-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathapop_bootstrap.m4.c
182 lines (159 loc) · 8.66 KB
/
apop_bootstrap.m4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/** \file apop_bootstrap.c
Copyright (c) 2006--2007 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
/** Initialize a \c gsl_rng.
Uses the Tausworth routine.
\param seed The seed. No need to get funny with it: 0, 1, and 2 will produce wholly different streams.
\return The RNG ready for your use.
\li If you are confident that your code is debugged and would like a new stream of values every time your program runs (provided your runs are more than a second apart), seed with the time:
\include draw_some_normals.c
*/
gsl_rng *apop_rng_alloc(int seed){
static int first_use = 1;
if (first_use){
first_use = 0;
OMP_critical(rng_env_setup) //GSL makes vague promises about thread-safety
gsl_rng_env_setup();
}
gsl_rng *setme = gsl_rng_alloc(gsl_rng_taus2);
gsl_rng_set(setme, seed);
return setme;
}
/** Give me a data set and a model, and I'll give you the jackknifed covariance matrix of the model parameters.
The basic algorithm for the jackknife (glossing over the details): create a sequence of data
sets, each with exactly one observation removed, and then produce a new set of parameter estimates
using that slightly shortened data set. Then, find the covariance matrix of the derived parameters.
\li Jackknife or bootstrap? As a broad rule of thumb, the jackknife works best on models
that are closer to linear. The worse a linear approximation does (at the given data),
the worse the jackknife approximates the variance.
\param in The data set. An \ref apop_data set where each row is a single data point.
\param model An \ref apop_model, that will be used internally by \ref apop_estimate.
\exception out->error=='n' \c NULL input data.
\return An \c apop_data set whose matrix element is the estimated covariance matrix of the parameters.
\see apop_bootstrap_cov
For example:
\include jack.c
*/
apop_data * apop_jackknife_cov(apop_data *in, apop_model *model){
Apop_stopif(!in, apop_return_data_error(n), 0, "The data input can't be NULL.");
Get_vmsizes(in); //msize1, msize2, vsize
apop_model *e = apop_model_copy(model);
int i, n = GSL_MAX(msize1, GSL_MAX(vsize, in->textsize[0]));
apop_model *overall_est = e->parameters ? e : apop_estimate(in, e);//if not estimated, do so
gsl_vector *overall_params = apop_data_pack(overall_est->parameters);
gsl_vector_scale(overall_params, n); //do it just once.
gsl_vector *pseudoval = gsl_vector_alloc(overall_params->size);
//Copy the original, minus the first row.
apop_data *subset = apop_data_copy(Apop_rs(in, 1, n-1));
apop_name *tmpnames = in->names;
in->names = NULL; //save on some copying below.
apop_data *array_of_boots = apop_data_alloc(n, overall_params->size);
for(i = -1; i< n-1; i++){
//Get a view of row i, and copy it to position i-1 in the short matrix.
if (i >= 0) apop_data_memcpy(Apop_r(subset, i), Apop_r(in, i));
apop_model *est = apop_estimate(subset, e);
gsl_vector *estp = apop_data_pack(est->parameters);
gsl_vector_memcpy(pseudoval, overall_params);// *n above.
gsl_vector_scale(estp, n-1);
gsl_vector_sub(pseudoval, estp);
gsl_matrix_set_row(array_of_boots->matrix, i+1, pseudoval);
apop_model_free(est);
gsl_vector_free(estp);
}
in->names = tmpnames;
apop_data *out = apop_data_covariance(array_of_boots);
gsl_matrix_scale(out->matrix, 1./(n-1.));
apop_data_free(subset);
gsl_vector_free(pseudoval);
apop_data_free(array_of_boots);
if (e!=overall_est)
apop_model_free(overall_est);
apop_model_free(e);
gsl_vector_free(overall_params);
return out;
}
/** Give me a data set and a model, and I'll give you the bootstrapped covariance matrix of the parameter estimates.
\param data The data set. An \c apop_data set where each row is a single data point. (No default)
\param model An \ref apop_model, whose \c estimate method will be used here. (No default)
\param iterations How many bootstrap draws should I make? (default: 1,000)
\param rng An RNG that you have initialized, probably with \c apop_rng_alloc. (Default: an RNG from \ref apop_rng_get_thread)
\param boot_store If not \c NULL, put the list of drawn parameter values here, with one parameter set per row. Sample use:
\code
apop_data *boots;
apop_bootstrap_cov(data, model, .boot_store=&boots);
apop_data_print(boots);
\endcode
The rows are packed via \ref apop_data_pack, so use \ref apop_data_unpack if needed. (Default: \c NULL)
\param ignore_nans If \c 'y' and any of the elements in the estimation return \c NaN, then I will throw out that draw and try again. If \c 'n', then I will write that set of statistics to the list, \c NaN and all. I keep count of throw-aways; if there are more than \c iterations elements thrown out, then I throw an error and return with estimates using data I have so far. That is, I assume that \c NaNs are rare edge cases; if they are as common as good data, you might want to rethink how you are using the bootstrap mechanism. (Default: 'n')
\return An \c apop_data set whose matrix element is the estimated covariance matrix of the parameters.
\exception out->error=='n' \c NULL input data.
\exception out->error=='N' \c too many NaNs.
\li This function uses the \ref designated syntax for inputs.
This example is a sort of demonstration of the Central Limit Theorem. The model is
a simulation, where each call to the estimation routine produces the mean/std dev of
a set of draws from a Uniform Distribution. Because the simulation takes no inputs,
\ref apop_bootstrap_cov simply re-runs the simulation and calculates a sequence of
mean/std dev pairs, and reports the covariance of that generated data set.
\include boot_clt.c
\see apop_jackknife_cov
*/
APOP_VAR_HEAD apop_data * apop_bootstrap_cov(apop_data * data, apop_model *model, gsl_rng *rng, int iterations, char keep_boots, char ignore_nans, apop_data **boot_store) {
apop_data * apop_varad_var(data, NULL);
apop_model *model = varad_in.model;
int apop_varad_var(iterations, 1000);
gsl_rng * apop_varad_var(rng, apop_rng_get_thread());
char apop_varad_var(keep_boots, 'n');
apop_data** apop_varad_var(boot_store, NULL);
char apop_varad_var(ignore_nans, 'n');
APOP_VAR_ENDHEAD
Get_vmsizes(data); //vsize, msize1, msize2
apop_model *e = apop_model_copy(model);
apop_data *subset = apop_data_copy(data);
apop_data *array_of_boots = NULL,
*summary;
//prevent and infinite regression of covariance calculation.
Apop_model_add_group(e, apop_parts_wanted); //default wants for nothing.
size_t i, nan_draws=0;
apop_name *tmpnames = (data && data->names) ? data->names : NULL; //save on some copying below.
if (data && data->names) data->names = NULL;
int height = GSL_MAX(msize1, GSL_MAX(vsize, (data?(*data->textsize):0)));
for (i=0; i<iterations && nan_draws < iterations; i++){
for (size_t j=0; j< height; j++){ //create the data set
size_t randrow = gsl_rng_uniform_int(rng, height);
apop_data_memcpy(Apop_r(subset, j), Apop_r(data, randrow));
}
//get the parameter estimates.
apop_model *est = apop_estimate(subset, e);
gsl_vector *estp = apop_data_pack(est->parameters);
if (!gsl_isnan(apop_sum(estp))){
if (i==0){
array_of_boots = apop_data_alloc(iterations, estp->size);
apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'v');
apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'c');
apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'r');
}
gsl_matrix_set_row(array_of_boots->matrix, i, estp);
} else if (ignore_nans=='y'){
i--;
nan_draws++;
}
apop_model_free(est);
gsl_vector_free(estp);
}
if(data) data->names = tmpnames;
apop_data_free(subset);
apop_model_free(e);
int set_error=0;
Apop_stopif(i == 0 && nan_draws == iterations, apop_return_data_error(N),
1, "I ran into %i NaNs and no not-NaN estimations, and so stopped. "
, iterations);
Apop_stopif(nan_draws == iterations, set_error++;
apop_matrix_realloc(array_of_boots->matrix, i, array_of_boots->matrix->size2),
1, "I ran into %i NaNs, and so stopped. Returning results based "
"on %zu bootstrap iterations.", iterations, i);
summary = apop_data_covariance(array_of_boots);
if (boot_store) *boot_store = array_of_boots;
else apop_data_free(array_of_boots);
if (set_error) summary->error = 'N';
return summary;
}