-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathans8.tex
26 lines (22 loc) · 1.05 KB
/
ans8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
\begin{Solution}{8.1}
For zeros
\[\frac{z-2}{z^2}\sin{1 \over z-1} = 0\]
\[z-2 = 0 \text{ and } \sin{1 \over z-1} = 0\]
Therefore $z=2$ and $\frac{1}{z-1}=n\pi$, i.e.
\[z= 2 \text{ and } z=\frac{1}{n\pi}+1\]
It is obvious that $z=2$ is simple zero. For $z=\frac{1}{n\pi}+1$, limit point of zero when $n\tends \infty$ is 1, i.e., $z=1$ is isolated essential singularity. Except these $z^2=0$ provides pole at $z=0$ of order 2.
\end{Solution}
\begin{Solution}{8.2.b}
Poles: $\sin z - \cos z=0 \Rightarrow z=\frac{\pi}{4}$
\end{Solution}
\begin{Solution}{8.2.d}
Here $\ds f(z)=\frac{\cot \pi z}{(z-a)^2}=\frac{\cos \pi z}{\sin \pi z(z-a)^2}$, The poles are given by putting denominator equal to zero. i.e.,
\[\sin \pi z(z-a)^2 = 0\]
\[(z-a)^2 = 0 \Rightarrow z=a \text{ Double pole}\]
and
\[\sin \pi z = 0 \Rightarrow \pi z = n\pi \Rightarrow z=n\]
Limit point of pole $z=n$, when $n\tends \infty$ is $\infty$. Thus $z=\infty$ is non-isolated essential singularity.
\end{Solution}
\begin{Solution}{8.2.j}
Non-isolated essential singularity.
\end{Solution}