Skip to content

Latest commit

 

History

History
217 lines (152 loc) · 6.19 KB

README.md

File metadata and controls

217 lines (152 loc) · 6.19 KB

CSE 576 NLP Group | NQ

Results

Long: 69.07 % Short:58.82 %

M8 essemble of M7 and m6

 
    "long-best-threshold-f1": 0.6907216494845361,
    "long-best-threshold-precision": 0.7362637362637363,
    "long-best-threshold-recall": 0.6504854368932039,
    "short-best-threshold-f1": 0.588235294117647,
    "short-best-threshold-precision": 0.6557377049180327,
    "short-best-threshold-recall": 0.5333333333333333,

M7 fined tuned wwm_uncased_bert on squad then NQ

    "long-best-threshold-f1": 0.649746192893401,
    "long-best-threshold-precision": 0.6808510638297872,
    "long-best-threshold-recall": 0.6213592233009708,
    "short-best-threshold": 9.29402208328247,
    "short-best-threshold-f1": 0.591549295774648,
    "short-best-threshold-precision": 0.6268656716417911,
    "short-best-threshold-recall": 0.56,
  

M6: Combining M5 and M4

    "long-best-threshold-f1": 0.6733668341708543,
    "long-best-threshold-precision": 0.6979166666666666,
    "long-best-threshold-recall": 0.6504854368932039,
    "short-best-threshold": 8.220512390136719,
    "short-best-threshold-f1": 0.5850340136054423,
    "short-best-threshold-precision": 0.5972222222222222,
    "short-best-threshold-recall": 0.5733333333333334,
    

M5: fined tuned wwm_uncased_bert on NQ

    "long-best-threshold-f1": 0.6494845360824741,
    "long-best-threshold-precision": 0.6923076923076923,
    "long-best-threshold-recall": 0.6116504854368932,
    "short-best-threshold": 7.520410180091858,
    "short-best-threshold-f1": 0.5644171779141104,
    "short-best-threshold-precision": 0.5227272727272727,
    "short-best-threshold-recall": 0.6133333333333333,

M4: Combining M2 and M3

    "long-best-threshold-f1": 0.6513761467889908,
    "long-best-threshold-precision": 0.6173913043478261,
    "long-best-threshold-recall": 0.6893203883495146,
    "short-best-threshold-f1": 0.5606060606060606,
    "short-best-threshold-precision": 0.6491228070175439,
    "short-best-threshold-recall": 0.49333333333333335,

M3: Results after applying post processing to M1.

    "long-best-threshold-f1": 0.6355140186915887,
    "long-best-threshold-precision": 0.6126126126126126,
    "long-best-threshold-recall": 0.6601941747572816,
    "short-best-threshold-f1": 0.5619834710743801,
    "short-best-threshold-precision": 0.7391304347826086,
    "short-best-threshold-recall": 0.4533333333333333,

M2:Results after applying max_contexts=120 to M1

    "long-best-threshold-f1": 0.6407766990291263,
    "long-best-threshold-precision": 0.6407766990291263,
    "long-best-threshold-recall": 0.6407766990291263,
    "short-best-threshold-f1": 0.5522388059701493,
    "short-best-threshold-precision": 0.6271186440677966,
    "short-best-threshold-recall": 0.49333333333333335,

M1: Orignal Results

    "long-best-threshold-f1": 0.6168224299065421,
    "long-best-threshold-precision": 0.5945945945945946,
    "long-best-threshold-recall": 0.6407766990291263,
    "short-best-threshold-f1": 0.5619834710743801,
    "short-best-threshold-precision": 0.7391304347826086,
    "short-best-threshold-recall": 0.4533333333333333

Ubuntu

$ sudo apt-get install unzip

Testing Section

Classification with already trained bert

Testing bert and classifying sentences

$  pip3 install numpy pandas torch transformers sklearn
$  python3.6 do_classification_with_already_trained_bert.py

Clone

$ git clone https://github.com/attaakkhan/natural_questions.git

Datasets Section

DownLoad The full dataset-- 50 train Files, 10 Dev files-- 307K NQ-train, 10k NQ-DEV

$ mkdir natural_questions/baseline/language/data
$ gsutil -m cp -R gs://natural_questions/v1.0 ./data

NQ Models Section

We are testing and extending the current Bert-Joint-- avialable online on github, in the Google Language repo.

Pre-req

$ sudo -H pip install --upgrade pip
$ pip install bert-tensorflow natural-questions
$ cd natural_questions/baseline/language
$ pip install -r requirements.txt
$ python setup.py install

Download the preprocessed joint_bert

$ gsutil cp -R gs://bert-nq/bert-joint-baseline

Training bertjoint--Using the tf_records

repare data--convert train to tf_records

$ python -m language.question_answering.bert_joint.prepare_nq_data   --logtostderr   --input_jsonl data/dev/nq-dev-??.jsonl.gz   --output_tfrecord bert-joint-baseline/???   --max_seq_length=512   --include_unknowns=0.02   --vocab_file=bert-joint-baseline/vocab-nq.txt


Output

download the pretrained bert-- Bert Uncased

$ wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
$ unzip uncased_L-24_H-1024_A-16.zip 

Train the model-Using the TF Record

$  python -m language.question_answering.bert_joint.run_nq   --logtostderr   --bert_config_file=bert-joint-baseline/bert_config.json   --vocab_file=bert-joint-baseline/vocab-nq.txt   --train_precomputed_file=bert-joint-baseline/nq-dev.tfrecords-00000-of-00001   --train_num_precomputed=494670   --learning_rate=3e-5   --num_train_epochs=1   --max_seq_length=512   --save_checkpoints_steps=5000   --init_checkpoint=uncased_L-24_H-1024_A-16/bert_model.ckpt   --do_train   --output_dir=bert_model_output

Testing using the the tiny-dev

Prediction

$ python -m language.question_answering.bert_joint.run_nq \
   --logtostderr \
   --bert_config_file=bert-joint-baseline/bert_config.json \
   --vocab_file=bert-joint-baseline/vocab-nq.txt \
   --predict_file=tiny-dev/nq-dev-sample.gz \
   --init_checkpoint=bert-joint-baseline/bert_joint.ckpt \
   --do_predict \
   --output_dir=bert_model_output \
   --output_prediction_file=bert_model_output/predictions.json

Evalvation

$ python -m natural_questions.nq_eval \
 --logtostderr \
 --gold_path=tiny-dev/nq-dev-sample.jsonl.gz \
 --predictions_path=bert_model_output/predictions.json
 
 

Materials and Refrences Section

  1. github.com/google-research-datasets/natural-questions
  2. github.com/google-research/language/tree/master/language/question_answering
  3. http://jalammar.github.io/illustrated-transformer/
  4. http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time