forked from testingautomated-usi/maxitwo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfactories.py
176 lines (149 loc) · 6.12 KB
/
factories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os.path
from typing import Tuple
from config import (
AGENT_TYPES,
BEAMNG_SIM_NAME,
DONKEY_SIM_NAME,
INPUT_SHAPE,
MAX_ANGLE,
MOCK_SIM_NAME,
NUM_CONTROL_NODES,
NUM_SAMPLED_POINTS,
SIMULATOR_NAMES,
UDACITY_SIM_NAME,
)
from custom_types import GymEnv
from cyclegan.models import create_model
from cyclegan.options.test_options import TestOptions
from cyclegan.util.util import get_base_and_test_default_options
from envs.beamng.beamng_gym_env import BeamngGymEnv
from envs.beamng.config import MAX_SPEED_BEAMNG, MIN_SPEED_BEAMNG
from envs.donkey.config import MAX_SPEED_DONKEY, MIN_SPEED_DONKEY
from envs.donkey.donkey_gym_env import DonkeyGymEnv
from envs.donkey.scenes.simulator_scenes import GeneratedTrack
from envs.mock_gym_env import MockGymEnv
from envs.udacity.config import MAX_SPEED_UDACITY, MIN_SPEED_UDACITY
from envs.udacity.udacity_gym_env import UdacityGymEnv
from self_driving.agent import Agent
from self_driving.autopilot_agent import AutopilotAgent
from self_driving.random_agent import RandomAgent
from self_driving.supervised_agent import SupervisedAgent
from test_generators.deepjanus_test_generator import JanusTestGenerator
from test_generators.sin_test_generator import SinTestGenerator
from test_generators.test_generator import TestGenerator
def make_test_generator(
generator_name: str,
map_size: int,
simulator_name: str,
agent_type: str,
num_control_nodes: int = NUM_CONTROL_NODES,
max_angle: int = MAX_ANGLE,
num_spline_nodes: int = NUM_SAMPLED_POINTS,
) -> TestGenerator:
if generator_name == "random":
return JanusTestGenerator(
map_size=map_size,
simulator_name=simulator_name,
agent_type=agent_type,
num_control_nodes=num_control_nodes,
max_angle=max_angle,
num_spline_nodes=num_spline_nodes,
)
if generator_name == "sin":
return SinTestGenerator(simulator_name=simulator_name)
def make_env(
simulator_name: str,
seed: int,
port: int,
test_generator: TestGenerator = None,
donkey_exe_path: str = None,
udacity_exe_path: str = None,
headless: bool = False,
beamng_user: str = None,
beamng_home: str = None,
beamng_autopilot: bool = False,
cyclegan_experiment_name: str = None,
gpu_ids: str = "-1",
cyclegan_checkpoints_dir: str = None,
cyclegan_epoch: int = None,
) -> GymEnv:
assert simulator_name in SIMULATOR_NAMES, "Unknown simulator name {}. Choose among {}".format(
simulator_name, SIMULATOR_NAMES
)
cyclegan_model = None
cyclegan_options = None
if cyclegan_experiment_name is not None:
opt = get_base_and_test_default_options(
name=cyclegan_experiment_name, gpu_ids=gpu_ids, checkpoints_dir=cyclegan_checkpoints_dir, epoch=cyclegan_epoch
)
cyclegan_model = create_model(opt) # create a model given opt.model and other options
cyclegan_model.setup(opt) # regular setup: load and print networks; create schedulers
cyclegan_options = opt
if simulator_name == DONKEY_SIM_NAME:
return DonkeyGymEnv(
seed=seed,
add_to_port=port,
test_generator=test_generator,
simulator_scene=GeneratedTrack(),
headless=headless,
exe_path=donkey_exe_path,
cyclegan_model=cyclegan_model,
cyclegan_options=cyclegan_options,
)
if simulator_name == BEAMNG_SIM_NAME:
return BeamngGymEnv(
seed=seed,
add_to_port=port,
test_generator=test_generator,
beamng_user=beamng_user,
beamng_home=beamng_home,
autopilot=beamng_autopilot,
cyclegan_model=cyclegan_model,
cyclegan_options=cyclegan_options,
)
if simulator_name == UDACITY_SIM_NAME:
return UdacityGymEnv(
seed=seed,
test_generator=test_generator,
exe_path=udacity_exe_path,
headless=headless,
cyclegan_model=cyclegan_model,
cyclegan_options=cyclegan_options,
)
if simulator_name == MOCK_SIM_NAME:
return MockGymEnv()
raise RuntimeError("Unknown simulator name: {}".format(simulator_name))
def get_max_min_speed(env_name: str) -> Tuple[int, int]:
assert env_name in SIMULATOR_NAMES, "Unknown simulator name {}. Choose among {}".format(env_name, SIMULATOR_NAMES)
if env_name == DONKEY_SIM_NAME:
return MAX_SPEED_DONKEY, MIN_SPEED_DONKEY
if env_name == UDACITY_SIM_NAME:
return MAX_SPEED_UDACITY, MIN_SPEED_UDACITY
if env_name == BEAMNG_SIM_NAME:
return MAX_SPEED_BEAMNG, MIN_SPEED_BEAMNG
if env_name == MOCK_SIM_NAME:
return 30, 10 # completely random
raise RuntimeError("Unknown simulator name: {}".format(env_name))
def make_agent(
env_name: str, env: GymEnv, agent_type: str, model_path: str, predict_throttle: bool = False, fake_images: bool = False
) -> Agent:
assert agent_type in AGENT_TYPES, "Unknown agent type {}. Choose among {}".format(agent_type, AGENT_TYPES)
assert env_name in SIMULATOR_NAMES, "Unknown simulator name {}. Choose among {}".format(env_name, SIMULATOR_NAMES)
max_speed, min_speed = get_max_min_speed(env_name=env_name)
if agent_type == "supervised":
assert os.path.exists(model_path), "Model path {} does not exist".format(model_path)
return SupervisedAgent(
env=env,
env_name=env_name,
max_speed=max_speed,
min_speed=min_speed,
model_path=model_path,
input_shape=INPUT_SHAPE,
predict_throttle=predict_throttle,
fake_images=fake_images,
)
if agent_type == "autopilot":
return AutopilotAgent(env=env, env_name=env_name, max_speed=max_speed, min_speed=min_speed)
if agent_type == "random":
return RandomAgent(env=env, env_name=env_name)
raise RuntimeError("Unknown agent type: {}".format(agent_type))