-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnnet.py
344 lines (301 loc) · 12.2 KB
/
nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Implementation of neural network
Core implementations
Tianqi Chen
"""
import numpy as np
import sys
# Full connected layer
# note: all memory are pre-allocated, always use a[:]= instead of a= in assignment
class FullLayer:
def __init__( self, i_node, o_node, init_sigma, rec_gsqr = False ):
assert i_node.shape[0] == o_node.shape[0]
self.rec_gsqr = rec_gsqr
# node value
self.i_node = i_node
self.o_node = o_node
# weight
self.o2i_edge = np.float32( np.random.randn( i_node.shape[1], o_node.shape[1] ) * init_sigma )
self.o2i_bias = np.zeros( o_node.shape[1], 'float32' )
# gradient
self.g_o2i_edge = np.zeros_like( self.o2i_edge )
self.g_o2i_bias = np.zeros_like( self.o2i_bias )
# gradient square
self.sg_o2i_edge = np.zeros_like( self.o2i_edge )
self.sg_o2i_bias = np.zeros_like( self.o2i_bias )
if self.rec_gsqr:
self.i_square = np.zeros_like( self.i_node )
self.o_square = np.zeros_like( self.o_node )
def forward( self, istrain = True ):
# forward prop, node value to o_node
self.o_node[:] = np.dot( self.i_node, self.o2i_edge ) + self.o2i_bias
def backprop( self, passgrad = True ):
# backprop, gradient is stored in o_node
# divide by batch size
bscale = 1.0 / self.o_node.shape[0]
self.g_o2i_edge[:] = bscale * np.dot( self.i_node.T, self.o_node )
self.g_o2i_bias[:] = np.mean( self.o_node, 0 )
# record second moment of gradient if needed
if self.rec_gsqr:
self.o_square[:] = np.square( self.o_node )
self.i_square[:] = np.square( self.i_node )
self.sg_o2i_edge[:] = bscale * np.dot( self.i_square.T, self.o_square )
self.sg_o2i_bias[:] = np.mean( self.o_square, 0 )
# backprop to i_node if necessary
if passgrad:
self.i_node[:] = np.dot( self.o_node, self.o2i_edge.T )
def params( self ):
# return a reference list of parameters
return [ (self.o2i_edge, self.g_o2i_edge, self.sg_o2i_edge), (self.o2i_bias,self.g_o2i_bias,self.sg_o2i_bias) ]
class ActiveLayer:
def __init__( self, i_node, o_node, n_type = 'relu' ):
assert i_node.shape[0] == o_node.shape[0]
# node value
self.n_type = n_type
self.i_node = i_node
self.o_node = o_node
def forward( self, istrain = True ):
# also get gradient ready in i node
if self.n_type == 'relu':
self.o_node[:] = np.maximum( self.i_node, 0.0 )
self.i_node[:] = np.sign( self.o_node )
elif self.n_type == 'tanh':
self.o_node[:] = np.tanh( self.i_node )
self.i_node[:] = ( 1.0 - np.square(self.o_node) )
elif self.n_type == 'sigmoid':
self.o_node[:] = 1.0 / ( 1.0 + np.exp( - self.i_node ) )
self.i_node[:] = self.o_node * (1.0 - self.o_node)
else:
raise 'NNConfig', 'unknown node_type'
def backprop( self, passgrad = True ):
if passgrad:
self.i_node[:] *= self.o_node;
def params( self ):
return []
class SoftmaxLayer:
def __init__( self, i_node, o_label ):
assert i_node.shape[0] == o_label.shape[0]
assert len( o_label.shape ) == 1
self.i_node = i_node
self.o_label = o_label
def forward( self, istrain = True ):
nbatch = self.i_node.shape[0]
self.i_node[:] = np.exp( self.i_node - np.max( self.i_node, 1 ).reshape( nbatch, 1 ) )
self.i_node[:] = self.i_node / np.sum( self.i_node, 1 ).reshape( nbatch, 1 )
def backprop( self, passgrad = True ):
if passgrad:
nbatch = self.i_node.shape[0]
for i in xrange( nbatch ):
self.i_node[ i, self.o_label[i] ] -= 1.0
def params( self ):
return []
class RegressionLayer:
def __init__( self, i_node, o_label, param ):
assert i_node.shape[0] == o_label.shape[0]
assert i_node.shape[0] == o_label.size
assert i_node.shape[1] == 1
self.i_tmp = np.zeros_like( i_node )
self.n_type = param.out_type
self.i_node = i_node
self.o_label = o_label
self.param = param
self.base_score = None
def init_params( self ):
if self.base_score != None:
return
param = self.param
self.scale = param.max_label - param.min_label;
self.min_label = param.min_label
self.base_score = (param.avg_label - param.min_label) / self.scale
if self.n_type == 'logistic':
self.base_score = - math.log( 1.0 / self.base_score - 1.0 );
print 'range=[%f,%f], base=%f' %( self.min_label, param.max_label, param.avg_label )
def forward( self, istrain = True ):
self.init_params()
nbatch = self.i_node.shape[0]
self.i_node[:] += self.base_score
if self.n_type == 'logistic':
self.i_node[:] = 1.0 / ( 1.0 + np.exp( -self.i_node ) )
self.i_tmp[:] = self.i_node[:]
# transform to approperiate output
self.i_node[:] = self.i_node * self.scale + self.min_label
def backprop( self, passgrad = True ):
if passgrad:
nbatch = self.i_node.shape[0]
label = (self.o_label.reshape( nbatch, 1 ) - self.min_label) / self.scale
self.i_node[:] = self.i_tmp[:] - label
#print np.sum( np.sum( (label - self.i_tmp[:])**2 ) )
def params( self ):
return []
class NNetwork:
def __init__( self, layers, nodes, o_label, factory ):
self.nodes = nodes
self.o_label = o_label
self.i_node = nodes[0]
self.o_node = nodes[-1]
self.layers = layers
self.weights = []
self.updaters = []
for l in layers:
self.weights += l.params()
for w, g_w, sg_w in self.weights:
assert w.shape == g_w.shape and w.shape == sg_w.shape
self.updaters.append( factory.create_updater( w, g_w, sg_w ) )
self.updaters = factory.create_hyperupdater( self.updaters ) + self.updaters
def update( self, xdata, ylabel ):
self.i_node[:] = xdata
for i in xrange( len(self.layers) ):
self.layers[i].forward( True )
self.o_label[:] = ylabel
for i in reversed( xrange( len(self.layers) ) ):
self.layers[i].backprop( i!= 0 )
for u in self.updaters:
u.update()
def update_all( self, xdatas, ylabels ):
for i in xrange( xdatas.shape[0] ):
self.update( xdatas[i], ylabels[i] )
for u in self.updaters:
u.print_info()
def predict( self, xdata ):
self.i_node[:] = xdata
for i in xrange( len(self.layers) ):
self.layers[i].forward( False )
return self.o_node
# evaluator to evaluate results
class NNEvaluator:
def __init__( self, nnet, xdatas, ylabels, param, prefix='' ):
self.nnet = nnet
self.xdatas = xdatas
self.ylabels = ylabels
self.param = param
self.prefix = prefix
nbatch, nclass = nnet.o_node.shape
assert xdatas.shape[0] == ylabels.shape[0]
assert nbatch == xdatas.shape[1]
assert nbatch == ylabels.shape[1]
self.o_pred = np.zeros( ( xdatas.shape[0], nbatch, nclass ), 'float32' )
self.rcounter = 0
self.sum_wsample = 0.0
def __get_alpha( self ):
if self.rcounter < self.param.num_burn:
return 1.0
else:
self.sum_wsample += self.param.wsample
return self.param.wsample / self.sum_wsample
def eval( self, rcounter, fo ):
self.rcounter = rcounter
alpha = self.__get_alpha()
self.o_pred[:] *= ( 1.0 - alpha )
sum_bad = 0.0
sum_loglike = 0.0
for i in xrange( self.xdatas.shape[0] ):
self.o_pred[i,:] += alpha * self.nnet.predict( self.xdatas[i] )
y_pred = np.argmax( self.o_pred[i,:], 1 )
sum_bad += np.sum( y_pred != self.ylabels[i,:] )
for j in xrange( self.xdatas.shape[1] ):
sum_loglike += np.log( self.o_pred[ i , j, self.ylabels[i,j] ] )
ninst = self.ylabels.size
fo.write( ' %s-err:%f %s-nlik:%f' % ( self.prefix, sum_bad/ninst, self.prefix, -sum_loglike/ninst) )
# Model parameter
class NNParam:
def __init__( self ):
# network type
self.net_type = 'mlp2'
self.node_type = 'sigmoid'
self.out_type = 'softmax'
#------------------------------------
# learning rate
self.eta = 0.01
# momentum decay
self.mdecay = 0.1
# weight decay,
self.wd = 0.0
# number of burn-in round, start averaging after num_burn round
self.num_burn = 1000
# mini-batch size used in training
self.batch_size = 500
# initial gaussian standard deviation used in weight init
self.init_sigma = 0.001
# random number seed
self.seed = 0
# weight updating method
self.updater = 'sgd'
# temperature: temp=0 means no noise during sampling(MAP inference)
self.temp = 1.0
# start sampling weight after this round
self.start_sample = 1
#----------------------------------
# hyper parameter sampling
self.hyperupdater = 'none'
# when to start sample hyper parameter
self.start_hsample = 1
# Gamma(alpha, beta) prior on regularizer
self.hyper_alpha = 1.0
self.hyper_beta = 1.0
# sample hyper parameter each gap_hsample over training data
self.gap_hsample = 1
#-----------------------------------
# adaptive learning rate and momentum
# by default, no need to set these settings
self.delta_decay = 0.0
self.start_decay = None
self.alpha_decay = 1.0
self.decay_momentum = 0
self.init_eta = None
self.init_mdecay = None
#-----------------------
# following things are not set by user
# sample weight
self.wsample = 1.0
# round counter
self.rcounter = 0
# how many steps before resample hyper parameter
def gap_hcounter( self ):
return int(self.gap_hsample * self.num_train / self.batch_size)
# adapt learning rate and momentum, if necessary
def adapt_decay( self, rcounter ):
# adapt decay ratio
if self.init_eta == None:
self.init_eta = self.eta
self.init_mdecay = self.mdecay
self.wsample = 1.0
if self.start_decay == None:
return
d_eta = 1.0 * np.power( 1.0 + max( rcounter - self.start_decay, 0 ) * self.alpha_decay, - self.delta_decay )
assert d_eta - 1.0 < 1e-6 and d_eta > 0.0
if self.decay_momentum != 0:
d_mom = np.sqrt( d_eta )
self.wsample = d_mom
else:
d_mom = 1.0
self.wsample = d_eta
self.eta = d_eta * self.init_eta
self.mdecay = d_mom * self.init_mdecay
# set current round
def set_round( self, rcounter ):
self.rcounter = rcounter
self.adapt_decay( rcounter )
if self.updater == 'sgld':
assert np.abs( self.mdecay - 1.0 ) < 1e-6
# get noise level for sampler
def get_sigma( self ):
if self.mdecay - 1.0 > -1e-5 or self.updater == 'sgld':
scale = self.eta / self.num_train
else:
scale = self.eta * self.mdecay / self.num_train
return np.sqrt( 2.0 * self.temp * scale )
# whether we need to sample weight now
def need_sample( self ):
if self.start_sample == None:
return False
else:
return self.rcounter >= self.start_sample
# whether we need to sample hyper parameter now
def need_hsample( self ):
if self.start_hsample == None:
return False
else:
return self.rcounter >= self.start_hsample
# whether the network need to provide second moment of gradient
def rec_gsqr( self ):
return False