-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCaiT_basic.py
292 lines (254 loc) · 10.2 KB
/
CaiT_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import print_function
from PIL import Image
from vit_pytorch import ViT
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, Dataset
import glob
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import os
import pickle
import collections
import torch
import seaborn as sn
import matplotlib.pyplot as plt
from vit_pytorch.deepvit import DeepViT
from vit_pytorch.cait import CaiT
from sklearn.metrics import confusion_matrix, mean_squared_error, classification_report
import numpy as np
# Setting CUDA Device:
torch.cuda.set_device(0)
# CUDA_VISIBLE_DEVICES= [1,2]
# Hyperparameters:
num_epochs = 50
# batch_size_list = [32, 64, 128]
batch_size = 64
# lr_list = [3e-5, 2e-4, 1e-3, 5e-6]
lr_list = [3e-5]
# gamma_list = [0.9, 0.7] # for learning rate scheduler
gamma_list = [0.7]
# Importing metadata:
total_df = pd.read_csv('./HAM10000/HAM10000_metadata.csv')
file_list = glob.glob(r'./HAM10000/HAM10000_images_part_1/*.jpg')
# Generating labels:
y_all = []
for name in file_list:
head, tail = os.path.split(name)
tail = tail.replace('.jpg', '')
row = ( total_df.loc [total_df['image_id'] == tail]['dx'] ).values.astype(str)
y_all.append(str(row[0]))
# Encodeing lables:
le = preprocessing.LabelEncoder()
y_all1 = le.fit_transform(y_all)
# Applying test train split
X_train, X_temp, y_train, y_temp = train_test_split(file_list, y_all1, random_state=1, stratify=y_all1, test_size=0.15)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, random_state=1, stratify=y_temp, test_size=0.5)
# Creating Dataset:
data_transforms = transforms.Compose(
[
transforms.Resize((224, 224)),
# transforms.RandomHorizontalFlip(),
# transforms.RandomResizedCrop(224),
transforms.ToTensor(),
]
)
class MyDataset(Dataset):
def __init__(self, file_list, y_all, transform=None):
self.file_list = file_list
self.transform = transform
self.y_all = y_all
def __getitem__(self, index1):
img_path = self.file_list[index1]
img = Image.open(img_path)
img_transformed = self.transform(img)
label = self.y_all[index1]
return img_transformed, label
train_data = MyDataset(X_train, y_train, transform=data_transforms)
valid_data = MyDataset(X_val, y_val, transform=data_transforms)
test_data = MyDataset(X_test, y_test, transform=data_transforms)
# Fixing Dataloader:
train_loader = DataLoader(dataset = train_data, batch_size=batch_size, shuffle=True )
valid_loader = DataLoader(dataset = valid_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset = test_data, batch_size=batch_size, shuffle=True)
# Model Specifications
model = CaiT(
image_size = 256,
patch_size = 32,
num_classes = 7,
dim = 1024,
depth = 12, # depth of transformer for patch to patch attention only
cls_depth = 2, # depth of cross attention of CLS tokens to patch
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1,
layer_dropout = 0.05 # randomly dropout 5% of the layers
).to(torch.device("cuda"))
#start training
train_loss_list_list = []
val_loss_list_list = []
train_acc_list_list = []
val_acc_list_list = []
for lr in lr_list:
for gamma in gamma_list:
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
scheduler = StepLR(optimizer, step_size=1, gamma=gamma)
train_loss_list = []
val_loss_list = []
train_acc_list = []
val_acc_list = []
print("lr:", lr, " gamma:", gamma)
for epoch in range(num_epochs):
epoch_loss = 0
epoch_accuracy = 0
for data, label in train_loader:
data = data.to(torch.device("cuda"))
label = label.to(torch.device("cuda"))
output = model(data)
loss = criterion(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
accuracy = (output.argmax(dim=1) == label).float().mean()
epoch_accuracy += accuracy / len(train_loader)
epoch_loss += loss / len(train_loader)
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label in valid_loader:
data = data.to(torch.device("cuda"))
label = label.to(torch.device("cuda"))
val_output = model(data)
val_loss = criterion(val_output, label)
acc = (val_output.argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(valid_loader)
epoch_val_loss += val_loss / len(valid_loader)
train_loss_list.append(epoch_loss.detach().cpu().numpy().flatten()[0])
train_acc_list.append(epoch_accuracy.detach().cpu().numpy().flatten()[0])
val_loss_list.append(epoch_val_loss.detach().cpu().numpy().flatten()[0])
val_acc_list.append(epoch_val_accuracy.detach().cpu().numpy().flatten()[0])
print(
f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n"
)
val_acc_list_list.append(val_acc_list)
val_loss_list_list.append(val_loss_list)
train_acc_list_list.append(train_acc_list)
train_loss_list_list.append(train_loss_list)
torch.save(model.state_dict(), './final_models_simple/CaiT_model.pth')
metrices = [train_loss_list, val_loss_list, train_acc_list, val_acc_list]
with open("./final_models_simple/CaiT_metrices.pk", "wb") as fp: #Pickling
pickle.dump(metrices, fp)
#
# a = []
# for i in range(0, num_epochs):
# a.append(val_acc_list[i].detach().cpu().numpy().flatten()[0])
# maxi = []
# for i in range(0, 8):
# maxi.append(max(val_acc_list_list[i]))
# loading model:
# model.load_state_dict(torch.load("./final_models_simple/CaiT_model.pth"))
model.eval()
#loading dataset_locker
# with open('./final_models_simple/dataset_locker.pk', 'rb') as f:
# x = pickle.load(f)
# X_train = x[0]
# y_train = x[1]
# X_val = x[2]
# y_val = x[3]
# X_test = x[4]
# y_test = x[5]
# Creating Validation predictions and metrics:
pred = []
pred_label = []
i=0
criterion = nn.CrossEntropyLoss()
for i in range(0,len(X_test)):
test_data = MyDataset([X_test[i]], [y_test[i]], transform=transforms)
test_loader = DataLoader(dataset = test_data, batch_size=1, shuffle=False)
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label in test_loader:
if i%100==0:
print("step: ", i)
i +=1
data = data.to(torch.device("cuda"))
label = label.to(torch.device("cuda"))
val_output = model(data)
val_loss = criterion(val_output, label)
pred.append(list(val_output.argmax(dim=1).detach().cpu().numpy()))
pred_label.append(list(label.detach().cpu().numpy()))
acc = (val_output.argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(valid_loader)
epoch_val_loss += val_loss / len(valid_loader)
val_pred_flat = [item for sublist in pred for item in sublist]
val_pred_label_flat = [item for sublist in pred_label for item in sublist]
# Creating test set predictions and mertrices:
pred = []
pred_label = []
i=0
criterion = nn.CrossEntropyLoss()
for i in range(0,len(X_test)):
test_data = MyDataset([X_test[i]], [y_test[i]], transform=transforms)
test_loader = DataLoader(dataset = test_data, batch_size=1, shuffle=False)
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label in test_loader:
if i%100==0:
print("step: ", i)
i +=1
data = data.to(torch.device("cuda"))
label = label.to(torch.device("cuda"))
val_output = model(data)
val_loss = criterion(val_output, label)
pred.append(list(val_output.argmax(dim=1).detach().cpu().numpy()))
pred_label.append(list(label.detach().cpu().numpy()))
acc = (val_output.argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(valid_loader)
epoch_val_loss += val_loss / len(valid_loader)
test_pred_flat = [item for sublist in pred for item in sublist]
test_pred_label_flat = [item for sublist in pred_label for item in sublist]
predictions = [val_pred_flat, val_pred_label_flat, test_pred_flat, test_pred_label_flat]
with open("./final_models_simple/CaiT_predictions.pk", "wb") as fp: #Pickling
pickle.dump(predictions, fp)
# sum = 0
# for i in range(0, len(pred_flat)):
# if pred_flat[i] == pred_label_flat[i]:
# sum+=1
# with open('./final_models_simple/CaiT_matrices.pk', 'rb') as f:
# metrices = pickle.load(f)
# Plotting training and val accuracy with training steps:
train_acc_list = metrices[2]
val_acc_list = metrices[3]
plt.plot(range(0,len(val_acc_list)), val_acc_list, color='b', label='Validation accuracy')
plt.plot(range(0,len(train_acc_list)), train_acc_list, color='r', label='Training accuracy')
plt.title("Training and Validation accuracy")
plt.xlabel("Steps:")
plt.ylabel("Accuracy:")
# Precision and Recall:
# with open('./final_models_simple/CaiT_predictions.pk', 'rb') as f:
# predictions = pickle.load(f)
val_pred_flat = predictions[0]
val_pred_label_flat = predictions[1]
test_pred_flat = predictions[2]
test_pred_label_flat = predictions[3]
print("\n\nCaiT MODEL: ")
print(classification_report(test_pred_flat, test_pred_label_flat,digits=4))
# Confusion Matrix:
y_true = test_pred_label_flat
y_pred = test_pred_flat
data = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(data, columns=np.unique(y_true), index = np.unique(y_true))
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'
plt.figure(figsize = (10,7))
sn.set(font_scale=1.4)#for label size
sn.heatmap(df_cm, cmap="Blues", annot=True,annot_kws={"size": 16}, fmt='d')# font size
plt.title("Confusion matrix for CaiT model")
plt.show()