-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest_clean_core.py
205 lines (159 loc) · 7.94 KB
/
test_clean_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import logging
import os
from datetime import timedelta
from typing import Optional
import pytest
import sagemaker
from sagemaker import Predictor
from sagemaker.deserializers import JSONDeserializer
from sagemaker.multidatamodel import MultiDataModel
from sagemaker.pytorch import PyTorch, PyTorchPredictor
from sagemaker.serializers import JSONSerializer
from sagemaker.utils import name_from_base
# noinspection DuplicatedCode
def test_clean_train_warm_pool():
logging.info("Starting training")
estimator = PyTorch(entry_point=os.path.basename('source_dir/training_clean/train_clean.py'),
source_dir='source_dir/training_clean/',
framework_version='1.9.1',
py_version='py38',
instance_count=1,
instance_type='ml.m5.xlarge',
max_run=int(timedelta(minutes=15).total_seconds()),
keep_alive_period_in_seconds=1800,
container_log_level=logging.INFO)
estimator.fit()
logging.info("Finished training")
assert estimator.model_data.find("model.tar.gz") != -1
# noinspection DuplicatedCode
def test_clean_inference():
estimator = PyTorch(entry_point='train_clean.py',
source_dir='source_dir/training_clean/',
framework_version='1.9.1',
py_version='py38',
instance_count=1,
instance_type='ml.m5.xlarge',
max_run=int(timedelta(minutes=15).total_seconds()),
keep_alive_period_in_seconds=1800,
container_log_level=logging.INFO)
estimator.fit()
model = estimator.create_model(entry_point='inference_clean.py',
source_dir='source_dir/inference_clean/')
endpoint_name = name_from_base('inference')
predictor: Predictor = model.deploy(initial_instance_count=1,
instance_type='ml.m5.xlarge',
endpoint_name=endpoint_name)
predictor.serializer = JSONSerializer()
predictor.deserializer = JSONDeserializer()
predicted_value = predictor.predict(data=[1])
assert predicted_value == [43]
predictor.delete_endpoint(delete_endpoint_config=False)
# noinspection DuplicatedCode
@pytest.mark.parametrize("instance_type", ["ml.m5.xlarge"])
def test_clean_inference_mms(instance_type):
estimator = PyTorch(entry_point='train_clean.py',
source_dir='source_dir/training_clean/',
framework_version='1.9.1',
py_version='py38',
instance_count=1,
instance_type=instance_type,
max_run=int(timedelta(minutes=15).total_seconds()),
keep_alive_period_in_seconds=1800,
container_log_level=logging.INFO)
estimator.fit()
model_1 = estimator.create_model(entry_point='inference_clean.py',
source_dir='source_dir/inference_clean/')
_ = model_1.prepare_container_def(instance_type='ml.m5.xlarge')
repacked_model_data_1 = model_1.repacked_model_data
# MUST have the same entry point file name as for the model_1
model_2 = estimator.create_model(entry_point='inference_clean.py',
source_dir='source_dir/inference_clean_model2/')
_ = model_2.prepare_container_def(instance_type='ml.m5.xlarge')
repacked_model_data_2 = model_2.repacked_model_data
bucket = sagemaker.Session().default_bucket()
job_name = estimator.latest_training_job.name
model_data_prefix = f"s3://{bucket}/{job_name}/mms/"
mdm_name = name_from_base('model-mms')
mdm = MultiDataModel(
name=mdm_name,
model_data_prefix=model_data_prefix,
model=model_1
)
endpoint_name = name_from_base('inference-mms')
predictor: Optional[Predictor] = None
try:
predictor = mdm.deploy(
initial_instance_count=1,
instance_type='ml.m5.xlarge',
endpoint_name=endpoint_name,
wait=True
)
# Note: we need a repacked model data here, not an estimator data
mdm.add_model(model_data_source=repacked_model_data_1, model_data_path='model_1.tar.gz')
mdm.add_model(model_data_source=repacked_model_data_2, model_data_path='model_2.tar.gz')
assert mdm.list_models()
# noinspection DuplicatedCode
predictor.serializer = JSONSerializer()
predictor.deserializer = JSONDeserializer()
predicted_value = predictor.predict(data=[1], target_model="model_1.tar.gz")
assert predicted_value == [43]
predicted_value = predictor.predict(data=[1], target_model="model_2.tar.gz")
assert predicted_value == [20043]
finally:
if predictor:
predictor.delete_endpoint(delete_endpoint_config=False)
# noinspection DuplicatedCode
@pytest.mark.parametrize("instance_type", ["ml.m5.xlarge"])
def test_clean_inference_mms_without_model(instance_type):
estimator = PyTorch(entry_point='train_clean.py',
source_dir='source_dir/training_clean/',
framework_version='1.9.1',
py_version='py38',
instance_count=1,
instance_type=instance_type,
max_run=int(timedelta(minutes=15).total_seconds()),
keep_alive_period_in_seconds=1800,
container_log_level=logging.INFO)
estimator.fit()
model_1 = estimator.create_model(entry_point='inference_clean.py',
source_dir='source_dir/inference_clean/')
model_1_description = model_1.prepare_container_def(instance_type='ml.m5.xlarge')
repacked_model_data_1 = model_1.repacked_model_data
container_uri = model_1_description['Image']
deploy_env = model_1_description['Environment']
# MUST have the same entry point file name as for the model_1
model_2 = estimator.create_model(entry_point='inference_clean.py',
source_dir='source_dir/inference_clean_model2/')
_ = model_2.prepare_container_def(instance_type='ml.m5.xlarge')
repacked_model_data_2 = model_2.repacked_model_data
bucket = sagemaker.Session().default_bucket()
job_name = estimator.latest_training_job.name
model_data_prefix = f"s3://{bucket}/{job_name}/mms/"
mdm_name = name_from_base('model-mms')
mdm = MultiDataModel(
name=mdm_name,
model_data_prefix=model_data_prefix,
image_uri=container_uri,
# entry_point=model_1.entry_point, # NOTE: entry point ignored
env=deploy_env, # will copy 'SAGEMAKER_PROGRAM' env variable with entry point file name
predictor_cls=PyTorchPredictor
)
endpoint_name = name_from_base('inference-mms')
predictor: Predictor = mdm.deploy(initial_instance_count=1,
instance_type='ml.m5.xlarge',
endpoint_name=endpoint_name,
wait=True)
try:
# Note: we need a repacked model data here, not an estimator data
mdm.add_model(model_data_source=repacked_model_data_1, model_data_path='model_1.tar.gz')
mdm.add_model(model_data_source=repacked_model_data_2, model_data_path='model_2.tar.gz')
assert mdm.list_models()
# noinspection DuplicatedCode
predictor.serializer = JSONSerializer()
predictor.deserializer = JSONDeserializer()
predicted_value = predictor.predict(data=[1], target_model="model_1.tar.gz")
assert predicted_value == [43]
predicted_value = predictor.predict(data=[1], target_model="model_2.tar.gz")
assert predicted_value == [20043]
finally:
predictor.delete_endpoint(delete_endpoint_config=False)