-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhw_component.py
525 lines (435 loc) · 28.9 KB
/
hw_component.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import math
import numpy as np
import util
from topology_hack import Topology
kilo=1024.0
giga=1024.0*1024.0*1024.0
class System:
def __init__(self, exp_config):
self.num_nodes_per_wafer = exp_config.system_hierarchy.num_nodes_per_wafer
class Base:
def __init__(self, exp_config):
self.exp_config = exp_config
self.precision = exp_config.sw_config.precision
self.proc_chip_area_budget = exp_config.area_breakdown.proc_chip_area_budget
self.TDP = exp_config.power_breakdown.TDP
self.throughput = -1
node_width = math.sqrt(self.proc_chip_area_budget)
self.core_perimeter = node_width * 4
def calcThroughput(self):
print("Each class should have its own calcThroughput")
def getThroughput(self):
assert(self.throughput != -1)
return self.throughput
def solve_poly(self, p0, p1, p2, p3):
#solve p0.x^3 + p1.x^2 + p2.x + p3 = 0
roots = np.roots([p0, p1, p2, p3]);
real_roots = roots.real[abs(roots.imag)<1e-10] # where I chose 1-e10 as a threshold
return real_roots[0]
class Memory(Base):
def __init__(self, exp_config, level):
super().__init__(exp_config)
self.size = -1
self.tile_dim = -1
self.latency = -1
self.core = Core(self.exp_config)
self.level = level
def getSize(self):
assert(self.size != -1)
return self.size
def getTileDim(self):
assert(self.tile_dim != -1)
return self.tile_dim
def getLatency(self):
assert(self.latency != -1)
return self.latency
def getTileDims(self):
return self.getPower2TileDims()
#return self.getArbitraryTileDims(self):
def getPower2TileDims(self):
np.random.seed(1)
tile_dim_candidates = set()
num_candidates = 20
M = self.size_per_bundle / self.precision
max_power = int(math.floor(math.log2(M)))
self.calcTileDim()
square_tile = self.getTileDim()
tile_dim_candidates.add((square_tile, square_tile, square_tile))
tile_dim_candidates.add((square_tile//2, square_tile, square_tile*2))
while len(tile_dim_candidates) < num_candidates:
z = -1
while(z < 0):
s = [pow(2, i) for i in np.random.randint(0, max_power, 2)]
#store goes through cache at level 0 and 1 (register and shared memory)
assert(self.level >= 0 and self.level <= 3)
if self.level <= 1:
z = math.floor((M - s[0] * s[1]) / (s[0] + s[1]))
else:
#store bypasses cache, directly goes to memory
z = math.floor((M - s[0] * s[1]) / s[1])
if z <= 0:
continue
z = int(math.pow(2, math.floor(math.log2(z))))
tile_dim = (s[0], s[1], z)
tile_dim_candidates.add(tile_dim)
#print(tile_dim_candidates)
return list(tile_dim_candidates)
def getArbitraryTileDims(self):
np.random.seed(0)
tile_dim_candidates = []
self.calcTileDim()
square_tile = self.getTileDim()
mu, sigma = square_tile, square_tile
M = self.size_per_bundle / self.precision
tile_dim_candidates.append((square_tile, square_tile, square_tile))
for i in range(0, 0):
z = -1
while(z < 0):
s = [int(abs(i)) for i in np.random.normal(mu, sigma, 2)]
z = int(math.floor((M - s[0] * s[1]) / (s[0] + s[1])))
tile_dim = (s[0], s[1], z)
tile_dim_candidates.append(tile_dim)
print(tile_dim_candidates)
return tile_dim_candidates
def calcTileDim(self):
self.tile_dim = 0
if (self.scope == 'global'):
divisor = 1
elif (self.scope == 'mcu-bundle'):
divisor = self.core.num_bundle
elif (self.scope == 'mcu'):
divisor = self.core.num_mcu
else:
NotImplemented()
self.size_per_bundle = 0 if (divisor == 0) else self.size / divisor
if (self.size > 0):
self.tile_dim = math.ceil(math.pow(2, math.floor(math.log(math.sqrt((self.size_per_bundle / self.precision) / 2), 2))))
#self.tile_dim = math.floor(math.sqrt((self.size_per_bundle / self.precision) / 3))
class Core(Base):
def __init__(self, exp_config):
super().__init__(exp_config)
self.tot_power = exp_config.power_breakdown.core * self.TDP
self.tot_area = exp_config.area_breakdown.core * self.proc_chip_area_budget
self.FMA_width = exp_config.tech_config.core.FMA_width
self.dataflow = exp_config.tech_config.core.dataflow
self.nominal_voltage = exp_config.tech_config.core.nominal_voltage
self.nominal_freq = exp_config.tech_config.core.nominal_frequency
self.nominal_area_per_mcu = exp_config.tech_config.core.nominal_area_per_mcu
#TODO: Define it as a function of precision
self.nominal_flop_rate_per_mcu = exp_config.tech_config.core.nominal_flop_rate_per_mcu
self.nominal_power_per_mcu = exp_config.tech_config.core.nominal_power_per_mcu
self.util = exp_config.tech_config.core.util
#self.operating_voltage = exp_config.tech_config.core.operating_voltage
self.threshold_voltage = exp_config.tech_config.core.threshold_voltage
self.margin_voltage = exp_config.tech_config.core.margin_voltage
self.operating_area_per_mcu = exp_config.tech_config.core.operating_area_per_mcu
self.num_mcu_per_bundle = exp_config.tech_config.core.num_mcu_per_bundle
self.num_mcu = int(self.tot_area // self.operating_area_per_mcu)
self.num_bundle = int(self.num_mcu // self.num_mcu_per_bundle)
self.area_scaling = self.operating_area_per_mcu / self.nominal_area_per_mcu
#Assumption: performance scales linearly with area
self.operating_flop_rate_per_mcu = self.nominal_flop_rate_per_mcu * self.area_scaling
self.nominal_power = self.nominal_power_per_mcu * self.num_mcu * self.area_scaling
if self.tot_power > 0 and self.nominal_power > 0:
self.calcOperatingVoltageFrequency()
else:
self.operating_freq = 0
self.calcThroughput()
def calcOperatingVoltageFrequency(self):
#minimum voltage that meets power constraints
self.operating_voltage = self.solve_poly(p0 = 1,
p1 = -2 * self.threshold_voltage,
p2 = self.threshold_voltage**2,
p3 = -1 * self.tot_power / self.nominal_power * self.nominal_voltage * (self.nominal_voltage - self.threshold_voltage)**2)
#Calculate operating frequency at minimum voltage
self.operating_freq = self.nominal_freq * (((self.operating_voltage - self.threshold_voltage)**2 / (self.operating_voltage)) /
((self.nominal_voltage - self.threshold_voltage)**2 / self.nominal_voltage))
self.frequency_scaling_factor = 1
if self.operating_voltage < (self.threshold_voltage + self.margin_voltage):
self.scaled_voltage = self.threshold_voltage + self.margin_voltage
self.frequency_scaling_factor = (self.operating_voltage / self.scaled_voltage)**2
self.operating_voltage = self.scaled_voltage
self.operating_freq = self.frequency_scaling_factor * self.operating_freq
self.operating_power_per_mcu = self.nominal_power_per_mcu * (self.operating_freq / self.nominal_freq) * (self.operating_voltage / self.nominal_voltage)**2
def calcThroughput(self):
self.operating_throughput = self.operating_flop_rate_per_mcu * self.operating_freq * self.num_mcu
self.throughput = self.operating_throughput * self.util
def printStats(self, f):
self.eff_power = self.num_mcu * self.operating_power_per_mcu
self.eff_area = self.num_mcu * self.operating_area_per_mcu
f.write("\n\n=============\n")
f.write("Core\n")
f.write("=============\n")
f.write("operating_volatge: {0:.2f}, operating_freq: {1:.2f} (Ghz)\n".format(self.operating_voltage, self.operating_freq/1e9))
f.write("voltage_lowerbound: {0:.2f}\n".format(self.threshold_voltage + self.margin_voltage))
f.write("#mcu: {0:5d}, #bundles: {1:5d}\n".format(self.num_mcu, self.num_bundle))
f.write("eff_area: {0:.2f} (mm2), tot_area: {1:.2f} (mm2), util: {2:.2f}%\n".format(self.eff_area, self.tot_area, self.eff_area/self.tot_area * 100 ))
f.write("eff_power: {0:.2f} (watt), tot_power: {1:.2f} (watt), util: {2:.2f}%\n".format(self.eff_power, self.tot_power, self.eff_power/self.tot_power * 100 ))
class MemoryHierarchy(Base):
def __init__(self, exp_config):
super().__init__(exp_config)
self.num_levels = exp_config.memory_hierarchy.num_levels
self.memLayer = [None] * self.num_levels
for level in range(0,self.num_levels):
mem_config = exp_config.memory_hierarchy.mem_hr[level]
if mem_config.type == 'DRAM':
self.memLayer[level] = DRAM(exp_config, mem_config, level)
elif mem_config.type == 'SRAM-R':
self.memLayer[level] = SRAM(exp_config, exp_config.power_breakdown.reg_mem, exp_config.area_breakdown.reg_mem, exp_config.tech_config.SRAMR, mem_config, level)
elif mem_config.type == 'SRAM-L1':
self.memLayer[level] = SRAM(exp_config, exp_config.power_breakdown.L1, exp_config.area_breakdown.L1, exp_config.tech_config.SRAML1, mem_config, level)
elif mem_config.type == 'SRAM-L2':
self.memLayer[level] = SRAM(exp_config, exp_config.power_breakdown.L2, exp_config.area_breakdown.L2, exp_config.tech_config.SRAML2, mem_config, level)
else:
NotImplemented()
class DRAM(Memory):
def __init__(self, exp_config, mem_config, level):
super().__init__(exp_config, level)
self.tot_power = exp_config.power_breakdown.DRAM * self.TDP
self.tot_area = exp_config.area_breakdown.node_area_budget - self.proc_chip_area_budget
self.tot_mem_ctrl_area = self.proc_chip_area_budget * exp_config.area_breakdown.DRAM
self.mem_ctrl_area = exp_config.tech_config.DRAM.mem_ctrl_area
self.dynamic_energy_per_bit = exp_config.tech_config.DRAM.dynamic_energy_per_bit
self.static_power_per_byte = exp_config.tech_config.DRAM.static_power_per_bit * 8
self.area_per_byte = exp_config.tech_config.DRAM.area_per_bit * 8
self.stack_capacity = exp_config.tech_config.DRAM.stack_capacity
self.area_per_stack = exp_config.tech_config.DRAM.area_per_stack
self.latency = exp_config.tech_config.DRAM.latency
self.scope = mem_config.scope
self.util = exp_config.tech_config.DRAM.util
self.nominal_freq = exp_config.tech_config.DRAM.nominal_frequency
self.nominal_voltage = exp_config.tech_config.DRAM.nominal_voltage
self.threshold_voltage = exp_config.tech_config.DRAM.threshold_voltage
self.margin_voltage = exp_config.tech_config.DRAM.margin_voltage
self.max_voltage = exp_config.tech_config.DRAM.max_voltage
self.num_stacks = int(min(self.tot_area // self.area_per_stack,
self.tot_mem_ctrl_area // self.mem_ctrl_area))
self.num_links_per_mm = exp_config.tech_config.DRAM.num_links_per_mm
self.num_links_per_stack = exp_config.tech_config.DRAM.num_links_per_stack
self.perimeter_bound = int(self.core_perimeter *
exp_config.perimeter_breakdown.DRAM *
self.num_links_per_mm)
self.num_links = min(self.perimeter_bound, self.num_links_per_stack * self.num_stacks)
self.calcSize()
self.calcActiveEnergy()
self.nominal_power = self.dynamic_energy_per_bit * self.num_links * self.nominal_freq
if (self.dynamic_power > 0 and self.nominal_power > 0):
self.calcOperatingVoltageFrequency()
else:
self.operating_freq = 0
self.calcThroughput()
if self.dynamic_throughput <= 0:
assert(self.dynamic_throughput == 0)
self.num_stacks=0
self.calcSize()
self.calcTileDim()
def calcOperatingVoltageFrequency(self):
self.frequency_scaling_factor = 1
self.operating_voltage = self.solve_poly(p0 = 1,
p1 = -2 * self.threshold_voltage,
p2 = self.threshold_voltage**2,
p3 = -1 * self.dynamic_power / self.nominal_power * self.nominal_voltage * (self.nominal_voltage - self.threshold_voltage)**2)
#operating frequency at minimum voltage
self.operating_freq = self.nominal_freq * (((self.operating_voltage - self.threshold_voltage)**2 / (self.operating_voltage)) /
((self.nominal_voltage - self.threshold_voltage)**2 / self.nominal_voltage))
self.frequency_scaling_factor = 1
if self.operating_voltage < (self.threshold_voltage + self.margin_voltage):
self.scaled_voltage = self.threshold_voltage + self.margin_voltage
self.frequency_scaling_factor = (self.operating_voltage / self.scaled_voltage)**2
self.operating_freq = self.frequency_scaling_factor * self.operating_freq
self.operating_voltage = self.scaled_voltage
elif self.operating_voltage > self.max_voltage:
self.max_freq = self.operating_freq * (((self.max_voltage - self.threshold_voltage)**2 / (self.max_voltage)) /
((self.operating_voltage - self.threshold_voltage)**2 / self.operating_voltage))
self.operating_freq = self.max_freq
self.operating_voltage = self.max_voltage
def calcActiveEnergy(self):
self.dynamic_power = 0 if (self.tot_power < self.static_power_per_byte * self.size) else (self.tot_power - self.static_power_per_byte * self.size)
def calcThroughput(self):
self.dynamic_throughput = 0 if (self.size == 0) else self.num_links * self.operating_freq / 8
self.stack_bw = 0 if self.num_stacks == 0 else self.dynamic_throughput / self.num_stacks
self.throughput = self.dynamic_throughput * self.util
def calcSize(self):
#self.nominal_throughput = self.tot_power / self.dynamic_energy_per_byte
#self.size = min((self.nominal_throughput / self.stack_bw) * self.stack_capacity,
# self.cell_area / self.area_per_byte)
self.size = self.num_stacks * self.stack_capacity
def printStats(self, f):
self.operating_dynamic_energy_per_bit = self.dynamic_energy_per_bit * (self.operating_voltage / self.nominal_voltage)**2
self.dynamic_power = self.num_links * self.operating_dynamic_energy_per_bit * self.operating_freq
self.static_power = self.static_power_per_byte * self.size
self.eff_power = self.dynamic_power + self.static_power
self.eff_ctrl_area = self.num_stacks * self.mem_ctrl_area #_per_stack
self.eff_stack_area = self.num_stacks * self.area_per_stack
f.write("\n\n=============\n")
f.write("DRAM\n")
f.write("=============\n")
f.write("operating_volatge: {0:6.2f}\t\t operating_freq: {1:9.2f} (Ghz)\n".format(self.operating_voltage, self.operating_freq/1e9))
f.write("voltage_lowerbound: {0:5.2f}\t\t voltage_upperbound: {1:5.2f}\n".format(self.threshold_voltage + self.margin_voltage, self.max_voltage))
f.write("num_stacks: {0:10d}\t\t\t node_area_limit: {1:5d}\t\t\t chip_area_limit: {2:5d}\n".format(self.num_stacks,
int(self.tot_area // self.area_per_stack),
int(self.tot_mem_ctrl_area // self.mem_ctrl_area)))
f.write("num_links: {0:14d}\t\t stack_limit: {1:13d}\t\t perimeter_limit: {2:8d}\n".format(self.num_links,
self.perimeter_bound,
self.num_links_per_stack * self.num_stacks))
f.write("stack_bandwidth: {0:9.2f} (GB/s)\t stack_capacity: {1:9.2f} (GB)\n".format(self.stack_bw/giga, self.stack_capacity/giga))
f.write("eff_ctrl_area: {0:11.2f} (mm2)\t tot_ctrl_area: {1:11.2f} (mm2)\t\t\t\t\t\t\t\t\t\t util: {2:.2f}%\n".format(self.eff_ctrl_area, self.tot_mem_ctrl_area, self.eff_ctrl_area/self.tot_mem_ctrl_area * 100 ))
f.write("eff_stack_area: {0:11.2f} (mm2)\t tot_stack_area: {1:11.2f} (mm2)\t\t\t\t\t\t\t\t\t\t util: {2:.2f}%\n".format(self.eff_stack_area, self.tot_area, self.eff_stack_area/self.tot_area * 100 ))
f.write("dynamic_power: {0:11.2f}\t\t static_power: {1:11.2f}\t\t eff_power: {2:15.2f} (watt)\t tot_power: {3:.2f} (watt)\t\t util: {4:.2f}%\n".format(self.dynamic_power, self.static_power, self.eff_power, self.tot_power, self.eff_power/self.tot_power * 100 ))
class SRAM(Memory):
def __init__(self, exp_config, power_config, area_config, tech_config, mem_hierarchy_config, level):
super().__init__(exp_config, level)
self.tot_power = power_config * self.TDP
self.tot_area = area_config * self.proc_chip_area_budget
self.dynamic_energy_per_bit = tech_config.dynamic_energy_per_bit
self.dynamic_energy_per_byte = self.dynamic_energy_per_bit * 8
self.static_power_per_byte = tech_config.static_power_per_bit * 8
self.area_per_byte = tech_config.area_per_bit * 8
self.bank_capacity = tech_config.bank_capacity
self.controller_area_per_link = tech_config.controller_area_per_link
self.latency = tech_config.latency
self.overhead = tech_config.overhead #percetage of cells dedicated to cicuitry overhead for SRAM cells
self.cell_percentage = 1 - self.overhead
self.util = tech_config.util
self.scope = mem_hierarchy_config.scope
self.type = mem_hierarchy_config.type
self.bank_area = self.bank_capacity * self.area_per_byte
self.num_banks = int(math.floor((self.cell_percentage * self.tot_area) // (self.bank_area + self.cell_percentage * self.core.num_bundle * self.controller_area_per_link)))
self.core = Core(self.exp_config)
self.calcArea()
self.calcSize()
self.calcActiveEnergy()
self.calcThroughput()
if self.dynamic_throughput <= 0:
self.num_banks=0
self.calcSize()
self.calcTileDim()
def calcArea(self):
self.overhead_area = self.num_banks * self.core.num_bundle * self.controller_area_per_link
self.cell_area = (self.tot_area - self.overhead_area) * self.cell_percentage
if self.overhead_area > self.tot_area:
self.cell_area = 0
def calcSize(self):
self.size = self.num_banks * self.bank_capacity
def calcActiveEnergy(self):
self.static_power = self.static_power_per_byte * self.size
self.dynamic_power = 0 if (self.tot_power < self.static_power) else (self.tot_power - self.static_power)
def calcThroughput(self):
self.dynamic_throughput = 0 if (self.num_banks == 0) else self.dynamic_power / self.dynamic_energy_per_byte
self.throughput = self.dynamic_throughput * self.util
self.bank_bw = 0 if (self.num_banks == 0) else self.dynamic_throughput / self.num_banks
def printStats(self, f):
self.dynamic_power = self.dynamic_throughput * self.dynamic_energy_per_byte
self.eff_power = self.dynamic_power + self.static_power
self.ctrl_area = self.num_banks * self.core.num_bundle * self.controller_area_per_link
self.tot_bank_area = self.num_banks * self.bank_area / self.cell_percentage
f.write("\n\n=============\n")
f.write("{}\n".format(self.type))
f.write("=============\n")
f.write("num_banks: {0:17d}\n".format(self.num_banks))
f.write("bank_bandwidth: {0:13.2f} (GB/s)\t bank_capacity: {1:9.2f} (GB)\n".format(self.bank_bw/giga, self.bank_capacity/kilo))
f.write("ctrl_area: {0:17.2f} (mm2)\t\t bank_area: {1:11.2f} (mm2)\t tot_area: {2:11.2f}(mm2)\t\t\t util: {3:.2f}%\n".format(self.ctrl_area, self.tot_bank_area, self.tot_area, (self.ctrl_area + self.tot_bank_area)/self.tot_area * 100 ))
f.write("dynamic_power: {0:13.2f} (watt)\t\t static_power: {1:11.2f} (watt)\t\t eff_power: {2:15.2f} (watt)\t tot_power: {3:.2f} (watt)\t\t util: {4:.2f}%\n".format(self.dynamic_power, self.static_power, self.eff_power, self.tot_power, self.eff_power/self.tot_power * 100 ))
class Network(Base):
def __init__(self, exp_config):
super().__init__(exp_config)
self.intra_network = SubNetwork(exp_config,
exp_config.tech_config.network.intra_node,
exp_config.power_breakdown.network.intra_node,
exp_config.area_breakdown.network.intra_node,
'intra')
self.inter_network = SubNetwork(exp_config,
exp_config.tech_config.network.inter_node,
exp_config.power_breakdown.network.inter_node,
exp_config.area_breakdown.network.inter_node,
'inter')
def calcThroughput(self):
inter_throughput = self.inter_network.calcThroughput()
intra_throughput = self.intra_network.calcThroughput()
return intra_throughput, inter_throughput
def calcLatency(self):
inter_latency = self.inter_network.latency
intra_latency = self.intra_network.latency
return intra_latency, inter_latency
def printStats(self, f):
self.inter_network.printStats(f, "inter")
self.intra_network.printStats(f, "intra")
class SubNetwork(Base):
def __init__(self, exp_config, net_config, power_breakdown, area_breakdown, netLevel):
super().__init__(exp_config)
self.tot_power = power_breakdown * self.TDP
self.tot_area = area_breakdown * self.proc_chip_area_budget
#TODO: Rename core_perimeter to proc_chip_perimeter
self.latency = net_config.latency
self.nominal_freq = net_config.nominal_freq
self.nominal_voltage = net_config.nominal_voltage
self.nominal_energy_per_link = net_config.nominal_energy_per_link
self.nominal_area_per_link = net_config.nominal_area_per_link
self.threshold_voltage = net_config.threshold_voltage
self.margin_voltage = net_config.margin_voltage
self.num_links_per_mm = net_config.num_links_per_mm
self.util = net_config.util
self.inter = True if netLevel == 'inter' else False
self.intra = True if netLevel == 'intra' else False
inter_frac = exp_config.perimeter_breakdown.inter_node
intra_frac = exp_config.perimeter_breakdown.intra_node
perimeter_fraction = inter_frac if self.inter else intra_frac
self.tot_perimeter = perimeter_fraction * self.core_perimeter
self.num_links = int(min(self.tot_area /
self.nominal_area_per_link,
perimeter_fraction *
self.core_perimeter *
self.num_links_per_mm))
self.throughput = 0
self.operating_freq = 0
self.operating_voltage = 0
if self.num_links > 0:
self.calcOperatingVoltageFrequency()
self.throughput = self.calcThroughput()
#self.energy_per_bit = self.calcEnergyPerBit()
def calcOperatingVoltageFrequency(self):
self.nominal_power = self.nominal_energy_per_link * self.num_links * self.nominal_freq
#minimum voltage to meet the power constraint
self.operating_voltage = self.solve_poly(p0 = 1,
p1 = -2 * self.threshold_voltage,
p2 = self.threshold_voltage**2,
p3 = -1 * self.tot_power / self.nominal_power * self.nominal_voltage * (self.nominal_voltage - self.threshold_voltage)**2)
#operating frequency at minimum voltage
self.operating_freq = self.nominal_freq * (((self.operating_voltage - self.threshold_voltage)**2 / (self.operating_voltage)) /
((self.nominal_voltage - self.threshold_voltage)**2 / self.nominal_voltage))
self.frequency_scaling_factor = 1
if self.operating_voltage < (self.threshold_voltage + self.margin_voltage):
self.scaled_voltage = self.threshold_voltage + self.margin_voltage
self.frequency_scaling_factor = (self.operating_voltage / self.scaled_voltage)**2
self.operating_freq = self.frequency_scaling_factor * self.operating_freq
def calcEnergyPerBit(self):
self.operating_energy_per_link = (self.nominal_energy_per_link *
(self.operating_voltage / self.nominal_voltage)**2)
energy_per_bit = self.operating_energy_per_link
return energy_per_bit
#Return P2P bw
def calcThroughput(self):
#TODO: update this to support other network topology
#4 edges comes out of each node on wafer since we assume a mesh topology
#1 edges for cross-wafer as each node is connected to only one node on the other wafer (mesh extension)
degree = 4 if self.intra else 1
throughput = (self.num_links * self.operating_freq * self.util)/(8 * degree)
return throughput
def printStats(self, f, name):
self.calcEnergyPerBit()
self.eff_power = self.num_links * self.operating_freq * self.operating_energy_per_link
self.eff_area = self.num_links * self.nominal_area_per_link
self.eff_perimeter = self.num_links / self.num_links_per_mm
if self.eff_power > 0 and self.eff_area > 0:
f.write("\n\n=============\n")
f.write("Network: {}\n".format(name))
f.write("=============\n")
f.write("operating_volatge: {0:.2f}, operating_freq: {1:.2f} (Ghz)\n".format(self.operating_voltage, self.operating_freq/1e9))
f.write("voltage_lowerbound: {0:.2f}\n".format(self.threshold_voltage + self.margin_voltage))
f.write("#links: {0:5d}\n".format(self.num_links))
if self.tot_area !=0:
f.write("eff_area: {0:.2f} (mm2), tot_area: {1:.2f} (mm2), util: {2:.2f}%\n".format(self.eff_area, self.tot_area, self.eff_area/self.tot_area * 100 ))
if self.tot_power != 0:
f.write("eff_power: {0:.2f} (watt), tot_power: {1:.2f} (watt), util: {2:.2f}%\n".format(self.eff_power, self.tot_power, self.eff_power/self.tot_power * 100 ))
if self.tot_perimeter != 0:
f.write("eff_perimeter: {0:.2f} (mm), tot_perimeter: {1:.2f} (mm), util: {2:.2f}%\n".format(self.eff_perimeter, self.tot_perimeter, self.eff_perimeter/self.tot_perimeter * 100 ))