX4RVQXrrMmIiIiImqEw5diUK5QAQAeGt272uDrrm4ejvj65Rn45Z2FcHWse0UPtQynr8UiIT0XADBhkB9s7guX9PXopIHY8uHT1QZfACCTSvD6kxO085+9Hl/rfBqNgFV/HAUAdHSywadLZlUJvu4yN5XVOpeznRX+/OApLJk7skrwdVfvrm5YNK2iwb9arcHFm7drnVMfmw9V7FwoEYvw8Nh+jZ5PX4cuhAMATE2keGXBuCrBFwC4O9vhuVkPaj8+fS22Ua955GIksvIqbot/ZHz/Bs/Tp6sbenSu6N928koMkjPzG1UXUXvAlV9ERERERI2QnFmgfdzVzaHO4yViMTo4WOs9v0Yj4MjFCBw4H46I2+nILSyFTCqBs70V+vq4Y/LQXhh4Zxe4uhSWlOOvI1dw8moMbqflQK5Qwd7GAt09O2DcA76Y+mBvSMS1/328ul5OEwf3wEcvTAcAlCuU2HwwBIcvRiAxPRdlciUA4NmZw/Dc7AerzFdZXmEpNh+6jNOhsUjMyINGENDB3hqDenXGvAn99Wq03hyOXorUPh7Rr+4VPrWprW8UAJjIpOjkao8bsWkoqaN/3OlrFZ8noGJ1l7WFabPWBgA+nvf6kJWU115fXQqKy7Dv7E0AwIhAH71u8WwqKVkV37fdPJxhZV7z582/m5v2cWZe4/o5bj5UsXrQ0dYS4x/wa9RcI/p1Q/jtdGgEAcdCorBw8gONmo+orWP4RUREREQEICu/BIUl5fByta9XI3pL83urZJIqBWFNIaegBP+3ejtuxKbpjCtVFT2iEtJysfvkdfTz9cQ7z0yGp4t9jXPdiE3F0lXbkF9UpjOelVeMrLxinAmLw5+Hr2DNyw/B2c6qXnWm5xQCqAjX/vXxZkQmZtbrfAC4dCsBr67diaJSuc54UkYekjLysPtkGF5dMA5zxvSt99yNdbchukgEvYPGhhIEARm5RQB0g6bqnA6tWIlkZiLDhEGNC1P0lZZdqH3c3bNDo+bafiwU8jurJueON9yqL6Bi4wm5QgWFUlXrccWVAr6GrvgDgLDoFNyMq/g+njUqoNqVZvUxuFdnfLfjNADg8q1Ehl9EdWD4RURERETt3q5Tt7D6rzNQKNUY2dcbHz03odb+SJX18LoXAGw9dgPDAzrDt5P+u/TVJD2nEM9+tEm7QsXNyRbThveGt7sTlCo1ohIycfRSJFKzC3A1KglJGXk1hl/h8el4/tMtKL3zRn5kYDcMD+wGG0szpGTmY/fJMNxOy0VkQgae/+RP/PbeEzXeJle5kfmBc7dw8Hw40nMKodEIWLZqGyITM2FvbYGZo/zh6+WC/3y1u85/6/kb8Vj+5XYolGpIJWJMHtoTA3p4wcxEiriUbGw/dg3Z+cX4eONB2FiZNXrVTH3kFZVqwygXB5taVwk1ha1Hr2pvjVs4pfZA43JEIgCgv58nzEzufb2SM/ORll0AM1MZPDvYw87avElqKywpxx8HLgEAfL1c8ECvhgeBKrUG245eBVCxu+UDzRwq3q+bhzMu3kpAfGoOUrLy4e5sV+1xlW/tHNmIVX93V31JJGI81AQBbhePe83yw2+nN3o+oraO4RcRERERtWu7T93Cyj9Oaj8+ERqP7PwSONvrt/ppeEBndHV3QGxKLopK5Xhu5S48NLo35ozqjY6O+t/eeL+PfjmoDb4mDemJd56erNMMfMrQXnjpkVHYe+YGsvOLMdS/S7XzCIKAjzce0gZf7y6egunD++gcM3/iALy6didOhcYiPjUHPwWfxb8frn4nv8qNzMPjK950Z+UVY+vRK7gWnYJ+vp74Ytls7SqZ/6D28KtMrsD/fjoAhVINO2tzfPXqXG0/o7vmTRiAFz7dgvDb6fh042EM7u3d6Fv89JVSqZ+Sl2vNK+sao0yuQExyNnYdv4bdJ8MAAM/MGIrR/bvXeE5eYSkS0ir6kHW9E4T8cykS3+48jdjkbO1xErEIg/t4Y8nDI+HTqf4rtdQaDXLyS3D+Rjx+Cj6H5Mx8uDvb4tN/z9A7IK7O0UsR2lDR0Ku+gIpg8eKtBKjUGixbtQ2fvDgDXT10Q+vrsanYuPcCAOCRcf0avKtiRm4hjl6u2OFx7IDucLZv+M+Fu6zMTeFoa4mcghLkFJRArlAZbLMAotaI3x1ERERE1G7tPROBTysFXwDgYGMOa0v9gxWxWITPX5yCJV8GIzmrEAqVGpsOX8OfR8IQ0M0VI/p6Y2SgN1zr0efrVGgszlyLAwD09HbF+89NrbYXl1gsqhJk3e/4lWjt7VZjB/pWe7xMKsG7z0zB9Fe+Q2m5AluPXsUzM4bqrCaqjUYQsGbLcbg722LVstk1Nl2vzuaDIdrbJl9/YkKV4AuouN3sf89NxcNv/IS8olLsP3sTc8cZJjDJKSjRPraztmjSuX/bfxGrNx/TfiyTSvBATy8snDIIQ/p413ru3eAIAJztrfHNtpP4KfhclePUGgFnrsXh8q1E/O9fQRg70Ffv+kY8+6VOX6+OTjZ4YuogPBk0uFG3AAIVX3cAsLIwxdRhvRo1V0MM9e+CFx8ega+3nkRcSg7mvfkzHuzbFVOG9cLQPt4IPnUdX/11EgqlCoumDa4xDNbHX0euQq3WAGhco/v72VmZa6/P7ILiGlevERHDLyIiIiJqp/afj8THvx/XGZNJxXjridF6hz53uThY4Zc3H8YPey5h54mbUKjU0AgCrkan4Wp0GtZuO4ve3i6YM7o3xvb3QfV76VWq7U4TcABYPHNYnU3oa3PiSrT28axRATUeZ29jgZH9umH/2VsoLpXj3PX4Wlce3U+uUGH5o2PqFXwB93bdc7S1xJgBNQcz3u5O6NPVDWExqTh2Ocpg4dfdhv0AYFbHjon1dXfl1l1qtQYZuUUIi05B7y4da/1cFpbc6912PCQKIRFJcHOyxaJpgzGod2c421khPacQO45dwx8HLkGuVOG/P+yDj6czOrnWvTFDVl5RlYb2xaVyxKVkIyIho1G3Kd6ITcX12FQAwIzhfWrcXbK5PTVtCPy8XPD570eRkJ6Lk1djcPJqDMQiETSCACsLU3z92qPo271hK76Aig0gdh4LBVBxq2hj5rpf5eux8nVKRFUx/CIiIiKidufQxWh8uPE4BOHemFQixkfPTsTgXp0aNKeFmQxLHx6KxycFYs+ZcBy+FIPYlIpwQxCA63EZuB6XgV/3X8V7zwahZ5eO1c6j1mi0jcxNZJI6VwDV5eLNe83a+3Z3r/XYAB8P7D97CwBwMy6tXuFX544OGNXPp8r4ni/+BQDV3qaYkVuI6KQsAICfl0uduw36erkgLCYVtwzY40it0WgfSxsRQlZn9qgAjAjshjK5AimZBfjnchTCb6fj+11n8PfZm/jqlYdrDKoKSsq1j0MikjCwpxc+XzpLpydZJ1cHLJs/Gs72Vli16R+Ulivw2/6LeHPRpDprMzczwZfL50AQBGTmFSM6MRN7z9zAqdBYnAqNxdPTh+CFh0Y06N+96WBF/yuRCHjYQCFmdTQaAek5hSgqrfhcdu7ogOTMfKjurNIqLpXj442H8O+HR2J4364Neo19Z25qv1aPNPG/tfLGHCqVppYjiYjhFxERERG1K0cux+D9n/+BplLyJRGL8b/F4zHMv/FNt+2tzfH4pH54fFI/JGXk458rcTh0KRrxqXkAgLjUXCz+aDPWr3gE/j5Vw6jcwlLtihvvjo6N2hVOoxG0zdMdbCzrXGHj7myrfVy515U+pj7Yu9oeUG6V5rxfata93THLFUqcvBpT62vc3amyuFSO0nIFLMyaf8VQ5c9/cZm8liPr7/4A9KnpQ7Dn1HW8/+N+pGTm49V1u/D7e09Uew1UDjs8XeyxatnsGj8fc8f1ww+7zqCoVI7DFyLwnycm1Lma0MrcVNvb7a5/zXkQL6/egbCYVPwUfA5dPZwwcXBPff+5AIDM3CIcvRQJoOLWw9p2KG1OZXIFVny1G2euxcHCzAQfvzAdEwb3QH5RGQ5dCMfO49cQlZiJmKQsLFu1Dc/MGIrn5wyv9+vcbXRva2WOSUPq97mqS+Xrkf2+iGrH7xAiIiIiajeOXYnDexuO3hd8ifD+M+Mwsm/jVlhVx9PFDk9M7ocnJvfDuRuJ+HzzKaTlFKFcocRb3+3FzpWLq4QQ2fnF2se2Vo3bpa+guEz7b9Vnl8LKxxSV1i/o6dPVrX7FQbefVkhEEkIikvQ+t7hUbpDwq3Jvq6YOv6ozbXgfXLyZgH1nbyImKQsnrkRjXDW7W1pVWkm3cPIDtX4uZFIJenR2xcVbCSgqlSMnvwQd6tGD7i4HG0u8/1wQZr32PQQB+Gn3uXqHX1uPXtWurJrXhP2v6kOl1uClz7fhSmQSzE1l+P71+ejhXdFrzs7aHHPH9cPccf1w4ko0Pvz5IHIKSvDj7rMAUK8A7PyNeMSl5AAAZo70b/KAqrjS96ihNoAgaq2adt0uEREREVELdTI0Hu/8eARqzb3gSywS4d2nxmJ0v+p3SmxKQ3p3wnevzYS9dUWglZKZr21qX5mmcn113AZYl8q37OlDgO5quPpozM5/DVHff1tDuVTame/uyrPmNjzw3i12567HV3tM5aBSn8+Fvc29Zv2VA9b68nSxR+eOjgCA2JRsZFZqvF8XuUKFHcdDAQCdXOwbfUtvQwWfDMOVyIqg9fEpD2iDr/uN7OeDX95ZqA0Wf957HmnZBdUeW527t3dKxCI8PLZpb3kUBAGFd26nlErEcLS1bNL5idoarvwiIiIiojbvTFgC3vrhsE5IIBIBbz85GuMGdKvlzKblZGuJKUN88cehUABAfGpOlVvLHGzuvYlt7Eoja4t7q5bub15enZKye8c42DTtzobVqfyGfcZIf7zz9ORmf8368nCxh0wqgVKlRmxyNtQaTaM2INCHS6VVWXdvW63tmLzC0jrnFCqvdpQ0rv4ODtaIT61Y0ZSZV6T3KrJ9Z29qA8SHx/UzeGB615E7t10CwPDA2r//3ZxtMX1EH/x5KARqtQbHr0Rj/oQBdb5GQlouzobFaV+jo5NN44q+T2J6nrbJfWc3R6N9LolaC678IiIiIqI27fzNRLzx/UHtrVZARfD15uOjMXGQ/g3dm4pbpTfB1YUWTnaW2kbW9+8GWF+mJlI421sBAHIKiuvcES65Up8vV8emfbNencqvkZNfUsuRxiOTStC9UwcAFX3JYpOzm/015Uq19rGlefW3M7o522pvi01Ir/s6yal0rd29JhpKoVRVqk//2+3u9r+yMDPB9BF9GlVDY6RnF2ofO9vV/bm4u9INANJzCms58p4/D4doN9R4pBlu77wZl6Z93KuGzTOI6B6GX0RERETUZl28lYT/rD8I5X07ob2+YBSmDPE1Sk1ZlUKeDtWEEDKpBAN7VjTeLyqV43psaqNer3eXil5cggCERafUemxoVLL28aDenRv1uvro6GQLb7eKYOF6bCqUKnUdZxjHgwH3bou9fCuh2V8vMiFD+9ijQ80N4XvfCT2uRCbprOy6n1Kl1s7paGsJe+uGr+pTazSIubNDp0Qs0ntF08Wbt7XB4dRhvfTqQVeXzYcuY+ry9Rj74lp8svEQyhW1h7t32VrdWxFZVGnXzJoUlty73bXyysyaFJXKsff0DQBAV3cnPNCz8Rtp3O9yRKL28TD/5r9tm6i1Y/hFRERERG3S5YgUvLb+ABT3BSqvPTYCQcOqNhBvqKSMfBy+VPsuhXcpVWocvBCl/bhPNbs9AsCEQffq+3nP+UbVV3muXSeu1XhcXmEpToXGAqgISPy7VV9bUxs7sCKELCguw+6TYQZ5zfqaMqw3JHf6r+1qRI17Tl1HWnbtK4cUShV2/BOq/XjC4B41HjuiX8Ute1l5xdqvXXWOXorUNkefOLhHtbfIZecXY8ex0Crj9/v79A3tZgij+vvAzERW5znAvf5XAPDIuMb3vzp6KRKf/34U6TmFyC8qw9ajV7HurxN6nevr5aJ9fLKWzxtQ0YPv0IUI7cd+lc6tya4T11B65zbjueObttcXAJSUVezaCVTcnvxgQNc6ziAihl9ERERE1OZcjUrFq1/vh0KpG3y9PO9BzBxev93papNTUIrl6/7Guz8dwQe//IOM3JobiRcUl+M/3x5EWk5Fg/AAH/cad0icMqw3fO/canfiSjTWbjleY1Pz4yHRtQZkowd0h6dLxeqhwxcjsO/szSrHKJQqvPfjPu0b9udmPdjoZvv6WjD5ATjdufVs1R//4HhIdLXHKVVq/HXkinZFjSF5dLDD6AEVt8jGJmfjamRyHWdUtXrzMfz3h3149qNNuFLDrpblCiXe+nYvEjPyAAAjArvBx9O5xjmnDO2lXcX1ycZD1QZrKVn5+HLzMQCAmYkMc6sJnuJSsvHEe7/hw58P4rPfj2ivg/tdDk/EZ78fBVDRN+zxKYNq+Rffk5SRp93c4YGeXvB2d9LrvNocuhBedex81bHqzB3XD3fzv592n8W16Oq/nkqVGh9vPKhd6ebj6VznikiNRsBfh68AqNiRc+qwXnrVVB9/n7l5L1wb16/Jd5Ekaov4XUJEREREbcq1mDS88vU+yCv1JQKAZXOHYc6o3k36WgnpeSgqrXgTuu98FA5fjkFfHzf093WHs50FLExNkF9chpvxmTh2JU7bdN7Jzgof/GtajfNKJWL899mpePajTSgqlWPj3xdwKjQGk4f2gperA5QqNW6n5eBYSLT2jXkXd0eM7OdTZS6ZVIK3npqEF1dugUqtwdvf7sWxy1EY3rcrrMxNkZSZj90nw7T9xfr36IRZowJqrC2/qAxhMSl3/v33ek2FxaRo35DbWZnDv4ZVbfeztjDF209PwitrdkKuVOHlNTswqHdnjOrnA2d7K5SUKRBxOx1HLkUiK68YZiYy9O7aUacPkyE8MWUQjl6KhCAAq//8B7+8s7BeTcYd7Spul0vNLsDijzahf49OeNC/Czo620Kj0SA6KQv7ztxExp3dE9072OG/i6fUOqeFmQlee3wcXv86GBm5RZj31gbMGOGPnt6uEItFCI9Px47j17Srvv7v0THaILQyK3NTmN0JUP48FIJD58MxdqAvenq7wsrCDNn5xTh/PR4nQ2O0fayWzRuN3jWEt/fbfCgEmjsnNlX/KxGqfu71/Xp0cXfCvx8eiXV/nUBJuQKLP9qM0f19MLCnFxxtLaFUqhGXmo2D58K1QaSNpRk+fL7m79m7jodEIfXOjpDTh/eBuWn1PdsaqqikHD/uPgsAsDQzafJdJInaKpFQ283hRAagKCuCINS+PbPMzApisQQajRrK8oZvzUztC68bagheN9RQvHZahutx6Vi+5m+U3tfYfclDQzB/XM2BTmOk5RThm53ncfxKHNSaun+1HuDngbeenlJtCHG/22k5WL5qu/YNeE369+iEt5+aVOucx0Oi8e4Pf2uDkOoMC+iClUtm1nor2+XwRDz38eba6/HzxPdvPFrrMfe7dCsBr63bhcJaejBJxCLMHBmApfNG1avRelNZ+dsRbDkcAgB4/ckJeGhMYL3OP3QhHKs3H9MGXDUZ5t8F/312il79pQBgy+EQrNr0j86mDpXJpBL854nxmDmy5u+BvMJSfP7HURw8fwu1vUO0NDfBf56YgClD9VvRVFwmx5Sl36CkXAE3J1vs/vy5JllV+M+lSLy6bpfO2KMTB+Dlx8bqPceWwyFY99eJOjeC6OntineemVLrKry7Fn+4CVcikyASATtXPqvX93l9fPTzQWy/c3vq209PqvVrSkT3MPwio2P4Rc2F1w01BK8baiheO8YXkZCFJV/u0a6uuuv5WYOwcGL9QoqGSMkqxImrcbgSnYrbafkoLClHuUIFW0szONiaI6BbR4zs640Bfp4wMbfWe16FUoW9p2/gWEgUIhMykV9cBjOZFK5ONujv1wmThvRAgI+HXnPlFJTgryNXcPpaLFKzClBSroCdlTl6dHbFtOG9MXagb52rZ5or/AIqVpVtP3YVp0NjEZ+ag1K5EtYWpvBydcDAnl6YOdIfHZ1s6z1vUymTK/HY278gIT0X5qYy/PjmY/DrXHcPqMrKFUocvhCBU6GxiEjIQE5+CaRSMTrYW6F3FzdMGdZLu+FBfcSlZGPL4Su4FJ6A9JxCSMRidHSywZA+3pg7rh/cne30micqMROHLoTj4s0EpGYVoLhMDgcbC7g722F0fx9MHtoL9jb6N8y/EZuK93/cj9iUbCx9ZBQen6rfrZL62HzoMn7bdxHlChUmDPLDsvmj9e5BdldmbhEOnLuFU6GxSMnKR15RKUxlUjjYWqJ3l44YM8AXwwO7QiKuu2NQSZkcy7/cjtCoZAzu4421Lz/c0H9atQ5dCMcb3wRDECpuif1y+ZwmnZ+oLWP4RUbH8IuaC68bagheN9RQvHaMKzYlFy+u2o3CEt1VTc9OH4gnpzTNbVZNRSQS1yv8opYlOjETz3y0CcWlcrg4WGPjfx+Hs13VXTtJV1JGHuxtLJpkl8eWLr+oDGVypd47YerjZlwaFn+0CXKFCl6uDvjp7ccatWsnUXvDhvdERERE1KolZuRj6Zo9VYKvp6b2b3HBF7V+Pp06YPXyOTCVSZGRW4QXP92CnIISY5fV4nm62LeL4AsA7KzNmzT4ik7KwtIvtkGuUMHZ3gpfvzaXwRdRPTH8IiIiIqJWKzW7EC+t3oPcwjKd8ccm9MXTQQOMVBW1dYG+nlj50kyYyqSITcnGsx9tQlZe7X28iBoiMiEDz328GXlFpXC0tcRXr8416q2/RK0Vwy8iIiIiapUy84rx0uo9yMzTXXXz0KjeeGHWoHrtxEdUXw8GdMXXrz0CG0szJGfmIzYl29glURt0LToFBcVl8HSxx4a3F6CbR91N94moKqmxC2gprl+/jh07duDChQtIS0uDIAhwdHRE3759MW3aNIwaNarW83fs2IHXX39dr9d66qmnsGLFilqPKS4uxsaNG3H48GEkJSVBo9HA3d0dY8eOxRNPPAEHBwe9Xqup5iEiIiJqSXILS/HS6j1IzdZdbRM01A/L5g5j8EUGEejrgZ/eegy303IxuLe3scuhNmjuuH6QSsQY3b97vTYaICJd7b7hfWFhId5++20cOHCg1uNGjBiBNWvWwMKi+h849Qm/vvjiCwQFBdX4fGxsLBYvXoyUlJRqn3dycsL69evh7+9f6+s01TzNjQ3vqbnwuqGG4HVDDcVrx3AKisvx7y+DEZuSqzM+fmA3vLNojF67shkTG94TEREZVrtf+bVhwwYcOHAAdnZ2WLBgAcaMGQMPDw+Ul5cjJiYGv/76K44fP46TJ0/itddew1dffVXnnGFhYbU+L5PVvP1ucXExnn32WaSkpEAmk2HZsmUICgqCmZkZLl++jE8//RSJiYl4/vnnsWvXLjg7V7/stanmISIiImpJisvkWL727yrB18i+3nj7ydEtPvgiIiIiw2v34dfSpUvRoUMHTJo0SecWQFtbW7i4uGDYsGH473//i82bN+Pw4cOIiopC9+7da53T1LThu5j89NNPSE5OBgCsXLkSU6ZM0T43btw4FBcXY8WKFcjOzsY333yDd999t1nnISIiImopSsuVeHndPkQkZumMD+nlifeeHgepRGKkyoiIiKgla/d/GhOJRHj00Udr7X01b9487ePY2Nhmq0WtVmPz5s0AgMDAQJ3A6u7z3333nfbjHTt2oKxMd2ejppyHiIiIqKWQK1R4bf1+XI/L0Bnv5+uGj56bCBMZgy8iIiKqXrsPv/ShUCi0jzt06NBsr3PlyhXk5eUBACZPnlzl+e3btyMuLg5z5swBAJSXl+P06dPNNg8RERFRS6BQqvHGdwdxJTJVZ7xPFxesfH4yTE3a/c0MREREVAuGX3rYuHEjAMDHxwf9+vWr17kaTe2N3Cu7ceOG9nFgYKDOc2VlZVi3bh0CAgKwdOnSas9p6nmIiIiIjE2l1uDdn47g3M0knXG/Ts74YskUWJjV3EuViIiICGDPryo0Gg2USiVKSkpw69Yt/PLLLzh16hTc3NywZs0avbbNDg4Oxq5duxAVFYXs7GyYm5sjICAACxYswLhx42o8Ly4uTvvYw8ND57mNGzciMzMTn3/+OVxcXCCVSqFSqXTOaep5DEVqWveWvSKRWPv/MjOr5i6J2gheN9QQvG6ooXjtND21RoMPv9+PE6HxOuNdPZyw7rW5sLMyN1JlRO2XRqOBmBtLUDPh9UXNheHXfYKDg7FixQrtx46OjliyZAkef/xx2NjY6DXHq6++qvNxaWkpzp07h3PnzmHhwoV46623qj0vN/ferkX29vbax3l5efjxxx8xYsQIDBo0CABgY2OD3Nxc7e2NzTGPoYjF+vfoEIlEEInY04Pqh9cNNQSvG2ooXjtNQ6MR8PHGQzh4Plxn3MvVAetXzIODjaWRKiNqv6KjI3Dm1DHMfuhR2NjYGrscamMEQcD+fbthamqKMWMnMQSjJsXw6z7x8bp/WczJycFvv/2GkpISLFmyBBYW1a9Scnd3x8SJEyGTyTBw4EAMGjQIrq6uUCgUOH/+PD777DMkJSXht99+Q8+ePTF79uwqc9xtOm9iYqKzwuzbb79FcXExXn75Ze2YiYkJgIpgrbnmMRSNRl3nMSKRGCKRCIIgQBD0v5WU2jdeN9QQvG6ooXjtNB1BEPD57/9g94kwnXE3Z1t8/drDsLc20+v3h5asPn/8I2oJroWG4Ng/ByEIAi5eOINx46fUfRJRPSQlJSAq8hYAoLSkBFOCZkEqZWRBTYNX0n2WL1+O5cuXo6SkBMnJydi7dy9+//13bNiwAadPn8bmzZthZVX1VoZBgwZpV1NVZm5ujokTJ8Lf3x9BQUEoLi7G+vXrqw2/7qqccKekpGDTpk0ICgqCn5+fdlyfXmJNNU9zU8lL63yTIDOzgkgkgSBooCwvNlBl1NrxuqGG4HVDDcVrp2kIgoAvt5zBtuO6/Ug72Fti7dKpcLAQtfrPr0gkhom5tbHLaDcEQcChg3sRHRUB5w4uCJo2G5aWvDW5Pq6EXMSJ44cBAF27dcfoMRONXBG1RZ06dca48VNw9Mh+xMZGYffOvzBz9iOQSPjHAmo8riOsgaWlJXx9ffHyyy9jw4YNEIvFiIqKwurVqxs0X8eOHTFp0iQAQGJiIpKSkqocc3dVmVKp1I6tXr0agiDoNKcHALlcrnNOc8xDREREZEiCIGDVn6erBF8ONuZYu2wa3Jz0a0HRFvy15Tds+PFr7Ni+2diltHoJCXG4dTMMSqUCqSlJuHrlkrFLalXCb13XBl/e3l0xNWg2wwhqNn38AzF6bEW4mpgYjwP7dkMQBCNXRW0Bwy89BAYGon///gCAnTt3NngeHx8f7ePExMQqzzs4OAAA1Go1ioqKEBERgb1792LevHnw9PTUHqdUKlFUVKRzTnPMQ0RERGQoGo2AzzefwvYTN3XG7azNsGbpNHRysTNOYUaSkpyIgoJ8qFUqY5fS6omgu2GVHvtX0R1JSQk4dHAvAMC1oxuCps1h8EXNLiCgPwYNfhAAEBUVjlMn/zFyRdQW8LZHPXXu3BmXLl1CcXExcnNzGxQWmZvf25Go8qqsu7p06aJ9nJKSgs8//xzm5uZ44YUXdI5LS0vT3q7o7e3dbPMQERERGYJGI+CLP09h58lbOuN21mZYt2w6urq3vj/SKZUKREZF4fbteGRnZ6G8vBwSiQSmpmZwcnJCZ28f9OzlD1NTU2OX2uZ18vJGz17+iI4Kh7OzC/oGDjR2Sa2CXC7HoQN7oNFoYGZmjqCgOZDKZPWeJz8vFzdvXkNCQjwK8vOhVCpgZm4OezsHdOnqg169AmBm3rCdW5VKBf7ctBG+fj3Rp08gzOt5N4tGo0FU5C3ExkQhPT0VJaUlkEoksLCwgruHJ3z9eqFTp84Nqg0ALl08i9TUZAQGDkQnL+O/30pOTkRkxE0kJyWiuLgQGo0GFhaWcO7ggm4+fvDz66VXk/mtW35DcnLVxRy16dnLHxMnTdP7+CFDRyAjPRW3b8ch5PJ5eHt3hWcjvhZEDL/0VF5eDqBiBydLy4btLpSVlaV97OLiUuX53r17ax9v3LgRp06dwpIlS6oEbVeuXNE+7tOnT7PNQ0RERNTcNBoBn20+id2ndHd1tLc2x7rl09DFrfUFXxER4Th77oz298e7NBoNlEoliouLcPt2PM6eOYGhw0aib+AAnU2KqGmJRCJMnDStXm+8CThx/DAKCwsAAGPGToK1Tf1uO1apVDh5/AiuX79apc9wSXExSoqLkZyciIsXzmLs+Mno3r1HvWu8dfM6srMzkX06Ew4Ojujm41f3SXckJyXgyOF9yMvL1RlXq1SQy+XIy8vBjeuh6NLFB5OmzKh3UK3RaBB69TKKi4tQWFiAhY8vrtf5TamosBCHDu5FYmJ8lecKCwtQWFiA2JgoXL54DlOCZsLJqYMRqtQlEokwcfJ0/LJhPeRyOQ4e2IOFTzzLPxhQgzH80oNarUZISAgAwMvLq8HfcGfPngUAWFtbV7vSKjAwEPb29sjLy8OOHTvg6OiIRYsWVTnuwIEDAAAzMzMMGzas2eYhIiIiak4ajYCVm04i+LRu8OVgY451y6bBu5UFX4Ig4PSZU7h+/d4ulc5OzvD27gJrGxtIxGIUFRUhJSUZSclJUCjkuHTxLHy6+8HKig3wqeXIycnGzRvXAADuHp3g69ezXucLgoCd2zdrVwc5ODrBx8cX9g5OEIvFKCzIR1TkLWRmZqC8vAz79u6EbKYM3l261es1Qq9W9G+zsbFFl67d9T434XYcdu3cAo1GA4lEgm7dfOHu0QkWFpYoKy9FZkY6wm/dgEqlRFxcNHbt+BMPP7JQr1VRd0VFhqO4uKLFTN++A/Q+r6mVlBRj0x8bUFpaAgDw9PRCZ+9usLaxgVqlQl5eDm7eDENJcTFycrKwfesmzH9sEWxsbGucc9jw0SgvK6vztdPTU3Hh/GkAgKOjc71rt7CwxOAhw3Hi+BEUFRXiWuhlPDCI71upYdp9+PXDDz/g5MmTWLduHezs7Ko9Zv369UhNTQUAPPbYY1WeFwQBn376KQYMGIBx48ZVO8f+/fu1AdrMmTNhZmZW5RiJRIL58+fjm2++AQA8+eSTVVaZnT17FsePHwcAzJkzR+dWyqaeh4iIiKi5aDQCPv3jBPacidAZd7Axx1fLp6NzR3sjVdZwV66EaIMvKytrjB0zFu7uHlWO69dvAIpK5Tj2z0EMHzGGwRe1OFcun9c+fmDQ0HqfLxKJMGTYSBzYtxtDh41Ej559qqxuHPjAUFwPu4ojh/dBEAQcP3YInb276r0KMuF2HHJzcwAA/gH96xVMeXh6oWs3X6hVqhpXtQ0ZOgK7dvyJzMwMpKYmIyLiJnr21P9umatXLwIAzMzM0aNH7zqObj6WllYVn+vrVzF+wlS4uVX9mTR4yAgcPbwPN2+GobS0BOfPncKEiUE1zlndHNW5des6AEAqlaJ374AG1e/v3w8Xzp9BeXkZrl69hH79B0EqbfcxBjVAu75qIiIi8NVXX6G8vBwTJ07EwoULMXr0aHh6ekKtViMyMhKbNm3CwYMHAQCDBw/G/Pnzq8zz008/4eeff8bPP/+McePGYc6cOejduzcsLCyQmpqK4OBg/PzzzwAqVo7dv+NiZU8//TSCg4ORnJyMP/74Ax4eHhg8eDA0Gg0OHz6MlStXQhAEODk54fnnn2/2eYiIiIiamkYj4JPfT2DvWd3gy9HGAuv+bxo6u7a+4CsnJxsXL10AAJibmWPWzFmwtq75NjFHRyc89HDVP6oSGVtZaSnCwyt2XLW1tYOXV5c6zqieh0cnPL3437WGWX38AxETE4nb8bHIz89Dfn4e7O31W/F59UpFuCSVStGnT9961SaRSDA1aFattVlaWmHsuMnYvOkXAEBCfKze4VdaWgrS0yoWT/Tu07dBvdKaUr/+DyCw38Aa/70SiQRjxk1GTGwU5OXluH07ttGvWVRYiNiYSACAX4/eDe7rJpXJ0KuXP0JCLqC0pASRETfRq4FBGrVv7Tr88vPzw4YNG/DGG2/g9u3bWLduHdatW1ftsUFBQXjvvfcgq+YH15NPPomcnBz89ttvOHLkCI4cOVLtHP7+/li1ahWsrWv+656VlRW+//57LF68GCkpKVi+fHmVY5ycnLB+/Xo4O9e8dLSp5iEiIiJqSmqNBh//dgL7zkXqjDvZWmDd8unwcrUzTmGNdP7CeQiCAAB48MHhtQZfDSEIAiIjbiH8VhgyszIgLy+HhYUlvDp3weDBw+vsx1ReVobYuGgkJyUgKzMdhYWFUCjkkEplsLa2gbuHJwIC+sO5Q9W+tHcVFORjw49fAwCWLF2BstJSnDx5FIkJFX2EunT1wajRE2BqaorsrEycOvUP0lKTIRZL4OvXE8NHjK12xcbd5tk9evbBpMnToVarceN6KG7dCkNebg5UajVsbe3QpYsPBg4cUueb6JKSYnz/7Zoan7exscXTi/9d6xzVKS8vw7XQEMTFRiM3NwcqlRLmFhZwdnZB9+490KNnnzpXH507exLnz53SqSEvNwfXw64iPj4WhYX5EIslcHRyRh//QPTq5V/vOhsrLi4aarUaQMXXtDH96PQ518mpA27HV4QtCoVcr3lzc7Jx+3YcgIYHK3rV5nzv+0GuZ20AcDXkovY1Avr2r3dtzaGuf69UKoW9vQPS01KhkCsa/XqhoZe1vd76Bjbuts8u3bojJKTijwvR0REMv6hB2nX4BQD9+/fHvn37sG/fPvzzzz8ICwtDdnY2pFIpXFxc0L9/f8yYMQMDBtT8DSuVSrFixQrMmzcPW7duxenTp5GamoqysjI4Ozuje/fuCAoKwqRJk/Raotm1a1cEBwdj48aNOHToEJKSkiAIAtzc3DB27Fg8+eSTeu022VTztHbfrP+qQec5Oznj4Ycfqfa5rVu3ICs7q9rn6vLC89X/snX8+D+4FX6r2ufq8tBDc9HBuWpjypu3buDEieMNmnPkyFHo1bPqEu3MrExs2/ZXg+bs2aMnRo0aU+1zzfF12vzHz8jMzGjQvPw6Ge7r1NK+n+Y9+iQ6dnSvMs6vU8v6OvH7qXV+ndQaDT7+9TiioiKwIEBz39GF+Hvn73XOaeivkz6KiouQmJgAoCJY6dbNp8FzVTt/YSH2/b0TqanJuuNFhbhxPRRxcdF4bMHTtd4+uWvnFqSlpVQZVyoVyM3NRm5uNm5cD8XwEWPQf8DgOmvKyszA3j3btT2NAODWzTCUl5VhyNAR2PrX7zpBRujVyxCLxRg5anyNc5aVlqC4qBDBu7chIyNN57ncnGzk5mQjKvIWHpn/hMFvFU1PS8GunX+hrKxUZ/xu4/bb8bEIvXoJM2Y9oldt5eVlEAQB58+dwqWLZ7VhUwUV0lKTkZaajPy8HAx7cHQT/2tql5SUoH3cqVPz71BYdKep/t3wRR9X7/T6AhofrNTmbsN/AHB2rjkYrqy4qBDR0RWrWrt27V5r76yWRBAEFBUVAgCcq/nva30olUpcv34VAODu7qn3564mHTu6QyaTQalUIiU5EYIgcJMQqrd2H34BFcs8p02bhmnTGrcDjJeXF1555RW88sorja7JysoKL774Il588cUWMQ8RERFRY6g1Gny48TgOXIhCtzb2t7fEhATtqq+uXfXvWaSPcnk5dmzfhNzcHLi4dkTPnn1gYWGFgoI87U5ypSUlOHvmRK09err79UR+fh7cPTqhY0c3WFvbQiwWo6SkCImJtxEfFwONRoOTJ47C3t4RXbrWHuDt3bMdSqUCgwY/CAcHR1y+dA5ZWZmIi4tGZmY6AFR57uaNMAwfMbbG1VGFhQXYuXMLsrMy0dHNA76+PWFpaYXs7EyEhl6GvLwchYUF2L3zLzy64KkaP8+mpmaYMXNulfHDh/7WNv2uj4yMNGzbuglKZcVqmC5dfdCliw/MzMxRUJCHmzeuITc3B5mZGdi+dRMeXfBUtXeLVKZQKPDP0QMIu3YFMpkMffz7oWNHd2g0asTFxSA6qmITiEsXz6F3n0DY2trVu+6Guvv1AwBHp+a9QyQzIx0xd26N6+PfDyYmdW8sVl5ehvA7vaQ8PDo1OlipiSAIOHfmBADAxMQE/v799DovNDTk3oqnfgObpbbmcC00BCXFxQCgVwBem1u3wiC/s9tt38DGfw4kEgns7R2QmZkBhUKBvLxcODg4Nnpeal8YfhERERFRs1JrNPhg4zEcvBBt7FKaRUalVcYutdw22BDZWZkQi8V4cPhoDBg4RCfw8fPrjV9+/hYqlRIxMZEYP2FqjYFQ374D0K/fA9U/FzgQycmJ2PbX7xAEARcunK4z/FKpVHhk/pNwdHQCULE7+qGDewEASpUS8x59Qru7293n5PJyFOTnwb6GN625uTkQiUQYNXoCAiuFBt19e6Bnzz7YtOlnyMvLkZmZjri4aHStYXc/qVRabf0NaZItCAKOHtmvDb4mTAyqcstVYL8HsCd4G+LjYpCbm40L50/jweF1r9YKu3YFLi4dMXnqTJ0VTz17+SN491bExkRBEATExkShX//qv3bNoSA/H0BF4NAcq5bUajUK8vMQHR2By5fOQa1Ww8uri16fMwC4cT0USqUSQNMEK/crLytDaloyQi5fQHJSAqRSGSZPmVnnrcUAoFIqcT2sYsWTk1MHeHp6NXl9TUmpVCA7Ows3rofixvVQABWhdTcf3wbPKQgCQq9cBlCx8Udj5qrMzt5Re0dHYUE+wy+qN4ZfRERERNRs1BoN/vfLMRy62DaDLwAoKLh3a1RzhAXjxk+ptseNtY0NOrq5IynxNuTl5SgvK4O5hUW1c9TVi8rDoxPcPTohOSkB6WmpUCmVtTbpHjxkuDb4Aiqag981ZMgIbfB1/3Nl5WWobTuDEaPG6QRfd9nZO+CBB4bh1MmjAICbN67VGH41pdiYKGSkV9yC6dPdr9qvg0QiwYSJQdjw4zdQKhUIuxaCwYMfrLPJuZNTBzw097FqVzv5+vZCbEwUACA/P7cJ/iX6kcvlUKkqgiVTM7MmXcWYkZGGTb9v0BlzdnZBH/9A9PEP1Gu3Ro1Gg9CrFcGKtbUNunbTvQZ++uErFBYWoGcvf0ycVL+7enbt3IL4uBjtx6amZvDr0Vu7glEf4eE3UF5eBqDq7Zg3b1zTBsRPPfOiQVfz3S/k8nmcPHFU+7FEIkGnTt4YMHAwvDo3bIODuxIS4pCbmw0A8A/oV69dOGtjXqmvW0lJcZPMSe0Lwy9q82rqYdIYNfVaaYxRo8Y0qt9IdXr17F1tX5TG6ODcoVk+p80x5/zHFkEslkCjUUNZ3jT/keTXqe1/P8nMrKod59epZX2damLMr5PMzKpeP3Paw9dJpdbgfz//g0OXYnTGiwQbTH9oGjycmy4oaq7vJ32U37m9BwDMzMyadO6Obh61Nneu3F9KqVKiYfupVajcpL+srAzWtYQ3JiYmOh9LKq2qqu053d5WVdW0Og0AfP16asOvuzvpNbfY2Cjt4z59Ams8zsLCEl27dUdE+A3I5XLcvh1X54qXESPH1nibn62dnfbx3VVOhnB3hRsAyGQmtRxZf3m5OVXGyspKkZmZjoKCfL36fcXERGr7UvkH9G+yYAUA8vJ0Q0aVSomC/DykpiTB3t5BryDwbi8yU7OK4Kylyr3va6HRaFBcXIjU1GS4uLo16ufY3Wb/EokEffxr/p6pr8rXY+XrlEhfDL+IiIiIqMkplGq88+NhnLx2W2fcxcEKXy2fDnfnpt0N0ZjUapX2cVO+GQcASR3zVX5DfrfvmD4KCwtQXFQEhVIOjbqiP1Hl5vUa4f4NCYzP2toGllZWFU3mS4pRWloCCwvLZn3NuztZAoCbu0etx7q5eSAi/AYAID09tc7wSyyR1PicPr2vmoOguXcNiUVNey13dPPAjJlzodaoUVhQgJTkRMTGRuHG9VBERtzE5Ckzq6zkup82WJFK0ce/b5PWN3rMBGjUGpSVlSIvLxe3boUhLS0FaWkpiIy8hRkzHq51NV9CQjxy7mw40rt33zr7vhlTH/9AdO3aHUqlAgUF+YiOjkBmRjrOnzuF8FvXMWvOfL03H6gsNzdHuwtnd9+eTfr9Wfln692eakT1wfCLiIiIiJpUmVyJ/3x7EJfCdXcndHWwwlf/Nx1uTm0n+AIAieTer9Qt+U1ZRkYarl65hLi4aG0z6tbGxtpW25S7vKysWcMvQRC0t1dZWFrWuRKq8mqtgoL8Rr22pJZgrDlJpPdet/JunU3B1tZO51a//gMGISMjDbt2bEFpaQn279uFBQufgV0NoUtGRpp2x1M/v14wN6/+Ft+G6ty5q87Hg4cMx8njR3DtWggSE+Jx/PhhjBs/pcbzr16pCOZEIhEC+vZv0tqamqurm87HDwwahps3w3D44F4UFORjb/B2PLrgqXpfh3c/B0DT78KpkN+7HiUN6N9H1LRxPhERERG1a0Wlcixf+3eV4KujozW+boPBF6B7q2O5vGWGSmfPnMCm3zcg/Nb1Vht8AborouTypg1n7ldWVqpdTWeqx0os3dpa5+fY1PTetdzcn18AcHHpiGEPjgJQcXvnlUrhyf2uXrmkfRzYDI3u7yeVSjFqzATY3Ansbt64VmOvqfy8XNyOjwVQsRuoMft5NVSvXv7w9esFAMjOztS55Vcf5eXl2l04XTu6VQnYGkteKYw1M23a28upfWBkSkRERERNIq+oDMvX/o2opGydcS9XO6xdGgRn++p76rV2tra2SLvTg6qosBBOlRrBtwRh167gwvnTACpWpfTq5Q+/Hr3h6OQMMzNz7e1EBw/swa2bYcYstU4C7t2WJxI3XTP2al+rHreRVpxw72FT3/5qKBKJBBYWligtLYFKpaxz44OmUHlnzoQ7t8zdr6SkGFGRtwAA7u6ecG7iXVVrIhaL0blzF4RduwKNRoPExNvoUU0vr6tXL2mvl+bYgdJQunT10d66m3A7Dt2799D73BvXrzbzLpyl2sdWVm3vjyjU/Bh+EREREVGjZeUV46U1e5GQnq8z3t3TCV++NBX21o1pxd6yubi4ICIiHACQkZkBb+/G7ZbWlARBwPnzp7Qfjx03uUmbUBuaUnGv0bWZWfNeU5VXQSkUdTfYVijvrUyxaOJb8gzJwdEJpaUlAIDMrAy4udXe66yxLCwsIRaL7zRdL6r2mISEeO1mCSkpSfjyiw9rnfPWzTBtkNuQnR8rq7wRRHFR9fVV3iVy+9Y/6pxzw49fax8be+fHyqwrhUo1fS2qo9FocC00BEDF17M+oZm+MrMytI8dW9gfGKh1aJ1/kiAiIiKiFiMlqxDPf7G7SvDl39UV65ZPa9PBFwB08vTSNp6Pi6t+5Yqx5OXlantk2dratergCwAKCvMBVKxgs7Rs3mb3UqkUllYVqxVLSorr3HWxID9P+9japul2MjW0yrerpac3/66aGo1G2yuvpkb/ghF76alU9za0MDGtvu9bvVcJtlCqSpt31GfThZiYSBQWFgCoaKbf1D3riooK7/0cs7OHmXnb/m8KNQ+u/CIiIiKiBotPzcXSNXuRXVCqMz7Qzx2fPD8J5qYtd8ezpmJtbY1OnbyQkHAb+fl5iI+PazGrv8rLyrSPbW3tjVhJ4xUU5KO0pGJFknMHlzob0DeFjq7uiImJBACkpibDy8u7xmNTUu71uetUy3Etnbd3V1y+dA4AkJyYgH79HmjW18uqtKLH1q76a7STlzdmzJxb51y7d/0FAPDs1Flbd+WVWw2RmZmufWxXw/fQ+IlBUNURjkZE3ERkxM2K4ydM1W7WYKnnpg1Jibdx/PhhFBbkw83dE2PHTYZNE4esWZX/rZU2cKjL3X5sYrEY/gH9mrQmAEhOStA+9r5vYwIifTH8IiIiIqIGiUzMwvK1fyO/WLe59/CAznj/mXEwlbWfXzUHDRqMxMQECIKAk6dOwMXFFRYWdd/6plKpIG3GnctMKzXjLyoqrPE4tVqNnOysZqtDX6WlJTXu4Fi5H5mXl2HCxe6+PbXh143roTWGX6WlJYiLjQZQcdtXc98q2JzcPTrB1s4eBfl5iI+PQUlJMSwt69+vLzU1GUqlstbAENBtZO/n17PaY6ytbeoVYllb2+j0ErufWq3GtdAQ+Af0q/X7Ly83R9uHzNLSCh6eXtUe16lT5zpryshI0z727NS5Xrc6FhYWYNfOv6BSVQRst+NjsWf3Vjy64GntqtPa3LwZBk9Pr1rDMpVKhbCwq9qPfX176VVbRkYaUlOSAADdfPxgZWWt13n1cf16qPZxr94BTT4/tQ+87ZGIiIiI6u1aTBr+vWpPleBrwgM++PDZ8e0q+AIAJ0cnDBxYsdKkpKQEu3bvQGZWZo3HFxYWIHj3VuwJ3tast0w5ODjC/E7/qby8HNy+HVvlmPLyMuzds13nzXl9+v00pV07t1T72ulpKbh86TwAQCKVom/gAIPU083HF3Z3ViNFRd5C+J1m4JWpVCocOrgXSmVFX7AhQ0foFUi0VCKRCP37V1zLGo0GNyoFD/qKigrHtq1/YPeuv3A97GqN13jI5fPaHQKtrKzRs5d/g+vWl1wux84df+LE8cPYtXMLCgryqz2usLAAwcHbtLdk9h8wuMlv59NXfFy0Nvi6KzMzA7m5OXWee/LEURw6sAdbt/yG5OTEao9RKZU4sH838vNyAQBduvjAybmDXrVVDi/79m3678ucnCyk3Knbs1NndHBxbfLXoPahff1WQkRERESNduFWEv6z/iDkSpXO+KwRPfHyvOEQN/MufC1V/34DUFpaihs3riM/Px/btv2Fjq4d0cnLCzbWNoBIhNLSUqSmpiAxMUHbwDvsWggCmuFNI1ARZAT2G4izZ04AAIJ3bUUf/0C4uHSESCxGZkY6wm9dR1lZKTw9vZB05/ai06eOYdLk6QZvxJ2RnoZff/kePXv5w9W1IwARUlOScONGqPbzNXDgkFpXl5SVlSItNaXK+N3eTSqVSrtK6y4zc/NqV2tJJBKMmzAVO7ZtgkajwYF9uxETHYEuXXxgYmqK/Lw83LxxDXl5FSGEh6dXq++rBgC9egXg/LnTKC0tweVL59Grd0C9VvRYmFtALBJDqVTgyOF9uBJyET7dfeHg4ASxRIKC/HxER4VrA1eJRIKg6XPq1WeqoaRSqXYzg6TE29j4y3fo0sUHnp5esLS0hFwuR1paCiLCb2j7vHXr5ot+/Zv39s/aVf8zVZ+ftHd74xUWFmDrlt/g4ekFb++usLGxgyBokJWVifBb17Whs62tnd4bBFTehdPZ2QXuHp56nVcfJ44d0T4eOHBIk89P7QfDLyIiIiLS24mr8Xjnp8NQqnQbUD82PgAvzB7cqle8NJZIJMKI4SPh7OSMc+fPory8HGnpaUhLT6v2eKlUhn79B6J3n+YNSwY+MBSZGemIiYmEWq1G6NXLVY7p4x+IMWMnYfeuv3A7PhapKUnIyEgzePj14PDROH3qGK5euVjt8/4B/TBk6Iha58jOztL2fqpOaWlJlec9PDrh4UcWVnu8p6cXgqbNxsEDeyCXyxETHYmY6Mgqx3l7d0XQtDlt4ntAKpNhzLhJ2Bu8HQqFHCeOH8HUoFl6n+/h6YW5jyzEP0cPIC0tBbm52bhwPrvaY+3tHTB56ky4uHRsqvJrJZFIMDVoFi6cP42Qy+ehVCoRHRWO6KjwKseKRCL0HzAYQ4eNNOrXtUsXH5w6eVRn04UOHVxh7+BY57n9BwyGlbUNTp04iqKiQiQnJej00Kqss3dXTJw0Te+G8tdCQ7ShdHOsxoyMuImEhIrbTv169IZX55bRS5FaJ4ZfRERERKSXAxei8OHGY1BrdG9henb6QDwxuV+beNPfFHr06Ilu3bohKioK8bfjkZOTjbKyMojFYpiZmcPe3h5dunaHr1+vBvVSqi+xWIyg6XNw69Z13LpxDVlZmVCplLC0tIKbuyf6+AfCw6MTACBo2mycO3sK0dER6GyExtIDHxgKT08vXAm5iOSURJSVlkJmYgJXFzf0CQiEj4+fwWsCgK7dfPHEIndcCw1BfFwMCgrzoVQoYGZmDhfXjujZyx8+Pn5t6nvAx8cPfj16IyL8BqIib6FTp871WtXWwcUV8x59ErfjYxETE4mUlCSUFBdBrVbDysoaDg5O8PXrhW4+vs3a9646YrEYQ4aOQB//QERG3ER8fCzycnNQVlYKU1MzWFlZo5OXN3r18oeDo5NBa6uOtY0Nps+cixPHD6MgPx/u7h4YO36K3tebr29PdO3ig8iocMTHRSMzIx0lJSWQSMSwtLJGR1c39OjZB5569C6rrKysFDKZDBKJFH49ejfgX1azvNwcHD1yAEDFLbGjx0xs0vmp/REJbWVfVmq1FGVFEITaty+WmVlBLJZAo1FDWV5soMqoteN1Qw3B64Yaqq1fOztO3MTnm09VGV/68FA8Mrb5+/S0JSKRGCbmTd8UurWq3Ito+ctvGrkaqkwul2Prll+RlZUJsViMWXPm69XcndoPlUqFgoI8ODo6N9mc5eVl2LzpF+Tn5UIqlWHOw4+26k0kqGVgw3siIiIiqtX24zeqBF9ikQhvLBzF4IuoDTM1NcWsOfNha2cPjUaDPbu3ITUl2dhlUQsilUqbNPiSy8uxa8cW5OflVqxanTabwRc1CYZfRERERFSjv89G4Is/T+uMScRivPf0WAQNM84taERkOJaWVpg9Zz5sbGyhUMixY/vmGncNJGqM8vIybN+6CWlpKRCLxZg4aTq8u3QzdlnURjD8IiIiIqJq/RMSi49/O6EzZiKT4NPnJ2LsAL4hIWov7Ozs8cj8J+Ds3AFKpQJJibeNXRK1Qfn5ecjJyYZMJsOMmXPh16OXsUuiNoQN74mIiIioijPXE/DuT0ehqdQeVioR45N/TcTgXp2MWBkRGYOVlTUefuRx3LoZhsB+A41dDrVBrq5umD7jIZiamsK1o7uxy6E2huEXEREREekIiUzBm98dglpzb0MasUiE954ex+CLqB0zNTVl8EXNyqtzF2OXQG0Uwy8iIiIi0roRl4HXvtkPhUqtM/7mE6Mxuh/flFDT8+zUGS4uHWFja2vsUoiIqI1i+EVEREREAICopGy8/NXfKJOrdMZfmT8ckwd3N1JV1NYNHjLc2CUQEVEbx4b3RERERITb6XlYtnYvikoVOuMvzh6M2SPZdJiIiIhaL4ZfRERERO1canYhlq7ei/yicp3xRVP647EJfY1TFBEREVETYfhFRERE1I5l5RXjpdV7kJVfojP+yFh/PDNtgJGqIiIiImo6DL+IiIiI2qm8ojK8tGYvUrOLdManP9gDLz00BCKRyEiVERERETUdhl9ERERE7VBRqRzL1u5FQnq+zviEgd3w6qPDGXwRERFRm8Hwi4iIiKidKS1X4uWv9iE6KUdnfHhAZ7z15GhIxPwVkYiIiNoO/mZDRERE1I7IlSqsWH8AN+IydMYH9vDA+8+Mg1QiMVJlRERERM2D4RcRERFRO6FSq/HW94cREpmiMx7QzRWf/GsiTGVSI1VGRERE1HwYfhERERG1Ayq1Bu9t+AdnrifojPt1csZnL06GuanMSJURERERNS+GX0RERERtnEYj4KNfj+NoSKzOuHdHe6x6aQqszE2NVBkRERFR82P4RURERNSGCYKAlZtO4sCFKJ1xd2cbrFkWBDsrcyNVRkRERGQYDL+IiIiI2ihBEPDlX2cQfDpcZ9zVwQrrlk+Dk62lkSojIiIiMhyGX0RERERtkCAI+GbnBWw7dkNn3MnWAmuXT4Org7WRKiMiIiIyLIZfRERERG3QT3sv449DoTpj9tbmWLt8GjycbY1TFBEREZERMPwiIiIiamN+O3gVG/4O0RmzsTTF2mVB6Oxqb6SqiIiIiIyD4RcRERFRG7LlaBjW77ygM2ZlboI1S4PQ1d3RSFURERERGQ/DLyIiIqI2YtfJW1iz9azOmIWpDKuWTIVvJ2cjVUVERERkXAy/iIiIiNqAfecisXLTSZ0xU5kUn/17Mnp3cTFSVURERETGx/CLiIiIqJU7cjkGH/16XGfMRCrByhcmIdDHzThFEREREbUQDL+IiIiIWrETofF4b8NRaARBOyaViPHhcxMwsIeHESsjIiIiahkYfhERERG1UuduJOLtHw5DrbkXfEnEIrz/zDgM6+NlxMqIiIiIWg6GX0RERESt0OWIZLz+3UGo1BrtmEgEvL1oDEYFdjFiZUREREQtC8MvIiIiolbmWkwaXvvmABRKtc74GwtHYcJAHyNVRURERNQyMfwiIiIiakVuxmfg5a/2oVyh0hl/Zf5wTB3qZ6SqiIiIiFouhl9ERERErURkYhaWr/0bpeVKnfGXHhqC2SN7GakqIiIiopaN4RcRERFRKxCbkoNla/5GcZlCZ/xfMx/AvHEBRqqKiIiIqOVj+EVERETUwt1Oz8NLq/eioKRcZ/ypqf3x+KR+RqqKiIiIqHVg+EVERETUgiVnFuClL/cgr6hMZ/yxCX3xdNAAI1VFRERE1How/CIiIiJqodJyirBk9R5kF5TqjD88ujdemDUIIpHISJURERERtR4Mv4iIiIhaoMy8Yiz5cg8ycot1xmcO74llc4cx+CIiIiLSE8MvIiIiohYmp6AUL63eg9TsQp3xKUN88cr84Qy+iIiIiOqB4RcRERFRC5JXVIaXVu9BYkaBzvi4Ad3w+sKREIsZfBERERHVB8MvIiIiohaisESOZWv3Ij4tT2d8ZF9vvLNoNCRi/upGREREVF/8DYqIiIioBSgpU2D52r2ITsrRGR/apxPef2YcpBKJkSojIiIiat0YfhEREREZWWm5Ei9/tQ/hCVk64wP93PHhsxMgkzL4IiIiImoohl9ERERERlSuUOK1b/YjLDZdZ7yvT0d8+sIkmMqkRqqMiIiIqG1g+EVERERkJHKlCv/59iCuRKXqjPfu4oLPXpwMMxOZkSojIiIiajsYfhEREREZgVKlxts/HMbFW8k6435ezli1ZAoszUyMVBkRERFR28Lwi4iIiMjAVGoN3ttwFKfDEnTGu7k7YvVLU2FlbmqkyoiIiIjaHoZfRERERAak0Qj46Nfj+OdKnM64d0d7rFkWBBtLMyNVRkRERNQ2MfwiIiIiMhBBEPDZ5pM4cCFKZ9zD2QZrlgXB3trcSJURERERtV0Mv4iIiIgMQBAErNl6FrtPheuMuzpYYe3yaXCytTRSZURERERtG8MvIiIiIgP4bvdF/PXPdZ0xJ1sLrF0+Da4O1kaqioiIiKjtY/hFRERE1Mx+2ReCXw9c1RmzszbD2uXT4OFsa6SqiIiIiNoHhl9EREREzejPI9fwffAlnTFrC1OsXToNnV3tjVQVERERUfvB8IuIiIiomew8eRNrt53TGbM0M8HqpVPRzcPRSFURERERtS8Mv4iIiIiawb5zkfhs0ymdMTMTKb7492T08OpgpKqIiIiI2h+GX0RERERN7OjlGHz063GdMROpBCtfmAT/bh2NUxQRERFRO8Xwi4iIiKgJnbgag/9u+AcaQdCOSSVifPTcBAzw8zBiZURERETtE8MvIiIioiZy7no8Xv96D9QajXZMIhbhvafHYWgfLyNWRkRERNR+MfwiIiIiagJXIpPw8podUKrU2jGRCHjridEY3a+LESsjIiIiat+kxi6gpbh+/Tp27NiBCxcuIC0tDYIgwNHREX379sW0adMwatQoveYpLi7Gxo0bcfjwYSQlJUGj0cDd3R1jx47FE088AQcHh1Y5DxEREdXsZnwGlq/ZC7lCpTP+nwUjMXFQdyNVRUREREQAIBKESg0p2qHCwkK8/fbbOHDgQK3HjRgxAmvWrIGFhUWNx8TGxmLx4sVISUmp9nknJyesX78e/v7+tb5WS5unuSnKiiAImlqPkZlZQSyWQKNRQ1lebKDKqLXjdUMNweuG6isqKRtLvgxGUalCZ3z5I8Pw8Og+RqqKWjKRSAwTc2tjl0FERNRutPvwa/Xq1Vi/fj3s7OywYMECjBkzBh4eHigvL0dMTAx+/fVXHD9+HAAwfvx4fPXVV9XOU1xcjBkzZiA5ORkymQzLli1DUFAQzMzMcPnyZXz66adITEyEk5MTdu3aBWdn51YxjyEw/KLmwuuGGoLXDdXH7bQ8vLBqN/KLynXGX5g1CAsmBhqpKmrpGH4REREZVrvv+bV06VK8++672L9/P5YsWYJevXrB1tYWLi4uGDZsGL777jvMnz8fAHD48GFERUVVO89PP/2E5ORkAMDKlSvxzDPPwNXVFXZ2dhg3bhxefPFFAEB2dja++eabGutpafMQERFR9VKyCvHS6j1Vgq/FM4Yw+CIiIiJqQdp9+CUSifDoo4/W2vtq3rx52sexsbFVnler1di8eTMAIDAwEFOmTKny/Hfffaf9eMeOHSgrK2vx8xAREVH1MvOKsXTNHmQXlOqML5g8EItnDjVSVURERERUnXYffulDobjXw6NDhw5Vnr9y5Qry8vIAAJMnT67y/Pbt2xEXF4c5c+YAAMrLy3H69OkWPw8RERFVlVtYhpdW70VqdpHO+JzRAVg2bzREIpGRKiMiIiKi6jD80sPGjRsBAD4+PujXr1+V52/cuKF9HBioe5tDWVkZ1q1bh4CAACxdurTac1rqPERERKSrsESO5Wv3IjEjX2d84iAfvLZwHIMvIiIiohZIauwCWhqNRgOlUomSkhLcunULv/zyC06dOgU3NzesWbOm2l9q4+LitI89PDx0ntu4cSMyMzPx+eefw8XFBVKpFCqVSuecljoPERER3VNSrsDLX/2N6OQcnfGRfb3x5uOjIRYz+CIiIiJqiRh+3Sc4OBgrVqzQfuzo6IglS5bg8ccfh42NTbXn5Obmah/b29trH+fl5eHHH3/EiBEjMGjQIACAjY0NcnNztbcltuR5DEVqalHnMSKRWPv/MjOr5i6J2gheN9QQvG6oOuUKJf7z7d+4GZ+pMz6kT2d89OIMmMikvHaIiIiIWiiGX/eJj4/X+TgnJwe//fYbSkpKsGTJElhYVA1q7jaLNzEx0VkZ9u2336K4uBgvv/yydszExAQAUFqq2yC3Jc5jKGKxRO9jRSIRRCL9jycCeN1Qw/C6obuUKjX+89UehEQk6Yz38/XEZy/NhpmpTGec1w4RERFRy8Lw6z7Lly/H8uXLUVJSguTkZOzduxe///47NmzYgNOnT2Pz5s2wsqr+r7li8b0WaikpKdi0aROCgoLg5+enHddoNHXW0NLmaW4ajbrOY0QiMUQiEQRBgCAYv2ZqHXjdUEPwuqHKVGoN3lq/F2fCdNsD9PR2xRfLZsJUJtb+d4zXDtVHff74R0RERI3D8KsGlpaW8PX1ha+vL8aMGYNHH30UUVFRWL16Nd566y2dY++uBlMqldqx1atXQxAEnabyACCXy3XOacnzGIpKXlrnmwSZmRVEIgkEQQNlebGBKqPWjtcNNQSvG7pLoxHw4a/HcPRylM54V3cHrPr3JJiKlFCW3/tvLa8d0pdIJIaJubWxyyAiImo3uNujHgIDA9G/f38AwM6dO6s87+DgAABQq9UoKipCREQE9u7di3nz5sHT01N7nFKpRFFRkc45LXkeIiKi9koQBKzachr7z+sGX51cbLFmaRBsLM2MVBkRERER1RfDLz117twZAFBcXKzTUB4AunTpon2ckpKCzz//HObm5njhhRd0jktLS9PeZujt7V3lNVraPERERO2RIAj4ZucF7DhxU2fc1cEKa5ZOg4ON8VZLExEREVH9MfzSU3l5OYCKJraWlpY6z/Xu3Vv7eOPGjTh16hSeeuqpKquprly5on3cp0+fKq/R0uYhIiJqj37ZfwV/HArVGXO0scDaZdPg4sBdHImIiIhaG4ZfelCr1QgJCQEAeHl5wdTUVOf5wMBA2NvbAwB27NgBR0dHLFq0qMo8Bw4cAACYmZlh2LBhVZ5vafMQERG1N1uOhuGH4Es6Y7aWZlizLAgeHWyNVBURERERNUa7D79++OEHLFy4EPn5+TUes379eqSmpgIAHnvssSrPSyQSzJ8/X/vxk08+WWV12NmzZ3H8+HEAwJw5c2Bubt7i5yEiImpP9p6JwJqtZ3XGLM1MsHrpVHRxY29MIiIiotZKJAiCYOwijCUiIgKPPPIIysvLYWdnh4ULF2L06NHw9PSEWq1GZGQkNm3ahIMHDwIABg8ejB9//BEymazKXMXFxZgxYwaSk5Ph6uqKFStWYPDgwdBoNDh8+DBWrlyJ0tJSODk5YdeuXXB2dq62ppY2jyEoyor02u1RLJZAo1FzBy3SG68bagheN+3TidB4vPndIWgq/VpkZiLF6pemwr9bR73m4LVD+uJuj0RERIbVrsMvAAgJCcEbb7yB27dv13pcUFAQ3nvvPVhZ1dzrIzY2FosXL0ZKSkq1zzs5OWH9+vXw9/ev9bVa2jzNjeEXNRdeN9QQvG7anyuRKfi/dfugUKm1YzKpGJ+/OAUDe3joPQ+vHdIXwy8iIiLDavfhF1DR02vfvn34559/EBYWhuzsbEilUri4uKB///6YMWMGBgwYoNdcxcXF2LhxIw4dOoSkpCQIggA3NzeMHTsWTz75ZJWm861lnubE8IuaC68bagheN+1LZGI2Xly1G6XlSu2YWCTCh89NwMi+9dsJmdcO6YvhFxERkWEx/CKjY/hFzYXXDTUEr5v2IykjH//6fDfyisp0xl9fOBLThvWo93y8dkhfDL+IiIgMq903vCciIqL2Jyu/BMvW/l0l+Hp+1qAGBV9ERERE1HIx/CIiIqJ2pbBEjuVr/0ZaTpHO+PxxAVgwoa9xiiIiIiKiZsPwi4iIiNqNcoUSr32zH3GpuTrjUwZ3x4uzB0MkEhmpMiIiIiJqLgy/iIiIqF1QqdV464fDCItN1xkf1scL/1k4EmIxgy8iIiKitojhFxEREbV5Go2Aj349gbPXE3XGA7q54oPF4yGVSIxUGRERERE1N4ZfRERE1KYJgoB128/hwIUonfFu7o5Y+cJkmJpIjVQZERERERkCwy8iIiJq0347eBVbjobpjLk52WDVS1NgbWFqpKqIiIiIyFAYfhEREVGbtfvULXy766LOmIONOVYvnQonW0sjVUVEREREhsTwi4iIiNqk41fj8NmmUzpjlmYmWLVkKjycbY1UFREREREZGsMvIiIianNCIlPw7k9HoBEE7ZiJTIKVL05Cd08nI1ZGRERERIbG8IuIiIjalIiELKxYfwBKlUY7JhGL8L9nxiPQx82IlRERERGRMTD8IiIiojYjJjkHy9buRWm5Umf8PwtGYnhAZ+MURURERERGxfCLiIiI2oT41Fy8tGYPCkvkOuP/nj0YU4f6GakqIiIiIjI2hl9ERETU6iVm5OOl1XuRX1SuM75wYiAendDXOEURERERUYvA8IuIiIhatZSsQiz5cg9yCkt1xh8Z0wf/mvmAkaoiIiIiopaC4RcRERG1Wum5RVjyZTCy8kt0xmeN6ImXHh4KkUhkpMqIiIiIqKVg+EVEREStUlZeMZZ8uQfpucU649OG+eHlecMZfBERERERAIZfRERE1ArlFJRiyeq9SMkq1BmfNKg7XntsBMRiBl9EREREVIHhFxEREbUqeUVleGnNHiRm5OuMj+3fFW88PgoSMX+9ISIiIqJ7+NshERERtRqFJeVYtmYv4lPzdMZHBHTGu0+NgVTCX22IiIiISBd/QyQiIqJWobhMjmVr/0Z0co7O+JDenfD+M+MhlUiMVBkRERERtWQMv4iIiKjFKylX4P/W7UNEQpbO+MAeHvjouQkwkTH4IiIiIqLqMfwiIiKiFq1MrsSrX+/HjbgMnfFAn4749PmJMJVJjVQZEREREbUGDL+IiIioxZIrVFix/gBCo9N0xvt0ccFnL06BmYnMSJURERERUWvB8IuIiIhaJIVSjde/O4jLESk64z28nPHFkimwMGPwRURERER1Y/hFRERELY5KrcbbPx7G+ZtJOuPdPZ3w5UtBsDI3NVJlRERERNTaMPwiIiKiFkWt0eB/vxzDqWu3dca7uDlg9dKpsLFk8EVERERE+mP4RURERC2GRiNg5R8ncfhSjM64l6sd1i4Lgp2VuZEqIyIiIqLWiuEXERERtQiCIGDN1jPYcyZCZ9zNyQZrlwbBwcbCSJURERERUWvG8IuIiIhahO+DL2HrsRs6Yx3sLbFuWRCc7a2MVBURERERtXYMv4iIiMjofj1wBRv3X9EZc7Axx9pl09DRycZIVRERERFRW8Dwi4iIiIxq67Hr+HbXRZ0xawtTrFkahE4udsYpioiIiIjaDIZfREREZDR7z0Tgyy1ndMYszGT48qWp6OruaKSqiIiIiKgtYfhFRERERnH4Ugw+/v24zpipTIrPX5yCnp07GKcoIiIiImpzGH4RERGRwZ26dhvv//wPBOHemEwqxifPT0Rfn47GK4yIiIiI2hyGX0RERGRQl8KT8dYPh6DWaLRjErEI7z8zHoN6ehqxMiIiIiJqixh+ERERkcFci0nDivUHoFTdC75EIuDtJ8dgZF9vI1ZGRERERG0Vwy8iIiIyiPCETLzy1X6UK1Q64yseG4kJD/gYqSoiIiIiausYfhEREVGzi03JxfK1f6OkXKEzvvThoZj+YA8jVUVERERE7QHDLyIiImpWSRn5WLpmDwpL5Drjz04fiEfG+hupKiIiIiJqLxh+ERERUbNJyy7ES6v3IrewTGd84cRAPDG5n5GqIiIiIqL2hOEXERERNYuM3GL8+8s9yMgr1hl/aFRv/GvmAxCJREaqjIiIiIjaE4ZfRERE1OSyC0qw5MtgpOUU6YxPHeqLZXOHMfgiIiIiIoNh+EVERERNKrewDC99uRfJWYU64+MHdsN/FoyEWMzgi4iIiIgMh+EXERERNZmC4nIsXbMHt9PzdMZHBXbB20+OgUTMXz2IiIiIyLD4GygRERE1icISOZau2YvYlFyd8Qf9vfDe02MhlfDXDiIiIiIyPP4WSkRERI1WUqbA/637G1FJ2Trjg3t54oPFEyCTSoxUGRERERG1dwy/iIiIqFFKy5V4+at9uHU7U2e8v687Pn5uIkxkDL6IiIiIyHgYfhEREVGDlSuUeO2b/QiLTdcZD+jWEStfmARTE6mRKiMiIiIiqsDwi4iIiBpErlRhxfqDuBKVqjPey9sFn/97MsxNZUaqjIiIiIjoHoZfREREVG9KlRpvfn8Il8KTdcb9Ojlj1ZIpsDQzMVJlRERERES6GH4RERFRvajUarzz4xGcvZ6oM97N3RGrl06FtYWpkSojIiIiIqqK4RcRERHpTaXW4L2f/8GJ0Hidce+O9lizLAg2lmZGqoyIiIiIqHoMv4iIiEgvao0GH/16HEcvx+qMd3Kxxdpl02BvbW6kyoiIiIiIasbwi4iIiOqk0QhY+cdJHLgQpTPu5mSDdcumwdHWwkiVERERERHVzmj7j6vVakRHRyMjIwNFRUVQqVSYOXOmscohIiKiGgiCgK92nMOeMxE64y4OVli3fBqc7a2MVBkRERERUd0MHn5dvXoVv/76K44dOwa5XK7zXHXhV3BwMAIDA+Hp6WmgComIiKiy3w6G4s8jYTpjznaWWLd8Gjo6WhupKiIiIiIi/Rgs/BIEAR9++CE2bdoEQRAgCILO8yKRqMo5X375Jb7//nsMHjwYP//8s6FKJSIiojuCT4fj210XdMbsrc2xdtk0eDjbGqkqIiIiIiL9GSz8evvtt7F9+3YIggA3NzdMmzYNPXr0QHx8PNasWVPtOf3794cgCDh//jzCwsLg7+9vqHKJiIjaveNX47Dyj5M6Y5ZmJli1ZCq8XO2MUxQRERERUT0ZJPw6e/Ystm3bBpFIhLlz5+Ktt96CiYkJAOD48eM1njdixAj06NEDERERCA4OZvhFRERkICGRKXj3pyPQVFqpbSKVYOULk+DbycmIlRERERER1Y9Bdnv866+/AAA9evTA+++/rw2+9DF27FgIgoBLly41V3lERERUSWRiFlasPwClSqMdE4tEeP+ZcQjs7mbEyoiIiIiI6s8g4VdoaChEIhFmzZpV73O9vb0BAKmpqU1dFhEREd0nMSMfy9f9jdJypc74fxaOxIi+3kaqioiIiIio4QwSfuXk5AAAOnbsWO9z764SKysra9KaiIiISFdWXjGWrdmL/KJynfEXZw9G0FA/I1VFRERERNQ4Bgm/zM3NAdwLweojPj4eAGBnZ9eUJREREVElhSXlWLb2b6TnFuuMPzY+AI9N6GucooiIiIiImoBBwi9fX18AwOHDh+t1niAICA4OhkgkQs+ePZujNCIionavTK7Ey1/tR3xans540FA/vDB7sJGqIiIiIiJqGgYJv6ZMmQJBEHDmzBns2rVL7/PWrl2LmJgYAMDkyZObqToiIqL2S6lS483vD+FmfIbO+IiAznjtsREQiURGqoyIiIiIqGkYJPx66KGH0K1bNwiCgDfeeAMffPABYmNjazw+PDwcL7/8Mr799luIRCJ0794d06dPN0SpRERE7YZGI+CDjcdw/maSznigT0e898w4SCUG+TWBiIiIiKhZiQRBEAzxQunp6Zg3bx7S09O1f0U2MzODqakp8vPzIRKJ0KlTJ+Tk5KCkpARAxW2PLi4u+Ouvv+Di4mKIMskIFGVFEARNrcfIzKwgFkug0aihLC+u9Viiu3jdUEO0l+tGEAR8+dcZbDt2Q2fcx9MRX//fdFiZmxqpstarvVw71HgikRgm5tbGLoOIiKjdMNifdF1dXbFlyxaMHz8egiBAEASUlZWhoKBAG4YlJiaiuLhY+/zIkSPx559/MvgiIiJqYr/su1Il+PJwtsGXS6Yy+CIiIiKiNsVgK78qu3r1Kvbt24cTJ04gNTUVKpUKACCVSuHi4oIRI0Zg4sSJGDyYTXbbA678oubC64Yaoj1cNztO3MTnm0/pjDnZWuDbV2fCzcnGSFW1fu3h2qGmwZVfREREhmWU8Ot+eXkVu0vZ29sbuRIyBoZf1Fx43VBDtPXr5vjVOLz5/SFU/q+/tYUJvnl5Brq6OxqvsDagrV871HQYfhERERmW1NgFAAy9iIiIDCE8IRPvbfhHJ/gylUnx+YtTGHwRERERUZvFbZyIiIjagYzcYrz29QHIlSrtmEQsxofPjkefrq5GrIyIiIiIqHkx/CIiImrjSsuVeO2b/cgpLNUZf+2x4Rjax8tIVRERERERGQbDLyIiojZMrdHg3Z+OIDo5R2f8sfEBmDash5GqIiIiIiIyHIP0/Hr88cerjIlEIqxatQqOji2nx0hISAiCg4Nx8eJFZGdnQy6Xw9nZGX379sXs2bMxbNiwWs/fsWMHXn/9db1e66mnnsKKFStqPaa4uBgbN27E4cOHkZSUBI1GA3d3d4wdOxZPPPEEHBwc9HqtppqHiIhan6+2n8eZ6wk6YyMCOuP5WdxRmYiIiIjaB4OEXxcvXoRIJELljSVFIhHkcrkhXr5OZWVleOeddxAcHFzlueTkZCQnJ2Pv3r2YPXs2PvjgA0gkkka/Zq9evWp9PjY2FosXL0ZKSorOeHR0NKKjo7Ft2zasX78e/v7+BpmHiIhan10nb2HL0TCdMd9OTnj3qbEQi0VGqoqIiIiIyLAMEn6JRBW/YPv4+MDOzk47bmpqaoiXr5VCocAzzzyDy5cvQywW45FHHsGMGTPg5eUFpVKJ8PBwrFq1CpGRkdixYwccHR3xyiuv1DlvWFhYrc/LZLIanysuLsazzz6LlJQUyGQyLFu2DEFBQTAzM8Ply5fx6aefIjExEc8//zx27doFZ2fnZp2HiIhan0vhyfjiz1M6Y062Flj5/CSYm9b83yAiIiIiorbGIOGXjY0NCgsL8eyzz2LatGmGeEm9mZiY4LHHHkNiYiI++eSTKrc2uri4YNCgQZg2bRqSkpLw66+/4umnn4a9vX2t8zYm2Pvpp5+QnJwMAFi5ciWmTJmifW7cuHEoLi7GihUrkJ2djW+++Qbvvvtus85DRESty+20PLz5/SGoNfdWXJuZSPHZi5PhbG9lxMqIiIiIiAzPIA3v/fz8AFTc/tgSTZkyBceOHauxp5e5uTkWLFgAAJDL5c3671Cr1di8eTMAIDAwUCewuvv8d999p/14x44dKCsra7Z5iIiodckvLsMrX+9HcZlCOyYSAf99aix8O3GFLxERERG1PwYJvx5++GEIgoDdu3cjOjq6XuceP34cPXr0QM+ePZupugpSae2L4Ly9vbWPs7Kymq2OK1euIC8vDwAwefLkKs9v374dcXFxmDNnDgCgvLwcp0+fbrZ5iIio9VAo1Xj924NIzS7UGX9x1mCM6Otdw1lERERERG2bQcKvoKAgzJo1CwqFAosXL0Z4eHi9zhcEQadZvjGUlpZqH9va2tbrXI1Go/exN27c0D4ODAzUea6srAzr1q1DQEAAli5dWu05TT0PERG1DoIg4OPfj+NaTLrO+LRhfpg/PsBIVRERERERGZ9Ben4BwMcffwwnJyf8/PPPePjhh7FgwQIsWrQILi4uhiqhUSo3sO/bt2+dxwcHB2PXrl2IiopCdnY2zM3NERAQgAULFmDcuHE1nhcXF6d97OHhofPcxo0bkZmZic8//xwuLi6QSqVQqVQ65zT1PIYgNbWo8xiRSKz9f5kZ+9WQfnjdUEO01uvmp+BzOHhBd3X1gB6eeH3RZMikjd+lmOrWWq8dIiIiorbOYOGXSqXC3Llz0aFDB3zxxRfYuHEjfv/9dwwePLjWMOn27duGKrFGCoUCe/bsAVCxisrT07POc1599VWdj0tLS3Hu3DmcO3cOCxcuxFtvvVXtebm5udrHlZvq5+Xl4ccff8SIESMwaNAgABUbCeTm5mpvb2yOeQxBLNb/TZlIJIJIxDdxVD+8bqghWtN1c+hCOL7dcUZnzMvVAZ+9NBumJiZGqqr9ak3XDhEREVF7YJDwa/jw4cjJyaly66JKpcKZM2dw5syZGs5sGb7//nttn6+XXnqpxuPc3d0xceJEyGQyDBw4EIMGDYKrqysUCgXOnz+Pzz77DElJSfjtt9/Qs2dPzJ49u8ocd5vOm5iYQCQSace//fZbFBcX4+WXX9aOmdx5Q1P5lsymnscQNBp1nceIRGKIRKI7t8DqfxsptW+8bqghWtt1cyM2Df/9fp/OmK2lGb5cPgtW5jK9fsZS02ht1w4ZV33++EdERESNY5Dwq7YG8cbu5VWXK1eu4NtvvwVQ0bh/6NChNR47aNAg7WqqyszNzTFx4kT4+/sjKCgIxcXFWL9+fbXh111i8b12bCkpKdi0aROCgoK0O2cC+vUSa6p5mpNKXlrnmwSZmRVEIgkEQQNlebGBKqPWjtcNNURrum7Scorwf6t3QK5UacekEjE++tcEuNrKWnz9bU1runbIuEQiMUzMrY1dBhERUbthsNseRSIRli9frle/rMpCQ0OxatWq5imqDsnJyXjxxRehVCrRu3fvGm9V1FfHjh0xadIkbNu2DYmJiUhKSqpyC6WFRUX/K6VSqR1bvXo1BEHQaU4PAHK5XOec5piHiIhappIyBV79ej/yisp0xv+zYCQCfdyMVBURERERUctjsPALAHx9ffHAAw/U6xxj3YqXkZGBRYsWITc3F56enli/fj3MzMwaPa+Pj4/2cWJiYpXwy8HBAQCgVqtRVFSElJQU7N27F4899pjOsUqlEkVFRTrnNMc8RETU8giCgPd/+Qdxqbk6449PCsSUIb5GqoqIiIiIqGUS131I02jptzdWlp2djUWLFiExMRHu7u7YuHEjOnTo0CRzm5ubax9XXpV1V5cuXbSPU1JS8Pnnn8Pc3BwvvPCCznFpaWna2xW9vb2bbR4iImp5th67gVPXbuuMjQrsgmen1+8PTERERERE7YFBVn5FREQ0+NxRo0Y16vz6ysjIwBNPPIH4+Hh4eXlhw4YNcHd3b7L5K/c/c3FxqfJ87969tY83btyIU6dOYcmSJVVWZV25ckX7uE+fPs02DxERtSyRiVn4esc5nTG/Ts54Z9FoiMWiGs4iIiIiImq/DLbyqzVISkrC/PnzER8fDz8/P2zatAkeHh5N+hpnz54FAFhbW1e70iowMBD29vYAgB07dsDR0RGLFi2qctyBAwcAAGZmZhg2bFizzUNERC1HSbkCb/9wGErVvU1CrMxN8MGz42FmIjNiZURERERELRfDrzuioqIwf/58pKSkYOjQofjjjz/g5OSk9/mCIOCTTz7BkSNHajxm//79CAkJAQDMnDmz2h5iEokE8+fP13785JNPwtLSUueYs2fP4vjx4wCAOXPm6NxK2dTzEBFRyyAIAlb+cRLJWYU64/9ZMBJuTjZGqoqIiIiIqOUTCa2pGVczuXr1Kp577jkUFBRg8uTJ+OCDDyCT1fwXdJFIBBMTE52xH3/8EZ999hkAYNy4cZgzZw569+4NCwsLpKamIjg4GD///DNUKhW8vLywfft2WFtXv8V1cXExZsyYgeTkZLi6umLFihUYPHgwNBoNDh8+jJUrV6K0tBROTk7YtWsXnJ2dm3We5qYoK4IgaGo9RmZmBbFYAo1Gze3jSW+8bqghWup1s+dMOD7+7YTO2KwRPfHqoyOMVBHdr6VeO9TyiERimJhX/3sgERERNT2GXwAWLlyIixcv6n18586dcfDgQZ0xlUqFL774Ar/99lu1jezv8vf3x6pVq6rs8ni/2NhYLF68GCkpKdU+7+TkhPXr18Pf398g8zQnhl/UXHjdUEO0xOsmLjUXT3+8A3KlSjvWzd0RP6yYBVMTg27cTLVoidcOtUwMv4iIiAyLvzE3QHW9uqRSKVasWIF58+Zh69atOH36NFJTU1FWVgZnZ2d0794dQUFBmDRpEqTSuj/tXbt2RXBwMDZu3IhDhw4hKSkJgiDAzc0NY8eOxZNPPlmleX1zzkNERMZRrlDi7R8P6wRfZiZSvL94HIMvIiIiIiI9GGXlV2hoKPbv34+wsDAkJSWhqKgIEokEjo6O6NixI4YNG4axY8eiW7duhi6NjIArv6i58Lqhhmhp180nv59A8OlwnbE3Hx+FqUP9jFQR1aSlXTvUcnHlFxERkWEZNPyKjo7GO++8g9DQUJ3xuyWIRLpbtE+dOhWvvvoqXFxcDFUiGQHDL2ouvG6oIVrSdXPkcgze+VF3I5WJg3zwzpNjqvw3k4yvJV071LIx/CIiIjIsg+32eOnSJcybNw+hoaEQBEHnfzKZDFKptMr433//jUceeaTGflVERERtVXJWAT75XbfBvWcHW7wyfziDLyIiIiKiejBIs5CioiIsW7YMJSUlAIC+fftizpw56NevHzw9PbU7JyoUCiQlJSEkJATbt2/HtWvXkJ6ejqeeegrBwcEwNTU1RLlERERGpVSp8c6PR1Bafm8DFROpBP9bPB6WZia1nElERERERPczyMqvTZs2IScnByKRCP/3f/+HP//8Ew8//DC6du2qDb4AwMTEBF27dsXcuXOxZcsWLFu2DACQmJiILVu2GKJUIiIio/tm5wVEJGTpjC15aAi6ezoZqSIiIiIiotbLIOHXsWPHIBKJMHToUDz77LN6n/evf/0LQ4YMgSAIOHjwYDNWSERE1DKcDruNLUfDdMZG9vXG7JG9jFQREREREVHrZpDwKyEhAQAwceLEep87adIkABXN8omIiNqyjNxifLDxmM6Yq4MVXl84in2+iIiIiIgayCDhV1FREQDAwcGh3uc6OjoCAEpLS5u0JiIiopZEpdbgvxuOoLBErh2TiEV475lxsLFkz0siIiIiooYySPhlY2MDAA3atTEtLQ0AYGdn15QlERERtSgb/r6MazHpOmPPzngAfbq4GqkiIiIiIqK2wSDhl5+fHwRBwO7duyEIgt7nCYKA4OBgiEQi+Pj4NGOFRERExnM5Ihkb91/RGRvU0xOPje9rnIKIiIiIiNoQg4RfU6ZMAQCEh4fj3XffhUKhqPMclUqF999/H9evXwcATJgwoVlrJCIiMobcwlK8t+EfVP7bkKONBd5+cgzEYvb5IiIiIiJqLJFQn6VYDaRWqzF37lzcvHkTIpEIrq6umD59Ovr3749OnTrBysoKAFBSUoKkpCSEhIRg9+7dSEtLgyAI6Ny5M/bu3QupVNrcpZIRKMqKIAiaWo+RmVlBLJZAo1FDWV5soMqoteN1Qw1hyOtGrdHg5a/24eKtZO2YSASsWToNA/zcm/W1qenxZw7pSyQSw8Tc2thlEBERtRsGCb8AIDc3F48++ihu376t945VgiDAxcUFv/76K7y8vJq5QjIWhl/UXHjdUEMY8rr5Pvgiftmne7vjoin9sXj6wGZ9XWoe/JlD+mL4RUREZFgGue0RqNjpcdu2bVi0aBEkEgkEQaj1f2KxGDNnzsTOnTsZfBERUZtzOux2leAroFtHLJra30gVERERERG1TQZb+VVZbm4uTp48ibNnzyItLQ15eXlQq9WwsbGBp6cnAgICMHHiRHTo0MHQpZERcOUXNRdeN9QQhrhukjML8NTH21Fcdq8HpoONOX5+4yE421k2y2tS8+PPHNIXV34REREZllHCL6LKGH5Rc+F1Qw3R3NdNmVyJZ1fuRGxKrnZMIhZh7fJpCPRxa/LXI8PhzxzSF8MvIiIiwzLYbY9ERETtnSAI+PT3EzrBFwD8e84QBl9ERERERM2E4RcREZGBbDt+A4cuxeiMjR3QFXPH9DFSRUREREREbR/DLyIiIgO4FpOGtVvP6Yx5u9nj9QWj9N4FmYiIiOguQa0ydgnUhrW164vhFxERUTPLLijBW98fhlpzr7+hpZkJPn5uIizMZEasjIiIiFobQRCgOLge8t9XQFApjV0OtUFCST7K1j8N5ZV9xi6lyRgs/Dp37hxWr14Njab2xuaVqdVqfPrppzh37lzdBxMREbVAKrUab/9wGDmFpTrjbz85Gp1c7IxTFBEREbVKgloFxY6PoDy9CeqYi1DfOmHskqgNUp7fDiEjDoqdH0Nx4jdjl9MkpIZ4EZVKhTfffBNpaWnIycnB//73P73O+/DDD7Fp0yYcPXoUBw8e5G0hRETU6ny1/TyuxaTrjD0+KRAj+nobqSIiao0EjQaKXZ9AdfM4xB19YDbvfxBZORi7LIMS1CpALOF7Amq3BI0a8r/+qw28ZOP/Ban/OCNXRW2RbPQiCAUZUF3dD+WR7wGVAiZjnzZ2WY1ikPBr3759SE1NhUgkwsyZM/U+75FHHsHmzZuRlJSEw4cPY8KECc1XJBERURM7dCkaf/1zXWdsoJ87Fk8faKSKiKi1UsdegurqfgCAJiEMyrN/wWTCv4xclWGprh2CYs8XENm5wmTKS5D6DDJ2SU1KFXUeqtCD0CTdhFCcAwAQWTlA7OYLaY/hkPg9CJGZpV5zCWoVVFf3QX3zODQZcRBKCwCJDCLbDpB06gNJr1GQdOkPkcQgbwepiSj2fHEv+Bq3GCYjHjNyRdRWicRimMx6HYJKCfX1I1Ae/wUiSzvIBs8xdmkNZpCfdkeOHAEABAQEoH///nqf5+vri6FDh+Ls2bMMv4iIqFWJTcnBJ7/p3org4mCF954ZB4mYLTeJqJ7uX+0kaqc/R1QKCNmJEIpyjF1JkxGU8orVPBGnqz6Xnw51fjrUt07A7JmvIfHyr3M+TW4Kyn9bASE7QfcJtQpCVgJUWQlQ3TwOi1d3AAy/Wg3F8V+hurwHACAdPAcmIx83ckXU1olEIpjOeRPlJXnQxIVAsW8tRHaukPoNM3ZpDWKQn3bXr1+HSCTC6NGj633ugw8+iDNnzuDatWvNUBkREVHTKy6T4/VvD6JccW+XHJlUjI+emwA7K3MjVkZETU0TdgSav1frjImnvwpxr5HVHq/+6z0IsZdQuUW15f9O1fk6kq4DIQ2cXHHbo2s3yIY81IiqqSWR7/hIG3yJnDpBGjgZYvuOgFoFTVE2NAnXIZQV6hV8CUo5yn9ZDiEvDQAg7tIf0h4PQmTtBKG8BEJBBtSxlyD27A2RSev+75FQnAdNfjogkULS0cfY5TQrdUoklMc2AADEnXrDZNK/6z2HoNFAHXkGqhvHoEmJgFCcC2jUENk4QezeA7J+UyDpOkD/+eSlUF0/AvXNE9BkJ0EoyQWkJhBZO0PSbSBk/YMg7tC53nUCgCrmIlQhf0OTdANCcR4glUHs1AkSn0GQDpwBsY1zjeeq46+ifMNL9X5N8//7q+L7rpmV/bQEmtuh9TpHGjgJprPf1OvYxnzuqiOSSGE2912UffM0hMIsyHd9Asm/f4XIyr5e87QEBgm/cnIq/jLTuXPnep/r5uYGAMjKymrKkoiIiJqFRiPg/Z+PITmrUGf85XnD0cOrg5GqIiJDEpJvATWEX0JqZIPmFIlEMJ39Bkxnv9GY0qiF0WTEQX3jHwAVoYbZU+uq3oo4XP/5VCF7tcGX7MH5MJn4QtWDxjzV0HJbDE1eGspWzQVQEQxI9AwGWiNBpYB8+weARg1ITWD60Dv1vl1Vk5UI+a6PoUm8UXX+nGSoc5KhDjsMSZ+xMJ3xGkSmFrXOp4o6D8XuzyAUZuo+oZRDKCuCKjMOqvPbIBv7DExGLNC7TkFeCvn2D6EOP6n7hFoJTUoENCkRUJ7fDouXt0JkZqX3vO1Bc37uRJb2MJm5AvJfXwFK8iEP/gxmj37UhNUbhkHCL/Gd2zuUyvpvw6pWqwGgXrtEEhERGctvB6/idNhtnbFpw/ww/cEeximIiAxHJAYEDYTkm9U+LeSkAGV3gnGxpOLNLLVr6kphhHTAjEb34NKZb1Dr7c1D96iu7IOQdRsAIHvw0XqvTtKkx6Ds52VAaQEAQOzZG5KewyG2dQEAqJPDoQrZC8hLoL5+FHK1CmbzP6i5ntCDkO/4CBA0gFgCie9QSLoOhMjKHoKiDOqYSxWBrkYN5eHvIDIxg2xw3StVBZUS5b++Ak1iRa9UsUtXSPpOgNiuI4SyImiyE6C+fhTSwMm1hjdily4wXfCJXp8bxb6vIOQmAxa2BttAxGT8cxDKCuo8TpMcAeXxXwAA4g5daj22qT53tZH6DILK70GoI05DHX4K6sTrkHTq06C5jMUg4ZerqysSEhJw7do1BAUF1evcGzcqfoB36MC/lhMRUct24VYSvg++qDPm5+WM/5v3oJEqIiKDcusOpEQAWYkQ5KVVVk8IKRHax2L3HtAkVV2FQe1L5d5lYjuXxs9X3LTzkXEJGg2UZ/+q+EBmBtnQufWeQx1/FSgrAiQymEx/BbJ+U3Sel/YZC9mg2Sj/4XkIxblQ3zoBVcSZavs6CYIAVcRpQNBAZNsBpvP+B4lHT51jZIGToeozFvJNbwCCBoqD6yHtMw4iS7ta61Qe+V4b3sgefBSy8c9BdF+PVGHiC0Adi2JEFraQ+tbdk0qTEV8RfAGQ9Q+CSGZa5zlNQdKpt17HlV89WPFAZgppv6m1HttUn7u6yEYs0N6irTy9GZJHW1f4ZZBOmf3794cgCNi5c2e9bl8sKirCzp07IRKJEBAQ0IwVEhERNU5adiHe/ekIBOHemK2lGT58dgJMZWwoTNQeiLwDKx4IGgjJ4VWeF1LvjEmkkHi1rjcN1FyEug+p13RNPB8ZlTr6HIScJACAtM8YiMyt6z2HbMjDMF24Eqbz/lcl+LpL7OAG2fhntR+rruyr9jiRSASzef+DyeQlMFu0pkrwdZfUbxikAXc2q1MpoAo7UmuNmtxUKM9vAwBIegyHycTnq4Q3ACASSyCSymqdS1/K81srHoglkD4wq0nmbCqaggzt7YtS//EQWdjUfKwBP3cSz14Qu/kCANQRZ6DJTW3UfIZmkN/GH3roIWzfvh0lJSVYvHgxvvvuO7i41P6XiJKSEixbtgx5eXkQiUSYPn26IUolIiKqN7lChTe/P4zCErl2TCwS4f1nxqGjY/1/USWi1knsHQj16c0A7vT96qq7y/ndlV8i9x6AzKzWuTRFOShbObPG50V2rrB4eatedcn3rYXqXMWxkp4ja7ylSVApUfb1oopdAkWiije3dwO9GggqJVRX/obq+lFo0mMApRwiS3uIPXtBNmAaJN0G6lUjAAiKMijPbYX6xjFocpIAkRhiBw9Ieo+CbEj9V7w0B1Xk2Ypm0sk3IZQWAGZWEHfoAqn/WEj7TYVILDF2iU1Gkx4L5YXtUMddgVCYBUhNILbvCInfcMiGPFTvIEaQl0IVsgeq8NPQZMYD5cWAqQXE9m6QdOkHaf8giJ06VV9LpR5f91NdPQDV1QNVxmUjFsKkUqBTY10qBVShB6G+dRKajNiKr6tIDJGFDcSu3SDp9gCkARMaFDw1lvrmce1jiR6rmWoi9RlU5zESn8Hax5rMuFqP1WcFmsRnEFShB/SaT3lhB6BWAWJJ9X3qmphQWgjVtUMVdfoOa3GrJFXnd2hvi5cNrv32ZUN/7iR+w6BJjQQEDdThJyEeNq/ZX7OpGCT8CgwMxEMPPYRt27YhMjISU6dOxSOPPIIxY8bA19cXVlYV950q/p+98w6Polr/+GdmSzbZ9J5ACL33ohQBK4pir1e9197rT9Rr7/3avZZru6LXXhFRAUEU6UjvkEB679m+M/P7Y5NNlk3ZtE3A83keHjZzzpw9O3t2d+Y77/t9nU4yMzP5448/+OSTTygoKECSJGbOnMmMGTOCMVWBQCAQCNqEpmk8+eFydmf7RjZfe+YkJg3r3U2zEggEbUVzO9G2LUWrKkIedRJSXK+2D5I6BELCwGGF3J2+4zusUJINgNQ3uBkNxhOvRdm9Eq0iH2XnbygZG5qs6uZa+ZlH+AL0R53dqvClVhVj//BOtOIDPtu16mKUHcUoO35FP/40jGfe1aoopNaUYX//VrTSbN/thftQC/fh3vhjQyRJN+AxHX/Sa07vxVKJemAjzgMbcW9YgOnvzyGZm6+CphTsR6su8v6tluY0tGVvR3Na/fbRDTiq2YgNJfNPNJe9YZ7WhmIr7j0r/fpLxrBW31fwpDQ5l/zH15fO7UQt2IdasA/Xum8xXfI0urQRrY4FoOTswPHJfZ4Kg42x1aDa9qDm78G18jP0E07HeMpNrRquB4IU1/pvsFq4H/sn96NV+EewaFV2lKpilD2rcC75D4Zj/oZh+qWdFnkUCErmRs8DSULXf0LLnTuIFBblfazZajp3PGt1Cz1B2bsaADl9DHIA71tHca2fDy7PDUvD5HO6/Pnagua04/pzAVB3PJIHttg/2MdON2ASrmWeyqNK5kYMQvzy59FHH6WgoICVK1disVh4//33ef99z0HT6XTIsuxniK9pGkOGDOGFF14I1jQFAoFAIGgTH/y4kV827PfZNmNMX/5+cusXFwKBoGegWatQvnoC8jxpicr25eiu+0+bPWAkWYfUZzTavjVoBXvRFLfXwFwr2OsxiAakvmMhp2lTfO9YoRFNmjY7vn0WLBVtm5fRRMhZ/8T+we2gaTh+eJnQmz/wMVdXK4tw/fahp39MKsZZ17c4plpd4vEIqvJUe5MHTEI/fAaSOQatuhj3pp9QC/bh3rgQDCGEzPm/ZsfSnHbsH/yfV/iSolPQT5yDHJeGZqtB2b0CZe8ar/lzsNFUFfv/7kHNWO+ZX0I6+nGzkWN7odlrUXavRNn9B2rebuzz5mK67u1mjevdqz9vMkoJPL49fsg6wh5qPmXM8e0zaJWFTbf97x7/4fqOIfSqfzc7HoDz1w9wLXvP80dYFIYJc5BTBnsiPbK2eFLiLBXYP7yT0BveRY5tWShW9q/H/sm9XrFBThvpSeGLTESz16DmbMe9fTk4LLh3/obhuCv8xC8pPNbn86DVVuL8zvO33H8Chqnn+z1vcyl53jGs1djnzfUKcrqBk9ANmYYUmQCq4vG/ytnhST9z2nBvWYLhmItbHLMz0SyV3s+XFJmIZDJ37RPaGgSqxsJVe9Eaj9eC35daU+b97OsGHdWwv+JGK83x+NiFRSPH9UYythwxG9C8FDfudd955pXYr8tFxbbi3vyzx6ON1qO+gn3sAOTEfg3P387qxd1F0MQvnU7HO++8w3vvvcfrr7+O3d5wh8Ltdvv1lySJSy65hLlz5xIW1nHlXyAQCASCzubXjZm8s2C9z7Z+KTE8cPlxSJLUTbMSCARtQSvPQ/niEagoaNhYUwqWSmhHKozUbyzavjWeC/3CDOjl8Ueh3uzeGIqUOqR18UtvbNK02WkIaZdLlK7/ePQTz8C9fj5aaRauVZ9jnH5Jw7g/vgIuO0gSIWffg2QMbXE858JXPBfmkoTxrHv8TbSPPhfn9//C/ecPuNd9i37UCejSRzc5lmv1F97oMTl9DKZ//Mvn+Q2TzsC94zccXz4KSturx3cU97pvvMKXfuLpGOfc4SNuGSbMwbXpZ5zfPOmJivrjU4wz/94pzy1FJnS4AmRjWqsUqBTsa6gw13sYpkuf8xEu9KNPRD/xTOz/vRVsNTgXvIDpshebHU+z1+L45knP50GSMM6+BcOUQ4SqCXMwzr4V128fIvcdixwZ7zeOZAjx+TyojT6vclRCQAbnh+LessgrfOnHnULIOff79TFMPhe1pgzXio894m6QTNEB1EbRaFJ8Wpc/n9JIyKj3deoIqs94g5vvl7W1oV9SfzRVwbXiY9xrvvaNFDSGoh99EsaTru2QOKfsWI5W7REVDUf3sKgvTfP6d0mRCeiGTW+xf7CPHYBkMiOFx6LVlnv+uRxB/Vx0hKA68MqyzDXXXMO5557LkiVLWLZsGVlZWZSUlKCqKnFxcaSkpDB9+nRmz55NWlrXf8gFAoFAIGgPe7JLeOy/vukvUWYTz904m/DQw+MkQCD4q6Pl7kL56nGfiAcAqc8oiGpfpXGpb0PUp5a3E6lO/NLyPBeCUtrIbvOFMp58I8reNWhVRbiWz0M/ZhZyZALuvatRdq0AAkt3VLK3oez8zdu/KRNtSZYxzvk/lIwNaJWFuFZ/1aT4pbmduOp80tAbCTn/wSaFN/2ImailVzQdHdWFaE47zqWeKCg5eSDG0+c2+f4Zxp2Csm8NyraluNd+jeGYvzUpWoWcc7+PyOJc9j6uX/8LgOnKVwNKSWzMob5vtvduQT24GQDz4yvaNBaAc9GbnlRHvZGQi55oMmJHlzIQ40nX4fz+eZT961GLD/hEgzTGtXyet6KlfvJ5/sJXHVJIWKvRhp2NWpLlfawbcWyz/eSIOEJOvTUIM/JFq2kQLzojEqs1lO2/eh83VemxLWiqinunx7AdWYdu8JTm+9YJUeB5nfZ5c1Ez//Tv6LTh3vA9yt41mC5/CTmhaX+41qgXlzCFox97crvG6CqU/evQ6talftJZrQrfwT52XsKioE5c02rLkGJSOzZekOiW8lOxsbFceOGFXHjhhd3x9AKBQCAQdIjSKgv/fPNnHK6GyGWdLPPUdbPoldB8RR6BQNBzUHf9gbrgBb9IIil9NPI597U7elOK6+URzqqK0XJ2Ql0VMa0uCiLYfl8+cwsJw3jW3TjmzQWnDefPrxNy9r04f3jZ0x6TEpAA4d7WIPwbJp3V/PPpjehHn4jr9/+h7FnpkwZaj5q11WN8DuiGTEWOaj7aToqIa3VunY2yf513fvqJp7coXOrHn4qybSlaTRlq7s5mI916KlqdfxnUvxfNC8D6MbNw/vASqArunb9jbEL80jStocqfzoDx2Mu6ZN7tpbGgpGbvgA4YyncJjbzcOitlrTnUinzveyVFp6AbPrND4ynblqKV5wGgG3UCcmRCs301a4O/mHPRm6gHNyP3GYVhxiXoeg2DEDNq4X5cv32IsmcVWnUxji8exnTdf5D0xrbNK3cnal3UrX78qa1GuAab+sIk6I0YJp3eav9gHrvGSEZTQwSy095S1x6Ffw1MgUAgEAgEzeJwubn3rUUUV1h8tt918XTGDT487nwJBH9lNE1DXfsN6nfP+AtfI49DvvBRJFN4h55D6jvW81y5Hg8xrSzPG13WneIXgH7gUejHnwZ4LlAdnz3oMfuWJELOvjegi8F6g2UMJqTEvi32lVPq0p3cTk+Fv0PHOrDJ+1hXd9x6EsreVd7Hcq+hLfbVpQzyPlbr01wPI5R9a70G9629VskYihTnydJp7rWqebvRako946WPCkr0UlvQNYpucq34H475//KJButuNLWRNZDctTErjvnPe78PjbNv7lCqrWatxvlzna9cSFirFTcbe4OpBzdjmHYRpqtfRz9kGlJ4LJIhBF3aCEIueQbd0GM8/Qr3o9RHlrUB16o6cUmSelzKo1qS7RHbAf2I41osnFFPMI+dD43Wo6b4W1g1h1ttT9J+59EtkV8CgUAgEByOaJrG0x8uZ8eBYp/tFx4/ijOOGdZNsxIIBIGiqQrqkrfRNi70a5Om/Q15+sWd4tcn9RuHtmUxWCvRyvPQ6sWBsChI6Nvh8TuKcfbNKPvWotWUeoWsQNIdwfM96DVY1xt9xKGmUBtVb9Sqi6GRQAR4Db0hsOp8waaxt5RasB+tpWIDqtrwsLqk+X49lMavVasqbrJapC+eC1mtmddaH/kDICcN6PD8Ohtd7+EYjr/SU7lO03Bv+B73hu+REvujHzwZ3bBjkNNGdpuHp6RriMzR7JYWenYM54qPvZ52GekzGT18RrvH0jQNx9dPeP2mjKfc1GI0JwCNRD7dqBMwnnJTk90kScIw8+8ou/8AwL11CfrRJwY8N7W6BGXncs/zDDq61UINwca15kvQPJ8pfStG916CdOwOpfF6DNTva0uZg7vXlfLi5HhGxHSPPYgQvwQCgUAgCJAPf97E4vW+lR0nj0jjpnOb97IQCAQ9A81pQ/3uObQM3yIVyDrk2bcgd+BC4FCk9DEgyaCpaLk7G1Ie00f3iGIYkikc/ZTzcC1+y7vNMOnMwHa2Vnmjg7BVN1lRsFmauIDXLJUN8wrp4mp27UCrbRC7nN//K/Ad61IlDycaC3vutd/gXvtNYPs1I8zUR31BcDyr2oPxuCvQpY/Buex91KwtAGjFmbiKM3H98QlSVCL6SWdimHJBl6ceHooUGtHwh6Nr1pN7/zqcS95GAvabenN91D/40uKit9nQrvFcS99rENTHzcYw8YxW92n8uTced2WLfeWUwaA3eiJJS7Jb7Hso7rXfQl2Ukn7yeW3at6vRbDW4Ny8CQO49HF3vwG6oBuvY+dF4PQYYKf3CtgpyLG4u+62IV6ckMDUp+CmnIu1RIBAIBIIA+G3TAf4zf53Ptr7JMTx29YnodeLnVCDoyWi15Sgf3+MvfIWEIV/waKcKXwBSWCTURbpoOTu9kV/dnfJYj2arafCWqcPx46toWtempGj1opnv1oaHPUAY7DSafK1HKM28Vk1riIRD6rm/k7r+4wm9+t+E/t/nGE+9Fd2go6EumkWrKsb1yzvY/v0P1LLcoM5LauSTpVmrOn18JW8P9k8fQNJUSvVR3D9gLi/NTGu/8LV+Pq7f5gEg9x2D8Yw7A9uxsXjSyudG0um9oqBWWxbw3DSXA9eG7z1jxPVGN/CogPcNBq4/F4DTBngqjAZMEI7doWiahmar8xrT6ZHCYwPa75UpCQyLNmJ1a1z/RzF/FNraPYf2IiK/BAKBQCBohb05pTz636U+2yLNITx34ymisqNA0MPRSrJQvngEDk3NikxAd/7DrXpWtRep31i0wn1oBzdDXbU7qYd4Wjl+eMlTgU9nQDdgAsreNaiZf+JePx/DUWe1vHNYFMg6UBWk2F6E/d9nzXbNs7g55ec8kkJ1nNcvguuHNRH9Y2oc3WJt3wvqQqTwGLQ6r7LQO79u0QS+p/FlZg2L86zsrXJR4VAw6iSSQ/WMjw9hVq8wJiea0MsNgmNjj6GQcx/wqYRX4VD4LKOG5QU2cixual0qYXqZPuF6piSaOLnCwfBDUpkkc6OLYkfXpe11FnJsKvKU8zFMOR/N5UDZsRzn8g/QynLRKgqwf3wvoTfPQ5KDI+RJcb1BZwDFhVp0AE1VOq1SrFqWg/2ju5CcNqp1Ydwx8J88cPwIJie2LxrHveM3TwEEQE4ehOmSZwI2VPcV+Spb36FepG/DsXBvWeyJWgUMR5/TIyJw69FUxROVBkjhsehGHBfwvsE4dn5DlOV4hTopvk/AxzImRMd7MxK59NciMmtc3La6hPdnJDEmLnjn0UGT4MvKysjMzGyxT0FBAf/+97+ZO3cud955J5988gl2++FTPUAgEAgERx5lVVb++cbP2J2+lR2fvHYWvRN7ZhqHQCDwoB7cgvLR3f7CV1J/dP94vsuEL/D4fgGe59ZUiE5Cik7usucLFPfO31G2LgHAMP0SQs590CNoAc7Fb6JWFrW4vyRJSJEeAUizVLQaLaZokG9VyK51NdkuRTQIJGplQZN9upPGfkX1PkaHCw9vLGdlkZ0Su4JbA6tbI7PGxVcHapm7tgTnIebTUnTTr3V5vpXZP+fz2s4qtlU4qXSquDWodqlsr3Dyzp5qnt9W6ff8cqPxepKRfCBIhhD0Y08m9Pp3kaJTANBKDqIe3By8Oej0yCkDPX+47KhF/gUj2oNakY/9/dvAUkGtHMr/9buL62aOb7/wtWcVji8f9Qjiif0wXfZCm4qG6BoVV2jsEdgUmuL2mry3pfqra/VXngfGUPTjTg14v2Cg7Pzd66Oon3g6kj7wyLtgHLtDUesKuQABp2fWE23U8e70RBJNOmyKxg0ri8m3Bm6Y31GCFvn1zDPPsGjRIu6++24uvfRSv/alS5cyd+5cHA6Hd9vChQv5+OOP+fjjj4mOjg7WVAUCgUAgADyVHe95axFFFb5eG3MvOoYJQ3qWUapAIPBF3bYU9cfXfAyBAaQBE5HPvBspJKzTn3Pcj5Xex3o1lWVyCKGq59x2achwlm+ycEyigROSQwi+24kndcq54AXAE1VimPl3JL0R48k34Pz2GXBYcXz3LKGXv9jiOLrBR+Ne9x04rKgFe9GlDmn3nHS9h1P/Dqk5OyAAj6Bgohs0GfemnwBPNTVdK1UQu5tDi6lNTjRxfGooiSYdNS6NAqub1cV2xsSGEKb3jYPQDTzKk3qqaSgHt2A45m/sqnRy+5oSnCroJZjTx8y4uBCijDLlDpWsWhe/F9q4ZGAEhyKnjYQQMzgsKFlb0FyOgM2xW6VxtEknZOsqmkaRTSHf4ibVrCc1zHOZLJnM6IZPx73qC8ATMaXrP77jTxggukFTvGKDemAjunoxrJ2oFfnY37sVrbqEGjmMW/vfzVHjxjOrd9v99iwulfWrlzN26RMYVBcZpjTuSvknplU2piZpnNcvggGRrQs5UkI6GEPBaUM5sNnrP/hLnpWnNpdTaPOk8+08Lx21YJ/Xt0tO7N/keOuK7Vz+e4OIP6lmO28Ue4JwvoyYxnM/lAKlfvstmd2LXmZ/eeTfOyp5Y5dv2umFJYu4pORHTKqTX6KP5pXUi3HIDZFuqWE6fjk1sAIerjV1wpysQz/prID2qafxsduzZT1P1RxNvtVNhVMhyqijV5iOE3uFcXbfcKJKWj929Wwrd/BDtoW1JXZKbAoWt0qcSceACAN3HlxP/RmwbtDkNs0XIDlMz/NHx3Pl70VUOlXuX1/K+zOSghKNF5TIr5ycHBYuXIjL5Wry7lBBQQF33XUXdrvdk0Pa6F9mZiZz584NxjQFAoFAIPCiaRrP/O83dhzwjYI477iRnDVjeDfNSiAQtIamaah/fIr6w0v+wte4U5DPe7BLhK9Dcct6fo2aSL4hnnxDPD+HjubnAhcPbLFy+vJKMqqdXT6HQ3H88JI3oifk9LnetCT9uFOR+4wCQM1Yj2vDghbH0Y841vvYteKTDs1J7jvG6wfl3rUCrZnUR01VcG9Z1KHnag+6wZPB4DE6d639Fs3Zs7NSSu0Nvj9XDo7k/RlJXDowklm9zZzbL5ybR0Tz8XHJ3D0mxm9fOSIOuc9oAJR9a1CLDvCfXVU466y7XpuawFOT4jm/fwSzepu5aEAE/xwTy8KTe3FCqv9nStIb0A+b7vnDVoN7/Xed9jqlRumyalVxCz2bR1MVrw/d91kWTvwxj3/8VsTa4kPeY5ej0R/BTZfTjz3Zm6Lm+tO/Sm1bUMvrhK+qIip14dw84J84UoZx+8joNo/1e4GNRz//gdG/eISvXaF9uW7AfeQQzr5qF/P21XD2knze2d26V5kk69AN9hQOUnavoLCkhJtWFnPr6hKv8FWP+88fvI/1Y04KaK5/K2343vgiPrB9WuK4ynXcmf8RKa4yYpQazi/7hZsLmk//bgklfw9q1lYAdMNnIkfGt20ASSY7ZSIAKdmrySoqptiu4FI93wVbyp28sK2SMxbnk7PiO+9uzR27WpfK/RtKuXBZIR/tr/GkTDtVnCoUWBU25lcQvf83ANSwGO/71lYmJpi4YnAkAGtLHPxvf027xmkrQRG/5s+fj6qqJCQkcOGFF/q1v/3221itViRJYtasWbzxxhu8+OKLDBkyBE3TWLVqFRs3bgzGVAUCgUAgAGDewnUsWrvPZ9tRw3tz63lTu2lGAoGgNTTFjfrjK6grPvZrk4+7HPnkmzrNM6clbh5s4pUJZqLPvpMDf3+HHX97m6ETpzMiyvPcpQ6NRbnB9bdy7/gNZZvHu1A3+iR0AyZ62yRJIuT0ud6LbOfPr7coKOj6T/CIQoCyfRnOX95BU9Um+06p3sKNBZ83O5YcEY+uXkyz1eBc+LLfzXLN5cDx5WOomcG/HpBCwjAcf4VnHhX5OD57AK2ZSo5q8UEc3z2L5gy+kXM9ta6G9+HiJqKxWsN48g0eMVJVsH98D6W5noiZ3mY9M1MaBC7NWo3jx1dRCzNaHM9w/JWeyBTAueRt3DuWN9lPc7tw/fEp7j0rA5qnZDIjxacDoOZsbzblS1OaT6lyLngB+7s3oeTtabaPkrfH4xdVh65OJA4WcmwqumEzAE8VSqVOKGkralkO9vduQasqosoUy7UDH2Rn2ADuGxvr4/sWCN9n1fLZjz9x796XCNFcZMaO4MDZz/PoMf14amIcp6WFoZPArcFL2yv53/7qVsc0TL3A88DlYOcHj7Aqz180c+9ZhXujRwCUEvo2K7wMjjLwxtQE3piawHsjnBxT46niWdVrLHcfP9bb9sbUBPqEeyK9oo0y8aamfxvm9DH77HOPfpNfn3Mt63jh6Hh0dYdyUGRgfmfuVQ2FR9pkdI/nRs+jm8p5yHACACbNyX9K3+WJMWZenZLAA2NjmRjvibQcVvInMTt/Bpo/djUulat+L+Lbgx5/vt5mPdcNjeSZSXG8MiWB20dGc4llNWbVIw5/HnciNVr7iiMAXDssisS6Y/76ziqs7qZ/QzqToKQ9rlmzBkmSOOmkkzAafReC0+lk/vz5SJLE1KlTefXVV71tkydP5qSTTsJqtbJw4ULGjw9eiKlAIBAI/ros/3Mfb3y9wmdbn6RoHr/6JFHZUSDooWgOK+o3T6MdPOTCRKdHnnMH8vAZQZvLmBgdE+P8LwquG2TiiywHT++wtZqppVmrUHK2+2+vi0LRXA4/oUAKjULXZ6T/PpZKHHXpjoRGEDL7Fr8+cvIA9FPOx73yM3BYcM5/DtM/nm92fsbT78T+9vVoNaW4fvsQ987f0Y89GTkuzWPQXZpN+I4VvFq8H4D5Of1h0nlNj3XcFdj2rganDfemn1DLctCPPQUpNBK1NAf3hu/RqoqQ+45BPbil2Tl1FYYpF3iKAhzYhLJvLdaXLsIw/lTk1CEgyWhVRSgZG1D2r/MYSmsaIWffE/R5Aj4+XvWpe21BlzYCw4y/4/ptHlpFPq9V3sPi6CmUpYzGvTMVzVKBmrUN987fwGVHydhA6PXvNJvOKMekYDztdpzfPQtuJ47PHsQ1YBL6YdORIuLQHBbU/D0o23/1RCWGRiDf+D5yAP54hmkX4Jz/L3A7sb19A4ajz0ZO6IumutHK83HvWI4ufTQhTVQddG9birsuwtH+1tVMShrOldJw8o0JJB2IwVVgQcn8E2Xvam8VPd2YWchJ/dp8TDuKYfrFKDuXg6bh/Pl1TNe+1aYUMbUs1yN81ZSh6Qy8EzeHXs5ijjGWM6EiF3dF0/vJCX2RY30tHjRNo2Djcp4++Cp6FNzh8Qw76UKGyfuhrqbBnGi4WHHw1u5qNGDVCphjjyNqwFhvtcFD2WUeSGbqLE7IX8zR1Vv5dO+9lAyZxVolgcJqC0fV7sCxdZXHP1FvJOT8h5F0Ta/v6BAdx9ZFIjo2LcRdV3U0ceYFpDaKUNxX5SS71iOOntcvnBBd08e0b4SBvhEN3+f2UAOH1lU06mQqnSpK3ccvEOFZrSnDvX0Z4CkSoEsf3eo+jSlzqPxZ6iDDPJDfe81iRt5i+hVvov8Pt6AfPxs5Lo3zoxxs27+KgVnL0aHhlA1ENnPs9lQ6yao7HpcMjOCu0TEYGwmjmq0G63ffAVArm3gv8njKdlXyzzGBVXs8FLNe5tKBEby4vZJql8rXB2r5+6DIdo0VKEERv7KyPAaHw4f7p4n88ccf3qiva6+91qctNjaWOXPm8Pnnn7N58+ZgTFUgEAgEf3H2ZhfzwFsLaBx4EBEWwr9uPIWIMFHZUSDoiWjVpShfPgLFB30bTBHoznsAKW1Ed0yrSS5ID+HXIhcUttxPLcrE8b8WBBRLhV+73HcsoVe95tfVseBFsHiucI0nXY8U7p/yBh4RStm2DK26GGXfWlwbF2IYf1qTfeXoJEzXvYX9o7vRijLRSg7iWvIfnz71Fxrrw4eTF9O8L5ic2BfTxU9h/98/we1Ezd6OM9tX+NNPOhP9pLOwv3FFs+N0FZJOj+kfz+P4+kmU7cvAWoXrj0+b7huTin7UCUGeYediPPFqpNBwnIvfwqi6mVOxAipW4Nh5SMcQM4aJZ0ArVf0M409FCo3A8fUTHp+4jPU4M9b7d5R16EcchxQa2AWwYeIZqHl7cG/4HmzVuJbP8+vjLs3GMPMfflU6dSOPx1hdgnP5PLDXElO0kxuoe4HZ4JOULMnoJ5+L8eQbA5pXZ6PrNRT90efgXvM1au7OwKqyNkLJ2uqp7gpIios78z70tjm2Nb+f8dz7/cQvSZK4XNuCu07+0deW4vj8Ib99BwM+zoGZoN35VZPil82tcvWKYizxl2CzWZlT8QdpjiLStn7EoaEvUkQ8IX97IiDvM81u8fr1SdEp6IZM82mvT7XTSXDRgMCjJPUjj/d8DzRCN+oEb4RberieY5JMrY7jXvcdKJ5CIPo2Rn0BxJt0fHZ8Mh/srebYgf9EXiDj3vwzWnkurl/e8far/+Yt1sdwd9/beCK0D019G09MMPHFCcn8mm/jssH+n0Hnkv+AxZM2/3LqpVTpI5ifZeGu0THI7fTrOq9/OK/trMSlwkf7a7h0YESXen8FRfyqrKwEICrKvyrWr7/+CkBMTAxHH320X3u9YJafn991ExQIBAKBAKiosTH3lW+xORqqkulkiSevnUVaUnT3TUwgEDSLVpSJ8uWjUHdx5yU6Gd0FjyLF9bziFFPiDTSdONeA61Dn8nbi3rYMZYfnfHtr2CD6DJtNL6DSqfD1gVoW51rJqnXjVDV6mfVcO+oqjl/5NADOn/6NbuBRyJEJTY4tRSay9LRXyFvzE4Nz/2CgNYsopRZFF4I+Jhl32miurx7LdvNAzgpv2VBbN2AioTf9l9wl/0M+8Cfh9jJqdWHsDevH8rTZhPWZyt9khZYcce5bX8p3WRauHhLJHaNi+OZgLe/vqSbf6iY9XM9Nw6M5sVcYqqbx/p5qvjxQS7FNYWCUgbtGxXBUYvMXrJLeiOnCR1EmzMG16SfU7O1otWUgSUjhcchpI9APm45u+IyAU2udqsb2cof3QvSq3wvJ3pnLmLgQzu8XztSk7iiL4MEw7SJ0gybz308/YlLtTno7SwiRFKSwaOSUgegGTfZE55kCM0rXD5vO2r/9l5KV39Kr4E962/IIUx3Y9WE4Y3qTMOwojBNOQ45JCXiOeRY3n/W7GpttKEfl/sJQSwZRSi0u2YgtKpWoQeMJn3iqn/AF8F2WhfsLpmAeOIZTK1YypWYrA2w5RCm1GDQ31Toz2SEpbDIPYUHsTPKsibxb6mJqUuuXz6V2ha8O1PBHoZ3MGhe1LpVQvURsiI4xsSEcmxrKialhbUo3NJ50Pcq+dWhlOTgXvYHcezi61MEB798e5Li0ThvLqQshLNL/fQAI1cvcMCyKD/ZVE33BA4TYtuP+cyFqzg6cNeVYZBM5IUlMmDkb/fjTAq4kqZZmIUUloRUfQH/0WUhyQ+R+pVNhQbYnVO24lNA2RUnqR8xEO/U2XCs/RXM50I88nnWj/sGBtZ5UzYsHBCbgaNZKT0qw3oh+9IkBP39jzHqZm4ZHe/449350o0/0HjvNUgEhYcixvfglZjKPaZOx6MLYV+1iSHTTgnWfcAOXDfaPWnZvW+YRmQHdkGlsTTgRatxUOlVK7QqJoe2TlaKNOsbHhbC2xEGuxc3OSicjYrruRrOktVafuBMYN24cdrudl19+mZNPPtmnbcaMGZSUlDBnzhz+9a9/+e37yy+/cPPNN6PX69m+3T/0W3D447TVoGkt5/gaTOHIsg5VVXA147MgEByKWDeCtqBpGne98ROrtvn6htz5t+mcM7PnRI0Iei7iOyf4qAc2oX7zFBzqsZQ6BN15DyKZo9s0Xr5VodCuMTJKh7GZFJjmeGiLhQV5HuH8naPNTaY91vNNjpPHt3k8v87vF86jE/zLzr+4rYJ397TulXNy7zCeOyoeQwsX0o2rn311QjL5VoVHN5ZR5mj6/GtifAj/nZmEroULOLeqMXdtKUvymvYuC9VJ3DU6hsc2eSIFzko389Sk5qUrRdN4+M8yvqnzm2kKgwx3joppNjWmXvw6v1848SYdbx5SoU0GPj0+mY/31/B9tu/zhOklFp6cSlI7L+LaSqHVzbV/FLO/2tVsn3P6mnl0QlyL78OaYht2d8Pl3EvbK9lXN+YbU/1FS7NBZlJC0yKfXVFZU+Rr9n7jqhIABkUa+L8mjNF7mfUMimo58supaNyzvpSfW/C5Gxlj5K1jEokNCUw4/CKzhic3l+Nq4RIiVCdx+8joJqNJvj1Yy/0byprZs2maqwbYmIXZFh7ZWIbF3fIldnKojrtGxzA7LfAqi2rhfmzv3QL2WqTIREzX/wc5InCD9JxaFyf/7AkoGRFj5MsTAhca28OqIhtXr/B4B87qFcbLU5oW0cHzfeJQNMwGX2uJy5YXsr7Uk+q987z0ds1DLctFMsf4CLVv767i5e2VALw/I5HJiR0Tmq9ZUcTKIjtheonlp/Um3BCYRYbmcqBV5CMndm067cvbK3h7t+f35P6xMVwyMPD0QiV3F/b3bwGXAykujdBr3uDSdXY2lXnel/knpbT6HdASjd+LO0dFc+UQ/4CpziIo3+6JiYlkZ2d70x/rWbduHcXFxUiSxPTp05vct6bGE45oNre9/KpAIBAIBIHy5a/b/YSvc2eOEMKXQNBDUbcuQf3p314/nnqkwZORz7gTydB62kk9mqbxxj477+13oAFT4/W8OsncoujQEUodDRfGcc1c7J+aZubj/TWMiQthfFwIfcL1hOllyh0Kuyud/JBtodbtMc5PCa1ssnpfU3yeWcs3B2tRNM8F6YyUUEJ1EtvKnXySUY1ThQ2lDhZkWTirb/MRFg9vLPMKX2F6ifP7hTMqNgSXqvFn3f6P1wlfgXDPulIW5njGSzTpOLdfOIOiDDgVjbUldr7PsuBS4ektFZgNMue0MLcVhTYKbQpHJ5g4u6+ZrFo3b+6qQgVuq6sgd1RCCGf3DSe7rs3q1liYbenSC696imxuLv610FvJbmqiiRN7hRFn0lFodfNdloVdlU6+OWjBpJN5YFzznjoPbCgj33qoA5GHeuGqMRPjQ/jw2Kb9tMrsapP7AOyrdjXZdsOwqBYvfFVN48aVxayqq6DYP8LA2X3NpJn11LhUfi2wsSzfxvYKJ9esKOaz45NbFHIB3tpVyas7PMKmDJzUO4xjkkxEGnUU2dysKbbze4ENm6KxOM/KxQMjOPRTNiXR5CMOrim282FdGtw/BkYwuYkowJSwloW5DSV2/rmuFBXQS3B6upkJ8SaijDI2t0aRzc3qIjuri+0U2hR+K7C1SfySkwdiuuQZ7PPuQKsuxv7BHYRe8TJSeGCeS7sqG5I5B0a236g8UKqcDcpkdEjLYpBeltpsvB8oclxvn7/dqsZnGZ73emCkocPCV0a1i1V1ovGZ6eaAhS8AyRCC1MXCF/i+FzEBCswAamEG9v/d7RG+IuIxXf4ikjmaKmeet090G8ZrisZrcWdl11ZBDor4NWrUKLKysliwYAGXXXYZISEhaJrG66+/DoDBYODYY49tct+9e/cCHv8vgUAgEAi6gn25pbz+zWqfbaMHpnLbBaKyo0DQ09A0DfWPT9Ca8FySJpyOfOLVbaro6FI1Ht1qZWF+QwTOqlI3pXaNpNCuuRj7rajhBH9iQtMpHkOjjaw9M63ZC8Ibhkdz4dICCm0KH2dUc8PwKCICuOj68kAtcSEyT02KZ3pyw0Xf7DQzKWE6nt7i8Qb7Jd/arPi1qdTurQgWFyLz0bHJPobQZ6aH8/eBEdywsrhZYaYxy/OtXuFrWLSR92ckEmVseA/PSA/njD7hXPdHEU4Vnt1SzszkUOKaqc5WaFO4qH84D46L9Ub8fJdVS4FVabFtVxdfeNXz1OYKCm0KEvDExDjOPuQ4XzIwgkc2lvPVgVo+zajh1LQwxscHLua2RO9WIpc6e7xPMmq8wtf5/TzHvfGaPrdfBPOzarl3fRm7Kp38d2811w5tXoDcUubg33XCV4RB4vWpiUw8JJLt0oGR5FncvL6zkltHRDcpYieH6UlulOpW0UgcGBJt9Bqmt4V5+6qpH+XRCf7vK8BVQ6LYVenkg73V3BOgYN0YXd8xhPztCRyfPoBWfADbe7diuuJl5MjWI8ByLA2VL9PDu1782lHR8Hka0UyaXXewOM/qFZ4vboPXV3N8tL/aW8Dk4gFda9jeXnY2ei+GB/heKAX7sH/wf2CtQgqPxXTZC8jRyVhcqtcYP9GkI6GZ7+FA6dtoLeZamq/O2hkERfw644wz+OGHH9i/fz/nnXce06dPZ9u2baxfv95bBTIysumFsmzZMiRJYuzYscGYqkAgEAj+YtidLh569xdcjUosh4eF8Ph1p6HXdewHXSAQdC6a4kL96d9o25Ye0iIhn3AV0qQz22SWW+1SmfunlQ3lvifcySaJSGPnC1+KpvHWXjs7qzwXXiNijExpwWeqpUiIhLroqNd3VuFSPaLAMcmtRzCY9RLvzUhicBPROrPTzF7xq74KWlM0Tie8f1ysj/BVz6AoI88fncDFv7bi7A+8sqMSAAl4elKcj/BVz9GJJv4xKJJ391RT49L46kAt1w1rWiSJC5G5b2ysz1pIMOkosCottlU6W7bh6Aw2ldq9EXN/GxDRpEAiSxIPjI1lVZGNfKvCR/trmhW/fjnVN6qlI2livcx6v32Gf+XJ3JkUH8K8ZiLGmsPmVnmt7r0dEmXgofGxTQpRZ6aHs6LQxo85Vj7eX8OVgyObXftPbi73CkxPTYr3E74av5aW0my7ggM1DQL6rN7Ni2fDoo08e1T756YfPAXp8pewf3wPWkUeWvEBCED8KrU3CNExrURidRRV07zrXC/BjJTu8687lI/2edL/IgwSZ6R3LLusyqmwIMtzI2BKookBQYioays5tS6vENk/Qt/k93VTqNnbPcJXbG+P8BWbCsCSPKu3quVxqR1/XxuvxRJ76zdLOkJQxK8ZM2YwdepUVq1axf79+9m/f7+3zWQycfvttze53+LFi8nKykKSpGYjwwQCgUAg6AivfrmarMJKn233X34yqQlRwrdJIOhBaHYL6rdPox3c7NugMyCfMRd56DFtGi/fqnDzBgsHan0Fj2ijxHPjzYS20fOrMVsqFKx12pEGWN0aGbUKSwtdHLR4ni85VMeLR8d3qLJVciN/qnJHYBcNlwyMaFL4Ak/1sFCdhE3RsLmbFoJsbpV1JZ5InrgQmVm9mr/IDyQiIM/iZk+VRzQYExvS7NwAzu0X7vVB+znX0qz4FaLzT6EKqfu7pTan0uVWyPzUyPfqwv7Np24adRKnpZl5Z081y/NtuFSt1XTAnsbKIjs1Ls8xPb9fRItpxGenh/NjjpUSu8KWcgcTmhD7Dta42F53ET8ixsgJ7YjO6kqijTrA88HfUubo0oIFuvTRhF79OmppDrqBkwLax9rIh6wj32+B8GOO1RtpNjvNHDQvvdbYWu5gS7lnDZ3TN5wwfcdEwC8za7HVfW9cMrDjUWRdwbt7GiISr2iiimNzGI4+G3Q69MOmI5k9UYouVeO9vZ7vYBm4rBn/xbYQqm9Yi7ZWvPI6StBW4csvv8ztt9/OqlWrvNtiY2N57rnnSEvzryThdDp58sknkSSJPn36MGvWrGBNVSAQCAR/EZZvyuS7Fb6120+fPpJZk4ehql1790kgEASOVl2K8sUjUHLQtyE00mNs33tYm8bbWeXm1vUWypy+J9p9wmRem2Smj7ljUZ//3mtvsX1GooHHJiW2qUJWpUMh2+LG4lJxqhqaBvuqGlJZAtVt9K2IbWaDjE1RaG64TWUO6gOkJsSb2l3ivp41xQ3FCsbHt1zlKz3cQFyITJlDZX+1C7uiYtJ1bQRLZ/Nbgef1huqkVn2XhsV4hECHqrG/2sWwHpQ6Fgj1rxVgZGzLc69/reBJl2tK/Fqa3yAcHt+DIonqOS41lI11JuC3ri7huqFRnNsvPGAT/7YiJ/Zrk1G60qjOXVf5a4GnkuKzWzx+f2a9p+hAT6E+6kvCE3nZEdyqxid13mG9wnQc2wPX5J+ldr464LmROyLG2KKPY1MYJp7h8/d7e6rJqCuoccnAiICjyFqi8W+Su5OqHDf7XF06eiMiIyN5//332b17N5mZmcTExDB27FhCQ5teJEajkblz5/LAAw/w4IMPduiumEAgEAgEh1JUXsvTH/3msy0tMYo7Lzm+m2YkEAiaQivK9AhftYeYp0enoLvwEaTYXm0a7/ciF//cbOHQ7IoxMTpemmAmxth1YsrsVAOX9A1hZIwRYwDCV4ld4YO91SzOtZAXgHdWZ9Day6/3ygHoE97xS4mCRq8rLYDxepv1lDmcKBrkWxT6Rx4+4pemaRTUhQQadZKPONQUBxul0RVZ3Yed+NXYv2d3pZPyFlKaGrcUNrPWG6fiDu6Bx+LSgZGsK7GzotCO1a3x0vZKXttRybi4EGakhHJCaliniAXtxdhI8KptqUxmB9A0jXvXNVSSvXt0DClhPSPqq8jmZlFd5OX05FD6dND3bEkj77CLBkR0+EZAZ1PhULh7XSkanujWJ1qpHNsaG0vtvLGzEoD0cD23dZKo2XgthnRxRGLQV+LQoUMZOnRoQH3POOMMJk2aREpK15ZhFQgEAsFfC0VVeey/S6mxOrzb9DqZR686kTBTzzuhFgj+qqiZG1G/fRqch4gEqUPQnf8QUljbKvN9keXg2R02Dr3sOynZwGNjwjB10on3O0ebmRjnubD6JtvB49s9869xaYyIDuz0+9d8K3etK/VJVeoJVDRKr2xLVbNmx3M2Gi+AFKTGz1nTRRfwXUWlU6X+7axyNl9ZsSlqmklD7cmUNVorj2wMvPJnbTOvtbFnVXQXitTtJUQn8ea0RL46UMv7e6vJrnXj1mB9qYP1pQ5e2FbJyBgjfx8UwZw0c9CDOyKNXf/ZeW1HFb8Ver7vzko3c37/npMK+GlGjffz1xkpiv+rqw5q0kmc269tEVVdjUvVuGNNiffmwsPjYxnSAcG40Orm9jWluDVPdd9XpyR0OGW0nsZrMbKLP9c9Q4ZtASF8CQQCgaCz+fDnTWzaV+Cz7fozj2JoekIzewgEgmCjblmM+vPrcEgKsjR4CvIZc5EMgVe/UzWNV/fYmZfp8Gu7rH8Itw7pePpec5ydZmR+rpOtlQp/lLj5Kc/Jqb1bnvveKie3rymh/prg6IQQLh4YyYgYI3EhOu/d8W8P1nL/hrIumXdzNMqcojOOWFtttho/fxcHCfQolMNP+2o3zaU+KT7vfc9882VJ4oL+EVzQP4ItZQ5+L7TxR6GNHRVOVGB7hZN/rivj+ywLr01NCGrabmOPwEpH5y+ozzNreGu3pxjGxPgQHhkf1+nP0V4cisaXmZ70v/RwPcckdax66rZyB5vqUlzn9DHX+b31DDRN4771pawt8czvqsGRbU53bEyVU+GaP4optSvoJfjXUfEMasGbsa00LjTS1d5wPV78EggEAoGgM9mWWcj7P2zw2XbU8N5cdOKYbpqRQCBojKYqqMvnoa39xq9NmniGp6qjHPiFhkPReGirlcUFLp/tMvDPEaFckN6yz1RHkSSJ+0aGccnKGhQN/rXLxtREI4kt2MO8vbvKK3zN6WPm2UlxPcYCpPGdeUsnRCNFGto2XuM+sQEY6vckoo0yegncGqSZ9Sya3baU3cONuBAd+/F87pad2ovkDqa/xZkOr6i/MXEhjIkL4ZYR0ZTZFb45WMs7u6uodWusLLLz7JYKHg6iQNS4EuHuRn6BncGSPCtPbPJE9w2NNvD6tESMPUidXpBdS0WdyHLxgIgOf59+VBf1VT9eT+LZLRUszPGkd57T18zc0THtHsvmVrlxZQkZ1S4k4LEJcRzXyYUmdlU2rMWurpbZ8+JFBQKBQCDoImptDh55bylKo7vK0REmHrzseOTDrIqWQHAkojltqN881YTwJSGfcA26k65tk/BV6VS5fl2tn/Bl0sGLE8xdLnzVMyRSx0V1z1Xh1PjXTmuL/deVNESo3T4yuscIX+CpCFlPXiNPp/aSZm4QRHIDGK++gpxBhvguMhLvKiRJIinUM+dyh4Km9ayU1s4mJazh/Sltwe8r4PEaRYVkVrta6NnziDPpuGZoFPOOTfZegH97sBZ7EEP6hkcbqS+st62888Sv3wqs3Lm2BEWDgZEG3jkmiYhOSInuTD7a5xGrwvQSZ3cgCgqgxObm5xwLABPiQxjag/znXt5ewYd1wtypaWE8OqH94qpD0bhpVYk3wu2+sTEdiiBrjsZrcVRM1x7LnrUqBQKBQCDoIjRN47mPV1BQVuOz/YF/HEdcVM8qly4Q/BXRqopRProbbd9a3wZ9CPI59yIfdWabxsuxKFy+upbNFb4X3XFGiXePDmdmUnCNp28YbCLR5LnyXJjn5I/C5s3OK+u8kvQSpPYQs+h6Rsc2CIZbO+ECuvF4G0v901Ibc7DGRXldutbEeFOPiiwJlOnJnpA/i1vziXg4Eql/rQAbWnlv2zreyqKWiwW0lcYrqSslyWHRRq/3klP1LfjQ1ZgNsreiarVL7ZT193uBjdtWe1K0B0cZ+GBmEnE9LCJzdZGNfXVi6Znp5g57FX6aUdup3mE2t8ojG8uY8n0OJ/6Yyyf7a1rfqQle21HJ27s91SxPSwvj2aPi250e7FA0bl5VzJpiOxLw4LhYLhkY2a6xWmN9qac6sgwck9y1FTOF+CUQCASCvwQ/rdnLLxv2+2w7/7iRTB2V3k0zEggE9Wh5e1Dm3QHFB3wbwmPRXfoM8pCpbRpva4Wby1bXkmXxjaroFy7z4dTwgE3nOxOzXuKuYQ0n9o9sLMPaTJpfVF1qoVvzVHxsjp2NLl6DFUMUb9LRP8Jz/HIsbjbWXbg0xbcHa1sdb0i0kf51FfA2lznYX938BfnXBxrGO6GTU2+CxazeDfN+b091N86k65mRHEponUD5aUYNtg6myY6ONZJaF022qsjOjoqOC2r1NE7nLbS2L6LRGaCBnaNRtFew5duz0hsidxp/ntrDbwVWbl1djFP1RJX9d0YSsT0wGtM3RbFjAo5D0fjigGe8pFAdJ3bC99AL2yr5IrOWKqdKvlXhic3l/JLXcnTwoby6vZI3d3n81s5KN3dI+LIrKjetLGZlkR0ZeHRCLH/rotTOtcV2bxXXmSmhXb5+hPglEAgEgiOenKJKXvhshc+2Qb3juPGcyd00I4FAUI+68zeUT+4FS6VvQ9IAdJe9iJQyqE3jLSt0cu3aWiqcvheiE2J1fDAl3Hvx3B2cmGJkWoJHOMq3KryyvbLJfuPjG8yYP9rnL5AomsbrOyv5uNFFXbEteBEklzaKAHh8U7lPqfp6/ru32nsx1hpXDvGMpwL3rS9rcry1xXY+2u85Fr3N+h5XXS1QJieGMqMuuuGnXCuvbK9AbSb9cUWhjZe2VQRzep2K2SBz43BPRdYci5vbVpc069WVUe3ioT+bF4TBkzZ6V51/kQrctrqkWbG03KHwxKZy8gMUskbFGL1C1MIcS5NClqsZI37weNFd/Gsh960vpcjW/HN+kVlDZo2nPS5Epk94cIX40/qYvam3C7Jr2+3btzTfyq2rS3CqMCk+hA9mJhHTA4WvrFoXvxd4ogQnJ5o67Cn1Q7bFG316Yf9w9J1gmfFzrsVv2485/tua48VtFd5CA5cNiuDJiXHtLuBidavc8EcJq4rtGGR4fnI85/XrOk+zzzIbfsOuGNw1kWWN6Vlx1AKBQCAQdDIut8LD7y3F5mg4GQ0x6Hn0qhMJMYifQYGgu9A0DfWPT9D++NSvTRo8Bfn0uUjGtlXk+viAnRd22f2ioGanGnhkVFiPSJO7Z0Qo5/1eg0OFj/fXcGqamTFxvt5j/xgUwS95VjTg3T3VHKxxcUxyKJFGmYM1bn7IriWzxs2waCN5FjfVLpVPMmqYlBDChPiOVTELhHP6hfO//TVk1rjYU+Xi7CX5XNg/gj7heortCj9mW9lc7mBCfAh/BpDudna6mZ9yLKwssrO9wskZi/M5r184AyINOBSNNcV2FmRbUDRPKuhD42K9FS8PRx4aH8vFywoptiv8Z3c1v+TbOKOPmb4RBpyKxoEaF8sKrOyu9KRqDYg0cEb64Sn2XTYokhWFNtaVOPijyM4pP+Vxdt9wRsQYkSVP2t+qIhsrizyfW1XTeGJifLPjndzbzNl9bXx70EK+VeGcJQXM6WNmUoKJCINMmUPhz1IHv+RZsSsa2yscfHRsMoZWRIqEUD2npoWxMMfKgRo35/ySz3n9IkgJ01HtVMmodrEwx8J9Y2OZnWb22//5rRXsrHSys9LJwhwL05NDOSrBRGKoDrfqiSZbkmdlW0WDWHf7yOguqzLbHAZZ4h+DIvnX1gpqXBpv7qzizjYaov+SZ+WONSW4NU/008UDI9hQ0nwEaD3j400+EXaNKbS62d1EGmbjSoDL832joZLD9K36bf1vfw31I3RGiuL/6gR4gwznd5Io1NQKCHRV/GtrBf/d65nTUQkhHJ1g4reCllOCZUliRop/eqFD0bh2RTEb6zy+LugfgUmW/I77ocSadD7p64GyqdTO4lzP2OPiQpiY0PW/XeKsXyAQCARHNG/PX8fu7BKfbbddMJW+Ke2vfiMQCDqG5nKgLnwFbdfvfm3SlPORZ/4dSQo8QUHRNF7YZePTg/4XT1cPCOHGwaYeYxrfO0zH1QNDeX2vDRV46M8yvjoxxefifEK8iTtHx/D81go04Jd8G7/k+17QjI0N4d/TEvj2YC0vbKuk1K7wU441KOKXUZZ4d3oif19eSJ5VIc+q8OIhUWxjYo38e2oCJ/+UT3UrlfkkSeKVKQncsaaU3wttFNoU/r3TP2osVCfx4uSELveF6WpSw/R8enwyN6wsZm+Vi4xqFy81EwV4dEKInzh6OKGXJd4+Jol715fyU66VCqfK+3ubTvdMM+s5tQlh6VCemBBHcqiet3ZV4dbguywL32X5R8qY9RKnpZm9Ju+t8dD4OLJr3WyrcJJZ4+a5rf5Rd6/vrOKU3mF+3yd3jopB1Typvi4VluXbWJbftAgRppd4cFwsZ3aToHnpwAgWZlvYWenkw33VnJluZlBU4Ebjy/KtXs+rIpvC/60pDWi/paf2alb8Wl1s5/4NZS3uf+Mq33O5s9LNPDWpeaG01qXyXV3qda8wHcc1Ifi0hbXFdvZUeQTp2b3NneZtdkqa2SeKF+DUPq1/DgAWNYoaW1fiYF1JSQu9PaSZ9cxI8a80W2pXvMIXeG7OHDqvpjinr7nN4pdb1XhkYzkaYJThkfGxbdq/vQjxSyAQCARHLOt25vDxki0+244d148zjxnWTTMSCARabQXK109A/h7fBlmPPPsW5NEntGk8m6Jx32YLy4t8U410Etw3MpRz0nqecHD5ABM/Frg4UONmX7WLd3dXccPwaJ8+VwyOZFSMkY/217Cx1E6VUyXKKDMs2sicPmbm9DEjSxJXDYnCrJf53/4aTkgNniiUHKbn6xNTmbevmqX5VrJq3Ohl6B9h4Ix0Mxf2j0AvSySE6loVvwDC9DJvHZPIsnwrC7ItbClzUO5Q0EkSvc16pieHcunACJJ7WAGA9pISpufLE1JYkG3h5xwLuyqdVDlVTDqJVLOeifEmTu/jHxV4OGLUSbwwOYFzi2x8e7CWzWUOSuwKsiSRYNIxOtbIib3COLFXWEA+RZIkccuIaE7uHcaXB2pZV2wn1+LGpWrEhOgYFm1kerKJM9PD22RuHmGQ+ejYZL48UMNPOVb2V7uwulXCDTKDIg1MSw7l7L7hTQrpZoPMoxPiuGpIJD9kW1hV5JlTpdPzOmNCZIZGGZmcaOKsvuHdWg3RIEs8PSmO85cW4FTh/9aU8unxyV06p1CdRHJocNMiM2tcpITp2V/t4qIBER2Ossu1uEgw6SixK50SRVbPHSOjcakai3KtmPUSVw6O6lJPw/ROTrXtG972VNKnt5R7ixDcNjKmTeJrR5C0I73GrqDH47TVoGktnxQZTOHIsg5VVXDZO2bOKPjrINbNX5uKGhv/ePxLyqobwrUTY8x8+MD5RJqbj4wQ60bQXsTaaR2tKBPlq8eh+pC706GR6M69HyltRJvGK3Oo3LbBwo4qX7+rMB38a7yZqQnBregYKJIkYwztOh8VgUAgaI3vDtZy/4YyNGBakok3pyV2iodVTyOr1kVciK7DVR7Bk66/u8rFsFbSLQXN8/H+ap7c7ImqnNUrjBcnxwct/VcY3gsEAoHgiEPTNJ788Fcf4UuS4OErTmhR+BIIBF2Hum8tykd3+wtf8X08xvZtFL4O1CpctqrWT/hKNEm8PyWixwpfAoFA0BM4q284c0dFA7CyyM4960txt2Dqf7iSHm7oFOELPFGHQvhqPwuya3lmi0f4OjohhOeOCp7wBSLtUSAQCARHIF8s28aqbdk+2y6bPZ5xg1O7aUYCwV8XTdPQ1n6D+usHcIgVvdR/AvKZdyOZAvM3qefPcjd3/Gmh2uU73qAImdcmhpMUKu7vCgQCQWtcOSQKi1vjzV1V/Jhjxa2W8q+j41stECAQtJXvDtbywIYyVOo8K6cmBr0IjRC/BAKBQHBEsXV/Af/+eo3PtpH9k7jytIndNCOB4K+LprhQf34DbesSvzZp4unIJ1yNJLfNB+anfCcPb7VyqI3U5Hg9/xpnJtwgLtoEAoEgUG4ZEU1siMzTmyvYUu7x2ksKFTKBoHP5rdBT5OXYlFBenByPSRf8m1RiVQsEAoHgiKG82soD7yxBURuuis0mI49ceQL6bviRFQj+ymj2WtRvnkLL2urbIMnIs65HHn9q28bTNN7PcPDvvXa/tjN7G7l/ZKiIVhAIBIJ2cMnASBJD9fSPMAjhS9AlPHtUPGNja7h0UERAhS26ArGyBQKBQHBE4FZUHnr3F0qrrD7bH7j8OFLjI7tpVgLBXxOtsgjly0eh1Df9mBAz8tn3IPcb16bx3KrG0ztsfJPj9Gu7cbCJqweENFmBTSAQCASBcVKvrqswKBAYZYnLBnfv+bgQvwQCgUBwRPCf+evYuDffZ9ulJ49l5th+3TQjgeCviZa/F+Wrx8BS6dsQnYzugoeR4tLaNJ7FrXH3JgurStw+2/USPDI6jNN6CfNhgUAgEAgELSPEL4FAIBAc9vy26QAfL97ss238kFSuPeOo7pmQQPAXRd27GnX+8+B2+Db0GobuvAeQwqLaNF6xXeWW9bXsrfE1+IrQS7w4IYyJcaKio0AgEAgEgtYR4pdAIBAIDmuyiyp5fN4yn23xUWE8dtWJwudLIAgSmqahrf8edem7+FV0HDYdec7/IenbFqG1t1rh1g21FNl9x0sNlXltkpn+4W0zyhcIBAKBQPDXRYhfAoFAIDhssTlc3PefxVjtLu82nSzz5LWziI0U3hUCQTDQVAX1l3fQ/vzBr02afB7ysf9AktomRP9e5OLezRasiu/24VE6XploJj5ECNsCgUAgEAgCR4hfAoFAIDgs0TSNZz/+ncz8cp/tt54/hVEDkrtpVgLBXwvNaUOd/xza/vW+DZKMfMqNyGNPadt4msb/Djh4abf9kPgxmJGo55mxZkL1wtheIBAIBAJB2xDiVyP+/PNPvv/+e9atW0dpaSkOh4OEhATGjh3LOeecw7Rp0wIap7a2lnnz5rFkyRJycnJQVZVevXpxwgkncNlllxEbG3tYjiMQCAQ9iW9+28Hidft8tp00aSDnHTuym2YkEPy10GrKUL58DIoyfBuMoZ6Kjv0ntGk8l6rx1HYb3+X6V3S8MN3IXcNDu608ukAgEAgEgsMbSdO0Q2+s/eWw2Ww89NBDfP/99y32O+ecc3jiiSfQ6Zr3mMjIyOCaa64hLy+vyfb4+HjefPNNRo8e3eJz9bRxuhKnrQZNU1vsYzCFI8s6VFXBZa8N0swEhzti3Ry5bM8s4sYX5uNWGr47+qXE8M4/zyHM1DEDbLFuBO3lr7R2tOKDKF8+CtUlvg0R8Z6Kjoltq7Ja4VS5c6OFjeW+eY4ycNfwUC5MNyIdQcKXJMkYQyO6exoCgUAgEPxl+MuLX06nkyuuuIINGzYgyzIXXnghZ555Junp6bhcLnbt2sWLL77Inj17ALjmmmu48847mxyrtraWM888k9zcXAwGA7fffjtz5szBZDKxYcMGnn32WbKzs4mPj+e7774jISHhsBinqxHil6CrEOvmyKSixsYVT31FcYXFuy0sxMB7955LenJ0h8cX60bQXv4qa0fN3Ij67dPgtPk2JA1Ad/5DSBFxbRovo0bh9j8t5Fp9zwXC9fDsODNTE468io5C/BIIBAKBILj85d1CjUYjl1xyCYmJibz77rs88sgjjBs3jtjYWJKSkjj22GP5/PPPSUtLA+DDDz+koqKiybHee+89cnNzAXjuuee4+uqrSU5OJjo6mhNPPJGbbroJgNLSUt54441m59TTxhEIBIKegqKqPPzeLz7CF8B9/zi2U4QvgUDQMurmn1G/eMRP+JIGTEJ36TNtFr5Wlbi4fHWNn/DVO0xm3tSII1L4EggEAoFAEHy6JfIrIyODJUuWsH37dgoLC6mpqUFVVZYsWeLX1+l0YjS2rTR2e3C73ej1zVugffDBBzz99NMAvPrqq5x88sk+7YqiMG3aNCoqKhg3bhyfffaZX/ucOXPIzMwEwGQysWbNGkJDQ3v0OMFARH4Jugqxbo483vpuLR/+vMln299OHMMt503ptOcQ60bQXo7ktaNpKupvH6Kt/sqvTRp/GvJJ1yLJzdtC+I+n8VmWk+d32jj0DGB8rI4XxpuJNh6592hF5JdAIBAIBMElqGcVOTk5XH311cyZM4dXXnmFpUuXsn37drKysrwRSo3Zu3cv5557Lh9//HGXz60l4QugX78G74qSkhK/9o0bN3ojwmbPnu3X/vXXX5OZmcm5554LgN1u548//ujx4wgEAkFPYcWWg37C19hBKdxw9tHdNCOB4K+B5nahzn++CeFLQj7hGuRZ17dJ+HKpGk/vsPFcE8LXmb2NvHVU+BEtfAkEAoFAIAg+QTuz2Lp1K+eeey4rV65E0zR0Oh0DBgxgwIABze7z9ddfs2/fPl5++WUsFkuz/YKB1Wr1Po6KivJr3759u/fxuHHjfNpsNhuvvfYaY8aM4bbbbmtyn546jkAgEPQEcourePyDZT7b4iLDeOzqE9HrxEWyQNBVaLZalM8fRNv1u2+DPgT5nHuRjzqzTUb01S6Vm9db+DLbt6KjBNwx1MTDo0IxyEeOsb1AIBAIBIKeQcvhTp1ETU0NN9xwA9XV1URFRXHHHXdwxhlnEBoayvLly7n++uub3O+GG27giy++oLa2lvnz53PxxRcHY7pNsnXrVu/jsWPH+rXXpw8C9O7d26dt3rx5FBcX8/zzz5OUlIRer8ftdvvs01PHCQb6kLBW+0iS7P3fYArv6ikJjhDEujkysDtc3P/OL9TaGi6WdbLE0zedQUpSUqc/n1g3gvZypK0dtbIQ58f3QMlB3wZzDCEXP4Xce1ibxjtY4+Lm1WUcrHX7bA/TSzw3KZZjU4JvvSAQCAQCgeCvQVDEr3nz5lFWVobJZOLDDz9kyJAhAe0XHR3NrFmzmD9/Pr///nu3iV9Op5MFCxYAniiqevP7xpSXl3sfx8TEeB9XVFTw7rvvMmPGDI4+2pOaExkZSXl5eZPG+T1tnGAgtyFVQpIkJCnw/gIBiHVzOKNpGs9+tJR9Ob7p5rdddBwThqV36XOLdSNoL0fC2lEK9uH86C60mjKf7VJ8H0z/+BdyTGqbxltdZOP/1pRS7fJNdEwN0/HGtEQGR3W9v6tAIBAIBIK/LkERv5YtW4YkSZxzzjkBC1/1jB8/nvnz57Nr164uml3rvP32216fr1tvvbXJPjabp+qR0Wj0Cf9/6623qK2tZe7cud5t9Qb+jVMpe+o4wUBVlVb7SJKMJElomtaqOb5AUI9YN4c/3/y6hR/+8E3JPmHiYC46aVxA3x3tQawbQXs5UtaOsn8dzs8f9qvoKPcZifFvT0JYVJs+f19k1vLklkqUQ0osjY018srkOOJMui77PPdk2nLzTyAQCAQCQccIiviVk5MDwMSJE9u8b1ycp2R240imYLJx40beeustAM4//3ymTp3aYn9ZbvCeycvL45NPPmHOnDkMHTrUu11VWz8h7mnjdCVuhzWgao+SpEPT1COugpag6xDr5vBmV1Yxz3+81GdbenI091x6DG5H1/lAinUjaC9HwtpRty5B/fE1OOR3WRo6Den0ubhlHQT42lRN45Xddj484PBrm9PLwIMjQzFiw2XvlKkfVohqjwKBQCAQBJegiF8Oh+ekp7EQEyi1tZ4TrNaqMXYFubm53HTTTbhcLkaOHMkDDzzQbN+wMI9vlcvl8m57+eWX0TTNx1QeGo5H/T49eRyBQCDoDqotdu7/z2Jc7oYL8NAQPU9dOwuzSaRHCQSdjaZpqH98gvbHp35t0qQzkU+4yutpFgh2RePBLVZ+KXT5bJeAW4aYuLx/SJuM8gUCgUAgEAg6QlBKZCUnJwOwc+fONu+7du1awN+0vaspKiriiiuuoLy8nLS0NN58801MJlOz/WNjYwFQFIWamhp2797NDz/8wEUXXeTjEeZyuaipqfHZpyePIxAIBMFGVTUe+2AZheW+0SX3XHos/VLF95RA0Nloihv1x1eaEL4k5BOvQXfiNW0SvsodKtetrfUTvkw6eGF8GFcMMAnhSyAQCHoYqvbXSz8XBJfuXmNBEb8mT56Mpml8+eWXVFVVBbxfRkYGP/zwA5IkMWXKlC6coS+lpaVcccUVZGdn06tXL+bNm0diYmKL+/Tv39/7OC8vj+eff57Q0FBuvPFGn34FBQXeNMN+/fr1+HEEAoEg2Hy0aBOrtmX7bDvv2JGcNGlgN81IIDhy0RxW1C8fQ9v6i2+D3oh89j3Ik85s03hZtQqXr65la6XvCW58iMR7k8M5LllEbgoEAkFPw6lY+X7nQ6zL+aS7pyI4Qims2cP/Nl5Hce3+bptDUMSvSy+9FJ1OR2VlJddddx3FxcWt7pORkcENN9yAy+VCp9Nx0UUXBWGmnoivSy+9lIyMDNLT0/nwww/p1atXq/uNHDnS+3jevHmsWLGCK6+80i+aauPGjd7Ho0aN6vHjCAQCQTDZsDuPd75f77NtRL9EbjkveDdABIK/ClpNGcrH96Ad2OjbYIpA97cnkYdOa9N4m8rdXLa6lhyrr19Y/3CZeVMjGB4VfAsLgUAgELSM1VnBt9vvJbdqC3/mfUW1vbC7pyQ4AlmV9V+qHYV8u/1esis3dcscgnIWMnjwYO644w7+9a9/sWXLFk466SSOO+44Ro0aRUFBgbffggULKC0tZf369fz+++8oioIkSdx5550+kUxdRU5ODpdddhl5eXkMHTqU9957j/j4+ID2HTduHDExMVRUVPDNN98QFxfHFVdc4dfv559/BsBkMjFtmv9JZU8bRyAQCIJFSUUtD7/3C6rWUBIuymzi8WtOwqAXVdEEgs5EK8lC+eIRqC7xbYhOQnfBo0hxbbObWJTv5MGtVlyH1K85Kk7P8+PDiDAE5X7rEYHVWUFR7b5m202GCFIihgVxRgKB4EjF5qrim+33UGnPwyCbOG3Yg0Sakrt7WoIjkNlD7uX7nQ9RYsngh12PctrQB0mPmRDUOQTtFtxVV12F3W7njTfewOFwsGjRIhYtWgTg9X24++67vf01TUOWZa677jouv/zyLp/f3r17ufLKKykpKWHq1Km89tprhIeHB7y/Tqfjb3/7G2+88QYAl19+OWaz2afPqlWrWL58OQDnnnsuoaGhPX4cgUAgCAZuReHBd3+hosbm3SZJ8PCVJ5AcKyqiCQSdiZq1FfXrJ+HQqqnJg9Bd8BCSOSbgsTRN44NMB6/u8S/ZeHovAw+OCsMgC3+vtlBYs5sf9zzZbHtq5EjOGflMEGckEAiOROpTHSvteegkA6cNe5DeUWO6e1qCI5RQQxRnDn+Cr7ffTYUth5/3PM2ZI54kOWJI0OYQ1NtwN910E1999RVTp05FlmU0TWvyH8DEiRP59NNP/SoTdgWbNm3i0ksvpaSkhNmzZ/Paa69hMBhwOBxN/nM6nU2Oc9VVV3mN+T/++GN+/PFHysvLKS0t5dNPP+Wmm25C0zTi4+O54YYbmp1PTxtHIBAIupo3v13H1gzfMPsrTp3A5BFpzewhEAjag7prBernD/kJX9KASeguebpNwpdb1Xhyu61J4ev6QSYeHS2EL4FAIOiJaJrGT3uepsSSAUicNPhOIXwJuhyTIYIzhz+O2RiLS7Xzw65HqXG0bonVWUia1ii/JIhUVFSwYsUKcnNzKSsrAyAuLo7U1FSOOeaYgNMNO4O///3vrFu3LuD+ffv29UatHUpGRgbXXHMNeXl5TbbHx8fz5ptvMnr06Bafo6eN05U4bTVomtpiH4MpHFnWoaoKLntti30FgnrEujk8WL4pk/v+s9hn21HDe/PCzaeik4OfKiXWjaC99PS1o/65EHXxW4DvqZ807hTkWTcgyYGnF1vcGndvsrCqxO2zXS/BQ6PCOL33X8/YPr9mJwszmorYkjDIJkz6CGJNvUkJH87A2GlER7ZN3P/3qjmAiPwSCAQdZ0v+fFYcfAeAcannMK3vlR0es9RykF8zXqOodg8AZ414it5RbbvGrLYXsqt4KQcr1lHjKMGl2gnTR5EcMZShiSeQHjOxTeNpmsbe0uXsLllGmSULh7uGMEM0SRFDGJ50Mn2ix7U6xtrsj1mfe2g15JaJCEnksgnvt2mfjqKoLvaU/EpG2SpKLPuxu2sJ0YcTbUolPWYiI5JOIdQQGdBYRTV72Vu6nNyqrVic5bgUG2GGaGLC0hgcfyyD4qejkw3tnmt+9Xa+23E/qqbQK3I0Z414MihVoLvNeTQmJoYzzjiju56+Q7RUFXHAgAF8//33zJs3j8WLF5OTk4OmaaSmpnLCCSdw+eWX+5nOHw7jCAQCQVeQU1TJk/OW+2xLjDHzyJUndIvwJRAciWiahvrHJ2h/+J+8yzP/gTTl/DaddBbbVW5ZX8veGt8bV+F6eGG8maPi239CfGSi4VJtuJw2apzFZFVvZH3B54xJPZOj0y5FJ4tCAAKBIHhU2HJZnf0hALFh6UxJv6xD47kUO+tzPmVzwXeomtL6Ds2wteAHVma9j6L6ZlnVOEuoKSthX9kKBsYdw0mD5gYkvDjctfy85xlyqjY3Od7+sj8YkXQKM/vfgCwd3t6yRbX7WLTnWaodvlkUNlclNlclBTU72Zj3FTP738CQhOOaHcfptrLi4NvsKv7Fr63GWUKNs4Tsyo1sKZjPyYPvJjq09cKATZEaOZJxqefwZ96X5FVvZWvB94xJbVt16fbQbZFfAkE9IvJL0FWIddOzsTtdXPvsd+zPK/Nu0+tk3ph7JiP7J3XbvMS6EbSXnrh2NFVBXfI22saFvg2yDvnU25BHHd+m8fZWK9yyoZZiu+/pY0qoxGsTwxkQcXhfQHSExpFfqeEjGJlwirfNrTqodZWRV72NvNrt3u3pMZM4begDAV14icgvgUDQGSza8yz7ylYA7YvOakxWxQaWZ75JjaPIr60tY28p+J4VB94GwCCbGJp4IskRQ9BJBspt2ewoWoTF6TlfHBx/LLMG39nieJqmsmDXI2RXeqoZR4YkMTL5NCJNSdTYi9hRtIhKuyczamzq2RzT96pmx6qw5VFpazqLqjFu1c7ivc+joZIeM4nThz0c0GvvKOXWbL7cegcu1WNB0DtqNOnRE4kIScTiKievahuZ5avrekucNGguQxKO9RvH4bYwf+cDFNcVXIkMSWJwwrFEm3ph0JmosOWys2ixV2CLMqVwweiXCNEH7pPeGKdi4+NN12FxlhOiD+fyCR9g0JnaNVagiFtNAoFAIAg6mqbx/Kd/+AhfALecN6VbhS+B4EhCc7tQf3gRbdcK3wZ9CPLZ9yAPnNSm8VaVuLh7kwWLb6Yjw6N0vDLRTHyIiNasx2yIJT1qvN/2MYlzKKjdxaLMF3CpNrIq1rOt8EfGpJzeDbMUCARtpdSSiU4OIaadES/dTbW9mP1lKwFICh/SbuHL4ixnxYF32F/W8PsyOH4mRl0Y24t+atNYFdYcVh70pAiGGWI5Z+QzRIem+vQZnXIG326/hzLrQfaWLmdo4vH0ifb/jq1nV/EvXuErwTyQs0Y8SYi+ofjbqOTT+Hr7Pymx7Gdz/rcMjp9JYvjAJseKCe0V0Pu9rWAhGp6AjtHJc1rt31n8fuAtr/B13ICbGZF0ik/7mJQzyKrYwMLdj6NqCisOvM2AuKnoZV97gjLrAaps+QCMTj6daX2v9IuwG5NyBj/sepS86m1U2QtYn/MZx/S7ul3zNupCGZ18BquzP8DhrmVn0aIuj/4SZykCgUAgCDoLVu7mx9V7fLadMGEA5x07sptmJBAcWWgOK+qXj/oLX6ZwdH97os3C1zfZDm7d4C98zUzU8+7R4UL4agMp4cM4Ju0K79/bCn7oxtkIBIKmUFQXDreFSlseWRUbWJfzKZ9vuZ3PttzKtsLD9zO7tXCBV6AZlXxqu8dZuv9lr/AVE9qbs0Y8yazBdxFqiG7zWNuLfkLVPD8u0/pe4Sd8AZj04Rw34Bbv3xvzvm52PE3T+DPvSwAkZGYNmusjfAFoaNQ6S71/b8j9vM3zPvQ5txQuACDKlNqiMNeZWJ2V5FZtAyA5Ypif8FVPesxEBsXPAMDurqaoZo9fn9TIkVww5mWO6Xs1M/pf12RqqUFn4viBtwEeq4TdJctazeBqiRFJJyNLnnisLQXf09VJiUGJ/HrppZc4/fTTGTiwaTVVIBAIBH8d9mSX8uJnf/hsS0+O5p6/zwyK2aVAcKSjWatQPn8ECvf5NkTEobvwMaSE9IDHUjWNV3bb+fCAw6/tonQjdw4PRSc+t21mQMxUVubOw6lYqLTnUessI9wY16XPaXfVcKBiHXlVWym1ZFLjKMap2NDLIYSHxJMaOYJRyacSb+7f4ji/H/gPWws8F3knDLydYYknttjf4iznvxsuA7SAUjZtriq2FHzPwYr1VNny0dAwG2NJixrHmJTTiQlrvVDAN9vvIb96u8+2S8a9RUyopwp6Yc1uNud/R371TmyuSq8YcPPU4IgaVfZCDpSvIb96B+XWbCzOctyqA6M+jGhTL/pEj2Nk8mmYjS1XX/140/VU2HKRkLly0keEGqJa7H+gfC0Ldz8OwPhe5zE1/fIW+5daDrK1cAF5VVupdZSik41EmZLpF3s0Y1LOCCjdqT5dt54wQwxXTvrI+/fekt/YUbSIUmsmDreF1tZJZx27xlidlewu+YWMstXUOIqwuaq9a6IpDpSvY0a/61ocszOOXVeQURf1JSGTHtO2myCNmdznHxRU72RC7/MZl3pOh8zPM8o8KXmypGdg3DHN9kuOGEK0qReV9jzyqrZhdVYSZoz261dcu48qewEAfaLHNfmdsbXgB2yuSnSSAUVzkVWxAadiw6gLbddryK78k0pbLgCjU+YE7XzWk27qEYxSIoa12Dc5Yhh7Sn4FoNZZ1mSfKFMKY1PPanGcKFMy0aG9qLTlYndXY3FVtPv3y2SIICViOHnVW6l2FFFiyWg2Aq8zCIr49Z///Ie3336bgQMHcvrpp3PqqafSu3fvYDy1QCAQCHoQNVYH97+9GKe7wRDVZNTz5LWzMJv+etXhBILORqssQvn8ISg/xJ8kthe6ix5HikoMeCybovHAZivLilw+2yVg7jATl/TrWm+OYFNuy2Zj4TfUOMsYm3Q6/aKP6rLnkiUdkSGJlFoPAB6BqKvFrwW7HvFWYWuMS7VRYcuhwpbDzqLFTE2/nHG9zml2nEFx073iV2b5mlbFrwPla6m/OBsUN73FvrlVW/lp95M4FIvP9ip7AVX2AnYWL2ZGv+sYmTy7xXGaosZRQkxob3YWLebXjH+3KG50JU63lU823YCiufzaHO5aimr3UFS7h62FC5k95N4W09IGxc9gXc4naKhklq9hRNLJLT53Rtkq7+PB8ce22Hdj3jeszvrA5zgpiosSSwYllgy2Ff7IaUMfJDliSIvjHIrVVYmiupAlPUv3v8LuEn9j7ebozGNXz/6ylfya8W8c7ppm+8SE9sao80QOmfQRJEUMRlFdzQo+XXXsOkqVvZAaRzEA8eb+AVf+a4rE8IFcNvEDTB0U8VRN8Xp5RYf2alVES4kcRqU9Dw2V4tp99I31F/CyK//0Pm4qAsupWNmU/w2RIR4xckvBfBTNRW7lZvrHTWnX69hcMB8AgxzKsISWvxM7E4MuzPu4qc9FY5xuq/exSR/RoedtvL/DVdOh36+06LHkVW8FPL8Bh734BZ5QwP379/PSSy/x0ksvMWbMGObMmcPs2bOJi+vaH3uBQCAQdD+apvH4B7+SX1rts/2eS2fSP1VUnRUIOopWchDls4egtty3IWUQugseQQprOSqkMSV2ldv/tLCzyrdyl0mGJ8eGcXzykSNWa5rKtpKfWF/whTf15tesN0kJH9bhC4SWqE/18Myh/RXSAmVw/Ayq7YWkRo4gKWIIESEJSJIOq7Oc3KotHKxYj6oprMx6n+jQ3vSLbVr8S44YRrgxnlpnKTmVm3Ap9hZNig+UrwE8kSYD4qY22y+7chMLdz2GonmEkcHxx9I7ahR6OYRyWzbbC3/G6ipneeYbmPQRDIxvPkJkSvpl2F0eMWPh7scAqHWUkFWxwSt89YmeQP/YKeRVb2Vf6e+tHr/OwqgPIz1mImXWg/SKHEW8uR9hxlhUzU2to5SMspUU1e7F4a7hx91PcPG4N5u9sBwUP5N1OZ8AHmGrJfFL1RQOVKwDIDa0D/Hmvs32XZ/zKWtzPgbApI9keNIsEswD0DSV/Ood7Cr5BZurku93PsSFY14mypTS7FinDX0IgDLrQdZkfwh16WY7ihaxu+QXZEnPkITj6B01mj/zvqLcmhWUYweQVfEni/Y8i4aKhMzA+OmkRY3BqDdTYy8io3w1hTW7sLtrmZp+Bf1ij252rK44dp1NiSXD+zg2rE+Hx+uo8AWeSM96kTBEZ26lt8eEvZ5yWw598Re/Si0HvI8Twwf5tW/Jn4/dXc20vldSn74HUGo92C7xq9yaQ07lZgCGJh6PUR/W8g6dSJQpGYNswqXaya7chKopzRZQya2rehmiDyc1ckSHnrexWGxqJeK0NeLCGqLRSyz7OzRWawRF/HrzzTdZvHgxy5Yto6qqCoAtW7awZcsWnn76aY4++mhOO+00Tj75ZMLDuycEVCAQCARdy8eLN/PH1oM+286eMZxZR/mfmAgEgrah5e5E+fJRsPtGzEh9xyGfex+SMfBUjn3VCrduqKXwkIqO8SESL08wMyL6yKmXVOssZXn2WxTU7vLZrmhO1A74mAT63PWEtcMnp62MSpnTrJnw6JTTyavaznc77kNDZUPu582KX5IkMSBuGlsK5uNWHeRUbmr2gtGp2Mit8tzRT40cSVgzqWguxc6v+19F0VyY9JGcMfwxv7v/o1POYP6OByix7Oe3zDdJix7n5+NTT1PpPxW2XNbnfo4kyZw0aC6D42cCeKNOgskpQ+5p9gJ1fK9z2ZD7OWuyP8KpWNlasKDZ9MSY0F4kmAdQYskgt2oLDndts+l0uVVbvResgxNmNju3Eksm63I+BSApfDBzhj3sk045OGEmI5NP4dsd9+Fw17I88w3OHP54s+PVr6PGAunBivVszv8WszGW04c9Sry5HwA7ihY1O049nXXsVE1heebrXuFl1uC7GBTvG5k4NvVsfj/wFtsKF/LTnqc5Y/hjLUaTdfax62yq61IBgR5j2G9sHLmkthy5BPisb4e76arKFfaGyOeIEN9oZ4e7ls353xFlSmFIwnHkV+/wttWnLbaVLQXzqY9uHRVEo3sAnWxgVMocNuZ9RaUtl0V7nuXYATf5pUBvLfiBnKrNSMgc2/+mDlVVdCpWKuuM8c3G2DalGDdFtKnB463a7l81tDMJijvpcccdx9NPP82qVat4//33ueiii4iLi0PTNBRFYfXq1TzwwANMnTqVm2++mZ9++gmn0xmMqQkEAoEgCGzam89b363z2TYsPYHbzp/WTTMSCI4c1P3rUT590F/4GjYd+fyH2iR8rSxxccWaGj/ha1CEzIdTI44Y4UvTNPaV/8FXu+/xE74AxiadSVgH72a3RJFlH1ZXBQChhmgiQrq+ym1zgkE9vaJGeqMBimr34lb8fd7qaRx1lVkX2dUU2RV/elNxBrUQqbWl4HtqnCUAHNv/xibTXkz6cE4aNBeQsLmr2FuyvKWX48e2woXUOIqY1vdKr/DVXbT2Xng8lDzRlXl1ZtbNUW9irWpuDpSva7ZfZqOUx0EtvP5VB/+LhopOMjB7yH1N+ojFm/szpc9lAORUbqLcmt3iHA9lddY8wBMVVi98BUpnHbvcqq3eFMC06HF+whd4hN4p6Zehkwyomrsucq15gnHsOoLFWeF9bNK3P+WxMzHoTN6IrypHYQB7NERquVRbkz1srirv40MF98353+FQLEzq/TdkSecTvWZ1VQY+8Trs7lqvj1Za1FhiA/Ak7GyOTruEvjEekTmjfBUfbryaZRmvkVu1FburhuUZr/P7gbcw6EI5Zcg9Ta71tpBRttorGveLaT0asjVMjdJvrc7yFnp2nKCW5tHpdEydOpVHHnmEFStW8PHHH3P55ZeTkpKCpmk4nU6WLl3KHXfcwZQpU/jnP//Jb7/9hqJ0fSi4QCAQCLqG4opaHnx3CWqjCi4RYSE8ce0sjIaWT2IFAkHLqNuWon71OLh9hQpp/GnIZ9yJpA/chPiLLAe3NVHRcVqCnvcnR5ASemRUdLS7a1ia9RrLs9/0u3gK0Zk5Pv1mJqVc0GXP71LsrMqd5/17WOKJPabYR3hIfN0jDZu7utl+yeFDiTAmAHjTJZsi0yflsfmbHfVph2GG6BZTI2PD0rw+SRnlq5rt1xRu1UGCeQCjgxyZ0R50soFQvUc4aXwh3xQe8cuzfurNzA9F01Tve5EUPoQoU3KT/WyuKnKrtgDQN/aoRuvBnyEJx3mFqMZeYoHgVh2MSj6tS7x9Aj12FY2ifHpFjmq2n1EXRmTd8Sqq2dtsdFKwjl1HcKsNvxMdifzpbNKixwGeVLqCav+bEfXUOIpZn/uZ9+/GqeONcSme73UJ2Ucstbmq2Vwwn+jQ3t7oR50c0mg/e5vnvqPwZ+9xHZ1yepv37wx0soFTh97P9H7XYdSZcSk2dhYt4rsd9/He+kvYXvQT8eb+XDL2zRa/XwNBUd1sqqu0KSG3ao4fCAa5YS261OZvunQG3Xb7TpIkJkyYwIQJE7jnnnvYsWMHixcvZsmSJWRmZmKxWPj+++/5/vvviY6O5pRTTuHhhx/urukKBAKBoB04XG7ufWsR5dW+F5gPX3E8KXFd56UjEPwVUNd9i7r0Pb/t8vRLkKZdFLCgomgaL+2y8/FB/5POC9ON3DksFL3cM8SZjpJTvZXfs/+D1V3p19YrYiQz067DbOx8D0KXYqfWVUZB7U62Fi/0RjnFm/szsVfXCW0tUeMoptZRhlOxesUrS6O77i2Vr69Pfdxc8B12dzX51Tv80sFUTSGrcgMAvaNGN1uJsNZRSpn1IAAJ5gFIUssia4J5AIU1uymubbs3zLhe5/iNPzb1zFZN+7sSVVOosuVjc1fhUuzedNv6iLnWjPkjQhJIiRhGQc1Osqs2NVmxrqBmlzfScHBdpFhTZFdu9D5fUhNeSY0x6ExEm3pRbsumuI0+PbKkY1yqf1GFkwf/E0V1eiO3WqMjx05tJGLpGwkgTVFvwq6hYnfXNpnmFaxj1xEai9Stfc6CydCEE9hf5qkC/vuBtzhrxFN+Kc1l1ix+2PUotkbRWc1VZqwXKA81z9+U/w0uxcak3hd5RbHG4piiti3zTNUUthUuBCAiJIm+Haie2VHcigOLoxRFdSIhExPam3JbtndNlloyWZ75OlPSL/fx2Gorm/K/ptzmiVYcnTKH6E5In5XlBkmq3nezq+gxsesjRoxgxIgR/N///R8ZGRksWrSIJUuWsGvXLioqKvjss8+E+CUQCASHEZqm8ez/fmdXVonP9stPHc/UUe3/4RUI/upomor66wdoa785pEVCPvkG5PGnBjyWza1x72YLvxX7nnBKwJ3DQvlbX2OPiUrqCG7Vwdr8z9hZutivTScZOCr1b4yIP6nTLgj3VaxgX8WKFvskRwzjtKEPBNUcubh2P1sK5nOwYn2zfjmBMjB+OpsLvgMgs3y1n/iVX73d+xwtmdNXN0p1cqmOFlP3wBO9AeBULE0KPc1h1IUxINY/6iFEH96sT1ZXklG2ih1Fi8ir2tpqlbbWGBQ/g4KanSiqk6yK9d5UyMbPBdSZujcvflXbG96LGkdpq++FVudzVOsobbHfofSKGt1kZFSg3kGdceyiQht8hhobpB9KvcAGnkij5iokBuvYdQSd1CAGOd1Npwx2B31jJ9E/dgqZ5aspsWTw6eabGJF0MjFhfXC4aymo3sne0t+QkOgVOYq8ak86a2gzXok62YBbdfgI+FZnJdsKfiAmNM1HAG4cyReo6FpPRtkqautuZIxKPrXbBMVKWz4Ldj1Mlb2A6NDenDzoLhLCB1Bpy2d3yVJ2Fi3B6irnYMV68qq2MWvwXQEVbziUguqdXk+7KFMqk/v8o1Pm73A3WDbo2/getJUeI341Jj09nZEjR5KXl0dWVhZWq7X1nQQCgUDQo/h86VZ+XrvXZ9u0UelcPaf77owJBIc7mtOOuuB5tL2H+CzJeuQz7kQe1rzIcCjFdpXbN1jYVe2bshaqg6fHmpmZFHjKZE+mxJrJr1lvUOUo8GuLD+3Lsek3EmMKjvmzQTaRZB7M0PjjGZoS3Gijtdn/Y33u59QbM3eU5IghRIQkUuMo5kD5Wmb0u86nvT7NTpZ09G9CdKrH6qz0Ps6v3k5+9faA5+B0WwIWv+LN/f0iQboDl2Ln5z3PeKPiOoOBccew4sDbaKhklK3yE78yy1cD0CtqVIsCU2PPo22FP7Ct8IeAnt+pWFrv1Ijk8KFt6l9PZx679OgJmPSR2N3V7C1dzoTe5xET2tuv39aCBbhUTzpc76jRzXqOBevYdYTGIm8wnzcQThz4f/y810F25UZqnaXeipn1mPSRzBp8p0fAqRO/mquUadCF4lYdKJrbW/3wz7wvcal2jkr7m49I1ZFU0C0F3wOeyMHhibPatG9nUeMo4evtd2NzVRIb2oezRz7jFWijQ1OZ3OfvTOp9EVsKFrAm+0Ncqp0fdz/J6cMfpU9dumkg1DpK+WnP06iaG4McyqlD7++01Fmn0qD1GLv4RkSPEb+cTicrVqxg0aJFLF++nJoaTzUSrc4jJjKyZ5jyCQQCgaB11u/K5d9f+16c90mK5uErj0c+QtKnBIJgo9WUoXz1OBQekiZjDEU+537kfmMDHmtPtcJtG2opOsTYPiFE4tWJZoZG9ZhTxHajagqbi75nY+G3aPgKfBISY5POZFzS2ejkzn+tqeEjGJlwCgCyJGPUmQnRhRMZkogs6YIeIbC98CevV46EzLDEExmccCxxYemE6MO9F/S/7HuJ3SVLAx53YNwxbMr/hhpHMSW1GSSED/C21Ue+9Ioa3Wy0TEfp6oqcXcGyjFe94o1BF8q41LPpG3MUUaYUjLpQ79qY9+eVXkP21ggzRtM7agw5VZvIqtiAW3Gg13lS+Ypr93vH6Sqj/2C9D5157HSygeMH3spPu59C1dzM3/EAU9IvIy1qHCZDBFZnBXtKfm0kwkhM7N35KcrBXMONo+3sruY9/boDoz6MOcMeZl/pCnYVL6bcmo1TsRFujKdf7NGMTT0LszGWTXkNEc8J5v5NjhVmiK5Lj9RwuGtRNYUdRT8TG5bOwDhfs/f6dGDPfoFXLSyq2UthjcefbHD8TEyG7rHyWJX1gTcVdGb/G5r8rtXJBsb3OodIUxI/73kaDZXfM9/iknFvBRTZbXfX8v3Oh7C6KpAlHbMG39mh1Em/8RutxXBjXKeN2xTdemZjs9lYvnw5ixcv5rfffsNm84Rf1gteoaGhHH/88cyZM4djjgn8TqZAIBAIuo/ckioeeMfX4N5sMvLsDacQHtqyr4ZAIGgarSgT5cvHoOaQFBlzDLrzH0ZKCdw4ekWxi3s2WbAe4lE+JFLHKxPMJB0BxvZVjkKWZ71BsTXDry3SmMSx6TeQZG7Zl6cjmA2xpEeN77Lx24KmqazP/dT797EDbmRE0imdMna9+AWeSK968avUkkmNw1OyflBcy5XFwozR3sfDE2dx/MBbO2VuPZEKW67X3F8nGzl35HNtrnbYHIPiZ5BTtQmXaie7ciP946YADSmPsqRv1ew6rFEa2UmD5jIk4bhOmVtn0BXHrn/sZOYMe4il+1+h1lnKkn0vNNNTYlr6FaRGjmx2rJ587OqJDW2oRFhizezGmTSNLOkYknAsQxKObbLdqdjIr9kJQHxYv2Z9BKNDe3l9BGscJewq/gW36uCotIv9xJ5aR4M1R0wb/Kvqo77A433VHSiqmwN1EbZGnbnF9QkwMG4acWF9KbMepNKeR5n1YKufIZdi54ddj9b5fEkcN+DWdqVMtkSJpWEtxob26dSxDyXo4ldtbS3Lli1j0aJFrFy5EofDE2pYL3gZjUamT5/OaaedxvHHH4/J1HMqUQgEAoGgZax2F/e8uYgaa0MYuSTBo1edQHpydPdNTCA4jFH3r0ed/xw4D/FoSezrEb4iEwIe64ssB8/usPnZQM9I1PP0WDNh+sM7MlPVVHaWLmF9wec+6Sz1DI07jsmpl/aoSmddTaU932tkHxmS3GnCF0BSxGAiQ5KodhSRWb6ao/tcAjROedTTP3ZKi2OEGxO9jy2NojCORPKqtnkfD46f0WnCF8CAuKn8lvkGiuZif9lKr/iVWVcVMz1mYqveZuEhjd4LZ896L7ry2NWnNcqS3s9wOyl8MEelXUJ6zIQWx+jJx66ehPAByJIOVVMort3X3dNpM9sLf/Sa0g9Laj7NMD6sr7fyaXblRnYWLSI+rF+Tnn9FjY5DXIBryuIs9xr0p0aOIL6ZCLSuxu6u9v7OhRljAoriiglN8xEGW/ocuVUnC3c/7o1wm9HvWoYlntDxiR9CcW2DRUpSxOBOH78xQRG/Kisr+eWXX1i8eDGrV6/G7fZ8qdQLXjqdjsmTJ3Paaacxa9YswsODbzopEAgEgo6hqhpPzFtGZn65z/brzjxaGNwLBO1EXf896tJ34ZDUGKn/BOSz/okUEphZuqZpvL7XznsZ/oLQxX2N3DEsFN1hbmxfZj3Iitz3moxoCNVHMj3tmh4TjRVM7K4a7+MoU3Knjz8w7hg25n9NmfUgVfZCokzJHChfC0DvqDGtpgNFmhKJCU2jwpZDUc0eFNXdJamoPQG7u/F70bRfUXsJ0ZvpEzOBA+VrOFixHkV1UWUvoMKWC7Rc5bGePtHj8ZS70Miv3s74Xv4VGbuLrjh2tY5Sft7zDC7VzsTeFzKh1/mUWDJwKTYMulBiQns3G110KD352NVj1IWREjGcvOptONy1lFgym00d7GkU1+5nXc4ngCfKaWgLkXV9YiZ601XX5XyCqrmbjPpSNYWcys2ApxhA76gxAc1lW+FCr0g6Ovn0tr4UP1yKnT8Ovsv+spUYdaGMSz0noGgykz6C+jUXaAETR6PPUVgLa7te+Mqt2gJIzOx3PaNSTgvoOdpKvYebhFz3Oeo6gvLLMm3aNFTVc9JWL3hJksT48eM57bTTmD17NrGxnV9WWiAQCATBY95PG1m+ybdi0gkTB/D3k8d2z4QEgsMYTVVQl7yNtnGhX5s04XTkE69Gkps2Xj4Ul6rx+DYrC/J8q6LJwN3DQ7mw7+GdjuxS7Gws/IZtJT95y7o3Jj1yPNPTrg74IranopONKKoTt+IvYLZE42ifGmfzleUU1UW5NbvRlsCM8QfGT2dj/teAx1h9YNw0SiyedNNB8S2nPHrHiJvG+tzPsLur2VW8mJHJgVcsPZzweS8cJc32q3EUN4iWWuAFCgbHz+BA+RqcioWcqs2U1Hr8AQ1yKP1iWk9VMhtjSI0cTn71DrIqNlBmzepUb5+O0BXHLqN8tTfqa3D8TAw6E6mRI9o1v5587BozNPFEr9iws2gRM/vf0M0zap0KWx4/7n7SG+U0s//1LUYxJpoHEmVKocpegKq5STAPoF/sZL9+jas1psdMCqh4hlt1sqPwZwDMxjhvhGVHWJX1ATuKPGM63DX8fuAtzMbYVtOUdbKB2NA0ym3Z2FyVFNXsISliSLP9ax2l5FfvADwm/TGN0mAb41YcLNz9BDlVm5CQOXaAp/pmV5BbtZUqu6cYTd+YSV3+Ox0UUwdFUdA0DU3TGD58OHfddRe//vorn3zyCZdccokQvgQCgeAw5/fNB3hnwXqfbYN6x3Hf348NKAxbIBA0oDmsqF8+5i98STLySdehm3VdwMKX1a1x+waLn/Bl0sHLE82HvfCVU72Zr/bcw9aShX7Cl0EOZXraNZzU747DXvgCiDalAlBuy6bW0byIdSgxob0w6T0myJW2XLIq/vTrY3fX8vOeZyi2NKQA1adKtkZi+EBvJM6B8jXeqC9PyqP/BWdTjE09mzCD53pgxcF3vWmTh6KobrYW/MDu4sBN+XsSKRHDvY/3l/3RZHpcuTWb73c+hEv1pDnb3NUoqtuvX1P0jTkKg+xJ6c0oW0VGXZXHfrFHew3wW2Nq+hVIyGioLNz1OOXWnCb72V01rDjwDqWWgwGN21G65Ng1iqjdXDAfi7McrQMG9D312DVmcPxMzHWm4ntKluNUbK3s0b3sKfmVL7bc7hWpRiSd0qqfmiRJTOh1vvfv+u/OxlTZC1hx4D/evyf1vjCg+ewtWY7NXQXAyKTZzVb/bAv7S1f4bdvXxLamaBwhtnT/K81+b9tcVfy052kUzXMuMDxxFka9f+S4S7Hzw+5HyanahCzpOXnw3V0mfIEnlbWecb3O7rLnqScokV/9+/fn1FNPZc6cOfTt2zcYTykQCASCIHEgv5zH/rvMZ1t0uIlnrj+Z0JDuLysvEBxOaFXFHmP7koO+DcZQ5DPvRh44KeCxyhwqt6y3sKva19k+2ijx2kQzI6MP39Qyq6uS1XkfkVnZtEjSL2oSU3pfhrkN1bt6OkMSjmdV1vu4VQdfb/8no5JnE2lKwe6qocSyv+4O/Y1++0mSzNjUM1mT/REAP+5+ghFJp5AYPhBJkimpzWB3yTLs7mp6RY4mr3or4IlGOGnQXCJNSa3ObUDcNDbmfUVB9S5ciieSJi16XKseU/WE6M0cP/AWftz9JIrq5MfdT5AWNY7+sZMxG2NxKlZKLBl1okc5ejmEpIghxIT2bnK8gppdPume4Embq69ACZAcMbTLqlA2R7y5L2lRY8mp2ozDXcvnW25hVPJpRIf2xqXYyK3aSkbZShTNTa/IUeRVb8OtOlhx4D9M7Xtlq5EpBp2JvrFHs6/0N/aX/uEVgdpS5TE5YigTep/PhtzPqXYU8tmWWxgcP5NeUaMx6kKxuaooqNlJRtkq3KqDnMpNXDDmZfSyscnx6o95vc8QeHzoGr8X/WKPanVeXXHs+sdNZU32R7hUOzuLFrGzaJFPu4RMqCHSWyVwWOKJLabkdvax6wp0sp6xKWeyMut9nIqF9TmfMq3vlW0ex604yKna4re90p7vfVxYs9v7fQBg0IUEnFqYXbmRDblfkF+93bttQq8LmJL+j4D2H5p4AvvKVpBTuYl9ZSuo3V7GkITjMOkjKLMeZGvhQm8K4NjUs30q1bZEvdG9LOk7zz+xiZvEgd42Hp50Mgcr1nOwYj3ltmw+f9pwoQAAsRhJREFU2XQDgxOOJTF8MCF6M063haLafewtXe5NjUwwD2RyE8fRrTr5fudDFNQVFRiZNBudbPT5rDZFmCGqxYiz5iio3sX+Om+25IhhrRr2dwaSprUhllYg6AKctppW77IYTOHIsg5VVXDZA8tpFgjEuul6qi0Orn7ma3JLGsoU62SJV26bw/ghgVfN6UmIdSNoLx1dO1r+XpSvHgNLpW9DZAK68x9CSgzc4DnLonDzegu5Vt/f195hMq9PMtPH3PG71d2BpqnsLlvOuoJPcSpWv3azIY5pvS/vFm+v/JqdLMx4EoBBMdM5Nv36ZvtKkowxtGUvrENRVDc/7n6crEr/yC3wpEVeOfEjQvRmvzZVU/h5zzNk1kUCNcWIpFOY2f8GFu56zPscpwy+h4HxrVdcL6nN4POtt/lsO3Hg/zG0jebIuVVb+WnPUy3610jIDE+axbS+V2LUNe159832e3wumpvirBFP0TtqdJvm1xlYnOV8u+M+Kuu8uA5FL4cwvd81DIidxqdbbsbiLENC5oqJH/pUxmyOA+VrWbj7ce/fJn0kV0z8sM0+apvyvmFV1gdNphLXY9SFcXSfSxmdfHqzUd7/XtW6d9HNU38IaE5dcexyq7awdP+r3uqkLREb2oc5wx4h0pTYYr/OOnZdhaK6+WrbXEosGciSjgtHv0KcuW+bxqi2F/HhxqvatE9ESCKXTXi/2fYyaxaZZavYXfIrVY1EtNjQPszof32bP6+eiNan63yrmmZ40skc2//GgCK4cqu28t2O+wAYknAcJw2a26b5NMfvmf9ha+ECn22nDn0g4MjZes+wHUWLaC1dfVD8TGb0u65J4b897ynAsMSTOGHgba13bISqKXy25VbKrVnoJAMXjHk5KGnCh+8tP4FAIBB0K4qq8tB7S3yEL4Dbzp922ApfAkF3oe5eibrgRXAf4ueUPAjd+Q8ihQduEbG90s0tGyxUOn1PgodH6Xh1opm4kKC4XnQ6FfZcVuS8T5Flj1+bhMSIhJOZmHz+EVvJUSfrOW3YQ+wsWsSu4qWUW7NQNBcmfQTx5v70i52MTmr61F6WdMwech+7S5axq3gJZZYDuFUnYcYYUiKGMyLpFHpFee66nzLkXtblfEJG2Ur6tFLhrp6E8AFEmVK9F6w6ydCkx05r9I4azaXj3mZH0U8crFhPhTUHl2rHqDMTHdqLtKgxDEuc1ar40JMxG2O5YPSLbMmfT0bZKirt+UhIhIfE0yd6AqNT5njTSM8d+Syrs+bhUKwBCV/gMV4P0Yd7BcQBcVPbVUBgXK9zSI+ZxPaiH8mt3EK1owhVUwg1RBIf1p/0mAkMTTihydSprqIrjl3vqDH8Y/w7lNtysDjLfNIknYqFKnsh+0p/o8KWS7ktm/k7H+Disa+jk5uPbO+Jx64xOlnPiYPu4Istt6NoLn7e+yznjXq+SeE8WCiqm6+33eVzUyMpfAijU+YwKH5Gu9ILTfpwzhz+OHtLf2N38VLKrFnY3TWEGWJICh/EiOTZ9IkeF/B41fZCwgyxWF3lnWJ0X8+U9Mu8VVrrDe8DFb7AE/F53ICbGZl8KntLlpNbtQWLswy7u5YQfThmYyy9IkcxOH5GuyK0WiPa1PZz/hUH3qbcmgXA5D5/D5o/noj8EnQ7IvJL0FWIddO1vP71aj5e4ns37fRpQ7nn0pmHtc+XWDeC9tKetaNpGtqar1GXf+DXJg2Zinz6HUiGwMWcFcUu7t5kwe6b6cjUBD3/GmcmTH/4fTbdqpPNRfPZUrwAVVP82uNC+zI97WoSwgKPjOtu2hP51dNxq07+u+EfONy1DIw7hlOG3NPdUxIIOgVNU1m6/1V2l/wCwPEDbmV40qxunlXH2VW8lKX7XwY00qLHcfqwRzrFw6q9/LznGUqtB+kfO5lBcdMDTkUMJpqmUWo9cNhUyeyJbC1YwO91fmsDYqdyypB7kKTg3JQTkV8CgUAgaDOL1+3zE75G9k9i7kXTD2vhSyAIJprbhbrodbStv/i1SZPPRT72sjadEH6b4+DJ7TaUQ25rntHLyAOjQjHIh99nM79mByty36faUejXppdDmJB8HiMTTu7WCzaBhz0ly7zRRp3mhSMQdBG5VVtxKXbCQ+JbFTIkSWZc6lle8au+munhzrDEE7C5qliV9T45lZtYsu8FTho0t9u+T08YeHuPj9yVJEkIXx1gT8mvrDjwDgC9Ikcza/BdQRO+4DAQv6qqqti7dy8AkyYFbvIqEAgEgq5hd1YJT3203GdbfFQYT103C6NBXIAKBIGg1ZajfP0k5B+SwifrkE++EXls4NWVNE3j7f0O3tpn92u7ekAINw42HXaitN1dy9r8T9hb/luT7WmRY5nW+3IijAlBnpmgKazOStZmfwJ4qvKlRY/t3gkJBK2w6uB/KbbsIy16HGcOf7zV/nZ3QwEFQyuFBw4nxvc6B5diZX3uZ+wr/R1VdTNr8N3tSpXtKD1d+BJ0jF3FS1m2/xU0VJIjhnLasAdaTB/uCnq8+LVp0yauv/56ZFlm586d3T0dgUAg+EtTXm3j3rcW4XQ1pB4Z9Tqeuf5k4qO6zytCIDic0PL3eISv2kNKkoeYkc+5F7nv2IDHcqsaz+yw8XWO02e7DPxzRCgXpId0fMJBRNM0DlStY1XuPG85+caE6qOZ0uvv9I8++rAT9I5Uqu1F/LTnKayucmRJz/R+13b3lASCVokJS6PYso+8qm2UWDJbjOaxuapZlfWB9++0qLFdP8EgcnSfSwk1RLHiwDsU1u7B5qokPCS+u6clOMLIqliPhkrfmEmcMvge9Lrgn5/0ePGrHmFNJhAIBN2LW1G4/+3FFFX4ehndfckMhvdL6qZZCQSHF+rWpag//xsUl29DTAq68x5Cik8LeCybonHPJgu/F7t9tofI8PTYMI5LNnbGlIOGxVnOytz/klW9scn2oXHHc1TKRd1qyizw4FSsHKxYT1bFBvaX/oGiedbz9H7Xkhg+sJtnJxC0zvDEWewp+RVVc/PV1rkMjD+GpPDBhBqi0ctGFNWFxVVOce1+DpSv8Rqx94+dfERGNo5OOR2zMY6Y0DQhfAm6hJMGzSU5YiijU07vttTaw0b8EggEAkH38u+v17Blf4HPtguOH8WpUzq/coxAcKShqQrqsvfR1s/3a5P6jUM+859IoeEBj1fhVLltg4Vtlb4G8JEGiVcmmBkbe/ic4mmayq6yZazL/wyXavNrjzb1Ynrvq0gOF981PYVaRxmL9/7L+7deDuG4ATczJOG4bpyVQBA4vaJGckzfq1iV9QGK5mJPya/sKfm12f4SMiOTZ3NM36uDOMvgMiBuandPQXAEo5MNjE09q1vncPicGQkEAoGg21i8fh9fLNvms23CkF7cfO6UbpqRQHD4oFmrUec/i3Zwi1+bdPQ5HmN7OfC7oPtrFP7vTwu5Vt9KyckmidePCqd/+OHjvVdpz2dFzrsUWvb4tcmSjrFJZzI28Yyg+4IIWiYmtBchOjORpmTSYyYyOvl0wozR3T0tgaBNjE09i74xR7G96CcKqndS7SjC4a5F01T0shGTIZKY0N6kRo5kUPwMokzJ3T1lgUDQATpN/LLb7UiSREiIf+7md9991+5xd+/e3YFZCQQCgaCjZOSV8cxHvqbTybHhPH7Nieh1wavQIhAcjmjFB1G+fhwqi3wb9Ebk2bcgj2xbpMyyQicPbLFi8w34YnCEzGuTwkk0HR6fSVVzs6XoBzYVfedNmWtMYtggZvS5mhhT726YnaA1JEnmqqM+EVU2BYc90aGpHNP3qu6ehkAgCAKdIn59+umnPPnkk0iSxAMPPMCFF17o037PPfcIU1KBQCA4DKm1Obj3rUXYnQ2eQka9jievm0V0+JFT7Ugg6ArU3StRf3gJXIdUYYyIR3fuA0gpgXsjqZrGO81UdDwqTs/z481EGA6Pc60Sawa/Z79DuT3Hr00vhzAp5UKGx5+EHMTy54K2I4QvgUAgEBxOdIr49fLLL+N2ey6MXnrpJT/xqx5hWi8QCASHD6qq8fgHv5JbUu2zfe7fjmFYemI3zUog6Ploqory+//QVn7m39h7OLpz7kUyxwQ8nsWt8dAWK8uK/COkzutj5O7hoRjkni98uRQ7fxZ+xfaSn9HwPydMixjDMWlXEm4UZssCgUAgEAg6l04RvyIiIqiurkbTNCIjI5vtd9lllzF06NA2jb17927mzZvX0SkKBAKBoI38b/EmVmw56LPt9GlDOX3asO6ZkEBwGKDZLTi/ehxtz0q/NmncbOSTrkXSBe5flWtV+L8NFvbX+vp76SW4e3go56cHv1R4e8it2cYfOe9R4yzxazPpIpjS++8MiJ4qMgUEAoFAIBB0CZ0ifj333HM8++yzSJLE3Xff3Wy/qVOnMnPmzDaNvXz5ciF+CQQCQZBZtzOHt+ev99k2ND2BOy46pptmJBD0fNSyXJyf3o9WkuXbIOuQZ12PPG52m8ZbW+rin5usVLl8o6RijBLPjzcz/jCo6OhwW1iT/z/2lv/eZPvAmGlM6fV3TPqIIM9MIBAIBALBX4lOOWsaP348n3/+eWcMJRAIBIJuprC8hoffW4raKFU9ymziyWtnEWLo+RfbAkF3oGb+iXv+v8Be69sQFu1Jc0wbEfBYmqbx6UEnL+62oRySHTg0UseLE8ykhPZ8P6yDVRv4I+e/2NyVfm3hhjiOSbuKtMgxwZ+YQCAQCASCvxziKkYgEAgEXhwuN/f9ZzFVlgZTbUmCR686gZQ4EZkhEDSFumEB6i/vgOabmkjyAI+xfWRCwGM5FI2nttv4Ps/p13ZyioGHR4cRquvZqYF2dw2rcueRUbm6iVaJkfEnMzHlfAw6U9DnJhAIBAKB4K+JEL8EAoFA4OWlz1eyO8vXk+faM47iqOFp3TQjgaDnoqkK6pK30TYu9GuTRhyLPPsWJEPgnlzFdpU7N1rYVqn4jgXcMsTE5f1DerwnVmblWlbmfoDdXe3XFmPqzfS0q0kyD+qGmQkEAoFAIPgrExTx64ILLkCSJFJTU9u8b3R0NJMmTeqCWQkEAoGgMQtW7uL7P3b5bDtmdF/+fvK4bpqRQNBz0RxW1O+eRcv807dBktGfdC3a+NPaJFRtq3Rzx58WSh2+eY7henhqrJnpiYGb5HcHVlcVq3L/y4Gq9X5tEjrGJp3BuKQz0ck9+3UIBAKBQCA4MpE0TfOvNS0QBBGnrQbt0FSRQzCYwpFlHaqq4DrUT0UgaAaxbgJnd1YJ1//rO5zuhoiT3gmRvHfvuUSEHR7V5DoLsW4EraFVFaN8+Sj8P3v3HR5VtbUB/D1nZpKZ9Eo6oYOUQCjSi3QQBUXBhmDB3kEBxYYNFNv1XsGKiA2pokhTei+h955GSEJ6Jpl29vcHn8GTk0CAZGaSvL/nuY/J2ufsrHiPSWbN3muXbmzvYYLnyDchN7rxqp6dJclWvH3ADFupX4Wx3jI+bueN+j66Ssi6agghcCJ7E7akzIHFof2eg02x6BnzCIK96jk/OTcmSTI8TNxKTkRE5Czc9khEVMvlFhTj5S9WqApfngY93ntsQK0rfBFdiUg5Csf8twBzjnrALxSe906FPrIJFMVR5r2l2RSBT48U48czFs1Y11A93mvjBV+D+za2L7RmYWPyt0jM260ZkyUd2obdjtZhQyBL/HOTiIiIXIt/jRAR1WIORcEb3/6NtCz1io2J9/VAw6hgF2VF5J6Uwxug/PExYC/VjD6iMXR3vAo5pG6F58qyKHhpdyF2ZWkLZWMaeOKppkbo3LS/lxACx7LWYWvKj7AqZs14qFcD9Ih5FEGmaBdkR0RERKTF4hcRUS327R+7sO1Qkip2x00tMaBjExdlROR+hBAQW+ZBWfe9Zkxq1hXykOchGSp+cuHBHDvGJRTifLG684SnDLwe54VBkR7XnXNVKbBmYn3S10jJ368Z00kGtAsfjlZ1BkOW3HerJhEREdU+LH4REdVSm/adxaw/1c264xqG4+nhnV2UEZH7EXYblOX/hdj/t2ZM6nwn5J6jIEkV35q4OMmC9w4WwVqqv1e4UcKH7bzR3N89/zQTQsHhC6uxPfVn2JRizXiYd2P0iHkEAcarP9yIiIiIqKq5519YRERUpZLTc/HmLPWL+SA/E94a2w8GPVdsEAGAMOfBsfBdIOmAekDWQx70JOS4fhWey6YIvH+oCPMTrZqxDsF6TG3jhSBP9+zvlVN8DhuSvkZa4RHNmE7ywI2RI9E8pD/kqygCEhERETmT2xe/hBBYvnw5Bg0a5OpUiIhqhGKrDS9/sRIFRZdehOtkCW+N7YfQAG8XZkbkPsSFFDjmvQFkn1MPGH0g3/4y5Ni4Cs+VXnyxv9febG1/r1H1PfFMUyP0svv191KEA/vT/8SutAVwCJtmPMLnBvSIGQs/zzAXZEdERERUcW5d/LLZbBg+fDiOHz8OX19fdOvWzdUpERFVa4oi8NZ3a3Ai5YIq/uTtnRDfmNuViABAObsPysJ3gWL1QRAIjIDuzjcgBUdVeK49WXa8uLsQmRZ1fy+jDLzmxv29LpjPYH3SV8gsOqMZM8hG3Bh5N24I7n1VWz6JiIiIXMUpxa977rkH9erVw9ixY1G/fv0K32cwGBAcHIxjx45h6dKlLH4REV2nb5fuxJqEU6pYn3YNMbJPxVexENVkyr5VUJb9F1BKrdKKaQnd7S9D8vKr0DxCCMxLtOKDQ0Wwq+teiPaS8WFbbzTxc78txnbFit3nF2Pv+d8hoGjGo33j0C3mQfh6hLogOyIiIqJr45TiV0JCAnbv3o0BAwZcVfELALp164YtW7Zgz549VZMcEVEtsWrHCXy7VN3gvkFkECaN6gVJcr8tV0TOJISAsuFHiE2/aMakVn0gD3wKkt5QobksDoEp+4vwW7K2v1eXED3ebeMFfw/3WzGVVnAU65O+Qq7lnGbMU+eDzlGj0CiwK39eEBERUbXj1tseASAiIgIAkJaW5uJMiIiqr0Onz+Od79eoYgG+RnzwxEB4GSv2gp6ophIOO5Tl/4PYt0ozJve8H1LnOytc8Ek12/Hs5nQczNH2yHqooSceb2KEzs2KR1ZHEXacm4tDmdrvHwAaBnRG56hRMBn8nZwZERERUeVw++JXcfHF47QVRbv0noiIriw9uwATZqyA1XZpG5dBL+O9RwcgIqRiW7iIaiphLYKyaCrEKfWqSOg9IA95HvIN3Ss81/aMYozbloVsq/pvFi8dMKW1F/qEu19/r6S8PdiQ9C0KbRc0Y16GQHSLfgCx/u1ckBkRERFR5XH74tc/2x3r1Knj2kSIiKqhIosNL32+HBfyzKr4hHt7onWjCBdlReQeRGEOHL++CaQdVw8YfaG78zVI0TdUbB4h8OMZCz45UgxHqf5esd4X+3s19HWv/l7F9nxsSZmDE9mbyhxvFtwbHSPvhofOy8mZEREREVU+ty1+CSHw22+/YeHChZAkCTfeeKOrUyIiqlYunuy4GseSMlXx+wa0weDOTV2UFZF7EFmpcMx9Hcgp1d/KPwy6kW9CCo6u0DzFDoG395uxNFW7zbFnHT3eau0NX4P7bHMUQuBUzlZsTvkexfY8zbifRxi6xzyMSN/mLsiOiIiIqGpUevFr27ZtePnll8sce+WVV+Dp6XnFOYQQyMjIgN1uhxACBoMBo0ePruxUiYhqtK//2IG1u0+rYt3i6uGxoR1dlBGRexCpx+CY9yZgzlUPhDWAbsQbkHyCKjTPuSIF43YV4nCe+mRICcBjjY14uJEnZDfq72WxF2Jj8jc4lbNNMyZBQqs6g9EufDj08pX/ViMiIiKqTiq9+BUYGIiUlBRIkgQhLq39F0IgMzPzMneWTa/X46233kKTJk0qM00iohpt5fbj+O7PBFWsUVQwXn+wN2TZfV6MEzmbcmIHlMVTAZtFFZfqxUO+fRIkz4pt89uVZceLCYXItqr3OfoaJExtH4QugY5y7nSNcwVHsPbs5ygoo7dXkLEuetQdi1CvBi7IjIiIiKjqVXrxKzIyEpGRkapYamoqJElCUFBQhVZ+SZIEf39/xMXFYdSoUWjYsGFlp0lEVGMdPH0e736/VhUL9DVh2hMD4W10v4bbRM6i7F0JZdl/AaFuSC+1uAnyzc9A0l355FMhBOYlWvHBoSLYS/X3auCrx3+71EFdbxm24oLKTP2aKcKBhLRF2HN+MQTUCcuSHm3DbkPrsCGQJbfthEFERER03Sr9Lx0fHx+sXr1aFWvWrBkA4N1330XPnj0r+0sSEdH/O59VgAkzlsNqV5/sOPXxAYgI9nVhZkSuI4SA2PQLlA0/asakzndA7jkaUgW2J1odAlMPFWFRklUz1rOOHtM61oGfpwGK4h6rvvIs6Vhz9nOkm49rxoJNsbgp9gkEGivW24yIiIioOuPbfERENYS52IaXPl+GrLwiVXzSqF5o1SDcRVkRuZZQHFBWzIDYs7zUiAS53yOQ299SoXkyihWMTyjEvhxtYevRRp54pLERnga5EjKuHCeyNmFj8rewKcWasVahg9EhYgR08pVXuhERERHVBCx+ERHVAIoiMGXW3zierO7nc//AeAzsyJ6JVDsJWzGUxe9DnNiuHtAZIA99EXLTLhWaZ1+2HeMSCpFpUW8b9NIBb7f2wk3h7rOd2OowY1PydziRvUkzZtIHoFfdRxHtF+eCzIiIiIhcxynFr396gBmNRmd8OSKiWufLJduxfu8ZVaxH63p45NYbXZMQkYsJcy4c86YAqUfVA0Yf6O54FVJMiwrNszjJgncPFsGmbhOGGC8ZH7fzRkNfXSVlfP3OFx7HmrP/Q741QzNW1y8ePeo+ApPezwWZEREREbmWU4pfpXuAERFR5Vm+7Ri+X75bFWscHYzXHujDkx2pVhLZaXD8+jqQlaIe8AuFbuSbkELqXnEOmyLw4eEizD2r7e/VJVSP99p4wc9NtjkqQsGe878hIW0hBNRVOp1kQMfIe9A8pF+F+poRERER1UTc9khEVI3tP5WG9+asVcWC/C6e7OhlZD8fqn1E8iE45r8NFOWpB+rUg27EG5B8Q644R5ZFwUu7C7ErS9vfa0wDTzzV1AidmxSSCqyZWHP2c6QVHtWMBRljcFPsUwgysak9ERER1W4sfhERVVNpWfmYOGMFbPZLKz089DpMfWwgwoN4siPVPsqBNVD+/BRw2FVxKTYO8u2vQDJ6X3GOw7l2vLCrEGnF6v5eRhl4I84LAyLdp7/Xyeyt2Jj0DayKWTPWImQAboy8C3rZffIlIiIichUWv4iIqqEiiw0TZixHdr76ZMeX7++Flg3CXJQVkWsIoUDZ8BPEpl80Y1LznpBvfg6S/sorIZelWPHmfjMspfp7RZgkfNzOG0393OPPpmJ7AbakfF9OU3s/9Kj7KOr6tXF+YkRERERuyj3+iiMiogoTQuDd79fieJL6ZMfRg9qi/42NXZQVkWsImwXK0k8gDm/QjEld74bc/Z4r9rpyCIH/HCnG96ctmrEOwXpMi/dCoId79Pc6m5uADUnfoMieoxmL9o1Dz7qPwcvg7/zEiIiIiNyY2xe/EhIS8Oeff6Jv377o1KmTq9MhInK575fvxt+7TqpiPdvUx9hbOrgoIyLXEIXZF/t7lT7RUaeHPPhZyC1vuuIcuVYFk/aYsSXTrhm7p54Hnm9mgt4NDo643GovWdKjY+TdaBHSH5LkHkU6IiIiInfi9OJXQUEB9u7diwsXLkBRlHKvE0IgPT0dP/zwAzIzM7F161b88ccfTsyUiMj9bNx3Bl8u2a6KNYgMwqtjevNkR6pVRPoZOOa9CeRlqAe8/KEbPhlS9A1XnONkvgPP7ypEkln994iHDLzS0gu3RrtHv6zLrfYKMtZFr9jHEGyKdX5iRERERNWE04pfDocDH374IX744QfYbLYK3yfExYazo0aNqqrUiIiqhTPnsvHGt39D/KsPt5+3J6Y9zpMdqXZRTuyA8tv7gFXd8w4hdaG78zVIAeFXnGNNmhWT95phLnWgYx2jhA/beqNlgOsXx19utZcEHeLDbkWbsGHQya7PlYiIiMidOe2vpXHjxmHFihUlxayK8vf3x9ixYzFy5MgqyoyIyP3lFVrw0ufLYC6+9OaBTpbw9tj+iAr1c2FmRM6l7Pwdyl9fAUK9WkuqHw952MQrnuioCIEvjxfjixPa/l6tA3WY3tYbIZ6u3zp4NncXNiR9W+5qr551H0WIVz2n50VERERUHTml+LV27VosX74ckiQhIiICw4cPR0REBI4dO4bZs2dDkiS8++67qnsOHjyIH374AVFRURg+fLgz0iQickt2h4LXvlmF5Iw8VfyZO7ugfbMoF2VF5FxCcUBZ9SVEwlLNmNT2Zsj9HoEk6y47R4FN4NV9hVh7Xtvf6/YYD0xoboKHzrXbh7nai4iIiKjyOeUvp0WLFgEAfHx8MH/+fAQHBwO4WBSbPXs2AOC2225T3XPbbbchICAA//3vf/Hkk0/ip59+ckaqRERuZ+bibdh+KFkVG9KlGe7o1dJFGRE5lyguhLJ4GsTpBPWAJEPu8zCk9rdc8UTHs4UX+3udLlCvGNNLwIvNTbizrscV56hqXO1FREREVDWcUvzav38/JEnCLbfcUlL4AnDFPzKfeOIJLF26FLt378bvv/+OW265papTJSJyK8u2HsNPq/aqYi0bhGH83d1d/kKdyBlEThoc86YAmYnqAQ8T5KEvQW505VNON2XYMHF3IQpKLfgK9JDwQVtvtAty7SoqrvYiIiIiqlpOaWpx4cIFAMANN6hPXvLwuHSKktVq1dwnyzKGDh0KIQSWLFlStUkSEbmZQ2fSMe2HdapYaIA33n20PzwMl9/eRVQTiKQDcMwepy18+YVCN+qDKxa+hBD47mQxnt6hLXzd4KfDT119XVr4EkLgdM4OzD8yoczCV5CxLoY1mYJ2EXew8EVERER0HZzyl5TDcfEopaCgIFXc2/tSU9qsrCyEh2tPZ6pXrx4A4PDhw1WXIBGRm8nMLcTEGcthtV86is5Dr8N7jw1AiP/lG3oTVXfCYYey8WeILfM0je0R0QS6O16F5BN42TmKHAJT9pmx/Jz2hOnBkQa82soLRhf298qzpGNzymwk5e3RjHG1FxEREVHlcspfVP7+/sjKyoLZbFbF69atW/LxgQMHyix+5eVdbPCcm5tbtUkSEbkJq82Bl79Yicxc9c/MCff1RPN6dVyUFZFziKxUOJZMB84d04xJN3SHfPNzkAyel50jtUjBC7sKcTTPoYrLAJ5tZsSo+p4u2zbsUOzYn7EUCWmL4RDaVe/s7UVERERU+ZxS/IqJiUFWVhbOnj2rigcEBCAqKgqpqan48ccf0bdvX829GzZsAHCxgEZEVNMJIfDBz+tx4NR5Vfzuvq0xqFMTF2VFVPWEEBD7VkFZ9SVgK9aMS11GQu5xLyTp8h0btmTYMGmPGbk2oYr7GSRMbeOFzqGGSs37aqTmH8Km5FnIsaRqxiTIaBM2FPFc7UVERERU6ZzS86tVq1YQQmD37t2asf79+0MIga1bt2LChAlIS0sDcLFP2Mcff4xVq1ZBkiS0bdvWGakSEbnU/LUHsHTzUVXsxubReOL2ji7KiKjqCXMelEXvQfnzP9rCl3cg5JFToOs56rKFL0UIfH2iGE/uKNQUvhr6yPihi4/LCl9FtlysOTsDS0++U2bhK8y7CW5v+g7as7cXERERUZWQhBDiypddn7Vr1+Kxxx6DyWTCrl27IMuX/njNzMxE//79UVRUVBLT6/Ww2y92phVCQJZlzJkzB+3atavqVMkFrEX5EKV7upRiMPpAlnVQFAdsxQVOyoyqu+r23Ow8kozn/7MUDuXSj+XoUD98PXE4/Lwvv82LKk91e26qO+XMHii/fwQUZGnGpMadIA9+GpLX5Vd/59sEXttXiLXn7Zqx3mEGTGntBW991W9zLP3sCKHg8IXV2HFuLqwOs+Z6T50POkbejSZBPa64oo1qFkmS4WHydXUaREREtYZT3l7s2rUrHnnkEQwePFhV+AKAkJAQTJ8+Hc8++yxstotNaf/5JwBIkoQXX3zR6YWvc+fOYerUqVi+fDkA4Pvvv0fHjpdfebFw4UJMmjSpQvM/+OCDmDBhwmWvKSgowOzZs7Fq1SokJSVBURRERUWhT58+GD16tOYAgaqeh4iqTkpGHiZ/tUpV+PIyGjDt8YEsfFGNJOw2KOu+h9i+SDto8ITcdyyk1gOu2JvrRL4D43YVItGsfhNFBvBkUyPGNPCE7IL+XpnmM9iY/C0yzCfLHG8a1As3Rt4Fo54FECIiIqKq5pTil8FgwAsvvFDueO/evbFgwQLMnDkT27dvR05ODvz9/dGuXTuMHj3aqYUvq9WKWbNmYebMmZoG/ZWpRYsWlx0/efIkxo4di5SUFFX8+PHjOH78OObPn48ZM2YgLi7OKfMQUdUxF9swYcZy5BVaSmKSBLzxYB/Uj2RxmmoekXH2YlP79NPawfDG0N06HlJw1BXnWZFqxRv7zShW97VHgEHCe/Fe6BTi/G2OVrsZWxK/x4G0pRDQLq4PMsaga/QDCPdp6vTciIiIiGort2ks0aRJE3z00UcuzWHDhg14++23cebMGQBAeHh4SQ+yq7Vv377LjhsM5f9BXlBQgEceeQQpKSkwGAx47rnnMGTIEBiNRuzcuRPTpk1DYmIiHn/8cSxevBihoaFVOg8RVR1FEZgy62+cSlVv+Xrk1hvRLa6ea5IiqiJCCIhdf0BZMwuwlz7pUILU5U7I3e6BpLv8nyc2ReDTI8X48YxFM3aDnw7T23kj0uTcbYRCCJy4sBEbz3wDs027hVMve6Jd+HC0DB0AWXKbP7+IiIiIagX+9QXAbrfjueeew6pVqwAAoaGhGD9+PMLDwzF69OhrmtPT89q3KX3zzTdITk4GALz//vsYPHhwyVjfvn1RUFCACRMmIDMzE59//jlef/31Kp2HiKrOjEVbsX7vGVWsd9sGuH9gvGsSIqoiojAbytJPIU7u1A76hUJ3yzhIdVtecZ4LFgUv7S5EQpZDMzYs2gMTW5jgqXPuNscC6wVsSPoayfllv/FVz789OkfdDx+PYKfmRUREREQXsbsqLjbY9/Pzg8FgwNixY7FixQoMGzbsin1GqoLD4cDPP/8MAIiPj1cVrP4Z/+KLL0o+X7hwoeqwgMqeh4iqzm8bDuHHVXtVscbRwXhl9E0u+flDVFWUkzvh+PqpMgtfUvOe0D30WYUKX3uz7bh7Y76m8GWQgVdbmvB6nJdTC19CCBy9sBbzj0wos/Dl4xGKAfXHo1/951n4IiIiInIhFr/+34QJE/Dnn39i/Pjx8Pb2dlkeCQkJyM7OBgAMGjRIM75gwQKcOnUKw4cPBwAUFxdj48aNVTYPEVWNHYeTMf1n9X9zwX5emPbEQJg8nd+niKiqKLuXQZk3BTDnqgc8vSDfMg66oS9CMvpcdg4hBH49a8HDWwuQYVH30Qo3Svi2kw9ur+vcgyEKrVlYceoDrE/6CjZF/eaRLOnRJmwo7mw2DXX9uYqTiIiIyNVY/Pp//v7+qFu3bpXMrSjKlS/6fwcOHCj5OD5e/QdzUVERPvvsM7Ru3RrPPvtsmfdU9jxEVPnOnMvGK1+uhONfPxs8DXpMe2IgwoN48hvVDEIIKBt/hrL8f4Ao9Xswujl0D34GueVNV5ynyCHw2j4z3jtYBHup/vE3BuvxY1dftAxwXhcHIQSOZa3H/CMTkJS/VzMe6dcSI+I+QYeIEdDLPKmViIiIyB24fc8vIQQ2b96MJk2aVKuG7EuWLMHixYtx7NgxZGZmwmQyoXXr1rjvvvvQt2/fcu87depUycfR0dGqsdmzZyM9PR3Tp09HWFgY9Ho97Ha76p7KnscZ9J5eV7xGkuSSfxqusEKA6B/u+Nxk55kx/vPlKChSN/ue8uhgtG7WwEVZ0b+543NT3QjFAduf/4Gy4zf1gCxD32sM9BVoag8ASYV2PLf1Ao7m2jRjDzbxwTPN/aGXnbfNsdB6AWtPzcDZnB2aMb3sic51xyAu4mYAEkTpgh8RERERuYzbF7/uv/9+7Ny5E08//TSeeOIJV6dTYS+++KLqc7PZjC1btmDLli0YNWoUJk+eXOZ9WVmXTogKDAws+Tg7Oxtff/01evTogY4dOwIA/Pz8kJWVVbK9sSrmcQZZ1lX4WkmSIEkVv54IcJ/nxmK148XPfkNqhnr71zMje6HvjTe4KCsqj7s8N9WNsFlgnf8WHIfWqQf0HvAcOQX6Zl0rNM/y5EK8tvMCCkot9/LSS3i3fTD6RzuvRYEQAscy12L96S9gsRdoxiN8m6NPo+cQYIosifHZISIiInIfbl/8atOmDXbs2IENGza4ffErKioKAwYMgMFgQIcOHdCxY0eEh4fDarVi69at+OCDD5CUlIQ5c+agefPmuP322zVz/NN03sPDQ9XweubMmSgoKMC4ceNKYh4eHgAuFtaqah5nUBTtiV2lSZIMSZIghOC76VRh7vTcCCHw5tdLsfd4iio+tEcr3DewXYX+OyDncKfnproRxQWw/jwZypk96gGTLzzueQ9y3ZZXfNaLHQLT9uZg3plCzVh9Xz0+7RSMBr4Gp/03Y7ZmY93pGTidvU0zppc90DFmFOLCh0CSZAgh+OxQhV3Nm39ERER0fdy++NWwYUMAcNmWvKvRsWPHktVU/2YymTBgwADExcVhyJAhKCgowIwZM8osfv1Dli+1Y0tJScFPP/2EIUOGoFmzZiXxivQSq6x5qpLdYr7iiwSD0QeSpIMQCmzF2nfdicriTs/N17/vwIqtR1Sxdk2j8MKITrBbtC/yyXXc6bmpTkRBFhxzXwfST6sHfEOgG/kmlNBYKFf493ky34GJuwtxokD7O6FPuAFvxnnBW2+BrdhSmamXSQiBkzlbsDl5NiwObd5h3o3RI+ZRBBgjYLdcfPOIzw5VlCTJ8DCxxyMREZGzuH3x659VSYWF1f/FYUREBAYOHIj58+cjMTERSUlJiImJUV3j5XWx/5XNdqm/ySeffAIhhKo5PQBYLBbVPVUxDxFdvxXbjuHbpbtUsbphAXjnkf4w6PnOP1V/IisFjrmvATnn1QPBMdDdNQWS3+V7dgoh8FuyFdMOFqG4VN3LIAPPNzPhrlj1SuaqVGTLxcbkWTiTq+3tpZMMaB8xAi1DB0KWeG4QERERUXXg9sWvgwcPAgB8fGpG0+HGjRuXfJyYmKgpfgUFBQEAHA4H8vPzkZKSgj/++AP33nuv6lqbzYb8/HzVPVUxDxFdn30nzuHdOWtVMX9vI6Y/NQh+3jwJjqo/ce44HL++AZjVvewQ2RS6O1+H5OV32fsLbALvHDBj+TltU/sYLxnT4r1wg79z/lwRQuBUzjZsTv4OxY58zXgdr4boWfcxBBgjy7ibiIiIiNyV2xa/iouLsWHDBvzyyy+QJAlt2rRxdUqVwmQylXz871VZ/2jQ4NJpbykpKZg+fTpMJpOm39m5c+dKtivWr1+/yuYhomuXnJGLiTNXwGa/tJTFoJcx9fEBiA71d2FmRJVDOb0bysJ3AWuRKi417AD5tgmQDMbL3n8o146Ju81IMmu3OQ6ONODlll7w1jtntVeB9QI2JX+HxLwEzZhOMqBd+HC0qnMzV3sRERERVUOVUvxau3YtHn/88cqYSuOf5rH3339/lczvbBkZGSUfh4WFacZbtmxZ8vHs2bOxYcMGPP3005pVWQkJl/44b9WqVZXNQ0TXJq/Qghf/tww5BcWq+MujeqF1owgXZUVUeZRD66D8/jGg2FVxqVVfyIOegqQr/08MIQR+OmPBJ0eKUeowRxh1wMTmJtwa7ZxtjopQcChzJXac+xV2RdtLLNSrAXrWfRSBxugqz4WIiIiIqkalrfwSQlz5omv0zDPPoEuXLlU2vzNt3rwZAODr61vmSqv4+HgEBgYiOzsbCxcuRHBwMB544AHNdcuXLwcAGI1GdO2qPTa+suYhoqtndzjwypcrcTYtRxV/8OZ2GNCxiWuSIqpEyo7foPz1lSYudb4Dcs/Rly1a5VgVvL7PjPXpds1YY18ZU+O90cDHOb3wMs1nsCHpG2QWaQ/VkSUd2oUPR1ydIZAl9uYjIiIiqs4qddujJElo3759pcxlNBoRGxuLoUOHVosVSUIITJs2De3bt0ffvn3LvGbZsmXYteti0+thw4bBaNRuB9HpdLj77rvx+eefAwDGjBkDb29v1TWbN2/G2rVrAQDDhw9XbaWs7HmI6OoIIfDBTxuw62iKKt6vQyM8NKRyfj4SuYoQAsq62RBb5mvG5D5jId849LL3J2TZMWlPIdKLtW+Y3VnXAy/cYIJRV/WrvWyOYuxKW4ADGcshoN1yGebdGN2iH0aQiau9iIiIiGqCSu/5NWfOnMqe0ikcDgfsdvW70P/uyWWz2UpORQQAWZZhMBhKPv/mm28wa9YszJo1C3379sXw4cPRsmVLeHl5ITU1FUuWLMGsWbMAALGxsZoTF//toYcewpIlS5CcnIwff/wR0dHR6NSpExRFwapVq/D+++9DCIGQkJDLbjetrHmIqOJ+WrUXv286ooq1ahCGl+/v5bST6oiqgnDYoCz/H8S+v9QDsh7ykOcgt+hV7r0OIfDNCQu+OF6sKTX56IHXWnmhX4RHpedclqS8PdiYNAsFtkzNmEE24cbIu3BDcG9I7O1FREREVGNIohL2K65duxaPPfYYJEnC4cOHKyMvp1u4cCEmTZpU4etvu+02TJ06teRzu92ODz/8EHPmzCmzkf0/4uLi8NFHH2lOeSzt5MmTGDt2LFJSUsocDwkJwYwZMxAXF+eUeaqStSgfQmjfef83g9EHsqyDojhgKy5wUmZU3Tn7uVm7+xRe+XIl/v1TNTLEF19NuB2BvlxZWV3w542WKMyGY+F7QPIh9YDBCPn2lyE3aFvuvfk2BS8mmLHtgnabY6sAHd5r44Uor6rfVmi25WBLyhycytla5nh9/xvROfp+eBsCr/lr8NmhipIkGR4mX1enQUREVGu47WmP1Y1er8eECRNw1113Yd68edi4cSNSU1NRVFSE0NBQNGnSBEOGDMHAgQOh11/5X3vDhg2xZMkSzJ49GytXrkRSUhKEEIiMjESfPn0wZswYTfP6qpyHiC7v8Nl0vPntalXhy8fkgelPDmbhi6o1kXYCjgXvAHkZ6gGTH3Qj3oAUWX4fu2SzA8/sKMTpQu0bHKMbeOLJJkYY5KpdESmEgqNZa7Et9WdYHWbNuLchGF2jxyDWv/wCHhERERFVb1z5RS7HlV9UVZz13JzPKsDDUxfiQt6lF9Y6WcbHzwxG+2bsGVTd8OfNJcrBdVD+/BSwW9UDAWHQjZgCKTiq3Hv3Ztvx/K5CZFvVf2YEeEh4K84L3eoYyrmz8mQXp2BD0jc4X3hUMyZBQovQgWgffgcMOm0PzmvBZ4cqiiu/iIiInIsrv4iIrkNhsRUv/m+ZqvAFAOPv7sbCF1VbQnFAWTsbYttCzZhUrzXkoRMgefmVe/+KVCte22eGtdT7GnEBOnzQ1ht1jFXbT8uuWLH3/BLsSV8CRTg048Gmeuge8zBCvbSnLhMRERFRzVMpxa/u3btjx44dlTEVEVG1YXcoeO2rVTiRckEVv7dfawzt3txFWRFdH1FUAGXJBxCndmnGpA5DIfd+EJJcdo8uIQS+PWnBf48Va8b6RxgwJc4LnlV8mmNy3j5sSv4OedbzmjG97Il24XegZegAyFLV9xkjIiIiIvdQKcUvnU4HX18u3Sai2uU/8zdjy8EkVaxXfH08flsnF2VEdH1EZhIc898CslPVAzoD5IFPQY7rU+69NkXg7f1FWJJi1Yw93NATjzcxQq7CE08LrVnYmvoDTuVsK3M8xq8NukaNga9naJXlQERERETuidseiYiuwbw1+zF/zQFVrFlsKF57oDfkKm7gTVQVlOPboCyZDliL1AM+QdANfwVSZNNy782zKRifYMaOUic66iXg1VYm3BrtWRUpAwAU4cDBjJXYlTYfNkW74syk90fnqPvRIKAjpCosvhERERGR+2Lxi4joKm3afxaf/rpZFasT6I33nxgIo0fVN/EmqkxCCIjNc6Gs/xFAqTNwIpteLHz5lH8qcFKhA8/sLMSZUic6+hkkfNjWC+2Dq+6/ifOFx7EpeRYuFJ0tY1RC85A+aB8+Ap567yrLgYiIiIjcH4tfRERX4XhyJl7/+i8o/zoo18vTgOlPDkaIP19gU/UirEVQln4CcWSTZkyK6wd5wBOQ9OUXr/Zk2fF8QiFySp3oGOMl4z/tvVHPp2r6ahXbC7Dj3FwcubAGmoIdgBBTfXSLeQChXg2r5OsTERERUfXilOLXpEmTrnsOSZLw7rvvVkI2RETXJjO3EC/+bxnMFltJTJYkTHm4LxpFB7swM6KrJ3LS4FjwNpB+Rj0gyZD7joXUbshltwkuS7XijTJOdGwTqMNH7bwR6FH5JzoKIXA8az22pf6MYke+Ztwgm9AhYgRuCOkLWaraEyWJiIiIqPpwSvFr0aJF19VnQwjB4hcRuVSRxYaX/rcc6dmFqvhzI7qiS6tYF2VFdG2UM3uhLJ4GFOWpB0x+kG+bCDk2rtx7hRD4+qQFn5dxouOgSANeb1U1JzpmFSVhY/IsnC88WuZ4w8Au6BR5L7wMAZX+tYmIiIioenPatkchtNsSrkSSJPj5+SE4OBhBQeX3GyEiqkqKIjBl1mocScxQxe+4qSXuuKmli7IiujZKwp9QVs4ERKklW3XqQTd8MqSA8HLvtToE3jpgxh8pNs3YI4088VhjY6U3lbc5ipFwfiH2py+HgEMz7u8Zga7RDyDKt0Wlfl0iIiIiqjmcUvz6+++/r/qe7777DnPmzEGTJk3wxRdfwMvLqwoyIyK6shmLtmLdntOqWOeWdfHMHV1clBHR1ROKA8rqbyF2/KYZk5p1g3zzc5A8jOXen2VR8NLuQuzKUheg9BLwepwXhkR5VGq+inDgZPZm7Dg3D4W2C5pxnWRAfNgwxNW5GTqZB00QERERUfmcUvyKioq66nteeeUVAMAPP/yASZMm4dNPP63stIiIrui3DYfw46q9qlijqGBMebgv9Dr2FKLqQViLoCyZDnF8W6kRCXLPUZA633nZFVv7c+x4MaEQ54vVq7j9DRI+bOeNdkGV9+fExaLXFuw+vxi5lnNlXhPj1wZdokbDz7NOpX1dIiIiIqq53Pq0xwkTJuDvv//GypUrsWXLFnTu3NnVKRFRLbLjcDKm/7xRFQv288IHTw6Ct7FyV7kQVRWRnwnHvLeA8yfVAwZPyLe+CLlJp/LvFQILkqx4/1ARbKV2Sdb1kvGfDt6I9a6cEx0VoeBk9ubLFr28DUHoHHU/6vm3r/TtlURERERUc7l18Uuv12PkyJH4+OOPsWDBAha/iMhpTqdm4ZUvV8KhXHrF72nQ4/0nByIsyMeFmRFVnEg7Cce8N4GCLPWATxB0d74GKbxRufcWOwTeO1CEJSlWzVj7ID0+aOuFgEo40VERCk5lb0HC+UXlFr0k6NAqdCDaht8Og678rZlERERERGVx6+IXADRp0gQAsGvXLhdnQkS1RVZeEV78fBkKii696Jck4I2H+uCGWG6zoupBOb4Nym8fALZSpzKGNYTuzlch+YaUe2+q2YHxCWYcztM2mB9V3xPPNDVCL1/fyquKFb1kNAnqgTZhQ7nFkYiIiIiumdsXv8xmMwAgMzPTxZkQUW1gsdkxceZypGbmq+JP3tYJPdvUd1FWRBUnhIDYsQTK318DUPfokhrdCHnoi5A8TOXevznDhpf3mJFrU99r0gFvxnmhX8T1bfmtaNGrcVB3xIcNY9GLiIiIiK6b2xe/VqxYAQDw8eE2IyKqWkIIvPv9Whw4dV4Vv7XbDbi7X2sXZUVUcUJxQFn5BcTuPzVjUoehkHs/CEkuu0eXIgS+OWnBjGPFpUpmQD1vGdPbeqOh77X391KEglM5W5CQxqIXERERETmXU4pfO3bsuKrrHQ4Hzp8/j+XLl2PNmjWQJAlt2rSpmuSIiP7fN3/sxKodJ1SxDs2iMP7ubmyuTW5PWMxQFk2FOJ2gHpBkyP0fg9x2cLn35tsUTN5rxvp0u2asd5gBb8Z5wcdw7f8NnM3dhW2pP1eg6DUUfp5h1/x1iIiIiIjK4pTi16hRo67rhaMsy3jooYcqMSMiIrUV247h26Xq3oKx4QF4+5H+0Osq5zQ7oqoictMvNrbPOKse8DBBHjYRcsN25d57PM+BcQmFSDKrj3OUATzV1IgxDTyv+Xe41VGELSlzcCxrXZnjLHoRERERkTM4bdujEKU3UVSMv78/XnvtNbRv376SMyIiumjfiXN4d85aVSzAx4jpTw6Gr5enS3IiqiiRehSO+W8BhTnqAb9Q6Ea8Dim0Xrn3Lku1Ysp+M4pL9bUP8JAwtY0XOoYYrjmvtIKjWJs4A/nWDM3YxaJXN7QJGwp/z/Br/hpERERERBXhlOLXU089ddX3eHl5oX79+ujcuTOMRh5rTkRVIyUjDxNnroDNfmnVi0EvY+pjAxAV6ufCzIiuTDmyEcrvHwF2q3ogogl0d7wKySewzPtsisDHR4rw8xmrZqyFvw4ftPVGhEm+ppwcih0JaQuwN/13iNIN91n0IiIiIiIXcNviFxFRVcs3W/Di/5Yhp6BYFX95VC/ENYpwUVZEVyaEArH5Vyjrf9CMSc26Qh7yPCRD2W8cXbAoeDGhELuzHZqx22M88FJzEzx117bNMbs4BWvPfo7MojOasQDPSNwU+wRCvHhqKhERERE5l9uf9khEVBXsDgcmf7UKZ9KyVfEHb26HAR2buCgroisTFjOUPz6GOLZFMyZ1vhNyz1GQpLJXbZ3Id+CZnQU4V6RekeUhAxNbmHBbzLVt8xVCwcHMVdie+jMcwqYZbxEyADdG3gW97HFN8xMRERERXQ8Wv4io1hFC4KNfNmHH4WRVvG/7RnhoCPsLkvsSWSlwLHgHyExUD8g6yIOeghzXr9x7N6bbMHFPIQpLHegYbpQwva03WgRc258EhbZsrEv8Ain5+zVjXoZA9Kz7KKJ9W13T3ERERERElYHFLyKqdeb+vQ+LNxxSxVrUD8Mro3td18m0RFVJObEDypLpgKVQPWDyg3zbRMixceXe+/MZC6YfKoJSKn5jsB5T470Q6HFt/b1O5WzDxqRvYXEUaMbqB3REt+gHYdT7XNPcRERERESVxanFr4MHD+LQoUPIzs6G1aptsnsl7B1GRNdr474z+GyBertYeJAPpj0+AJ4Gvh9A7kcI8a/+XqVOTg5rCN3wVyD51ynzXrsiMP1wEeae1f7OvbPuxf5eevnqC75WhxmbkmfjRPZGzZhBNqFr9Gg0CuzGYjIRERERuQWnvNI7d+4cnnrqKRw6dOjKF18Gi19EdD2OJWXi9W/+gvhX/cDb6IHpTw1GkJ+X6xIjKoewmKEs/QTi6GbNmNSiF+RBT5Xb2D7fJjBxTyE2Z6j3OcoAxjU34e5Yj2sqTp0rOIy1Z2eiwJapGYvwvgE9Yx+Fr0foVc9LRERERFRVnFL8evPNN3Hw4EFnfCkiojJl5BTipc+XochyqRCgkyW8NbYfGkQGuTAzorKV299LkiH3fhBSh6HlFq9SzA48u7MQJwvUGx29dMDUeG90r2O46nwcig070+ZjX/pSlF6BJks6tI8YgVahgyGX02yfiIiIiMhVnFL82rZtGyRJwoABAzB+/HjUqVMHHh488YmInKPIYsWEz5cjPVvdK+m5EV3RqUWMi7IiKt9l+3sNmwC5Xuty792bbcfzuwqRbVUXqMKNEj5t74MmfrqrzifDfBrrEmciuzhZMxZojMZNsU8g2BR71fMSERERETmDU4pf3t7eKC4uRv/+/REdHe2ML0lEBABQFIHXv1yGI4kZqvidN7XE8F4tXZQVUdmEEBBb5kFZNwfa/l4NoLv9FUgBYeXevyzFijf2m2Et1dm+pb8OH7f3Rojn1a3KUoQdu9N+w+7ziyE07fKBVqGD0D5iBPQy39AiIiIiIvfllL0JN910E4QQ2LJly5UvJiKqRP+dtw5rdh1XxTq3rItn7uziooyIyiYsZiiL3oOy7nuULnxJzXtCN+r9cgtfQgjMPFaEl/dqC1/9Iwz4qpPPVRe+sooSsfjY60g4v1BT+PI2BGFww0noFHUfC19ERERE5PacsvJr/Pjx2LNnDxYsWIDOnTtj8ODBzviyRFTLLdmwH7OXblPFGkYFYcrDfaGT2ZeI3Mfl+3s9AKnDsHL7e1kcAm/sM2P5OZtm7OFGnni8sRHyVTS2V4QD+9L/wK60BVCEQzPeOLA7OkeNgqfeu8JzEhERERG5kiSEEFe+7PplZmbizjvvxPnz59G3b194e1/dH82SJOHdd9+touzIlaxF+RBCu53m3wxGH8iyDorigK24wEmZUXW278Q5PPnx73A4Lj1bQX4mfD3xdoQH+bowM3J3zv55o5zcBeW396+pv9cFi4LndxVif466SGWQgddbeeHmqKtblZVTnIp1iTORbj6pGTPp/dE95iHE+re7qjlrE/6uooqSJBkeJv4uIiIichanFL9OnDiBMWPG4MKFC9c1z+HDhyspI3InLH5RZcs3W3D/2/NwPuvSs+Jh0OHzF25F8/rl90siApz780ZJ+BPKyplA6Z+BFejvdSzPged2FeBckfrXeICHhI/beqNNUMUXdwuh4EDGCuw4NxcOoV1B1iCgE7pGj4FRzxfrl8PfVVRRLH4RERE5l1O2Pb7zzjvIzMx0xpciIsKHP29QFb4A4LUxvVn4IrchhAJlzXcQ2xZqxqTmPSEPfhqSwVju/UuSLXj3QBEspWpm9X1k/Ke9N6K9Kn6iY54lHesSv0Ba4RHNmKfOB12jH0DDwE4Vno+IiIiIyN04pfi1Z88eSJKEAQMGYPz48ahTpw48PNggl4gq38rtx7FyxwlV7J4B7dC7XUMXZUSkJmwWKH98BHFkk3pAkiHfNAbSjbeV29+r2CHw/qEiLEqyasY6hejxfrwXfA0V62cnhMDhC39jW+pPsCsWzXisXzt0i3kIXgb/Cs1HREREROSunFL88vf3R3FxMfr374/o6GhnfEkiqoXOXcjHBz9tUMUax4TiieHdAaXYRVkRXSLMuXDMmwKkHlUPGDwhD30JcuOO5d6bVOjAi7vNOJqnbUI/oq4HXmxugl6uWGP7Amsm1id+hZSCA5oxD9kLXaLvR6PAbuUW4YiIiIiIqhOnHHc2ZMgQCCGwbdu2K19MRHQNHIqCKbNWo7D40ooYD70O7zx+Czw9nFLnJ7oscSEZjtnjtIUv70Do7p122cLXmjQr7tmUryl8GWVgSpwXJrX0qlDhSxEKDmasxPwjE8ssfEX7xuGOZtPQOKg7C19EREREVGM45RXhM888gwMHDmD+/Pno1KkTBg0a5IwvS0S1yA8r9mDviXOq2NMje6JhdCgURbtShsiZROIBOBa8DZRugh5SF7oRb0Dyr1PmfTZF4L9Hi/H96TK2JXrL+CDeG439Ktbf64L5DDYkf4uMMk5yNMhGdIq6F02DbmLRi4iIiIhqHKcUv7Zv345hw4bhzJkzGDduHJYtWwZvb++rmkOSJLz77rtVlCERVWeHz6bj6993qmKdWsRgZN94F2VEdIlycC2UpZ8ADrsqLtVrA/m2SZCMZf8+TC9WMHF3IXZna4u3/cINeK2VF3wMVy5U2RzF2JW2AAcylkNAe7JuhE9z9Ix5BL6eoRX7hoiIiIiIqhlJCCGufNn1adasWck7yUKIq35X+Z97Dh8+XBXpkYtZi/IhhPYF2b/x+HgqT5HFhjHvzEdSem5JLMDHiDmvjkB4WB0+N3TVKuvnjRACYvNcKOt/0IxJcf0gD3wSkq7s96B2XLBh4m4zsqzqX9F6CXi+mQl31/Oo0O/Ss7m7sCl5NgptFzRjBtmIDhEj0TykLyTJKV0Qajz+rqKKkiQZHiZfV6dBRERUazhl5VdkZKQzvgwR1UKfztusKnwBwKRRvRDs7+WijIgA4bBDWf5fiH1/acbkHqMgdRlRZvFKEQKzTlrw+bFizRqtMKOEafHeaB145V/dBdYL2JzyPc7m7ixzvJ5/B3SOGgUfj+AKfT9ERERERNWZU4pfq1evdsaXIaJaZt2e01iyUb0idFj35ujeup5rEiICIIoLoCx6D+LMXvWATg/55ucgt+hV5n25VgWT95qxMcOuGesUosc7rb0Q5Hn5FVqKcOBgxkrsSpsPWxknnPoYgtElegxi/dtW+PshIiIiIqrueAQaEVVLmbmFmDpnnSpWN8wfT9/R2UUZEQEiNx2OX98AMhPVA0Yf6IZPhlS3ZZn3Hcyx48XdhThXpN7mKAF4pJEnxjY2QneFbY4Z5lPYmPQNMovOaMYkyGgVOghtw2+HQWe8iu+IiIiIiKj6Y/GLiKodRRF4e/Ya5BZeWtmik2W88WBfmDwNLsyMajNx7gQc894ECrPVAwHhF090DI4u874FiRZMO1QEW6l9jgEGCe+08UKX0Ms/01aHGTvPzcehzJUQ0LbxrOPVEN1iHkKwKfaqvh8iIiIiopqCxS8iqnbmrdmP7YeSVbGxt3ZAs1ieVkeuoRzfDuW3aYDNoh6IbArdna9B8vLX3GNXBKYfLsLcs1bNWKsAHd6P90a4qfxtjkIInMndgc0p38Nsy9aMe8he6BA5Es2Ce0NmQ3siIiIiqsWcUvxKTU2tlHnYOJ+ITqZcwIxF21SxNo0jcG//1i7KiGo7ZfcyKCtmAKVOrZWadYU85AVIBk/NPXk2BS8lmLHtgra/1z31PPBcMxMMcvnbHC32QmxM/hancraWOd4goBM6R90HL0PgVX43REREREQ1j1OKX717967QkeyXI0kSDh06VEkZEVF1ZLHZ8ca3f8Nqd5TEfEweeO2B3tDJXNlCziWEAmXd9xBb5mvGpE7DIfcaDamMFVdnCxx4dlchzhaqi2VGHfBmnBf6R3hc9uumFRzFmrP/Q4HtgmbM1yMUXaMfRIxf3FV+N0RERERENZfTtj0Koe1DQkR0NWYu2oaTKVmq2Ph7uiM8yNdFGVFtJew2KEs/gTikPnQBkgy5/2OQ2w4u876tGTa8tNuMfLv6d2K4UcIn7b3R1K/8X8uKcGB32iLsPr9Y09tLgg6t69yM+PBh0MvalWZERERERLWZU4pft91221Xfs3r1auTl5aFnz5649dZbERQUVAWZEVF1se1QEuau3q+KDejYGP07NHZRRlRbiaICOBa+DSQeUA8YPCEPnQC58Y3ae4TA3LNWTD9cBEep94LiAnT4qJ03gj3LX72YZ0nHmrOfI918XDMWbIpFr7qPI8gUc03fDxERERFRTeeU4td777131fckJSXh/vvvx8aNGzFy5Eh06tSpCjIjouogp6AI78xeo4qFB/lg3F3dXJQR1VYiNx2OX98AMhPVA14BFxvbRzbR3GNTBN4/VIT5idrG9kOiDHi1pRc8dOW3BjiRtQkbk2fBphRpxlqFDkKHiJHQyTzllIiIiIioPG7bJCcmJgafffYZhBCYPHkycnNzXZ0SEbmAEALTfliPzFxzSUyWJLz+YB/4mLi9i5xHpJ2AY/Y4beErKAq6+6eXWfjKsSp4ckehpvAlAXi2qRFT4sovfFkdZqw5+znWJH6uKXyZ9P4Y1GACOkXdx8IXEREREdEVuG3xCwBatmyJ/v37IysrC3PnznV1OkTkAr9vOoJ1e06rYvcPikfrRhEuyohqI+XkTjh+mAgUZqsHoptDN+oDSIHhmntOFThw/+YC7Ch1oqOXDvi4nTfGNDSWexjM+cLjWHj0ZZzI3qQZi/Frg+FN30M0m9oTEREREVWIWxe/AKBnz54QQmDlypWuToWInOxkShY+nqt+8d+8Xh08eHM7F2VEtZGyZwWUeVMAW7EqLjXrBt3db0Py8tPcsynDhtGb85FkVp/oGGmS8V1nX/QMK3u1liIUJKQtwu/HpyDfmqEa00kGdIkajQH1x8Nk8L/O74qIiIiIqPZw2mmP1yowMBAAcPbsWRdnQkTOZC62YfJXK2GxXVo1Y/LU4/UHekOv07kwM6othBBwrP8BYtMvmjHpxtsg934AkiRr7vnpjAUfHS6GUuqe+EAdprf1RlA5je0LrJlYc/ZzpBUe1YwFGqPRO/YpNrUnIiIiIroGbl/8OnnyJADAZrO5OBMicqYPf9mAs2k5qtj4u7sjJizAJflQ7SLsNtgWT4XYW3rVsQS53yOQ29+iucemCLx3sAiLkrSN7YdGe+CVliYY5LK3OZ7M3oqNSd/Aqpg1Yy1C+uPGyLuhlz2u6XshIiIiIqrt3Lr4dfDgQXzzzTeQJAkxMXy3m6i2WLr5CJZtPaaKDe7cFIM6NXVRRlSbiOICWOa+DuXULvWA3gPy0BchN+msuSfTouClhELsznao4jKA528w4t56nmX298qzpGP7uV9wOmebZsyo80WPuo8g1r/tdX0/RERERES1nVOKX/fff/9VXa8oCs6fP4/k5GQIISBJEvr3719F2RGROzmVmoXpP29UxepHBGLcXd1clBHVJiI3HZYFb0OcP6UeMPlBd+drkKKaae7Zm23HiwmFyLAIVdxHD7zXxhvd6mj7e1kdZuw5vwT7M5ZBEXbNeJRvK/Sq+xi8DAHX9f0QEREREZGTil/bt28v90SryxHi4guJ5s2b4+GHH67stIjIzRRZbHj1q1WqPl+eBj3eGtsPJs+yG4QTVRaRfBiOBe8A5hz1QGAEdCPehBQUqb5eCMxLtOKDQ0Wwq+teiPGS8XE7bzT0VfenU4QDRy+sxc60+Si252lykCU9boy4Cy1DB2j6iRERERER0bVx2rbHfwpZFWUymVC/fn0MHDgQo0ePhqenZxVlRkTu4qO5G3H6XLYqNv7ubmgQGeSijKi2UPb/DWXZZ4Cj1CqsqGbQ3fEqJC/16YrFDoH3DhRhSYq2v9eNwXpMi/dCgIe6eJWctw9bU39EdnFymTmEmOqhe8xYhHjVu67vhYiIiIiI1JxS/Dpy5IgzvgwRVWPLth7F0s3qU+4GdWqCm7tot5kRVRYhFChrv4fYOl8zJjfvAWnws5AM6jdfUosUjN9ViMN5Ds09Yxp44skmRuj/1dg+uzgF21J+RFL+3jJz8DIEokPESDQO7MrVXkREREREVcCtG94TUe1w5lw2PvhpgyoWGx6AcXd1d1FGVBsIixnK7x9CHNc2mzf0Gg1dz9GwW9WnL27NsGHSHjNybOrVzF464I04L/SLuHQiY7E9H7vSFuBw5t8QUDRfQyd5oHWdIYirczMMOmMlfVdERERERFQai19E5FLFVhte+Woliq3qPl9vj+0PLyP7fFHVELnpcMybAmScUQ/oDDDcNhEerftDUS6t7BJC4LtTFvz3aLGmjBXrLePDtpf6ezkUGw5mrsTutMWwKmaUpXFgd3SIGAFvD27pJSIiIiKqaix+EZFLfTx3E06nqvt8vXBXVzSMYlGAqka5je29A6G7YzL0DdqpwoV2gdf3mfF3mk0z101hBkyJ84KPQYIQAmdyd2J76s/Is54v82uHezdFp6hRCPWqX1nfDhERERERXUGVFb8yMzMREhJy3fP8/PPPGDFiBHQ63ZUvJqJqZfm2Y/h9k7onYP8bG2MI+3xRFSm3sX1Yw4uN7f3Uv7dOFzgwblchTheq13tJAJ5sYsQDDT0hSxLyrRnYkPg1UgoOlPl1fT3qoGPkPajn3/6aTj8mIiIiIqJrVyXFrzlz5uCrr77Cl19+iWbNru1FrNVqxVNPPYUNGzYgPT0dzz77bCVnSUSudCYtGx/8tF4VqxsWgJfu6cHiAFW6yzW2l5p2gTzkBUge6r5bf6UU4ZVd+SgsVSfzN0h4t40XuoQaIITA0QtrsSVlDmxKsWZuD9kL8eHD0CKkP3Qyt/ESEREREblCpRe/CgoK8Omnn6KwsBDvv/8+vv3222uax8PDAwbDxRcW3333HUaNGoWgIG6DIqoJLFY7Xv1qFYosl6oKHgYd3h7bj32+qNJdrrG91PUuyN3vUZ2y6BACn+7PxldH8zTXN/XT4cO2Xojy0qHQlo0NSV8jKW+Pdl7IuCGkD9qG3w6T3q9Svx8iIiIiIro6lV78Wrx4MQoKCqDT6TB58uTrmuvll1/Ghg0bUFxcjN9//x2jR4+upCyJyJU+/nUTTqZkqWLPj+iKRtHBLsqIaqrLNbaXb34OcoueqnCWRcHknZnYkm7RzHVzlAGTW3rBUwZOZm/BpuRZsDgKNddF+rRAl+j7EWiMrsxvhYiIiIiIrpF85UuuzqZNmwAAXbp0QYMGDa5rrqioKHTv3h1CCGzYsKEy0iMiF1u54ziWbDysivXr0Ai3drvBRRlRTSWSD8Px3Qvawpd3IHT3TdUUvnZcsGHkxnxN4UsvARObm/BWnBcgCvD32c+w+ux/NYUvveyJrtEPYHDDSSx8ERERERG5kUpf+XX06FFIkoTOnTtXynwdO3bE33//jVOnTlXKfETkOonnc/D+D+o+XzF1/PHSvezzRZVLObwByu8fVqixvUMIfHW8GF+esECUmifEU8IH8d5oE6THmdyd2Jj0DYrs2u2QYd5N0bPuI/D3DK+C74aIiIiIiK5HpRe/cnJyAACRkZGVMt8/J0ZmZ2dXynxE5BoW28U+X2aLrSTmodfhrbH94G30cGFmVNMoCX9CWTEDKFXKKquxfXqxgpf3FGJXlkMzT9tgD0xtbYSfvghrz36N49naFcg6yYD2EXeiZeggyFKlL6YmIiIiIqJKUOnFL6vVCgCw2WxXuLJihLj44sXh0L4wIaLq49NfN+N48gVV7NkRXdAkJqScO4iujhACYtMvUDb8qBkrq7H9xnQbXt1nRo61VJEMwKPN/PFYMx8kZW7BgpNfotCmfQMmxNQAvWIf5RZHIiIiIiI3V+nFr8DAQGRmZiI5OblS5ktJSQEAnvRIVI39sfkIFm84pIr1adcQw7o3d1FGVNMIoUD56yuInb+rB2Qd5MHPQm7VuyRkUwT+d6wYs09pm9oHe0iYemMwOoTK2HR6Jg6mL9dcI0GHtuG3oU3YLZClSv81SkRERERElazS92jccMMNEELgr7/+qpT51q1bB0mS0KxZs0qZj4ic68jZDEz/Sb1dLCrUDxPv68k+X1QphMMO5fePtIUvvSfk4ZNVha9UswMPbS0os/DVMViPX7r7ItZ4Er/searMwlegMRrDmkxB2/DbWPgiIiIiIqomKv0v9969e2P9+vU4dOgQdu7cifbt21/zXAcPHsSuXbsgSRJ69+595RuIyK3kFBRh0hcrYLVf2rbsadDj3Uf7w9vEPl90/YStGMrC9yBO7VIPGL2hu/N1SNGXVhf+nWbFm/uKkG9Xb3PUScDjjY24v74Ou8//ir3pf0DTLwwS4uoMQbvw4dDJhqr6doiIiIiIqApI4p+mWpXEbDajd+/eyM3NRUREBH766SeEh1/96VdZWVm49957cfr0aQQGBmL16tUwmUyVmeplnTt3DlOnTsXy5Rff+f/+++/RsWPHCt1bUFCA2bNnY9WqVUhKSoKiKIiKikKfPn0wevToCm/hdLd5qoq1KB9CKJe9xmD0gSzroCgO2IoLnJQZXQ+7Q8ELny3FziMpqvjrD/TGgI5NnJIDn5uaTRQVwDHvTSDlsHrAJwi6kW9CqlMfAGBxCHx8pAhzz1o1c4QZJbzXxhv1vTKw5uznyCzSnizs7xmBnnUfRZh34yr5Pqjm4M8cqihJkuFh8nV1GkRERLVGpRe/AGDRokWYNGkSJElCUFAQJk+ejEGDBlX4/tWrV2PKlClIS0uDJEl45513cPvtt1d2mmWyWq2YNWsWZs6cCbPZXBKvaPHr5MmTGDt2bEmvstJCQkIwY8YMxMXFVat5qhKLXzXT54u24ocVe1SxEb1b4bkRXZ2WA5+bmkvkX4Bj7mtAxln1QEAEdHe9BSnw4psuZwscmLDHjKN52kNTetTR441WJpwv2IAtKd/Drmi3QrYMGYgOkSOglz2r5PugmoU/c6iiWPwiIiJyriopfgHA22+/jR9++KGkp0/dunUxYMAAxMXFISYmBgEBATAYDLDZbMjNzUVycjL27duHVatW4dSpUyWnPN53332YPHlyVaSosWHDBrz99ts4c+YMACA8PBxpaWkAKlb8KigowNChQ5GcnAyDwYDnnnsOQ4YMgdFoxM6dOzFt2jQkJiYiJCQEixcvRmhoaLWYp6qx+FXzrEk4hVe+XKmKtW4Ugc+eHwK9Tue0PPjc1EwiKxWOX14Fcs+rB+rUh27kFEg+gQCAP1OsePuAGUWl6l56CXiumRG3R1uxMflbnMndofka3h7B6NPwOYR5Nqiqb4NqIP7MoYpi8YuIiMi5qqxb7+TJkxESEoLPPvsMDocDiYmJ+Oqrryp0rxACOp0OTz31FB5//PGqSrGE3W7Hc889h1WrVgEAQkNDMX78eISHh2P06NEVnuebb74pOeXy/fffx+DBg0vG+vbti4KCAkyYMAGZmZn4/PPP8frrr1eLeYiuxunULLwze40qFuLvhbfH9nNq4YtqJpF2Eo65rwPmHPVATAvo7ngVktEHxQ6BaQeLsDhZu80x2kvG1DZeCNAdxaJjM1Boy9Zc0yCoM25q+DQ8dd4sYBARERER1QCVftrjvz322GNYuHAhevXqBUmSIIS44v8kSUKvXr2wcOFCpxS+AECv18PPzw8GgwFjx47FihUrMGzYsKs6ic7hcODnn38GAMTHx6sKTf+Mf/HFFyWfL1y4EEVFRW4/D9HVKCiyYNIXK2C22Epiep2Mdx7tj2B/LxdmRjWBSDwAx0+TNIUvqdGNF1d8GX1wpsCB+zfnl1n46h9hwA+dTSgw/4o/T76nKXzpZU90jxmLAY0nwGTwq8pvhYiIiIiInKjKz2lv2rQpZs6cibS0NKxbtw779u3D2bNnkZOTA4vFAk9PTwQEBCA2NhatW7dG9+7dERERUdVpaUyYMAGPPfYY6tate033JyQkIDv74gupsvqbLViwAKdOncLw4cOxYMECFBcXY+PGjejXr59bz0NUUYoi8NZ3a5B4PlcVf35kV7RqcPWHXhD9m3J8G5TF0wC7uqgltewNefAzkHR6LEux4q0ytjl6ysCLzU3oHXoBq8/8D5lFZzTzh5ga4KbYJxBgjLiqNz6IiIiIiMj9VXnx6x/h4eEYOXIkRo4c6awveVX8/f3h7+9/zfcfOHCg5OP4+HjVWFFRET777DO0bt0azz77LBYsWFByT+lik7vNQ1RR3y9PwIa9Z1Sxm7s0xbDuzV2TENUYyr6/oPz5H6BUb0DpxmGQez8IiyJh+n4zFiRpV3vV8764zVGxrceiY3PgEKWvkdC6zhC0C78DOtlpvxKJiIiIiMiJ+Jd+JTl16lTJx9HR0aqx2bNnIz09HdOnT0dYWBj0ej3sdrvqHnedxxn0nlfeDidJcsk/DUafqk6JrtLmfafx1e/qpuE31AvDxDED4eFhcFFWfG5qAvvWhVCW/UcT1/cdC323e5BYaMcL27JwNNemuebmGBNebKnHjsT/4XT2Ns24t0cw+jZ8HlH+rVRxPjd0rfjsEBEREbknFr8qSVZWVsnHgYGBJR9nZ2fj66+/Ro8ePUpOi/Tz80NWVlbJtkR3nscZZLniTdAlSYIksWm6O0lOz8GrXyzFv8+N9fcx4YNnboOX0ei6xP6Fz031ZNv1B2ylC1+SDI9bx8HQ/lYsSyrEq7suwGxXH1rsIQMvtwlCx8AT+OPQxzDbslBao+Bu6NXwKRj15Rco+NzQteKzQ0REROReWPyqJP80i/fw8FD1i5k5cyYKCgowbty4kpiHhwcAwGw2u/08zqAojiteI0nyvw5NUK54PTlHscWG8Z8uRF5hcUlMliS88/gQhAX5VOj/26rE56b6su//G7bf3lcHdQZ43DEZ9qY98O6uTMw9Xai5L9ZHj7fb6nAh5wv8fnitZlwvG9Gj3iNoGtobkiSV+YzyuaFrxWeHrsbVvPlHRERE14fFr0omy5cO0ExJScFPP/2EIUOGoFmzZiVxRbnyH8TuNk9VslvMV3yRYDD6QJJ0EEKBrbjASZnR5Qgh8Nas1TielKGKPzbsRrRtGOwW/z/xuamelOPboCx8F6rlhDo95Dsm42xYG7y0Jg1H8rRFq37hOgwLX4sdpxbCrlg046FeDXFT7BPw9wyH3aItnP2Dzw1dKz47VFGSJMPD5OvqNIiIiGoNFr8qiZfXxb5VNtulvjOffPIJhBB49tlnVddaLBbVPe48D1F55q89gJXbj6tiveIb4N7+bVyTENUIyuk9UBa9B/x7RZYkQx42EX+bWmHKpnwU2NX3GCTgwfrp8HfMwMH09DJmldAm7Fa0C78dssRfe0REREREtQ1fBVSSoKAgAIDD4UB+fj5SUlLwxx9/4N5770VMTEzJdTabDfn5+ap73HkeorLsOX4O/5m3RRWrFx6IV0b3Um2zJboaIvkQlAVvAY5/V7ckKDe/gOm2OMzdrd2aHWlSMCx0PlC8DmWtswkyxqBr9AMI92laZXkTEREREZF7Y/GrkjRo0KDk45SUFEyfPh0mkwlPPPGE6rpz586VbDOsX7++289DVFpGTiEmf7USjn9tl/UyGvDeYwPgbfRwYWZUnYm0E3D8+gZgU29XzOvzBJ7Oa4dDuVbNPfH+KWhn+gSwa4tinjoftI+4E82Cb4LMxuNERERERLUai1+VpGXLliUfz549Gxs2bMDTTz+tWU2VkJBQ8nGrVq3cfh6if7M7HJj85Upk5RWp4q+O6Y3Y8ADXJEXVnshMhOOX1wCLuoiV0/1B3FfQBeeL1f299JKC7v5L0My0CqUXGkqQcUNIX7QLH37ZkxyJiIiIiKj2YPGrksTHxyMwMBDZ2dlYuHAhgoOD8cADD2iuW758OQDAaDSia9eubj8P0b/NXrYb+0+dV8VGD2qLnm24apCujcg+B8fPk4GiPFU8t+PduMfSBxkWoYoH6HPQN+AL1PFI1MwV6dMCnaNGIcgUoxkjIiIiIqLaS77yJVQROp0Od999d8nnY8aMgbe3t+qazZs3Y+3atQCA4cOHw2Qyuf08RP84dCYd3/25SxXr2DwGD9/S3kUZUXUn8jLh+PkVoCBLFc9rexvuUm7WFL7qG/dgeMjbmsKXr0co+tV7HoMbTmLhi4iIiIiINFj8+n8OhwMWi0X1v3+flGiz2cod+8dDDz2E6OhoAMCPP/6IP//8E1lZWcjMzMTPP/+MJ598EkIIhISE4PHHHy83F3ebh8hitWPKrNVwKJeKEUF+Jrz2QG/oZP4YoasnCnMurvjKVZ/OmNdyEO6UhyOzVIuvZqYtGBD4NTzlS1tu9bIn2keMwB3N3ke9gPY8bIGIiIiIiMokCSHElS+r+RYuXIhJkyZV+PrbbrsNU6dO1cRPnjyJsWPHIiUlpcz7QkJCMGPGDMTFxV12fnebpypZi/IhhHLZawxGH8iyDorigK24rDPdqCp9PHcj5q05oIp98MQgdI2LdVFGFcPnxj2Jonw4fpoEpJ9RxfOb9sJw34eQbVMXsW7w2oRe/j9Dki79umoU2A03RoyEt0fln1LL54auFZ8dqihJkuFh8nV1GkRERLUGe35VsoYNG2LJkiWYPXs2Vq5ciaSkJAghEBkZiT59+mDMmDGapvPVYR6qvXYcTtYUvm7p2sztC1/knoTFDMfc1zWFr4IGnTDc50FN4auF1wb08J9bUvgK9WqAzlH3I8y7sbNSJiIiIiKiao4rv8jluPLLfeWbLRj11q9Izy4siUWG+GL25DvhbfRwYWYVw+fGvQibBcqvb0Ak7lfFC+u2xfCQZ3DBoX4/ppX3WnTzmwdJAnSSAV2ix6BpUA9IUtVuteVzQ9eKzw5VFFd+ERERORdXfhFRuT78ZaOq8CVJwOTRvatF4Yvci3DYoCx8V1P4Mke0wPDgJzWFrzjv1ejqtwCSBHjqvNG//jiE+zR1ZspERERERFRDsPhFRGVaveskVm4/rord068N2jSOcFFGVF0Jhx3Kbx9AnFKfFmoObYw7w57FBcVTFW/j/Rc6+y2CJAHehiAMajgBgcZoZ6ZMREREREQ1CItfRKSRmVuI939ar4o1igrG2Fs6uCgjqq6Eww5lyXSIo5tV8aKgWIyIGId04aWKt/VZgY6+SyBJQIAxCoMaTICPR7AzUyYiIiIiohqGxS8iUhFC4L3v1yKv0FISM+hlvPZAb3gYdC7MjKoboTguFr6ObFTFi/0jcVfUSzgv+aji7X3+RAffpZAkIMy7CfrXHwejXn0NERERERHR1WLxi4hUfttwGFsOJqliY2/pgEbRXH1DFScUx8WtjqUKXxbfMNwbPQGpsr8q3sH3D3TwXQYAiPVri971noZeZm85IiIiIiK6fix+EVGJ5PRc/Ge+enta60bhuLtfaxdlRNVRuSu+fMNwb91JSNSrC6k3+i5Be98VAICmQb3QLeZByBJXGRIRERERUeVg8YuIAAB2h4Ip361GsdVeEvPyNGDy6N7QybILM6PqpKTwdXiDKl7sG4Z76k5Ckj5EFe/suwjxvn8BAOLDhqFd+B2QJMlp+RIRERERUc3H4hcRAQB+WrUHB06dV8WeubMLokL9XJQRVTflFb4KfergvphJSC5V+OritwBtfFYDkNA1ejSah/RzYrZERERERFRbsPhFRDiWlImvf9+pinWLi8UtXZu5KCOqbi4Wvj7UFL7yvEJxb8zLSDOoC1/d/OYhzmctZEmPm2KfQIOAjs5Ml4iIiIiIahEWv4hqOYvNjjdn/Q27QymJBfgYMfG+ntx+RhUiFAeU3z+COLxeFc82heL+2FeQ5vHvwpeCHv6/oqX3BhhkE/rXfwGRvs2dmzAREREREdUqLH4R1XJf/rYDp1OzVbEJ9/ZEkJ+XizKi6qSk8HVonSp+wRiCB+q9rCp86WBF38DZaGjaA5M+AIMavoRgU6yzUyYiIiIiolqGxS+iWmz3sVT88vdeVWxQpyboGV/fRRlRdVJe4SvdMwQP138F5zxCS2JGOR+Dg75AuMdp+HmGY1CDCfDzrOPslImIiIiIqBZi8YuoliossuKt71ZDiEuxsCAfPD+yq+uSomqjvMLXeY8QjG2gLnz569IxJPhz+OszEO7dDH3rPwuTngcpEBERERGRc7D4RVRLfTJvE9KyClSxyaNvgo/J00UZUXUhFAeUPz7WFL7SPILxSEN14SvccBKDgr6ASVeIFiH90SnqXsgSf/UQEREREZHz8BUIUS20cd8ZLN18VBUb2ScO7ZpGuSgjqi5KCl8H16ri5wzBeKzUiq+GxgT0CfwenjLQLfoRNAnu6eRsiYiIiIiIWPwiqnXyCi14/0f1qXz1IwLx2LAbXZQRVRfCYYey9FNN4SvNEIzHG76C1H/18Grj/Rc6+y2Gj0cg+tV/DqFeDZ2cLRERERER0UUsfhHVMv+ZvxmZueaSz3WyhNce6A1PA38cUPmEtRjK4qkQJ3eq4mmGYDzW8BWk/H/hS4KC7v6/oqX3BoR7N0Wfes/Cy+DvipSJiIiIiIgAsPhFVKtsOZCIP7eotzveNyAeTeuGlnMHESDMuXD8+iZw7pgqXrrwpZcs6B/4LeoZD6B5SH90Zn8vIiIiIiJyA3xVQlRLFBRZMO1HdYPy+pGBeGBwOxdlRNWByEmDY+7rQFaKKp5qCMETDSeVFL5Mch5uDpqBcM9UdIt+BE3Z34uIiIiIiNwEi19EtcR/F2xFenZhyeeyJOGV+2+Ch0HnwqzInYm0k3D8+gZQmK2KHzPWxTMNXsQFQyAAIFB/DjcHfY4Ik0Dfeq+hjjf7exERERERkftg8YuoFthxOBlLNh5Wxe7u1xrN69Up5w6q7ZQze6AseAewFqniO3ya48V6z6FQ5wUAiPQ4hoFBXyLWty761nsGXoYAF2RLRERERERUPha/iGq4wmIr3puzVhWrGxaAh29p75J8yP0ph9ZB+f1jQLGr4isCOuHNmEdhkw0AgMam7egd8CNahfZCp8hR0Mn8lUJERERERO6Hr1SIargZi7YhLaug5HNJAl65vxdPd6QyKdsXQ/n7a038x5CB+DTyHghJBgC09/kTHf1WoFvMA2gW3MvJWRIREREREVUcX/0S1WAJR1OwcN1BVWxE7zi0ahjuoozIXQmhQFnzHcS2hZqxTyLuwY91BgMAdLCid+APaO17Ev3qv4o63o2cnSoREREREdFVYfGLqIYqstjw7hz16Y7RoX54dGgHF2VE7ko4bFCWfgpxcK0qbocOb9Z9BMsDuwIAvOQcDAr6Ejf4CQxoMAU+HsEuyJaIiIiIiOjqsPhFVEN98dt2pGbmqWKT7u8Fo4fBRRmROxIWM5SF70Gc2a2KF8pGvFTvWWz3bQUACDEkYnDQF2geWB+9Y5+CQWd0RbpERERERERXjcUvohpo34lzmLdmvyp2R6+WiG8c6aKMyB2Jwmw4fn0DSDupil/Q++HZ+i/iqFd9AEAD4270Cfge8WG90THyXsj/3/eLiIiIiIioOmDxi6iGsVjteHfOWghxKRYZ4ovHhnV0WU7kfkRWChxzXwdy0lTxRI8wPNPgJaR4hgEA2vksQ0ffZegacz+ah/R1RapERERERETXhcUvohrmq993IPF8rio28b5e8DJyuyNdpJzdB2XxNMCsfk4Omhrg+frjkG3whw423BTwI1r4HECfeuMR4xfnomyJiIiIiIiuD4tfRDXIwdPn8ctf+1SxYd2bo32zKBdlRO5ECAViy3wo638AhKIa2+wbh4mxz6BIZ4RJzsOgoC/RyDsfAxq8gSBTtGsSJiIiIiIiqgQsfhHVEBabHe/MXgvlX/sdwwJ98OTtnVyYFbkLUZQP5fePIE7u0Iz9Edgdb8c8BIekR7A+GYODZqKhXxD61Z8CL4O/C7IlIiIiIiKqPCx+EdUQs5buwpm0bFVswn094W3ycFFG5C5E6jE4Fk8FctNVcQUSvgq7DV+H3QZIEuoZ96FfwHdoGtQGPes+Br3MZ4eIiIiIiKo/Fr+IaoAjZzPw48o9qtiQLs3QqUWMaxIityCEgEj4E8rfXwEOu2osR+eDV+s+ga3/38sr3mclOvkuQdvwoWgXPhwST3QkIiIiIqIagsUvomrOZnfgne/XwKFc2u4Y4u+Fp+/o7MKsyNWEtQjKsv9CHFqnGdvn1Qgvxz6N8x7BkGFDr4Cf0dx7J7rHPIomQd1dkC0REREREVHVYfGLqJqbvSwBJ1OyVLEJ9/WEr5enizIiVxOZSXAsfBe4kKQZ+zlkAP4TcTfssh4+uiwMCPwGdU2Z6Fd/EiJ8bnBBtkRERERERFWLxS+iauxYUiZmL9utig3s2ARdW8W6KCNyNeXgOijLPgNsxap4oWzE2zEP46+Aiwcg1PPch96BcxBm8seABm/C3zPcFekSERERERFVORa/iKopi9WON7/9Gw5FKYkF+3nhuRFdXJgVuYqw26D8/TVEwlLN2AljNCbGPoOzxkjIcKCT329o7f03mgb3QJeo0TDojC7ImIiIiIiIyDlY/CKqpv63cCtOn1Of7jj+nu7w82Yho7YROefhWDQVSDuuGfsjsBumRj8Ai+wJH10W+gd+ixjjOXSLeQKNAru6IFsiIiIiIiLnYvGLqBravP8s5q89oIoN6tQEPdvUd1FG5CrKiR1Qfv8QKC5QxS2SAdOj7sfioF6AJKGu5wH0DfwedX3CcVPse/DzrOOahImIiIiIiJyMxS+iaiYrz4x3vl+rikWG+OGFkd1ckxC5hBAKxMZfoGz8STOW4hGKCbHP4KhXfUhwoJPvErTxWY348FvQLvx2yBJ/9BMRERERUe3BV0BE1YgQAu/MXoPs/KKSmE6W8MaDfeBt8nBhZuRMwloM5Y+PII5u1oyt82uLN2MeRb7eG95yNvoHzkJDnyz0qjsRUb4tXJAtERERERGRa7H4RVSNLFh7EFsOJqliD97cHi0bhLkoI3I2kZsOx/y3gPTTqrgdMj6PGIE5oTcDkoQYz0PoGzAbzQKboEfdF2HU+7ooYyIiIiIiItdi8YuomjiZkoX/LtiiisU1DMeogfEuyoicTSQegGPhu0BRniqerfPFxHpPI8GnOSQouNH3d3TwXYNOUXejeUg/SJLkooyJiIiIiIhcj8UvomrAYrPjjW//gtXuKIl5Gz3w+gO9odfJLsyMnEXZvRzKyhmA4lDFjxnrYnz953HOIxRecg76Bc5CC/8i9Il9E0Gmui7KloiIiIiIyH2w+EVUDcxctA0nU7JUsfF3d0NEiJ+LMiJnEQ47lL++gkhYqhlb7d8Bb8Q8iiKdEdEeh9E38Du0q9MRnaLuhV72dEG2RERERERE7ofFLyI3t/VgEuau3q+K9b+xMQZ0bOKijMhZhDkXyqKpEIn7NWNfhN2Ob8KGQUgy2vv8ia4B69Cz7sOoH9DBBZkSERERERG5Lxa/iNxYdn4R3pm9RhULD/LB+Lu7uSgjchaRfuZiY/vc86p4keyJ12MexZqAG+EpFaJv4Gx0ChHoVfdd+HgEuyhbIiIiIiIi98XiF5GbEkLgvTlrcSHPXBKTJQlvPNgHPiZuaavJlGNboCz5ELAVq+KphhCMr/88jptiEWo4i0FB36FPTD+0Ch0ISWLvNyIiIiIiorKw+EXkphZvOISN+86qYmMGt0VcowgXZURVTQgBsekXKBt+1IwleDfDhHrPIEfvh+ZeG3FLnc3oV/95BLOpPRERERER0WWx+EXkhs6cy8Z/5m1RxVrUD8OYwe1clBFVNWEthrL0Y4gjmzRj84P74MPIURCygt4Bc3BHbCA6RLwBvezhgkyJiIiIiIiqFxa/iNyM1ebA69/+BYvNXhLz8jTg9Qd7Q6/j1raaSOSmX+zvlX5aFbdDh+lRo7AgpC/8dBkYVmcuRjQahijfli7KlIiIiIiIqPph8YvIzXy5ZDuOJ11Qxcbd3Q3Rof4uyoiqknJ6D5Tf3geK8lTxHJ0PJtR7Bgk+zVHPcx8erHcQ/WKfg1Hv46JMiYiIiIiIqicWv4jcyI7Dyfhp1V5VrE/7hhjYsYmLMqKqIoSA2LoAyrrvAaGoxo4bYzC+3vM45xmCLn5L8cwNddEk6DFIkuSibImIiIiIiKovFr+I3ERuQTHe+m61KhYW6IMX7+7BokcNIyxmKEs/gTi6WTO2xr89Xo95DDDYMDpiMR5sdgt8PUNdkCUREREREVHNwOIXkRsQQmDqD+uQmWsuiUkS8NoDveHn7enCzKiyiQtJcCx4B7iQrIorkDAz/A58V+cWhHmcxUvNzqNn9BjIEvu8ERERERERXQ8Wv4jcwO+bjmDdHnWz81ED4hHfJNJFGVFVUI5uhvLHx4C1SBXP1Xljct0nsdUvDu39tuPNNo0R6RPvoiyJiIiIiIhqFha/iFwsPbsA/5mv3v7WLDYUD9/S3kUZUWUTigPK+jkQW+Zrxo4aY/FSvWeRafTBQzHb8FjzXtDLXO1HRERERERUWVj8InIhIQQ++GkDzMW2kpjJU483H+wDvU7nwsyosghzLpTfPoA4s0cztjSwG96LfgABnun4T1wROoYNcH6CRERERERENRyLX0Qu9NfOk9i0/6wq9viwTogJC3BNQlSpxLkTcCx8B8jLUMXt0OGjqPswL7gvugTtxzttWyHAM9BFWRIREREREdVsLH4RuUhuQTE+/nWjKtaqQRhu79nCRRlRZVL2rYKy/HPAYVPFM/QBmFjvGRz1icazDY5idJNukNjUnoiIiIiIqMqw+EXkIp/O24yc/OKSzw16GZNG9YIsSy7Miq6XsNug/PUlxO5lmrHd3k0wKfYZePoU4ps2drQI7uSCDImIiIiIiGoXFr+IXGDrwUQs33ZMFRszuB3qRXDrW3Um8jPhWPgekHpUM/ZLSH98EnkPeoSexjttW8GkN7ogQyIiIiIiotqHxS8iJysstmLaj+tVsYZRQbivfxvXJESVQiQfgn3BO5DMuap4seSBd2IewprgeExokoE7G3RwUYZERERERES1E4tfRE72xW/bcT6roORzWZIwaVQvGPQ83bG6UvYsh2PFDEiKQxVP9qiDl+o9i+JAT/zU3oQGfpEuypCIiIiIiKj2YvGLyIn2n0rDgrUHVLERfVqheb06LsqIrodw2GBfORPSnhUo3alto29rvFb3CXSPysHrbRrDQ8fiJhERERERkSuw+EXkJFabA+99vw5CXIpFhvhh7C3cBlcdicIcFM9/DYbUU5qxb+oMxfeRg/ByS4GbY3h6JxERERERkSux+EXkJLOXJeBMWrYqNvG+HjB5GlyUEV0re+phWOa9Dk+zWRUvkj3xRsyjOBXZCHM7BCPa2+SiDImIiIiIiOgfLH4ROcHJlAv4fvluVWxIl2Zo3yzaRRnRtcpOmAvTqh/gqQhVPMUjFOPrPY9G9UMwt3UEPHSlN0ISERERERGRK7D4RVTFHIqC9+asg0NRSmLBfl54anhnF2ZFV8tuL8L5P19H2MFDmrEdPs0xud6TeLRVMEbU83FBdkRERERERFQeFr+Iqti81ftx6Ey6Kjbu7m7w8/Z0UUZ0tTKz9qN48dsIP1+oGfs5ZAC+rzcSH7UPQutA/kglIiIiIiJyN3ylRlSFUjLy8OWSHapYr/j66BXfwEUZ0dVwKDYcOjoLkSv/QLhZUY1ZJT3ei34QSQ164ud2vgjxlF2UJREREREREV0Oi19EVUQIgfd/XIdiq70k5uvlgRfu6ubCrKiiMs1ncHTr+4jfmQQPh7q/V4Y+AC/Wew4tmzfHVzeYYJDZ34uIiIiIiMhdsfhFVEWWbjmKHUdSVLGnhndGiL+3izKiilCEA3vSFsOx8Rd0PFGkGd/n1QivNngWj8ZH4tZobl0lIiIiIiJydyx+EVWBC7lmfDZ/syrWrmkUhnRp5qKMqCLyLOlYf/IzNNu6H/XO2zXjvwX1xHcNH8D77QPQIoA/PomIiIiIiKoDvnojqgIfzd2IfLO15HNPgx4T7usBSeL2OHckhMCJ7I3Ye+xrdN+Rg+ACh2rcDhkfRd2H040HYXZbbwSxvxcREREREVG1weJXJVq4cCEmTZpUoWsffPBBTJgwodzxgoICzJ49G6tWrUJSUhIURUFUVBT69OmD0aNHIygoqEJfp7LmoYpbt/s01iScUsXG3toB0aH+LsqILsfqMGNj0rcwn9yAAbuLYLKpG9vn6Hwwsd4zaNYyHjOaGaFnfy8iIiIiIqJqhcUvF2nRokW5YydPnsTYsWORkqLuF3X8+HEcP34c8+fPx4wZMxAXF3fZr1FZ81DF5Zst+PCXDapYs9hQjOjdykUZ0eWkFRzFmjP/Q/SJVPQ7bIEO6sb2x4x18UqD5zG2fSwGR3m4KEsiIiIiIiK6Hix+VZF9+/ZddtxgMJQZLygowCOPPIKUlBQYDAY899xzGDJkCIxGI3bu3Ilp06YhMTERjz/+OBYvXozQ0NAqnYeuzv8WbkVmrrnkc50s4+VRvaDXcZucO1GEAwlpi7AvdRE6HLTihpRizTWr/G/E100ew3sdgtDMnz8qiYiIiIiIqiu+Iq8inp6el/2fLJf9r/6bb75BcnIyAOD999/Hww8/jPDwcAQEBKBv37548sknAQCZmZn4/PPPy/36lTUPVdzx5Ez8vumwKjZqYBs0ig52UUZUljzLefx+fAqOnF2A3lvtuCFFfaKjAgn/C78T6zu9gO96hrLwRUREREREVM2x+OVGHA4Hfv75ZwBAfHw8Bg8erBn/4osvSj5fuHAhiorUL9wrcx66OjMXbYP416652PAAjBnUznUJkYoQAseyNmDh0ZdhTz2GAZvsiM4rVF1TIBvxcoPnUb/f3Xg33hu+Bvb3IiIiIiIiqu5Y/HIjCQkJyM7OBgAMGjRIM75gwQKcOnUKw4cPBwAUFxdj48aNVTYPVdzuY6nYcjBJFXtqeGd4GHQuyoj+zWIvwJqz/8O6xJkIPevAoK1mBFrVBd9EjzC83eYtPH1zT9wa7cGTOYmIiIiIiGoIFr+cQFGUK18E4MCBAyUfx8fHq8aKiorw2WefoXXr1nj22WfLvKey56GKEULg80VbVbHWjSLQpWVdF2VE/5aadwBz9z2HU9mb0eiALwYcyISHcKiu2eLTCsv6TsW7fZsh1ocFSyIiIiIiopqEzWyqyJIlS7B48WIcO3YMmZmZMJlMaN26Ne677z707du3zHtOnTpV8nF0dLRqbPbs2UhPT8f06dMRFhYGvV4Pu92uuqey53EWvafXFa+RJLnknwajT1WndFXW7DqOg6fTVbFn7roJHiZfF2VEwMWm9tuTfsKulHmARUK7XX5olZusuW5++M2oP/QJPBfp7YIsyR25888bcm98doiIiIjcE4tfVeTFF19UfW42m7FlyxZs2bIFo0aNwuTJkzX3ZGVllXwcGBhY8nF2dja+/vpr9OjRAx07dgQA+Pn5ISsrq2R7Y1XM4yyyXPGVNpIkQZLcZ2WO3aHg8/kbVLGebRujTZMYF2VEAGCxF2LFsfeRmLMLSk4wBibkIcqiLnxZJAPmt3gMtw8djhCj+zxT5D7c7ecNVR98doiIiIjcC4tflSgqKgoDBgyAwWBAhw4d0LFjR4SHh8NqtWLr1q344IMPkJSUhDlz5qB58+a4/fbbVff/03Tew0Pdb2jmzJkoKCjAuHHjSmIeHh4ALhbVSquseZxFURxXvEaSZEiSBCEEhKjYNlJn+H39fpw5d6nYKEsSnhjetULfE1WNnKJU/Hn0HWQXJUNJaoq7D++Dt1KsuibDEIg9fSbjwU5tIUsVewap9nDXnzfk/vjs0NW4mjf/iIiI6Pqw+FWJOnbsWLKi6t9MJhMGDBiAuLg4DBkyBAUFBZgxY4am+PUPWb7Uii0lJQU//fQThgwZgmbNmpXEK9JHrLLmqWp2i/mKLxIMRh9Ikg5CKLAVFzgps8uzWO34YpH6oIBBnZsgJtjoNjnWNin5B/D3mf+gwGqD15E43JO4ETKE6pojPo1hGD4JgyLrwGEpBMteVJo7/ryh6oHPDlWUJMlsj0BEROREbHjvRBERERg4cCAAIDExEUlJ6tMBvbwu9r6y2WwlsU8++QRCCFVzegCwWCyqe6piHrq8BWsPICOnsORzD70ODw/p4MKMardDmauw7OQ0ZBR5ITqhPu5L3KApfO2OvgkNxk5D08g6LsqSiIiIiIiInI0rv5yscePGJR8nJiYiJuZSb6igoCAAgMPhQH5+PlJSUvDHH3/g3nvvVV1ns9mQn5+vuuffKmseKl++2YLZy3erYsN7tURYEBscO5si7NicPAeHL/yF1Lzm6L83Bx0KtquucUDG8Q4PoH2fYaqtwERERERERFTzsfjlZCaTqeTjf6/MAoAGDRqUfJySkoLp06fDZDLhiSeeUF137ty5ku2K9evX13yNypqHyvfjyj3IN1tKPvc2euD+gfEuzKh2Krbn468z/0FK/mGcyrgJDx/YjvqWVNU1hTovWG9/DS0btXRRlkRERERERORKLH45WUZGRsnHYWFhqrGWLS+9OJ89ezY2bNiAp59+WrMqKyEhoeTjVq1aab5GZc1DZcvIKcTcv/erYvcNaAN/H6OLMqqdsotTsPLUhzhfVIDEpKGYcGwhAh356mu86iBwzAcICYtl/x0iIiIiIqJaisUvJ9u8eTMAwNfXV7PaKj4+HoGBgcjOzsbChQsRHByMBx54QDPH8uXLAQBGoxFdu3bVjFfWPFS2WUt3wWKzl3we7OeFEb1ZPHSmpLw9+PvMf5FSHArryc548+xP8BTqlZSZIU0RNeY96P1DeZojERERERFRLcaG95VECIGpU6fir7/+KveaZcuWYdeuXQCAYcOGwWhUrxTS6XS4++67Sz4fM2YMvL29Vdds3rwZa9euBQAMHz5ctY2ysuchrcTzOfh902FV7IGb28HkaXBRRrWLEAL70pdixanp2JvXGoEHGuLVM7M1ha+cht0R9sB7kH3Zy46IiIiIiKi248qvSvLNN99g1qxZmDVrFvr27Yvhw4ejZcuW8PLyQmpqKpYsWYJZs2YBAGJjYzWnLv7joYcewpIlS5CcnIwff/wR0dHR6NSpExRFwapVq/D+++9DCIGQkBA8/vjj5eZTWfOQ2pe/bYdDuXSCYHSoH27t1syFGdUeDsWGjcnf4tCFzdiafSeGHzuEwdkrNNcVdbwLwTfdy8b2REREREREBACQhBDiypfRldjtdnz44YeYM2eOppH9v8XFxeGjjz5SnbpY2smTJzF27FikpKSUOR4SEoIZM2YgLi7usjlV1jxVzVqUDyGUy15jMPpAlnVQFIfLejcdPpuOh95bqIpNebgv+rZv5JJ8apMiWy5WnfkYJ3IzsTn9Hkw4MR/xhcdU1zgkHeTBz8AQ16ck5g7PDVU/fG7oWvHZoYqSJBkeJl9Xp0FERFRrsPhVyc6ePYt58+Zh48aNSE1NRVFREUJDQ9GkSRMMGTIEAwcOhF5/5QV3BQUFmD17NlauXImkpCQIIRAZGYk+ffpgzJgxmub1VT1PVaouxa9nPvkdO49cKiQ2rRuCbyYOhyxzhVFVSi88gb/P/AdHCkJw+NwgTDs5AzHWdNU1Vk8fmO6YDKmu+kRHd3huqPrhc0PXis8OVRSLX0RERM7F4he5XHUofm0/lITn/rNUFfvkmZtxY/PyV/DR9XEodiScX4g9aUuQUNAX9nONMO3Mf+DnMKuuswZEwjTyDUhBkZo5XP3cUPXE54auFZ8dqigWv4iIiJyLPb+IrkBRBGYu3q6KtW8WxcJXFbpQdBZrz87EOXM6Vuc8jJapuXg56QPooT610RHTCqbhL0PiCwgiIiIiIiIqB4tfRFewJuEkjiRmqGKP39bRRdnUbIpwYG/6H0hIW4AMax2suDAe96asx5j037UXt+oDj0FPQdLxpE0iIiIiIiIqH4tfRJdhdzjwxW/qVV+92zbADbF1XJRRzZVTfA7rEmci3XwCx83tsDn7Drx6dhb65O7QXCv3vB9S5zt5oiMRERERERFdEYtfRJfx+6YjSM7IK/lcJ0t4ZOiNLsyo5hFCwcHMVdie+gusigOb8+5Aak48/nd6OloUnVJfq/OA7pYXIN/QzUXZEhERERERUXXD4hdROYosNnz7xy5V7JauN6BuWIBrEqqB8q0ZWJ/4FVILDqLQ4Y8VWQ/BO88Ds06/jgjbBdW1wisA+jtehRTV1EXZEhERERERUXXE4hdROX5dvR8X8i6dLOhp0OOBm9u5MKOaQwiBY1nrsCVlDmxKMVIsjbAy+yHE55zGO2c/g49SrL4hpC70I96A5M/tpkRERERERHR1WPwiKkNuQTF+WLFHFRvZpxVCA7xdk1ANYrblYEPS10jM2w0hgL2FfbAlbyjuyPwb41LmQAehul6q3xbysAmQjPx3T0RERERERFePxS+iMny/fDcKi60ln/t6eeLe/m1cl1ANcTJ7KzYlz4LFUQCr4ok1OffhTFFrvJD6I+7KXKm5Xmp7M+R+j0CSdS7IloiIiIiIiGoCFr+ISsnIKcSCtQdUsdED4+Hr5emijKq/AmsmtqTMwZncnQCALFsYlmc/AqvFH9PPfoRu+XvVN0gy5D4PQ2p/C090JCIiIiIiouvC4hdRKb9tOASr3VHyeZ1Abwy/qaULM6q+HIod+zOWIiFtMRzi4kq6E0VtsTrnPgRb8vH56SloXJykvslghDz0JciNeaomERERERERXT8Wv4j+xe5wYMnGw6rYqAHx8DTwP5WrlZJ/AJuSv0Ou5RwAwCFkbM0bhr2FfdDcfBIfnf4IwfZc9U2+IdDd+RqksAYuyJiIiIiIiIhqIr6iJ/qX9XvOIDP30gmPXp4GDOzUxIUZVT+F1ixsTf0Bp3K2lcSy7XXwd/ZopNvq4aac7ZiSOBNGYVXfGN7oYuHLJ8jJGRMREREREVFNxuIX0b8sXH9Q9fnATk3gbfRwUTbViyLsOJCxAglpC2FTigEAQkjYV9gTW/OGwiEMuD/jdzx9bq7mXqlJJ8i3jIfkYXR22kRERERERFTDsfhF9P/OnMtGwtFUVey2Hi1clE31cq7gMDYlf4fs4uSSWL49CKtz7kOKtSn87fmYkDwT/XK3a+6VOg2H3Gs0JEl2ZspERERERERUS7D4RfT/Sq/6atM4Ag2juAXvcsy2HGxL/QknsjeVxIQAjhR1wsbcO2ATJtyUsx0TU75DkD1PfbOsgzzgCchtBjg5ayIiIiIiIqpNWPwiAmAutmHZlmOqGFd9lU8RDhzK/As7z82DTSkqiZsdflibczfOWOLgb8/HSyn/Rf+crdoJPL0h3z4Jcr02zkuaiIiIiIiIaiUWv4gArNxxHIXFlxqwB/qa0Cu+vgszcl/nC49jU/IsXCg6q4qfLIrHuty7UKz44KacHZiQMgvBpVd7AUB4Q+huHQ8pOMZJGRMREREREVFtxuIX1XpCCCxcq97yeGu3G2DQ61yUkXsqtudje+ovOJq1Vh1XTNiQOxLHizrA356PySn/xYCyVnvJesjd7oLU6Q5IOv7oISIiIiIiIufgK1Cq9Q6cOo8TKRdKPpclCUO73+DCjNyLEAqOZq3H9tSfYXEUqMYSi2/AmpxRKFT80St3ByYml7PaK6whdEOeg1SHq+mIiIiIiIjIuVj8olpvwTr1qq+ucbEID/J1UTbu5ULRWWxMmoV083FV3KZ4YnPebTho7g5/ez7eSvkcA3M2ayeQdZC73gWp851c7UVEREREREQuwVejVKtl5RVhTcJJVez2nmx0b3WYsSttAQ5mrICAUI2lWBpjXe5o5NgD0TN3JyYlz0KwPVc7SVgD6G5+DlJYAydlTURERERERKTF4hfVan9sPgKbXSn5PDrUDx2aRbswI9cSQuBUzlZsTfkBZnuOaizPHoytebfjRHGbK6/26jISUpcRXO1FRERERERELsdXplRrORQFi9ertzwO69ECsiy5KCPXyilOxabk75BaoP53YlU8satgAPYV9oVD6NA9NwEvJ3+DEK72IiIiIiIiomqAxS+qtbYeSEJa1qUG7h4GHW7u3NSFGbmGXbFg9/nfsC/9DyjCURIXQsKRok7YnjcMhYoPjI5ivJT6HW7PWqOdRNZB6jICcpcRkHQGJ2ZPREREREREdHksflGttbDUqq++7RvB38foomxc42xuAjanfI8Ca4YqnmppiE15dyLDFgMAaG4+iSlnZyDWmqadpE496Ia8wNVeRERERERE5JZY/KJaKSUjD1sPJqpitanRfaE1C5tTZuNM7k5VPM8ehC15t+FkcVsAgE44MCZ9CR5OWwQ9FPUkkgypy0jIXbnai4iIiIiIiNwXi19UKy3ecAjiX4cYNosNRfN6dVyXkJMIoeDIhbXYlvoTbEpRSdymeGJXQX/sLegDBy4WsqIs5zElcSbizMe1EwVFQXfLOEiRTZyVOhEREREREdE1YfGLah2LzY4/Nh1RxWrDqq9cSxo2JH6Nc4WHS2JCSDhadCO25g2FWfH/J4hbstdjXMoceCvFmnmk+EGQez8EyaN2bRElIiIiIiKi6onFL6p1Vu86hdzCS0UdXy9P9G3f0IUZVS1FOLA//U/sSlsAh7CVxM9Z62Nj7p3IsMWWxPzt+ZiU/C365O7QTuTlD3nwM5Abd3RG2kRERERERESVgsUvqnUWrlM3ur+5S1MYPWpmz6oL5jNYn/QVMovOlMRsige25t+K/YU9Acgl8Y75+/F64hcItedo5pEadoB88zOQvAOrPmkiIiIiIiKiSsTiF9UqRxMzcPD0eVXstu7NXZRN1bErViSkLcS+9KUQ/2pUn2ppiNU5o5DnCC2JeSpWPHluLu7OXKGdSO8Juc9DkOIHQZIkZ6ROREREREREVKlY/KJapfSqrw43RCMmLMA1yVSRcwWHsSHpG+RazpXEylvt1bjoLN5KnIGGxcnaicIbQXfreEjB0U7ImoiIiIiIiKhqsPhFtUa+2YKV20+oYjWp0b3VYcb21F9w+MLfqniqpRFW59ynWu0lCwX3ZPyJJ9LmwyDs6okkGVLnOyF3uxuSjj8iiIiIiIiIqHrjK1uqNf7cchQW26VCT51Ab3RtFXuZO6qPs7kJ2JT8LQpt2SWxS6u9blJdG2NJw2uJX6KN+Zh2Iv8w6G55AVJMzSkKEhERERERUe3G4hfVCkIILFqv3vI4tHtz6HVyOXdUD1aHGRuTvsXJnC2qeFmrvSShYETmKjydNheeilUzl9SyN+R+j0Iyeld53kRERERERETOwuIX1Qq7jqYg8Xxuyec6WcatXW9wYUbXz2zLxfJT7+OC5iTHodhf2Et1bZQlHa8mfYl2hUe0Exl9IA98EvIN3as2YSIiIiIiIiIXYPGLaoXSje57ta2PYH8vF2Vz/fIs57Hs5DTkWS+dXJliaYQ1pVZ7QQjcfmE1njv3E0yKRTOP1LA95EFPQ/INdkbaRERERERERE7H4hfVeBnZBdiw94wqVp0b3WeaT2P5qfdRZM8DUP5qrzBrJl5N+hodCw5oJ/H0gtx3LKRWfSFJkhOyJiIiIiIiInINFr+oxvtt42E4FFHyef3IQLRpFOHCjK5dSv4BrDr9MWxKMQDggi0Cy7Ie1az2uiVrPcad+wHejiLNHFL9eMiDn4HkF6oZIyIiIiIiIqppWPyiGs3ucGDJxsOq2O09WlTL1U4ns7dgbeIMKMIBAEi2NMHyrEdgFaaSa0JtWXg56Rt0y9+rncDDBLn3Q5DaDKiW3z8RERERERHRtWDxi2q09XvOIDPXXPK5yVOPgR2buDCja3MgYwW2pMwBcHEF21FzB6zJuQ/KP/8JC4FB2ZvwUur38HGYNfdLsXGQBz8LKSDMiVkTERERERERuR6LX1SjLVyvbnQ/sGMTeJs8XJTN1RNCYOe5X7Enfcn/fw4kFPTHtvyhJdcE23IwMXkWeuXt0k5g8ITcawykdjdDkmRnpU1ERERERETkNlj8ohrrzLlsJBxNVcVu61F9Gt0rwoENSd/gWNa6//9cxvrcEThk7l5yTZ+cbZiYPAsBjgLtBNHNobv5OUhBkc5KmYiIiIiIiMjtsPhFNdae4+dUn7duFI5G0cEuyubq2BUL/j7zGRLzdgMAbIonVmY/gLOWVgAAX3shXkqZjYE5m7U36z0g97wfUvtbIMk6Z6ZNRERERERE5HZY/KIaKzzYR/X5Pf3auCaRq1RsL8CKU9ORbj4OADA7fLE063Fk2GIBAJ3y9uHVpK9Qx56tvTmyKXRDnocUHO3MlImIiIiIiIjcFotfVGN1alEXL93bA1sPJKJbXD10b13P1SldUYH1ApadnIocy8Xtmtn2Olh64UnkOUJgdBTj2XM/444Lf2tv1Okhd78PUsfbuNqLiIiIiIiI6F8kIYRwdRJUu1mL8iGEctlrDEYfyLIOiuKArbiM/lY1QFZRMpafmoZCWxYA4JylAf7MehQW4YO4wmN4I3EmYqzp2hvr1IfulnGQ6tRzbsLVQG14bqjy8bmha8VnhypKkmR4mHxdnQYREVGtwZVfRG4greAoVp7+EBZHIQDgZFE8/soeDVkBnjw/F6PS/4AOperUkgyp8x2Qu90NSWdwQdZERERERERE/9fenUdHVd//H3/dyUIWCBCysAqIJVSQJEBF4StFUSmboSKFsFRQsSgiKvyKWgWpyxFLBX6ICW5tsCztV6IGfsiiFcEiUlkELZuQmBDWkATINjPJ3N8flCnTmURAMhNuno9zOH7mfj735j3H9znoK/d+bt1H+AUEWHbxVn36/euqMp2SpK9LbtU/ztyt68oPa1ZuujpW5Hqf1LTlub29Wv/Uz9UCAAAAAHB1IfwCAmj3iY+05cgSSaZcpqHNZ+7WtyU/17gTq/Tg8RUKMau8zjG6DZLt1vEyQsP8XzAAAAAAAFcZwi8gAEzTpS1Hluqbkx9JkpyuEH1SfK+cp1vojdwX1PXfb3r00KiZbIMek619sp+rBQAAAADg6kX4BfhZpcuhDbnpyi7+UpJ0xH6dPi0apdtP7NaUo68p3GX3OsfofKtsd/xGRnhDf5cLAAAAAMBVjfAL8KOKyhKty35Vx0v3yelqoC/OpOjwmWTNzH1Dt5zd6X1CeJRsv5gkW6fefq8VAAAAAAArIPwC/OSs/aTWHHpFxfYjyrMnaEPxaHUqPqqluU8rtrLYa71x3Y2yDZgso2FT/xcLAAAAAIBFEH4BflBQlq01h+ao2GHX5jOjtL+0pyYeW6Ffn1glm0yPtWZouIJunyCj6x0yDCNAFQMAAAAAYA2EX0AtyzuzUx/n/F99V/YTfVacqiblDr2V+7y6lB30Xtyqk4Lv+j8ymsT7v1AAAAAAACyI8AuoRXtPbdDH3y/TxtMjdaD8Rt1ZtFlPHX5HDV0VHutMGbL1+pVst4ySYQsKULUAAAAAAFgP4RdQC0zT1PZjmfrfnGxtPP07yRmqGfmLNKRok/fihtEKumuabG27+r9QAAAAAAAsjvALuMJcZqVWZy/Rn3Ku0aGKfkooy9aL3y9UW8cxr7XGT3rKNvBRGRGNA1ApAAAAAADWR/gFXEH2yjL9cdcaZR3vJ7srUqkFH2ny0eUKMas8FwaFyNbvfhndBrGpPQAAAAAAtYjwC7gCvi9x6i8HD+mT40EqqrxNTZ2nNTtvjnqf/dp7cbM2Chr6Wxlx7f1fKAAAAAAA9QzhF3CZCuwurT3i0Id5Z3SgJFTSuTc03nh2t36fm65mlae9zjGSfiHb7Q/ICAnzc7UAAAAAANRPhF/AJShxmvr7cYdW5zv1z1NOuWRICpVMU4ml+zWiYJ3uOP2l94lhkbINmCxbp//xe80AAAAAANRnhF/AD3BUmfrHSac+OuLUxhNO2V3nZww1cDl0Z9EXGlGwTgkV3/u+QOvrFXTXNBmN4/xVMgAAAAAA+DfCL8AHl2lqe2GVPjri0MfHnDrjND3m4x0FGl7wsVIKN6hJVUk1VzFk9B4h2/+kyrAF1X7RAAAAAADAC+EXcAF7lan/d8ShvxyyK7vU5TlpmupeukcjCtapz+ltCpLp+yKS1KyNbP0fkq1t19otGAAAAAAA1IjwC5B0xunS/37v0LIcu045PEOtsKoKDSj+h35VsF7XVRyu4SqGjOt+JqPHEBntkmQYRu0WDQAAAAAAfhDhF+q1I+UuLcmu0Pt5DpVXec61sp/Q8FPrNaTwM0VVlVV/kbBIGYn9ZUseKKNp89otGAAAAAAAXBLCL9RLe09XKuOQXeuPOVX17xu9YpxFSirdp8TS/Uoq3aeO5bmy1fRoY2w72XoMltG5r4yQMP8UDgAAAAAALgnhF+oN0zS1peBc6LW1wKF29qO664Kwq5Xj5A9fw7DJ1vEm2XoMkdp04dFGAAAAAADqOMIvWJ7TZWr94TL9Y/ceRZ/cq+Gl+/VC6f4a3tLorSosQsHJgxTUbaCMqNharBYAAAAAAFxJhF+wLNM0tX3LRgVtW6k+JQd1p+m85GtUxMYr/MYRCr2+r4zg0FqoEgAAAAAA1CbCL1jW3m+/VuKGP1z0+ipDOtU4WPYWbdT42r5q0qGfGkY2qb0CAQAAAABArSP8gmWdPZJT47wjWDrRJFjHo4N0JraZ4jr0V8e42xUe0tg/BQIAAAAAgFpH+FUPlJSUKCMjQ+vXr1deXp5cLpdatWqlfv366d5771V0dHSgS6wV0T9tq2O7mqq5s0iSVBgaqZNNDRU2q9TxpsEqbhSk1lGJ+mnM7fpZVJJshi3AFQMAAAAAgCuN8MviDh48qAkTJig/P9/j+IEDB3TgwAG99957SktLU9euXQNUYe2pCDuuDbfYZJy5TkERp+WMsEuGoQZBjZXQrK/ubNZPUQ3iAl0mAAAAAACoRYRfFlZSUqIHH3xQ+fn5CgkJ0WOPPabBgwcrLCxMX331lWbPnq3c3Fw99NBD+uCDDxQba623GLaJStI/w/+mygYn5ZIUF9FR18f0U/smPRVsY/N6AAAAAADqA8IvC3v77bd1+PBhSdIrr7yigQMHuuduv/12lZSUaPr06SooKNDrr7+umTNnBqrUWtG4QXMN7/SKjpXuU9OwNmoWfk2gSwIAAAAAAH7GJkcWVVVVpWXLlkmSkpOTPYKv8/OLFi1yf87MzFR5eblfa/SHhqExuq5pb4IvAAAAAADqKcIvi9q+fbuKis5t9D5gwACv+RUrVujQoUMaNmyYJKmiokKff/65X2sEAAAAAACobYRfFvXNN9+4x8nJyR5z5eXlWrBggRITEzVlyhSf5wAAAAAAAFgBe35Z1KFDh9zj1q1be8xlZGToxIkTmjNnjuLj4xUcHKzKykqPc/wpuEHED64xDJv7nyFhDWu7JFgEfYPLQd/gctE7AAAAdRPhl0UVFha6x02bNnWPi4qK9NZbb6lPnz7q2bOnJCkqKkqFhYXuxyT9zWYLuui1hmHIMC5+PSDRN7g89A0uF70DAABQtxB+WdT5zetDQ0NlGIb7eHp6ukpKSjR16lT3sdDQUElSWVmZf4v8N5er6gfXGIZNhmHINE2ZpssPVcEK6BtcDvoGl4vewaW4lF/+AQCAH4fwy+Jstv9s65afn6+lS5dq8ODB6tSpk/u4yxXY/0CvtJf94P8khIQ1lGEEyTRdclaU+KkyXO3oG1wO+gaXi97BxTIMm0LDGwW6DAAA6g02vLeoiIhz+2g5nU73sXnz5sk0TY9N7iXJbrd7nAMAAAAAAGAV3PllUdHR0ZKkqqoqnT17Vvn5+Vq1apVGjx6tNm3auNc5nU6dPXvW4xwAAAAAAACr4M4vi7r22mvd4/z8fM2ZM0fh4eF6+OGHPdYdPXrU/dhj+/bt/VojAAAAAABAbSP8sqguXbq4xxkZGdq0aZPuu+8+r7u7tm/f7h7fcMMNfqsPAAAAAADAHwi/LCo5OVlNmzaVJGVmZqpZs2YaP36817o1a9ZIksLCwtS7d2+/1ggAAAAAAFDbCL8sKigoSKmpqe7P48aNU2RkpMeazZs3a8OGDZKkYcOGKTw83J8lAgAAAAAA1DrCLwu7//771bp1a0nSkiVLtHr1ahUWFqqgoEDLli3TpEmTZJqmYmJi9NBDDwW4WgAAAAAAgCvPME3TDHQRqD0HDx7UhAkTlJ+f73M+JiZGaWlp6tq1q58r+w9H+VmZpqvGNSFhDWWzBcnlqpKzosRPleFqR9/gctA3uFz0Di6WYdgUGt4o0GUAAFBvBAe6ANSuDh06KCsrSxkZGVq3bp3y8vJkmqZatmypfv36ady4cV6b4AMAAAAAAFgFd34h4LjzC7WFvsHloG9wuegdXCzu/AIAwL/Y8wsAAAAAAACWRfgFAAAAAAAAyyL8AgAAAAAAgGURfgEAAAAAAMCyCL8AAAAAAABgWYRfAAAAAAAAsCzCLwAAAAAAAFgW4RcAAAAAAAAsi/ALAAAAAAAAlkX4BQAAAAAAAMsi/AIAAAAAAIBlEX4BAAAAAADAsgi/AAAAAAAAYFnBgS4AMIxLy2AvdT0g0Te4PPQNLhe9g5rQHwAA+JdhmqYZ6CIAAAAAAACA2sCvnQAAAAAAAGBZhF8AAAAAAACwLMIvAAAAAAAAWBbhFwAAAAAAACyL8AsAAAAAAACWRfgFAAAAAAAAyyL8AgAAAAAAgGURfgEAAAAAAMCyCL8AAAAAAABgWYRfAAAAAAAAsCzCLwAAAAAAAFgW4RcAAAAAAAAsi/ALAAAAAAAAlkX4BQAAAAAAAMsi/AIAAAAAAIBlEX4BAAAAAADAsgi/AAAAAAAAYFmEXwAAAAAAALAswi8AAAAAAABYFuEXAAAAAAAALIvwCwAAAAAAAJZF+AUAAAAAAADLIvwCAAAAAACAZRF+AQAAAAAAwLIIvwAAAAAAAGBZhF8AAAAAAACwLMIvAAAAAAAAWBbhFwAAAAAAACwrONAFADUpKSlRRkaG1q9fr7y8PLlcLrVq1Ur9+vXTvffeq+jo6ECXiAA5evSoXn75Za1Zs0aStHjxYvXs2fOizqWv6pdt27YpKytLW7duVUFBgex2u2JjY5WUlKS7775bvXv3vqjr0Df1y+7du5WZmakvv/xSR48elWmaatasmZKSkjRkyBD17dv3oq5D3wAAAASeYZqmGegiAF8OHjyoCRMmKD8/3+d8TEyM0tLS1LVrVz9XhkByOBz605/+pPT0dJWVlbmPX2z4RV/VH+Xl5ZoxY4aysrJqXHf33XfrhRdeUFBQULVr6Jv648yZM3r22WfdwXp1+vTpo/nz5ysiIqLaNfQNAABA3UD4hTqppKREKSkpOnz4sEJCQvTYY49p8ODBCgsL01dffaXZs2crNzdXMTEx+uCDDxQbGxvokuEHmzZt0gsvvKCcnBxJUvPmzXXs2DFJFxd+0Vf1h8Ph0Pjx4/XVV1/JZrNpxIgRSklJUdu2beV0OrVnzx69+uqr2rdvnyRpwoQJmjZtms9r0Tf1y7x585SWlqYmTZpozJgxuu2229S6dWtVVFTou+++0+LFi7VhwwZJ0h133KHXXnvN53XoGwAAgLqDPb9QJ7399ts6fPiwJOmVV17RAw88oObNm6tJkya6/fbbNWnSJElSQUGBXn/99UCWCj+orKzUI488ogceeEA5OTmKjY3V7NmzNXv27Eu6Dn1Vf4SGhmr06NGKi4vTW2+9peeee07JycmKjo5WfHy8+vbtq7/+9a9q06aNpHPhaVFRkc9r0Tf1y5QpUzRz5kx99NFHmjx5sjp37qzGjRsrPj5evXv31qJFi5SamipJWr9+vfbv3+/zOvQNAABA3UH4hTqnqqpKy5YtkyQlJydr4MCBXvOLFi1yf87MzFR5eblfa4R/BQcHKyoqSiEhIZowYYLWrl2roUOHyjCMi74GfVX/DBw4UJ9++mm1e3qFh4drzJgxkiS73a6tW7d6raFv6h/DMDRq1Kga9+IaOXKke3zw4EGvefoGAACgbiH8Qp2zfft29x0YAwYM8JpfsWKFDh06pGHDhkmSKioq9Pnnn/u1Rvjf9OnTtXr1ak2bNk2RkZGXfD59VT8FB9f8Xpf27du7xydPnvSap2/gi8PhcI/j4uK85ukbAACAuoXwC3XON9984x4nJyd7zJWXl2vBggVKTEzUlClTfJ4Da2rcuLGuueaayz6fvoIvF740oXHjxl7z9A18ycjIkCT95Cc/Ubdu3bzm6RsAAIC6peZfiQMBcOjQIfe4devWHnMZGRk6ceKE5syZo/j4eAUHB6uystLjHMAX+gq+7Nq1yz1OSkrymqdv4HK55HQ6VVpaqn/961/685//rE2bNqlly5aaP3++z8ev6RsAAIC6hfALdU5hYaF73LRpU/e4qKhIb731lvr06eN+q19UVJQKCwur3agaOI++wn9zOBxauXKlpHN355zf/P5C9A2ysrI0ffp09+dmzZpp8uTJ+vWvf62oqCif59A3AAAAdQuPPaLOOb/pb2hoqMdv1NPT01VSUqKpU6e6j4WGhkryfHQJ8IW+wn9744033Pt8Pfrooz7X0DfIzs72+Hzq1Cm9++67SktLq/bfNX0DAABQtxB+oc6y2f7Tnvn5+Vq6dKkGDx6sTp06uY+7XK5AlIarGH0F6dyG5Onp6ZKk4cOHq1evXjWup2/qr8cff1z79u3T9u3blZWVpQcffFAOh0PvvPOORowYoZKSkmrPpW8AAADqBsIv1DkRERGSJKfT6T42b948mabpsTmwJNntdo9zgOrQVzjv8OHDmjRpkpxOp7p06aJnnnmm2rX0Dc6LjIxUQkKCpk6dqnfeeUc2m0379+/XvHnzvNbSNwAAAHUL4RfqnOjoaElSVVWVzp49q71792rVqlUaOXKkx548TqdTZ8+e9TgHqA59BUk6fvy4xo8fr8LCQrVp00ZpaWkKCwurdj19A1+Sk5PVvXt3SdL777/vNU/fAAAA1C2EX6hzrr32Wvc4Pz9fc+bMUXh4uB5++GGPdUePHnU/LtK+fXu/1oirD32FgoICjR8/Xrm5uWrVqpUyMjIUFxdX4zn0DarTrl07SVJJSYnHBvcSfQMAAFDXEH6hzunSpYt7nJGRoU2bNum+++7z+q349u3b3eMbbrjBb/Xh6kRf1W/Hjx/XmDFjdPDgQbVt21aLFy9Wq1atfvA8+gbVqaiokCQZhqHIyEiPOfoGAACgbiH8Qp2TnJzsfjV8ZmammjVrpvHjx3utW7NmjSQpLCxMvXv39muNuPrQV/VXXl6eUlNTlZ2drU6dOmnp0qVq3br1RZ1L38CXqqoqbdu2TZLUtm1bNWjQwGOevgEAAKhbCL9Q5wQFBSk1NdX9edy4cV6/Vd+8ebM2bNggSRo2bJjCw8P9WSKuQvRV/bR//36lpqYqPz9fvXr10pIlSxQTE3PR59M39c+bb76psWPHqri4uNo1aWlpOnLkiCRp9OjRXvP0DQAAQN1C+IU66f7773ffmbFkyRKtXr1ahYWFKigo0LJlyzRp0iSZpqmYmBg99NBDAa4W/lBVVSW73e7x58I3qTmdzmrnzqOv6pcdO3ZozJgxOnnypAYMGKAFCxYoJCTEq4/O/3E4HD6vQ9/UH3v37tVrr72mrVu3qn///nrttdf07bff6syZMyoqKtKWLVv06KOPasGCBZKkm266ySPkuhB9AwAAUHcYpmmagS4C8OXgwYOaMGGC8vPzfc7HxMQoLS1NXbt29XNlCITMzEw99dRTF73+l7/8pV5++WWv4/RV/TF27Fht3br1ote3a9dOa9eu9TlH39Qf27Zt09NPP62cnJwa1w0ePFizZs1Sw4YNq11D3wAAANQNwYEuAKhOhw4dlJWVpYyMDK1bt055eXkyTVMtW7ZUv379NG7cOF4Nj0tGX6E6Nb1tj76pP7p3767Vq1dr9erV+vvf/65du3apoKBAwcHBio+PV/fu3ZWSkqIePXr84LXoGwAAgLqBO78AAAAAAABgWez5BQAAAAAAAMsi/AIAAAAAAIBlEX4BAAAAAADAsgi/AAAAAAAAYFmEXwAAAAAAALAswi8AAAAAAABYFuEXAAAAAAAALIvwCwAAAAAAAJZF+AUAAAAAAADLIvwCAAAAAACAZRF+AQAAAAAAwLIIvwAAAAAAAGBZhF8AAAAAAACwLMIvAAAAAAAAWBbhFwAAAAAAACyL8AsAgDrM6XTKNM1AlwEAAABctQi/AACow1auXKnExET94he/0MaNGwNdDgAAAHDVIfwCAKCOs9vtys7OVkFBQaBLAQAAAK46wYEuAABwdXvyySf1/vvvex0PCQlRZGSkYmNjlZCQoD59+uiOO+5QREREAKoEAAAAUF8RfgEAaoXT6VRxcbGKi4t14MABrVq1SrGxsXr22WfVv3//QJcHAAAAoJ4g/AIAXDFPPPGEOnbsKEkyTVOlpaX6/vvvtWHDBu3evVsnT57UlClT9Ic//EFDhgwJcLUAAAAA6gPCLwDAFZOUlKSePXt6HX/kkUe0dOlSzZo1S6Zp6vnnn9fPf/5zRUVFBaBKAAAAAPUJG94DAPxi1KhR6t27tyTp9OnT+vTTTwNcEQAAAID6gPALAOA358MvSdq7d2+16yorK/Xee+9p/Pjxuvnmm9W5c2fddNNNGjFihNLT03XmzJkf/FlffvmlEhISlJCQoAULFtS49rbbblNCQoJuu+22atcsWLDAa012drZmz56tgQMHKjExUd27d9fIkSN9vgCgOmVlZUpPT1dKSooSExOVnJysoUOHKj09XeXl5Rd9HQAAAAC+8dgjAMBvGjVq5B6Xlpb6XFNYWKgJEybom2++8TheVFSkoqIi7dy5U4sXL9a8efN044031mq9vhQXF8s0TS1cuFDp6elyOp0e8zt27NCOHTuUk5Ojxx9/vMZrnTx5UmPHjlV2drbH8T179mjPnj1asWKF7rrrriv+HQAAAID6hPALAOA3J06ccI+jo6O95ktKSjRq1Ch3GHT99dcrJSVFLVu2VGFhodauXavNmzfr1KlT+s1vfqPly5crISHBb/VL50K75557TsuXL1dERIRGjhyppKQkVVZW6tNPP9WaNWskSW+88YbuuecetWnTxud1ysvLNX78ePd3bdWqlX71q1+pXbt2On36tD755BN99tlnWrhwod++GwAAAGBFhF8AAL+5cJ8vX3dtLVy40B0G3XPPPfr973+voKAg9/zIkSOVnp6uuXPnqqysTDNnztTy5ctrv/D/snz5cnXp0kV//OMf1a5dO/fxoUOHatKkSfr444/lcrn0ySefaNy4cT6vkZGRoQMHDkiSevTooTfffFMRERHu+REjRmjdunV64oknvO4uAwAAAHDx2PMLAFDrqqqqNHfuXPejjJ07d9bNN9/ssebUqVN69913JUnNmzfXjBkzPIKv8yZOnKikpCRJ5x4x3L59e+0W70PHjh2VkZHhEXydN2jQIPc4NzfX5/kOh0Nvv/22JKlBgwaaM2eOR/B13p133qnJkydfmaIBAACAeoo7vwAAV8zOnTtVVlYmSTJNU6Wlpfruu++0du1a9x1dzZs31/z582UYhse5GzdudN/hlJKSogYNGlT7c+655x7t3LlTkvTRRx+pW7dutfBtqvfkk0+qYcOGPucufMyxug3rt23b5t60v2/fvmrRokW1Pys2NvZHVAoAAACA8AsAcMW8+uqrNc7feuutmjVrluLj473mNm/e7B537969xutcGHbt3r37Eqv88YKDq//rMzIy0j02TdPnmi1btrjHgdi0HwAAAKhPCL8AALVu8ODBGjdunG644YZq1xw7dsw9rm6TeF/zeXl5P77AKyg0NPQH11z4Xdu2bVub5QAAAAD1Hnt+AQCumMWLF2vfvn3at2+fnn/+effxs2fP1hh8SVJhYaF7XN0jheeFhoYqJCREktyPD15NLuW7AgAAAPhxCL8AALVi+PDhSk5OliR99tlnWrlyZY3rq6qqLuvn1PQIYl114eOQ/733GQAAAIAri/ALAFArDMPQc889535j40svvaSioqJq10dFRbnHpaWlNV7b4XC4N8ePjo6+AtX6V+PGjd3jH/quAAAAAH4cwi8AQK3p1KmTxo4dK+nco34vvfRStWsvZR+v3Nxc97hly5Y/skr/i4mJcY/z8/MDWAkAAABgfYRfAIBaNXnyZPfbHbOysrRp0yaf6xITE93jbdu21XjNC+d79erlc82FjxNe7iOVteXC77pjx44AVgIAAABYH+EXAKBWNWzYUL/73e/cn2fOnKmysjKvdf3793c/IpmVlSWHw1HtNVesWOEe9+vXz+ea8PBw9/j48ePVXmv9+vU6cuRI9V+gFvTo0UM227m/gj/55BOVlJT4XFdVVaUPP/zQn6UBAAAAlkP4BQCodf3791efPn0knXvMb+7cuV5r4uPjNWTIEEnSkSNH9OKLL8rlcnmtS09P19dffy1JGjRokDp27OjzZ7Zr184dMG3cuNFn4PbBBx9o2rRpHhvQ+0NcXJz69+8vSTp9+rRefPFFrxrsdrumTp2qLVu2+LU2AAAAwGquvldkAQCuSjNmzNCgQYNkt9v1l7/8RYMHD/Z4/E+Spk+fri+++ELHjx/X8uXL9e233+quu+5SixYtdOrUKa1Zs0ZffPGFpHMB0m9/+9tqf16jRo3Uq1cvff755yooKNCoUaM0evRoxcXFKT8/X1lZWdqxY4diY2PVsWNH7dq1q1a//3+bPHmyPvvsM5WVlSkzM1PZ2dkaOnSoGjdurJycHP3tb3/TkSNH9LOf/Uz//Oc//VobAAAAYCWEXwAAv2jTpo0mTpyo+fPny+Vy6ZlnnlFmZqZCQkLca6Kjo5WRkaGJEycqJydHu3fv1u7du72udc011+idd95R8+bNa/yZTz/9tFJTU3X69Gnt2bNHzzzzjMd8QkKC5s6dq8WLF/s9/OrQoYMWLlyoiRMnym63a8eOHV77f40cOVKpqalKSUnxa20AAACAlfDYIwDAbx544AG1b99ekrR//3698cYbXmvat2+vlStXasaMGbrpppsUExOj4OBgNWrUSN26ddNTTz2lrKwsj7dDVqdDhw5asWKFhg0bphYtWigkJETR0dHq1auXXnzxRWVmZqpDhw6Kjo6+4t/1YvTq1Usffvihhg8frlatWikkJERNmzbVLbfcokWLFmnWrFmKi4sLSG0AAACAVRimvzc6AQAAAAAAAPyEO78AAAAAAABgWYRfAAAAAAAAsCzCLwAAAAAAAFgW4RcAAAAAAAAsi/ALAAAAAAAAlkX4BQAAAAAAAMsi/AIAAAAAAIBlEX4BAAAAAADAsgi/AAAAAAAAYFmEXwAAAAAAALAswi8AAAAAAABYFuEXAAAAAAAALIvwCwAAAAAAAJZF+AUAAAAAAADLIvwCAAAAAACAZRF+AQAAAAAAwLIIvwAAAAAAAGBZhF8AAAAAAACwLMIvAAAAAAAAWBbhFwAAAAAAACyL8AsAAAAAAACWRfgFAAAAAAAAyyL8AgAAAAAAgGURfgEAAAAAAMCy/j9wFwyW5Fft8gAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 19,
- "metadata": {
- "image/png": {
- "height": 378.25,
- "width": 516.375
- }
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# | label: score-prediction-fixture-mixed-effects\n",
- "# | message: false\n",
- "# | warning: false\n",
- "predict_mixed_effects = partial(\n",
- " predict_model,\n",
- " formula=\"score ~ home + C(team) + C(versus) + (1 | player)\",\n",
- ")\n",
- "teams = backtest(players, predict_mixed_effects)\n",
- "fig = add_backtest(fig, teams, \"Mixed effects\")\n",
- "fig"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e0ab35e1",
- "metadata": {
- "cell_marker": "\"\"\""
- },
- "source": [
- "## Conclusion\n",
- "\n",
- "We developed a comprehensive framework for the fantasy football team picking\n",
- "problem. There are more ideas we could explore to improve our chances of\n",
- "winning:\n",
- "\n",
- "* enriching our data and models with player scouts;\n",
- "* including more information in our priors;\n",
- "* testing strategies that balance predicted score and appreciation;\n",
- "* further model diagnostics.\n",
- "\n",
- "However, I suppose expert human player predictions have a certain edge over\n",
- "those of hobbyist statistical models in fantasy leagues, due to the fact that\n",
- "there are all sorts of relevant data unavailable in public datasets.\n",
- "\n",
- "At least, this seems to be the case for brazilian soccer, also known as \"a\n",
- "little box of surprises\"."
- ]
- }
- ],
- "metadata": {
- "jupytext": {
- "cell_metadata_filter": "-all",
- "main_language": "python",
- "notebook_metadata_filter": "-all"
- },
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/blog/fantasy-football/index.qmd b/blog/fantasy-football/index.qmd
new file mode 100644
index 0000000..72f8550
--- /dev/null
+++ b/blog/fantasy-football/index.qmd
@@ -0,0 +1,234 @@
+---
+title: Picking a fantasy football team
+description: "{{< bi journal-text >}} What's the optimal run in a season?"
+date: '2023-09-21'
+jupyter:
+ jupytext:
+ text_representation:
+ extension: .qmd
+ format_name: quarto
+ format_version: '1.0'
+ jupytext_version: 1.16.2
+ kernelspec:
+ display_name: Python 3 (ipykernel)
+ language: python
+ name: python3
+---
+
+_This post is a work in progress._
+
+```{python}
+#| label: setup
+#| include: false
+%config InlineBackend.figure_formats = ["svg"]
+%load_ext jupyter_black
+
+from matplotlib import font_manager
+import matplotlib.pyplot as plt
+
+font_path = "../../assets/lmroman10-regular.otf"
+font_manager.fontManager.addfont(font_path)
+
+plt.rcParams["font.family"] = "Latin Modern Roman"
+plt.rcParams["mathtext.fontset"] = "cm"
+```
+
+[Cartola](https://cartola.globo.com) is a fantasy football league following the Brazilian Série A, where players assume the role of team managers. For the past couple of seasons, I've been collecting [historical data](https://github.com/assuncaolfi/tophat/tree/main) to attempt to answer the question: what's the optimal run in a given season?
+
+## The problem
+
+Before each round $t = 1, \dots, 38$, managers are presented with $N_t$ candidate players. Candidates have costs $\mathbf{c}_{t} \in \mathbb{R}_+^{N_t}$ and positions $\mathbf{p}_{t} \in \{1, \dots, 6\}^{N_t}$. For convenience, positions can be encoded as dummies $P_t \in \{0, 1\}^{N_t \times 6}$. There are $i = 1, \dots, 7$ valid formations $F \in \mathbb{N}^{7 \times 6}$, where $F_{ij}$ indicates exactly how many players of position $j$ are allowed in formation $i$. All formations include $11$ players and $1$ coach, or $\sum_{j=1}^6 F_{ij} = 12$ for all $i$. The manager begins each round with a budget $b_t \in \mathbb{R}_+$ and they must pick a team $\mathbf{x}_{t} \in \{0, 1\}^{N_t}$ following a formation $\mathbf{y}_{t} \in \{0, 1\}^{7}$. At the end of the round, players receive scores $\mathbf{s}_t \in \mathbb{R}^{N_t}$ according to their in-game performance. The manager's goal is to maximize the team score $\mathbf{s}_t^T \mathbf{x}_t$.
+
+Since the manager doesn't know the scores when picking their team, they must estimate score predictions $\hat{\mathbf{s}}_t \in \mathbb{R}^{N_t}$. However, predictions aren't always accurate. Also, scores of players from the same team are correlated. To minimize the risk of picking many players from a single team and having that team perform badly, the manager might want to include the covariance between players $S_t \in \mathbb{R}_+^{N_t, N_t}$ in the problem. One way to do this is to set a risk aversion $\gamma \in \mathbb{R}_+$ and maximize
+
+$$\hat{\mathbf{s}}_t^T \mathbf{x}_t - \gamma \mathbf{x}_t^T \Sigma_t \mathbf{x}_t.$$
+
+Finally, the team is subject to the constraints:
+
+1) Cost less or equal to the budget $\mapsto \mathbf{c}_t^T \mathbf{x}_t \leq b_t$
+2) Follow a single formation $\mapsto \mathbf{1}^T \mathbf{y}_t = 1$
+3) Follow a valid formation $\mapsto P_t^T \mathbf{x}_t = F^T \mathbf{y}_t$.
+
+This problem is similar to the problem of Modern Portfolio Theory [@e5a1bb8f-41b7-35c6-95cd-8b366d3e99bc].
+
+```{python}
+#| label: problem
+#| echo: true
+import cvxpy as cp
+
+
+def problem(predictions, covariance, costs, positions, budget, risk_aversion):
+ picks = cp.Variable(scores.size, "picks", boolean=True)
+ formation = cp.Variable(7, "formation", boolean=True)
+ objective = cp.Maximize(
+ predictions.T @ picks - risk_aversion * cp.quad_form(picks, covariance)
+ )
+ constraints = [
+ prices.T @ picks <= budget,
+ cp.sum(formation) == 1,
+ positions.T @ picks == formations.T @ formation,
+ ]
+ problem = cp.Problem(objective, constraints)
+ return problem
+```
+
+## Backtesting
+
+So far, I've simplified the manager's goal to maximize $\mathbf{s}_t^T \mathbf{x}_t$ for each round. The manager's true final goal is to maximize their total score at the end of the season $\sum_t \mathbf{s}_t^T \mathbf{x}_t$. These two objectives aren't necessarily the same, because players increase or decrease in valuation according to scores. Since $\mathbf{s}_t^T \mathbf{x}_t$ depends on the budget $b_t$, which depends on the scores $\mathbf{s}_{t - 1}^T \mathbf{x}_{t - 1}$, one could argue that it might be a good idea to maximize a balance between scoring and valuation. In the next section, I'll show that maximizing the score for each round is sufficient for maximizing the total score, given good enough predictions.
+
+For now, I'll define a function to simulate the manager's performance across an entire season. At the start of the season, the manager has a budget of $b_1 = 100$. Then, for each round $t$:
+
+1. Solve the team picking problem $\mapsto \mathbf{x}_t$
+3. Calculate the round score $\mapsto r_t = \mathbf{s}_t^T \mathbf{x}_t$
+4. If $t < 38$, update the budget $\mapsto b_{t + 1} = b_t + (\mathbf{c}_{t + 1} - \mathbf{c}_t)^T \mathbf{x}_t$
+
+```{python}
+#| label: backtest
+#| echo: true
+import numpy as np
+
+
+def backtest(
+ initial_budget,
+ scores,
+ predictions,
+ covariance,
+ costs,
+ appreciations,
+ positions,
+ risk_aversion,
+):
+ budget = initial_budget
+ rounds = len(predictions)
+ run = np.empty(rounds)
+ for t in range(rounds):
+ prob = problem(
+ predictions[t], covariance[t], costs[t], positions[t], budget, risk_aversion
+ )
+ prob.solve()
+ picks = problem.var_dict["picks"].value
+ run[t] = scores[t].T @ picks[t]
+ if t < 38:
+ budget += appreciations[t].T @ picks
+ return scores
+```
+
+```{python}
+#| label: data
+#| include: false
+from urllib import request
+import json
+import polars as pl
+
+rounds = 38
+base_url = "https://raw.githubusercontent.com/assuncaolfi/tophat/main/2022/"
+schema = {
+ "rodada_id": pl.Int64,
+ "atleta_id": pl.Int64,
+ "posicao_id": pl.Int64,
+ "preco_num": pl.Float64,
+ "jogos_num": pl.Int64,
+ "media_num": pl.Float64,
+ "pontos_num": pl.Float64,
+}
+players = [None] * rounds
+for round in range(rounds):
+ url = base_url + f"{round + 1:02}/atletas/mercado.json"
+ data = json.loads(request.urlopen(url).read())
+ players[round] = pl.from_dicts(data["atletas"], schema=schema).with_columns(
+ rodada_id=pl.lit(round)
+ )
+
+col_names = {
+ "rodada_id": "round",
+ "atleta_id": "player",
+ "posicao_id": "position",
+ "preco_num": "cost",
+ "jogos_num": "games",
+ "media_num": "average",
+ "pontos_num": "points",
+}
+players = (
+ pl.concat(players)
+ .rename(col_names)
+ .select(col_names.values())
+ # Keep only active players in the round
+ .filter(pl.col("games") != pl.col("games").shift(1).over("player").fill_null(-1))
+ .sort("round", "player")
+ .with_columns(
+ # Recover player scores using their averages
+ score=(
+ pl.col("average").shift(1).over("player").fill_null(0)
+ + pl.col("games")
+ * (
+ pl.col("average")
+ - pl.col("average").shift(1).over("player").fill_null(0)
+ )
+ ).round(1),
+ appreciation=pl.col("cost") - pl.col("cost").shift(1).over("player"),
+ round=pl.col("round") + 1,
+ )
+)
+print(players.filter(pl.col("player") == 42234))
+```
+
+```{python}
+#| label: formations
+#| include: false
+import numpy as np
+
+url = base_url + "01/esquemas.json"
+formations = json.loads(request.urlopen(url).read())
+positions = data["posicoes"].values()
+form = np.empty((len(formations), len(positions)), dtype=np.int64)
+for i, formation in enumerate(formations):
+ for j, position in enumerate(positions):
+ name = position["abreviacao"]
+ n = formation["posicoes"][name]
+ form[i, j] = n
+print(form)
+```
+
+```{python}
+#| include: false
+x = (
+ players.pivot(values="score", index="round", columns="player")
+ .drop("round")
+ .fill_null(0)
+ .to_numpy()
+)
+print(np.cov(x, rowvar=False))
+np.ma.cov(np.ma.masked_array(x), rowvar=False).filled(np.nan)
+```
+
+## Scenarios
+
+1. Perfect predictions $\mapsto \hat{\mathbf{s}}_t = \mathbf{s}_t, \gamma = 0$
+2. Perfect predictions and infinite budget $\mapsto \hat{\mathbf{s}}_t = \mathbf{s}_t, \gamma = 0, \mathbf{b}_1 \gg 100$
+3. Simple predictions and varying levels of risk aversion $\mapsto \hat{\mathbf{s}}_t = \bar{\mathbf{s}}_{1:(t - 1)}$[^1]$, \gamma \in \{0, 0.5, 1\}$
+4. Random predictions $\mapsto \hat{\mathbf{s}}_t \sim N(\mathbf{0}, I_{N_t}), \gamma = 0$
+
+[^1]: Explain that this is player-level...
+
+I'l plot... [^2]
+
+[^2]: Unfortunately, data for the 38th round is missing...
+
+```{python}
+#| label: scenarios
+#| include: false
+plt.plot([1, 2, 3], [1, 2, 3], label="Ar = 10 and $Ar = 10$")
+plt.plot([1, 2, 3], [1, 3, 2], label="B = 10")
+plt.plot([1, 2, 3], [2, 4, 4], label="B = 10")
+plt.legend()
+plt.show()
+```
+
+## Other ideas
+
+Consider valuation, improve predictions, team leader...
+
+Readings:
+
+- https://peterellisjones.com/posts/fantasy-machine-learning/
+- https://www.alexmolas.com/2024/07/15/fantasy-knapsack.html
diff --git a/blog/fantasy-football/pdm.lock b/blog/fantasy-football/pdm.lock
new file mode 100644
index 0000000..ac6c7ae
--- /dev/null
+++ b/blog/fantasy-football/pdm.lock
@@ -0,0 +1,2334 @@
+# This file is @generated by PDM.
+# It is not intended for manual editing.
+
+[metadata]
+groups = ["default"]
+strategy = ["cross_platform", "inherit_metadata"]
+lock_version = "4.4.2"
+content_hash = "sha256:b46bb6466faf5569c19a48de0d852304511f61ada0341a46e5eb922ff4642eda"
+
+[[package]]
+name = "anyio"
+version = "4.4.0"
+requires_python = ">=3.8"
+summary = "High level compatibility layer for multiple asynchronous event loop implementations"
+groups = ["default"]
+dependencies = [
+ "idna>=2.8",
+ "sniffio>=1.1",
+]
+files = [
+ {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"},
+ {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"},
+]
+
+[[package]]
+name = "appnope"
+version = "0.1.4"
+requires_python = ">=3.6"
+summary = "Disable App Nap on macOS >= 10.9"
+groups = ["default"]
+marker = "platform_system == \"Darwin\""
+files = [
+ {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"},
+ {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"},
+]
+
+[[package]]
+name = "argon2-cffi"
+version = "23.1.0"
+requires_python = ">=3.7"
+summary = "Argon2 for Python"
+groups = ["default"]
+dependencies = [
+ "argon2-cffi-bindings",
+]
+files = [
+ {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"},
+ {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"},
+]
+
+[[package]]
+name = "argon2-cffi-bindings"
+version = "21.2.0"
+requires_python = ">=3.6"
+summary = "Low-level CFFI bindings for Argon2"
+groups = ["default"]
+dependencies = [
+ "cffi>=1.0.1",
+]
+files = [
+ {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"},
+ {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"},
+ {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"},
+ {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"},
+ {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"},
+]
+
+[[package]]
+name = "arrow"
+version = "1.3.0"
+requires_python = ">=3.8"
+summary = "Better dates & times for Python"
+groups = ["default"]
+dependencies = [
+ "python-dateutil>=2.7.0",
+ "types-python-dateutil>=2.8.10",
+]
+files = [
+ {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"},
+ {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"},
+]
+
+[[package]]
+name = "asttokens"
+version = "2.4.1"
+summary = "Annotate AST trees with source code positions"
+groups = ["default"]
+dependencies = [
+ "six>=1.12.0",
+]
+files = [
+ {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"},
+ {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"},
+]
+
+[[package]]
+name = "async-lru"
+version = "2.0.4"
+requires_python = ">=3.8"
+summary = "Simple LRU cache for asyncio"
+groups = ["default"]
+files = [
+ {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"},
+ {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"},
+]
+
+[[package]]
+name = "attrs"
+version = "23.2.0"
+requires_python = ">=3.7"
+summary = "Classes Without Boilerplate"
+groups = ["default"]
+files = [
+ {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"},
+ {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"},
+]
+
+[[package]]
+name = "babel"
+version = "2.15.0"
+requires_python = ">=3.8"
+summary = "Internationalization utilities"
+groups = ["default"]
+files = [
+ {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"},
+ {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"},
+]
+
+[[package]]
+name = "beautifulsoup4"
+version = "4.12.3"
+requires_python = ">=3.6.0"
+summary = "Screen-scraping library"
+groups = ["default"]
+dependencies = [
+ "soupsieve>1.2",
+]
+files = [
+ {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"},
+ {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"},
+]
+
+[[package]]
+name = "black"
+version = "24.4.2"
+requires_python = ">=3.8"
+summary = "The uncompromising code formatter."
+groups = ["default"]
+dependencies = [
+ "click>=8.0.0",
+ "mypy-extensions>=0.4.3",
+ "packaging>=22.0",
+ "pathspec>=0.9.0",
+ "platformdirs>=2",
+]
+files = [
+ {file = "black-24.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:accf49e151c8ed2c0cdc528691838afd217c50412534e876a19270fea1e28e2d"},
+ {file = "black-24.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:88c57dc656038f1ab9f92b3eb5335ee9b021412feaa46330d5eba4e51fe49b04"},
+ {file = "black-24.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be8bef99eb46d5021bf053114442914baeb3649a89dc5f3a555c88737e5e98fc"},
+ {file = "black-24.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:415e686e87dbbe6f4cd5ef0fbf764af7b89f9057b97c908742b6008cc554b9c0"},
+ {file = "black-24.4.2-py3-none-any.whl", hash = "sha256:d36ed1124bb81b32f8614555b34cc4259c3fbc7eec17870e8ff8ded335b58d8c"},
+ {file = "black-24.4.2.tar.gz", hash = "sha256:c872b53057f000085da66a19c55d68f6f8ddcac2642392ad3a355878406fbd4d"},
+]
+
+[[package]]
+name = "bleach"
+version = "6.1.0"
+requires_python = ">=3.8"
+summary = "An easy safelist-based HTML-sanitizing tool."
+groups = ["default"]
+dependencies = [
+ "six>=1.9.0",
+ "webencodings",
+]
+files = [
+ {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"},
+ {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"},
+]
+
+[[package]]
+name = "certifi"
+version = "2024.6.2"
+requires_python = ">=3.6"
+summary = "Python package for providing Mozilla's CA Bundle."
+groups = ["default"]
+files = [
+ {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"},
+ {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"},
+]
+
+[[package]]
+name = "cffi"
+version = "1.16.0"
+requires_python = ">=3.8"
+summary = "Foreign Function Interface for Python calling C code."
+groups = ["default"]
+dependencies = [
+ "pycparser",
+]
+files = [
+ {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"},
+ {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"},
+ {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"},
+ {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"},
+ {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"},
+ {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"},
+ {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"},
+]
+
+[[package]]
+name = "charset-normalizer"
+version = "3.3.2"
+requires_python = ">=3.7.0"
+summary = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
+groups = ["default"]
+files = [
+ {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"},
+ {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"},
+ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"},
+]
+
+[[package]]
+name = "clarabel"
+version = "0.9.0"
+requires_python = ">=3.7"
+summary = "Clarabel Conic Interior Point Solver for Rust / Python"
+groups = ["default"]
+dependencies = [
+ "numpy",
+ "scipy",
+]
+files = [
+ {file = "clarabel-0.9.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:702cc4666c0ccf893c936f9f1f55cbb3233ae2d5fa05f67b370ac3e7ec50f222"},
+ {file = "clarabel-0.9.0-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:8ea616757b460153ead375b3dd3ce763d46fc3717248077bbfa7b2c844b1775f"},
+ {file = "clarabel-0.9.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b5ae16d7dd87aabf72260cf9590ba0d037c52d48555bcf3a86b1f0d9cf88dd4"},
+ {file = "clarabel-0.9.0-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:85cb560a5c4cdfb079e3437e21f0b62b69ba766ae082aeb96ced0b5763214077"},
+ {file = "clarabel-0.9.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0eaeb3fbb5a90b598700d5435c7f102592a1a79ee25df5a097e0af575838786b"},
+ {file = "clarabel-0.9.0-cp37-abi3-win32.whl", hash = "sha256:759c2fa0ccc61ae1a02691c43753638a0ae793bf1de81c6f6763c346789a7e25"},
+ {file = "clarabel-0.9.0-cp37-abi3-win_amd64.whl", hash = "sha256:d24e4ed1b686eb2fe2a1b6e77935af6ad62a2c044131e70801ec1d3ef3d33280"},
+ {file = "clarabel-0.9.0.tar.gz", hash = "sha256:0d6d3fe8800be5b4b5d40a8e14bd492667b3e46cc5dbe37677ce5ed25f0719d4"},
+]
+
+[[package]]
+name = "click"
+version = "8.1.7"
+requires_python = ">=3.7"
+summary = "Composable command line interface toolkit"
+groups = ["default"]
+dependencies = [
+ "colorama; platform_system == \"Windows\"",
+]
+files = [
+ {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"},
+ {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"},
+]
+
+[[package]]
+name = "colorama"
+version = "0.4.6"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
+summary = "Cross-platform colored terminal text."
+groups = ["default"]
+marker = "platform_system == \"Windows\" or sys_platform == \"win32\""
+files = [
+ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
+ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
+]
+
+[[package]]
+name = "comm"
+version = "0.2.2"
+requires_python = ">=3.8"
+summary = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc."
+groups = ["default"]
+dependencies = [
+ "traitlets>=4",
+]
+files = [
+ {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"},
+ {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"},
+]
+
+[[package]]
+name = "contourpy"
+version = "1.2.1"
+requires_python = ">=3.9"
+summary = "Python library for calculating contours of 2D quadrilateral grids"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.20",
+]
+files = [
+ {file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"},
+ {file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"},
+ {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"},
+ {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"},
+ {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"},
+ {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"},
+ {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"},
+ {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"},
+ {file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"},
+ {file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"},
+ {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"},
+ {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"},
+ {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"},
+ {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"},
+ {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"},
+ {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"},
+ {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"},
+ {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"},
+ {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"},
+]
+
+[[package]]
+name = "cvxpy"
+version = "1.5.2"
+requires_python = ">=3.8"
+summary = "A domain-specific language for modeling convex optimization problems in Python."
+groups = ["default"]
+dependencies = [
+ "clarabel>=0.5.0",
+ "ecos>=2",
+ "numpy>=1.15",
+ "osqp>=0.6.2",
+ "scipy>=1.1.0",
+ "scs>=3.2.4.post1",
+]
+files = [
+ {file = "cvxpy-1.5.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b9cf1437327f84f78d4efdd1baada049de3a749a3548e24ec3502ef35e663c0b"},
+ {file = "cvxpy-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:24c3156fb49252ea994d4629cbcecff1d1f1951ae76f6c225451d25d79dee923"},
+ {file = "cvxpy-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbb74e2eecd1b7ee5dfdcbf61a4916d12f90444df55c2377aa02935932d13421"},
+ {file = "cvxpy-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:515886f6760a017354674b8f045e096ba20e7641241bd6557d04d0a01bfefbaa"},
+ {file = "cvxpy-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:73e6917cd6754bef63a70fc93a83d80e2713a67c9b26157aa049d0e4588ee3c7"},
+ {file = "cvxpy-1.5.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:484f1a1f687c18cda6c382918a7c44f891d4901b4456d927da3c8ce9208c3e97"},
+ {file = "cvxpy-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d51b5e56dcd93a6efdd83ea0b39df83808691706db21c11496d59dc66dca108"},
+ {file = "cvxpy-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae4820f285a8547c5fac197073572ed9c750978651c6499e3ec30a92b6be26a8"},
+ {file = "cvxpy-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2189a959eb4bc1e81d8993e7fe780791d14fa486d558bd49adb8561b1df510"},
+ {file = "cvxpy-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:b8c1c9a302229ded2bc9bc5c7263e4a24bcb645f3cfedb29072b0b49d77af7fb"},
+ {file = "cvxpy-1.5.2.tar.gz", hash = "sha256:8231f006f6b55da141758282aecb788b3b5742448765dba6a9440b6336080ce3"},
+]
+
+[[package]]
+name = "cycler"
+version = "0.12.1"
+requires_python = ">=3.8"
+summary = "Composable style cycles"
+groups = ["default"]
+files = [
+ {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
+ {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
+]
+
+[[package]]
+name = "debugpy"
+version = "1.8.1"
+requires_python = ">=3.8"
+summary = "An implementation of the Debug Adapter Protocol for Python"
+groups = ["default"]
+files = [
+ {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"},
+ {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"},
+ {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"},
+ {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"},
+ {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"},
+ {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"},
+]
+
+[[package]]
+name = "decorator"
+version = "5.1.1"
+requires_python = ">=3.5"
+summary = "Decorators for Humans"
+groups = ["default"]
+files = [
+ {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"},
+ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
+]
+
+[[package]]
+name = "defusedxml"
+version = "0.7.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "XML bomb protection for Python stdlib modules"
+groups = ["default"]
+files = [
+ {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"},
+ {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"},
+]
+
+[[package]]
+name = "ecos"
+version = "2.0.14"
+summary = "This is the Python package for ECOS: Embedded Cone Solver. See Github page for more information."
+groups = ["default"]
+dependencies = [
+ "numpy>=1.6",
+ "scipy>=0.9",
+]
+files = [
+ {file = "ecos-2.0.14-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dc90b54eaae16ead128bfdd95e04bf808b73578bdf40ed652c55aa36a6d02e42"},
+ {file = "ecos-2.0.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8be3b4856838ae351fec40fb3589181d52b41cf75bf4d35342686a508c37a6"},
+ {file = "ecos-2.0.14-cp311-cp311-win_amd64.whl", hash = "sha256:7495b3031ccc2d4cec72cdb40aed8a2d1fdd734fe40519b7e6047aead5e811cf"},
+ {file = "ecos-2.0.14-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4a7e2704a3ef9acfb8146d594deff9942d3a0f0d0399de8fe2e0bd95e8b0855c"},
+ {file = "ecos-2.0.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3cbb1a66ecf10955a1a4bcd6b99db55148000cb79fd176bfac26d98b21a4814"},
+ {file = "ecos-2.0.14-cp312-cp312-win_amd64.whl", hash = "sha256:718eb62afb8e45426bcc365ebaf3ca9f610afcbb754de6073ef5f104da8fca1f"},
+ {file = "ecos-2.0.14.tar.gz", hash = "sha256:64b3201c0e0a7f0129050557c4ac50b00031e80a10534506dba1200c8dc1efe4"},
+]
+
+[[package]]
+name = "executing"
+version = "2.0.1"
+requires_python = ">=3.5"
+summary = "Get the currently executing AST node of a frame, and other information"
+groups = ["default"]
+files = [
+ {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"},
+ {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"},
+]
+
+[[package]]
+name = "fastjsonschema"
+version = "2.20.0"
+summary = "Fastest Python implementation of JSON schema"
+groups = ["default"]
+files = [
+ {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"},
+ {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"},
+]
+
+[[package]]
+name = "fonttools"
+version = "4.53.1"
+requires_python = ">=3.8"
+summary = "Tools to manipulate font files"
+groups = ["default"]
+files = [
+ {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"},
+ {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"},
+ {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"},
+ {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"},
+ {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"},
+ {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"},
+ {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"},
+ {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"},
+ {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"},
+ {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"},
+ {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"},
+ {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"},
+ {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"},
+ {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"},
+ {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"},
+ {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"},
+ {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"},
+ {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"},
+]
+
+[[package]]
+name = "fqdn"
+version = "1.5.1"
+requires_python = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4"
+summary = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers"
+groups = ["default"]
+files = [
+ {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"},
+ {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"},
+]
+
+[[package]]
+name = "greenlet"
+version = "3.0.3"
+requires_python = ">=3.7"
+summary = "Lightweight in-process concurrent programming"
+groups = ["default"]
+marker = "(platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\") and python_version < \"3.13\""
+files = [
+ {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"},
+ {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"},
+ {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"},
+ {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"},
+ {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"},
+ {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"},
+]
+
+[[package]]
+name = "h11"
+version = "0.14.0"
+requires_python = ">=3.7"
+summary = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
+groups = ["default"]
+files = [
+ {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
+ {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
+]
+
+[[package]]
+name = "httpcore"
+version = "1.0.5"
+requires_python = ">=3.8"
+summary = "A minimal low-level HTTP client."
+groups = ["default"]
+dependencies = [
+ "certifi",
+ "h11<0.15,>=0.13",
+]
+files = [
+ {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"},
+ {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"},
+]
+
+[[package]]
+name = "httpx"
+version = "0.27.0"
+requires_python = ">=3.8"
+summary = "The next generation HTTP client."
+groups = ["default"]
+dependencies = [
+ "anyio",
+ "certifi",
+ "httpcore==1.*",
+ "idna",
+ "sniffio",
+]
+files = [
+ {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"},
+ {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"},
+]
+
+[[package]]
+name = "idna"
+version = "3.7"
+requires_python = ">=3.5"
+summary = "Internationalized Domain Names in Applications (IDNA)"
+groups = ["default"]
+files = [
+ {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
+ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
+]
+
+[[package]]
+name = "importlib-metadata"
+version = "8.0.0"
+requires_python = ">=3.8"
+summary = "Read metadata from Python packages"
+groups = ["default"]
+dependencies = [
+ "zipp>=0.5",
+]
+files = [
+ {file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"},
+ {file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"},
+]
+
+[[package]]
+name = "ipykernel"
+version = "6.29.4"
+requires_python = ">=3.8"
+summary = "IPython Kernel for Jupyter"
+groups = ["default"]
+dependencies = [
+ "appnope; platform_system == \"Darwin\"",
+ "comm>=0.1.1",
+ "debugpy>=1.6.5",
+ "ipython>=7.23.1",
+ "jupyter-client>=6.1.12",
+ "jupyter-core!=5.0.*,>=4.12",
+ "matplotlib-inline>=0.1",
+ "nest-asyncio",
+ "packaging",
+ "psutil",
+ "pyzmq>=24",
+ "tornado>=6.1",
+ "traitlets>=5.4.0",
+]
+files = [
+ {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"},
+ {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"},
+]
+
+[[package]]
+name = "ipython"
+version = "8.25.0"
+requires_python = ">=3.10"
+summary = "IPython: Productive Interactive Computing"
+groups = ["default"]
+dependencies = [
+ "colorama; sys_platform == \"win32\"",
+ "decorator",
+ "jedi>=0.16",
+ "matplotlib-inline",
+ "pexpect>4.3; sys_platform != \"win32\" and sys_platform != \"emscripten\"",
+ "prompt-toolkit<3.1.0,>=3.0.41",
+ "pygments>=2.4.0",
+ "stack-data",
+ "traitlets>=5.13.0",
+ "typing-extensions>=4.6; python_version < \"3.12\"",
+]
+files = [
+ {file = "ipython-8.25.0-py3-none-any.whl", hash = "sha256:53eee7ad44df903a06655871cbab66d156a051fd86f3ec6750470ac9604ac1ab"},
+ {file = "ipython-8.25.0.tar.gz", hash = "sha256:c6ed726a140b6e725b911528f80439c534fac915246af3efc39440a6b0f9d716"},
+]
+
+[[package]]
+name = "ipywidgets"
+version = "8.1.3"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets"
+groups = ["default"]
+dependencies = [
+ "comm>=0.1.3",
+ "ipython>=6.1.0",
+ "jupyterlab-widgets~=3.0.11",
+ "traitlets>=4.3.1",
+ "widgetsnbextension~=4.0.11",
+]
+files = [
+ {file = "ipywidgets-8.1.3-py3-none-any.whl", hash = "sha256:efafd18f7a142248f7cb0ba890a68b96abd4d6e88ddbda483c9130d12667eaf2"},
+ {file = "ipywidgets-8.1.3.tar.gz", hash = "sha256:f5f9eeaae082b1823ce9eac2575272952f40d748893972956dc09700a6392d9c"},
+]
+
+[[package]]
+name = "isoduration"
+version = "20.11.0"
+requires_python = ">=3.7"
+summary = "Operations with ISO 8601 durations"
+groups = ["default"]
+dependencies = [
+ "arrow>=0.15.0",
+]
+files = [
+ {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"},
+ {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"},
+]
+
+[[package]]
+name = "jedi"
+version = "0.19.1"
+requires_python = ">=3.6"
+summary = "An autocompletion tool for Python that can be used for text editors."
+groups = ["default"]
+dependencies = [
+ "parso<0.9.0,>=0.8.3",
+]
+files = [
+ {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"},
+ {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"},
+]
+
+[[package]]
+name = "jinja2"
+version = "3.1.4"
+requires_python = ">=3.7"
+summary = "A very fast and expressive template engine."
+groups = ["default"]
+dependencies = [
+ "MarkupSafe>=2.0",
+]
+files = [
+ {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"},
+ {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"},
+]
+
+[[package]]
+name = "json5"
+version = "0.9.25"
+requires_python = ">=3.8"
+summary = "A Python implementation of the JSON5 data format."
+groups = ["default"]
+files = [
+ {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"},
+ {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"},
+]
+
+[[package]]
+name = "jsonpointer"
+version = "3.0.0"
+requires_python = ">=3.7"
+summary = "Identify specific nodes in a JSON document (RFC 6901) "
+groups = ["default"]
+files = [
+ {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"},
+ {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"},
+]
+
+[[package]]
+name = "jsonschema"
+version = "4.22.0"
+requires_python = ">=3.8"
+summary = "An implementation of JSON Schema validation for Python"
+groups = ["default"]
+dependencies = [
+ "attrs>=22.2.0",
+ "jsonschema-specifications>=2023.03.6",
+ "referencing>=0.28.4",
+ "rpds-py>=0.7.1",
+]
+files = [
+ {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"},
+ {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"},
+]
+
+[[package]]
+name = "jsonschema-specifications"
+version = "2023.12.1"
+requires_python = ">=3.8"
+summary = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
+groups = ["default"]
+dependencies = [
+ "referencing>=0.31.0",
+]
+files = [
+ {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"},
+ {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"},
+]
+
+[[package]]
+name = "jsonschema"
+version = "4.22.0"
+extras = ["format-nongpl"]
+requires_python = ">=3.8"
+summary = "An implementation of JSON Schema validation for Python"
+groups = ["default"]
+dependencies = [
+ "fqdn",
+ "idna",
+ "isoduration",
+ "jsonpointer>1.13",
+ "jsonschema==4.22.0",
+ "rfc3339-validator",
+ "rfc3986-validator>0.1.0",
+ "uri-template",
+ "webcolors>=1.11",
+]
+files = [
+ {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"},
+ {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"},
+]
+
+[[package]]
+name = "jupyter"
+version = "1.0.0"
+summary = "Jupyter metapackage. Install all the Jupyter components in one go."
+groups = ["default"]
+dependencies = [
+ "ipykernel",
+ "ipywidgets",
+ "jupyter-console",
+ "nbconvert",
+ "notebook",
+ "qtconsole",
+]
+files = [
+ {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"},
+ {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"},
+ {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"},
+]
+
+[[package]]
+name = "jupyter-black"
+version = "0.3.4"
+summary = "A simple extension for Jupyter Notebook and Jupyter Lab to beautify Python code automatically using Black. Fork of dnanhkhoa/nb_black."
+groups = ["default"]
+dependencies = [
+ "black>=21",
+ "ipython>=7",
+ "tokenize-rt>=4",
+]
+files = [
+ {file = "jupyter-black-0.3.4.tar.gz", hash = "sha256:2a38f33d4c321eb768f426103635ac9b80b40c9e42aa06072a729e3caddca4c3"},
+ {file = "jupyter_black-0.3.4-py3-none-any.whl", hash = "sha256:8690ec1d16d173a74eecc44419755ca7209c494b213e0d7b04c40a878239e247"},
+]
+
+[[package]]
+name = "jupyter-cache"
+version = "1.0.0"
+requires_python = ">=3.9"
+summary = "A defined interface for working with a cache of jupyter notebooks."
+groups = ["default"]
+dependencies = [
+ "attrs",
+ "click",
+ "importlib-metadata",
+ "nbclient>=0.2",
+ "nbformat",
+ "pyyaml",
+ "sqlalchemy<3,>=1.3.12",
+ "tabulate",
+]
+files = [
+ {file = "jupyter_cache-1.0.0-py3-none-any.whl", hash = "sha256:594b1c4e29b488b36547e12477645f489dbdc62cc939b2408df5679f79245078"},
+ {file = "jupyter_cache-1.0.0.tar.gz", hash = "sha256:d0fa7d7533cd5798198d8889318269a8c1382ed3b22f622c09a9356521f48687"},
+]
+
+[[package]]
+name = "jupyter-client"
+version = "8.6.2"
+requires_python = ">=3.8"
+summary = "Jupyter protocol implementation and client libraries"
+groups = ["default"]
+dependencies = [
+ "jupyter-core!=5.0.*,>=4.12",
+ "python-dateutil>=2.8.2",
+ "pyzmq>=23.0",
+ "tornado>=6.2",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"},
+ {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"},
+]
+
+[[package]]
+name = "jupyter-console"
+version = "6.6.3"
+requires_python = ">=3.7"
+summary = "Jupyter terminal console"
+groups = ["default"]
+dependencies = [
+ "ipykernel>=6.14",
+ "ipython",
+ "jupyter-client>=7.0.0",
+ "jupyter-core!=5.0.*,>=4.12",
+ "prompt-toolkit>=3.0.30",
+ "pygments",
+ "pyzmq>=17",
+ "traitlets>=5.4",
+]
+files = [
+ {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"},
+ {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"},
+]
+
+[[package]]
+name = "jupyter-core"
+version = "5.7.2"
+requires_python = ">=3.8"
+summary = "Jupyter core package. A base package on which Jupyter projects rely."
+groups = ["default"]
+dependencies = [
+ "platformdirs>=2.5",
+ "pywin32>=300; sys_platform == \"win32\" and platform_python_implementation != \"PyPy\"",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"},
+ {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"},
+]
+
+[[package]]
+name = "jupyter-events"
+version = "0.10.0"
+requires_python = ">=3.8"
+summary = "Jupyter Event System library"
+groups = ["default"]
+dependencies = [
+ "jsonschema[format-nongpl]>=4.18.0",
+ "python-json-logger>=2.0.4",
+ "pyyaml>=5.3",
+ "referencing",
+ "rfc3339-validator",
+ "rfc3986-validator>=0.1.1",
+ "traitlets>=5.3",
+]
+files = [
+ {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"},
+ {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"},
+]
+
+[[package]]
+name = "jupyter-lsp"
+version = "2.2.5"
+requires_python = ">=3.8"
+summary = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server"
+groups = ["default"]
+dependencies = [
+ "jupyter-server>=1.1.2",
+]
+files = [
+ {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"},
+ {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"},
+]
+
+[[package]]
+name = "jupyter-server"
+version = "2.14.1"
+requires_python = ">=3.8"
+summary = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications."
+groups = ["default"]
+dependencies = [
+ "anyio>=3.1.0",
+ "argon2-cffi>=21.1",
+ "jinja2>=3.0.3",
+ "jupyter-client>=7.4.4",
+ "jupyter-core!=5.0.*,>=4.12",
+ "jupyter-events>=0.9.0",
+ "jupyter-server-terminals>=0.4.4",
+ "nbconvert>=6.4.4",
+ "nbformat>=5.3.0",
+ "overrides>=5.0",
+ "packaging>=22.0",
+ "prometheus-client>=0.9",
+ "pywinpty>=2.0.1; os_name == \"nt\"",
+ "pyzmq>=24",
+ "send2trash>=1.8.2",
+ "terminado>=0.8.3",
+ "tornado>=6.2.0",
+ "traitlets>=5.6.0",
+ "websocket-client>=1.7",
+]
+files = [
+ {file = "jupyter_server-2.14.1-py3-none-any.whl", hash = "sha256:16f7177c3a4ea8fe37784e2d31271981a812f0b2874af17339031dc3510cc2a5"},
+ {file = "jupyter_server-2.14.1.tar.gz", hash = "sha256:12558d158ec7a0653bf96cc272bc7ad79e0127d503b982ed144399346694f726"},
+]
+
+[[package]]
+name = "jupyter-server-terminals"
+version = "0.5.3"
+requires_python = ">=3.8"
+summary = "A Jupyter Server Extension Providing Terminals."
+groups = ["default"]
+dependencies = [
+ "pywinpty>=2.0.3; os_name == \"nt\"",
+ "terminado>=0.8.3",
+]
+files = [
+ {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"},
+ {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"},
+]
+
+[[package]]
+name = "jupyterlab"
+version = "4.2.2"
+requires_python = ">=3.8"
+summary = "JupyterLab computational environment"
+groups = ["default"]
+dependencies = [
+ "async-lru>=1.0.0",
+ "httpx>=0.25.0",
+ "ipykernel>=6.5.0",
+ "jinja2>=3.0.3",
+ "jupyter-core",
+ "jupyter-lsp>=2.0.0",
+ "jupyter-server<3,>=2.4.0",
+ "jupyterlab-server<3,>=2.27.1",
+ "notebook-shim>=0.2",
+ "packaging",
+ "setuptools>=40.1.0",
+ "tornado>=6.2.0",
+ "traitlets",
+]
+files = [
+ {file = "jupyterlab-4.2.2-py3-none-any.whl", hash = "sha256:59ee9b839f43308c3dfd55d72d1f1a299ed42a7f91f2d1afe9c12a783f9e525f"},
+ {file = "jupyterlab-4.2.2.tar.gz", hash = "sha256:a534b6a25719a92a40d514fb133a9fe8f0d9981b0bbce5d8a5fcaa33344a3038"},
+]
+
+[[package]]
+name = "jupyterlab-pygments"
+version = "0.3.0"
+requires_python = ">=3.8"
+summary = "Pygments theme using JupyterLab CSS variables"
+groups = ["default"]
+files = [
+ {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"},
+ {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"},
+]
+
+[[package]]
+name = "jupyterlab-server"
+version = "2.27.2"
+requires_python = ">=3.8"
+summary = "A set of server components for JupyterLab and JupyterLab like applications."
+groups = ["default"]
+dependencies = [
+ "babel>=2.10",
+ "jinja2>=3.0.3",
+ "json5>=0.9.0",
+ "jsonschema>=4.18.0",
+ "jupyter-server<3,>=1.21",
+ "packaging>=21.3",
+ "requests>=2.31",
+]
+files = [
+ {file = "jupyterlab_server-2.27.2-py3-none-any.whl", hash = "sha256:54aa2d64fd86383b5438d9f0c032f043c4d8c0264b8af9f60bd061157466ea43"},
+ {file = "jupyterlab_server-2.27.2.tar.gz", hash = "sha256:15cbb349dc45e954e09bacf81b9f9bcb10815ff660fb2034ecd7417db3a7ea27"},
+]
+
+[[package]]
+name = "jupyterlab-widgets"
+version = "3.0.11"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets for JupyterLab"
+groups = ["default"]
+files = [
+ {file = "jupyterlab_widgets-3.0.11-py3-none-any.whl", hash = "sha256:78287fd86d20744ace330a61625024cf5521e1c012a352ddc0a3cdc2348becd0"},
+ {file = "jupyterlab_widgets-3.0.11.tar.gz", hash = "sha256:dd5ac679593c969af29c9bed054c24f26842baa51352114736756bc035deee27"},
+]
+
+[[package]]
+name = "jupytext"
+version = "1.16.2"
+requires_python = ">=3.8"
+summary = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts"
+groups = ["default"]
+dependencies = [
+ "markdown-it-py>=1.0",
+ "mdit-py-plugins",
+ "nbformat",
+ "packaging",
+ "pyyaml",
+]
+files = [
+ {file = "jupytext-1.16.2-py3-none-any.whl", hash = "sha256:197a43fef31dca612b68b311e01b8abd54441c7e637810b16b6cb8f2ab66065e"},
+ {file = "jupytext-1.16.2.tar.gz", hash = "sha256:8627dd9becbbebd79cc4a4ed4727d89d78e606b4b464eab72357b3b029023a14"},
+]
+
+[[package]]
+name = "kiwisolver"
+version = "1.4.5"
+requires_python = ">=3.7"
+summary = "A fast implementation of the Cassowary constraint solver"
+groups = ["default"]
+files = [
+ {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"},
+ {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"},
+ {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"},
+ {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"},
+ {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"},
+ {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"},
+ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
+]
+
+[[package]]
+name = "markdown-it-py"
+version = "3.0.0"
+requires_python = ">=3.8"
+summary = "Python port of markdown-it. Markdown parsing, done right!"
+groups = ["default"]
+dependencies = [
+ "mdurl~=0.1",
+]
+files = [
+ {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"},
+ {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"},
+]
+
+[[package]]
+name = "markupsafe"
+version = "2.1.5"
+requires_python = ">=3.7"
+summary = "Safely add untrusted strings to HTML/XML markup."
+groups = ["default"]
+files = [
+ {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"},
+ {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"},
+ {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
+]
+
+[[package]]
+name = "matplotlib"
+version = "3.9.1"
+requires_python = ">=3.9"
+summary = "Python plotting package"
+groups = ["default"]
+dependencies = [
+ "contourpy>=1.0.1",
+ "cycler>=0.10",
+ "fonttools>=4.22.0",
+ "kiwisolver>=1.3.1",
+ "numpy>=1.23",
+ "packaging>=20.0",
+ "pillow>=8",
+ "pyparsing>=2.3.1",
+ "python-dateutil>=2.7",
+]
+files = [
+ {file = "matplotlib-3.9.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3fce58971b465e01b5c538f9d44915640c20ec5ff31346e963c9e1cd66fa812"},
+ {file = "matplotlib-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a973c53ad0668c53e0ed76b27d2eeeae8799836fd0d0caaa4ecc66bf4e6676c0"},
+ {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82cd5acf8f3ef43f7532c2f230249720f5dc5dd40ecafaf1c60ac8200d46d7eb"},
+ {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab38a4f3772523179b2f772103d8030215b318fef6360cb40558f585bf3d017f"},
+ {file = "matplotlib-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2315837485ca6188a4b632c5199900e28d33b481eb083663f6a44cfc8987ded3"},
+ {file = "matplotlib-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a0c977c5c382f6696caf0bd277ef4f936da7e2aa202ff66cad5f0ac1428ee15b"},
+ {file = "matplotlib-3.9.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:565d572efea2b94f264dd86ef27919515aa6d629252a169b42ce5f570db7f37b"},
+ {file = "matplotlib-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d397fd8ccc64af2ec0af1f0efc3bacd745ebfb9d507f3f552e8adb689ed730a"},
+ {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26040c8f5121cd1ad712abffcd4b5222a8aec3a0fe40bc8542c94331deb8780d"},
+ {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d12cb1837cffaac087ad6b44399d5e22b78c729de3cdae4629e252067b705e2b"},
+ {file = "matplotlib-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0e835c6988edc3d2d08794f73c323cc62483e13df0194719ecb0723b564e0b5c"},
+ {file = "matplotlib-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:44a21d922f78ce40435cb35b43dd7d573cf2a30138d5c4b709d19f00e3907fd7"},
+ {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3fda72d4d472e2ccd1be0e9ccb6bf0d2eaf635e7f8f51d737ed7e465ac020cb3"},
+ {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:84b3ba8429935a444f1fdc80ed930babbe06725bcf09fbeb5c8757a2cd74af04"},
+ {file = "matplotlib-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b918770bf3e07845408716e5bbda17eadfc3fcbd9307dc67f37d6cf834bb3d98"},
+ {file = "matplotlib-3.9.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f1f2e5d29e9435c97ad4c36fb6668e89aee13d48c75893e25cef064675038ac9"},
+ {file = "matplotlib-3.9.1.tar.gz", hash = "sha256:de06b19b8db95dd33d0dc17c926c7c9ebed9f572074b6fac4f65068a6814d010"},
+]
+
+[[package]]
+name = "matplotlib-inline"
+version = "0.1.7"
+requires_python = ">=3.8"
+summary = "Inline Matplotlib backend for Jupyter"
+groups = ["default"]
+dependencies = [
+ "traitlets",
+]
+files = [
+ {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"},
+ {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"},
+]
+
+[[package]]
+name = "mdit-py-plugins"
+version = "0.4.1"
+requires_python = ">=3.8"
+summary = "Collection of plugins for markdown-it-py"
+groups = ["default"]
+dependencies = [
+ "markdown-it-py<4.0.0,>=1.0.0",
+]
+files = [
+ {file = "mdit_py_plugins-0.4.1-py3-none-any.whl", hash = "sha256:1020dfe4e6bfc2c79fb49ae4e3f5b297f5ccd20f010187acc52af2921e27dc6a"},
+ {file = "mdit_py_plugins-0.4.1.tar.gz", hash = "sha256:834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c"},
+]
+
+[[package]]
+name = "mdurl"
+version = "0.1.2"
+requires_python = ">=3.7"
+summary = "Markdown URL utilities"
+groups = ["default"]
+files = [
+ {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"},
+ {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
+]
+
+[[package]]
+name = "mistune"
+version = "3.0.2"
+requires_python = ">=3.7"
+summary = "A sane and fast Markdown parser with useful plugins and renderers"
+groups = ["default"]
+files = [
+ {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"},
+ {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"},
+]
+
+[[package]]
+name = "mypy-extensions"
+version = "1.0.0"
+requires_python = ">=3.5"
+summary = "Type system extensions for programs checked with the mypy type checker."
+groups = ["default"]
+files = [
+ {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"},
+ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
+]
+
+[[package]]
+name = "nbclient"
+version = "0.10.0"
+requires_python = ">=3.8.0"
+summary = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
+groups = ["default"]
+dependencies = [
+ "jupyter-client>=6.1.12",
+ "jupyter-core!=5.0.*,>=4.12",
+ "nbformat>=5.1",
+ "traitlets>=5.4",
+]
+files = [
+ {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"},
+ {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"},
+]
+
+[[package]]
+name = "nbconvert"
+version = "7.16.4"
+requires_python = ">=3.8"
+summary = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)."
+groups = ["default"]
+dependencies = [
+ "beautifulsoup4",
+ "bleach!=5.0.0",
+ "defusedxml",
+ "jinja2>=3.0",
+ "jupyter-core>=4.7",
+ "jupyterlab-pygments",
+ "markupsafe>=2.0",
+ "mistune<4,>=2.0.3",
+ "nbclient>=0.5.0",
+ "nbformat>=5.7",
+ "packaging",
+ "pandocfilters>=1.4.1",
+ "pygments>=2.4.1",
+ "tinycss2",
+ "traitlets>=5.1",
+]
+files = [
+ {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"},
+ {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"},
+]
+
+[[package]]
+name = "nbformat"
+version = "5.10.4"
+requires_python = ">=3.8"
+summary = "The Jupyter Notebook format"
+groups = ["default"]
+dependencies = [
+ "fastjsonschema>=2.15",
+ "jsonschema>=2.6",
+ "jupyter-core!=5.0.*,>=4.12",
+ "traitlets>=5.1",
+]
+files = [
+ {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"},
+ {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"},
+]
+
+[[package]]
+name = "nest-asyncio"
+version = "1.6.0"
+requires_python = ">=3.5"
+summary = "Patch asyncio to allow nested event loops"
+groups = ["default"]
+files = [
+ {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"},
+ {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"},
+]
+
+[[package]]
+name = "notebook"
+version = "7.2.1"
+requires_python = ">=3.8"
+summary = "Jupyter Notebook - A web-based notebook environment for interactive computing"
+groups = ["default"]
+dependencies = [
+ "jupyter-server<3,>=2.4.0",
+ "jupyterlab-server<3,>=2.27.1",
+ "jupyterlab<4.3,>=4.2.0",
+ "notebook-shim<0.3,>=0.2",
+ "tornado>=6.2.0",
+]
+files = [
+ {file = "notebook-7.2.1-py3-none-any.whl", hash = "sha256:f45489a3995746f2195a137e0773e2130960b51c9ac3ce257dbc2705aab3a6ca"},
+ {file = "notebook-7.2.1.tar.gz", hash = "sha256:4287b6da59740b32173d01d641f763d292f49c30e7a51b89c46ba8473126341e"},
+]
+
+[[package]]
+name = "notebook-shim"
+version = "0.2.4"
+requires_python = ">=3.7"
+summary = "A shim layer for notebook traits and config"
+groups = ["default"]
+dependencies = [
+ "jupyter-server<3,>=1.8",
+]
+files = [
+ {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"},
+ {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"},
+]
+
+[[package]]
+name = "numpy"
+version = "2.0.0"
+requires_python = ">=3.9"
+summary = "Fundamental package for array computing in Python"
+groups = ["default"]
+files = [
+ {file = "numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5"},
+ {file = "numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289"},
+ {file = "numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609"},
+ {file = "numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871"},
+ {file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4"},
+ {file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581"},
+ {file = "numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995"},
+ {file = "numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f"},
+ {file = "numpy-2.0.0-cp311-cp311-win32.whl", hash = "sha256:2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f"},
+ {file = "numpy-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c"},
+ {file = "numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f"},
+ {file = "numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85"},
+ {file = "numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2"},
+ {file = "numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e"},
+ {file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2"},
+ {file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a"},
+ {file = "numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95"},
+ {file = "numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9"},
+ {file = "numpy-2.0.0-cp312-cp312-win32.whl", hash = "sha256:c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54"},
+ {file = "numpy-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df"},
+ {file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6"},
+ {file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a"},
+ {file = "numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad"},
+ {file = "numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9"},
+ {file = "numpy-2.0.0.tar.gz", hash = "sha256:cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864"},
+]
+
+[[package]]
+name = "osqp"
+version = "0.6.7.post0"
+summary = "OSQP: The Operator Splitting QP Solver"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.7",
+ "qdldl",
+ "scipy!=1.12.0,>=0.13.2",
+]
+files = [
+ {file = "osqp-0.6.7.post0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e088f018a0c2b8555a37cabb6e9195b1a77e1b4607a38e7a4111aae02d3bd66d"},
+ {file = "osqp-0.6.7.post0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7ec174d0b9b10128afd3501a2b531bab847b2fd73023e7e826cf0a5f255de1"},
+ {file = "osqp-0.6.7.post0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19a8e8505ef43159d79e2e02b5c67754a3a15ad7f8c443cfe030e66ef2a35db0"},
+ {file = "osqp-0.6.7.post0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5bb2a5726250e9b53e1f3a18ae403229f06c706079afcfcee785bb580262d1ab"},
+ {file = "osqp-0.6.7.post0-cp311-cp311-win_amd64.whl", hash = "sha256:d558420ec57ae1678037faff118564261cd7eaefe0e4955de484699513305999"},
+ {file = "osqp-0.6.7.post0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bd97280d85fcee5721db824c04a7c5a89563c5feb11b3ad1b4baf8dd486e6919"},
+ {file = "osqp-0.6.7.post0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5bc1da507fc81d7b48702c402a18fd3809a6006b831c0bd611e739b18261dded"},
+ {file = "osqp-0.6.7.post0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e0a567c25f1747eba3e86acc4f7c8eb3101f05a864f26324e8bcb31cce43f3c"},
+ {file = "osqp-0.6.7.post0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:996fa6a63938887d6faa9fda34088b26ca87f13b471e5718f3b86bb50135e298"},
+ {file = "osqp-0.6.7.post0-cp312-cp312-win_amd64.whl", hash = "sha256:3f75d19d4b369202f0f6630eabcdf543661f8c70a2634b49491fb2509758a646"},
+ {file = "osqp-0.6.7.post0.tar.gz", hash = "sha256:72f704653f539d3aad6875de9a7be637c3bad008e94c2dafeec2104b4cbdfa64"},
+]
+
+[[package]]
+name = "overrides"
+version = "7.7.0"
+requires_python = ">=3.6"
+summary = "A decorator to automatically detect mismatch when overriding a method."
+groups = ["default"]
+files = [
+ {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"},
+ {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"},
+]
+
+[[package]]
+name = "packaging"
+version = "24.1"
+requires_python = ">=3.8"
+summary = "Core utilities for Python packages"
+groups = ["default"]
+files = [
+ {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
+ {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
+]
+
+[[package]]
+name = "pandas"
+version = "2.2.2"
+requires_python = ">=3.9"
+summary = "Powerful data structures for data analysis, time series, and statistics"
+groups = ["default"]
+dependencies = [
+ "numpy>=1.23.2; python_version == \"3.11\"",
+ "numpy>=1.26.0; python_version >= \"3.12\"",
+ "python-dateutil>=2.8.2",
+ "pytz>=2020.1",
+ "tzdata>=2022.7",
+]
+files = [
+ {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"},
+ {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"},
+ {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"},
+ {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"},
+ {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"},
+ {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"},
+ {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"},
+ {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"},
+ {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"},
+ {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"},
+ {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"},
+ {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"},
+ {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
+ {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
+ {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"},
+]
+
+[[package]]
+name = "pandocfilters"
+version = "1.5.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+summary = "Utilities for writing pandoc filters in python"
+groups = ["default"]
+files = [
+ {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"},
+ {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"},
+]
+
+[[package]]
+name = "parso"
+version = "0.8.4"
+requires_python = ">=3.6"
+summary = "A Python Parser"
+groups = ["default"]
+files = [
+ {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"},
+ {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"},
+]
+
+[[package]]
+name = "pathspec"
+version = "0.12.1"
+requires_python = ">=3.8"
+summary = "Utility library for gitignore style pattern matching of file paths."
+groups = ["default"]
+files = [
+ {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"},
+ {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"},
+]
+
+[[package]]
+name = "pexpect"
+version = "4.9.0"
+summary = "Pexpect allows easy control of interactive console applications."
+groups = ["default"]
+marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\""
+dependencies = [
+ "ptyprocess>=0.5",
+]
+files = [
+ {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"},
+ {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"},
+]
+
+[[package]]
+name = "pillow"
+version = "10.4.0"
+requires_python = ">=3.8"
+summary = "Python Imaging Library (Fork)"
+groups = ["default"]
+files = [
+ {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"},
+ {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"},
+ {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"},
+ {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"},
+ {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"},
+ {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"},
+ {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"},
+ {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"},
+ {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"},
+ {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"},
+ {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"},
+ {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"},
+ {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"},
+ {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"},
+ {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"},
+ {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"},
+ {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"},
+ {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"},
+ {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"},
+ {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"},
+ {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"},
+ {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"},
+ {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"},
+ {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"},
+ {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"},
+ {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"},
+ {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"},
+]
+
+[[package]]
+name = "platformdirs"
+version = "4.2.2"
+requires_python = ">=3.8"
+summary = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
+groups = ["default"]
+files = [
+ {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"},
+ {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"},
+]
+
+[[package]]
+name = "polars"
+version = "0.19.19"
+requires_python = ">=3.8"
+summary = "Blazingly fast DataFrame library"
+groups = ["default"]
+files = [
+ {file = "polars-0.19.19-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:812dbb0cc7027fd41ce6b3eaf100b94828fc082fab026409d48792e3e7014095"},
+ {file = "polars-0.19.19-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:21a334e18c83a259211ca6ec182498f3a89297fde9b8f75021c6881ff4411201"},
+ {file = "polars-0.19.19-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d383fac392b08a6d5830c99f6e735a48e390c1535c8f1e67707fcaab6863ade5"},
+ {file = "polars-0.19.19-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:eec0e72dce84b85c427bbf395d2e181f33e60677695b95ee2e87fed51043bdea"},
+ {file = "polars-0.19.19-cp38-abi3-win_amd64.whl", hash = "sha256:6c9e597efac74f00ef9cdfd9ba8a9128ed24276916bd3d60adc6e604530e4b37"},
+ {file = "polars-0.19.19.tar.gz", hash = "sha256:3e904d197aabf36e37fda263470eaf51ec92fb865cdea4f93947713480199303"},
+]
+
+[[package]]
+name = "prometheus-client"
+version = "0.20.0"
+requires_python = ">=3.8"
+summary = "Python client for the Prometheus monitoring system."
+groups = ["default"]
+files = [
+ {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"},
+ {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"},
+]
+
+[[package]]
+name = "prompt-toolkit"
+version = "3.0.47"
+requires_python = ">=3.7.0"
+summary = "Library for building powerful interactive command lines in Python"
+groups = ["default"]
+dependencies = [
+ "wcwidth",
+]
+files = [
+ {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"},
+ {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"},
+]
+
+[[package]]
+name = "psutil"
+version = "6.0.0"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
+summary = "Cross-platform lib for process and system monitoring in Python."
+groups = ["default"]
+files = [
+ {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"},
+ {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"},
+ {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"},
+ {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"},
+ {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"},
+ {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"},
+ {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"},
+ {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"},
+]
+
+[[package]]
+name = "ptyprocess"
+version = "0.7.0"
+summary = "Run a subprocess in a pseudo terminal"
+groups = ["default"]
+marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\" or os_name != \"nt\""
+files = [
+ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"},
+ {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"},
+]
+
+[[package]]
+name = "pulp"
+version = "2.7.0"
+summary = "PuLP is an LP modeler written in python. PuLP can generate MPS or LP files and call GLPK, COIN CLP/CBC, CPLEX, and GUROBI to solve linear problems."
+groups = ["default"]
+files = [
+ {file = "PuLP-2.7.0-py3-none-any.whl", hash = "sha256:b6de42c929e80325bf44cc7a2997f02535440800c376b9eb8cb7b4670ed53769"},
+ {file = "PuLP-2.7.0.tar.gz", hash = "sha256:e73ee6b32d639c9b8cf4b4aded334ba158be5f8313544e056f796ace0a10ae63"},
+]
+
+[[package]]
+name = "pure-eval"
+version = "0.2.2"
+summary = "Safely evaluate AST nodes without side effects"
+groups = ["default"]
+files = [
+ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"},
+ {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"},
+]
+
+[[package]]
+name = "pycparser"
+version = "2.22"
+requires_python = ">=3.8"
+summary = "C parser in Python"
+groups = ["default"]
+files = [
+ {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"},
+ {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
+]
+
+[[package]]
+name = "pygments"
+version = "2.18.0"
+requires_python = ">=3.8"
+summary = "Pygments is a syntax highlighting package written in Python."
+groups = ["default"]
+files = [
+ {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"},
+ {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"},
+]
+
+[[package]]
+name = "pyparsing"
+version = "3.1.2"
+requires_python = ">=3.6.8"
+summary = "pyparsing module - Classes and methods to define and execute parsing grammars"
+groups = ["default"]
+files = [
+ {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
+ {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
+]
+
+[[package]]
+name = "python-dateutil"
+version = "2.9.0.post0"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
+summary = "Extensions to the standard Python datetime module"
+groups = ["default"]
+dependencies = [
+ "six>=1.5",
+]
+files = [
+ {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"},
+ {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"},
+]
+
+[[package]]
+name = "python-json-logger"
+version = "2.0.7"
+requires_python = ">=3.6"
+summary = "A python library adding a json log formatter"
+groups = ["default"]
+files = [
+ {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"},
+ {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"},
+]
+
+[[package]]
+name = "pytz"
+version = "2024.1"
+summary = "World timezone definitions, modern and historical"
+groups = ["default"]
+files = [
+ {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"},
+ {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"},
+]
+
+[[package]]
+name = "pywin32"
+version = "306"
+summary = "Python for Window Extensions"
+groups = ["default"]
+marker = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""
+files = [
+ {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"},
+ {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"},
+ {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"},
+]
+
+[[package]]
+name = "pywinpty"
+version = "2.0.13"
+requires_python = ">=3.8"
+summary = "Pseudo terminal support for Windows from Python."
+groups = ["default"]
+marker = "os_name == \"nt\""
+files = [
+ {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"},
+ {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"},
+]
+
+[[package]]
+name = "pyyaml"
+version = "6.0.1"
+requires_python = ">=3.6"
+summary = "YAML parser and emitter for Python"
+groups = ["default"]
+files = [
+ {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
+ {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
+ {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
+ {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
+ {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
+ {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
+ {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
+ {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
+]
+
+[[package]]
+name = "pyzmq"
+version = "26.0.3"
+requires_python = ">=3.7"
+summary = "Python bindings for 0MQ"
+groups = ["default"]
+dependencies = [
+ "cffi; implementation_name == \"pypy\"",
+]
+files = [
+ {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"},
+ {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"},
+ {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"},
+ {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"},
+ {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"},
+ {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"},
+ {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"},
+ {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"},
+ {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"},
+ {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"},
+]
+
+[[package]]
+name = "qdldl"
+version = "0.1.7.post4"
+summary = "QDLDL, a free LDL factorization routine."
+groups = ["default"]
+dependencies = [
+ "numpy>=1.7",
+ "scipy>=0.13.2",
+]
+files = [
+ {file = "qdldl-0.1.7.post4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f6639d63c3bf9abbfdffafd3c99b7c603359ca748ab62117ec7fc0948a1c5e77"},
+ {file = "qdldl-0.1.7.post4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:87f31e7f2a2708def201b6dc507a48ada7e0c37efd0afda7ef6ef94ae3487c2c"},
+ {file = "qdldl-0.1.7.post4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47c1b27712444d7b1030c562ed79af18320b4a910454716c9d88114e181eddec"},
+ {file = "qdldl-0.1.7.post4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1496a820ffb0c1a5bb18392b44052b83b5442745b15f62bbf2d22eec1f506afe"},
+ {file = "qdldl-0.1.7.post4-cp311-cp311-win_amd64.whl", hash = "sha256:b6f8d59c01fa5c9dc3b6463fc7e1de7601dcb1aa16b6e14a6d5d283169dc629f"},
+ {file = "qdldl-0.1.7.post4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e2b9e92bb52d3bc49cfc9fd9a761adb692f049c46e68c0535ed07df2de8292f5"},
+ {file = "qdldl-0.1.7.post4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f6710b0c1013292697262803ddd549a81cdfdbdbbbcfa5b56aad04ac9cebbb4a"},
+ {file = "qdldl-0.1.7.post4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a40429f5c0d0edb28d22c4e52c2459fd9a64892ba7d8a39ba51a1a37b3581927"},
+ {file = "qdldl-0.1.7.post4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b85beb51096100dcdea575acedbafb5bac2b7f44485a1d7090bb68a47c8f9928"},
+ {file = "qdldl-0.1.7.post4-cp312-cp312-win_amd64.whl", hash = "sha256:684306b37a2f06f72c18edd2d6fa45a832e99071ebd87b875d172719e09a322d"},
+ {file = "qdldl-0.1.7.post4.tar.gz", hash = "sha256:0c163b9afb92c4b69d446387b1d4295094438b041ec4e8510271b6c4ff1f86fd"},
+]
+
+[[package]]
+name = "qtconsole"
+version = "5.5.2"
+requires_python = ">=3.8"
+summary = "Jupyter Qt console"
+groups = ["default"]
+dependencies = [
+ "ipykernel>=4.1",
+ "jupyter-client>=4.1",
+ "jupyter-core",
+ "packaging",
+ "pygments",
+ "pyzmq>=17.1",
+ "qtpy>=2.4.0",
+ "traitlets!=5.2.1,!=5.2.2",
+]
+files = [
+ {file = "qtconsole-5.5.2-py3-none-any.whl", hash = "sha256:42d745f3d05d36240244a04e1e1ec2a86d5d9b6edb16dbdef582ccb629e87e0b"},
+ {file = "qtconsole-5.5.2.tar.gz", hash = "sha256:6b5fb11274b297463706af84dcbbd5c92273b1f619e6d25d08874b0a88516989"},
+]
+
+[[package]]
+name = "qtpy"
+version = "2.4.1"
+requires_python = ">=3.7"
+summary = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)."
+groups = ["default"]
+dependencies = [
+ "packaging",
+]
+files = [
+ {file = "QtPy-2.4.1-py3-none-any.whl", hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b"},
+ {file = "QtPy-2.4.1.tar.gz", hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987"},
+]
+
+[[package]]
+name = "referencing"
+version = "0.35.1"
+requires_python = ">=3.8"
+summary = "JSON Referencing + Python"
+groups = ["default"]
+dependencies = [
+ "attrs>=22.2.0",
+ "rpds-py>=0.7.0",
+]
+files = [
+ {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"},
+ {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"},
+]
+
+[[package]]
+name = "requests"
+version = "2.32.3"
+requires_python = ">=3.8"
+summary = "Python HTTP for Humans."
+groups = ["default"]
+dependencies = [
+ "certifi>=2017.4.17",
+ "charset-normalizer<4,>=2",
+ "idna<4,>=2.5",
+ "urllib3<3,>=1.21.1",
+]
+files = [
+ {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"},
+ {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"},
+]
+
+[[package]]
+name = "rfc3339-validator"
+version = "0.1.4"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "A pure python RFC3339 validator"
+groups = ["default"]
+dependencies = [
+ "six",
+]
+files = [
+ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"},
+ {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"},
+]
+
+[[package]]
+name = "rfc3986-validator"
+version = "0.1.1"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
+summary = "Pure python rfc3986 validator"
+groups = ["default"]
+files = [
+ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"},
+ {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"},
+]
+
+[[package]]
+name = "rpds-py"
+version = "0.18.1"
+requires_python = ">=3.8"
+summary = "Python bindings to Rust's persistent data structures (rpds)"
+groups = ["default"]
+files = [
+ {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"},
+ {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"},
+ {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"},
+ {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"},
+ {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"},
+ {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"},
+ {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"},
+ {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"},
+ {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"},
+ {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"},
+ {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"},
+ {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"},
+]
+
+[[package]]
+name = "scipy"
+version = "1.14.0"
+requires_python = ">=3.10"
+summary = "Fundamental algorithms for scientific computing in Python"
+groups = ["default"]
+dependencies = [
+ "numpy<2.3,>=1.23.5",
+]
+files = [
+ {file = "scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e"},
+ {file = "scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb"},
+ {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf"},
+ {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86"},
+ {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8"},
+ {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74"},
+ {file = "scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb"},
+ {file = "scipy-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc"},
+ {file = "scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9"},
+ {file = "scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4"},
+ {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0"},
+ {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f"},
+ {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209"},
+ {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14"},
+ {file = "scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159"},
+ {file = "scipy-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20"},
+ {file = "scipy-1.14.0.tar.gz", hash = "sha256:b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b"},
+]
+
+[[package]]
+name = "scs"
+version = "3.2.5"
+requires_python = ">=3.7"
+summary = "Splitting conic solver"
+groups = ["default"]
+dependencies = [
+ "numpy",
+ "scipy",
+]
+files = [
+ {file = "scs-3.2.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e5965742869afef6704e96b55aa3f3eb10b2f1700b9f8316ce39ec192248b12c"},
+ {file = "scs-3.2.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:be64175da82728624e458e14ecb61db3d48d47f8b6f260c4f36ec315718e5b5f"},
+ {file = "scs-3.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efdab7a7553f64435efa9025fb404f6ec2602e76f10bb5d5cf1d881bf185fa77"},
+ {file = "scs-3.2.5-cp311-cp311-win_amd64.whl", hash = "sha256:80c9a08b14dab409da79a3d741162d95d8741c3001d1a3dd08fbaf40ff5b98bb"},
+ {file = "scs-3.2.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:84e8503a035f506fe91efe999f6d504edd29a8da0a62b58f2c1a7b81269cd42d"},
+ {file = "scs-3.2.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:676027c2f6d6180b98701a7dea8bfe522ce1d593a5e9426b2348f3edb9f8058e"},
+ {file = "scs-3.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89316c157fa326e79c02974ecd4004f37b9e54ea15bce0c3187d70e0385ef1ef"},
+ {file = "scs-3.2.5-cp312-cp312-win_amd64.whl", hash = "sha256:f1e2459a0219706485516574f9808abdf329e223b392a647d05605e2f7f60387"},
+ {file = "scs-3.2.5.tar.gz", hash = "sha256:dde777756b0aa9813f88224193883a494149b3f8c3c5b3dd6082c6e8b6bbe262"},
+]
+
+[[package]]
+name = "send2trash"
+version = "1.8.3"
+requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
+summary = "Send file to trash natively under Mac OS X, Windows and Linux"
+groups = ["default"]
+files = [
+ {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"},
+ {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"},
+]
+
+[[package]]
+name = "setuptools"
+version = "70.0.0"
+requires_python = ">=3.8"
+summary = "Easily download, build, install, upgrade, and uninstall Python packages"
+groups = ["default"]
+files = [
+ {file = "setuptools-70.0.0-py3-none-any.whl", hash = "sha256:54faa7f2e8d2d11bcd2c07bed282eef1046b5c080d1c32add737d7b5817b1ad4"},
+ {file = "setuptools-70.0.0.tar.gz", hash = "sha256:f211a66637b8fa059bb28183da127d4e86396c991a942b028c6650d4319c3fd0"},
+]
+
+[[package]]
+name = "six"
+version = "1.16.0"
+requires_python = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
+summary = "Python 2 and 3 compatibility utilities"
+groups = ["default"]
+files = [
+ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
+ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
+]
+
+[[package]]
+name = "sniffio"
+version = "1.3.1"
+requires_python = ">=3.7"
+summary = "Sniff out which async library your code is running under"
+groups = ["default"]
+files = [
+ {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"},
+ {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"},
+]
+
+[[package]]
+name = "soupsieve"
+version = "2.5"
+requires_python = ">=3.8"
+summary = "A modern CSS selector implementation for Beautiful Soup."
+groups = ["default"]
+files = [
+ {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"},
+ {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"},
+]
+
+[[package]]
+name = "sqlalchemy"
+version = "2.0.31"
+requires_python = ">=3.7"
+summary = "Database Abstraction Library"
+groups = ["default"]
+dependencies = [
+ "greenlet!=0.4.17; (platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\") and python_version < \"3.13\"",
+ "typing-extensions>=4.6.0",
+]
+files = [
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3b74570d99126992d4b0f91fb87c586a574a5872651185de8297c6f90055ae42"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f77c4f042ad493cb8595e2f503c7a4fe44cd7bd59c7582fd6d78d7e7b8ec52c"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd1591329333daf94467e699e11015d9c944f44c94d2091f4ac493ced0119449"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74afabeeff415e35525bf7a4ecdab015f00e06456166a2eba7590e49f8db940e"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b9c01990d9015df2c6f818aa8f4297d42ee71c9502026bb074e713d496e26b67"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66f63278db425838b3c2b1c596654b31939427016ba030e951b292e32b99553e"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-win32.whl", hash = "sha256:0b0f658414ee4e4b8cbcd4a9bb0fd743c5eeb81fc858ca517217a8013d282c96"},
+ {file = "SQLAlchemy-2.0.31-cp312-cp312-win_amd64.whl", hash = "sha256:fa4b1af3e619b5b0b435e333f3967612db06351217c58bfb50cee5f003db2a5a"},
+ {file = "SQLAlchemy-2.0.31-py3-none-any.whl", hash = "sha256:69f3e3c08867a8e4856e92d7afb618b95cdee18e0bc1647b77599722c9a28911"},
+ {file = "SQLAlchemy-2.0.31.tar.gz", hash = "sha256:b607489dd4a54de56984a0c7656247504bd5523d9d0ba799aef59d4add009484"},
+]
+
+[[package]]
+name = "stack-data"
+version = "0.6.3"
+summary = "Extract data from python stack frames and tracebacks for informative displays"
+groups = ["default"]
+dependencies = [
+ "asttokens>=2.1.0",
+ "executing>=1.2.0",
+ "pure-eval",
+]
+files = [
+ {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"},
+ {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"},
+]
+
+[[package]]
+name = "tabulate"
+version = "0.9.0"
+requires_python = ">=3.7"
+summary = "Pretty-print tabular data"
+groups = ["default"]
+files = [
+ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"},
+ {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"},
+]
+
+[[package]]
+name = "terminado"
+version = "0.18.1"
+requires_python = ">=3.8"
+summary = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library."
+groups = ["default"]
+dependencies = [
+ "ptyprocess; os_name != \"nt\"",
+ "pywinpty>=1.1.0; os_name == \"nt\"",
+ "tornado>=6.1.0",
+]
+files = [
+ {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"},
+ {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"},
+]
+
+[[package]]
+name = "tinycss2"
+version = "1.3.0"
+requires_python = ">=3.8"
+summary = "A tiny CSS parser"
+groups = ["default"]
+dependencies = [
+ "webencodings>=0.4",
+]
+files = [
+ {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"},
+ {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"},
+]
+
+[[package]]
+name = "tokenize-rt"
+version = "5.2.0"
+requires_python = ">=3.8"
+summary = "A wrapper around the stdlib `tokenize` which roundtrips."
+groups = ["default"]
+files = [
+ {file = "tokenize_rt-5.2.0-py2.py3-none-any.whl", hash = "sha256:b79d41a65cfec71285433511b50271b05da3584a1da144a0752e9c621a285289"},
+ {file = "tokenize_rt-5.2.0.tar.gz", hash = "sha256:9fe80f8a5c1edad2d3ede0f37481cc0cc1538a2f442c9c2f9e4feacd2792d054"},
+]
+
+[[package]]
+name = "tornado"
+version = "6.4.1"
+requires_python = ">=3.8"
+summary = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed."
+groups = ["default"]
+files = [
+ {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"},
+ {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"},
+ {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"},
+ {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"},
+ {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"},
+ {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"},
+ {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"},
+ {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"},
+ {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"},
+ {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"},
+ {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"},
+]
+
+[[package]]
+name = "traitlets"
+version = "5.14.3"
+requires_python = ">=3.8"
+summary = "Traitlets Python configuration system"
+groups = ["default"]
+files = [
+ {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"},
+ {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"},
+]
+
+[[package]]
+name = "types-python-dateutil"
+version = "2.9.0.20240316"
+requires_python = ">=3.8"
+summary = "Typing stubs for python-dateutil"
+groups = ["default"]
+files = [
+ {file = "types-python-dateutil-2.9.0.20240316.tar.gz", hash = "sha256:5d2f2e240b86905e40944dd787db6da9263f0deabef1076ddaed797351ec0202"},
+ {file = "types_python_dateutil-2.9.0.20240316-py3-none-any.whl", hash = "sha256:6b8cb66d960771ce5ff974e9dd45e38facb81718cc1e208b10b1baccbfdbee3b"},
+]
+
+[[package]]
+name = "typing-extensions"
+version = "4.12.2"
+requires_python = ">=3.8"
+summary = "Backported and Experimental Type Hints for Python 3.8+"
+groups = ["default"]
+files = [
+ {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
+ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
+]
+
+[[package]]
+name = "tzdata"
+version = "2024.1"
+requires_python = ">=2"
+summary = "Provider of IANA time zone data"
+groups = ["default"]
+files = [
+ {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"},
+ {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"},
+]
+
+[[package]]
+name = "uri-template"
+version = "1.3.0"
+requires_python = ">=3.7"
+summary = "RFC 6570 URI Template Processor"
+groups = ["default"]
+files = [
+ {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"},
+ {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"},
+]
+
+[[package]]
+name = "urllib3"
+version = "2.2.2"
+requires_python = ">=3.8"
+summary = "HTTP library with thread-safe connection pooling, file post, and more."
+groups = ["default"]
+files = [
+ {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"},
+ {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"},
+]
+
+[[package]]
+name = "wcwidth"
+version = "0.2.13"
+summary = "Measures the displayed width of unicode strings in a terminal"
+groups = ["default"]
+files = [
+ {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"},
+ {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"},
+]
+
+[[package]]
+name = "webcolors"
+version = "24.6.0"
+requires_python = ">=3.8"
+summary = "A library for working with the color formats defined by HTML and CSS."
+groups = ["default"]
+files = [
+ {file = "webcolors-24.6.0-py3-none-any.whl", hash = "sha256:8cf5bc7e28defd1d48b9e83d5fc30741328305a8195c29a8e668fa45586568a1"},
+ {file = "webcolors-24.6.0.tar.gz", hash = "sha256:1d160d1de46b3e81e58d0a280d0c78b467dc80f47294b91b1ad8029d2cedb55b"},
+]
+
+[[package]]
+name = "webencodings"
+version = "0.5.1"
+summary = "Character encoding aliases for legacy web content"
+groups = ["default"]
+files = [
+ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
+ {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
+]
+
+[[package]]
+name = "websocket-client"
+version = "1.8.0"
+requires_python = ">=3.8"
+summary = "WebSocket client for Python with low level API options"
+groups = ["default"]
+files = [
+ {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"},
+ {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"},
+]
+
+[[package]]
+name = "widgetsnbextension"
+version = "4.0.11"
+requires_python = ">=3.7"
+summary = "Jupyter interactive widgets for Jupyter Notebook"
+groups = ["default"]
+files = [
+ {file = "widgetsnbextension-4.0.11-py3-none-any.whl", hash = "sha256:55d4d6949d100e0d08b94948a42efc3ed6dfdc0e9468b2c4b128c9a2ce3a7a36"},
+ {file = "widgetsnbextension-4.0.11.tar.gz", hash = "sha256:8b22a8f1910bfd188e596fe7fc05dcbd87e810c8a4ba010bdb3da86637398474"},
+]
+
+[[package]]
+name = "zipp"
+version = "3.19.2"
+requires_python = ">=3.8"
+summary = "Backport of pathlib-compatible object wrapper for zip files"
+groups = ["default"]
+files = [
+ {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"},
+ {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"},
+]
diff --git a/blog/fantasy-football/pyproject.toml b/blog/fantasy-football/pyproject.toml
index 891a272..5083267 100644
--- a/blog/fantasy-football/pyproject.toml
+++ b/blog/fantasy-football/pyproject.toml
@@ -2,35 +2,21 @@
name = "fantasy-football"
version = "0.1.0"
authors = [
- { name = "Luís Assunção", email = "assuncaolfi@gmail.com" }
+ { name = "Luís Assunção", email = "assuncaolfi@gmail.com" },
]
dependencies = [
- "bambi~=0.13.0",
- "blog @ git+https://github.com/assuncaolfi/site/",
- "jupyter~=1.0.0",
- "numpyro~=0.13.2",
- "numpy~=1.24.4",
- "polars~=0.19.3",
- "pulp~=2.7.0",
- "pyarrow~=14.0.1",
- "pydantic~=2.3.0",
- "seaborn~=0.13.0",
+ "cvxpy>=1.5.2",
+ "jupyter-black>=0.3.4",
+ "jupyter-cache>=1.0.0",
+ "jupyter>=1.0.0",
+ "jupytext>=1.16.2",
+ "matplotlib>=3.9.1",
+ "numpy>=2.0.0",
+ "polars>=0.19.19",
]
-requires-python = ">= 3.11"
+requires-python = ">=3.11"
+readme = "README.md"
+license = {text = "MIT"}
-[project.scripts]
-hello = "fantasy_football:hello"
-
-[build-system]
-requires = ["hatchling"]
-build-backend = "hatchling.build"
-
-[tool.rye]
-managed = true
-dev-dependencies = []
-
-[tool.hatch.metadata]
-allow-direct-references = true
-
-[tool.hatch.build.targets.wheel]
-packages = ["src/fantasy_football"]
+[tool.pdm]
+distribution = false
diff --git a/blog/fantasy-football/requirements-dev.lock b/blog/fantasy-football/requirements-dev.lock
deleted file mode 100644
index 1fd3d19..0000000
--- a/blog/fantasy-football/requirements-dev.lock
+++ /dev/null
@@ -1,153 +0,0 @@
-# generated by rye
-# use `rye lock` or `rye sync` to update this lockfile
-#
-# last locked with the following flags:
-# pre: false
-# features: []
-# all-features: false
-# with-sources: false
-
--e file:.
-annotated-types==0.6.0
-anyio==4.2.0
-appnope==0.1.3
-argon2-cffi==23.1.0
-argon2-cffi-bindings==21.2.0
-arrow==1.3.0
-arviz==0.17.0
-asttokens==2.4.1
-async-lru==2.0.4
-attrs==23.2.0
-babel==2.14.0
-bambi==0.13.0
-beautifulsoup4==4.12.3
-bleach==6.1.0
-blog @ git+https://github.com/assuncaolfi/site/
-cachetools==5.3.2
-certifi==2023.11.17
-cffi==1.16.0
-charset-normalizer==3.3.2
-cloudpickle==3.0.0
-comm==0.2.1
-cons==0.4.6
-contourpy==1.2.0
-cycler==0.12.1
-debugpy==1.8.0
-decorator==5.1.1
-defusedxml==0.7.1
-etuples==0.3.9
-executing==2.0.1
-fastjsonschema==2.19.1
-fastprogress==1.0.3
-filelock==3.13.1
-fonttools==4.47.2
-formulae==0.5.1
-fqdn==1.5.1
-graphviz==0.20.1
-h5netcdf==1.3.0
-h5py==3.10.0
-idna==3.6
-ipykernel==6.29.0
-ipython==8.20.0
-ipywidgets==8.1.1
-isoduration==20.11.0
-jax==0.4.23
-jaxlib==0.4.23
-jedi==0.19.1
-jinja2==3.1.3
-json5==0.9.14
-jsonpointer==2.4
-jsonschema==4.21.1
-jsonschema-specifications==2023.12.1
-jupyter==1.0.0
-jupyter-client==8.6.0
-jupyter-console==6.6.3
-jupyter-core==5.7.1
-jupyter-events==0.9.0
-jupyter-lsp==2.2.2
-jupyter-server==2.12.5
-jupyter-server-terminals==0.5.2
-jupyterlab==4.0.11
-jupyterlab-pygments==0.3.0
-jupyterlab-server==2.25.2
-jupyterlab-widgets==3.0.9
-kiwisolver==1.4.5
-logical-unification==0.4.6
-markupsafe==2.1.4
-matplotlib==3.8.2
-matplotlib-inline==0.1.6
-minikanren==1.0.3
-mistune==3.0.2
-ml-dtypes==0.3.2
-multipledispatch==1.0.0
-nbclient==0.9.0
-nbconvert==7.14.2
-nbformat==5.9.2
-nest-asyncio==1.6.0
-notebook==7.0.7
-notebook-shim==0.2.3
-numpy==1.24.4
-numpyro==0.13.2
-opt-einsum==3.3.0
-overrides==7.6.0
-packaging==23.2
-pandas==2.2.0
-pandocfilters==1.5.1
-parso==0.8.3
-pexpect==4.9.0
-pillow==10.2.0
-platformdirs==4.1.0
-polars==0.19.19
-prometheus-client==0.19.0
-prompt-toolkit==3.0.43
-psutil==5.9.8
-ptyprocess==0.7.0
-pulp==2.7.0
-pure-eval==0.2.2
-pyarrow==14.0.2
-pycparser==2.21
-pydantic==2.3.0
-pydantic-core==2.6.3
-pygments==2.17.2
-pymc==5.10.3
-pyparsing==3.1.1
-pytensor==2.18.6
-python-dateutil==2.8.2
-python-json-logger==2.0.7
-pytz==2023.3.post1
-pyyaml==6.0.1
-pyzmq==25.1.2
-qtconsole==5.5.1
-qtpy==2.4.1
-referencing==0.32.1
-requests==2.31.0
-rfc3339-validator==0.1.4
-rfc3986-validator==0.1.1
-rpds-py==0.17.1
-scipy==1.12.0
-seaborn==0.13.1
-send2trash==1.8.2
-six==1.16.0
-sniffio==1.3.0
-soupsieve==2.5
-stack-data==0.6.3
-terminado==0.18.0
-tinycss2==1.2.1
-toolz==0.12.0
-tornado==6.4
-tqdm==4.66.1
-traitlets==5.14.1
-types-python-dateutil==2.8.19.20240106
-typing-extensions==4.9.0
-tzdata==2023.4
-uri-template==1.3.0
-urllib3==2.1.0
-wcwidth==0.2.13
-webcolors==1.13
-webencodings==0.5.1
-websocket-client==1.7.0
-widgetsnbextension==4.0.9
-xarray==2024.1.0
-xarray-einstats==0.7.0
-# The following packages are considered to be unsafe in a requirements file:
-setuptools==69.0.3
diff --git a/blog/fantasy-football/requirements.lock b/blog/fantasy-football/requirements.lock
deleted file mode 100644
index 1fd3d19..0000000
--- a/blog/fantasy-football/requirements.lock
+++ /dev/null
@@ -1,153 +0,0 @@
-# generated by rye
-# use `rye lock` or `rye sync` to update this lockfile
-#
-# last locked with the following flags:
-# pre: false
-# features: []
-# all-features: false
-# with-sources: false
-
--e file:.
-annotated-types==0.6.0
-anyio==4.2.0
-appnope==0.1.3
-argon2-cffi==23.1.0
-argon2-cffi-bindings==21.2.0
-arrow==1.3.0
-arviz==0.17.0
-asttokens==2.4.1
-async-lru==2.0.4
-attrs==23.2.0
-babel==2.14.0
-bambi==0.13.0
-beautifulsoup4==4.12.3
-bleach==6.1.0
-blog @ git+https://github.com/assuncaolfi/site/
-cachetools==5.3.2
-certifi==2023.11.17
-cffi==1.16.0
-charset-normalizer==3.3.2
-cloudpickle==3.0.0
-comm==0.2.1
-cons==0.4.6
-contourpy==1.2.0
-cycler==0.12.1
-debugpy==1.8.0
-decorator==5.1.1
-defusedxml==0.7.1
-etuples==0.3.9
-executing==2.0.1
-fastjsonschema==2.19.1
-fastprogress==1.0.3
-filelock==3.13.1
-fonttools==4.47.2
-formulae==0.5.1
-fqdn==1.5.1
-graphviz==0.20.1
-h5netcdf==1.3.0
-h5py==3.10.0
-idna==3.6
-ipykernel==6.29.0
-ipython==8.20.0
-ipywidgets==8.1.1
-isoduration==20.11.0
-jax==0.4.23
-jaxlib==0.4.23
-jedi==0.19.1
-jinja2==3.1.3
-json5==0.9.14
-jsonpointer==2.4
-jsonschema==4.21.1
-jsonschema-specifications==2023.12.1
-jupyter==1.0.0
-jupyter-client==8.6.0
-jupyter-console==6.6.3
-jupyter-core==5.7.1
-jupyter-events==0.9.0
-jupyter-lsp==2.2.2
-jupyter-server==2.12.5
-jupyter-server-terminals==0.5.2
-jupyterlab==4.0.11
-jupyterlab-pygments==0.3.0
-jupyterlab-server==2.25.2
-jupyterlab-widgets==3.0.9
-kiwisolver==1.4.5
-logical-unification==0.4.6
-markupsafe==2.1.4
-matplotlib==3.8.2
-matplotlib-inline==0.1.6
-minikanren==1.0.3
-mistune==3.0.2
-ml-dtypes==0.3.2
-multipledispatch==1.0.0
-nbclient==0.9.0
-nbconvert==7.14.2
-nbformat==5.9.2
-nest-asyncio==1.6.0
-notebook==7.0.7
-notebook-shim==0.2.3
-numpy==1.24.4
-numpyro==0.13.2
-opt-einsum==3.3.0
-overrides==7.6.0
-packaging==23.2
-pandas==2.2.0
-pandocfilters==1.5.1
-parso==0.8.3
-pexpect==4.9.0
-pillow==10.2.0
-platformdirs==4.1.0
-polars==0.19.19
-prometheus-client==0.19.0
-prompt-toolkit==3.0.43
-psutil==5.9.8
-ptyprocess==0.7.0
-pulp==2.7.0
-pure-eval==0.2.2
-pyarrow==14.0.2
-pycparser==2.21
-pydantic==2.3.0
-pydantic-core==2.6.3
-pygments==2.17.2
-pymc==5.10.3
-pyparsing==3.1.1
-pytensor==2.18.6
-python-dateutil==2.8.2
-python-json-logger==2.0.7
-pytz==2023.3.post1
-pyyaml==6.0.1
-pyzmq==25.1.2
-qtconsole==5.5.1
-qtpy==2.4.1
-referencing==0.32.1
-requests==2.31.0
-rfc3339-validator==0.1.4
-rfc3986-validator==0.1.1
-rpds-py==0.17.1
-scipy==1.12.0
-seaborn==0.13.1
-send2trash==1.8.2
-six==1.16.0
-sniffio==1.3.0
-soupsieve==2.5
-stack-data==0.6.3
-terminado==0.18.0
-tinycss2==1.2.1
-toolz==0.12.0
-tornado==6.4
-tqdm==4.66.1
-traitlets==5.14.1
-types-python-dateutil==2.8.19.20240106
-typing-extensions==4.9.0
-tzdata==2023.4
-uri-template==1.3.0
-urllib3==2.1.0
-wcwidth==0.2.13
-webcolors==1.13
-webencodings==0.5.1
-websocket-client==1.7.0
-widgetsnbextension==4.0.9
-xarray==2024.1.0
-xarray-einstats==0.7.0
-# The following packages are considered to be unsafe in a requirements file:
-setuptools==69.0.3
diff --git a/blog/fantasy-football/src/fantasy_football/__init__.py b/blog/fantasy-football/src/fantasy_football/__init__.py
deleted file mode 100644
index 8c7debe..0000000
--- a/blog/fantasy-football/src/fantasy_football/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-def hello():
- return "Hello from fantasy-football!"
diff --git a/cv.qmd b/cv.qmd
index 48024e3..ea65600 100644
--- a/cv.qmd
+++ b/cv.qmd
@@ -1,17 +1,16 @@
---
-title: Curriculum Vitae
+title: CV
subtitle: Luís Assunção
date-modified: today
format:
- html:
- toc: true
+ html: default
pdf: default
---
-[{{< bi envelope-at-fill >}} Email]({{< var email >}}) /
-[{{< bi github >}} GitHub]({{< var github >}}) /
-[{{< bi linkedin >}} LinkedIn]({{< var linkedin >}}) /
-[{{< bi globe-americas >}} Website]({{< var website >}})
+{{< bi envelope-at-fill >}} [Email]({{< var email >}}) /
+{{< bi github >}} [GitHub]({{< var github >}}) /
+{{< bi linkedin >}} [LinkedIn]({{< var linkedin >}}) /
+{{< bi globe-americas >}} [Website]({{< var website >}})
_The PDF version of this document might be outdated. Please see the [website
version]({{< var website >}}/cv.html)._
@@ -22,11 +21,13 @@ version]({{< var website >}}/cv.html)._
**Staff Data Scientist | April 2020 - present**
-* Developed an in-house AB hierarchical testing framework with optional stopping
-* Consulted for and developed randomized controlled trials
-* Estimated causal effects in non-randomized experiments
+* Developed an experimentation platform with sequential testing to scale
+ conversion rate optimization
+* Designed experiments and causal graphs to estimate feature effects and
+ support decision making
* Estimated pricing elasticity for digital products using multilevel models
-* Classified evergreen vs launching sales strategies using hidden state models
+* Enriched internal data by classifying evergreen vs launching sales strategies
+ for digital products using hidden state models
* Improved quality of course assigments using Item Response Theory models
### [Oper](https://operdata.com.br)
@@ -63,8 +64,7 @@ cohort](https://pubmed.ncbi.nlm.nih.gov/36375382/)
### Blog
-Posts on data analysis using tools such as Python, `polars`, `pymc`, `pulp`,
-`seaborn`:
+Posts on statistical modeling and data analysis:
* [Drafting a fantasy football team](https://assuncaolfi.github.io/site/blog/fantasy-football):
In this post, I delve into the data for the 2022 season of a brazilian fantasy
@@ -73,29 +73,29 @@ Posts on data analysis using tools such as Python, `polars`, `pymc`, `pulp`,
effects linear models.
* [Additive aging curve](https://assuncaolfi.github.io/site/blog/aging-curve):
- In this post, I compare empirical, semi-parametric and parametric approaches
- to modeling aging-curve-like non-monotonic relationships using data from a
- verbal working memory test.
+ In this post, I compare empirical and parametric approaches to modeling aging-
+ curve-like non-monotonic relationships using data from a verbal working memory
+ test.
+Some tools used in my blog: Python, `cvxpy`, `matplotlib`, `numpy`, `polars`,
+`pymc`.
### Repositories
* [site](https://github.com/assuncaolfi/site): My website and blog post codes
-using Quarto
-* [mldc2020](https://github.com/assuncaolfi/mldc2020): Recommendation system and
-7th place solution to the Mercado Libre Data Challenge 2020
-* [rstanbtm](https://github.com/assuncaolfi/rstanbtm): Biterm Topic Model
-implementation in Stan
-* [qlm](https://github.com/assuncaolfi/qlm): Generate predictive SQL queries
-from linear models in R
-* [tophat](https://github.com/assuncaolfi/tophat): Scheduled shell script to
-fetch and save fantasy football data
+ using Quarto
+* [savvi](https://github.com/assuncaolfi/savvi): Python package for Safe
+ Anytime Valid Inference
+* [tophat](https://github.com/assuncaolfi/tophat): Historical database of
+ Cartola, a fantasy football league
+* [qlm](https://github.com/assuncaolfi/qlm): R package to generate predictive
+ SQL queries from linear models
### Others
-* [Pod e Dev podcast episode](https://podcasts.apple.com/br/podcast/evolu%C3%A7%C3%A3o-e-perspectivas-futuras-para-intelig%C3%AAncia-artificial/id1666875166?i=1000628439729&l=en-GB),
-where I talk (in portuguese) about the challenges in pricing digital products
-and causal assumptions we made to overcome these challenges in our model at
-Hotmart. We also discuss good and bad use cases for large language models, as
-well as how models with 2 parameters can be as useful as models with 200 million
-parameters.
+* [Pod & Dev podcast episode](https://podcasts.apple.com/br/podcast/evolu%C3%A7%C3%A3o-e-perspectivas-futuras-para-intelig%C3%AAncia-artificial/id1666875166?i=1000628439729&l=en-GB),
+ where I talk (in portuguese) about the challenges in pricing digital products
+ and causal assumptions we made to overcome these challenges in our model at
+ Hotmart. We also discuss good and bad use cases for large language models, as
+ well as how models with 2 parameters can be as useful as models with 200 million
+ parameters.
diff --git a/docs/assets/andon-lamp.jpeg b/docs/assets/andon-lamp.jpeg
new file mode 100644
index 0000000..8b44050
Binary files /dev/null and b/docs/assets/andon-lamp.jpeg differ
diff --git a/docs/assets/cats.jpeg b/docs/assets/cats.jpeg
new file mode 100644
index 0000000..2e2b1e1
Binary files /dev/null and b/docs/assets/cats.jpeg differ
diff --git a/docs/assets/favicon.png b/docs/assets/favicon.png
deleted file mode 100644
index 18a946f..0000000
Binary files a/docs/assets/favicon.png and /dev/null differ
diff --git a/docs/blog/aging-curve/index.html b/docs/blog/aging-curve/index.html
index f2ab0a7..f6a634e 100644
--- a/docs/blog/aging-curve/index.html
+++ b/docs/blog/aging-curve/index.html
@@ -6,9 +6,10 @@
-
+
+
-Luís Assunção - Additive aging curve
+< - Additive aging curve (draft)
-
+
@@ -86,7 +88,6 @@
-
@@ -105,48 +106,22 @@
"search-label": "Search"
}
}
+
-
-
+
-
-