Skip to content

Latest commit

 

History

History
116 lines (83 loc) · 3.78 KB

README.md

File metadata and controls

116 lines (83 loc) · 3.78 KB

AWS Jupyter Proxy

Build Version Code style: black

A Jupyter server extension to proxy requests with AWS SigV4 authentication.

Overview

This server extension enables the usage of the AWS JavaScript/TypeScript SDK to write Jupyter frontend extensions without having to export AWS credentials to the browser.

A single /awsproxy endpoint is added on the Jupyter server which receives incoming requests from the browser, uses the credentials on the server to add SigV4 authentication to the request, and then proxies the request to the actual AWS service endpoint.

All requests are proxied back-and-forth as-is, e.g., a 4xx status code from the AWS service will be relayed back as-is to the browser.

NOTE: This project is still under active development

Install

Installing the package from PyPI will install and enable the server extension on the Jupyter server.

pip install aws-jupyter-proxy

Usage

Using this requries no additional dependencies in the client-side code. Just use the regular AWS JavaScript/TypeScript SDK methods and add any dummy credentials and change the endpoint to the /awsproxy endpoint.

    import * as AWS from 'aws-sdk';
    import SageMaker from 'aws-sdk/clients/sagemaker';

    // Reusable function to add the XSRF token header to a request
    function addXsrfToken<D, E>(request: AWS.Request<D, E>) {
      const cookie = document.cookie.match('\\b' + '_xsrf' + '=([^;]*)\\b');
      const xsrfToken = cookie ? cookie[1] : undefined;
      if (xsrfToken !== undefined) {
        request.httpRequest.headers['X-XSRFToken'] = xsrfToken;
      }
    }

    // These credentials are *not* used for the actual AWS service call but you have
    // to provide any dummy credentials (Not real ones!)
    AWS.config.secretAccessKey = 'IGNOREDIGNORE/IGNOREDIGNOREDIGNOREDIGNOR';
    AWS.config.accessKeyId = 'IGNOREDIGNO';

    // Change the endpoint in the client to the "awsproxy" endpoint on the Jupyter server.
    const proxyEndpoint = 'http://localhost:8888/awsproxy';

    const sageMakerClient = new SageMaker({
        region: 'us-west-2',
        endpoint: proxyEndpoint,
    });

    // Make the API call!
    await sageMakerClient
        .listNotebookInstances({
            NameContains: 'jaipreet'
        })
        .on('build', addXsrfToken)
        .promise();

Usage with S3

For S3, use the s3ForcePathStyle parameter during the client initialization

    import S3 from 'aws-sdk/clients/s3';

    const s3Client = new S3({
        region: 'us-west-2',
        endpoint: proxyEndpoint,
        s3ForcePathStyle: true,
        s3DisableBodySigning:false // for https
    });

    await s3Client
        .getObject({
            Bucket: 'my-bucket',
            Key: 'my-object'
        })
        .on('build', addXsrfToken)
        .promise();

Whitelisting

On the server, the AWS_JUPYTER_PROXY_WHITELISTED_SERVICES environment variable can be used to whitelist the set of services allowed to be proxied through. This is opt-in - Not specifying this environment variable will whitelist all services.

export AWS_JUPYTER_PROXY_WHITELISTED_SERVICES=sagemaker,s3
jupyter-lab

Development

Install all dev dependencies

pip install -e ".[dev]"
jupyter serverextension enable --py aws_jupyter_proxy --sys-prefix

Run unit tests using pytest

pytest tests/unit

License

This library is licensed under the Apache 2.0 License.