-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
462 lines (396 loc) · 18.6 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from utils import *
import numpy as np
import json
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as f
class User:
def __init__(self, mode):
super(User, self).__init__()
self.id = 0
self.pickup_coords = [0.0, 0.0]
self.dropoff_coords = [0.0, 0.0]
self.serve_duration = 0
self.load = 0
self.pickup_window = [0, 0]
self.dropoff_window = [0, 0]
self.ride_time = 0.0
# alpha: status taking values in {0, 1, 2}
# 0: the user is waiting to be served
# 1: the user is being served by a vehicle
# 2: the user has been served
self.alpha = 0
# beta: status taking values in {0, 1, 2}
# 0: the user is waiting to be served
# 1: the user is being served by the vehicle performing an action at time step t
# 2: the user cannot be served by the vehicle
self.beta = 0
# Identity of the vehicle which is serving the user
self.served = 0
if mode != 'supervise':
self.pred_served = []
class Vehicle:
def __init__(self, mode):
super(Vehicle, self).__init__()
self.id = 0
self.route = []
self.schedule = []
self.ordinal = 0
self.coords = [0.0, 0.0]
self.serving = []
self.free_capacity = 0
self.free_time = 0.0
self.serve_duration = 0
if mode != 'supervise':
self.pred_route = [0]
self.pred_schedule = [0]
self.pred_cost = 0.0
class Darp:
def __init__(self, args, mode, device=None):
super(Darp, self).__init__()
self.args = args
self.mode = mode
self.device = device
self.model = None
self.logs = True
self.log_probs = None
# Load the parameters of training instances
self.train_type, self.train_K, self.train_N, self.train_T, self.train_Q, self.train_L = \
load_instance(args.train_index, 'train')
# Set the name of training instances
self.train_name = self.train_type + str(self.train_K) + '-' + str(self.train_N)
if self.mode != 'evaluate':
# Get the node-user mapping dictionary of training instances
self.node2user = node_to_user(self.train_N)
# Set the path of training instances
self.data_path = './instance/' + self.train_name + '-train' + '.txt'
else:
# Load the parameters of test instances
self.test_type, self.test_K, self.test_N, self.test_T, self.test_Q, self.test_L = \
load_instance(args.test_index, 'test')
# Get the node-user mapping dictionary of test instances
self.node2user = node_to_user(self.test_N)
# Set the name of test instances
self.test_name = self.test_type + str(self.test_K) + '-' + str(self.test_N)
# Set the path of test instances
self.data_path = './instance/' + self.test_name + '-test' + '.txt'
# Load instances
self.list_instances = []
self.load_from_file()
# Initialize the lists of vehicles and users
self.users = []
self.vehicles = []
if self.mode != 'supervise':
# Initialize the lists of metrics
self.break_window = []
self.break_ride_time = []
self.break_same = []
self.break_done = []
self.time_penalty = 0
self.indices = [] # for beam search
self.time = 0.0
def load_from_file(self, num_instance=None):
""" Load the instances from the file, in beam search we load the instances one by one """
if num_instance:
instance = self.list_instances[num_instance]
self.list_instances = [instance]
else:
with open(self.data_path, 'r') as file:
for instance in file:
self.list_instances.append(json.loads(instance))
def reset(self, num_instance):
K, N, T, Q, L = self.parameter()
instance = self.list_instances[num_instance]
self.users = []
for i in range(1, N + 1):
user = User(mode=self.mode)
user.id = i
user.served = self.train_K
self.users.append(user)
# Add dummy users
for _ in range(0, self.train_N - N):
user = User(mode=self.mode)
user.alpha = 2
user.beta = 2
user.served = self.train_K
self.users.append(user)
for i in range(1, 2 * N + 1):
node = instance['instance'][i + 1] # noqa
user = self.users[self.node2user[i] - 1]
if i <= N:
# Pick-up nodes
user.pickup_coords = [float(node[1]), float(node[2])]
user.serve_duration = node[3]
user.load = node[4]
user.pickup_window = [float(node[5]), float(node[6])]
else:
# Drop-off nodes
user.dropoff_coords = [float(node[1]), float(node[2])]
user.dropoff_window = [float(node[5]), float(node[6])]
# Time-window tightening (Section 5.1.1, Cordeau 2006)
for user in self.users:
travel_time = euclidean_distance(user.pickup_coords, user.dropoff_coords)
if user.id <= N / 2:
# Drop-off requests
user.pickup_window[0] = \
round(max(0.0, user.dropoff_window[0] - L - user.serve_duration), 3)
user.pickup_window[1] = \
round(min(user.dropoff_window[1] - travel_time - user.serve_duration, T), 3)
else:
# Pick-up requests
user.dropoff_window[0] = \
round(max(0.0, user.pickup_window[0] + user.serve_duration + travel_time), 3)
user.dropoff_window[1] = \
round(min(user.pickup_window[1] + user.serve_duration + L, T), 3)
self.vehicles = []
for k in range(0, K):
vehicle = Vehicle(mode=self.mode)
vehicle.id = k
vehicle.route = instance['routes'][k] # noqa
vehicle.route.insert(0, 0)
vehicle.route.append(2 * N + 1)
vehicle.schedule = instance['schedule'][k] # noqa
vehicle.free_capacity = Q
self.vehicles.append(vehicle)
# Add dummy vehicles
for _ in range(0, self.train_K - K):
vehicle = Vehicle(mode=self.mode)
vehicle.free_time = 1440
self.vehicles.append(vehicle)
if self.mode != 'supervise':
# Reinitialize the lists of metrics
self.break_window = []
self.break_ride_time = []
self.break_same = []
self.break_done = []
self.time_penalty = 0
return instance['objective'] # noqa
def beta(self, k):
_, N, _, _, _ = self.parameter()
for i in range(0, N):
user = self.users[i]
if user.alpha == 1 and user.served == self.vehicles[k].id:
# 1: the user is being served by the vehicle performing an action at time step t
user.beta = 1
else:
if user.alpha == 0:
if user.load <= self.vehicles[k].free_capacity:
# 0: the user is waiting to be served
user.beta = 0
else:
# 2: the user cannot be served by the vehicle
user.beta = 2
else:
# 2: the user has been served
user.beta = 2
def state(self, k, time):
state = [list(map(np.float32,
[user.pickup_coords,
user.dropoff_coords,
shift_window(user.pickup_window, time),
shift_window(user.dropoff_window, time),
user.ride_time,
user.alpha,
user.beta,
user.served,
self.vehicles[k].id]
+ [vehicle.serve_duration + euclidean_distance(
vehicle.coords, user.pickup_coords)
if user.alpha == 0 else
vehicle.serve_duration + euclidean_distance(
vehicle.coords, user.dropoff_coords)
for vehicle in self.vehicles]))
for user in self.users]
return state
# noinspection PyMethodMayBeStatic
def will_pick_up(self, vehicle, user):
travel_time = euclidean_distance(vehicle.coords, user.pickup_coords)
window_start = user.pickup_window[0]
vehicle.coords = user.pickup_coords
vehicle.free_capacity -= user.load
user.served = vehicle.id
user.alpha = 1
return travel_time, window_start
def will_drop_off(self, vehicle, user):
travel_time = euclidean_distance(vehicle.coords, user.dropoff_coords)
window_start = user.dropoff_window[0]
vehicle.coords = user.dropoff_coords
vehicle.free_capacity += user.load
user.served = self.train_K
user.alpha = 2
return travel_time, window_start
def action(self, k):
vehicle = self.vehicles[k]
r = vehicle.ordinal
if vehicle.free_time + self.args.wait_time < vehicle.schedule[r]:
# Wait at the present node
action = self.train_N + 1
else:
if vehicle.route[r + 1] < 2 * self.train_N + 1:
# Move to the next node
node = vehicle.route[r + 1]
action = self.node2user[node] - 1
else:
# Move to the destination depot
action = self.train_N
return action
def supervise_step(self, k):
vehicle = self.vehicles[k]
r = vehicle.ordinal
if vehicle.free_time + self.args.wait_time < vehicle.schedule[r]:
# Wait at the present node
vehicle.free_time += self.args.wait_time
update_ride_time(vehicle, self.users, self.args.wait_time)
else:
wait_time = vehicle.schedule[r] - vehicle.free_time
update_ride_time(vehicle, self.users, wait_time)
vehicle.free_time = vehicle.schedule[r]
if vehicle.route[r] != 0:
# Start to serve the user at the present node
node = vehicle.route[r]
user = self.users[self.node2user[node] - 1]
if user.id not in vehicle.serving:
# Check the pick-up time window
if check_window(user.pickup_window, vehicle.free_time):
raise ValueError('The pick-up time window of User {} is broken: {:.2f} not in {}.'.format(
user.id, vehicle.free_time, user.pickup_window))
# Append the user to the serving list
vehicle.serving.append(user.id)
else:
# Check the ride time
if user.ride_time - user.serve_duration > self.train_L + 1e-2:
raise ValueError('The ride time of User {} is too long: {:.2f} > {:.2f}.'.format(
user.id, user.ride_time - user.serve_duration, self.train_L))
# Check the drop-off time window
if check_window(user.dropoff_window, vehicle.free_time):
raise ValueError('The drop-off time window of User {} is broken: {:.2f} not in {}.'.format(
user.id, vehicle.free_time, user.dropoff_window))
# Remove the user from the serving list
vehicle.serving.remove(user.id)
vehicle.serve_duration = user.serve_duration
user.ride_time = 0.0
if vehicle.route[r + 1] < 2 * self.train_N + 1:
# Move to the next node
node = vehicle.route[r + 1]
user = self.users[self.node2user[node] - 1]
if user.id not in vehicle.serving:
travel_time, window_start = self.will_pick_up(vehicle, user)
else:
travel_time, window_start = self.will_drop_off(vehicle, user)
if vehicle.free_time + vehicle.serve_duration + travel_time > window_start + 1e-2:
ride_time = vehicle.serve_duration + travel_time
vehicle.free_time += ride_time
else:
ride_time = window_start - vehicle.free_time
vehicle.free_time = window_start
update_ride_time(vehicle, self.users, ride_time)
else:
# Move to the destination depot
vehicle.coords = [0.0, 0.0]
vehicle.free_time = 1440
vehicle.serve_duration = 0
vehicle.ordinal += 1
def predict(self, state, user_mask=None, src_mask=None):
state, _ = DataLoader([state, 0], batch_size=1) # noqa
if self.mode == 'evaluate':
pred_mask = [0 if self.users[i].beta == 2 else 1 for i in range(0, self.test_N)] + \
[0 for _ in range(0, self.train_N - self.test_N)] + [1, 1]
pred_mask = torch.Tensor(pred_mask).to(self.device)
outputs = self.model(state, user_mask, src_mask).masked_fill(pred_mask == 0, -1e6)
else:
outputs = self.model(state, user_mask, src_mask)
probs = f.softmax(outputs, dim=1)
_, action = torch.max(probs, 1)
return action.item(), probs
def evaluate_step(self, k, action):
K, N, T, Q, L = self.parameter()
vehicle = self.vehicles[k]
if action == self.train_N + 1:
# Wait at the present node
vehicle.free_time += self.args.wait_time
update_ride_time(vehicle, self.users, self.args.wait_time)
else:
if vehicle.pred_route[-1] != 0:
# Start to serve the user at the present node
user = self.users[vehicle.pred_route[-1] - 1]
if user.id not in vehicle.serving:
# Check the pick-up time window
if check_window(user.pickup_window, vehicle.free_time) and user.id > N / 2:
if self.logs:
print('The pick-up time window of User {} is broken: {:.2f} not in {}.'.format(
user.id, vehicle.free_time, user.pickup_window))
self.break_window.append(user.id)
self.time_penalty += vehicle.free_time - user.pickup_window[0]
# Append the user to the serving list
vehicle.serving.append(user.id)
else:
# Check the ride time
if user.ride_time - user.serve_duration > L + 1e-2:
if self.logs:
print('The ride time of User {} is too long: {:.2f} > {:.2f}.'.format(
user.id, user.ride_time - user.serve_duration, L))
self.break_ride_time.append(user.id)
self.time_penalty += user.ride_time - user.serve_duration - L
# Check the drop-off time window
if check_window(user.dropoff_window, vehicle.free_time) and user.id <= N / 2:
if self.logs:
print('The drop-off time window of User {} is broken: {:.2f} not in {}.'.format(
user.id, vehicle.free_time, user.dropoff_window))
self.break_window.append(user.id)
self.time_penalty += vehicle.free_time - user.dropoff_window[0]
# Remove the user from the serving list
vehicle.serving.remove(user.id)
vehicle.serve_duration = user.serve_duration
user.ride_time = 0.0
if action < N:
# Move to the next node
user = self.users[action]
if user.id not in vehicle.serving:
travel_time, window_start = self.will_pick_up(vehicle, user)
user.pred_served.append(vehicle.id)
else:
travel_time, window_start = self.will_drop_off(vehicle, user)
user.pred_served.append(vehicle.id)
if vehicle.free_time + vehicle.serve_duration + travel_time > window_start + 1e-2:
ride_time = vehicle.serve_duration + travel_time
vehicle.free_time += ride_time
else:
ride_time = window_start - vehicle.free_time
vehicle.free_time = window_start
vehicle.pred_cost += travel_time
update_ride_time(vehicle, self.users, ride_time)
else:
# Move to the destination depot
vehicle.pred_cost += euclidean_distance(vehicle.coords, [0.0, 0.0])
vehicle.coords = [0.0, 0.0]
vehicle.free_time = 1440
vehicle.serve_duration = 0
vehicle.pred_route.append(action + 1)
vehicle.pred_schedule.append(vehicle.free_time)
def finish(self):
free_times = np.array([vehicle.free_time for vehicle in self.vehicles])
num_finish = np.sum(free_times == 1440)
if num_finish == self.train_K:
flag = False
if self.mode != 'supervise':
_, N, _, _, _ = self.parameter()
for i in range(0, N):
user = self.users[i]
# Check if the user is served by the same vehicle.
if len(user.pred_served) != 2 or user.pred_served[0] != user.pred_served[1]:
self.break_same.append(user.id)
print('* User {} is served by {}.'.format(user.id, user.pred_served))
# Check if the request of the user is finished.
if user.alpha != 2:
self.break_done.append(user.id)
print('* The request of User {} is unfinished.'.format(user.id))
else:
flag = True
return flag
def cost(self):
return sum(vehicle.pred_cost for vehicle in self.vehicles)
def parameter(self):
if self.mode != 'evaluate':
return self.train_K, self.train_N, self.train_T, self.train_Q, self.train_L
else:
return self.test_K, self.test_N, self.test_T, self.test_Q, self.test_L