-
Notifications
You must be signed in to change notification settings - Fork 33
/
run_pretrained_opencomplex.py
382 lines (324 loc) · 12.2 KB
/
run_pretrained_opencomplex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2022 BAAI
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from copy import deepcopy
from datetime import date
import logging
import math
import numpy as np
from functools import partial
import multiprocessing as mp
import os
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)
import pickle
from pytorch_lightning.utilities.deepspeed import (
convert_zero_checkpoint_to_fp32_state_dict
)
import random
import sys
import time
import torch
import re
torch_versions = torch.__version__.split(".")
torch_major_version = int(torch_versions[0])
torch_minor_version = int(torch_versions[1])
if(
torch_major_version > 1 or
(torch_major_version == 1 and torch_minor_version >= 12)
):
# Gives a large speedup on Ampere-class GPUs
pass
# torch.set_float32_matmul_precision("high")
torch.set_grad_enabled(False)
from opencomplex.data import feature_pipeline, data_pipeline
from opencomplex.config.config import model_config
from opencomplex.model.model import OpenComplex
from opencomplex.np import residue_constants, protein, nucleotide_constants, rna, complex
from opencomplex.utils.complex_utils import ComplexType
import opencomplex.np.relax.relax as relax
from opencomplex.utils.tensor_utils import (
tensor_tree_map,
)
import tqdm
def get_target_list(args):
target_list = [target for target in os.listdir(args.features_dir)]
if args.target_list_file is not None:
if os.path.exists(args.target_list_file):
with open(args.target_list_file, "r", encoding="utf-8") as f:
specified_target_list = f.read().splitlines()
target_list = [target for target in specified_target_list if target in target_list]
else:
logger.warning("target list file %s provided but not exist.", args.target_list_file)
return sorted(target_list)
def init_worker(args, device_q):
global model, data_processor, feature_processor, model_device, config
if device_q is None:
model_device = "cpu"
else:
model_device = f"cuda:{device_q.get()}"
torch.cuda.set_device(model_device)
config = model_config(args.config_preset)
model = OpenComplex(config=config, complex_type=ComplexType[args.complex_type])
model = model.eval()
data_processor = data_pipeline.DataPipeline(
template_featurizer=None
)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
path = args.param_path
checkpoint_basename = get_model_basename(path)
if os.path.isdir(path):
# A DeepSpeed checkpoint
ckpt_path = os.path.join(
args.output_dir,
checkpoint_basename + ".pt",
)
if not os.path.isfile(ckpt_path):
convert_zero_checkpoint_to_fp32_state_dict(
path,
ckpt_path,
)
d = torch.load(ckpt_path)
model.load_state_dict(d["ema"]["params"])
else:
ckpt_path = path
d = torch.load(ckpt_path)
if "ema" in d:
# The public weights have had this done to them already
d = d["ema"]["params"]
model.load_state_dict(d)
logger.info(
f"Loaded opencomplex parameters at {path}..."
)
model = model.to(model_device)
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(2**32)
np.random.seed(random_seed)
torch.manual_seed(random_seed + 1)
def prep_output(out, batch, feature_dict, feature_processor, args):
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
if args.complex_type != 'RNA':
plddt_b_factors = np.repeat(
plddt[..., None], residue_constants.atom_type_num, axis=-1
)
else:
plddt_b_factors = np.repeat(
plddt[..., None], nucleotide_constants.atom_type_num, axis=-1
)
if(args.subtract_plddt):
plddt_b_factors = 100 - plddt_b_factors
# Prep protein metadata
template_domain_names = []
template_chain_index = None
if(feature_processor.config.common.use_templates and "template_domain_names" in feature_dict):
template_domain_names = [
t.decode("utf-8") for t in feature_dict["template_domain_names"]
]
# This works because templates are not shuffled during inference
template_domain_names = template_domain_names[
:feature_processor.config.predict.max_templates
]
if("template_chain_index" in feature_dict):
template_chain_index = feature_dict["template_chain_index"]
template_chain_index = template_chain_index[
:feature_processor.config.predict.max_templates
]
no_recycling = feature_processor.config.common.max_recycling_iters
remark = ', '.join([
f"no_recycling={no_recycling}",
f"max_templates={feature_processor.config.predict.max_templates}",
f"config_preset={args.config_preset}",
])
if args.complex_type == 'protein':
unrelaxed_structure = protein.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors,
remark=remark,
parents=template_domain_names,
parents_chain_index=template_chain_index,
)
elif args.complex_type == "RNA":
unrelaxed_structure = rna.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors
)
else:
unrelaxed_structure = complex.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors
)
return unrelaxed_structure
def get_model_basename(model_path):
return os.path.splitext(
os.path.basename(
os.path.normpath(model_path)
)
)[0]
def main(target, args):
global model, data_processor, feature_processor, model_device
output_name = target
unrelaxed_output_path = os.path.join(
args.output_dir, f'{output_name}_unrelaxed.pdb'
)
if not args.overwrite and os.path.exists(unrelaxed_output_path):
return
feature_dict = data_processor.process_prepared_features(os.path.join(args.features_dir, target))
batch = feature_processor.process_features(
feature_dict, mode='predict',
)
batch = {
k:torch.as_tensor(v, device=model_device)
for k,v in batch.items()
}
with torch.no_grad():
# Temporarily disable templates if there aren't any in the batch
template_enabled = model.config.template.enabled
model.config.template.enabled = template_enabled and any([
"template_" in k for k in batch
])
out = model(batch)
model.config.template.enabled = template_enabled
batch = tensor_tree_map(
lambda x: np.array(x[..., -1].cpu()),
batch
)
for key in ['final_affine_tensor', 'sm', 'geometry_head', 'torsion_head']:
if key in out.keys():
del(out[key])
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
unrelaxed_structure = prep_output(
out,
batch,
feature_dict,
feature_processor,
args
)
if args.complex_type == 'protein':
pdb_generator = protein.to_pdb
elif args.complex_type == 'RNA':
pdb_generator = rna.to_pdb
else:
pdb_generator = complex.to_pdb
with open(unrelaxed_output_path, 'w') as fp:
fp.write(pdb_generator(unrelaxed_structure))
if not args.skip_relaxation:
amber_relaxer = relax.AmberRelaxation(
use_gpu=(model_device != "cpu"),
**config.relax,
)
# Relax the prediction.
visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", default="")
if "cuda" in model_device:
device_no = model_device.split(":")[-1]
os.environ["CUDA_VISIBLE_DEVICES"] = device_no
try:
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_structure)
os.environ["CUDA_VISIBLE_DEVICES"] = visible_devices
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
args.output_dir, f'{output_name}_relaxed.pdb'
)
with open(relaxed_output_path, 'w') as fp:
fp.write(relaxed_pdb_str)
except ValueError as e:
logger.warn(f"Cannot relax {target}")
print(e)
if args.save_outputs:
output_dict_path = os.path.join(
args.output_dir, f'{output_name}_output_dict.pkl'
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(f"Model output written to {output_dict_path}...")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--features_dir", type=str,
help="Directory containing processed feature files in pkl format. Named as `<target_name>/features.pkl`"
)
parser.add_argument(
"--target_list_file", type=str,
help="Path to a txt file with each line is a name of target to infer."
)
parser.add_argument(
"--output_dir", type=str, default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
)
parser.add_argument(
"--use_gpu", action="store_true", default=False,
help="""Whether run model on GPU"""
)
parser.add_argument(
"--config_preset", type=str,
help="""Name of a model config preset defined in opencomplex/config.py"""
)
parser.add_argument(
"--param_path", type=str,
help="Path to opencomplex checkpoint."
)
parser.add_argument(
"--save_outputs", action="store_true", default=False,
help="Whether to save all model outputs, including embeddings, etc."
)
parser.add_argument(
"--data_random_seed", type=int, default=None
)
parser.add_argument(
"--skip_relaxation", action="store_true", default=False,
)
parser.add_argument(
"--subtract_plddt", action="store_true", default=False,
help=""""Whether to output (100 - pLDDT) in the B-factor column instead
of the pLDDT itself"""
)
parser.add_argument(
"--num_workers", type=int, default=1,
help="""Number of workers to run in parallel. If use_gpu is True, num_workers should be less than or equal to
total number of available GPUs."""
)
parser.add_argument(
"--overwrite", default=False, action="store_true",
help="Whether overwrite existing inference result."
)
parser.add_argument(
"--complex_type", type=str, default="protein", choices=["protein", "RNA", "mix"],
)
args = parser.parse_args()
if(not args.use_gpu and torch.cuda.is_available()):
logging.warning(
"""The model is being run on CPU. Consider specifying
--model_device for better performance"""
)
if args.use_gpu and args.num_workers > torch.cuda.device_count():
raise ValueError("Num workers should not be greater than device count if using gpu.")
mp.set_start_method("spawn")
target_list = get_target_list(args)
os.makedirs(args.output_dir, exist_ok=True)
device_q = None
if args.use_gpu:
device_q = mp.Queue()
for i in range(args.num_workers):
device_q.put(i)
worker = partial(main, args=args)
with mp.Pool(args.num_workers, initializer=init_worker, initargs=(args, device_q)) as p:
list(tqdm.tqdm(p.imap(worker, target_list), total=len(target_list)))
p.join()