-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
53 lines (42 loc) · 1.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import numpy as np
from keras.models import load_model
model=load_model("./model-010.h5")
labels_dict={0:'without mask',1:'mask'}
color_dict={0:(0,0,255),1:(0,255,0)}
size = 4
webcam = cv2.VideoCapture(0) #Use camera 0
# We load the xml file
classifier = cv2.CascadeClassifier('/home/shivam/.local/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_default.xml')
while True:
(rval, im) = webcam.read()
im=cv2.flip(im,1,1) #Flip to act as a mirror
# Resize the image to speed up detection
mini = cv2.resize(im, (im.shape[1] // size, im.shape[0] // size))
# detect MultiScale / faces
faces = classifier.detectMultiScale(mini)
# Draw rectangles around each face
for f in faces:
(x, y, w, h) = [v * size for v in f] #Scale the shapesize backup
#Save just the rectangle faces in SubRecFaces
face_img = im[y:y+h, x:x+w]
resized=cv2.resize(face_img,(150,150))
normalized=resized/255.0
reshaped=np.reshape(normalized,(1,150,150,3))
reshaped = np.vstack([reshaped])
result=model.predict(reshaped)
#print(result)
label=np.argmax(result,axis=1)[0]
cv2.rectangle(im,(x,y),(x+w,y+h),color_dict[label],2)
cv2.rectangle(im,(x,y-40),(x+w,y),color_dict[label],-1)
cv2.putText(im, labels_dict[label], (x, y-10),cv2.FONT_HERSHEY_SIMPLEX,0.8,(255,255,255),2)
# Show the image
cv2.imshow('LIVE', im)
key = cv2.waitKey(10)
# if Esc key is press then break out of the loop
if key == 27: #The Esc key
break
# Stop video
webcam.release()
# Close all started windows
cv2.destroyAllWindows()