-
Notifications
You must be signed in to change notification settings - Fork 10
/
train.py
287 lines (230 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import os
import sys
import random
import numpy as np
from tqdm import tqdm
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
import torch.utils.data.distributed
import utils.utils as utils
from utils.losses import compute_loss
def train(model, args, device):
if device is None:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
should_write = ((not args.distributed) or args.rank == 0)
# dataloader
if args.dataset_name == 'scannet':
from data.dataloader_scannet import ScannetLoader
train_loader = ScannetLoader(args, 'train').data
test_loader = ScannetLoader(args, 'test').data
else:
raise Exception
# define losses
loss_fn = compute_loss(args)
# optimizer
m = model.module if args.multigpu else model
params = [{"params": m.get_1x_lr_params(), "lr": args.lr / 10},
{"params": m.get_10x_lr_params(), "lr": args.lr}]
optimizer = optim.AdamW(params, weight_decay=args.weight_decay, lr=args.lr)
# learning rate scheduler
scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer,
max_lr=args.lr,
epochs=args.n_epochs,
steps_per_epoch=len(train_loader))
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
scaler = torch.cuda.amp.GradScaler()
# start training
total_iter = 0
model.train()
for epoch in range(args.n_epochs):
if args.rank == 0:
t_loader = tqdm(train_loader, desc=f"Epoch: {epoch + 1}/{args.n_epochs}. Loop: Train",
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', total=len(train_loader))
else:
t_loader = train_loader
for data_dict in t_loader:
optimizer.zero_grad()
total_iter += args.batch_size_orig
# data to device
img = data_dict['img'].to(device) # (B, 3, H, W)
gt_dmap = data_dict['depth_gt'].to(device) # (B, 1, H, W)
pred_norm = data_dict['pred_norm'].to(device) # (B, 3, H, W)
pred_kappa = data_dict['pred_kappa'].to(device) # (B, 1, H, W)
pos = data_dict['pos'].to(device) # (B, 2, H, W)
input_dict = {
'img': img,
'pred_norm': pred_norm,
'pred_kappa': pred_kappa,
'pos': pos,
}
# gt dmap mask
gt_dmap[gt_dmap > args.max_depth] = 0.0
gt_dmap_mask = gt_dmap > args.min_depth
# forward pass
pred_list = model(input_dict, 'train')
# compute loss
loss = loss_fn(pred_list, gt_dmap, gt_dmap_mask)
# display loss
loss_ = float(loss.data.cpu().numpy())
if args.rank == 0:
t_loader.set_description(f"Epoch: {epoch + 1}/{args.n_epochs}. Loop: Train. Loss: {'%.5f' % loss_}")
t_loader.refresh()
# back-propagate
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
# lr scheduler
scheduler.step()
# visualization and validation
if should_write:
utils.visualize(args, input_dict, gt_dmap, gt_dmap_mask, pred_list, total_iter)
model.eval()
metrics = validate(model, args, test_loader, device)
utils.log_depth_errors(args.eval_acc_txt, metrics, 'total_iter: {}'.format(total_iter))
target_path = args.exp_model_dir + '/checkpoint_iter_%010d.pt' % total_iter
print(target_path)
torch.save({"model": model.state_dict(),
"iter": total_iter}, target_path)
model.train()
return model
def validate(model, args, test_loader, device='cpu'):
with torch.no_grad():
metrics = utils.RunningAverageDict()
for data_dict in tqdm(test_loader, desc=f"Loop: Validation",
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', total=len(test_loader)):
img = data_dict['img'].to(device) # (B, 3, H, W)
gt_dmap = data_dict['depth_gt'].to(device) # (B, 1, H, W)
pred_norm = data_dict['pred_norm'].to(device) # (B, 3, H, W)
pred_kappa = data_dict['pred_kappa'].to(device) # (B, 1, H, W)
pos = data_dict['pos'].to(device) # (B, 2, H, W)
input_dict = {
'img': img,
'pred_norm': pred_norm,
'pred_kappa': pred_kappa,
'pos': pos,
'init_dmap': None
}
# forward pass
pred_list = model(input_dict, 'test')
gt_dmap = gt_dmap.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 1)
pred_dmap = pred_list[-1].detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 2)
gt_dmap = gt_dmap[0, :, :, 0]
pred_dmap = pred_dmap[0, :, :, 0]
valid_mask = np.logical_and(gt_dmap > args.min_depth, gt_dmap < args.max_depth)
# masking
pred_dmap[pred_dmap < args.min_depth] = args.min_depth
pred_dmap[pred_dmap > args.max_depth] = args.max_depth
pred_dmap[np.isinf(pred_dmap)] = args.max_depth
pred_dmap[np.isnan(pred_dmap)] = args.min_depth
metrics.update(utils.compute_depth_errors(gt_dmap[valid_mask], pred_dmap[valid_mask]))
return metrics.get_value()
# main worker
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
# define model
from models.IronDepth import IronDepth
model = IronDepth(args)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
args.multigpu = False
if args.distributed:
# Use DDP
args.multigpu = True
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.num_workers + ngpus_per_node - 1) / ngpus_per_node)
# print(args.gpu, args.rank, args.batch_size, args.workers)
torch.cuda.set_device(args.gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], output_device=args.gpu,
find_unused_parameters=True)
elif args.gpu is None:
# Use DP
args.multigpu = True
model = model.cuda()
model = torch.nn.DataParallel(model)
train(model, args, device=args.gpu)
if __name__ == '__main__':
# Arguments
parser = argparse.ArgumentParser(fromfile_prefix_chars='@', conflict_handler='resolve')
parser.convert_arg_line_to_args = utils.convert_arg_line_to_args
# directory
parser.add_argument('--exp_name', type=str, default='test')
parser.add_argument('--train_iter', type=int, default=3) # iteration (train)
parser.add_argument('--test_iter', type=int, default=10) # iteration (test)
parser.add_argument('--loss_gamma', type=float, default=0.8)
# training
parser.add_argument('--n_epochs', default=5, type=int, help='number of total epochs to run')
parser.add_argument('--batch_size', default=2, type=int, help='batch size')
parser.add_argument("--distributed", default=True, action="store_true", help="Use DDP if set")
parser.add_argument("--workers", default=4, type=int, help="Number of workers for data loading")
# optimizer setup
parser.add_argument('--weight_decay', default=0.01, type=float, help='weight decay')
parser.add_argument('--lr', default=0.000357, type=float, help='max learning rate')
parser.add_argument('--grad_clip', default=1.0, type=float)
# dataset
parser.add_argument("--dataset_name", type=str, default='scannet')
parser.add_argument('--input_height', type=int, default=480)
parser.add_argument('--input_width', type=int, default=640)
parser.add_argument('--crop_height', type=int, default=416)
parser.add_argument('--crop_width', type=int, default=544)
parser.add_argument('--min_depth', type=float, help='minimum depth in estimation', default=1e-3)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10)
# dataset - augmentation
parser.add_argument("--data_augmentation_color", default=True, action="store_true")
parser.add_argument("--data_augmentation_flip", default=True, action="store_true")
parser.add_argument("--data_augmentation_crop", default=True, action="store_true")
# read arguments from txt file
if sys.argv.__len__() == 2:
arg_filename_with_prefix = '@' + sys.argv[1]
args = parser.parse_args([arg_filename_with_prefix])
else:
args = parser.parse_args()
args.num_threads = args.workers
args.mode = 'train'
# create experiment directory
args.exp_dir = './exp/%s' % args.exp_name
args.exp_model_dir = args.exp_dir + '/models/' # store model checkpoints
args.exp_vis_dir = args.exp_dir + '/vis/' # store training images
args.exp_log_dir = args.exp_dir + '/log/' # store log
utils.make_dir_from_list([args.exp_dir, args.exp_model_dir, args.exp_vis_dir, args.exp_log_dir])
# set up logging
utils.save_args(args, args.exp_log_dir + '/params.txt') # save experiment parameters
args.eval_acc_txt = args.exp_log_dir + '/eval_acc.txt' # metric accuracy
# train
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
args.world_size = 1
args.rank = 0
nodes = ["127.0.0.1"]
if args.distributed:
mp.set_start_method('forkserver')
port = np.random.randint(15000, 15025)
args.dist_url = 'tcp://{}:{}'.format(nodes[0], port)
args.dist_backend = 'nccl'
args.gpu = None
ngpus_per_node = torch.cuda.device_count()
args.num_workers = args.workers
args.ngpus_per_node = ngpus_per_node
args.batch_size_orig = args.batch_size
if args.distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
if ngpus_per_node == 1:
args.gpu = 0
main_worker(args.gpu, ngpus_per_node, args)