Skip to content

Latest commit

Β 

History

History
80 lines (60 loc) Β· 3.09 KB

README.md

File metadata and controls

80 lines (60 loc) Β· 3.09 KB

mandrake

Build and run tests Anaconda package Documentation Status

Fast visualisation of the population structure of pathogens using Stochastic Cluster Embedding.

Paper:

Lees JA, Tonkin-Hill G, Yang Z, Corander J. Mandrake: visualizing microbial population structure by embedding millions of genomes into a low-dimensional representation. Philosophical Transactions of The Royal Society B. 2022;377: 20210237.

https://doi.org/10.1098/rstb.2021.0237

Documentation available at: https://mandrake.readthedocs.io/en/latest/

Installation (briefly)

See https://mandrake.readthedocs.io/en/latest/installation.html for more details.

  1. Install miniconda.
  2. Run conda create -n mandrake_env mandrake to install into a clean environment.
  3. Run conda activate mandrake_env to use the environment.

Refer to the conda-forge documentation if you want to install a CUDA (GPU) enabled version.

Semi-manual

You will need some dependencies, which you can install through conda:

conda create -n mandrake_env python
conda env update -n mandrake_env --file environment.yml
conda activate mandrake_env

You can then clone this repository, and run:

python setup.py install

GPU acceleration

You will need the CUDA toolkit installed.

If you have the ability to compile CUDA (e.g. nvcc) you should see a message:

CUDA found, compiling both GPU and CPU code

otherwise only the CPU version will be compiled:

CUDA not found, compiling CPU code only

Usage

After installing, an example command would look like this:

mandrake --sketches sketchlib.h5 --kNN 500 --cpus 4 --maxIter 1000000

This would use a file sketchlib.h5 created by pp-sketchlib to calculate accessory distances using 500 nearest neighbours.

Output can be found in numerous files prefixed mandrake.embedding*.

Other useful arguments include:

  • --alignment use a fasta alignment to calculate distances
  • --accessory use a presence/absence file (Rtab or similar) to calculate distances
  • --distances use a .npz file from a previous run and skip straight to the embedding step
  • --labels give labels to colour the output by
  • --perplexity change the perplexity of the preprocessing (similar to t-SNE)
  • --animate produce a video of the optimisation
  • --use-gpu use a GPU for the run. Make sure to increase --n-workers.

See the documentation for more details.