-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (73 loc) · 3.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import torch
import numpy as np
import time
import wandb
torch.cuda.set_device(0)
random_seed = np.random.randint(1, 100000)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
np.random.seed(random_seed)
from train import train
parser = argparse.ArgumentParser()
# Training Data
parser.add_argument('--dataset', default='scan',
help='Dataset out of SCAN, COGS, PCFG, en-de, en-fr')
parser.add_argument('--split', default='addjump',
help='SCAN split to use for training and testing')
parser.add_argument('--pos', action='store_true', default=False,
help='use POS data for supervision')
parser.add_argument('--depth', type=float, default=1,
help='depth of annotation to use')
parser.add_argument('--num_runs', type=int, default=1,
help='Number of runs to do')
parser.add_argument('--batch_size', type=int, default=256,
help='Samples per batch')
parser.add_argument('--num_epochs', type=int, default=200,
help='Number of training epochs')
# Model
# Transformer Arguments
parser.add_argument('--model_type',
default='sep-transformer', help='Type of seq2seq model to use')
parser.add_argument('--d_model', type=int, default=256,
help="Dimension of inputs/outputs in transformer")
parser.add_argument('--nhead', type=int, default=8,
help='Number of heads in transformer with multihead attention')
parser.add_argument('--n_layers', type=int, default=2)
parser.add_argument('--dim_feedforward', type=int, default=512)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--load_weights_from', default=None, required=False)
# TP-Separated Transformer Arguments
#TODO: rename cat_xm to something more relevant
parser.add_argument('--cat_xm', action='store_true',
help='concatenate X and M for output')
parser.add_argument('--sp_kernel', action='store_true',
help='use modified spherical gaussian kernel for similarity')
parser.add_argument('--threshold', type=float, default=0.5)
parser.add_argument('--encoding_scheme', default='absolute',
help='scheme for conveying positional information to the model')
# Optimization
parser.add_argument('--learning_rate', type=float, default=0.001)
# Output options
parser.add_argument('--results_dir', default='sep-transformer',
help='Results subdirectory to save results')
parser.add_argument('--out_data_file', default='train_defaults_jump',
help='Name of output data file with training loss data')
parser.add_argument('--out_attn_wts', default='train_defaults_jump_attn_maps',
help='Name of output data file with attn weight maps in pickle file format')
parser.add_argument('--checkpoint_path',default='../weights/sep-transformer/scan/defaults_addjump.pt',
help='Path to output saved weights.')
parser.add_argument('--checkpoint_every', type=int, default=4,
help='Epochs before evaluating model and saving weights')
parser.add_argument('--record_loss_every', type=int, default=20,
help='iters before printing and recording loss')
def main(args):
for run in range(args.num_runs):
train(run, args)
if __name__ == "__main__":
s = time.time()
args = parser.parse_args()
wandb.init(project="language-compositionality", entity="akchak", config=args)
main(args)
e = time.time() - s
print(e)