-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
170 lines (149 loc) · 4.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import FinalAlg as slow
import learning_algorithm as greedy
import knapsack01 as quick
import pickle
import time
import random
import math
class item:
def __init__(self,min_v,max_v,min_w,max_w):
self.max_v = max(max_v,min_v)
self.min_v = min(max_v,min_v)
self.max_w = max(max_w,min_w)
self.min_w = min(max_w,min_w)
self.exp_v = (max_v + min_v)/2
self.exp_w = (max_w + min_w)/2
def expected_return(self,remaining):
range_w = self.max_w - self.min_w + 1
allowed_w = remaining - self.min_w + 1
possible_percent = float(allowed_w)/float(range_w)
if possible_percent < 0:
return 0
else:
return min(self.exp_v * possible_percent, self.exp_v)
def get_score(self,remaining,lambdas):
expected_return = self.expected_return(remaining)
max_w = self.max_w
min_w = self.min_w
exp_v = self.exp_v
exp_w = self.exp_w
return (lambdas[0]*expected_return/float(exp_w) + lambdas[1]*(1/12.0*(max_w - min_w)**2)*expected_return + lambdas[2]*(float(exp_v)*expected_return))
def actual_weight(self):
return random.randint(self.min_w, self.max_w)
def actual_value(self):
return self.exp_v
def make_items_number_1():
items = []
values = []
weights = []
for i in range(99):
new_item = item(20,20,2**100/20,2**100/20)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
new_item = item(1000,1000,2**100,2**100)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_2():
items = []
values = []
weights = []
for i in range(99):
new_item = item(20,20,2**100/20,2**100/20)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
new_item = item(1000,1000,2**100+1,2**100+1)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_3():
items = []
values = []
weights = []
for i in range(10):
new_item = item(1,1,1,1)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
for i in range(10,100):
new_item = item(1000,1000,2**100,2**100)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_4():
items = []
values = []
weights = []
for i in range(1,101):
new_item = item(2**100-2**(i-1),2**100+2**(i-1),2**94-2**(i-1),2**94+2**(i-1))
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_5():
items = []
values = []
weights = []
for i in range(1,101):
new_item = item(1,100,2**94-2**(i-1),2**94+4**(i-1))
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_6():
items = []
values = []
weights = []
for i in range(1,101):
new_item = item(0,2**i,2**94-2**(i-1),2**94+4**(i-1))
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
def make_items_number_7():
items = []
values = []
weights = []
for i in range(1,101):
new_item = item(0,2**i,2**(i-1),2**i)
items += [new_item]
values += [new_item.exp_v]
weights += [int(new_item.exp_w)]
return weights, values, items
lambdas = [1,-0.01,0.01]
weights, values, items = make_items_number_1()
a = greedy.stoch_knapsack(items[:],2**100,lambdas)
print(a)
weights, values, items = make_items_number_2()
a = greedy.stoch_knapsack(items[:],2**100,lambdas)
print(a)
weights, values, items = make_items_number_3()
a = greedy.stoch_knapsack(items[:],2**100,lambdas)
print(a)
weights, values, items = make_items_number_4()
vals = []
for t in range(100):
vals += [greedy.stoch_knapsack(items[:],2**100,lambdas)]
print(sum(vals)/len(vals))
weights, values, items = make_items_number_5()
vals = []
for t in range(100):
vals += [greedy.stoch_knapsack(items[:],2**100,lambdas)]
print(sum(vals)/len(vals))
weights, values, items = make_items_number_6()
vals = []
for t in range(100):
vals += [greedy.stoch_knapsack(items[:],2**100,lambdas)]
print(sum(vals)/len(vals))
weights, values, items = make_items_number_7()
vals = []
for t in range(100):
vals += [greedy.stoch_knapsack(items[:],2**100,lambdas)]
print(sum(vals)/len(vals))
#print(sum(values_slow)/len(values_slow))
#print(sum(values_quick)/len(values_quick))