diff --git a/mlir/test/Dialect/Linalg/transform-op-peel-and-vectorize.mlir b/mlir/test/Dialect/Linalg/transform-op-peel-and-vectorize.mlir new file mode 100644 index 00000000000000..016749f81f6205 --- /dev/null +++ b/mlir/test/Dialect/Linalg/transform-op-peel-and-vectorize.mlir @@ -0,0 +1,86 @@ +// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s + +// Demonstrates what happens when peeling the middle loop (2nd parallel +// dimension) followed by vectorization in the presence of _scalable_ vectors +// (these are introduced through scalable tiling). The main goal is to verify +// that canonicalizations fold away the masks in the main loop. + +func.func @matmul(%A: tensor<1024x512xf32>, + %B: tensor<512x2000xf32>, + %C:tensor<1024x2000xf32>) -> tensor<1024x2000xf32> { + +// CHECK: #[[MAP:.*]] = affine_map<()[s0] -> (-(2000 mod s0) + 2000)> +// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-DAG: %[[C2000:.*]] = arith.constant 2000 : index +// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index +// CHECK-DAG: %[[C1024:.*]] = arith.constant 1024 : index +// CHECK-DAG: %[[C512:.*]] = arith.constant 512 : index +// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index +// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index +// CHECK: %[[VSCALE:.*]] = vector.vscale +// CHECK: %[[STEP:.*]] = arith.muli %[[VSCALE]], %[[C16]] : index +// CHECK: %2 = scf.for {{.*}} %[[C0]] to %[[C1024]] step %[[C8]] iter_args(%arg4 = %arg2) -> (tensor<1024x2000xf32>) { + +// Main loop after vectorisation (without masking) + +// CHECK: %[[UB_MAIN:.*]] = affine.apply #[[MAP]]()[%[[STEP]]] +// CHECK: scf.for {{.*}} %[[C0]] to %[[UB_MAIN]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) { +// CHECK: scf.for %arg7 = %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) { +// CHECK-NOT: vector.mask +// CHECK: arith.mulf {{.*}} : vector<8x[16]x1xf32> +// CHECK-NEXT: vector.shape_cast {{.*}} : vector<8x[16]x1xf32> to vector<8x[16]xf32> +// CHECK-NEXT: arith.addf {{.*}} : vector<8x[16]xf32> +// CHECK-NOT: vector.mask +// CHECK: scf.yield {{.*}} : tensor<1024x2000xf32> +// CHECK-NEXT: } +// CHECK-NEXT: scf.yield {{.*}} : tensor<1024x2000xf32> +// CHECK-NEXT: } + +// Remainder loop after vectorisation (with masking) + +// CHECK: scf.for {{.*}} %[[UB_MAIN]] to %[[C2000]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) { +// CHECK: scf.for {{.*}} %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) { +// CHECK: %[[MASK_1:.*]] = vector.create_mask {{.*}} : vector<1x[16]xi1> +// CHECK: %[[RHS:.*]] = vector.mask %[[MASK_1]] { vector.transfer_read {{.*}} } : vector<1x[16]xi1> -> vector<8x[16]x1xf32> +// CHECK: %[[MASK_2:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1> +// CHECK: %[[LHS:.*]] = vector.mask %[[MASK_2]] { vector.transfer_read {{.*}} } : vector<8x[16]xi1> -> vector<8x[16]xf32> +// CHECK: %[[MUL:.*]] = arith.mulf %{{.*}}, %[[RHS]] : vector<8x[16]x1xf32> +// CHECK: %[[MASK_3:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1> +// CHECK: vector.shape_cast %[[MUL]] : vector<8x[16]x1xf32> to vector<8x[16]xf32> +// CHECK: arith.addf %[[LHS]], %{{.*}} : vector<8x[16]xf32> +// CHECK: arith.select %[[MASK_3]], {{.*}} : vector<8x[16]xi1>, vector<8x[16]xf32> +// CHECK: vector.mask %[[MASK_2]] { vector.transfer_write {{.*}} } : vector<8x[16]xi1> -> tensor<8x?xf32> +// CHECK: scf.yield %inserted_slice : tensor<1024x2000xf32> +// CHECK: } +// CHECK: scf.yield %7 : tensor<1024x2000xf32> +// CHECK: } +// CHECK: scf.yield %5 : tensor<1024x2000xf32> +// CHECK-NEXT: } + + %res = linalg.matmul ins(%A, %B: tensor<1024x512xf32>, tensor<512x2000xf32>) + outs(%C: tensor<1024x2000xf32>) -> tensor<1024x2000xf32> + return %res : tensor<1024x2000xf32> +} + +module attributes {transform.with_named_sequence} { + transform.named_sequence @__transform_main(%root: !transform.any_op {transform.readonly}) { + %matmul = transform.structured.match ops{["linalg.matmul"]} in %root : (!transform.any_op) -> !transform.any_op + // 1. Scalable tiling + %_, %loop_1, %loop_2, %loop_3 = + transform.structured.tile_using_for %matmul [8, [16], 1] : (!transform.any_op) + -> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">,!transform.op<"scf.for">) + + // 2. Loop peeling (only the middle dimension) + %main_loop, %remainder_loop = transform.loop.peel %loop_2 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">, !transform.op<"scf.for">) + + // 3. Vectorize the main loop + %matmul_main = transform.structured.match ops{["linalg.matmul"]} in %main_loop : (!transform.op<"scf.for">) -> !transform.any_op + transform.structured.vectorize %matmul_main vector_sizes [8, [16], 1] : !transform.any_op + + // 4. Vectorize the remainder loop + %matmul_remainder = transform.structured.match ops{["linalg.matmul"]} in %remainder_loop : (!transform.op<"scf.for">) -> !transform.any_op + transform.structured.vectorize %matmul_remainder vector_sizes [8, [16], 1] : !transform.any_op + + transform.yield + } +}