forked from 2023-Winter-Bootcamp-TeamH/buyself-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
54 lines (44 loc) · 1.43 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os.path
import re
import torch
import json
import pandas as pd
# 탐지한 객체들의 좌표와 레이블을 반환해주는 함수
def object_cords(select_model):
return json.loads(select_model.pandas().xyxy[0].to_json(orient="records"))
# label에서 class 추출하는 함수
def get_class(select_model):
obj = pd.DataFrame(object_cords(select_model)).get("class")
return obj.to_json(orient="records")
# 텍스트 파일로 만드는 함수
def create_txt(select_model):
with open('class.txt', 'w') as f:
f.write('\t'.join(get_class(select_model)))
f = open("class.txt")
data = f.readlines()
return re.findall('\d+', data[0])
# 텍스트파일에서 int값으로 class id를 가져오는 함수
def get_id(num_line):
i = 0
while i < len(num_line):
num_line[i] += 1
i += 1
return num_line
# 사용한 txt파일 삭제하는 함수
def delete_txt():
file_path = "class.txt"
if os.path.exists(file_path):
os.remove(file_path)
# YOLOv5모델로 이미지 객체 탐지
def predict(img_name):
model = torch.hub.load('ultralytics/yolov5', 'custom', 'best.pt')
select_model = model(img_name, size=640)
object_cords(select_model)
get_class(select_model)
create_txt(select_model)
num_line = list(map(int, create_txt(select_model)))
result = []
for i in get_id(num_line):
result.append({'id': i})
delete_txt()
return result