-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathicarl.py
197 lines (163 loc) · 6.34 KB
/
icarl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Re-implementation of
S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
iCaRL: Incremental classifier and representation learning.
CVPR, 2017.
in PyTorch.
Author: Athan Zhang @athanzxyt
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
from torch.autograd import Variable
from torchvision import transforms
import numpy as np
from resnet import resnet18
class iCaRLNet(nn.Module):
def __init__(self,
feature_size,
num_classes,
batch_size,
device,
transform=None,
epochs=5,
lr=0.002
):
super(iCaRLNet,self).__init__()
# Hyperparameters
self.epochs = epochs
self.lr = lr
self.transform = transform
self.batch_size = batch_size
self.device = device
# Network architecture
self.feature_extractor = resnet18()
self.feature_extractor.fc = nn.Linear(self.feature_extractor.fc.in_features, feature_size)
self.bn = nn.BatchNorm1d(feature_size, momentum=0.9)
self.ReLU = nn.ReLU()
self.fc = nn.Linear(feature_size, num_classes, bias=False)
# Learning method
self.clsf_loss = nn.CrossEntropyLoss()
self.dist_loss = nn.BCELoss()
self.optimizer = optim.SGD(self.parameters(),lr=self.lr,weight_decay=1e-5)
# Exemplar Set and Means
self.num_classes = num_classes
self.exemplar_sets = []
def forward(self, x):
x = self.feature_extractor(x)
x = self.bn(x)
x = self.ReLU(x)
x = self.fc(x)
return x
def classify(self,image):
"""
Classify images using nearest-means-of-exemplars rule
Args:
image: Image to be classified
Returns:
prediction: Prediction index (which class it belongs to)
"""
mean_of_exemplars = np.array([np.mean(P_y) for P_y in self.exemplar_sets])
feature_extractor_output = F.normalize(self.feature_extractor(image).detach()).cpu()
x = feature_extractor_output - mean_of_exemplars
x = torch.linalg.norm(x, axis=1)
prediction = torch.argmin(x)
return prediction
def construct_exemplar_set(self, dataset, m):
"""
Construct the exemplar set
Args:
dataset: Image set of a class
m: Target number of exemplars
Returns:
exemplar_set: Exemplar set of a class
"""
images = torch.stack([i[0] for i in dataset]).to(self.device)
feature_extractor_output = F.normalize(self.feature_extractor(images).detach()).cpu()
class_mean = torch.mean(feature_extractor_output, axis=0)
sum_of_exemplars = torch.zeros(feature_extractor_output.shape)
exemplar_set = []
for k in range(m):
if k >= len(dataset): continue
x = class_mean - (feature_extractor_output + sum_of_exemplars) / k+1
x = torch.linalg.norm(x, axis=1)
i = torch.argmin(x)
sum_of_exemplars += feature_extractor_output[i]
exemplar_set.append(dataset[i])
return exemplar_set
def reduce_exemplar_set(self, exemplar_set, m):
"""
Reduce an exemplar set
Args:
exemplar_set: Exemplar set of a class
m: Target number of exemplars
Returns:
new_exemplar_set: Reduced exemplar set
"""
new_exemplar_set = exemplar_set[:m]
return new_exemplar_set
def incremental_train(self, images, K):
"""
Incrementally train on a new class and
updates exemplar sets
Args:
images: Image set of a class
K: Total number of images to memorize
"""
self.update_representation(images)
t = len(self.exemplar_sets)
m = K // (t+1)
new_exemplar_sets = []
for s in self.exemplar_sets:
new_exemplar_sets.append(self.reduce_exemplar_set(s,m))
new_exemplar_sets.append(self.construct_exemplar_set(images,m))
self.exemplar_sets = new_exemplar_sets
def update_representation(self, dataset):
"""
Incrementally improve the feature representation
Args:
dataset: Image set of a class
"""
"""
NOTE TO SELF: WE ARE CURRENTLY ONLY ADDING ONE CLASS (one disease)
HOWEVER MAYBE WE SHOULD ADD ONE TASK? (two diseases)
IDK CHECK THE VARIABLE n_classses and n_known.
"""
# Form combined training set
for exemplar_set in self.exemplar_sets: dataset += exemplar_set
loader = data.DataLoader(dataset, batch_size=self.batch_size,shuffle=True, num_workers=2)
# Store network outputs with pre-updated parameters
q = {}
for i, (images, labels) in enumerate(loader):
images = Variable(images).to(self.device)
f = torch.sigmoid(self.forward(images))
for c,image in enumerate(images):
q[hash(str(image))] = f[c].data
# Train
for epoch in range(self.epochs):
for i, (images, labels) in enumerate(loader):
images = Variable(images).to(self.device)
labels = Variable(labels.to(self.device))
self.optimizer.zero_grad()
f = self.forward(images)
# Classification loss for new class
labels = torch.flatten(labels)
clsf_loss = self.clsf_loss(f, labels)
# Distilation loss for old classes
dist_loss = 0
if self.exemplar_sets:
f = torch.sigmoid(f)
for c,image in enumerate(images):
dist_loss += self.dist_loss(f[c].data, q[hash(str(image))])
dist_loss /= len(images)
total_loss = clsf_loss + dist_loss
total_loss.backward()
self.optimizer.step()
# Print iteration
if (i+1) % 10 == 0:
print(f'Epoch: {epoch+1}/{self.epochs} \
Iter: {i+1}/{len(dataset)//self.batch_size} \
Loss: {total_loss.data}'
)