forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_polysemous_sift1m.py
47 lines (33 loc) · 1.04 KB
/
bench_polysemous_sift1m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import time
import numpy as np
import faiss
from datasets import load_sift1M, evaluate
print("load data")
xb, xq, xt, gt = load_sift1M()
nq, d = xq.shape
# index with 16 subquantizers, 8 bit each
index = faiss.IndexPQ(d, 16, 8)
index.do_polysemous_training = True
index.verbose = True
print("train")
index.train(xt)
print("add vectors to index")
index.add(xb)
nt = 1
faiss.omp_set_num_threads(1)
print("PQ baseline", end=' ')
index.search_type = faiss.IndexPQ.ST_PQ
t, r = evaluate(index, xq, gt, 1)
print("\t %7.3f ms per query, R@1 %.4f" % (t, r[1]))
for ht in 64, 62, 58, 54, 50, 46, 42, 38, 34, 30:
print("Polysemous", ht, end=' ')
index.search_type = faiss.IndexPQ.ST_polysemous
index.polysemous_ht = ht
t, r = evaluate(index, xq, gt, 1)
print("\t %7.3f ms per query, R@1 %.4f" % (t, r[1]))