-
Notifications
You must be signed in to change notification settings - Fork 1
/
threadpool.py
419 lines (344 loc) · 15.4 KB
/
threadpool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# -*- coding: UTF-8 -*-
"""Easy to use object-oriented thread pool framework.
A thread pool is an object that maintains a pool of worker threads to perform
time consuming operations in parallel. It assigns jobs to the threads
by putting them in a work request queue, where they are picked up by the
next available thread. This then performs the requested operation in the
background and puts the results in another queue.
The thread pool object can then collect the results from all threads from
this queue as soon as they become available or after all threads have
finished their work. It's also possible, to define callbacks to handle
each result as it comes in.
The basic concept and some code was taken from the book "Python in a Nutshell,
2nd edition" by Alex Martelli, O'Reilly 2006, ISBN 0-596-10046-9, from section
14.5 "Threaded Program Architecture". I wrapped the main program logic in the
ThreadPool class, added the WorkRequest class and the callback system and
tweaked the code here and there. Kudos also to Florent Aide for the exception
handling mechanism.
Basic usage::
>>> pool = ThreadPool(poolsize)
>>> requests = makeRequests(some_callable, list_of_args, callback)
>>> [pool.putRequest(req) for req in requests]
>>> pool.wait()
See the end of the module code for a brief, annotated usage example.
Website : http://chrisarndt.de/projects/threadpool/
"""
__docformat__ = "restructuredtext en"
__all__ = [
'makeRequests',
'NoResultsPending',
'NoWorkersAvailable',
'ThreadPool',
'WorkRequest',
'WorkerThread'
]
__author__ = "Christopher Arndt"
__version__ = "1.2.5"
__revision__ = "$Revision: 1.2 $"
__date__ = "$Date: 2009/04/01 19:15:50 $"
__license__ = 'MIT license'
# standard library modules
import sys
import threading
import Queue
import traceback
# exceptions
class NoResultsPending(Exception):
"""All work requests have been processed."""
pass
class NoWorkersAvailable(Exception):
"""No worker threads available to process remaining requests."""
pass
# internal module helper functions
def _handle_thread_exception(request, exc_info):
"""Default exception handler callback function.
This just prints the exception info via ``traceback.print_exception``.
"""
traceback.print_exception(*exc_info)
# utility functions
def makeRequests(callable_, args_list, callback=None,
exc_callback=_handle_thread_exception,result=None):
"""Create several work requests for same callable with different arguments.
Convenience function for creating several work requests for the same
callable where each invocation of the callable receives different values
for its arguments.
``args_list`` contains the parameters for each invocation of callable.
Each item in ``args_list`` should be either a 2-item tuple of the list of
positional arguments and a dictionary of keyword arguments or a single,
non-tuple argument.
See docstring for ``WorkRequest`` for info on ``callback`` and
``exc_callback``.
"""
requests = []
for item in args_list:
if isinstance(item, tuple):
requests.append(
WorkRequest(callable_, item[0], item[1], callback=callback,
exc_callback=exc_callback,result=result)
)
else:
requests.append(
WorkRequest(callable_, [item], None, callback=callback,
exc_callback=exc_callback,result=result)
)
return requests
# classes
class WorkerThread(threading.Thread):
"""Background thread connected to the requests/results queues.
A worker thread sits in the background and picks up work requests from
one queue and puts the results in another until it is dismissed.
"""
def __init__(self, requests_queue, results_queue, poll_timeout=5, **kwds):
"""Set up thread in daemonic mode and start it immediatedly.
``requests_queue`` and ``results_queue`` are instances of
``Queue.Queue`` passed by the ``ThreadPool`` class when it creates a new
worker thread.
"""
threading.Thread.__init__(self, **kwds)
self.setDaemon(1)
self._requests_queue = requests_queue
self._results_queue = results_queue
self._poll_timeout = poll_timeout
self._dismissed = threading.Event()
self.start()
def run(self):
"""Repeatedly process the job queue until told to exit."""
while True:
if self._dismissed.isSet():
# we are dismissed, break out of loop
break
# get next work request. If we don't get a new request from the
# queue after self._poll_timout seconds, we jump to the start of
# the while loop again, to give the thread a chance to exit.
try:
request = self._requests_queue.get(True, self._poll_timeout)
except Queue.Empty:
continue
else:
if self._dismissed.isSet():
# we are dismissed, put back request in queue and exit loop
self._requests_queue.put(request)
break
try:
result = request.callable(*request.args, **request.kwds)
self._results_queue.put((request, result))
except:
request.exception = True
self._results_queue.put((request, sys.exc_info()))
def dismiss(self):
"""Sets a flag to tell the thread to exit when done with current job."""
self._dismissed.set()
class WorkRequest:
"""A request to execute a callable for putting in the request queue later.
See the module function ``makeRequests`` for the common case
where you want to build several ``WorkRequest`` objects for the same
callable but with different arguments for each call.
"""
def __init__(self, callable_, args=None, kwds=None, requestID=None,
callback=None, exc_callback=_handle_thread_exception,result=None):
"""Create a work request for a callable and attach callbacks.
A work request consists of the a callable to be executed by a
worker thread, a list of positional arguments, a dictionary
of keyword arguments.
A ``callback`` function can be specified, that is called when the
results of the request are picked up from the result queue. It must
accept two anonymous arguments, the ``WorkRequest`` object and the
results of the callable, in that order. If you want to pass additional
information to the callback, just stick it on the request object.
You can also give custom callback for when an exception occurs with
the ``exc_callback`` keyword parameter. It should also accept two
anonymous arguments, the ``WorkRequest`` and a tuple with the exception
details as returned by ``sys.exc_info()``. The default implementation
of this callback just prints the exception info via
``traceback.print_exception``. If you want no exception handler
callback, just pass in ``None``.
``requestID``, if given, must be hashable since it is used by
``ThreadPool`` object to store the results of that work request in a
dictionary. It defaults to the return value of ``id(self)``.
"""
if requestID is None:
self.requestID = id(self)
else:
try:
self.requestID = hash(requestID)
except TypeError:
raise TypeError("requestID must be hashable.")
self.exception = False
self.callback = callback
self.exc_callback = exc_callback
self.callable = callable_
self.args = args or []
self.kwds = kwds or {}
self.result = result
def __str__(self):
return "<WorkRequest id=%s args=%r kwargs=%r exception=%s>" % \
(self.requestID, self.args, self.kwds, self.exception)
class ThreadPool:
"""A thread pool, distributing work requests and collecting results.
See the module docstring for more information.
"""
def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5):
"""Set up the thread pool and start num_workers worker threads.
``num_workers`` is the number of worker threads to start initially.
If ``q_size > 0`` the size of the work *request queue* is limited and
the thread pool blocks when the queue is full and it tries to put
more work requests in it (see ``putRequest`` method), unless you also
use a positive ``timeout`` value for ``putRequest``.
If ``resq_size > 0`` the size of the *results queue* is limited and the
worker threads will block when the queue is full and they try to put
new results in it.
.. warning:
If you set both ``q_size`` and ``resq_size`` to ``!= 0`` there is
the possibilty of a deadlock, when the results queue is not pulled
regularly and too many jobs are put in the work requests queue.
To prevent this, always set ``timeout > 0`` when calling
``ThreadPool.putRequest()`` and catch ``Queue.Full`` exceptions.
"""
self._requests_queue = Queue.Queue(q_size)
self._results_queue = Queue.Queue(resq_size)
self.workers = []
self.dismissedWorkers = []
self.workRequests = {}
self.createWorkers(num_workers, poll_timeout)
def createWorkers(self, num_workers, poll_timeout=5):
"""Add num_workers worker threads to the pool.
``poll_timout`` sets the interval in seconds (int or float) for how
ofte threads should check whether they are dismissed, while waiting for
requests.
"""
for i in range(num_workers):
self.workers.append(WorkerThread(self._requests_queue,
self._results_queue, poll_timeout=poll_timeout))
def dismissWorkers(self, num_workers, do_join=False):
"""Tell num_workers worker threads to quit after their current task."""
dismiss_list = []
for i in range(min(num_workers, len(self.workers))):
worker = self.workers.pop()
worker.dismiss()
dismiss_list.append(worker)
if do_join:
for worker in dismiss_list:
worker.join()
else:
self.dismissedWorkers.extend(dismiss_list)
def joinAllDismissedWorkers(self):
"""Perform Thread.join() on all worker threads that have been dismissed.
"""
for worker in self.dismissedWorkers:
worker.join()
self.dismissedWorkers = []
def putRequest(self, request, block=True, timeout=0):
"""Put work request into work queue and save its id for later."""
assert isinstance(request, WorkRequest)
# don't reuse old work requests
assert not getattr(request, 'exception', None)
self._requests_queue.put(request, block, timeout)
self.workRequests[request.requestID] = request
def poll(self, block=False):
"""Process any new results in the queue."""
while True:
# still results pending?
if not self.workRequests:
raise NoResultsPending
# are there still workers to process remaining requests?
elif block and not self.workers:
raise NoWorkersAvailable
try:
# get back next results
request, result = self._results_queue.get(block=block)
# has an exception occured?
if request.exception and request.exc_callback:
request.exc_callback(request, result)
# hand results to callback, if any
if request.callback and not \
(request.exception and request.exc_callback):
request.callback(request, result)
del self.workRequests[request.requestID]
except Queue.Empty:
break
def wait(self):
"""Wait for results, blocking until all have arrived."""
while 1:
try:
self.poll(True)
except NoResultsPending:
break
################
# USAGE EXAMPLE
################
def example() :
import random
import time
# the work the threads will have to do (rather trivial in our example)
def do_something(data):
time.sleep(random.randint(1,5))
result = round(random.random() * data, 5)
# just to show off, we throw an exception once in a while
if result > 5:
raise RuntimeError("Something extraordinary happened!")
return result
# this will be called each time a result is available
def print_result(request, result):
print "**** Result from request #%s: %r" % (request.requestID, result)
# this will be called when an exception occurs within a thread
# this example exception handler does little more than the default handler
def handle_exception(request, exc_info):
if not isinstance(exc_info, tuple):
# Something is seriously wrong...
print request
print exc_info
raise SystemExit
print "**** Exception occured in request #%s: %s" % \
(request.requestID, exc_info)
# assemble the arguments for each job to a list...
data = [random.randint(1,10) for i in range(20)]
# ... and build a WorkRequest object for each item in data
requests = makeRequests(do_something, data, print_result, handle_exception)
# to use the default exception handler, uncomment next line and comment out
# the preceding one.
#requests = makeRequests(do_something, data, print_result)
# or the other form of args_lists accepted by makeRequests: ((,), {})
data = [((random.randint(1,10),), {}) for i in range(20)]
requests.extend(
makeRequests(do_something, data, print_result, handle_exception)
#makeRequests(do_something, data, print_result)
# to use the default exception handler, uncomment next line and comment
# out the preceding one.
)
# we create a pool of 3 worker threads
print "Creating thread pool with 3 worker threads."
main = ThreadPool(3)
# then we put the work requests in the queue...
for req in requests:
main.putRequest(req)
print "Work request #%s added." % req.requestID
# or shorter:
# [main.putRequest(req) for req in requests]
# ...and wait for the results to arrive in the result queue
# by using ThreadPool.wait(). This would block until results for
# all work requests have arrived:
# main.wait()
# instead we can poll for results while doing something else:
i = 0
while True:
try:
time.sleep(0.5)
main.poll()
print "Main thread working...",
print "(active worker threads: %i)" % (threading.activeCount()-1, )
if i == 10:
print "**** Adding 3 more worker threads..."
main.createWorkers(3)
if i == 20:
print "**** Dismissing 2 worker threads..."
main.dismissWorkers(2)
i += 1
except KeyboardInterrupt:
print "**** Interrupted!"
break
except NoResultsPending:
print "**** No pending results."
break
if main.dismissedWorkers:
print "Joining all dismissed worker threads..."
main.joinAllDismissedWorkers()