-
Notifications
You must be signed in to change notification settings - Fork 31
/
apop_rake.m4.c
639 lines (561 loc) · 28.9 KB
/
apop_rake.m4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//#define __USE_POSIX //for strtok_r
#include "apop_internal.h"
#include <stdbool.h>
#include <gsl/gsl_sort_vector.h>
void xprintf(char **q, char *format, ...); //in apop_conversions.c
/* This is the internal documentation for apop_rake(). I assume you've read the usage
documentation already (if you haven't, it's below, just above apop_rake).
I started with:
Algorithm AS 51 Appl. Statist. (1972), vol. 21, p. 218
original (C) Royal Statistical Society 1972
But at this point, I'm not sure if any of the original code remains at all, because the
sparse method and the full-matrix method differ so much.
There are two phases to the process: the SQL part and the in-memory table part. The file
here begins with the indexing of the in-memory table. The index on the in-memory
table is somewhat its own structure, with get/set functions and so forth, so it has
its own section, listed first in this file. After that, we get to the raking function
(c_loglin) and its supporting functions, and then the apop_rake function itself. The
SQL work itself is inside apop_rake, and c_loglin is called at the end to do the
raking. */
/* This section indexes a PMF-type apop_data struct. The index is held in a 2-d grid
of nodes. The index's first index is the dimension, and will hold one column for each
column in the original data set. The index's second index goes over all of the values
in the given column.
PS: this was intended to one day become a general-purpose index for PMFs; making that
happen remains on the to-do list.
mnode[i] = a dimension row
mnode[i][j] = a value in a given dimension
mnode[i][j].margin_ptrs = a list of all of the rows in the data set with the given value.
mnode[i][j].margin_ptrs[k] = the kth item for the value.
*/
/** \cond doxy_ignore */
typedef struct {
double val;
bool *margin_ptrs, *fit_ptrs;
} mnode_t;
typedef void(*index_apply_f)(mnode_t * const * const, int, void*);
/** \endcond */
static int find_val(double findme, mnode_t *nodecol){
for (int i=0; nodecol[i].val <= findme || gsl_isnan(findme); i++)
if (nodecol[i].val == findme || (gsl_isnan(findme) && gsl_isnan(nodecol[i].val)))
return i;
return -1;
}
//returns -1 if the given row/col doesn't exist.
int index_add_node(mnode_t **mnodes, size_t dim, size_t row, double val, bool is_margin){
int index = find_val(val, mnodes[dim]);
if (index == -1) return -1;
if (is_margin) mnodes[dim][index].margin_ptrs[row] = true;
else mnodes[dim][index].fit_ptrs[row] = true;
return 0;
}
mnode_t **index_generate(apop_data const *in, apop_data const *in2){
size_t margin_ct = in->matrix->size2;
size_t margin_rows = in->matrix->size1;
size_t fit_rows = in2->matrix->size1;
mnode_t **mnodes = malloc(sizeof(mnode_t*)*(margin_ct+1));
//allocate every node
for(size_t i=0; i < margin_ct; i ++){
gsl_vector *vals = apop_vector_unique_elements(Apop_cv(in, i));
mnodes[i] = malloc(sizeof(mnode_t)*(vals->size+1));
for(size_t j=0; j < vals->size; j ++)
mnodes[i][j] = (mnode_t) {.val = gsl_vector_get(vals, j),
.margin_ptrs = calloc(margin_rows, sizeof(bool)),
.fit_ptrs = calloc(fit_rows, sizeof(bool))
};
mnodes[i][vals->size] = (mnode_t) {.val = GSL_POSINF}; //end-of-array sentinel
gsl_vector_free(vals);
}
mnodes[margin_ct] = NULL; //end-of-array sentinel
//put data from the matrix into the right pigeonhole
for(size_t i=0; i < margin_ct; i++){
for(size_t j=0; j < in->matrix->size1; j++)
Apop_stopif(index_add_node(mnodes, i, j, apop_data_get(in, j, i), true) == -1, return mnodes,
0, "I can't find a value, %g, that should've already been inserted.", apop_data_get(in, j, i));
for(size_t j=0; j < in2->matrix->size1; j++) //these values may not be present, in which case ignore them.
index_add_node(mnodes, i, j, apop_data_get(in2, j, i), false);
}
return mnodes;
}
void index_free(mnode_t **in){
for (int i=0; in[i]; i++){
for (int j=0; !isinf(in[i][j].val); j++){
free(in[i][j].margin_ptrs);
free(in[i][j].fit_ptrs);
}
free(in[i]);
}
free(in);
}
/* The next two functions are a recursive iteration over all combinations of values
for a given index (which may be the whole thing or a margin). index_foreach does the
initialization of some state variables; value_loop does the odometer-like recursion. At
each step, value_loop will either increment the current dimension's index, or if the
current index is at its limit, will loop back to zero on this index and then set the
next dimension as active. */
static void value_loop(mnode_t *icon[], int *indices, mnode_t **values,
int this_dim, index_apply_f f, int *ctr, void *args){
while (!isinf(icon[this_dim][indices[this_dim]].val)){
values[this_dim] = &icon[this_dim][indices[this_dim]];
if (icon[this_dim+1]){
indices[this_dim+1]=0;
value_loop(icon, indices, values, this_dim+1, f, ctr, args);
} else{
f(values, *ctr, args);
(*ctr)++;
}
indices[this_dim]++;
}
}
/* Inputs: the index to be iterated over, the function to apply to each combination,
and a void* with other sundry arguments to the function. I'll apply the function
to an mnode_t* with a single mnode_t for each dimension. */
void index_foreach(mnode_t *index[], index_apply_f f, void *args){
int j, ctr=0;
for (j=0; index[j]; ) j++;
mnode_t *values[j+1];
for (j=0; index[j]; j++)
values[j] = &index[j][0];
values[j] = malloc(sizeof(mnode_t));
values[j]->val = GSL_POSINF;
int indices[j];
memset(indices, 0, sizeof(int)*j);
value_loop(index, indices, values, 0, f, &ctr, args);
free(values[j]);
}
/* Check whether an observation falls into all of the given margins.
This is for a contrast. We've already calculated the in/out vector for each value on
each margin, and now need to && each dimension into one vector.
\param index Is actually a partial index: for each dimension, there should be only one value. Useful for the center of an index_foreach loop.
\param d Should already be allocated to the right size, may be filled with garbage.
\return d will be zero or one to indicate which rows of the indexed data set meet all criteria. */
void index_get_element_list(mnode_t *const * index, bool *d, size_t len, bool is_margin){
memcpy(d, is_margin ? index[0]->margin_ptrs: index[0]->fit_ptrs, len * sizeof(bool));
for(size_t i=1; !isinf(index[i]->val); i++){
bool *ptr_list = is_margin ? index[i]->margin_ptrs: index[i]->fit_ptrs;
for(size_t j=0; j < len; j++)
d[j] &= ptr_list[j];
}
}
////End index.c
/** \cond doxy_ignore */
typedef struct {
const apop_data *indata;
apop_data *fit;
size_t **elmtlist;
size_t *elmtlist_sizes;
gsl_vector *indata_values;
mnode_t **index;
size_t ct, al;
double *maxdev;
} rake_t;
/** \endcond */
static void rakeinfo_grow(rake_t *r){
r->al = (r->al+1)*2;
r->elmtlist = realloc(r->elmtlist , sizeof(size_t*) * r->al);
r->elmtlist_sizes = realloc(r->elmtlist_sizes, sizeof(size_t) * r->al);
r->indata_values = apop_vector_realloc(r->indata_values, r->al);
}
static void rakeinfo_free(rake_t r){
#define free_and_clear(in) free(in), (in) = NULL
for (int i=0; i < r.ct; i++)
free_and_clear(r.elmtlist[i]);
free_and_clear(r.index); //these are just pointers to the main index.
free_and_clear(r.elmtlist_sizes);
free_and_clear(r.elmtlist);
gsl_vector_free(r.indata_values);
r.indata_values= NULL;
}
static void scaling(size_t const *elmts, size_t const n, gsl_vector *weights, double const in_sum, double *maxdev){
double fit_sum = 0, out_sum=0;
for(size_t i=0; i < n; i ++)
fit_sum += weights->data[elmts[i]];
if (!fit_sum) return; //can happen if init table is very different from margins.
for(size_t i=0; i < n; i ++){
out_sum +=
weights->data[elmts[i]] *= in_sum/fit_sum;
}
*maxdev = GSL_MAX(fabs(fit_sum - out_sum), *maxdev);
}
/* Given one set of values from one margin, do the actual scaling.
On the first pass, this function takes notes on each margin's element list and total
in the original data. Later passes just read the notes and call the scaling() function above.
*/
static void one_set_of_values(mnode_t *const * const margincons, int ctr, void *in){
rake_t *r = in;
size_t marginsize = r->indata->matrix->size1;
size_t fitsize = r->fit->matrix->size1;
bool melmts[marginsize];
bool fitelmts[fitsize];
bool first_pass = false;
double in_sum;
if (ctr < r->ct)
in_sum = gsl_vector_get(r->indata_values, ctr);
else {
r->ct++;
if (ctr >= r->al || r->al==0) rakeinfo_grow(r);
index_get_element_list(margincons, melmts, marginsize, true);
index_get_element_list(margincons, fitelmts, fitsize, false);
in_sum = 0;
int n=0, al=0;
r->elmtlist[ctr] = NULL;
//use margin index to get total for this margin.
for(int m=0; m < marginsize; m++)
if (melmts[m]) in_sum += r->indata->weights->data[m];
//use fit index to get elements involved in this margin
for(int m=0; m < fitsize; m++)
if (fitelmts[m]){
if (n >= al) {
al = (al+1)*2;
r->elmtlist[ctr] = realloc(r->elmtlist[ctr], al*sizeof(size_t));
}
r->elmtlist[ctr][n++] = m;
}
r->elmtlist_sizes[ctr] = n;
r->indata_values->data[ctr] = in_sum;
first_pass = true;
}
if (!r->elmtlist_sizes[ctr]) return;
if (!first_pass && !in_sum) return;
scaling(r->elmtlist[ctr], r->elmtlist_sizes[ctr], r->fit->weights, in_sum, r->maxdev);
}
/* For each configuration margin, for each combination for that margin,
call the above one_set_of_values() function. */
static void main_loop(int config_ct, rake_t *rakeinfo, int k){
for (size_t i=0; i < config_ct; i ++)
if (k==1) index_foreach(rakeinfo[i].index, one_set_of_values, rakeinfo+i);
else
for(int m=0; m < rakeinfo[i].ct; m++)
one_set_of_values(NULL, m, rakeinfo+i);
}
/* Following the FORTRAN, 1 contrast ==> icon. Here, icon will be a
subset of the main index including only the columns pertaining to a given margin. */
void generate_margin_index(mnode_t **icon, const apop_data *margin, mnode_t **mainindex, size_t col){
gsl_vector *iconv = Apop_cv(margin, col);
int ct = 0;
for (int j=0; mainindex[j]; j++)
if (gsl_vector_get(iconv, j))
icon[ct++] = mainindex[j];
icon[ct] = NULL;
}
void cleanup(mnode_t **index, rake_t rakeinfos[], int contrast_ct){
for(size_t i=0; i < contrast_ct; i++)
rakeinfo_free(rakeinfos[i]);
index_free(index);
}
/*
\param config An nvar x ncon matrix; see below. [as in the original, but not squashed into 1-D.]
\param indata the actual table. I use a PMF format.
\param fit the starting table. Same size as table.
\param maxdev maximum deviation; stop when this is met.
\param maxit maximum iterations; stop when this is met.
Re: the contrast array: Each _column_ is a contrast. Put a one in each col
involved in the contrast. E.g., for (1,2), (2,3):
1 0<br>
1 1<br>
0 1
*/
static void c_loglin(const apop_data *config, const apop_data *indata,
apop_data *fit, double tolerance, int maxit) {
mnode_t ** index = index_generate(indata, fit);
/* Make a preliminary adjustment to obtain the fit to an empty configuration list */
//fit->weights is either all 1 (for synthetic data) or the initial counts from the db.
double x = apop_sum(indata->weights);
double y = apop_sum(fit->weights);
gsl_vector_scale(fit->weights, x/y);
int contrast_ct =config && config->matrix ? config->matrix->size2 : 0;
rake_t rakeinfos[contrast_ct];
double maxdev=0;
for(size_t i=0; i < contrast_ct; i ++){
gsl_vector *iconv = Apop_cv(config, i);
rakeinfos[i] = (rake_t) {
.indata = indata,
.fit = fit,
.maxdev = &maxdev, //one value shared across dimensions
.index = malloc(sizeof(mnode_t) *(apop_sum(iconv)+1)),
//others are NULL, to be filled in as we go.
};
generate_margin_index(rakeinfos[i].index, config, index, i);
}
int k;
gsl_vector *previous = apop_vector_copy(fit->weights);
for (k = 1; k <= maxit; ++k) {
maxdev = 0;
main_loop(contrast_ct, rakeinfos, k);
Apop_notify(3, "Data set after round %i of raking.\n", k);
if (apop_opts.verbose >=3) apop_data_print(fit, .output_pipe=apop_opts.log_file);
if (maxdev < tolerance) break;// Normal termination
gsl_vector_memcpy(previous, fit->weights);
}
cleanup(index, rakeinfos,contrast_ct);
gsl_vector_free(previous);
Apop_stopif(k == maxit, fit->error='c', 0, "Maximum number of iterations reached.");
}
char *pipe_parse = "[ \n\t]*([^| \n\t]+)[ \n\t]*([|]|$)";
apop_data **generate_list_of_contrasts(char *const *contras_in, int contrast_ct){
apop_data** out = malloc(sizeof(apop_data*)* contrast_ct);
for (int i=0; i< contrast_ct; i++) {
apop_regex(contras_in[i], pipe_parse, out+i);
apop_text_alloc(out[i], *out[i]->textsize, 1);
}
return out;
}
apop_data *get_var_list(char const *margin_table, char const *count_col, char const *init_count_col,
char * const *varlist, int *var_ct){
apop_data *all_vars_d=NULL;
if (!varlist){
Apop_stopif(apop_opts.db_engine=='m', apop_return_data_error(y),
0, "I need a list of the full set of variable "
"names sent as .varlist= (char *[]){\"var1\", \"var2\",...}");
//use SQLite's table_info, then shift the second col to the first.
all_vars_d = apop_query_to_text("PRAGMA table_info(%s)", margin_table);
int ctr=0;
for (int i=0; i< all_vars_d->textsize[0]; i++)
if (all_vars_d->text[i][1] && (count_col ? strcmp(all_vars_d->text[i][1], count_col) : 1)
&& (init_count_col ? strcmp(all_vars_d->text[i][1], init_count_col): 1))
apop_text_set(all_vars_d, 0, ctr++, all_vars_d->text[i][1]);
apop_text_alloc(all_vars_d, 1, ctr);
*var_ct = ctr;
} else {
all_vars_d = apop_text_alloc(NULL, 1, *var_ct);
for (int i=0; i<*var_ct; i++) apop_text_set(all_vars_d, 0, i, varlist[i]);
}
Apop_stopif(!all_vars_d, apop_return_data_error(y), 0, "Trouble getting/parsing the list of variables.");
return all_vars_d;
}
static int get_var_index(char *const *all_vars, int len, char *findme){
for (int i=0; i< len; i++)
if (all_vars[i] && !strcmp(all_vars[i], findme))
return i;
Apop_notify(0, "I couldn't find %s in the full list of variables. Returning -1.", findme);
return -1;
}
void nan_to_zero(double *in){ if (gsl_isnan(*in)) *in=0;}
double nudge_zeros(apop_data *in, void *nudge){
if (!in->weights->data[0])
in->weights->data[0] = *(double*)nudge;
return 0;
}
int find_in_allvars(char const *in, apop_data const *allvars){
for (int i=0; i< allvars->textsize[1]; i++)
if (!strcmp(allvars->text[0][i], in)) return i;
Apop_stopif(1, return -1, 0, "Variable in your contrast list [%s] not in "
"your list of all variables.", in);
}
/* If you are fully synthesizing or nudging zero cells, then calculate the set of
cells that could be nonzero (given the margin information).
* If using only an init_table, then that's your list of nonzero cells right there.
* If you have an init_table but want to nudge the zero cells up a bit, then you need
this, and have to merge with the init_table
* If you have no init_table, then this list is all the cells.
*/
static int setup_nonzero_contrast(char const *margin_table,
apop_data const * allvars, int run_number,
char const *list_of_fields, apop_data *const* contras, int contrast_ct,
double nudge, char const * structural_zeros, bool have_init_table){
char *q;
bool used[allvars->textsize[1]];
memset(used, 0, sizeof(bool)*allvars->textsize[1]);
Asprintf(&q, "create table apop_zerocontrasts_%i as select %s, %g from\n",
run_number, apop_text_paste(allvars, .between=","), nudge);
for (int i=0; i < contrast_ct; i++){
xprintf(&q, "%s%s (select distinct %s from %s) \n",
q, i>0 ? "natural join" : "",
apop_text_paste(contras[i], .between=","), margin_table);
for (int j=0; j<*contras[i]->textsize; j++){
int val=find_in_allvars(*contras[i]->text[j], allvars);
Apop_stopif(val==-1, return -1, 0, "Error setting up contrasts");
used[val]=true;
}
}
//make sure all variables are joined in.
for (int i=0; i < allvars->textsize[1]; i++)
if (!used[i]) xprintf(&q, "%s%s (select distinct %s from %s)\n",
q, (!contrast_ct && i==0) ? "" : "natural join",
allvars->text[0][i], margin_table);
if (structural_zeros) xprintf(&q, "%s where not (%s)\n", q, structural_zeros);
if (have_init_table){
//Keep out margins with values for now; join them in below.
xprintf(&q, "%s except\nselect %s, %g from %s", q, list_of_fields, nudge, margin_table);
}
Apop_stopif(apop_query("%s", q), return 1, 0, "query failed.");
free(q);
return 0;
}
/** Fit a log-linear model via iterative proportional fitting, aka raking.
Raking has many uses. The <a href="http://modelingwithdata.org/arch/00000138.htm">Modeling with Data blog</a> presents a series of discussions
of uses of raking, including some worked examples.
Or see Wikipedia for an overview of Log linear models, aka
<a href="http://en.wikipedia.org/wiki/Poisson_regression">Poisson regressions</a>.
One approach toward log-linear modeling is a regression form; let there be four
categories, A, B, C, and D, from which we can produce a model positing, for example,
that cell count is a function of a form like \f$g_1(A) + g_2(BC) + g_3(CD)\f$. In this case, we would
assign a separate coefficient to every possible value of A, every possible value of
(B, C), and every value of (C, D). Raking is the technique that searches for that large
set of parameters.
The combinations of categories that are considered to be relevant are called \em
contrasts, after ANOVA terminology of the 1940s.
The other constraint on the search are structural zeros, which are values that you know
can never be non-zero, due to field-specific facts about the variables. For example, U.S.
Social Security payments are available only to those age 65 or older, so "age <65 and
gets_soc_security=1" is a structural zero.
Because there is one parameter for every combination, there may be millions of parameters
to estimate, so the search to find the most likely value requires some attention to
technique. For over half a century, the consensus method for searching has been raking, which
iteratively draws each category closer to the mean in a somewhat simple manner (this was
first developed circa 1940 and had to be feasible by hand), but which is guaranteed to
eventually arrive at the maximum likelihood estimate for all cells.
Another complication is that the table is invariably sparse. One can easily construct
tables with millions of cells, but the corresponding data set may have only a few
thousand observations.
This function uses the database to resolve the sparseness problem. It constructs a query
requesting all combinations of categories the could possibly be non-zero after raking,
given all of the above constraints. Then, raking is done using only that subset.
This means that the work is done on a number of cells proportional to the number of data
points, not to the full cross of all categories. Set <tt>apop_opts.verbose</tt> to 2 or greater to show the query on \c stderr.
\li One could use raking to generate `fully synthetic' data: start with observation-level data in a margin table. Begin the raking with a starting data set of all-ones. Then rake until the all-ones set transforms into something that conforms to the margins and (if any) structural zeros. You now have a data set which matches the marginal totals but does not use any other information from the observation-level data. If you do not specify an <tt>.init_table</tt>, then an all-ones default table will be used.
\param margin_table The name of the table in the database to use for calculating
the margins. The table should have one observation per row. (No default)
\param var_list The full list of variables to search. A list of strings, e.g., <tt>(char *[]){"var1", "var2", ..., "var15"}</tt>
\param var_ct The count of the full list of variables to search.
\param contrasts The contrasts describing your model. Like the \c var_list input, a list of strings like <tt>(char *[]){"var1", "var7", "var13"}</tt>
contrast is a pipe-delimited list of variable names. (No default)
\param contrast_ct The number of contrasts in the list of contrasts. (No default)
\param structural_zeros a SQL clause indicating combinations that can never take a nonzero
value. This will go into a \c where clause, so anything you could put there is OK, e.g.
"age <65 and gets_soc_security=1 or age <15 and married=1".
Your margin data is not checked for structural zeros. (default: no structural zeros)
\param max_iterations Number of rounds of raking at which the algorithm halts. (default: 1000)
\param tolerance I calculate the change for each cell from round to round;
if the largest cell change is smaller than this, I stop. (default: 1e-5)
\param count_col This column gives the count of how many observations are represented
by each row. If \c NULL, ech row represents one person. (default: \c NULL)
\param init_table The default is to initially set all table elements to one and then
rake from there. This is effectively the `fully synthetic' approach, which uses only
the information in the margins and derives the data set closest to the all-ones data
set that is consistent with the margins. Care is taken to maintan sparsity in this
case. If you specify an \c init_table, then I will get the initial cell counts from
it. (default: the fully-synthetic approach, using a starting point of an all-ones grid.)
\param init_count_col The column in \c init_table with the cell counts.
\param nudge There is a common hack of adding a small value to every zero entry, because
a zero entry will always scale to zero, while a small value could eventually scale
to anything. Recall that this function works on sparse sets, so I first filter out
those cells that could possibly have a nonzero value given the observations, then I
add <tt>nudge</tt> to any zero cells within that subset.
\return An \ref apop_data set where every row is a single combination of variable values
and the \c weights vector gives the most likely value for each cell.
\exception out->error='i' Input was somehow wrong.
\exception out->error='c' Raking did not converge, reached max. iteration count.
\li Set <tt>apop_opts.verbose=3</tt> to see the intermediate tables at the end of each round of raking.
\li If you want all cells to have nonzero value, then you can do that via pre-processing:
\code
apop_query("update data_table set count_col = 1e-3 where count_col = 0");
\endcode
\li This function is thread-safe. To make this happen, temp database tables are
named using a number built with \c omp_get_thread_num.
\li This function uses the \ref designated syntax for inputs.
*/
APOP_VAR_HEAD apop_data * apop_rake(char const *margin_table, char * const*var_list, int var_ct, char * const *contrasts, int contrast_ct, char const *structural_zeros, int max_iterations, double tolerance, char const *count_col, char const *init_table, char const *init_count_col, double nudge){
char const * apop_varad_var(margin_table, NULL);
Apop_stopif(!margin_table, apop_return_data_error(i), 0,
"I need the name of a table in the database that will be the data source.");
Apop_stopif(!apop_table_exists(margin_table), apop_return_data_error(i),
0, "your margin_table, %s, doesn't exist in the database.", margin_table);
char *const* apop_varad_var(var_list, NULL);
int apop_varad_var(var_ct, 0);
char *const * apop_varad_var(contrasts, NULL); //default to all vars?
int apop_varad_var(contrast_ct, 0);
Apop_stopif(contrasts&&!contrast_ct, apop_return_data_error(i),
0, "you gave me a list of contrasts but not the count. "
"This is C--I can't count them myself. Please provide the count and re-run.");
char const * apop_varad_var(structural_zeros, NULL);
char const * apop_varad_var(count_col, NULL);
int apop_varad_var(max_iterations, 1e3);
double apop_varad_var(tolerance, 1e-5);
char const * apop_varad_var(init_count_col, NULL);
char const * apop_varad_var(init_table, NULL);
Apop_stopif(init_table && !apop_table_exists(init_table), apop_return_data_error(i),
0, "your init_table, %s, doesn't exist in the database.", init_table);
if (init_count_col && !init_table) init_table = margin_table;
double apop_varad_var(nudge, 0);
APOP_VAR_ENDHEAD
#ifdef OpenMP
int run_number = omp_get_thread_num();
#else
int run_number = 0;
#endif
apop_data **contras = generate_list_of_contrasts(contrasts, contrast_ct);
apop_data *all_vars_d = get_var_list(margin_table, count_col, init_count_col, var_list, &var_ct);
Apop_stopif(all_vars_d->error, return all_vars_d, 0, "Trouble setting up the list of variables.");
int tt = all_vars_d->textsize[0]; all_vars_d->textsize[0] = 1; //mask all but the first row
char *list_of_fields = apop_text_paste(all_vars_d, .between=", ");
if (nudge || !init_table){
char *tab;
Asprintf(&tab, "apop_zerocontrasts_%i", run_number);
apop_table_exists(tab, 'd');
free(tab);
Apop_stopif(setup_nonzero_contrast(margin_table, all_vars_d,
run_number, list_of_fields, contras, contrast_ct, (nudge ? nudge : 1), structural_zeros, init_table),
apop_return_data_error(q),
0, "Couldn't calculate the set of nonzero cells.");
}
char *initt=NULL; //handle structural zeros via subquery
//note that margin data may have invalid rows.
if (init_table){
if (structural_zeros)
Asprintf(&initt, "(select * from %s where not (%s))", init_table, structural_zeros);
else Asprintf(&initt, "%s", init_table);
}
char *init_q, *pre_init_q = NULL;
if (init_table){
char *countstr;
if (init_count_col) Asprintf(&countstr, "sum(%s) as %s", init_count_col, init_count_col);
else Asprintf(&countstr, "count(%s)", **all_vars_d->text);
Asprintf(&init_q, "select %s, %s from %s group by %s",
list_of_fields, countstr, initt, list_of_fields);
free(countstr);
}
char *marginq, *cc;
if (count_col) Asprintf(&cc, "sum(%s)", count_col);
else cc = strdup("count(*)");
Asprintf(&marginq, "select %s, %s from %s\ngroup by %s",
list_of_fields, cc, margin_table, list_of_fields);
free(cc); free(initt);
char *format=strdup("w");
for (int i =0 ; i< var_ct; i++)
xprintf(&format, "m%s", format);
apop_data *d, *contrast_grid;
d = apop_query_to_mixed_data(format, "%s", marginq);
Apop_stopif(!d || d->error, apop_return_data_error(q),
0, "This query:\n%s\ngenerated a blank or broken table.", marginq);
free(marginq);
if (pre_init_q) Apop_stopif(apop_query("%s", pre_init_q), apop_return_data_error(q),
0, "This query:\n%s\ngenerated a blank or broken table.", pre_init_q);
apop_data *fit;
if (init_table) {
fit = (nudge)
? apop_query_to_mixed_data(format, "%s\nunion\nselect * from apop_zerocontrasts_%i ", init_q, run_number)
: apop_query_to_mixed_data(format, "%s", init_q);
Apop_stopif(!fit, apop_return_data_error(q), 0, "Query returned a blank table.");
Apop_stopif(fit->error, apop_return_data_error(q), 0, "Query error.");
} else {
fit = apop_query_to_mixed_data(format, "select * from apop_zerocontrasts_%i ", run_number);
gsl_vector_set_all(fit->weights, nudge ? nudge : 1);
}
free(format);
apop_vector_apply(fit->weights, nan_to_zero);
if (nudge) apop_map(fit, .fn_rp=nudge_zeros, .param=&nudge);
contrast_grid = apop_data_calloc(var_ct, contrast_ct);
for (int i=0; i< contrast_ct; i++)
for (int j=0; j< contras[i]->textsize[0]; j++)
apop_data_set(contrast_grid, get_var_index(*all_vars_d->text, all_vars_d->textsize[1], contras[i]->text[j][0]), i, 1);
if (!init_table || nudge)
for (int i=0; i< contrast_ct; i++) apop_data_free(contras[i]);
c_loglin(contrast_grid, d, fit, tolerance, max_iterations);
apop_data_free(d);
all_vars_d->textsize[0] = tt;
apop_data_free(all_vars_d);
if (!init_table || nudge) apop_query("drop table apop_zerocontrasts_%i", run_number);
apop_data_free(contrast_grid);
return fit;
}