forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_image_processing_common.py
541 lines (427 loc) · 24.4 KB
/
test_image_processing_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import pathlib
import tempfile
import time
import warnings
import numpy as np
import requests
from transformers import AutoImageProcessor, BatchFeature
from transformers.image_utils import AnnotationFormat, AnnotionFormat
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
def prepare_image_inputs(
batch_size,
min_resolution,
max_resolution,
num_channels,
size_divisor=None,
equal_resolution=False,
numpify=False,
torchify=False,
):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
image_inputs = []
for i in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
# To avoid getting image width/height 0
if size_divisor is not None:
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(image) for image in image_inputs]
if numpify:
# Numpy images are typically in channels last format
image_inputs = [image.transpose(1, 2, 0) for image in image_inputs]
return image_inputs
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(num_frames):
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
if torchify:
video = [torch.from_numpy(frame) for frame in video]
return video
def prepare_video_inputs(
batch_size,
num_frames,
num_channels,
min_resolution,
max_resolution,
equal_resolution=False,
numpify=False,
torchify=False,
):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
One can specify whether the videos are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
video = prepare_video(
num_frames=num_frames,
num_channels=num_channels,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
class ImageProcessingTestMixin:
test_cast_dtype = None
image_processing_class = None
fast_image_processing_class = None
image_processors_list = None
test_slow_image_processor = True
test_fast_image_processor = True
def setUp(self):
image_processor_list = []
if self.test_slow_image_processor and self.image_processing_class:
image_processor_list.append(self.image_processing_class)
if self.test_fast_image_processor and self.fast_image_processing_class:
image_processor_list.append(self.fast_image_processing_class)
self.image_processor_list = image_processor_list
@require_vision
@require_torch
def test_slow_fast_equivalence(self):
dummy_image = Image.open(
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
)
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-2))
@require_vision
@require_torch
def test_fast_is_faster_than_slow(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping speed test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
def measure_time(image_processor, image):
start = time.time()
_ = image_processor(image, return_tensors="pt")
return time.time() - start
dummy_images = torch.randint(0, 255, (4, 3, 224, 224), dtype=torch.uint8)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class()
fast_time = measure_time(image_processor_fast, dummy_images)
slow_time = measure_time(image_processor_slow, dummy_images)
self.assertLessEqual(fast_time, slow_time)
def test_image_processor_to_json_string(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
obj = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
self.assertEqual(obj[key], value)
def test_image_processor_to_json_file(self):
for image_processing_class in self.image_processor_list:
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "image_processor.json")
image_processor_first.to_json_file(json_file_path)
image_processor_second = image_processing_class.from_json_file(json_file_path)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_from_and_save_pretrained(self):
for image_processing_class in self.image_processor_list:
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
image_processor_second = image_processing_class.from_pretrained(tmpdirname)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_save_load_with_autoimageprocessor(self):
for image_processing_class in self.image_processor_list:
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_save_load_fast_slow(self):
"Test that we can load a fast image processor from a slow one and vice-versa."
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
image_processor_slow_0 = self.image_processing_class(**image_processor_dict)
# Load fast image processor from slow one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_slow_0.save_pretrained(tmpdirname)
image_processor_fast_0 = self.fast_image_processing_class.from_pretrained(tmpdirname)
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)
# Load slow image processor from fast one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_fast_1.save_pretrained(tmpdirname)
image_processor_slow_1 = self.image_processing_class.from_pretrained(tmpdirname)
self.assertEqual(image_processor_slow_0.to_dict(), image_processor_slow_1.to_dict())
self.assertEqual(image_processor_fast_0.to_dict(), image_processor_fast_1.to_dict())
def test_save_load_fast_slow_auto(self):
"Test that we can load a fast image processor from a slow one and vice-versa using AutoImageProcessor."
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
image_processor_slow_0 = self.image_processing_class(**image_processor_dict)
# Load fast image processor from slow one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_slow_0.save_pretrained(tmpdirname)
image_processor_fast_0 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=True)
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)
# Load slow image processor from fast one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_fast_1.save_pretrained(tmpdirname)
image_processor_slow_1 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=False)
self.assertEqual(image_processor_slow_0.to_dict(), image_processor_slow_1.to_dict())
self.assertEqual(image_processor_fast_0.to_dict(), image_processor_fast_1.to_dict())
def test_init_without_params(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class()
self.assertIsNotNone(image_processor)
@require_torch
@require_vision
def test_cast_dtype_device(self):
for image_processing_class in self.image_processor_list:
if self.test_cast_dtype is not None:
# Initialize image_processor
image_processor = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
encoding = image_processor(image_inputs, return_tensors="pt")
# for layoutLM compatiblity
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + image feature
encoding = image_processor(image_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pytorch(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
tuple(encoded_images.shape),
(self.image_processor_tester.batch_size, *expected_output_image_shape),
)
def test_call_numpy_4_channels(self):
for image_processing_class in self.image_processor_list:
# Test that can process images which have an arbitrary number of channels
# Initialize image_processing
image_processor = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
# Test not batched input
encoded_images = image_processor(
image_inputs[0],
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processor(
image_inputs,
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_image_processor_preprocess_arguments(self):
is_tested = False
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
# validation done by _valid_processor_keys attribute
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
preprocess_parameter_names.remove("self")
preprocess_parameter_names.sort()
valid_processor_keys = image_processor._valid_processor_keys
valid_processor_keys.sort()
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
is_tested = True
# validation done by @filter_out_non_signature_kwargs decorator
if hasattr(image_processor.preprocess, "_filter_out_non_signature_kwargs"):
if hasattr(self.image_processor_tester, "prepare_image_inputs"):
inputs = self.image_processor_tester.prepare_image_inputs()
elif hasattr(self.image_processor_tester, "prepare_video_inputs"):
inputs = self.image_processor_tester.prepare_video_inputs()
else:
self.skipTest(reason="No valid input preparation method found")
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
image_processor(inputs, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
is_tested = True
if not is_tested:
self.skipTest(reason="No validation found for `preprocess` method")
class AnnotationFormatTestMixin:
# this mixin adds a test to assert that usages of the
# to-be-deprecated `AnnotionFormat` continue to be
# supported for the time being
def test_processor_can_use_legacy_annotation_format(self):
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO"
with open(fixtures_path / "coco_annotations.txt", "r") as f:
detection_target = json.loads(f.read())
detection_annotations = {"image_id": 39769, "annotations": detection_target}
detection_params = {
"images": Image.open(fixtures_path / "000000039769.png"),
"annotations": detection_annotations,
"return_tensors": "pt",
}
with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f:
panoptic_target = json.loads(f.read())
panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target}
masks_path = pathlib.Path(fixtures_path / "coco_panoptic")
panoptic_params = {
"images": Image.open(fixtures_path / "000000039769.png"),
"annotations": panoptic_annotations,
"return_tensors": "pt",
"masks_path": masks_path,
}
test_cases = [
("coco_detection", detection_params),
("coco_panoptic", panoptic_params),
(AnnotionFormat.COCO_DETECTION, detection_params),
(AnnotionFormat.COCO_PANOPTIC, panoptic_params),
(AnnotationFormat.COCO_DETECTION, detection_params),
(AnnotationFormat.COCO_PANOPTIC, panoptic_params),
]
def _compare(a, b) -> None:
if isinstance(a, (dict, BatchFeature)):
self.assertEqual(a.keys(), b.keys())
for k, v in a.items():
_compare(v, b[k])
elif isinstance(a, list):
self.assertEqual(len(a), len(b))
for idx in range(len(a)):
_compare(a[idx], b[idx])
elif isinstance(a, torch.Tensor):
self.assertTrue(torch.allclose(a, b, atol=1e-3))
elif isinstance(a, str):
self.assertEqual(a, b)
for annotation_format, params in test_cases:
with self.subTest(annotation_format):
image_processor_params = {**image_processor_dict, **{"format": annotation_format}}
image_processor_first = self.image_processing_class(**image_processor_params)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(tmpdirname)
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
# check the 'format' key exists and that the dicts of the
# first and second processors are equal
self.assertIn("format", image_processor_first.to_dict().keys())
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
# perform encoding using both processors and compare
# the resulting BatchFeatures
first_encoding = image_processor_first(**params)
second_encoding = image_processor_second(**params)
_compare(first_encoding, second_encoding)