forked from testingautomated-usi/maxitwo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautopilot_model.py
143 lines (125 loc) · 4.98 KB
/
autopilot_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import datetime
import os
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, Lambda
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam
from config import INPUT_SHAPE, SIMULATOR_NAMES
from utils.dataset_utils import DataGenerator
class AutopilotModel:
def __init__(self, env_name: str, input_shape: Tuple[int] = INPUT_SHAPE, predict_throttle: bool = True):
# cropped input_shape: height, width, channels. Allow for mixed datasets
assert env_name in SIMULATOR_NAMES or env_name == "mixed", "Unknown simulator name {}. Choose among {}".format(
env_name, SIMULATOR_NAMES
)
self.input_shape = input_shape
self.env_name = env_name
self.predict_throttle = predict_throttle
self.model = None
def build_model(self, keep_probability: float = 0.5) -> Sequential:
"""
Modified NVIDIA model
"""
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1.0, input_shape=self.input_shape))
model.add(Conv2D(24, (5, 5), activation="elu", strides=(2, 2)))
model.add(Conv2D(36, (5, 5), activation="elu", strides=(2, 2)))
model.add(Conv2D(48, (5, 5), activation="elu", strides=(2, 2)))
model.add(Conv2D(64, (3, 3), activation="elu"))
model.add(Conv2D(64, (3, 3), activation="elu"))
model.add(Dropout(keep_probability))
model.add(Flatten())
model.add(Dense(100, activation="elu"))
model.add(Dense(50, activation="elu"))
model.add(Dense(10, activation="elu"))
if self.predict_throttle:
model.add(Dense(2))
else:
model.add(Dense(1))
model.summary()
return model
def load(self, model_path: str) -> None:
assert os.path.exists(model_path), "Model path {} not found".format(model_path)
with tf.device("cpu:0"):
self.model = load_model(filepath=model_path)
def train_model(
self,
X_train: np.ndarray,
X_val: np.ndarray,
y_train: np.ndarray,
y_val: np.ndarray,
save_path: str,
model_name: str,
save_best_only: bool = True,
keep_probability: float = 0.5,
learning_rate: float = 1e-4,
nb_epoch: int = 200,
batch_size: int = 128,
early_stopping_patience: int = 3,
save_plots: bool = True,
preprocess: bool = True,
fake_images: bool = False,
) -> None:
os.makedirs(save_path, exist_ok=True)
self.model = self.build_model(keep_probability=keep_probability)
filename = "{}-{}-{}.h5".format(self.env_name, model_name, datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"))
if fake_images:
filename = "{}-fake-{}-{}.h5".format(
self.env_name, model_name, datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
)
checkpoint = ModelCheckpoint(
os.path.join(save_path, filename), monitor="val_loss", verbose=0, save_best_only=save_best_only, mode="auto"
)
self.model.compile(loss="mean_squared_error", optimizer=Adam(lr=learning_rate))
early_stopping = EarlyStopping(monitor="val_loss", patience=early_stopping_patience)
train_generator = DataGenerator(
X=X_train,
y=y_train,
batch_size=batch_size,
is_training=True,
env_name=self.env_name,
input_shape=self.input_shape,
predict_throttle=self.predict_throttle,
preprocess=preprocess,
fake_images=fake_images,
)
validation_generator = DataGenerator(
X=X_val,
y=y_val,
batch_size=batch_size,
is_training=False,
env_name=self.env_name,
input_shape=self.input_shape,
predict_throttle=self.predict_throttle,
preprocess=preprocess,
fake_images=fake_images,
)
history = self.model.fit(
train_generator,
validation_data=validation_generator,
epochs=nb_epoch,
use_multiprocessing=False,
max_queue_size=10,
workers=8,
callbacks=[checkpoint, early_stopping],
verbose=1,
)
if save_plots:
plt.figure()
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "val"], loc="upper left")
plt.savefig(
os.path.join(
save_path, "{}-loss-{}.pdf".format(self.env_name, datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"))
),
format="pdf",
)